RORRACK KRR FORAK O KRR AR HOR R AIARAA R AR FRAK KRR AR KRR KKK KRR KKK K K KRR KKK KKK
SROKHORMCHN KA KA RAORK KKK K KRR AR AOR IR KK KA IR A KKK AR AR KKK oK

sk oK HORANK Hokok X HokK dokoiok kKo KK Aok
* * L S X X X % * * * b 8
*x * ook b 3 X % X KKK koK b S Fookok
* * b S * % * X % X * *
Kk dkkk okokk kK Rokolokk dkokok okskok * & 5 S 4 b 3 3
* * Rk kol oKk * dookok¥ Kokkk X K Rk kkokok RN
* b * % Xk X X * . * % % X
* * ko Ak Aok HKK k dokk ok X ® * X kkdek
*x® b ® K X * X X L I % x * X X
oK Hokokk R 2% s S ¢ * AKX Kkok *¥ok ook dokokk Fopokok

FRAKAAARNKAAK AR K HORI KK oK AR AR KA ARARORA R KKK KA ORI R KKK KKK KK KK KKK K
HORARRAKAOR A KRR AR HOK AR KKK KRR AR AR RAAK KA ARARRAOK RN A K KK KKK KK

BY GUY L. STEELE JR.

A GUIDE TO THE 1138 LISP 1.6 SYSTEM
IMPLEMENTED FOR THE 1BM 1138 BY GUY L. STEELE JR.

AR AR AAAA KKK AARKKAAAKHAKAAK KA
sokxkk TABLE OF CONTENTS sk
KK AOK AR A A KA A KK AKAKHHAAKK KA KKK

*dokkk INTRODUCTION

CHAPTER @

CHAPTER 1 skkrx ATOMIC QUANTITIES

CHAPTER 2 sokkokk S-EXPRESSIONS

CHAPTER 3 sookkk FUNCTIONS AND LAMBDA EXPRESSIONS
CHAPTER &4 soxxk EVALUATION OF S-EXPRESSIONS
CHAPTER 5 sk CONDITIONAL EXPRESSIONS

CHAPTER 6 sokikk PREDICATES

CHAPTER 7 sk FUNCTIONS ON S-EXPRESSIONS
CHAPTER 8 sokxkk FUNCTIONS ON IDENTIFIERS
CHAPTER S xokkxk FUNCTIONS ON NUMBERS

CHAPTER 18 xxkkk FUNCTIONS ON STRINGS

CHAPTER 11 soksokk PROGRAMS

CHAPTER 12 skkkx INPUT/QUTPUT

CHAPTER 13 sk SYSTEM FUNCTIONS AND THE LISP TOPLEVEL
CHAPTER 14 sxkkx MISCELLANEOUS FUNCTIONS

CHAPTER 15 sokkxk SYSTEM-SUPPLIED IDENTIFIERS

APPENDIX A sxxokx 1138 LISP ERROR MESSAGES
APPENDIX B xokxxx POSSIBLE DIFFERENCES BETWEEN VARIOUS 1138 LISP SYSTEMS
APPENDIX C sxxxx ASSEMBLING AND EXECUTING 1130 LISP

HRORACKAK AR KA KAK KK A KAKAAAKAA KA AAAAKAAK
wiokiok CHAPTER 8 sorkoxk INTRODUCTION sokorkerc
SRR AR AR KK I ACK KA KA KA AR A KA AR KK AAAK

1138 LISP 1.6 IS A SMALL BUT POWERFUL IMPLEMENTATION OF THE LISP 1.6
LIST-PROCESSING LANGUAGE. THE AMOUNT OF FREE STORAGE AVAILABLE 1S RATHER
LIMITED, BUT THE SYSTEM IS QUITE GENERAL AND POWERFUL; MANY OF THE FEATURES
OF LARGER LISP SYSTEMS ARE INCORPORATED. IN PARTICULAR, THE "SHALLOW-ACCESS"
ARRANGEMENT IS USED INTERNALLY; NO A-LISTS ARE USED, AND THE SO-CALLED "FUNARG"
PROBLEM IS COMPLETELY IGNORED; BUT VARIABLE EVALUATION IS EXTREMELY FAST.

IT SHOULD BE NOTED THAT 1138 LISP 1.6 IS NOT DESIGNED TO BE A PARTICULARLY
FAST SYSTEM. SINCE THE IBM 1138 IS A RELATIVELY SLOW MACHINE, AND SINCE CORE
MEMORY IS RATHER LIMITED, SPEED IS DIFFICULT TO OBTAIN. 1138 LISP IS RATHER
DESIGNED FOR EASE OF USE AND DEBUGGING. EXTENSIVE ERROR DETECTION FACILITIES ARE
AVAILABLE, AND ERROR MESSAGES, UNLIKE THOSE OF MANY OTHER LISPS, ARE CLEAR AND
SELF-EXPLANATORY, AND PROVIDE EXTRA HELPFUL INFORMATION ABOUT THE ERROR.

THUS 1130 LISP IS SUITABLE FOR DEVELOPMENT OF LISP FUNCTIONS WHICH AFTER
DEBUGGING MAY BE TRANSFERRED TO OTHER LISP SYSTEMS.

THIS USER’S GUIDE IS INTENDED TO BE A CONCISE BUT COMPLETE DESCRIPTION
OF 11308 LISP 1.6. ALL SYSTEM-SUPPLIED FUNCTIONS ARE MENTIONED AND DESCRIBED,

AS WELL AS A NUMBER OF FEATURES UNIQUE 7O 1138 LISP, E.G. COMPOSITE CAR/COR
FUNCTIONS OF ANY LENGTH, AND A UNIQUE INPUT/0UTPUT STRUCTURE. IT IS ASSUMED THAT
THE READER IS ALREADY FAMILIAR WITH THE CONCEPTS OF LISP, AS IN THE

"LISP 1.5 PROGRAMMER’S MANUAL" (JOHN MCCARTHY, ET AL.) OR THE "LISP 1.5 PRIMER"
(CLARK WEISSMAN).

R RK AR KA FOR AR A A KKK
sokkkk ACKNOWLEDGEMENTS soxokskox
AR A AR IR A KK AR HKAAAARARANKK

THE BASIC STRUCTURE OF 1138 LISP 1.6 IS A COMPOGSITE OF MANY FEATURES
FROM FOUR LISP SYSTEMS: 7898 LISP, AS DESCRIBED IN THE "LISP 1.5 PROGRAMMER’S
MANUAL"; MACLISP, DEVELOPED AT PROJECT MAC AT THE MASSACHUSETTS INSTITUTE OF
TECHNOLOGY (MIT); NULTICS LISP, DEVELOPED ON THE MULTICS SYSTEM AT MIT; AND
STANFORD A.I. LISP, DEVELOPED AT THE STANFORD ARTIFICIAL INTELLIGENCE
LABORATORY AT STANFORD UNIVERSITY.

THE FORMAT AND CONTENTS OF THIS USER'S GUIDE WERE BORROWED TO A GREAT
EXTENT FROM THE “"STANFORD A.I. LISP 1.6 MANUAL" (LYNN H. QUAM) AS DISTRIBUTED
BY THE DIGITAL EQUIPMENT COMPUTER USERS SOCIETY AS DECUS NO. 6/18-38A.

SRR R KRR KR AR KA KKIAAOK
Aok CHAPTER 1 sk ATOMIC QUANTITIES sesoonk
SRR KA A A KKK EAKKKAOK A AAKAAAKK KKK AAOK

IN 1138 LISP THERE ARE THREE KINDS OF ATOMIC QUANTITIES: IDENTIFIERS,
NUMBERS, AND STRINGS.

<IDENTIFIER> ::= <ANY STRING OF LETTERS NOT A NUMBER OR A STRING>
<NUMBER> ::= /<HEX-DIGITS>|<FIRST-DEC><DEC-DIGITS>

<HEX-DIGITS> ::= <HEX-DIGIT>|<HEX-DIGIT><HEX-DIGITS>

<HEX-DIGIT> ::= 8]112|3|4]|5|6|7]8|3]A|B|C|DIE|F

<FIRST-DEC> ::= +|-|<DEC-DIGIT>

<DEC-DIGITS> ::= <DEC-DIGIT>|<DEC-DIGIT><DEC-DIGITS>

<DEC-DIGIT> ::= 8]1]2|3]4]5|6]7|8]9

<STRING> ::= ,, [, <CHARACTERS>,

<LETTERS> ::= <LETTER>|<LETTER><LETTERS>

<LETTER> ::= <ANY CHARACTER EXCEPT A DELIMITER>|8&<CHARACTER>
<CHARACTERS> ::= <CHARACTER>|<CHARACTER><CHARACTERS>

<CHARACTER> ::= <ANY CHARACTER ON THE IBM 023 KEYPUNCH EXCEPT 9-8-2>
<DELIMITER> ::= <SPACE>|(])].],]|8&]"

o

IDENTIFIERS ARE STRINGS OF CHARACTERS WHICH DO NOT CONTAIN A DELIMITING
CHARACTER, AND WHICH DO NOT CONSTITUTE NUMBERS OR STRINGS. IT IS POSSIBLE TO
CREATE IDENTIFIERS WHICH LOOK LIKE NUMBERS OR STRINGS BY PRECEDING THE OFFENDING
CHARACTER(S) WITH AN AMPERSAND (&). THUS 3645 IS A NUMBER, BUT &3465 IS A VALID
IDENTIFIER, AS IS 36845. ALSO, (BERF) IS NOT A VALID IDENTIFIER, BUT &(BERF&)
IS. THE & CAUSES THE FOLLOWING CHARACTER TO BE TAKEN LITERALLY, AND IS NOT
ACTUALLY PART OF THE IDENTIFIER. THUS &A&B IS THE SAME AS 8AB IS THE SAME AS
A8B 1S THE SAME AS AB.

