

SIMH IBM 1130 Emulator

and

Disk Monitor System R2V12

Reference Guide

November 23, 2012
Release

This is a work in progress.

©Copyright 2002-12, Brian Knittel

www.ibm1130.org

IBM 1130 Emulator Reference 1

Table of Contents

1. Introduction to the IBM 1130 ... 1

2. The Emulated 1130 .. 3

3. Files Included with the Emulator ... 4

3.1. SIMH Users ... 4

3.2. Standalone Users ... 4

3.3. What's in the ZIP files ... 4

4. Installing the Emulator ... 8

4.1. Installing on Windows ... 8

4.2. Installing and Building for Other Operating Systems ... 8

5. Using the Emulator ... 10

5.1. Emulator Commands ... 10

5.2. DO Scripts ... 12

5.3. Drag and Drop ... 12

6. Emulator Commands for Peripheral Control .. 13

6.1. The CPU .. 13

6.2. Console Printer and Telnet Support .. 14

6.3. Line Printer .. 15

6.4. Disk Drives .. 16

6.5. Card Reader ... 17

6.6. Card Punch .. 19

6.7. 1627 Plotter ... 19

6.8. Paper Tape Reader/Punch.. 21

6.9. 2250 Graphics Display .. 22

6.10. Synchronous Communications Adapter .. 22

6.11. 2741 Terminal Support .. 22

7. The Emulator Display .. 23

8. IBM 1130 Disk Monitor System (DMS) Release 2 Version 12 ... 26

8.1. Booting the Emulated IBM 1130 .. 26

8.2. Running DMS Entirely from the GUI ... 27

8.3. Cold Start Program Wait Codes .. 27

8.4. DMS Disk Basics .. 27

8.5. DMS Job Decks ... 28

8.6. Error Wait Codes ... 30

9. Monitor Control Records .. 32

IBM 1130 Emulator Reference 2

9.1. Supervisor Control Records .. 34

10. Disk Utility Program (DUP) ... 35

10.1. DUP Control Records .. 36

10.2. Temporary Mode Restrictions ... 39

11. IBM 1130 Fortran ... 40

11.1. Using Functions and Subroutines .. 40

11.2. Fortran Control Records .. 41

11.3. Fortran Declaration Statements ... 42

11.4. Fortran Program Statements .. 43

11.5. Fortran Subroutine Library .. 44

11.6. Plotter Library ... 46

11.7. Fortran Compiler Error Codes ... 46

11.8. Fortran Program I/O Error Wait Codes ... 50

12. Macro Assembler ... 51

12.1. Assembler Control Records ... 51

12.2. Assembler Statement Format .. 52

12.3. Assembler Constants and Expressions .. 52

12.4. Assembler Directives and Pseudo-Ops ... 53

12.5. Instruction Opcodes ... 54

12.6. Macro Assembler Error Flags ... 55

13. Loading a DMS Disk Image ... 57

13.1. Required Files.. 57

13.2. Required Utilities .. 57

13.3. Assembling DMS and Components .. 57

13.4. Building DMS for a 1132 Printer .. 57

13.5. Building DMS for a 1403 Printer .. 57

13.6. Building DMS for Alternate Memory Configurations .. 57

14. Data Formats .. 58

15. Character Codes ... 60

16. Known Problems/Limitations ... 63

16.1. Simulator issues ... 63

16.2. DMS issues .. 63

IBM 1130 Emulator Reference 1

1. Introduction to the IBM 1130

The IBM 1130 minicomputer was introduced by IBM in 1965 to serve the needs of scientific and

engineering customers too small to afford IBM's newly-introduced Series /360 computers. The 1130

found wide acceptance in the educational market as well, as attested to by the number of middle-aged

programmers' resumes that a Google search will turn up.

The 1130 came with a macro assembler and Fortran and RPG compilers as standard software. Cobol

and APL were available as add-on products. 1130 system configurations could include the following

devices:

 IBM 1131 CPU with 4, 8, 16 or 32 K 16-bit words of 3.6μs or 2.2μs core memory, 512K

word removable cartridge hard disk, integral Selectric printer and Hollerith keyboard

 IBM 1132 Printer—80 lpm with alphanumeric mix, 110 lpm numeric only

 IBM 1442 Card Read/Punch Model 6, 7—300 or 400 cards/min read, 80 cols/sec punch

 IBM 1442 Card Punch Model 5A or 5B - 80 or 160 cols/sec punch

 IBM 2501 Card Reader Model A1 or A2—600 or 1000 cpm

 Synchronous Communications Adapter—Bisync/STR

 IBM 1231 Optical Mark Page Reader—33 pages/min

 IBM 1055 Paper Tape Punch and IBM 1134 Paper Tape Reader—60 cps read, 14 cps punch

 IBM 1627 Plotter Models 1 or 2—.01" resolution, 1800 or 1200 steps/min

 IBM 1131 Storage Access Channel—interface for the following options:

 IBM 1133 Multiplex Control Enclosure—second SAC interface & multiplexer for disks

 IBM 1403 Printer Model 6 or 7—340 or 600 lpm

 IBM 2310 or 2311 Disk cartridge or Disk Pack—up to 5,120 KW additional storage

 IBM 2250 Graphical Display unit—21" CRT, 1024x1024 resolution, display-list processor

with light pen & keyboard

 Interface to IBM System/7 real-time acquisition system

A typical small system might include the 1131 CPU with 8KW or 16KW memory and the internal

hard disk, an 1442 card read/punch, and the 1132 printer, as shown below.

1131 CPU and console printer 1442 Card Read/Punch 1132 Printer

IBM 1130 Emulator Reference 2

It was not a screamingly fast machine, but it could serve the needs of a small civil engineering firm,

or a community college's Fortran programming classes.

The 1130's CPU was built using the Solid Logic Technology (SLT) circuitry developed by IBM for

the S/360 series computers. For these circuits, IBM developed a method of densely packing

individual transistors, diodes and other circuit components on a small ceramic plate, rather than

relying on the new and unproven monolithic integrated circuit technology that was just emerging at

that time. Individual transistor and diode dice were placed upside down on the ceramic substrate onto

tiny solder balls, and the assembly was heated to melt the solder. The 1130's CPU is built from an

array of small plug-in circuit boards, each holding typically four or five discrete resistors or

capacitors and four to eight half-inch square metal cans containing SLT circuits. The CPU and was

not based on a modern ALU/microcode model but was hardwired to decode and implement each of

its instructions.

SLT Module card (about 2"  3") with four SLT circuit modules
(square metal cans). Inset shows a close-up of the inside of a
typical SLT circuit.

IBM 1130 Emulator Reference 3

2. The Emulated 1130

The IBM1130 emulator is based on Bob Supnik's SIMH package as part of the Computer History

Simulation Project (see http://simh.trailing-edge.com). The simulator and ancillary programs such as

the cross-assembler are written in ANSI-C, and may be compiled on Unix, Linux, VMS and Win32

platforms. The program is a command line, text based program. A graphical user interface option is

available on Win32.

The emulated system sports the following hardware devices:

 IBM 1131 CPU with internal disk, printer and keyboard

 Four additional disk drives

 IBM 1132 Printer or IBM 1403 Printer

 IBM 1442 Card Read/Punch Model 7, or IBM 2501 Card Reader and 1442 Punch

 IBM 1627 Plotter

 IBM 1055 Paper Tape Punch and IBM 1134 Paper Tape Reader

 IBM 2250 Graphical Display Unit (Windows builds only)

 Synchronious communication adapter (not completed; work in progress).

The default configuration provides 16 KW of memory, but this is adjustable.

The emulator software package includes the IBM 1130 Disk Monitor System Version 2 Release 12,

which includes the Macro Assembler and Fortran compiler. RPG is not yet available. The disk image

included in the standard download (dms.dsk) is built for a 16KW machine with the 1132 printer.

Note: You can find the most current version of the emulator and this

documentation at http://www.ibm1130.org. Sign up for the ibm1130.org

mailing list if you want to be notified of software updates or upcoming

events.

Note: Windows builds of latest version of the emulator contains a new "drag and

drop" interface that isn't well debugged yet, but it's getting there. There are

notes about using this interface later in this manual.

http://simh.trailing-edge.com/

IBM 1130 Emulator Reference 4

3. Files Included with the Emulator

The emulator and software are distributed in two ways: one for users who have the entire SIMH

package, and another for users who want to download just the IBM1130 emulator.

3.1. SIMH Users

Download ibm1130code.zip, which contains the files in the ibm1130 subdirectory in the main simh

tree. This zip file does not contain any of the scp or sim source files.

Download ibm1130software.zip to get the Windows emulator, DMS image, DMS sources, sample

jobs and ancillary programs.

3.2. Standalone Users

Download ibm1130.zip to get the source code for the emulator. This zip includes a several files which

are part of the SIMH emulator package.

Download ibm1130software.zip to get the Windows version of the emulator, DMS image, DMS

sources, sample jobs and ancillary programs.

If you want to use the Windows version of the emulator and do not wish to modify the emulator

source code, you only need to download and install ibm1130software.zip

3.3. What's in the ZIP files

Files in ibm1130.zip (emulator sources):

ibm1130.ico Windows icon

1130consoleblank.bmp background image for Windows GUI
1132empty.bmp Drawings of the 1132 printer and 1442 card
1132full.bmp reader in their "full" and "empty" states, used
1442empty.bmp by the GUI.
1442full.bmp
1442eof.bmp
ibm1130_cpu.c CPU emulation
ibm1130_cr.c card read punch emulation
ibm1130_disk.c disk emulation
ibm1130_fmt.c card input reformatter
ibm1130_gdu.c 2250 graphical display unit emulation
ibm1130_gui.c emulator console GUI
ibm1130_plot.c plotter emulation
ibm1130_prt.c printer emulation
ibm1130_ptrp.c paper tape read/punch emulation
ibm1130_sca.c synchronous communcation adapter emulation
ibm1130_stddev.c console printer and toggle switch emulation
ibm1130_sys.c emulator helper routines
ibm1130_t2741.c remote Selectric terminal emulation
scp.c simh main program

1

scp_tty.c simh console IO routines
1

sim_sock.c simh network IO routines
 1

sim_tmxr.c emulator serial port emulation IO routines
1

1
 Not in ibm1130code.zip, which is packaged for simh users.

IBM 1130 Emulator Reference 5

HAND.CUR cursor for Windows GUI
dmsr2v12phases.h DMS phase information for debugging purposes
dmsr2v12slet.h DMS disk location information for debugging purposes
ibm1130_conin.h ASCII to console keyboard code (hollerith) table
ibm1130_conout.h console printer code to ASCII table
ibm1130_defs.h emulator definitions
ibm1130_prtwheel.h 1132 and 1403 printer code sequence tables
ibm1130res.h Windows GUI resource constants
sim_defs.h simh definitions

1

sim_rev.h simh definitions
1

sim_sock.h simh definitions
1

sim_tmxr.h simh definitions
1

ibm1130.mak Windows VC2+ makefile for emulator with GUI
ibm1130.rc Windows GUI resource definitions
makefile makefile for emulator for other OS's
readme_update.txt comments
readme1130.txt comments

Files in ibm1130software.zip (DMS and sample files):

asm emulator script for assembler job

for emulator script for Fortran job

gdu emulator script for GDU sample program

job emulator script for generic job

list emulator script for disk listing job

loaddms emulator script for system load job

guijob emulator script to boot DMS; useful with GUI

dbootcd.asm source code for DMS boot card

fsysldr2.asm edited version of system loader part 2

gdu.asm sample program to demonstrate 2250 display

zcrdumpc.asm copy of ZCRDUMPC with comments

zdcip.asm copy of disk cartridge initialization program

mkdms.bat Windows batch file to build DMS binary files

needed for loaddms job

loaddms.deck DMS initial load deck

ibm1130.doc This manual

dms.dsk Preloaded DMS bootable disk

asm1130.exe Cross assembler (Win32 executable)

bindump.exe assembler binary display utility (Win32 exec)

checkdisk.exe disk dump utility (Win32 exec)*

ibm1130.exe Emulator (Win32 executable)

mkboot.exe assembler binary to boot card converter

(Win32 exec)

IBM 1130 Emulator Reference 6

viewdeck.exe binary deck listing utility (Win32 exec)*

csort.job sample job deck

for.job generic Fortran job deck

gdu.job job deck to run GDU.ASM

list.job job deck to list disk contents

pltpn.job Installs routine PLTPN for programmatic

control of emulated plotter's pen

roots.job job deck to print table of square roots

swave.job job deck to plot sine wave on line printer

readme1130.txt extra copy of readme file

utils/ sources for emulator utility programs

utils/asm1130.c cross assembler source

utils/bindump.c assembler binary display utility
2

utils/checkdisk.c disk check utility source
†

utils/diskview.c disk dump utility source
†

utils/mkboot.c assembler binary to boot card converter

utils/viewdeck.c binary deck listing utility
†

utils/*.mak Microsoft VC2+ makefiles

dmsr2v12/ sources for DMS

dmsr2v12/(a-d)*.asm System loader modules

dmsr2v12/emonitor.asm extracted part of PMONITOR (used to

construct system load deck)

dmsr2v12/fsysldr2.asm system loader part 2

dmsr2v12/j*.asm DUP sources

dmsr2v12/kforph*.asm Fortran compiler phases

dmsr2v12/n*.asm Supervisor and Resident monitor

dmsr2v12/ocldbldr.asm Core load builder

dmsr2v12/p*.asm Resident monitor and device IO routines

dmsr2v12/pmondevs.asm extracted part of PMONITOR (used to

construct system load deck)

dmsr2v12/ptmasmbl.asm Macro Assembler

dmsr2v12/r*.asm Library routines

dmsr2v12/s*.asm Library routines

dmsr2v12/t*.asm Library routines

2
 These utilities are not terribly important. They were written mainly as debugging aids during development of

the emulator and while learning how to build DMS.