EXAMPLES: A FOOBAR QU&UX &(8) 888 8345 "?He%<> 54-48

NOTE THAT SINCE 54-48 IS NOT A VALID NUMBER AND DOES NOT CONTAIN DELIMITERS,
IT IS A VALID IDENTIFIER. NORMALLY ONE AVOIDS PECULIAR IDENTIFIERS LIKE THIS.

INTERNALLY AN IDENTIFIER IS REPRESENTED AS A DOTTED PAIR WHOSE CAR IS
THE ITDENTIFIER'S PRINT NAME AND WHOSE COR IS ITS VALUE. (NOTE: 1130 LISP DOES
NOT USE PROPERTY LISTS.) THE PRINT NAME IS A LIST OF POINTERS TO A TABLE
OF CHARACTER CODES. (NORMALLY THE USER NEED NOT BE CONCERNED WITH THEIR
STRUCTURE.) THIS LIST OF POINTERS POINTS TO THE CHARACTERS WHICH REPRESENT THE
IDENTIFIER. THUS THE PRINT NAME OF THE IDENTIFIER &(OX&) IS A LIST POINTING TO
TABLE ENTRIES FOR THE CHARACTERS (, G, X, AND). (REMEMBER, THE &S ARE NOT
ACTUALLY PART OF THE PRINT NAME.)} THE VALUE OF AN IDENTIFIER MAY BE EITHER AN
S-EXPRESSION (Q.V.) ASSOCIATED WITH THE IDENTIFIER, OR A SPECIAL MARKER WHICH
INDICATES THAT THE IDENTIFIER HAS NO ASSOCIATED S-EXPRESSION, I1.E. ITS VALUE
IS "UNDEFINED".

IN ORDER THAT OCCURRENCES OF THE SAME PRINT NAME WILL REFER TO THE SAME
IDENTIFIER INTERNALLY, THERE IS A SPECIAL LIST ASSOCIATED WITH THE IDENTIFIER
"OBLIST" WHICH CONTAINS ALL IDENTIFIERS SEEN BY CERTAIN FUNCTIONS SUCH AS
"READ". THIS LIST IS SORTED INTO ALPHABETICAL ORDER (ACTUALLY, BY EBCDIC CODE
VALUES, WHICH FOR LETTERS ARE ALPHABETICAL).

NUMBERS IN 1138 LISP ARE INTEGERS ONLY (I.E. NO "FLOATING-POINT" NUMBERS)
IN THE RANGE -32768 TO 32767 (IN HEXADECIMAL, /808088 TO /7FFF, OR /8088 TO
/FFFF). THEY MAY BE WRITTEN IN DECIMAL OR HEXADECIMAL (BASE SIXTEEN) NOTATION,
AS FOR 1138 ASSEMBLER LANGUAGE. INTERNALLY THERE IS NO DISTINCTION BETWEEN
DECIMAL AND HEXADECIMAL NUMBERS.

EXAMPLES: @ -7 32746 888 -747 /FFFF /FACE /83 /376 /8

NOTE THAT HEXADECIMAL NUMBERS MAY NOT BE SIGNED. NOTE ALSO THAT THINGS
LIKE +, -, /, 5/3, 4-, AND 5-2 ARE NOT NUMBERS, BUT IDENTIFIERS. IF ANY ONE
CHARACTER IN A NUMBER 1S PRECEDED BY A &, IT IS NO LONGER A NUMBER, E.G. /88808.

STRINGS CONSIST OF A COMMA FOLLOWED BY ZERO OR MORE CHARACTERS FOLLOWED BY
A COMMA. A COMMA WITHIN A STRING MUST BE WRITTEN AS TWO CONSECUTIVE COMMAS.
NOTE THAT OTHER DELIMITERS WITHIN A STRING NEED NOT BE PRECEDED BY A 8.
INTERNALLY, STRINGS ARE LIKE IDENTIFIERS, BUT HAVE A SPECIAL MARKER AS THEIR
VALUE, DENOTING THEM AS STRINGS. THE ENCLOSING COMMAS ARE NOT PART OF THE PRINT
NAME OF THE STRING.

EXAMPLES: - , THE GREAT QUUX, ,HI,, GUY, ,0°'.&,,, , @400,

SR 05 RO 0 R KK R R SR ORI IR SIS R R R RORNOR AR ACIOR
soioior CHAPTER 2 sorkork S-EXPRESSIONS sokororox
SRR FRAORAK AR AR KRR AAAAAK A AAAKACK

S-EXPRESSIONS (SHORT FOR SYMBOLIC EXPRESSIONS) ARE THE BASIC DATA
STRUCTURES OPERATED ON BY LISP.

<ATOM> ::= <IDENTIFIER>|<NUMBER>|<STRING>

<S-EXPRESSION> ::= <ATOM>| (<S-EXPR-LIST>) | (<S-EXPR-LIST>. <S-EXPRESSION>)
[(3] <S-EXPRESSTON>

<S-EXPR-LIST> ::= <S-EXPRESSION>|<S-EXPRESSION><S-EXPR-LIST>

THE TOENTIFIER "NIL" IS SPECIALLY DEFINED TO BE EQUIVALENT TO THE NULL
LIST (). AN S-EXPRESSION OF THE FORM (<S-EXPRESSION>.<S-EXPRESSION>) IS CALLED A
DOTTED PAIR. S-EXPRESSIONS OF OTHER FORMS BESIDES ATOMS AND NIL CAN BE EXPRESSED
IN TERMS OF DOTTED PAIRS AS FOLLOWS (LET S1, S2, S3, ETC. BE S-EXPRESSIONS, AND
LET --- REPRESENT AN ELLIPSIS, 1.E. WHAT ... USUALLY MEANS):

(51 52 53 --- SN-1 SN} = (S1.(S2.(S3. ¢ ~—- . (SN-1.(SN.NIL)) --- 1}}))
(51 S2 53 --- SN-2 SN-1.S5N) = (S1.(52.(53.(-~- .(SN-2. (SN-1.5N}) -—-)}))

THE FORM *<S-EXPRESSION> IS DEFINED TO MEAN (QUOTE <S-EXPRESSION>).

EXAMPLES:
FOOBAR
533
, THIS IS A STRING.,
() = NIL
(THIS IS A LIST)
(DOTTED . PAIR)
(THIS IS A SO-CALLED DOTTED . LIST)
(ANOTHER DOTTED . LIST) = (ANOTHER . (DOTTED . LIST))
(THLS IS ANOTHER LIST) = (THIS. (IS. (ANOTHER. (LIST.NIL)})))
' (QUUX FOOBAR) = (QUOTE (QUUX FOOBAR)) = (QUOTE. ((QUUX. (FOOBAR.NIL)).NIL))
** (A B.C) (QUOTE (QUOTE (A B . ©)))
(QUOTE . ((QUOTE . ((A . (B . C)) . NIL)) . NIL))

THIS IS NOT A VALID S-EXPRESSION: (THIS IS A BAD . DOTTED LIST)

NOTE THAT SPACES ARE GENERALLY NON-SIGNIFICANT AND MAY BE USED FREELY TO
IMPROVE READABILITY. EXCEPTIONS: (1) WITHIN STRINGS SPACES ARE LIKE ANY OTHER
CHARACTER AND ARE PART OF THE STRING. (2) AT LEAST ONE SPACE MUST SEPARATE
TWO IDENTIFIERS, A NUMBER AND AN IDENTIFIER, TWO NUMBERS, OR TWO STRINGS
WHICH WOULD OTHERWISE BE ADJACENT MEMBERS OF AN <S-EXPR-LIST>. (THIS RESTRICTION
IS TO PREVENT AMBIGUITIES.) IN THIS SITUATION MORE THAN ONE SPACE MAY BE USED IF
DESIRED. (3) SPACES MUST NOT OCCUR WITHIN AN IDENTIFIER (SPACE 1S A DELIMITER.
ONE CAN INCLUDE A SPACE AS PART OF IDENTIFIER ANYWAY BY PRECEDING IT WITH A &.)
(4) SPACES MAY NOT OCCUR INSIDE A NUMBER.

S-EXPRESSIONS MAY BE WRITTEN OVER SEVERAL LINES ALSO, TO IMPROVE
READABILITY. THUS THE S-EXPRESSION:

(LAMBDA (N} (COND ((MINUSP N)-1) ((ZEROP N)@) (T 1)))
MAY INSTEAD BE WRITTEN:
(LAMBDA (N)

(COND (MINUSP N} -1)
(*ZEROP N) @)

(T n b}

NOTE, HOWEVER, THAT SUCH FORMATTING IS NOT REQUIRED; THE USER MAY WRITE
S-EXPRESSIONS IN WHATEVER FORMAT SUITS HIS PURPOSES BEST.