IBM 1130 Emulator Reference 7

dmsr2v12/u*.asm System library routines

dmsr2v12/v*.asm Plotter routines

dmsr2v12/w*.asm SCS (serial IO) routines

dmsr2v12/z*.asm standalone utilities and coldstart cards

onecard/ coldstart-mode cards from Oscar Wyss

onecard/oc*.asm coldstart-mode cards from Oscar Wyss

IBM 1130 Emulator Reference 8

4. Installing the Emulator

4.1. Installing on Windows

To use the emulator on Windows, download ibm1130software.zip from www.ibm1130.org or

www.quarterbyte.com and unzip it into a working directory, say \ibm1130. This directory will

contain the Windows executables and the sample job files.

If you want to work with the emulator source code, follow the instructions for working with other

operating systems as described in the next section. If you have a Microsoft compiler you can use the

.mak files provided with the source code. If you use another compiler, you can use the standard

makefiles.

4.2. Installing and Building for Other Operating Systems

If you have an operating system besides Windows, or if you wish to work with the emulator's source

code, you can use one of two methods to build the emulator: you can build it as part of the SIMH

package, or you can build it as a standalone program.

Building IBM1130 as part of SIMH

1. Get the most current SIMH source code package from simh.trailing-edge.com.

2. Expand the zip file, retaining the directory structure

3. Get the most recent 1130 subdirectory update from www.ibm1130.org/ibm1130code.zip, or if

that fails, ww.quarterbyte.com/ibm1130code.zip

4. Expand the 1130 zip file into the ibm1130 directory under simh. This will give you the most

current version of the 1130 emulator

5. Use the SIMH makefile to build the emulator. You may modify the makefile to specify an output

directory for the executables that is in your path, or you may move the executables to a directory

in your path after building.

6. In the ibm1130\utils directory, use the makefile to build the accessory programs. Move the

executables to a directory in your path.

7. Download ibm1130software.zip from simh.trailing-edge.com or www.ibm1130.org or

www.quarterbyte.com.

8. Unzip the software zip file into a directory that you want to use for your 1130 projects. You can

delete all of the Windows .exe files.

Building IBM1130 as a Standalone Program

1. Get the most recent 1130 standalone emulator package from www.ibm1130.org/ibm1130.zip, or

if that fails, ww.quarterbyte.com/ibm1130.zip

2. Expand the zip file into a source code working directory, say \ibm1130\source.

3. Use the supplied makefile to build the emulator. You may edit the makefile to specify an output

directory for the executables that is in your path, or you may move the executables to a directory

in your path after building. If you are using a Microsoft compiler on Windows, you may use the

supplied .mak files instead of makefile.

4. In the ibm1130\utils directory, use the makefile or the .mak files to build the accessory

programs. Move the executables to a directory in your path.

http://www.ibm1130.org/ibm1130software.zip
http://www.quarterbyte.com/ibm1130software.zip
http://simh.trailing-edge.com/
www.ibm1130.org/ibm1130code.zip
www.quarterbyte.com/ibm1130code.zip
http://simh.trailing-edge.com/ibm1130software.zip
http://www.ibm1130.org/ibm1130software.zip
http://www.quarterbyte.com/ibm1130software.zip
www.ibm1130.org/ibm1130code.zip
www.quarterbyte.com/ibm1130code.zip

IBM 1130 Emulator Reference 9

5. Download ibm1130software.zip from simh.trailing-edge.com or www.ibm1130.org or

www.quarterbyte.com.

6. Unzip the software zip file into a directory that you want to use for your 1130 projects. Since you

are using your own builds of the programs, delete all of the Windows .exe files that came with

this zip file.

http://simh.trailing-edge.com/ibm1130software.zip
http://www.ibm1130.org/ibm1130software.zip
http://www.quarterbyte.com/ibm1130software.zip

IBM 1130 Emulator Reference 10

5. Using the Emulator

Start the emulator by typing the command

ibm1130

Later on , you may wish to run an emulator script directly from the command line by typing

ibm1130 scriptfile [arg1 arg2...]

While the program is running, the following control keys simulate certain 1130 keys and buttons:

Key Corresponds to

Ctrl+E Immediate Stop

Ctrl+P Int Req

Ctrl+Q Program Stop

Ctrl+U Erase Fld

The following emulator commands perform the same function as certain 1130 control buttons:

Command Corresponds to

go Pressing Program Start

deposit ces xxxx Setting the Console Entry Switches to hex value xxxx

deposit iar xxxx Pressing Load IAR with console switches set to xxxx

reset Pressing Check Reset

boot dsk Pressing Check Reset, Program Load, Program Start with the DMS

R2V12 cold start card in the card reader

boot cr Pressing Check Reset, Program Load, Program Start to boot from the card

reader. (The virtual card reader must be attached to a binary file

containing the image of a cold-start card)

5.1. Emulator Commands

This is a list of the emulator's commands. Some will be described from a functional standpoint later in

this manual. Commands and keywords can be abbreviated; the minimum abbreviations are show in

boldface.

In this table, device refers to the name of a given device class, such as dsk for disk drives or cr

for the card reader. Unit refers to a specific unit of the given class, for example, dsk0, dsk1,

dsk2, etc. Where a unit name is expected, if the unit number is omitted, unit 0 is implied. So, as a

unit name, dsk refers to dsk0.

Command Description

attach [options] unit

filename
attach file to simulated unit

backtrace [n] list last n branches/skips/interrupts
3

boot unit bootstrap unit

3
 This is used to help debug DMS. You can happily ignore it.

IBM 1130 Emulator Reference 11

Command Description

cgi run emulator in CGI mode

cont continue simulation

delete filename remove named file

deposit list val deposit in memory or registers

detach unit detach file from simulated unit

do scriptfile [arg, arg

...]

process command script

dump filename [args ...] dump binary file

echo arg ... echo arguments passed to command

examine list examine memory or registers

{exit | quit | bye} exit from simulation

go [address] start simulation, optionally specifying run address

help type this table of commands

help command type help for a specific command

ideposit list interactive deposit in memory or registers

iexamine list interactive examine memory or registers

load filename [args ...] load binary file

phdebug {off | phlo phhi} break emulation on phase load
3

reset [ALL | device] reset simulator or individual device class

{restore | get} filename restore simulator from file

run [address] reset and start simulation

save filename save simulator to file

set {device | unit }

parameter
set device/unit parameter

set device {OCT | DEC |

HEX}
set device display radix

set log filename enable logging to file

set nolog disable logging

set notelnet disable Telnet for console

set telnet port enable Telnet port for console

show {device | unit} show device parameters

show configuration show current device configuration

show devices show list of all devices

show log show state of simulator logging

show modifiers show all available options for all devices

show queue show simulator event queue

IBM 1130 Emulator Reference 12

Command Description

show telnet show console Telnet status

show time show simulated time

show version show simulator version

step [n] simulate n instructions and halt

view filename view a text file with Windows Notepad

where address find phase and offset of a system address

5.2. DO Scripts

You may put frequently-used sets of commands into a text file and execute it as a script using the

"do" command:

 sim> do filename [argument1 argument2 ...]

Any arguments entered after the script filename are available to the script as tokens %1, %2, etc.

These substitution tokens may also appear in deck files (see "Indirect (deck) files" on page 18).

5.3. Drag and Drop

The GUI window that appears in Windows has a new, relatively untested feature that allows you to

use "drag and drop" to run scripts and insert card deck files into the virtual card reader. Here's how it

to use it:

 To load a card deck file into the 1442 card reader, drag the file from an Explorer window and

release it on the 1442 card reader icon. The emulator will automatically determine if this file

is a binary card image file or an ASCII file. You can only attach one file at time this way.

 To load an indirect "deck file," that is, a file that lists the names files to be read, hold the Shift

key down when you release the dragged file on the 1442 card reader icon. See "Indirect

(deck) files" on page 18 for more information.

 To run a simulator "do" script, drag the script file and release it anywhere on the simulator

window but on the 1442 card reader icon.

 To "tear off" and view printer output, click the 1132 printer icon picture. The file containing

the print output is reset to an empty file after the Notepad window opens.

See "Running DMS Entirely from the GUI" on page 27 for instructions on using this GUI.

IBM 1130 Emulator Reference 13

6. Emulator Commands for Peripheral Control

6.1. The CPU

The reset command resets the CPU and all hardware devices.

Modifying Registers

You can view and modify CPU the following CPU registers:

Register Name Description

IAR Instruction Address Register (program counter)

ACC Accumulator

EXT Accumulator Extension

Oflow Overflow bit

Carry Carry bit

CES Console Entry Switches (Switch 0 = 8000, Switch 1 = 4000, ...

Switch 15 = 0001).

The registers can be viewed and modified with the examine and deposit commands:

sim> examine register Displays the contents of a CPU

register. Most registers are also

displayed on the GUI.

sim> deposit register value Sets the specified register to the

specified value.

You can also issue the command go address to set the IAR and start the processor at the same

time. If you are using the GUI, you can enter values in the IAR and Console Entry Switches through

the GUI switches. To load the IAR, enter a value in the switches and click Load IAR.

By default, values are displayed and entered in hex, although you can change this with the command

set cpu oct or set cpu dec.

CPU Debugging

sim> attach cpu filename.log

sim> go

sim> detatch cpu

sim> view filename.log

Attaching a file to the CPU device creates a log showing CPU register values before each instruction

and lists each instruction executed. This can create quite large output files, so it must be used arefully.

Configuring Memory

You can adjust the amount of memory in the emulated processor with the set cpu command. The

default allotment is 16K words. The options are:

sim> set cpu 4K

sim> set cpu 8K

IBM 1130 Emulator Reference 14

sim> set cpu 16K

sim> set cpu 32K

Note: The DMS operating system should be rebuilt before running with a different

memory configuration. The DMS image dms.dsk provided in the

distribution zip file is configured for the default 16K machine.

Enabling and Disabling the GUI

On Windows builds, you may turn the GUI display on and off with the set gui command:

set gui on

set gui off

You can start the emulator with the GUI turned off by running ibm1130 with the -g command line

option.

6.2. Console Printer and Telnet Support

By default, the main SIMH window serves as the 1130's console, so, your computer's keyboard serves

as the console keyboard, and the SIMH window displays console typewriter output. There is at

present no support for ribbon color in this window.

When the simulator is running, the following keyboard mappings are recognized:

 Ctrl+E IMMEDIATE STOP

 Ctrl+P PROGRAM STOP

 Ctrl+Q INT REQ

 Ctrl+U ERASE FLD

 Enter End of Input

If you issue the SIMH command

 set telnet portnumber

for example

 set telnet 1130

then the SIMH console window is NOT used for the 1130's console keyboard and printer. Instead, the

simulator accepts a telnet session to port 1130 and uses that for console IO.

(If you want the simulator to be reachable by machines other than the local host, be sure to open this

port in your computer's firewall. On Windows, this is most easily done by adding program

ibm1130.exe to the Windows Firewall exception list).

With telnet enabled, you can enable ANSI color control sequences with

 set tto ansi

so that ribbon color shifts will be simulated.

The commands

 set notelnet

 set tto noansi

disables telnet and restores input and output through the SIMH console window, and disables ANSI

ribbon color control commands.

IBM 1130 Emulator Reference 15

The default output mapping converts the Selectric rotate/shift codes to standard ANSI ASCII

characters. You can output actual Selectric codes using the command

 set tto 1130

The command

 set tto apl

assumes that the 1130's Selectric has an APL typeball installed, and maps characters to the output to

the APLPLUS font. (This is useful only in conjunction with a telnet session).

The output mapping can be customized using the FONT command, but this is not documented here at

present.

The command

 set tto ansi

restores normal character mapping.

6.3. Line Printer

The emulated system has one line printer, which can be specifed to be an 1132 or a 1403 printer. The

default configuration uses the 1132. If you plan on running intensive print output runs, it may be

worth altering the setup and reloading DMS to use the 1403, which is much faster in emulation, just

as in real life.

Attaching an Output File

 sim> attach prt filename

Viewing Printer Output

sim> detach prt

sim> view filename

The View command is available only in the Windows version of the emulator. In other operating

systems, you'll have to use a separate console session to view the output file if you do not want to exit

the emulator program.

Sending Printer Output to Stdout

sim> attach prt -

This can be useful if you want to set up batch processing scripts that process an input deck, send

output to stdout and then quit. This turns the emulator into a filter rather than an interactive program.

Selecting the Printer Model

sim> set prt 1403

sim> set prt 1132

Default is 1132.

Note: If you change the printer mode, your programs must be modified, and you

will have to rerun the DMS cartridge load procedure with the appropriate

device configuration cards.

IBM 1130 Emulator Reference 16

 For an 1132 printer, Fortran requires an *IOCS (1132 PRINTER) card, and

you must write to logical unit 3. For a 1403 printer, use an *IOCS (1403

PRINTER) card and write logical unit 5.

6.4. Disk Drives

The emulator supports up to five 512K word disk drives. Each drive is represented by a 1 Mb file on

the host computer. Disk images must be initialized before they can be used by DMS.

Note: I have not yet tested the emulator with more than one disk drive.

Attaching a Disk Image file

sim> attach dsk filename.dsk

sim> attach dsk1 filename.dsk

 ...

sim> attach dsk4 filename.dsk

The emulator will create the image file if it does not already exist.

Detaching a Disk Image file

sim> detach dskn

Read-only Mode

sim> attach -r dsk filename.dsk

A disk drive may be attached in read-only mode by specifying the -r option. Write operations to the

disk will fail.

Note: DMS will not tolerate a read-only boot drive

Memory Cache Mode

sim> attach -m dsk filename.dsk

The -m option directs the emulator to cache the disk image in memory. The file is read once when the

attach command is issued, and is written back only when the disk is detached, or when the emulator

terminates.

CGI mode

sim> cgi [maxsec]

sim> attach -m -r dsk filename.dsk

When -m and -r are used together in CGI mode, changes to the disk image are not written back out

when the disk is detached or when the emulator terminates. This lets the emulation perform read and

write operations without modifying the underlying file. The emulator opens the file in read-only mode

to avoid access permission issues.

The optional argument maxsec on the CGI command sets a run time limit so that a runaway emulated

program doesn't hang indefinitely. If the more than maxsec seconds elapse, the emulation is

terminated gracefully with an appropriate error message.

IBM 1130 Emulator Reference 17

DMS tracing

sim> attach -d dsk filename

The -d option instructs emulator to display a debugging trace printout of all disk reads and writes

sector by sector, showing location, phase ID and phase name for DMS components. Output is written

to stdout (the emulator console window).

Initializing a Disk Image

sim> attach dskn filename.dsk

sim> load zdcip.out

sim> go

Before an 1130 disk cartridge can be used by DMS, it must be initialized (formatted). This can be

done by DMS, if it is running, or by the standalone program zdcip. Zdzip is provided with emulator

package as a load-mode format file. The program prompts you to make Console Switch settings and

press Program Start to indicate desired actions. You can use the GUI or the following commands to

format a disk:

sim> deposit ces 0200 (switch 6)
sim> go

sim> deposit ces n (drive number used in attach, e.g. 0)
sim> go

sim> deposit ces nnnn (desired cartridge ID # in hex, e.g. 2222)
sim> go

sim> go

sim> reset

The disk image may now be used with DMS.

6.5. Card Reader

Attaching a File to the Card Reader

sim> attach cr filename

Inserts file filename into the virtual card reader. After one or more records have been read, you must

detach the reader and reattach the file if you want to run your job again. There is no "rewind"

command.

Detaching the Card Reader

sim> detach cr

Removes the current file from the card reader.

Binary vs ASCII decks

By default, the emulator assumes that files attached to the card reader are ASCII. The contents are

converted to 029 keypunch Hollerith code on input. Unrepresentable characters (including ascii Tab)

are replaced with blanks. Lines shorter than 80 characters are padded with blank to 80 characters.

Lines longer than 80 characters are truncated.

You can select any of four alternate conversion formats:

sim> set cr 029 Input is ASCII, converted to 029 character set (default)

IBM 1130 Emulator Reference 18

sim> set cr 026F Input is ASCII, converted to 026 Fortran character set
4

sim> set cr 026C Input is ASCII, converted to 026 Commercial character set
4

sim> set cr binary Input is binary

In binary mode, the input file must be consist of a sequence of fixed-length 160-byte records, one for

each card. Each record consists of 80 words stored in "little-endian" order, that is, least significant

byte first. The correspondence between card rows and the bits in each word are shown below.

MSB LSB

12 11 0 1 2 3 4 5 6 7 8 9 - - - -

Indirect (deck) files

sim> attach cr @filename

A series of files may be "stacked" into the card reader through the use of deck files. A deck file

contains a list of filenames that are to be read in sequence. The following input lines are recognized:

 Blank lines and lines starting with * are ignored

 Lines starting with an exclamation point (!) are read as literal text cards after discarding the

exclamation point.

 Other lines are taken to contain filenames. The filename may be followed with the letter a to

indicate an ASCII text file (using the currently selected ASCII to hollerith conversion table),

or the letter b to indicate a binary card image file.

By convention, deck files are named xxx.deck.

A sample deck file might look like this:

 * A boot card, followed by a Fortran program and data

 bootup.crd b

 !// FOR

 program.for a

 !// XEQ

 program.dat a

When you are using a "do" script, indirect files may also make reference to the do command's

arguments using the tokens %1, %2, etc. This makes it possible to write scripts and construct deck

files that can run arbitrary programs. For instance, a standard Fortran compile-and-run job might be

run with the command

 sim> do fortran myprogram.for

If you used the following script file named fortran:

 * standard Fortran job - run with command

* do fortran sourcefile [datafile]

attach dsk dms.dsk

 delete fortran.lst

attach prt fortran.lst

 attach cr fortran.deck

 boot dsk

4
 These probably don't work yet

IBM 1130 Emulator Reference 19

 detach prt

 detach cr

 view job.lst

and the deck file fortran.deck:

 * deck file for script "fortran"

!// JOB

 !// FOR

 %1

 !// XEQ

 %2

the "do" argument myprogram.for will be substituted in the deck file, and the source program will

thus be inserted between the // FOR and // XEQ cards. If a second argument is specified on the do

command line, it will be read after the // XEQ card. If no second argument is specified, the

substituted line will be blank and no error will result.

Reading Stdin

 sim> attach -a cr -

This can be used to run the emulator as a filter, reading input decks from stdin and writing output to

stdout. In this mode a script should be used to configure the emulator, attach stdin and stdout to the

reader and printer respectively, run the job, and quit so that no user input is requested. In this case, the

-q flag may be passed on the ibm1130 command line to prevent it from printing informational

messages.

Attachment to a Real Card Reader

The simulator supports attachment to a physical card reader using a custom protocol called

CARDREAD. This has been used to let the simulated 1130 use a Documation card reader through a

USB (virtual serial) interface device documented in http://media.ibm1130.org/sim/cardread.zip. The

command

 sim> attach cr -p com2

attaches the card reader to a physical reader using the CARD READ protocol through serial port

COM2.

6.6. Card Punch

Punching Cards

sim> attach cp filename

The emulated card punch is iffy. It appears to work but has not been well tested.

6.7. 1627 Plotter

The compiled Windows version of ibm1130.exe distributed by ibm1130.org has plotter support built

int, using the libgd graphics library. If you download ibm1130.exe from simh.trailing-edge.com or

other locations, plotter support will not be included. If you compile ibm1130.exe yourself, see the

notes in ibm1130_plot.c

http://media.ibm1130.org/sim/cardread.zip

IBM 1130 Emulator Reference 20

Starting a Plot

The default plot will be 11" wide and 8" long, although you can make longer plots. You can issue a

set command to alter the length of the plot paper in inches using

 sim> set plot length value

The default pen is black and one pixel wide. You can change the pen using the following commands

 set plot black changes the pen color
 set plot red

 set plot blue

 set plot green

 set plot yellow

 set plot purple

 set plor ltgrey

 set plot grey

 set plot 1.0 changes pen thickness
 set plot 2.0

 set plot 3.0

 set plot 4.0

Then, use the command

 sim> attach plot filename.gif

to start a plotting session with output to file filename.gif. This corresponds to putting a piece of paper

onto the plot and putting it online. You can use the DMS plot routines to create plot output. Nothing

will be written to the GIF file until the plotter device is detached.

If you specify the -w option to the attach command, and the simulation does not actually use the

plotter, when you detach the plotter, the gif file will be deleted. (This option is really only useful in

the CGI version of the simulator.)

Changing Plotter Pens

As a plot program runs, to change pen colors, the normal procedure is to display a message such as

"Please insert the blue pen and press PROGRAM START" on the console printer, and then execute a

PAUSE statement. This halts the simulator. Type the appropriate set plot command, then type cont

or go or click the PROGRAM START button on the GUI.

While the simulator is halted, you can manually move the plotter pen using the following commands:

 set plot xpos value Sets the pen's horizontal position in plot units

 set plot ypos value Sets the pen's vertical position in plot units

 set plot penup Moves the pen on to or off of the paper
 set plot pendown

There was no way to set the pen color programmatically on a real 1130, but ibm1130.exe has a way to

do it using the XIO CONTROL instruction. A real 1130 ignores XIO CONTROL to the plotter device

(area code 5). The ibm1130software.zip package includes a job file named PLTPN.JOB, which

installs a Fortran callable routine that uses this nonstandard XIO to control the pen. Once assembled

and loaded onto your DMS disk, subroutine PLTPN can be used as follows:

CALL PLTPN(0,ICLR)

Sets color of pen, where iclr is one of:

 1 - black 5 - yellow

 2 - red 6 - purple

IBM 1130 Emulator Reference 21

 3 - blue 7 - light grey

 4 - green 8 - grey

CALL PLTPN(1,IWID)

Sets width of pen, where iwid is between 1and 4.

CALL PLTPN(2,IX)

Sets pen x position to IX. Nothing is drawn whether the pen is up or down. If you specify an

IX value that is out of range (less than 0 or greater than the maximum length of the plot),

future plotter commands will not draw anything until the pen has moved back into range.

CALL PLTPN(3,IY)

Sets pen y position to IY. IY is clipped to the valid range of 0 to 1099. Nothing is drawn

whether the pen is up or down.

Exceeding the Plot Size

If you attempt to plot outside the X range of 0 to (specified length-1), the virtual pen will continue to

move out of range. No drawing will occur until the pen has been moved back into the valid range.

This correspnods to the plotter drum rotating past the end of the attached paper strip. If the pen is at

its maximum X position, the sequence +X +X +X -X -X -X will leave the pen where it started, at the

edge of the paper.

If you attempt to plot outside the Y range of 0 to 1099, the pen will stop at the limit and further

movements will not change the pen position. This corresponds to the physical pen hitting the ends of

its range of motion. If the pen is at its maximum Y position, the sequence +Y +Y +Y -Y -Y -Y will

move the pen back three steps.

Ending a Plot

When your plotting job is finished, use the SIMH command

 sim> detach plot

or issue an attach command to a different filename to finalize the plot. This corresponds to taking the

paper off of the plotter. The file will have a resolution of 1100 for the Y dimension and by default 800

in the X direction. The resolution is 100 dpi.

Viewing a Plot

On Windows, the command

 sim> ! filename.gif

should open the plot file in the default .GIF file viewing application (which may well be Internet

Explorer). The plot appear rotated 90 degrees (that is, the plot's 11" width is vertical on your screen,

and the length is horizontal).

6.8. Paper Tape Reader/Punch

A paper tape reader and punch are supported. To attach a file to the reader, use the command

 sim> attch ptr filename

To attach a file to the punch, use the command

 sim> attch ptp filename

IBM 1130 Emulator Reference 22

6.9. 2250 Graphics Display

The compiled Windows version of ibm1130.exe distributed by ibm1130.org includes rudimentary

support for the 2250 Graphical Display Subsystem. If you download ibm1130.exe from simh.trailing-

edge.com or other locations, 2250 support will not be included. 2250 support is not available on other

operating systems at this time.

Any 1130 program that writes to the 2250 will cause a new window to open. You may use the mouse

as a light pen.

(At present, we do not have the DMS graphics support library, so this device is not well tested).

6.10. Synchronous Communications Adapter

Rudimentrary support for the SCA is built in to Windows builds of ibm1130.exe, but it is not

completely implemented at this time. It would be nice to eventually run the 1130 HASP RJE program

to lsend jobs to a simulated IBM/360 or /370 running MVS under Hercules.

6.11. 2741 Terminal Support

There is rudimentary support for the 2741 RFQ, a serial device talking to a remote Selectric terminal.

This can be used by APL\1130 and the intention is to let SIMH talk through a real or USB simulated

serial port to a real I/O Selectric.

IBM 1130 Emulator Reference 23

7. The Emulator Display

Windows builds of the IBM 1130 emulator include a graphical display that indicates the state of the

processor and permits manual control of the processor and Console Entry Switches. The display is

shown in Figure 7.1.

Figure 7.1 - Emulator GUI Display

The GUI display combines several parts of the IBM 1130 console in a non-standard arrangement. The

upper part of the display reflects fairly accurately the 1130's console display lamps and the processor

mode switch, which are located on the 1130's console pedestal.. Under the lamps are the console

entry switches that on the real 1130 are found on the front of the console typewriter. At the bottom

left and right of the display are the lamps and pushbuttons found to the left and right of the console

keyboard. Between the lamps and buttons is a status display that shows the files attached to each

simulated device. To the right of the buttons are images that show when the simulated card reader has

cards in its hopper, and when print output has been generated. The "tear" button displays the contents

of the printer output file and empties the file.

The indicators and switches are described in the following tables.

Indicators Description

Instruction Address The current instruction address register value (IAR)

Storage Address The last memory location read or written

Storage Buffer The last value read from or written to memory

Arithmetic Factor (not displayed)

Accumulator The CPU accumulator register

Accumulator

Extension

The CPU accumulator extension; low 16 bits for mul/div and

some rotate operation.