***************:k*******:m********xé**************xc***********
sookok CHAPTER 3 sioksok FUNCTIONS AND LAMBDA EXPRESSIONS sk
KKK AIOK IR TR FRAKAKKACK IR AAAKAKIAAK K KA KKK AAAAA

THERE ARE SEVERAL TYPES OF OBJECTS IN 1138 LISP WHICH MAY BE APPLIED AS
FUNCTIONS TO S-EXPRESSIONS. THEY ARE CLASSIFIED ACCORDING TO THREE SEPARATE
AND INDEPENDENT PROPERTIES:

(1) IS THE FUNCTION ITSELF AN S-EXPRESSION, OR IS IT A "COMPILED" FUNCTION,
I.E. PRE-CODED INTO THE LISP SYSTEM IN ASSEMBLER LANGUAGE?

(2) HOW MANY ARGUMENTS DOES IT WANT, AND HOW DOES IT WANT THEM? IT MAY
TAKE A CERTAIN FIXED NUMBER OF ARGUMENTS, OR A LIST OF ALL (ZERO OR MORE)
ARGUMENTS PRESENTED TO IT. THERE ARE ACTUALLY MORE POSSIBILITIES; MORE
ON THAT LATER.

(3) DOES IT WANT ITS ARGUMENTS EVALUATED OR NOT, AND SHOULD THE FUNCTION'S
RESULT BE RE-EVALUATED? THIS IS A GENERALIZATION OF THE EXPR/FEXPR/MACRO
PROPERTIES OF OTHER LISPS, AND IS INDEPENDENT OF PROPERTY (2) ABOVE.

ORI AAKA A KA AR AHKAAA A A AAAAANAAAKK
sk INTERPRETED FUNCTIONS sekoiokk
KKK K KA I K AR A AAAAKAAK KA KKK

FUNCTIONS WHICH ARE THEMSELVES S-EXPRESSIONS ARE CALLED "INTERPRETED"
FUNCTIONS (AS OPPOSED TO "COMPILED").

<INTERPRETED-FUNCTION> ::= <LAMBDA-EXPR>|<LABEL-EXPR>
<LAMBDA-EXPR> ::= (<LAMBDA><PARAMETER-LIST><S-EXPR-LIST>)
<LAMBOA> ::= LAMBDA|NLAMBODA [MLAMBDA '
<PARAMETER-LIST> ::= ()| (<VARIABLES>) | <VARIABLE>

| (<VARTABLES>. <VYARIABLE>)
<VARTABLES> ::= <VARIABLE>|<VARIABLE><VARIABLES>
<VARIABLE> ::= <ANY IDENTIFIER EXCEPT NIL>
<LABEL-EXPR> ::= (LABEL <VARIABLE><INTERPRETED-FUNCTION>)

A LAMBOA EXPRESSION CONSISTS OF A LIST OF THE IDENTIFIER "LAMBOA" OR "NLAMBDA"
OR "MLAMBDA" FOLLOWED BY A LIST OF FORMAL PARAMETERS (VARIABLES) FOLLOWED BY ONE
OR MORE S-EXPRESSIONS (ACTUALLY THERE MAY BE ZERO OF THEM); THE VALUE
OF THE LAST S-EXPRESSION (OR NIL IF THERE ARE NONE) IS THE VALUE OF THE FUNCTION
WHEN APPLIED TO ITS ARGUMENTS.

THE FORMAL PARAMETER LIST MAY BE () (I.E. NIL), IN WHICH CASE THE FUNCTION
EXPECTS NO ARGUMENTS; OR A VARIABLE, IN WHICH CASE ITS OLD VALUE IS SAVED AND
A LIST OF THE FUNCTION’S ARGUMENTS BECOMES ITS NEW VALUE; OR A LIST OF
VARITABLES, EACH OF WHICH IS GIVEN AS ITS NEW VALUE ("BOUND TO") ONE OF THE
FUNCTION'S ARGUMENTS; OR A DOTTED LIST OF VARIABLES, EACH OF WHICH BUT THE
LAST IS BOUND TO ONE ARGUMENT, AND THE LAST IS BOUND TO A LIST OF ALL THE REST
OF THE ARGUMENTS. A RECURSIVE FUNCTION WHICH MAY BE USED TO REPRESENT
THE BINDING OF PARAMETERS TO ARGUMENTS IS AS FOLLOWS:

(SETQQ BIND (LAMBDA (PARAM-LIST ARG-LIST) (COND
((AND (NULL PARAM-LIST) (NULL ARG-LIST)} NIL)
({NULL PARAM-LIST) (ERROR TOO MANY ARGUMENTS))
({(ATOM PARAM-LIST) (PARAM-SET PARAM-LIST ARG-LIST))
((NULL ARG-LIST) (ERRGCR TOO FEW ARGUMENTS))
(T (PARAM-SET (CAR PARAM-LIST) (CAR ARG-LIST))
(BIND (COR PARAM-LIST) (CDR ARG-LIST))))))

WHERE "PARAM-SET" HAS THE EFFECT OF SAVING THE OLD VALUE OF A VARIABLE AND

GIVING IT A NEW VALUE. THUS THE FOLLOWING ARE VALID PARAMETER LISTS:
0 X (X} (ABCDEF) (ABCD.E) (ABY (MNP} QUUX NIL

THESE LISTS, RESPECTIVELY, DENOTE FUNCTIONS WHICH TAKE THE FOLLOWING NUMBERS
OF ARGUMENTS: ZERO, ANY NUMBER, ONE, SIX, FOUR OR MORE, ONE OR MORE, THREE,
ANY NUMBER, AND ZERO (NOTE THAT NIL=(}}.

[F THE FOLLOWING ARGUMENTS WERE GIVEN TO A FUNCTION: ABCDE
THE FOLLOWING INDICATES HOW THE PARAMETERS WOULD BE BOUND FOR VARIOUS
PARAMETER LISTS:

VUXY D V=A W=B X=C Y=0 Z=E

Xy 2) ERROR: TOO MANY ARGUMENTS

(Il JKLMN) ERROR: TOO FEW ARGUMENTS

K K=(A B CDE)

Xvy. 2 X=A Y=B Z=(C D E}
UVUXY.2D U=A V=B W=C X=D Y=£ Z=(}=NIL
(TUVHWHXY. 2) ERROR: TOO FEW ARGUMENTS

NLAMBOA FUNCTIONS ARE EXACTLY LIKE LAMBDA FUNCTIONS, EXCEPT THAT NLAMBDA
FUNCTIONS DO NOT HAVE THEIR ARGUMENTS EVALUATED, WHILE LAMBDA FUNCTIONS DO.
MLAMBDA FUNCTIONS ARE LIKE NLAMBDA FUNCTIONS, EXCEPT THAT MLAMBDA FUNCTIONS HAVE
THEIR FINAL RESULT RE-EVALUATED BY EVAL; THIS PROVIDES SOMETHING SIMILAR TO THE
MACRO CAPABILITY OF OTHER LISPS (SEE BELOW).

EXAMPLES: THE FOLLOWING CONSISTS OF DEFINITIONS OF VARIOUS STANDARD FUNCTIONS
IN TERMS OF THE ABOVE FORMALISMS. (NOTE THAT FUNCTIONS ARE DEFINED BY "SETQQ".)

(SETQQ LIST (LAMBDA LIST-OF-ARGS LIST-OF-ARGS))
(SETGA QUOTE (NLAMBDA (X) X))
(SETAQQ PROGZ (LAMBDA (ARGl ARGZ2 . REST-OF-ARGS) ARG2))

ONE MIGHT DEFINE A FUNCTION CALLED "DEFINE", WHICH TAKES ANY NUMBER OF
ARGUMENTS, EACH OF WHICH IS A LIST OF TWO ITEMS, A VARIABLE AND AN INTERPRETED
FUNCTION. THE ARGUMENTS ARE NOT EVALUATED. "DEFINE" USES THE FUNCTION “SET"

TO BIND EACH VARIABLE TO THE CORRESPONDING FUNCTION.

(SETGQ DEFINE (NLAMBDA DEFNS (COND
((NULL DEFNS) NIL)
(T (SET (CAAR DEFNS) (CADAR DEFNS))
(CONS (CAAR DEFNS) (APPLY 'DEFINE (CDR DEFNS)))))))

THUS THE FOLLOWING FUNCTION INVOCATION WOULD DEFINE "LIST" AND "QUOTE" AS ABOVE,
AND RETURN (LIST QUOTE) AS ITS VALUE:

(DEFINE (LIST(LAMBDA(LIST-OF-ARGS LIST-OF-ARGS)) (QUOTE (NLAMBDA (X)X}))

NOTE THE USE OF THE FUNCTION "APPLY" IN THE DEFINITION OF "DEFINE"; THIS

IS DONE SO THAT THE REST OF THE DEFINITIONS (CDR DEFNS) WILL BE PASSED

TO "DEFINE" IN THE PROPER MANNER; (DEFINE (CDR DEFNS)) WOULD NOT WORK, SINCE
"DEFINE" DOES NOT EVALUATE 1TS ARGUMENTS.

SRR AR KKK IRAKIAAAA AR KHAKAKAOK
ook COMPILED FUNCTIONS skokskk
AORACAAAA KKK KA KA A KA K HAAKAKKK

COMPILED FUNCTIONS ARE COLLECTIVELY REFERRED TO AS "SUBRS" (AS OPPOSED TO
INTERPRETED FUNCTIONS, SOMETIMES CALLED "EXPRS"). INTERNALLY A COMPILED
FUNCTIONAL OBJECT IS A DOTTED PAIR OF THE IDENTIFIER "SUBR" AND THE ADDRESS
OF THE WORD PRECEDING THE MACHINE LANGUAGE CODING OF THE FUNCTION. IF THE
SUBR OBJECT IS PRINTED, THE HEADER WORD PRINTS AS A NUMBER, WHICH IS THE SuM
OF THREE ITEMS:

(1) FOR LAMBDA, ADD /0088; FOR NLAMBDA, ADD /4088; FOR MLAMBDA, ADD /8808.

(2) ADD IN THE NUMBER OF REQUIRED ARGUMENTS.

(3) IF IN ADDITION TO THE REQUIRED ARGUMENTS A LIST OF ALL ADDITIONAL

ARGUMENTS IS DESIRED, ADD /200@.
THUS THE HEADER WORDS FOR THE FUNCTIONS "LIST", "QUOTE", "PROG2", AND "DEFINE"
ABOVE, IF THEY WERE SUBRS AND NOT EXPRS, WOULD BE RESPECTIVELY /2008, /4881,
/2882, AND /6008. IN THIS WAY THE HEADER WORD PROVIDES THE NEEDED INFORMATION
ABOUT PARAMETER BUNDING AND ARGUMENT EVALUATION.

AR AKKKAAARARRAKAAKAKAKAKAAAKAKAKK
sickiok MACROS AND MLAMBDA EXPRESSIONS soktork
SARIKARNOKAAHKKKKAA K AR AAAAKAKAAARAKAKARHKAOK

MLAMBOA EXPRS AND SUBRS, AS MENTIONED ABOVE, CAN BE USED IN A WAY SIMILAR
TO THE MACRO FEATURE OF OTHER LISPS. NO MLAMBODA SUBRS ARE PROVIDED WITH 1138
LISP; BUT AN EXAMPLE OF AN MLAMBDA EXPR IS GIVEN BELOW.

A FUNCTION TO CONS TOGETHER ANY NUMBER OF ITEMS COULD BE DEFINED IN THE
FOLLOWING WAY:

(SETQQ CONSCONS (MLAMBDA X (COND
(INULL X) NIL)
((NULL (CDR X)) (CAR X))
(T (LIST "CONS (CAR X) (CONS 'CONSCONS (COR X))1) 1))

(CONSCONS A B C) WOULD EVALUATE TO (CONS A (CONSCONS B C)). EVALUATING
(CONSCONS B C) WOULD YIELD (CONS B (CONSCONS C}). EVALUATING (CONSCONS C)
WOULD GIVE C. THEN THE RESULT OF EACH CONSCONS RESULT WOULD AGAIN BE EVALUATED;
THUS (CONSCONS A B C) WOULD GIVE THE SAME RESULT AS (CONS A (CONS B C)).

IN GENERAL, MACROS ARE OF PARTICULAR USE ONLY IN CONJUNCTION
WITH "LISP COMPILERS".

SRR AR KKK KKK HORAK KA A KAK KKK
ook LABEL EXPRESSIONS sk
ORI K KA KA KA KKK

A LABEL EXPRESSION, IN EFFECT, CREATES A TEMPORARY NAME FOR A FUNCTION TO
PERMIT RECURSIVE CALLING. WHEN A LABEL EXPRESSION IS APPLIED AS A FUNCTION TO
SOME ARGUMENTS, THE VARIABLE IN THE EXPRESSION IS BOUND TO THE FUNCTION
AND THE FUNCTION IS THEN APPLIED TO THE ARGUMENTS. AFTER THE FUNCTION RETURNS
ITS VALUE, THE VARIABLE HAS ITS OLD VALUE RESTORED TO IT, AND THE VALUE
RETURNED BY THE FUNCTION IS THE VALUE OF THE LABEL FUNCTIONAL EXPRESSION.

EXAMPLE: THE FUNCTION "REVERSE", WHICH REVERSES A LIST.

(SETQQ REVERSE (LAMBDA (X)
((LABEL REVERSE1l (LAMBDA (M N) (COND
((NULL M)} N)
(T (REVERSE1 (COR M) (CONS (CAR M) N)))))) X NIL)))

ORDINARILY THE FUNCTION "REVERSEL" DOES NOT EXIST; BUT WHEN "REVERSE" IS

USED, THE LABEL EXPRESSION GIVES THE CONTAINED LAMBDA EXPRESSION AS A VALUE

TO THE VARIABLE "REVERSEL", SO THAT THE FUNCTION MAY BE REFERRED TO BY THE INNER
LAMBDA EXPRESSION. AFTER "REVERSE" RETURNS ITS VALUE, THE FUNCTION "REVERSEL"

AGAIN DOES NOT EXIST; THE VARIABLE "REVERSEL" NOW HAS WHATEVER VALUE 1T
STARTED WITH, IF ANY.

SRR A A AR KK KK KI AR AAAAKR KK A AR KAAKAAOKKKAAK
solokiok CHAPTER 4 sk EVALUATION OF S-EXPRESSIONS soroiokk
SRR KRR AAAK KA FAAAK ORISR AAK KA KKHAARIOKKK

THIS CHAPTER DESCRIBES THE MAIN FUNCTIONS OF THE LISP SYSTEM.
(NOTE THAT IN THIS AND SUCCEEDING CHAPTERS, FUNCTIONS MAY BE PARTIALLY OR WHOLLY
DEFINED IN TERMS OF LAMBDA EXPRESSIONS. IF NOTHING ELSE, THE FIRST PART OF A
LAMBDA EXPRESSION WILL BE GIVEN FOR EACH FUNCTION, TO INDICATE THE NUMBER OF
ARGUMENTS AND WHETHER THEY ARE EVALUATED.)

HOKKHIIOKIHAOKKIAKI KKK AOKIKAKAKIKKHK KK
doksiork S-EXPRESSION EVALUATION sk
SRR IR AAAA AN AA AR KKK

EVAL (LAMBDA (X} ---

(EVAL E) RETURNS THE VALUE OF THE S-EXPRESSION E. (ACTUALLY THE ARGUMENT
IS EVALUATED TWICE: ONCE BEFORE EVAL SEES IT, AND ONCE AFTER. THUS IF
THE IDENTIFIER "A" HAS THE VALUE (B.C) AND "B" HAS THE VALUE (Q R S),
THEN THE RESULT OF (EVAL (CAR A)) IS (QR 9).)
IN GENERAL, AN S-EXPRESSION IS EVALUATED AS FOLLOWS:
(1) THE VALUE OF AN IDENTIFIER IS ITS VALUE (COR).
(2) THE VALUE OF A NUMBER OR STRING IS THE NUMBER OR STRING ITSELF.
(3) THE VALUE OF A LIST IS OBTAINED BY APPLYING THE FIRST ITEM OF THE
LIST, AS A FUNCTION, TO THE REST OF THE ITEMS, AS ARGUMENTS.

(SETQQ EVAL (LAMBDA (X) (COND
((NULL X) NIL)
((ATOM X) (COND
((NUMBERP X) X)
((STRINGP X) X)
((DEFINEDP X) (COR X))
(T (ERROR 23 UNBOUND VARIABLE})))
((NULL (CAR X)) NIL)
((ATOM (CAR X)) (COND
((OR (NUMBERP (CAR X))} (STRINGP (CAR X)}) (ERROR 24 BAD
(ERROR 24 INVALID FUNCTION))
((DEFINEDP (CAR X)) (EVAL (CONS (CDAR X) (CDR X))))
(T (ERROR 25 UNDEFINED FUNCTION))))
((OR (EQ (CAAR X) 'LAMBDA)
(EQ (CAAR X) 'C-R)
(AND (EQ (CAAR X) 'SUBR) (ZEROP (LSH (CDAR X) -14))))
(APPLY (CAR X) (MAPCAR ’EVAL (COR X))))
((OR (EQ (CAAR X) ’NLAMBDA)
(AND (EQ (CAAR X) ’SUBR) (EQUAL 1 (LSH (CDAR X} -14))))
(APPLY (CAR X) (COR X)))
((OR (EQ (CAAR X) 'MLAMBDA)
(AND (EQ (CAAR X) 'SUBR) (EQUAL 2 (LSH (CDAR X} -14))))
(EVAL (APPLY (CAR X) (CDR X))))
((EQ (CAAR X} 'LABEL (PROG (Q)
(COND ((OR (NULL (CDAR X)) (NULL (CDDAR X) (NOT (NULL
(CDODAR X)13)) (ERROR 27 BAD LABEL EXPRESSION))
((NOT (ATOMP (CADAR X))} (ERROR 26 BAD 1ST ARG FOR LABEL)))
(BIND (LIST (CADAR X)) (LIST (CADDAR X)))
(SETQ Q (EVAL (CONS (CADDAR X) (CDR X))))
(UNBIND 1)

L

(RETURN Q) 1)
(T (EVAL (CONS (EVAL (CAR X}) (COR XJ))) 1))

WHERE "BIND" IS A FUNCTION SIMILAR TO THE ONE USED IN CHAPTER 3 AND "UNBIND"
RESTORES THE VALUES OF AS MANY VARIABLES AS SPECIFIED (I.E. BIND SAVES THE
OLD VALUES OF VARIABLES ON A PUSH-DOWN LIST BEFORE GIVING THEM NEW VALUES;
UNBIND IS USED TO RESTORE THESE OLD VALUES.) THIS DEFINITION SHOULD NOT BE
TAKEN TOO LITERALLY; THERE IS ACTUALLY SOME EXTRA PROCESSING AND ERROR-
DETECTION INVOLVED. THE ABOVE, HOWEVER, IS A REASONABLY ACCURATE DESCRIPTION.