Operation Register Last-executed instruction (high 5 bits of instruction word)

IBM 1130 Emulator Reference 24

Indicators Description

Operation Tags (not displayed)

W If illuminated, the processor is in a wait state

Index Register Index register selected by last executed instruction

Interrupt Levels Interrupt levels pending or active

Cycle Control Counter temporary register used during shift operations

Condition Register C = Carry bit, V = Overflow bit. V remains set until tested

Keyboard Select When illuminated, CPU will accept input from the keyboard

Disk Unlock When illuminated, the disk drive is inactive (detached)

File Ready When illuminated, the disk drive is ready (attached)

Run When illuminated, the CPU is running

Forms Check Yellow = out of paper (detached)

Red = 1132 Scan check (software error)

Parity Check (not used)

Power On When illuminated, CPU is powered up

Switches/Buttons Description

0 through 15 Console Entry Switches. Click to toggle setting.

Power Toggles CPU power

Keyboard (not used)

Program Start Starts CPU in Run, Int Run or SI modes. Advances IAR in Disp

or Load modes.

Imm Stop Halts processor

Program Stop Causes interrupt level 5, which usually ends current program.

Check Reset Resets CPU and all devices.

Load IAR Loads CES value into IAR.

Program Load Reads a cold start card from the 1442 reader into core.

Mode Sets CPU mode; click position to change setting.

Mode Settings Description

Int Run Generates interrupt level 5 after each instruction is executed

(except when processing interrupts)

Run Normal operation mode

SI CPU executes one instruction for each Program Start press.

Disp Displays memory contents of IAR address and advances IAR

Load Stores CES value into memory address in IAR and advances

IAR

IBM 1130 Emulator Reference 25

Mode Settings Description

SS, SMC not implemented

The Interrupt Level indicators can tell you what hardware devices are active. The interrupt levels and

the associated hardware activity are indicated in the following table.

Interrupt Level Hardware Activity

0 1442 Reader and Punch per-column interrupt

1 1132 Printer and Serial interface per-character interrupt

2 Disk operation complete

3 Plotter, 2250 Graphical Display interrupt

4 Card read, card punch, console printer, console typewriter and paper

tape operation complete

5 Int Run, Program Stop

IBM 1130 Emulator Reference 26

8. IBM 1130 Disk Monitor System (DMS) Release 2 Version 12

Ibm1130software.zip includes a runnable version of Disk Monitor System Release 2 V12

(DMSR2V12, or DMS), as well as the operating system's source code. The package includes:

 DMS Executive

 Disk Utility Program (DUP)

 Fortran Compiler

 Macro Assembler

 Standalone programs including the formatting program ZDCIP

 Boot program ZCLDSTRT

Unfortunately, we do not have the RPG compiler at the present time. At a future date we hope to have

RPG and APL available. (If anyone can help us find these in machine-readable, binary or source code

form, we'd be very grateful. We'd also like to find the graphics and math libraries, Cobol, the original

Forth, alternate Fortran compilers, and the IBM experimental mulitprocessing executive. If you have

these sitting in a box in your attic, please let us know!)

Note: It's interesting to note that DMS cannot be maintained and rebuilt under

DMS. The DMS source code uses assembler directives not supported by the

its own assembler, and, more surprisingly, the Macro Assembler does not

correctly assemble the floating point constants needed by the trig functions.

IBM built DMS on the System/360 and possibly at a later date the /370. We

built it with our cross assembler asm1103, which is provided with the

emulator package. The loaddms script and mkdms batch file show how this is

done.

8.1. Booting the Emulated IBM 1130

The normal procedure for booting an 1130 is to prepare the disk, place a binary cold-start card in the

card reader, and then press the Check Reset, Program Load, and Program Start buttons in that order.

On the emulator you can do this by typing, for example,

 sim> attach dsk dms.dsk

 sim> att cr coldsrt.crd

 sim> set cr binary

 sim> att prt -

and then clicking the three buttons. (Without the GUI, you'd type reset, boot cr, go). The processor

will boot up DMS, simulate the receipt of a // JOB card, print the cartridge ID and memory size, then

halt waiting for more input. To process a job, you'd then need to attach the card reader to your input

file and restart the processor with the Program Start button.

The DMS cold start card reads the console entry switches to determine which disk drive to use as the

boot drive. In most cases, this will be DSK0, so the console entry switches must be set all off before

booting DMS.

However, to make life simpler, the emulator has a built-in shortcut: If the card reader is not attached

to a file, pressing Program Load will load the standard DMS cold start program which is stored in the

emulator.

IBM 1130 Emulator Reference 27

Better still, type "boot dsk", which performs the reset/load/go operation using a built-in copy of

the DMSR2V12 cold start card. This eliminates the need to precede your text card input with the

binary cold start card.

Furthermore: "boot -a dsk" loads the standard APL\1130 cold start card, and "boot -a -p

dsk" boots the APL\1130 privileged mode cold start card.

8.2. Running DMS Entirely from the GUI

If you are using a Windows build of the simulator that has the GUI built in, you can run jobs on the

simulated 1130 without using the simulator's command line environment. To do this,

1. Start the simulator with the command "ibm1130 guijob". DMS boots and waits.

2. Create a job deck file (a text file starting with // JOB and ending with // XEQ and data cards, for

example), and locate it in a Windows Explorer window.

3. Drag the file and release it on the card reader icon (shown at right). Notice

that the card reader icon changes to its "full" state, as shown to the right:

4. Click the "Program Start" button. Wait until the lights stop flashing and the

accumulator displays 1000 hex. The cards on the card reader icon will move

to the stacker.

5. Click the printer icon to "tear off" and view the printer output.

6. Click the card reader icon once to reload the deck in the hopper, or click it twice to remove the

deck from the reader so you can edit it.

You can repeat this process over and over as desired.

If you need to reboot the system:

 Click the card reader icon twice to remove any cards in it.

 Click Immediate Stop, Check Reset, Program Load* and Program Start in that order.

 Continue with step 3 above.

(*When Program Load is pressed with no card file attached, the simulator pretends that a DMS Cold

Start card was present in the card reader. The other steps are exactly those you'd follow on a real

1130).

8.3. Cold Start Program Wait Codes

Error conditions during the cold start process may cause the processor to wait with one of the

following values in the Instruction Address Register

IAR Description

001F Invalid disk drive number in console entry switches, or drive not ready

0046 Power is unsafe in disk drive or disk read error, or waiting for seek operation to

complete

0048 Waiting for read operation to complete

If the processor halts with any of these error codes, perform another cold start

8.4. DMS Disk Basics

A DMS Disk is organized in roughly the following way:

 Resident Monitor

IBM 1130 Emulator Reference 28

 System Area (System Program phases)

 Optional Fixed Area (Saved user data)

 User Area (Saved User Programs, routines and data)

 Working Storage

System programs such as Fortran and DUP are broken into many small overlays or phases, so that the

system can run on machines with as little as 4KW of memory. The location of each system program

phase is stored in table called the SLET, System Logical Equivalence Table. This directory has no

name entries, but simply associates hard-coded phase or overlay numbers to their location and size in

the System Area. You'll never encounter the SLET as a day-to-day user.

After the System Area is an optional Fixed Area, which can hold user data files. These files are

guaranteed never to change locations on the disk.

The User Area is the a familiar file and directory structure. The User Area holds system library

routines and utility programs, as well as any data, subroutines or programs you have saved. Filenames

have one to five letters. The User Area directory is called the Logical Equivalence Table, or LET.

Working Storage is all of the space between the last stored file in the User Area and the end of the

disk.

Saving a file in DMS involves writing data to Working Storage, and then instructing the Disk Utility

Program (DUP) to store and name the data. The User Area region is expanded to include the data in

Working Storage, and Working Storage is now the rest of the disk. Graphically it looks like this:

Original configuration:

Monitor System Programs User Area Working Storage

After data is saved in Working Storage (e.g. object code saved by Fortran compiler)

Monitor System Programs User Area Working Storage

After WS is saved by the Disk Utility Program:

Monitor System Programs User Area (Newly saved file) Working Storage

There is a special "temporary job" mode provided by DMS in which the demarcation point between

the User Area and Working Storage is automatically slid back to the original location at the end of the

job, thus erasing any files stored by the job. This is handy when you are developing a program with

subroutines. (More about subroutines later on).

When a saved file is deleted, all files after the deleted file are slid down sector by sector to close up

the gap, so the space occupied by the file is returned to Working Storage. This can be quite time

consuming on a real 1130. (It's also problematic for programs that depend on disk data staying put at

a particular location on disk, hence the optional Fixed Area).

8.5. DMS Job Decks

An IBM 1130 DMS job deck consists of Monitor Control Records, utility control records and user

data. Monitor control records begin with the characters slash, slash, space, and their appearance is

never ignored by DMS; if one is encountered while reading data cards your program will be aborted.

A Basic Job Deck

A typical Fortran job deck might look like this:

// JOB

// FOR

*IOCS (1132 PRINTER)

IBM 1130 Emulator Reference 29

*LIST SOURCE PROGRAM

 DO 20 I = 1, 20

 WRITE(3,10) I

 10 FORMAT(1X,'ITERATION NUMBER', I5)

 20 CONTINUE

 END

// XEQ

This job deck uses three Monitor Control records:

1. // JOB cancels any executing job and resets DMS for the upcoming job. A cold start issues an

implicit // JOB, by the way.

2. //FOR runs the Fortran compiler. Initial cards starting with "* " are Fortran Control Records and

define the compilation environment. Fortran reads cards up to an END statement, and writes the

compiled machine code to Working Storage.

3. // XEQ executes the program in Working Storage

A slightly more complex job deck is required if your program requires subroutines or functions. Only

one program or subprogram can be compiled at a time. You must compile each subroutine and save it

from Working Storage as a named file before proceeding to the next. To complicate things, you have

to delete any previous version of the subroutine from the disk before saving a new version. So, a

Fortran deck might look like this:

// JOB

// FOR

*LIST SOURCE PROGRAM

 FUNCTION TRIPL (VALUE)

 TRIPL = VALUE*3.

 RETURN

 END

// DUP

*DELETE TRIPL

*STORE WS UA TRIPL

// FOR

*LIST SOURCE PROGRAM

*IOCS (1132 PRINTER)

 DO 20 I = 1, 10

 V = I+3.

 T = TRIPL(V)

 WRITE(3,10) I, T

 10 FORMAT(1X,'I = ', I3,' T =', F6.2)

 20 CONTINUE

 END

// XEQ

In this job, the result of the first compilation is saved as a file named TRIPL, after deleting any

previous version. The second compilation is executed, at which time the Core Load Builder locates

and links in the external function.

When a series of subroutines have been debugged, the compiled version can be left on disk and they

do not need to be recompiled in subsequent runs. In fact, the main program can also be saved and run

repeatedly without recompilation:

// FOR

...

 END

IBM 1130 Emulator Reference 30

// DUP

*STORE WS UA MAINP

then,
// XEQ MAINP

will load and run the stored main program.

The following sections provide a reference for the DMS monitor control records and the control

records for Fortran, DUP and the Assembler.

This section will grow eventually, but for now, here is a quick overview of the basics of constructing

a job deck.

8.6. Error Wait Codes

A preoperative error is an error condition detected before an I/O operation is attempted. The

following preoperative errors cause the monitor system to wait in $PRET at address /002A:

 device not ready

 error check in device

 illegal parameter or illegal specification in an I/O area

Postoperative errors may result in waits in an interrupt service routines, in $PST1 at /0083, in $PST2

at /0087, in $PST3 at /008B or in $PST4 at /008F. The accumulator indicates the device and

condition. In may cases you can correct the condition and press PROGRAM START (go) to retry the

operation.

ACC Description

0000 Last card

0001 Card Feed check, read check or punch check; disk read error or write error

0003 Disk seek failure, printer detected channel 9

0004 Paper tape punch not ready or disk overflow; printer detected channel 12

0005 Paper tape reader not ready

1000 1442 card read/punch or 1442 punch: not ready or hopper empty. [emulator:

attach a file to CR or CP and go]

1001 Illegal device, function or word count

100F Occurs in a DUP operation after DUP error D112

2000 Keyboard/Console Printer not ready

2001 Illegal device, function or word count

3000 1134/1055 Paper Tape not ready

3001 Illegal device, function or word count, or invalid check digit

4000 2501 Card Reader not ready

4001 Illegal device, function or word count

5000 Disk not ready

5001 Illegal device, function or word count, or attempt to write in protected area

5002 Write select or power unsafe

5003 Read/write/seek failure after 16 attempts or disk overflow. Extension may

IBM 1130 Emulator Reference 31

ACC Description

display logical drive number in bits 0..3 and working storage address in bits

4..15. Program Start retries 16 more times.

5004 Same as above from routine DISK1 and DISKN, or, an uninitialized

cartridge is online during a cold start.