SRR AARAKKHAAAAKAKAAAAK
sl FUNCTION APPLICATION sorororx
Aok AR A AAIORHORAK R AR IR AAAOIAK A A AORAK

APPLY (LAMBDA (FN ARGS) ---

APPLY APPLIES A FUNCTION TO A SET OF ARGUMENTS. IT BINDS EACH S-EXPRESSION
IN "ARGS" TO THE PROPER PARAMETER OF THE FUNCTION "FN", THEN EVALUATES

THE FUNCTION AND RETURNS 1TS VALUE. NOTE THAT APPLY NEVER EVALUATES ANY
ARGUMENTS; IT ASSUMES THAT THEY ARE PROPERLY EVALUATED ALREADY FOR THE
GIVEN FUNCTION. (THIS PROCESS 1S NORMALLY DONE THROUGH EVAL (Q.V.))

(SETQQ APPLY (LAMBDA (FN ARGS) (COND
((NULL FN) NIL)
((ATOM FN) (APPLY (EVAL FN) ARGS))
({MEMBER (CAR FN) ’ (LAMBDA NLAMBDA MLAMBDA))
(PROG (Q)
(BIND (CDAR FN) ARGS)
(SETQ Q (LAST (MAPCAR "EVAL (CDOR FN))))
(UNBIND ((LABEL LENGTH (LAMBDA (X) (COND
((ATOM X) @)
(T (ADD1 (LENGTH (CDR X))J))))) (CDAR FN)))
(RETURN 0)))
((EQ (CAR FN) ’SUBR)
(SPREAD (BOOLE 1 /3FFF (CDR FN)) ARGS)
(PUSHJ (ADDL FN)))
((EQ (CAR FN) 'C-R) (COND
((OR (NULL ARGS) (NOT (NULL (COR ARGS))))
(ERROR 35 WRONG NUMBER OF ARGS FOR C-R FUNCTION))
(T (C-R-APPLY (CADR FN) (CAR ARGS))))
(T (APPLY (EVAL FN) ARGS)))))

WHERE "SPREAD" PERFORMS FOR SUBRS WHAT "BIND" DOES FOR EXPRS; "PUSHJ" HAS
THE EFFECT OF CALLING A COMPILED FUNCTION; AND "C-R-APPLY" HANDLES APPLYING A
COMPOSITE CAR/CDR FUNCTION TO AN ARGUMENT. THE FUNCTION "LENGTH" WAS DEFINED
WITH A LABEL EXPRESSION BECAUSE THE DEFINITION USED HERE 1S NON-STANDARD.
LIKE THE DESCRIPTION OF "EVAL", ABOVE, THIS DESCRIPTION SHOULD NOT BE TAKEN
TOO LITERALLY, SINCE SOME PROCESSING IS NOT SHOWN BY THE ABOVE DEFINITION.

FACA KKK AORAAAK KA A KK AAAKAK
soiokkk ARGUMENT QUOTING sekksok
SRR R AR AR AN K FAK KKK

QUOTE (NLAMBDA () X)

QUOTE TAKES A SINGLE ARGUMENT AND RETURNS IT UNEVALUATED. THIS IS THE

USUAL WAY TO PASS AN ARGUMENT UNEVALUATED TO A FUNCTION WHICH NORMALLY
EVALUATES ITS ARGUMENTS; THUS (CAR (QUOTE (A.B)))=A AND NOT THE VALUE OF A.
NOTE THAT THE EXPRESSION "X IS THE SAME AS {(QUOTE X} FOR ANY S-EXPRESSION
X; ONE COULD WRITE (CAR ' ({A.B)) FOR THE ABOVE. NOTE THAT THERE IS NOD
FUNCTION NAMED "FUNCTION" IN 1139 LISP; "QUOTE" 1S USED FOR ITS PURPOSE.

FORIK KRR K KA AR AR KA AR F AR I KA AR KA K
soioriok CHAPTER 5 sekork CONDITIONAL EXPRESSIONS sokokskok
HORIOR AR IR AOKK KA AOK K IO AKA R AAOKAOKAOK KKK KA A KK

COND (NLAMBOA X ——-

A CONDITIONAL EXPRESSION CONSISTS OF AN INVOCATION OF THE FUNCTION "COND™
IN THE FOLLOWING MANNER:

(COND (E1-1 E1-2 E1-3 --- EI-N1J
(E2-1 E2-2 E2-3 --- EZ-N2)
(E3-1 E3-2 E3-3 --- E3-N3)
(EM-1 EM-2 EM-3 --- EM-NM})

WHERE THE EI-J'S ARE ANY S-EXPRESSIONS; EACH NI MAY BE ANY POSITIVE NUMBER.

THE EI-J'S ARE CONSIDERED TO BE PREDICATES, I1.E. TO EVALUATE TO A TRUTH
VALUE. THE EI-1’S ARE EVALUATED IN ORDER: El1-1, E2-1, E3-1, ETC., UNTIL THE
FIRST EK-1 IS FOUND WHOSE VALUE IS NOT "NIL". THEN THE CORRESPONDING EK-2, EK-3,
EK-4, --- EK-NK ARE EVALUATED RESPECTIVELY AND THE VALUE OF EK-NK IS THE
VALUE OF THE COND EXPRESSION. IT IS POSSIBLE FOR NK=1, IN WHICH CASE THE VALUE
OF EK-1 IS THE VALUE OF THE COND EXPRESSION. IF ALL EI-1'S EVALUATE TO "NIL",
THEN "NIL" IS THE VALUE OF THE COND EXPRESSION.

EXAMPLES:
(SETQQ NOT (LAMBDA () (COND (X NIL) (T))))
(SETQQ AND (LAMBDA (X Y} (COND (X (COND (Y T}))}))
(SETQQ OR (LAMBDA (X Y) (COND (X T) (Y T))))
(SETAQQ IMPLIES (LAMBDA (X Y) (COND (X (COND (Y T))) (T)})))
(SETQQ EXCLUSIVE-OR (LAMBDA (COND (X (NOT Y)) (Y 1))

SRR AR KA AAKIAAOKK AR A K
soioiok CHAPTER 6 sk PREDICATES sk
ORI ARKAAAAAAAAAIOKK IR KA HAAK KA

A PREDICATE IS A FUNCTION WHICH RETURNS A TRUTH VALUE. UNLESS OTHERWISE
NOTED, ALL PREDICATES RETURN T TO REPRESENT TRUE. ALL PREDICATES RETURN NIL TO
REPRESENT FALSE. SOME PREDICATES CAN CAUSE ERRORS OR UNPREDICTABLE RESULTS '
IF APPLIED TO ARGUMENTS OF THE WRONG TYPE.

AR ROR AR AR AR AR AR KAAKRAIAOR KA K
sk BASIC PREDICATES okt
HORKIK KA FAKARAK KA A AR KKK AR K

ATOM (LAMBDA (X} ---
THE VALUE OF ATOM IS T IF X IS AN IDENTIFIER, A NUMBER, OR A STRING.

ATOMP (LAMBDA (X) ---

THE VALUE OF ATOMP IS T IF X IS A NON-NIL IDENTIFIER. (THIS FUNCTION IS
NON-STANDARD AND WILL NOT BE PRESENT IN OTHER LISPS.)

DEFINEDP (LAMBDA (X) ---

THE VALUE OF DEFINEDP IS T IF X IS NOT AN IDENTIFIER OR IF IT IS AN
IDENTIFIER WITH A DEFINED VALUE. DEFINEDP RETURNS NIL IF X IS AN
IDENTIFIER WITH NO DEFINED VALUE.

EQ (LAMBDA (X Y) —--

THE VALUE OF EQ IS T IF X AND Y ARE THE SAME THING INTERNALLY, I.E. HAVE
THE SAME INTERNAL ADDRESS. IDENTIFIERS ON THE OBLIST HAVE UNIQUE ADDRESSES
AND THUS EO WILL RETURN T IF X AND Y ARE THE SAME IDENTIFIER. IN GENERAL,
HOWEVER, EQ WILL NOT COMPARE NUMBERS OR STRINGS FOR EQUALITY.

EQUAL (LAMBDA (X Y) ---

THE VALUE OF EQUAL IS T IF X AND Y ARE EQUIVALENT S-EXPRESSIONS. EQUAL
WILL COMPARE NUMBERS AND STRINGS FOR EQUALITY. EQUAL STRINGS MUST HAVE THE
SAME CHARACTERS IN EACH EXACTLY; ,ABC , IS NOT EQUAL TO ,ABC,.

(SETQQ EQUAL (LAMBDA (X Y) (COND
(EQX YY) D
((ATOM X) (COND
(INOT (ATOM Y)) NIL) |
((AND (NUMBERP X) (NUMBERP Y)) (ZEROP (ZIFF X Y1)
((AND (STRINGP X) (STRINGP Y))
((LABEL EGSTR (LAMBDA (M N) (COND
((NULL ™M) (NULL N))
({NULL N) NIL)
- ((EQ (CAR M) (CAR N}) (EQSTR (COR M) (CDR N}1)))}))
(CAR XJ (CAR Y)))))

((ATOM Y) NIL)
((EQUAL (CAR X) (CAR Y)) (EQUAL (COR X) (COR Y})) 1})

NULL (LAMBDA (X) (COND (X NIL)} (T)))
THE VALUE OF NULL IS T IF X IS NIL; OTHERWISE ITS VALUE IS NIL.

MEMBER (LAMBDA (X Y} ---

IF X IS NOT EQUAL TO ANY TOP LEVEL ELEMENT OF Y, MEMBER RETURNS NIL.
OTHERWISE IT RETURNS THE PART OF THE LIST BEGINNING WITH THE EQUAL ITEM.

(SETQQ MEMBER (LAMBDA (X Y} (COND
C(NULL Y} NIL)
((EQUAL X (CAR Y}} Y}
(T (MEMBER X (COR Y}}})1}

AR A AR KRR KA AAK KK KKK A A AARROK
soiokkk PREDICATES ON NUMBERS sesosorok
KA AR AR KA KA KA A KK AR K

NUMBERP (LAMBDA (N) ---
THE VALUE OF NUMBERP IS T IF N IS A NUMBER; OTHERWISE NIL.

ZEROP (LAMBDA (N} —--
THE VALUE OF ZEROP 1S T IF N=8; ELSE NIL. ERROR IF N IS NOT A NUMBER.

MINUSP (LAMBDA (N) ---
THE VALUE OF MINUSP IS T IF N<@; ELSE NIL. ERROR IF N IS NOT A NUMBER.

LESSP (LAMBDA (M.N) ---

(LESSP X) =T
(LESSP X Y) = T IF X<Y; ELSE NIL. :
(LESSP X1 X2 X3 X4 --- XN-1 XN) = T IF (LESSP X1 X2)

AND (LESSP X2 X3)

AND (LESSP X3 X4)

AND (LESSP XN-1 XN); ELSE NIL.
ERROR IF ANY ARGUMENT LOOKED AT IS NOT A NUMBER; NOTE THAT ONCE
ANY CONDITION IS UNSATISFIED AND NIL IS RETURNED NO MORE ARGUMENTS ARE
EXAMINED. THUS (LESSP 5 3 ,Q,) IS NOT AN ERROR (IT RETURNS NIL)
BECAUSE LESSP DOES NOT HAVE TO LOOK AT THE ,Q, TO KNOW THAT NIL SHOULD
BE RETURNED. HOWEVER, (LESSP 3 &5 ,Q,) WILL CAUSE AN ERROR.

MK AR KA KKK KA K K ARk koK
ook BOOLEAN PREDICATES sekskokok
ORI AR AR KKK KKK KAk Rk KKK

NOT

AND

OR

(LAMBDA (X) (COND (X NIL) (T)))

NOTE THAT "NOT" IS EQUIVALENT AS A FUNCTION TO “"NULL".

(LAMBDA X ---
THE VALUE OF AND IS T IF ALL ARGUMENTS EVALUATE TO NON-NIL VALUES.

(SETQQ AND (NLAMBDA X (COND
({NULL X) T)
({NULL (EVAL (CAR X}}} NIL)
(T (APPLY ’AND (CDR X)) 31}

NOTE THAT IF ANY ARGUMENT IS NIL THE SUCCEEDING ARGUMENTS ARE NOT
EVALUATED. THUS (AND NIL (MINUSP NIL}) WOULD NOT CAUSE AN ERROR
FROM MINUSP. NOTE ALSO THAT (AND)=T.

(LAMBDA X ~--
THE VALUE OF OR IS T IF ANY ARGUMENT EVALUATES TO A NON-NIL VALUE.

(SETQG OR (NLAMBDA X (COND
((NULL X) NIL)
({(EVAL (CAR X))} T)
(T (APPLY 'OR (COR X))} 1))

NOTE THAT IF ANY ARGUMENT IS NON-NIL THE SUCCEEDING ARGUMENTS ARE NOT
EVALUATED. THUS (OR T (MINUSP NIL)) WOULD NOT CAUSE AN ERROR FROM
MINUSP. NOTE ALSO THAT (OR)=NIL.

SRR KK KK A KARAAKARK KKK AAAAKAK KA KKK
sk PREDICATES ON STRINGS sk
AR AOK KKK AK KK KKK AR KK KKKAOKKKAKK

STRINGP (LAMBDA (X) ---

THE VALUE OF STRINGP IS T IF X IS A STRING; ELSE NIL.

SORARACAKKK A K AR AAAAAAKAKAAHHOK
skokkk [NPUT/0UTPUT PREDICATES sekokskok
AAKK KR A KKK KK AKAARKAKAAAKKK AR KKK KK

INDEVP (LAMBDA (N} ---

THE VALUE OF INDEVP IS T IF AN INPUT DEVICE IS AVAILABLE WHOSE NUMBER IS N.
AVAILABILITY IMPLIES ONLY THAT A DEVICE HANDLER FOR THAT DEVICE IS A PART
OF THE LISP SYSTEM; THE DEVICE MAY ACTUALLY NOT BE PHYSICALLY PRESENT.
ERROR IF N IS NOT A NUMBER.

DEVICE NUMBERS ARE EQUIVALENT TO 113@ FORTRAN DEVICE NUMBERS, AS FOLLOWS:
1 UNASSIGNED
2 1442 CARD READ/PUNCH
3 UNASSIGNED
4 1134 PAPER TAPE READER

UNASSIGNED
KEYBOARD
UNASSIGNED

2581 CARD READER

oo~ YW

OUTDEVP (LAMBDA (N} ---

THE VALUE OF OUTDEVP IS T IF AN OUTPUT DEVICE IS AVAILABLE WHOSE NUMBER 1S
N. AVAILABILITY IMPLIES ONLY THAT A DEVICE HANDLER FOR THAT DEVICE IS A
PART OF THE LISP SYSTEM; THE DEVICE MAY ACTUALLY NOT BE PHYSICALLY PRESENT.
ERROR IF N IS NOT A NUMBER.

DEVICE NUMBERS ARE EQUIVALENT TO 1138 FORTRAN DEVICE NUMBERS, AS FOLLOWS:
1 TYPEWRITER (CONSOLE PRINTER)

2 1442 CARD READ-PUNCH OR 1442 CARD PUNCH
3 1132 PRINTER

4 1855 PAPER TAPE PUNCH

5 1483 PRINTER

b UNASSIGNED

7 1627 PLOTTER

T

NOTE THAT NO OUTPUT DEVICE NUMBER 9 IS ASSIGNED; USE DEVICE NUMBER 2.

SWITCH (LAMBDA (N} ---

SWITCH REDUCES N MODULUS 16, THEN TESTS THE CONSOLE SWITCH OF THAT NUMBER.
IT RETURNS T IF THE SWITCH IS ON, NIL IF OFF. AN ERROR OCCURS IF N
IS NOT A NUMBER.

EXAMPLES: (ASSUME PRIME-NUMBERED SWITCHES ARE ON: 2, 3, 5, 7, 11, 13)
(SWITCH 8) = NIL
(SWITCH 5) =T
(SWITCH -12) = (SWITCH 4) = NIL
(SWITCH 93) = (SWITCH 3) = T

SR SRR KK KRR KA KRR A AKAARK A AORAFOK AR KK AAAKK
soicioick CHAPTER 7 swokkeiok FUNCTIONS ON S-EXPRESSIONS siokstork
SORAKAHA KKK KA RAORK KA KA KA AAKKAAAKAAKAARRAAOK

THIS CHAPTER DESCRIBES FUNCTIONS WHICH MANIPULATE S-EXPRESSIONS IN
VARIOUS WAYS. NOTE THAT IN GENERAL FUNCTIONS WHICH EXPECT LISTS AS ARGUMENTS
WILL MALFUNCTION IF GIVEN DOTTED LISTS, I.E. LISTS NOT ENDING WITH "NIL".
THUS (A B C D) IS A VALID ARGUMENT FOR THE FUNCTION "APPEND", BUT (A B.C} ISN’T.

FAAHAKIAAKAAARKAAARRAAKKAAAAKAKIAARAKAKAAAK KK
sk S-EXPRESSTION BUILDING FUNCTIONS sokookok
HORAHAIAAAAAAAAARKKAARAAAKAAKANAARAA AR KKK

CONS (LAMBDA (X Y) ---
THE VALUE OF CONS IS THE DOTTED PAIR OF THE S-EXPRESSIONS X AND Y.

EXAMPLES: (CONS "A ’B) = (A . B)
(CONS " (A . B} "(C . D)) ({A.B). (C.DN

((Ah.BYC.D

LIST (LAMBDA X X)
LIST RETURNS A LIST OF ITS EVALUATED ARGUMENTS.

EXAMPLES: (LIST A 'B 'C) = (A B Q)
(LIST "A) = (A)
(LIST) = NIL

APPEND (LAMBDA X ---
APPEND TAKES ANY NUMBER OF LISTS AND STRINGS THEM INTO ONE LONG LIST.