6000 1132 Printer not ready or out of paper

6001 Illegal device, function or word count

7000 1627 Plotter not ready

7001 Illegal device, function or word count

8001 SCA Illegal function or word count

8002 STR mode: Receive or transmit operation not completed

BSC mode: Invalid start characters in the I/O area for a transmit operation

8003 STR mode: Failed to synchronize before attempt to read or write, or,

attempted to receive before receiving INQ sequence

BSC mode: Invalid number of identification characters for an identification

specification operation

9000 1403 printer no ready or out of paper

9001 Illegal device, function or word count

9002 Parity check, scan check or ring check

A000 1231 Optical Mark Reader not ready

A001 Illegal device, function or word count

A002 Feed check, last document was processed. Clear jam, do not refeed

A003 Feed check, last document not processed. Clear jam and refeed

IBM 1130 Emulator Reference 32

9. Monitor Control Records

This section lists the available Monitor Control Records. Column numbers are shown above fields

that have a fixed location.

 1 1 2 2 3 3 4 4 5 6
 1 4 8 1 6 1 6 1 6 1 6 1 0

// JOB T crt0 crt1 crt2 crt3 crt4 crtc crtw crtu hhhhhhhh ee

Begins a new job. The optional parameters are:

T Specifies temporary job mode. If used, no permanent changes are made to

system files or the disk directory.

crt0 Master cartridge ID (logical cartridge 0)

crt1 Cartridge ID for logical drive 1

crt2 Cartridge ID for logical drive 2

crt3 Cartridge ID for logical drive 3

crt4 Cartridge ID for logical drive 4

crtc Cartridge ID for core image buffer

crtw Cartridge ID for working storage

crtu Cartridge ID for unformatted disk IO

hhhhhhh Heading (date, time etc) to print on each page

ee Number of EQUAT records following this JOB card

The T option indicates that no permanent changes are to be made to the system directory. This option

is often used during the program development cycle to so that any subroutines compiled and stored

during the job are removed from the disk at the end of the job. See Section 10.2, "Temporary Mode

Restrictions" for more detail.

Note: This option is not necessary when using the www.ibm1130.org online (CGI)

emulator, as the disk image is discarded at the end of each run.

The optional cartridge ID's indicate to DMS which of the mounted cartridges are to be used as logical

drives 0 through 4, and which cartridges are to be used for temporary and I/O storage. These options

are unnecessary if only one disk is mounted, or if the master cartridge should be used for all

operations.

EQUAT records indicate substitutions for subprogram names. See the description of the *EQUAT

monitor control record later in this manual.

Note: immediately after a cold start, DMS simulates a //JOB record. While another //JOB record can't

hurt, it's not necessary to use one with the www.ibm1130.org online emulator as each job begins with

a cold start.

// FOR

Runs the Fortran compiler. Fortran Control Records and Fortran source cards follow this record. The

Fortran compiler reads source records up to the END statement. An // XEQ or // DUP monitor control

record should follow the END statement.

// ASM

IBM 1130 Emulator Reference 33

Runs the Macro Assembler. Assembler Control Records and Assembler source cards follow this. The

assembler reads source records up to the END statement. An // XEQ or // DUP monitor control record

should follow the END statement.

// RPG

Runs the RPG compiler (not currently available)

// COBOL

Runs the COBOL compiler (not currently available)

// DUP

Runs the Disk Utility Program. DUP Control records follow this record. See Section 10, "Disk Utility

Program (DUP)" for more information.

// * REMARKS...

Prints remarks on the primary printer.

 1 1 1 2 2 2
 1 4 8 4 6 9 1 6 8

// XEQ pname L nn D cart X X

Executes a program from Working storage or the User area. The optional parameters are:

pname Name of program to execute. If omitted, the program in working

storage is run.

L If L is punched in column 14, a core load map is printed

nn Number (right-justified) of supervisor control records that follow

D Disk routine to use: if blank or Z, DISKZ is used. If 0 or 1, DISK1 is

used. If N, DISKN is used.

cart If specified, the cartridge on which the program is to be found

X If there is a punch in column 26, LOCALS may call other LOCALS

X If there is a punch in column 28, the special ILS's are used, the routines

with X in their names: ILSX4, etc.

// PAUS

Halts the processor until you press PROGRAM START [emulator: go]. This permits you to change

cartridges, add cards, etc.

// TYP

Makes the console keyboard the principal input device

// TEND

Ends console keyboard input, and makes the card reader the principal input device.

// EJECT

Issues a form feed to the principal output device

// CPRINT

Makes the console printer the principal output device

// CEND

IBM 1130 Emulator Reference 34

Ends console printer output and restores the primary printer as principal output device.

9.1. Supervisor Control Records

This section is not yet written.

*LOCALmain1,sub1,sub2,...,subn

x

*NOCALmain1,sub1,sub2,...,subn

x

*FILES(file1,name1),...,(filen,namen)[,]

*FILES(file1,name1,car1),...,(filen,namen,carn)[,]

*FILES(file1,,car1),...,(filen,,carn)[,]

x

*G2250pname U N N N N

x

*EQUAT(sub1,sub2),...,(subn,subm)

x

IBM 1130 Emulator Reference 35

10. Disk Utility Program (DUP)

DUP performs file transfer and file directory maintenance operations. May DUP operations involve

the transfer of files to and from Working Storage, the User Area on a disk, the Fixed Area on a disk,

cards or paper tape. The corresponding DUP control records use a two character code to indicate the

origin and destination of the file involved in such a transfer. The following codes are used:

Code Location

UA User area

FX Fixed area

WS Working storage

CD Card device

PT Paper tape

PR Principal print device

DUP stores programs and data on disk, cards, paper tape and paper listings in any of several formats,

whose abbreviations are listed below. The various dump and store operations listed below will

indicate any format conversions that will apply.

Format Description

CDC Card core image format

CDD Card data format

CDS Card system format (absolute/relocatable object)

DCI Disk core image format

DDF Disk data format

DSF Disk system format (absolute/relocatable object)

PRD Printer data dump format

PTC Paper tape core image format

PTD Paper tape data format

PTS Paper tape system format (absolute/relocatable object)

Filenames on disk may consist of up to five characters. The first character must be A-Z, $, # or @,

and the name may not include blanks.

Numeric values, when required, are right-justified.

On records that may include a cartridge ID, if the cartridge is omitted, for "source" names the monitor

searches all mounted cartridges for a file with the specified name. For "destination" names, the

monitor uses the master cartridge.

Note: If the card reader becomes non-ready while DUP is reading control records,

e.g. if the tail end of a job deck contains // DUP and some control records

with no further monitor control records, DMS does not resume properly

when more cards are inserted in the reader and PROGRAM START is

pressed. We are not sure whether this is a simulator bug or a problem with

DMSR2V12. At the present time, we recommend that if your job deck ends

with DUP commands, that you put a // * comment monitor control at the end

IBM 1130 Emulator Reference 36

of the deck to terminate DUP and return to the monitor before the end of the

deck.

10.1. DUP Control Records

 1 1 2 3 3
 1 3 7 1 1 7

*DUMP fm to fname fmid toid

Dumps data from location fm to location to. The program to be dumped is fname, which may

omitted when dumping from WS to PR. The optional fmid and toid parameters specify the source

and destination cartridges, if applicable.

The following format conversions will take place:

FM location FM format TO location
Resulting
TO format

UA DSF WS DSF

UA or WS DSF CD CDS

 PT PTS

 PR PRD

UA or FX DDF WS DDF

UA, FX or WS DDF CD CDD

 PT PTD

 PR PRD

UA or FX DCI WS DCI

UA, FX or WS DCI CD CDC

 PT PTC

 PR PRD

 1 1 2 2 3 3
 1 3 7 1 7 1 7

*DUMPDATA fm to fname nnnnfmid toid

Like DUMP but the output is always in Data format. The count parameter nnnn indicates the number

of sectors to dump.

The following format conversions will take place:

FM location FM format TO location
Resulting
TO format

UA DSF WS DDF

UA or WS DSF CD CDD

 PT PTD

 PR PRD

UA or FX DDF WS DDF

UA, FX or WS DDF CD CDD

 PT PTD

 PR PRD

IBM 1130 Emulator Reference 37

FM location FM format TO location
Resulting
TO format

UA or FX DCI WS DDF

UA, FX or WS DCI CD CDD

 PT PTD

 PR PRD

 1 1 1 2 2 3 3
 1 1 3 7 1 7 1 7

*DUMPDATA E fm to fname nnnnfmid toid

Copies data in packed EBCDIC format (40 words per 80 card positions) from disk to card or printer.

Copies data to WS without any conversion.

FM location FM format TO location
Resulting
TO format

UA or FX any WS same

UA, FX or WS EBCDIC CD hollerith text

 PR printed text

 2 3
 1 1 1

*DUMPLET fname cart

Displays the location equivalence table (user area directory) of the specified cartridge, or if cart is

omitted, all cartridges. The listing is limited to a specific file if a filename fname is specified,

otherwise all files are listed. If a fixed area is listed, the FLET is listed as well.

 2 3
 1 1 1

*DUMPFLET fname cart

Displays the fixed location equivalence table (fixed area directory) of the specified cartridge, or if cart

is omitted, all cartridges. The listing is limited to a specific file if a filename fname is specified,

otherwise all files are listed.

 1 1 1 2 3 3
 1 1 3 7 1 1 7

*STORE s fm to fname fmid toid

Saves a file. Typically fm is WS for Working Storage, to is UA for the User Area, and fname is the

name to be given to the file.

This section is not yet complete.

 1 1 1 2 3 3
 1 3 7 1 1 7

*STOREDATA fm to fname fmid toid

xxx

 1 1 1 2 2 3 3
 1 3 7 1 7 1 7

*STOREDATAE fm to fname nnnnfmid toid

IBM 1130 Emulator Reference 38

xxx

 1 1 2 2 3 3
 1 3 7 1 7 1 7

*STOREDATACIfm to fname nnnnfmid toid

xxx

 1 1 1 2 2 3 3 4
 1 9 1 3 7 1 7 1 7 2

*STORECId XXfm to fname nnnnfmid toid N

xxx

 1 1 2 3 3
 1 3 7 1 1 7

*STOREMOD fm to fname fmid toid

xxx

 2 3
 1 1 1

*DELETE fname fmid

Deletes a specified file from the LET directory. Fname is the name of the file to delete. The optional

cartridge id fmid specifies which cartridge contains the file.

 1
1 9

*DEFINE CORE SIZE xxx

Changes the system core size value in COMMA (the supervisor data storage area, which is kept in

core and mirrored on the master cartridge). This value sets the upper limit of storage which the

system is permitted to use. The value must be specified as "4K ", "8K ", "16K" or "32K", left

adjusted.

 2 3 3
 1 7 1 7

*DEFINE FIXED AREA nnnn- cart

Creates a file storage area called the "fixed area" on the specified cartridge. (The fixed area is not

automatically defragmented when files are deleted, as the normal file storage area is). The number of

cylinders to reserve for the fixed area is specified in columns 27 through 30. The minimum number of

cylinders is two.

If a fixed area already exists, this directive increases or decreases the fixed area by the specified

number of cylinders. To decrease the size, punch a - sign in column 31.

 2
1 1

*DEFINE PRINC INPUT xxxx

*DEFINE PRINC PRINT xxxx

Defines the principal printer used for system output or the principal input used for card input. The

argument to DEFINE PRINC PRINT can be 1403 to specify the 1403 printer, 1132 to specify the

1132 printer, or blank to specify the console printer. The argument to DEFINE PRINC INPUT can

be 1442 to specify the 1442 card read/punch or 2501 to specify the 2501 reader.

These directives copy the appropriate device IO routines to fixed locations on the master cartridge,

from where they are loaded when the monitor needs to perform I/O.

 1

*DEFINE VOID ASSEMBLER

*DEFINE VOID FORTRAN

IBM 1130 Emulator Reference 39

Deletes the Assembler or Fortran compiler from the System Area on the master cartridge. The system

area is then packed to recover the space occupied by the deleted program. (This must be done before

defining a Fixed Area on the disk).

 1 2 2 3
 1 7 1 7 7

*DFILE to fname nnnn toid

xxx

3
 1 7

*DWADR cart

Writes sector addresses on each sector in Working Storage, used to repair the disk after an errant

program has mangled these sectors. The contents of Working Storage are destroyed.

(The first word of each sector of a DMS disk must contain the sector address. This information is

used to verify the position of the read head after track-to-track seeks. Fortran IO routines will not

overwrite sector addresses, but it's possible for a program that does direct disk IO using assembly

routines to do so; this renders the disk useless until it is repaired by DWADR or reformatting).

 *MACRO UPDATE

xxx

Note: A zero punched in column 35 of a DUP control record causes DUP to print

core dumps during its execution, for debugging purposes. Other digits in

column 35 cause core dumps to be generated when specific phases are in

control. See "IBM 1130 Disk Monitor Programming System, Version 2

Program Logic Manual", File Number 1130-36, page 63.)

10.2. Temporary Mode Restrictions

When temporary mode was specified on the current // JOB monitor control record, the following

DUP restrictions apply:

Dup Operation Restrictions

STORECI to UA only

STOREDATA to UA and WS only

STOREDATACI to UA only

STOREMOD not allowed

DWADR not allowed

DELETE not allowed

DEFINE ... not allowed

DFILE to UA only

MACRO UPDATE not allowed

At the end of the job, the dividing line between the User Area and WS is slid back to its original

location, effectively deleting any files saved to UA during the job. This is convenient when

developing programs with subroutines, as the subroutines will not accumulate on the disk between

runs.