(SETQQ APPEND (LAMBDA X (COND
((NULL X) NIL)
((NULL (CDR X)) (CAR X))
(T (APPLY *APPEND (CONS
((LABEL APPEND1 (LAMBDA (M N) (COND
((NULL M) N)
(T (CONS (CAR M) (APPEND1 (CDR M) N)}))))} (CAR X) (CADR X))
(CODR X31))) 1))

EXAMPLES: (APPEND '(ABC) '"(DE) "(FGHI)) =(ABCDEFGHI)
(APPEND *(A B C}) = (ABC)
(APPEND) = NIL

HAKAHAKAAARKAAKIARAKARAKAKAKKAAKAAAKAAKAAAKAAAKKAK
sorkokx S-EXPRESSION FRAGMENTING FUNCTIONS sk
HOHAKAKAAAAIRAARAKAKAAAKAKAAKKKAAAAKAKNARKAAAAAKK

CAR (LAMBDA (X) ---

CAR OF A NON-ATOMIC S-EXPRESSION IS THE FIRST ELEMENT OF THAT DOTTED PAIR.
CAR OF AN IDENTIFIER OR STRING IS ITS PRINT NAME, A LIST OF POINTERS TO A
CHARACTER TABLE INTERNAL TO THE LISP SYSTEM. (NOTE: THE CAR OF AN
IDENTIFIER OR STRING IS NOT ITSELF A STRING.) THE CAR OF A NUMBER IS
UNPREDICTABLE AND THEREFORE UNDEFINED.

COR (LAMBDA (X} —--

COR OF A NON-ATOMIC S-EXPRESSION IS THE SECOND (AND LAST) ELEMENT OF THAT
DOTTED PAIR. THE COR OF AN IDENTIFIER IS ITS VALUE IF IT HAS ONE;
OTHERWISE IT IS UNDEFINED. THE COR OF A STRING IS DEFINABLE BUT
MEANINGLESS. THE CDR OF A NUMBER YIELDS A POINTER TO THE ADDRESS GIVEN

BY THE NUMBER; THIS IS USEFUL, BUT DO NOT DO IT UNLESS YOU KNOW EXACTLY
WHAT YOU’RE TRYING TO ACCOMPLISH.

EXAMPLES: (CAR (A . B)) = A (COR "(A . B)) =8B
(CAR "(ABCD)) =A (COR"(ABCDN) =(BCD
CAAR, CADR, CDAR, CDDR, CAAAR, CAADR, --- , CADDAADDDAR, --- (LAMBDA (X) ~--

NONE OF THE COMPGSITE CAR/CDR FUNCTIONS ARE PREDEFINED IN 1130 LISP.
HOWEVER, THERE ARE SPECIAL PROVISIONS IN THE EVAL, APPLY, AND INTERN
FUNCTIONS (Q.V.) WHICH AUTOMATICALLY RECOGNIZE SUCH FUNCTIONS WHEN ASKED
FOR AND EVALUATE THEM PROPERLY. (NOTE THAT AT SOME POINT THE ATOM WHICH IS
THE NAME OF THE FUNCTION MUST HAVE BEEN GIVEN TO INTERN TO PUT ON THE
OBLIST.) THUS, ANY COMPOSITE CAR/CDR FUNCTION (WITHIN REASON) MAY BE USED.

EXAMPLES: (CADR X) = (CAR (CDR X))
(CADDADR X) = (CAR (COR (COR (CAR (COR X})1))
(CAADADAR X) = (CAR (CAR (CDR (CAR (CDR (CAR X))))

LAST (LAMBDA (X) ---
LAST RETURNS THE LAST PART OF A LIST AS FOLLOWS:

(SETQQ LAST (LAMBDA (X) (COND
((NULL X) NIL)
((NULL (COR X)) X)
(T (LAST (COR X))})1))

EXAMPLES: (LAST "(ABCDE)) = (E)
(LAST ’ (LAMBDA (X} (COND(X NIL)(T)) }) = ((COND(X NIL) (T)))

AR AR KKK KA KEAAKIKAAKAIKIRKAAKAK
ook S~-EXPRESSION MODIFYING FUNCTIONS sokaokk
SRR KKK KA KKK KK KKK AR KKK KKK KAAKKIKKA KK KK

THESE FUNCTIONS, UNLIKE MOST OTHERS, MODIFY EXISTING LIST STRUCTURES RATHER
THAN CONSTRUCTING NEW ONES, THERE FUNCTIONS SHOULD BE USED WITH CARE SINCE IT
IS VERY EASY TO CREATE LIST STRUCTURES WHICH WILL CONFUSE, HANG UP, OR DESTROY
THE LISP INTERPRETER.

RPLACA (LAMBDA (X Y} ~--

REPLACES THE CAR OF X WITH Y. THE VALUE IS THE MODIFIED S-EXPRESSION X.
NOTE THAT THE RESULT IS EQ TO THE ORIGINAL X.

EXAMPLE: (RPLACA "(ABC) "(CD)) ={ICDYBODY

RPLACD (LAMBDA (X Y) ——-

REPLACES THE CDR OF X WITH Y. THE VALUE IS THE MODIFIED S-EXPRESSION X.
NOTE THAT THE RESULT IS EQ TO THE ORIGINAL X.

EXAMPLE: (RPLACD "(ABC) "(CDN =(ACD
IF THE IDENTIFIER X HAS (A B C} AS ITS VALUE, THEN
(RPLACD (LAST X) X} = (CABCABCABCABCABC ---
THIS IS CALLED A CIRCULAR LIST; IT LOOKS INFINITE TO THE PRINT ROUTINE AS
WELL AS MOST OTHER FUNCTIONS. SUCH CONSTRUCTS ARE TO BE AVOIDED.

RN KACAK AR KA AR KA IR A AR IKAK A A AR KKK KA KKK
Aok S-EXPRESSTON TRANSFORMING FUNCTIONS seokskorx
SRR SRR R HOK AR AR AR AR KA KA AR A AN AAA KK
LENGTH (LAMBDA (X) ---

RETURNS THE NUMBER OF ELEMENTS IN THE LIST X.

(SETQQ LENGTH (LAMBDA (X) (COND

((NULL X) @)
(T (ADD1 (LENGTH (COR X)))) }))
EXAMPLES: (LENGTH "(ABCDE)) =5

(LENGTH NIL) = 0 :
(LENGTH ’ ((A B) (C D E) "QUUX (VIOLINIST SPEED FREAK))) = 4

REVERSE (LAMBDA (X) ---
RETURNS THE REVERSE OF THE LIST X.

(SETOQ REVERSE (LAMBDA (X) ((LABEL REVERSE1 (LAMBDA (M N) (COND
((NULL ™M) N)

(T (REVERSE1 (CDR M) (COND (CAR M) N))) }}) X NIL)))
EXAMPLES: (REVERSE "(ABCDE)) = (EDCBA)
(REVERSE * ((QUUX) (VIOLIN . BERF) ((((BIG . AL))})})))
= (((((BIG . AL)))) (VIOLIN . BERF) (QUUX))

(REVERSE NIL) = NIL

suBsT (LAMBDA (X Y Z) ---
H SUBST SUBSTITUTES X FOR ALL EQUAL OCCURRENCES OF Y IN THE S-EXPRESSION Z.
(SETQQ SUBST (LAMBDA (X Y Z) (COND

((EQUAL ¥ 2) X)
((ATOM 2) 2)

(T (CONS (SUBST X Y (CAR Z)) (SUBST X Y (COR Z113) 1))
(SUBST NIL NIL Z) IS USEFUL FOR CREATING AN INTERNAL COPY OF Z.

EXAMPLES: (SUBST S "FIVE " ({(FIVE + FIVE = 18) (FIVE + TWO = 7}})
= ((5+5=108) 5+ THO = 7))
(SUBST * (BIG . AL) ’(QUUX) ' (QUUX BERF ((QUUX)) (QUUX) (A)))
= (QUUX BERF ((BIG . AL)) (BIG . AL) (A})

SUBLIS (LAMBDA (X Y} ---
THE ARGUMENT X OF SUBLIS SHOULO BE A LIST OF PAIRS OF THIS FORM:
((A1.X1) (AZ.X2) (A3.X3} --- (AN.XN))

WHERE ALL OF THE AI ARE IDENTIFIERS. THE VALUE OF SUBLIS IS THE RESULTY OF
SUBSTITUTING EACH X FOR THE CORRESPONDING A IN THE S-EXPRESSION Y.

A CLEVER METHOD IS USED WHEREBY AS MUCH OF THE ORGINAL STRUCTURE OF Y IS
SHARED WITH THE RESULT AS POSSIBLE.

(SETQQ SUBLIS (LAMBDA (X Y) ((LABEL SUBA (LAMBDA (Y) (COND
((ATOM Y) ((LABEL SUBB (LAMBDA (Q) (COND
CINULL @) V)
((EQ (CAAR Q) Y) (CDAR Q))
' (T (SuBB (COR @) 1)} X))
(T ((LAMBDA U V) (COND
((AND (EQUAL (CAR Y) U) (EQUAL (CDR Y) V)) Y)
(T (CONS U V)))) (SUBA (CAR Y)) (SUBA (CDR Y)))1)))
Y)))

EXAMPLES: {SUBLIS * ((A.GUY) (B.STEELE) (C THE GREAT QUUX)) '(A B IS C))
= (GUY STEELE IS (THE GREAT QUUX))
(SUBLIS ’ ((X . ANTE) (Y . CONS})
" (LAMBDA (X Y) (COND (X (COND (Y T))) (T))))
= (LAMBDA (ANTE CONS) (COND
(ANTE (COND (CONS T)))
(11)

REMOVE (LAMBBA (X Y N) -~

REMOVE RETURNS THE RESULT OF REMOVING THE FIRST N EQUAL OCCURRENCES

OF X FROM THE LIST Y. IF N<1 NO REMOVALS ARE MADE. IF X OCCURS FEWER THAN
N TIMES IN Y, ALL OCCURRENCES ARE REMOVED; THUS, TO REMOVE ALL
OCCURRENCES, USE SOMETHING LIKE (REMOVE X Y 32767).