IBM 1130 Emulator Reference 40

11. IBM 1130 Fortran

The Fortran compiler included with DMS R2 is a Fortran-66 compiler. Arithmetic if's, do's can't run

backwards, one-trip do's, 5 letter variable names, etc.

11.1. Using Functions and Subroutines

blah blah

Function subprograms are strictly prohibited from producing "side effects" and may not modify

dummy variables (parameters) or variables in COMMON.

In addition:

 Functions must have at least one argument. (Note: if you forget this and attempt to call a function

with no arguments, you will get a syntax error, but the wrong statement will be flagged due to a

bug in the compiler).

 Functions may not be called recursively.

 Calling a function or subroutine with the wrong number of arguments will cause a horrific crash.

Mainline programs and subprograms must be compiled separately. Functions and subroutines are

compiled first and stored on the disk in the User Area. When the main program has been compiled,

the // XEQ control card will invoke the Core Load Builder (linker) which will pull in the

subprograms. The general order of a job deck looks like this:

// JOB T

// FOR

(first subprogram)

// DUP

*STORE WS UA subn1

// FOR

(second subprogram)

// DUP

*STORE WS UA subn2

// FOR

(mainline program)

// XEQ

(input cards, if any)

During initial development, you will probably want to recompile the subprograms with each run. In

this case, use the // JOB T option to delete the routines from the disk at the end of the job, or use a

*DELETE DUP control record before the *STORE record to delete the previous version from the

disk before attempting to store a new one. In other words, the deck should follow the deck outline

above, or omit the JOB T option and use *DELETE controls:

// JOB

// FOR

(first subprogram)

column 13

column 17

column 21

IBM 1130 Emulator Reference 41

// DUP

*DELETE subn1

*STORE WS UA subn1

...

Once development has stabilized, you may use the compiled subroutines already stored on the disk

and omit them from future compile and run jobs.

11.2. Fortran Control Records

Fortran compiler control records are placed at the beginning of a source deck just after the // FOR

monitor control record and before the first line of Fortran source code.

*IOCS(name, name, ...)

(Mainline programs only.) Specifies hardware devices that the program will use. The IOCS record

causes Fortran to include references to the required I/O device subroutines. The device names are

listed in the following table.

IOCS Device Name Generates support for
Subroutine

Used
Logical Unit

Number

DISK Disk (direct access) DISKZ *

UDISK Unformatted Disk I/O DISKZ *

TYPEWRITER Console printer TYPEZ 1

CARD 1442 Card Read/Punch

Models 6 or 7 used as a reader

CARDZ 2

1132 PRINTER 1132 Printer PRNTZ 3

PAPER TAPE 1134/1055 Paper Tape

reader/punch

PAPTZ 4

1403 PRINTER 1403 Printer PRNZ 5

KEYBOARD Console keyboard WRTYZ 6

PLOTTER 1627 Plotter PLOTX 7

2501 READER 2501 Card Reader READZ 8

1442 PUNCH 1442 Card Punch Model 5 or

Read/Punch Models 6 or 7

used as a punch

PNCHZ 9

A Fortran program cannot use the 1442 as both a reader and a punch within the same program.

[Emulator note: the emulator does not yet support using both the 2501 and the 1403 as readers in the

same run.].

*LIST SOURCE PROGRAM

Directs the compiler to list the Fortran source code as it compiles the program or subprogram.

*LIST SUBPROGRAM NAMES

Directs the compiler to list the names of all subroutines and functions referenced by the compiled

program or subprogram.

*LIST SYMBOL TABLE

IBM 1130 Emulator Reference 42

Directs the compiler to list the program's symbol table.

*LIST ALL

Directs the compiler to generate all of the optional listings.

*EXTENDED PRECISION

Directs the compiler to use 48-bit (three word) floating point numbers rather than the default 32 bits

(two word). Extended precision numbers have a 31 significant bit fraction and an 8-bit binary

exponent. Standard precision numbers have a 23 significant bit fraction and an 8-bit exponent.

*ONE WORD INTEGERS

Directs the compiler to use one word per integer rather than to have integers match the size of floating

point numbers (2 words with standard precision, or 3 words with extended precision). 1130 Fortran

uses only 16 bits of the allocated space in any case, so the integer range is always -32,768 to +32,767.

If your application does not depend on having the size of integer and real numbers be equal, you can

save core by specifying one word integers.

*NAME xxxxx

(Mainline programs only.) Specifies the name of the mainline program. The name may consist of one

to five characters.

**title string...

Displays the title string in columns 3 through 72 at the top of each page of the listing. A new page is

cranked up when the first statement of the program is read.

*ARITHMETIC TRACE

Directs the compiled program to print the value assigned to each variable during program execution

while Console Entry Switch 15 is raised. A printer device must be specified in IOCS control record.

The fastest specified printer is used. (Emulator note: use DEP CES 1 to raise switch 15, or DEP CES

0 to lower it). You may programmatically limit tracing with CALL TSTOP and CALL TSTART

statements. By default, tracing is enabled (TSTART is assumed) . Each displayed value is preceded

by an asterisk.

*TRANSFER TRACE

Directs the compiled program to print the expression value computed by each IF statement and

computed GO TO statement during program execution. Output may be controlled by Console Entry

Switch 15 and the TSTOP/TSTART subroutines as discussed above. Each displayed value is

preceded by two asterisks.

*ORIGIN ddddd or

*ORIGIN /xxxx

(Mainline programs only) Directs the compiler to compile the program starting at an absolute address

specified as ddddd in decimal or /xxxx in hexadecimal. The specified origin must past the end of the

Disk I/O routine. The minimum ORIGIN values are 510 (/01FE) with DISKZ, 690 (/02B2) with

DISK1 or 960 (/03C0) with DISKN.

11.3. Fortran Declaration Statements

COMMON var1[(n)][, var2[(n)], ...]

(There is no named common).

DATA var1[, var2, ...] /val1[, val2, ...]/

IBM 1130 Emulator Reference 43

Data statements may not be used to initialize variables in COMMON.

DEFINE FILE n (nrec, recl, U, ivar)

x

DIMENSION var1(n) [, var2(n)]

x

EXTERNAL name1 [, name2 , ...]

x

EQUIVALENCE

x

FUNCTION name [(arg1[, arg2 , ...])]

The function's return value is set by assigning a value to the variable name.

INTEGER var1[(n)] [, var2[(n)]]

x

REAL var1[(n)] [, var2[(n)]]

x

SUBROUTINE name [(arg1[, arg2 , ...])]

x

11.4. Fortran Program Statements

BACKSPACE iunit

Not supported?

CALL name [arg1, arg2, ...]

CONTINUE

A no-op statement, usually carries a numeric statement label to serve as the closing statement

of a do loop or the target of an IF or GOTO statement.

DO label var = i1, i2[, i3]

Value i1 cannot be zero, and i3 cannot be negative. The loop statements are executed at least

once even if the condition test fails on the first iteration (hence the term one-trip do loops).

END

Ends compilation. Must be followed by a Monitor Control Record, usually // XEQ or // DUP.

(Programs and subprograms must each be compiled and stored separately).

END FILE iunit

Not supported?

FIND (iunit'irec)

x

FORMAT (...)

x

IBM 1130 Emulator Reference 44

GO TO label

GOTO label

Jumps to the indicated statement number.

GOTO (lab1, lab2, lab3...) ival

x

IF (expr) labn, labz, labp

Evaluates the integer or floating point expression expr and jumps to one of the three

statement numbers: labn if the expression is negative, labz if the expression is zero, or labp if

the expression is positive.

PAUSE [ival]

Halts the processor with the integer value ival in the accumulator and thus displayed on the

console lamps. Ival must be between 0 and 9999, as it's converted to binary coded decimal

(that is, 1234 would be displayed as 0001 0010 0011 0100). Pressing Program Start lets the

program resume with the next statement.

READ (iunit) list...

READ (iunit,lab) list...

Implied do loops are permitted.

RETURN

x

REWIND iunit

Not supported?

STOP [ival]

Halts the processor with the integer value ival in the accumulator. (See the discussion of ival

under PAUSE). Pressing Program Start returns control to the Disk Monitor System.

WRITE (iunit) list...

WRITE (iunit,lab) list...

Implied do loops are permitted.

11.5. Fortran Subroutine Library

The Fortran library is documented in the IBM publication IBM 1130 Subroutine Library, File no.

1130-30, Form C26-5929-2, which you can obtain as a PDF file from www.ibm1130.org. The library

routines are summarized in this section.

N o t e

Note: Be very careful about the data type of arguments you pass to subroutines and

functions. The compiler does not have enough information to automatically

convert values you supply to the type expected by a subprogram, so if you

pass an integer where a real value is expected or vice versa, the results will

be incorrect or the program may crash.

Floating Point Functions

The following real-valued library functions may be called by 1130 Fortran programs.

ABS(X)

IBM 1130 Emulator Reference 45

Returns the absolute value of X.

ALOG(X)

Returns the natural logarithm of X.

ATAN(X)

Returns the arctangent of X. The result is expressed in radians, in the range ±π/2.

COS(THETA)

Returns the cosine of angle THETA expressed in radians.

EXP(X)

Returns e
X
.

FLOAT(IVAL)

Converts integer IVAL to a real value.

SIGN(XVAL, XSGN)

Applies the sign of XSGN to value XVAL. For example, SIGN(3.5, -5.2) returns -3.5.

SIN(THETA)

Returns the sine of angle THETA expressed in radians.

SQRT(X)

Returns the square root of X. X must be nonnegative.

TANH(X)

Returns the hyperbolic tangent of X.

Integer Functions

The following integer-valued library functions may be called by 1130 Fortran programs.

IABS(IVAL)

Returns the absolute value of integer IVAL.

IFIX(X)

Converts real value X to an integer value by truncating the fractional part. The effect is to

round down, so 1.5 is converted to 1 and -1.5 is converted to -2.

ISIGN(IVAL, ISGN)

Applies the sign of ISGN to value IVAL. For example, ISIGN(3, -5) returns -3.

Subroutines

The following library subroutines may be called by 1130 Fortran programs.

CALL CHAIN

xxx

CALL DVCHK(J)

Tests an error indicator to determine if previous floating point calculations resulted in an

attempt to divide by zero. If a division by zero occurred, J is set to 1. If no division by zero

occurred, J is set to 2. After the call, the error indicator is reset.

IBM 1130 Emulator Reference 46

CALL DATSW(I, J)

Tests data entry switch (console sense switch) I, where I is in the range 0 to 15. J is set to 1 if

the switch is on, or 2 if the switch is off.

CALL EXIT

Terminates the program and immediately returns control to the Disk Monitor System. (This is

in contrast to the STOP statement which halts the processor and returns control to the monitor

only after the operator presses Program Start.

CALL FCTST(I, J)

Tests an error indicator to determine if previous Fortran-supplied function subprogram

resulted detected an error. If an error occured, J is set to 1. If no error occurred, J is set to 2.

After the call, the error indicator is reset. Errors detected include arguments out of range, etc.

CALL OVERFL(J)

Tests an error indicator to determine if previous floating point calculations resulted in

overflow or underflow. J is set to one of the following values:

Value Interpretation

1 A previous calculation resulted in overflow (a result was greater

in magnitude than 2
127

, approximately 10
38

).

2 There were no overflows or underflows since the last call to

OVERFL.

3 A previous operation resulted in underflow (a result greater in

magnitude than zero but less than 10
-128

, approximately 10
-39

).

After the call, the error indicator is reset.

CALL PDUMP(VAR1, VAR2, IFMT[, ...])

Dumps memory to the primary printer device. Storage addresses from the location of variable

var1 to var2 are dumped. Integer values IFMT controls the data format: 0 displays values in

hexadecimal format, 4 in integer format, or 5 in floating point format. (If the address of var2

is less than that of var1, PDUMP reverses the addresses). Multiple address ranges can be

dumped by repeating sets of three arguments.

CALL SLITE(I)

Turns on sense light I, where I = 1, 2, 3 or 4. If I = 0, all sense lights are turned off.

CALL SLITET(I, J)

Tests the status of sense light I, where I = 1, 2, 3 or 4, and turns the light off. J is set to 1 if

the light was on, or 2 if the light was off.

11.6. Plotter Library

CALL ECHAR(x0, y0, xs, ys, theta)

CALL EGRID(ictrl, x, y, delta, numbr)

etc.

11.7. Fortran Compiler Error Codes

Fortran compiler errors are listed after the source code listing, if any. Error codes are listed in the

following format:

IBM 1130 Emulator Reference 47

C errnum ERROR AT STATEMENT NUMBER stnum+offset

where errnum is a Fortran compiler error code, stnum is the number of the last numbered statement,

and offset is the offset in lines from the numbered statement. Blank and comment lines are not

counted. Before the first numbered statement, stnum is 0 and offset starts with 1. For example,

INVALID STATEMENTS

 C 36 ERROR AT STATEMENT NUMBER 00000+008

indicates error number 36 at the 8th line in the program (not counting blanks and comments). The

message

C 36 ERROR AT STATEMENT NUMBER 00010+001

would indicate error number 36 at the first statement after statement number 10.

Error Description

C01 Nonnumeric character in statement number

C02 More than 5 continuation cards, or continuation card out of sequence

C03 Syntax error in CALL LINK or CALL EXIT statement

C04 Unrecognizable, misspelled or incorrectly formed statement

C05 Statement out of sequence

C06 Unreachable statement

C07 Name longer than 5 characters, or name not starting with alphabetic character

C08 Incorrect or missing subscript within dimension information

C09 Duplicate statement number

C10 Syntax error

C11 Duplicate name in COMMON statement

C12 Syntax error in FUNCTION or SUBROUTINE statement

C13 Parameter (dummy argument) appears in COMMON statement

C14 Name appears twice as a parameter in SUBROUTINE or FUNCTION statement

C15 *IOCS control record in a subroutine or function

C16 Syntax error in DIMENSION statement

C17 Subprogram name in DIMENSION statement

C18 Name dimensioned more than once or not dimensioned in first appearance

C19 Syntax error in REAL, INTEGER or EXTERNAL statement

C20 Subprogram name in REAL or INTEGER statement, or a function contains its own

name in an EXTERNAL statement

C21 Name in EXTERNAL that is also in COMMON or DIMENSION statement

C22 IFIX or FLOAT in EXTERNAL statement

C23 Invalid real constant

C24 Invalid integer constant

C25 More than 15 dummy arguments or duplicate dummy argument

IBM 1130 Emulator Reference 48

Error Description

C26 Right parenthesis missing from a subscript expression

C27 Syntax error in FORMAT statement

C28 FORMAT statement without statement number

C29 Field width specification greater than 145

C30 In a FORMAT specification, E or F conversion is wider than 127 or has more than 31

decimal places

C31 Syntax error in EQUIVALENCE statement

C32 Subscripted variable in a statement function

C33 Incorrectly formed subscript expression

C34 Undefined variable in subscript expression

C35 Number and/or range of subscripts does not agree with DIMENSION

C36 Invalid arithmetic statement or variable; or, in a FUNCTION subprogram the left side

of the arithmetic statement is a dummy argument or in COMMON

C37 Syntax error in an IF statement

C38 Invalid expression in an IF statement

C39 Syntax error or invalid simple argument in CALL statement

C40 Invalid expression in CALL statement

C41 Invalid expression to the left of an equal sign in a statement function

C42 Invalid expression to the right of an equal sign in a statement function

C43 In an IF, GO TO or DO statement, a statement number is missing or is the number of a

FORMAT statement

C44 Syntax error in READ, WRITE or FIND statement

C45 READ or WRITE statement requires an *IOCS record (mainline only)

C46 FORMAT statement number missing or incorrect in a READ or WRITE

C47 Syntax error in input/output list, or a list element is invalid, or in a FUNCTION

subprogram an input item is a dummy argument or is in COMMON

C48 Syntax error in GO TO statement

C49 Index of a computed GO TO is missing, invalid or not preceded by a comma

C50 *TRANSFER TRACE or *ARITHMETIC TRACE or CALL PDUMP requires an

*IOCS control record in a mainline program

C51 Incorrect nesting of DO statements, or terminal statement of DO is a GO TO, IF,

RETURN, FORMAT, STOP, PAUSE or DO statement.

C52 More than 25 nested DO statements

C53 Syntax error in a DO statement

C54 Initial value in a DO statement is zero

C55 In a FUNCTION the index of DO is a dummy argument or is in COMMON

C56 Syntax error in BACKSPACE statement

IBM 1130 Emulator Reference 49

Error Description

C57 Syntax error in REWIND statement

C58 Syntax error in END FILE statement

C59 Syntax error in STOP statement

C60 Syntax error in PAUSE statement

C61 Integer constant in STOP or PAUSE statement greater than 9999

C62 Last executable statement before END is not a STOP, GO TO, IF, CALL EXIT, CALL

LINK or RETURN statement

C63 Statement contains more than 15 different subscript expressions

C64 Statement too long because of subscript expansion or temporary storage use

C65 All variables undefined in an EQUIVALENCE statement

C66 EQUIVALENCE of an array element causes array to extend beyond end of COMMON

C67 Two variables or array elements in COMMON are EQUIVALENCED, or the relative

location of two variables or array elements are assigned more than once, or a standard

precision real number is assigned to an odd address by means of an EQUIVALENCE.

C68 Syntax error in an EQUIVALENCE statement, or invalid variable name used

C69 RETURN statement missing from subprogram or present in mainline program

C70 No DEFINE FILE statement found in a program that uses disk I/O statements

C71 Syntax error in a DEFINE FILE statement

C72 Duplicate or more than 75 DEFINE FILE statements, or DEFINE FILE in subprogram

C73 Syntax error in record number of disk READ, WRITE or FIND statement

C74 Defined file exceeds disk storage size

C75 Syntax error in DATA statement

C76 Names and constants in a DATA statement are not in a one-to-one correspondence

C77 Mixed mode in DATA statement

C78 Invalid Hollerith constant in DATA statement

C79 Invalid hexadecimal specification in a DATA statement

C80 Variable in a DATA statement not used, or argument appears in DATA statement

C81 COMMON variable loaded by a DATA statement

C82 DATA statement too long due to compiler limitations

C85 *ORIGIN record appeared in a subprogram

C86 *ORIGIN causes output to exceed address 7FFF hexadecimal

C96 Working storage on disk is too small to hold compiled program

C97 The program is too large to be compiled due to compiler limitations

C98 The code used to initialize the addresses of dummy arguments in a subroutine has

exceeded the limit of 511 words. In general, the number of arguments plus the number

of times arguments are used in the subroutine must not exceed 506.

C99 Total core requirements exceed 32767 words

IBM 1130 Emulator Reference 50

11.8. Fortran Program I/O Error Wait Codes

Runtime errors in Fortran programs cause a processor halt. The program can be resumed by pressing

PROGRAM START; the action taken is indicated in the following table by the following letters: X -

program exits; N - execution continues with next statement; E - all remaining variables in the I/O

statement will be treated as errors; Z - value is read or written as zero; A - the actual format

specification will be used; u - UFIO not updated; U - UFIO updated.

ACC Description Action

F000 No *IOCS was specified but I/O was attempted X

F001 Local unit defined incorrectly, or no *IOCS for specified device N

F002 Requested record exceeds buffer size E

F003 Illegal character encountered in input record Z

F004 Exponent too large or too small in input Z

F005 More than one exponent encountered in input Z

F006 More than one sign encountered in input Z

F007 More than one decimal point encountered in input Z

F008 Read of output-only device, or write to input-only device N

F009 Real variable transmitted with I format or integer transmitted with E or F A

F020 Illegal unit reference u

F021 Read list exceeds length of write list U

F022 Record does not exist in read list U

F023 Maximum length of $$$$$ area on disk has been exceeded X

F024 *IOCS (UDISK) was not specified X

F100 File not defined by DEFINE FILE statement X

F101 File record number too large, zero or negative X

F102 Read error on disk X

F103 *IOCS(DISK) was not specified X

F104 Write error on disk X

F105 Length of a list element exceeds record length in DEFINE FILE X

F106 Read-after-write failed X

F107 Attempt to read or write an invalid sector address (may occur if a core

image program is run with too little room in working storage)

X

F108 Seek error X

F10A Define file table and/or core image header corrupted, probably by an out-

of-bounds array subscript

X

IBM 1130 Emulator Reference 51

12. Macro Assembler

12.1. Assembler Control Records

*TWO PASS MODE

Requests that the assembler perform a two-pass assembly by reading the source deck twice.

By default the assembler stores intermediate output in WS, and actually does perform two logical

passes, so TWO PASS MODE is not needed in most cases. It's only needed when you really NEED to

physically run the source deck through twice, as when you want to punch the object code onto the

source cards.

*LIST

Requests that the assembler print a source listing (with object code values).

*XREF

Requests that the assembler print a cross-reference listing after the assembly.

*LIST DECK

xxx

*LIST DECK E

xxx

*PRINT SYMBOL TABLE

Requests that the assembler print a symbol table listing after the assembly.

*PUNCH SYMBOL TABLE

xxx

*SAVE SYMBOL TABLE

Requests that the symbol table be stored to disk as the System Symbol Table after assembly. (The

System Symbol table occupies a fixed location on the disk in one of the assembler phases, and so

does not appear in the LET or FLET)

*SYSTEM SYMBOL TABLE

Requests that the System Symbol Table be read in prior to assembly.

*LEVEL n

xxx

*OVERFLOW SECTORS n1,n2,n3

xxx

*COMMON nnnnn

Requests that when linked, nnnnn words of common be allocated. Used when creating assembler

modules that are to be linked with Fortran modules.

*MACLIB libnm

xxx

IBM 1130 Emulator Reference 52

12.2. Assembler Statement Format

After any Assembler Control statements, Assembler coding statements are formatted in columns 21

through 72. Columns 1 through 20 and 73 through 80 are ignored. The statement fields are indicated

below

 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 8
 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0

 label opcd FT operarand(s)... comments sequence

Most instructions follow the following field conventions:

Field Columns Description

label 21-25 An optional symbolic address definition of up to five letters. The characters

allowed are A-Z, 0-9, @, #, $ and the single quote '. The label must start with

a non-numeric character.

opcd 27-30 An opcode or assembler directive.

F 32 The Format field controls the instruction mode and length and can be one of

the following characters:

blank Short—The instruction will be one word long (except as noted). The

difference between the current location and the operand value will be

as the instruction's displacement field.

X Absolute short—The instruction will be one word long (except as

noted). The operand value will be used directly as the instruction's

displacement field.

L Long—The instruction will be two words long. The operand value

will be placed in the second word of the instruction (except as noted)

I Indirect—The instruction will be two words long. The operand value

will be placed in the second word of the instruction and will indicate

the address from which the actual instruction data will be retrieved.

T 33 The Tag field indicates an index register for indexed instructions. The tag can

be one of the following values:

blank The instruction will not use an index register

1 The instruction will use index register 1

2 The instruction will use index register 2

3 The instruction will use index register 3

operands 35... Any required operands begin in column 35. The first blank column usually

terminates the operand field except in the case of DMES and in the case of

the character constant (period blank).

comments ...72 Comments may follow the operand field after one or more blanks.

sequence 73-80 A sequence number may be punched in columns 73 through 80

12.3. Assembler Constants and Expressions

Format of constants and expressions:

/xxxx hexadecimal value

.x character value (EBCDIC code, in low byte)

IBM 1130 Emulator Reference 53

label label value

±nnn decimal integer

±nnn.nnn

±nnn.nnnE±nn

floating point value

±nnn.nnnBnn

±nnn.nnnE±nnBnn

fixed point value

Arithmetic expressions use standard algebraic precedence. Are parentheses allowed?

12.4. Assembler Directives and Pseudo-Ops

 ABS Absolute Assemble

label AGO dest Unconditional Assembly Branch

label AGOB dest Unconditional Assembly Branch Back

label AIF cnd,dest Assemble If

label AIFB cnd,dest Assemble If Back

label ANOP Assembler No Op

label BES f nwords Block Ended by Symbol

Reserves nwords words of memory. The label is defined

as the address of the last word. If f is E, the memory block

starts at an even address.

label BSS f nwords Block Started by Symbol

Reserves nwords words of memory. The label is defined

as the address of the first word. If f is E, the memory block

starts at an even address.

label DC value Define Constant

Places the value value in memory. Value can be a constant

or an expression.

label DEC value Define Decimal Constant

label DMES t message Define Message

label DN xxxxx Define Name

label DSA xxxxx Disk Sector Address

label DUMP saddr[,eaddr] Dump and Terminate Execution

label EBC .characters. Extended Binary Coded Information

 EJCT Eject Page

 END dest End Assembly

 ENT dest Define Subroutine Entry Point

 EPR Extended Precision Assemble

label EQU value Equate Symbol

label EXIT Return Control to the Supervisor

label FILE unit,nrec,recl,U,dest

IBM 1130 Emulator Reference 54

 Define Disk File

 HDNG text... Set Page Heading

 ILS nn Define Interrupt Level Subroutine

 ISS nn dest Define Interrupt Service Subroutine

 LIBF dest Call Transfer Vector Subroutine

 LIBR Define Transfer Vector Subroutine

label LINK xxxxx Load and Execute Another Program

 LIST [ON|OFF] Listing On / Off

 MAC [x] Define Temporary Macro

 MEND Macro end

label ORG value Define Origin

label PDMP saddr[,eaddr] Print Dump and Continue Execution

label PURG 'name' Remove Macro Name from Library

label SET value Set Symbol

 SMAC [x] Define Stored Macro

 SPAC nlines Space Listing

 SPR Single Precision Assemble Mode

label XFLC value Define Extended Floating Point Constant

12.5. Instruction Opcodes

label A ft operand Add

label AND ft operand Logical And

label B ft dest Branch

label BC ft dest Branch if Carry Set

label BN ft dest Branch if Negative

label BNN ft dest Branch if Not Negative

label BNP ft dest Branch if Not Positive

label BNZ ft dest Branch if Not Zero

label BO ft dest Branch if Overflow Set

label BOD ft dest Branch if Odd

label BOSC t cnds
label BOSC ft dest[,cnds]

Branch Out or Skip on Condition

label BP ft dest Branch if Positive

label BSC t cnds
label BSC ft dest[,cnds]

Branch Out or Skip on Condition

label BSI t cnds
label BSI ft dest[,cnds]

Branch and Store Instruction Address Register

IBM 1130 Emulator Reference 55

label D ft dest Divide

label EOR ft dest Logical Exclusive Or

label LD ft dest Load Accumulator

label LDD ft dest Load Double

label LDS value Load Status

label M ft dest Multiply

label MDM dest,incr Modify Memory and Skip

label MDX ft incr
label MDX f dest,incr

Modify Index and Skip

label NOP No Operation

label OR ft dest Logical Or

label RTE ft nbits Rotate Right Accumulator and Extension

label S ft dest Subtract

label SD ft dest Subtract Double

label SKP cnds Skip on Condition

label SLA ft nbits Shift Left Accumulator

label SLC ft nbits Shift Left and Count Accumulator and Extension

label SLCA ft nbits Shift Left and Count Accumulator

label SLT ft nbits Shift Left Accumulator and Extension

label SRA ft nbits Shift Right Accumulator

label SRT ft nbits Shift Right Accumulator and Extension

label STD ft dest Store Double

label STO ft dest Store Accumulator

label STS ft dest Store Status

label STX ft dest Store Index

label WAIT Wait

label XCH Exchange Accumulator and Extension

label XIO ft dest Execute I/O

12.6. Macro Assembler Error Flags

Flag Description

A An attempt has been made to specify a displacement outside the range -128 to +127.

C A character other than +, -, Z, E, C or O was detected in the first operand of a short

branch or in the second operand of a long BSC, BOSC or BSI

F A character other than L, I or X was found in column 32, or L or I was specified for an

instruction valid only in short form, or I was used inappropriately

L An invalid character was detected in the label field

IBM 1130 Emulator Reference 56

Flag Description

M Multiply defined label

O Operation code is invalid, or pseudo-op incorrectly placed. (An assembler bug makes

LIBR and ILS invalid after a HDNG!)

Q Questionable instruction, used on MDX with displacement of zero (which is valid but

apparently suspect)

R Relation error: an expression does not have a valid relocation, an absolute displacement

was not specified, an absolute origin was specified in a relocatable program, a

relocatable operand was specified as a BSS or BES parameter, the target of the END

statement in relocatable program was not a relocatable value, or the operand of an ENT

statement was not relocatable

S Syntax error: An invalid expression was used, an invalid character was detected, END

missing start address in a mainline program, EBC missing delimiter or has zero

character count, invalid label in ENT or ISS, or label appears in more than one ENT

T Tag error: column 33 contains character other than blank, 0, 1, 2, or 3. (Note: in ISS and

ILS statements, columns 32 and 33 can contain other digits)

U Undefined symbol

W An X or Y coordinate or both is not within specified range, or invalid operand

X A character other than R or I is in column 32 or a character other than D or N is in

column 33

Z An invalid condition was specified in a conditional branch or interrupt order

IBM 1130 Emulator Reference 57

13. Loading a DMS Disk Image

This section is not yet written

Batch file mkdms builds the components

Job deck loaddms loads the components onto a cartridge

Probably will not work on unix/linux until all files are renamed in lowercase.

Interestingly, the 1130's assembler cannot be used for several reasons: no support for SBRK cards,

poor floating point constant precision (!), and bugs which are tripped up by a LIBR directive after a

HDNG directive.

13.1. Required Files

13.2. Required Utilities

13.3. Assembling DMS and Components

13.4. Building DMS for a 1132 Printer

13.5. Building DMS for a 1403 Printer

13.6. Building DMS for Alternate Memory Configurations

IBM 1130 Emulator Reference 58

14. Data Formats

This section lists 1130 numeric data representations.

Single Word Integer Format

Single word integers are two's complement 16-bit values stored in one word. The format is:

0 1 15

Sign MSB integer value LSB

Double Word Integer Format

Double-word integers are two's complement 32-bit values stored in two words. The first word must

be stored at an even address. The most significant word is stored first. The LDD instruction loads the

first word into the accumulator and the second word into the extension register. (Double word

integers are used only by assembly language programs. Fortran programs always perform 16-bit

integer arithmetic. When the *ONE WORD INTEGERS control record is not used, Fortran stores

integers in two or three words to match the size of real numbers,, but uses only the first word for

data).

even address A

0 1 15

Sign MSB integer value

odd address A+1

0 15

integer value LSB

Standard Precision Floating Point Format

Standard precision floating point numbers are stored in two words. The first word must be stored at

an even address. The 24-bit mantissa is stored as a two's complement signed value with an implied

binary point between bits 0 and 1 of the first word. The characteristic (binary exponent) is offset by

128. Numbers are stored in normalized form so for positive numbers bit 1 is always 1 and for

negative numbers bit 1 is always 0. Zero is represented as all 32 bits set to 0.

even address A

0 1 15

Sign MSB mantissa

odd address A+1

0 7 8 15

mantissa LSB characteristic (offset 128)

Extended Precision Floating Point Format

Extended precision floating point numbers are stored in three words with no address restrictions. The

32-bit mantissa is stored as a two's complement signed value with an implied binary point between

bits 0 and 1of the second word. The characteristic (binary exponent) is offset by 128. Numbers are

stored in normalized form so for positive numbers bit 1 is always 1 and for negative numbers bit 1 is

always 0. Zero is represented as all 48 bits set to 0

address A

IBM 1130 Emulator Reference 59

0 7 8 15

unused characteristic (offset 128)

address A+1

0 1 15

Sign MSB mantissa

address A+2

0 15

mantissa LSB

Fixed Point Format

Assembly language programs can specify fixed point real constants. These numbers are stored as

two's complement numbers in two words with the first word at an even address. The position of the

binary point is not encoded in the stored value, and must be tracked by the program. The assembler

syntax for such numbers is nnn.nnnBbb or n.nnnEeeBbb, where bb specifes the number of binary

digits to the left of the implied binary point. The specifier B0 places the binary point between bits 0

and 1 of the first word; B31 places it after the least significant bit and results in a standard double

word integer. The illustration below shows the interpretation of B5 format.

Even address A

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Sign MSB integer part fractional part

Odd address A+1

0 15

fractional part LSB

implied binary point

IBM 1130 Emulator Reference 60

15. Character Codes

The following table lists the 1130 character codes. The console keyboard generates Card Code values.

Card code values are stored in the uppermost 12 bits of a word according to the following diagram.

Eight-bit codes are stored in the lower 8 bits of a word, or are packed two characters to a word. The

1403 printer codes are actually 6 bit codes with a parity bit to ensure odd parity.

Bit: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Punch: 12 11 0 1 2 3 4 5 6 7 8 9

Character
EBCDIC

IBM Card
Code

1132 Printer
Subset

Console
Printer

Paper Tape
PTTC/8

1403 Printer
Code

Dec. Hex Hex Hex
Hex Hex Hex

NUL 0 00 B030

PF punch off 4 04 8210

HT horiz tab 5 05 8110 41 6D

LC lower case 6 06 8090 6E

DEL delete 7 07 8050 7F

RES restore 20 14 4210 05 4C

NL new line 21 15 4110 81 DD

BS backspace 22 16 4090 11 5E

IDL idle 23 17 4050

BYP bypass 36 24 2210

LF line feed 37 25 2110 03 3D

EOB end of blk 38 26 2090 3E

PRE prefix 39 27 2050

PN punch on 52 34 0210

RS reader stop 53 35 0110 09 0D

UC upper case 54 36 0090 0E

EOT end of xmit 55 37 0050

space 64 40 0000 21 10 7F

¢ 74 4A 8820 02 20 (U)
*

. (period) 75 4B 8420 4B 00 6B (L) 6E

< 76 4C 8220 DE 02 (U)

(77 4D 8120 4D FE 19 (U) 57

+ 78 4E 80A0 4E DA 70 (U) 6D

| 79 4F 8060 C6 3B (U)

& 80 50 8000 50 44 70 (L) 15

! 90 5A 4820 42 5B (U)

$ 91 5B 4420 5B 40 5B (L) 62

* (caret) 92 5C 4220 5C D6 08 (U) 23

) 93 5D 4110 5D F6 1A (U) 2F

; (semicolon) 94 5E 40A0 D2 13 (U)

¬ (not) 95 5F 4060 F2 6B (U)

- (dash) 96 60 4000 60 84 40 (L) 61

/ 97 61 3000 61 BC 31 (L) 4C

, (comma) 107 6B 2420 6B 80 3B (L) 16

% 108 6C 2220 06 15 (U)

_ (underscore) 109 6D 2120 BE 40 (U)

> 110 6E 20A0 46 07 (U)

? 111 6F 2060 86 31 (U)

: (colon) 122 7A 0820 82 04 (U)

123 7B 0420 C0 0B (L)

@ 124 7C 0220 04 20 (L)

' (apostrophe) 125 7D 0120 7D E6 16 (U) 0B

= 126 7E 00A0 7E C2 01 (U) 4A

" (quotation) 127 7F 0060 E2 0B (U)

a 129 81 B000

#
 any unlisted code will be printed as a space by the PRNT1 subroutine

*
 (U) or (L) mean that the code is defined in upper case mode or lower case mode, respectively

black ribbon

carriage return

red ribbon

IBM 1130 Emulator Reference 61

Character
EBCDIC

IBM Card
Code

1132 Printer
Subset

Console
Printer

Paper Tape
PTTC/8

1403 Printer
Code

Dec. Hex Hex Hex
Hex Hex Hex

b 130 82 A800

c 131 83 A400

d 132 84 A200

e 133 85 A100

f 134 86 A080

g 135 87 A040

h 136 88 A020

i 137 89 A010

j 145 91 D000

k 146 92 C800

l 147 93 C400

m 148 94 C200

n 149 95 C100

o 150 96 C080

p 151 97 C040

q 152 98 C020

r 153 99 C010

s 162 A2 6800

t 163 A3 6400

u 164 A4 6200

v 165 A5 6110

w 166 A6 6080

x 167 A7 6040

y 168 A8 6020

z 169 A9 6010

(+ zero) 192 C0 A000

A 193 C1 9000 C1 3C or 3E 61 (U) 64

B 194 C2 8800 C2 18 or 1A 62 (U) 25

C 195 C3 8400 C3 1C or 1E 73 (U) 26

D 196 C4 8200 C4 30 or 32 64 (U) 67

E 197 C5 8110 C5 34 or 36 75 (U) 68

F 198 C6 8080 C6 10 or 12 76 (U) 29

G 199 C7 8040 C7 14 or 16 67 (U) 2A

H 200 C8 8020 C8 24 or 26 68 (U) 6B

I 201 C9 8010 C9 20 or 22 79 (U) 2C

(- zero) 208 D0 6000

J 209 D1 5000 D1 7C or 7E 51 (U) 58

K 210 D2 4800 D2 5B or 5A 52 (U) 19

L 211 D3 4400 D3 5C or 5E 43 (U) 1A

M 212 D4 4200 D4 70 or 72 54 (U) 5B

N 213 D5 4100 D5 74 or 76 45 (U) 1C

O 214 D6 4080 D6 50 or 52 46 (U) 5D

P 215 D7 4040 D7 54 or 56 57 (U) 5E

Q 216 D8 4020 D8 64 or 66 58 (U) 1F

R 217 D9 4010 D9 60 or 62 49 (U) 20

S 226 E2 2800 E2 98 or 9A 32 (U) 0D

T 227 E3 2400 E3 9C or 9E 23 (U) 0E

U 228 E4 2200 E4 B0 or B2 34 (U) 4F

V 229 E5 2100 E5 B4 or B6 25 (U) 10

W 230 E6 2080 E6 90 or 92 26 (U) 51

X 231 E7 2040 E7 94 or 96 37 (U) 52

Y 232 E8 2020 E8 A4 or A6 38 (U) 13

Z 233 E9 2010 E9 A0 or A2 29 (U) 54

0 240 F0 2000 F0 C4 1A (L) 49

1 241 F1 1000 F1 FC 01 (L) 40

2 242 F2 0800 F2 D8 02 (L) 01

3 243 F3 0400 F3 DC 13 (L) 02

4 244 F4 0200 F4 F0 04 (L) 43

5 245 F5 0100 F5 F4 15 (L) 04

6 246 F6 0080 F6 D0 16 (L) 45

7 247 F7 0040 F7 D4 07 (L) 46

8 248 F8 0020 F8 E4 08 (L) 07

9 249 F9 0010 F9 E0 19 (L) 08

IBM 1130 Emulator Reference 62

IBM 1130 Emulator Reference 63

16. Known Problems/Limitations

16.1. Simulator issues

 The serial communications adapter is not yet functional.

 You cannot currently have both an 1132 and 1403 printer at the same time.

16.2. DMS issues

 The DMS Macro Assembler does not like some of the directives and fixed point constants in the

DMS source code. This is not a bug in the emulator, but in the 1130's own assembler. IBM cross-

assembled DMS on a 360 or 370. For this package, DMS must be assembled using the asm1130

cross assembler.

 Until 10/24/2012, due to a bug in the cross assembler asm1130, the FORTRAN extended

precision SQRT() function was defective. DMS images obtained from us prior to this date should

be replaced with a newer version.

 There is a bug in the Fortran compiler: If you call a function with no arguments, it will flag the

wrong statement with the C36 syntax error.

 Be very careful when calling subroutines and functions. The 1130's subroutine linkage is pretty

fragile. If you pass the wrong number of arguments, the 1130 will end up executing data.

 On our DMS image, DUP STORECI crashes DMS. This is likely due to a bug in the simulator or

the cross assembler.