(SETQQ REMOVE (LAMBDA (X Y N) (COND
({LESSP N 1} V)
({NULL Y) NIL)
((EQUAL X (CAR Y)) (REMOVE X (COR Y) (SUB1L N)))
(T (REMOVE X (COR Y) N}}) 1))

EXAMPLE: (REMOVE ’ (QUUX) * ((QUUX) (BERF)QUUX ((QUUX)) (QUUX) A (QUUX)) 2)
={((BERF)} QUUX ((QUUX)) A (QUUX))

KA A IKAAAKAAAKKAKAAAAKAKAAAKAKAAKIKKAAKHK KKK
skkork S-EXPRESSION MAPPING FUNCTIONS sexskokx
KKK KA AKAAKKAKAHKAAAAAKAAAHRAKKHIKAKKKK

MAP

MAPC

MAPLIST (LAMBDA (FN . X} ---

(LAMBDA (FN . X} ---

MAP TAKES AS ARGUMENTS A FUNCTION AND ONE OR MORE LISTS OF ARGUMENTS.

IF THERE ARE NO ARGUMENT LISTS, MAP DOES NOTHING AND RETURNS NIL. OTHERWISE
IT APPLIES FN TO THE LISTS AS ARGUMENTS, THEN TAKES THE COR OF EACH LIST
AND APPLIES FN TO THE RESULTING LISTS, AND SO ON, UNTIL ONE OF THE LISTS IS
REDUCED TO NIL. MAP THEN RETURNS NIL.

(SETQQ MAP (LAMBDA (FN . X} (COND
({NULL X) NIL)
({(NOT (MEMBER NIL X))
{APPLY FN X)
(APPLY "MAP (CONS FN ({LABEL CDRS (LAMBDA (Q) (COND
({NULL Q) NIL)
(T (CONS (CDAR Q) (CORS (COR @13} 1)) X3))) 1))

EXAMPLES: (MAP * (LAMBDA (X) (PRINT 1 X)) "(A B C D))

PRINT: (ABCD
PRINT: (BCD)
PRINT: CD
PRINT: (D)
RESULT: NIL

(MAP * (LAMBDA(X Y) (PRIN1 X Y)(PRINT 1)) "(ABC D) (XY Z))
PRINT: (ABCDI(XY Z)

PRINT: B8 C Dy 2)
PRINT: (C D) (2)
RESULT: NIL

(LAMBDA (FN . X) ---

MAPC IS SIMILAR TO MAP, EXCEPT THAT MAPC TAKES THE CAR OF EACH LIST BEFORE
APPLYING FN.

(SETQQ MAPC (LAMBDA (FN . X) (COND
(INULL X) NIL)
(INOT (MEMBER NIL X))
(APPLY FN ((LABEL CARS (LAMBDA (Q) (COND
((NULL Q) NIL)
(T (CONS (CAAR Q) (CARS (CDR Q))J) })) X))
(APPLY "MAPC (CONS FN ((LABEL CDRS (LAMBOA (Q) (COND
((NULL @) NID)
(T (CONS (CDAR Q) (CDRS (COR G1))) 1)) X))) 1))

EXAMPLES: (MAPC * (LAMBDA (X) (PRINT 1 X)) (A B C D))

PRINT: A
PRINT: B
PRINT: C
PRINT: D
RESULT: NIL

(MAPC "SET ' (A B C D) ' (QUUX BERF VIOLINIST FOOBAZ NURDLE))
RESULT 1S NIL. AFTER EVALUATION, THE IDENTIFIERS A, B, C, AND D
RESPECTIVELY WILL HAVE AS VALUES QUUX, BERF, VIOLINIST, AND FOOBAZ.
NOTE THAT SINCE THE LIST (A B C D) IS THE SHORTER, THE LAST ITEM
OF THE OTHER LIST ("NURDLE") IS IGNORED.

MAPLIST 1S SIMILAR TO MAP, EXCEPT THAT MAPLIST ACCUMULATES THE RESULTS

OF THE APPLICATIONS OF FN AND RETURNS A LIST OF THEM AS ITS RESULT.

(SETQQ MAPLIST (LAMBDA (FN . X} (COND
CENULL X3 NIL)
((NOT (MEMBER NIL X3} (CONS

(APPLY FN X}
(APPLY "MAPLIST (CONS FN ((LABEL CDRS (LAMBDA (0} (COND

((NULL @) NIL)
(T (CONS (CDAR Q) (CORS (COR Q))1) 333 X3)) 3) 1))

EXAMPLES: (MAPLIST '"REVERSE "(ABCD})) = ((DCBA) (DCB) (DC) (D))

(MAPLIST "CONS "(ABCDE) "(XYZ))
= (((ABCDE)YXYZ) (BCDE)YZ (HLCDE) ZN)

MAPCAR (LAMBDA (FN . X} ~--

MAPCAR IS SIMILAR TO MAPC, EXCEPT THAT MAPCAR ACCUMULATES THE RESULTS
OF THE APPLICATIONS OF FN AND RETURNS A LIST OF THEM AS ITS RESULT.

(SETQQ MAPCAR (LAMBDA (FN . X) (COND
((NULL X) NIL)
((NOT (MEMBER NIL X}) (CONS
(APPLY FN ((LABEL CARS (LAMBDA (Q) (COND
((NULL Q) NILD)
(T (CONS (CAAR Q) (CARS (COR Q)))) 1)) X))

(APPLY 'MAPCAR (CONS FN ((LABEL CDRS (LAMBDA (Q) (COND

CINULL @) NIL)
(T (CONS (CDAR Q) (CDRS (CDR Q}}}) 1)) X)))))))

EXAMPLES: (MAPCAR 'EQ "(ABCDE) "(XBZD)) = (NILTNILT
(MAPCAR "SUBST "(ABC) (XY Z) "((XISY) (YIS Z) (XIS Z)))

= ((AISY) (BISZ) (XISC)
(MAPCAR "ATOM * (A (B} ((C)) D (E) F)) = (T NIL NIL T NIL T)

. AR KK KKK KKK K K KKK A AR AR AR AR KK AAAAK
: sk S~-EXPRESSION SEARCHING FUNCTIONS sk
SRR R KK KKK KK KKK KK AAK KKK KKK KAKAKHKAK

ASSOC (LAMBDA (X L) ---

ASSOC SEARCHES A LIST OF PAIRS L FOR A PAIR WHOSE CAR IS EQ TO X.
IF SUCH A PAIR IS FOUND, ASSOC RETURNS THAT PAIR; OTHERWISE 1T RETURNS NIL.

(SETQQ ASSOC (LAMBDA (X L) (COND
((NULL L) NIL)
({(EQ X (CAAR L)) (CAR L))
(T (ASSOC X (CDR L))))))

EXAMPLE: (ASSOC ’TWO * ((ONE.EINS) (TWO.ZWEI) (THREE.DREI)))} = (TWO . ZWEI)

SASSOC (LAMBDA (X L FN) ---

SASSOC DOES WHAT ASSOC DOES TO X AND L; BUT IF NO PAIR IS FOUND, INSTEAD
OF NIL SASSOC RETURNS THE VALUE OF FN, A FUNCTION OF NO ARGUMENTS.

(SETQQ SASSOC (LAMBDA (X L FN) (COND

CINULL LY (FNY)
{(EQ X (CAAR L)} (CAR L)}
(T (ASSOC X (COR L) FN)) 1))}

EXAMPLE: (SASSOC ’THREE ' ((ONE.EINS) (TWO.ZWEI)) * (LAMBDA NIL °LOSE})
= LOSE

ek oK AR KK KK KA FOR A IRAK AR KA RO AR KRR AR AR R AR ok ok ok
soioiok CHAPTER 8 sokotokoxk FUNCTIONS ON IDENTIFIERS sk
SRR IR K AOK KA R HOR AR AR R AR KK AAAA KO K

THESE FUNCTIONS PERFORM VARIOUS OPERATIONS INVOLVING IDENTIFIERS,
INCLUDING ALTERING THEIR VALUES, CREATING THEM, AND MAINTAINING THE OBLIST.

ORISR K IHKIK AR KAKHAAAKAAKAAAARAAARAAAARAAAKK
sk JDENTIFIER VALUE-ALTERING FUNCTIONS sk
SARAAKAOKAAKAHRAKAARARAARAAAARAARANRAA AR FARAK K

SET (LAMBDA (X Y) -—-

GIVES THE IDENTIFIER X THE VALUE Y. ERROR IF X IS NOT A NON-NIL
IDENTIFIER. THE VALUE OF SET IS THE VALUE Y.

(SETQQ SET (LAMBDA (X Y) (COND
((NOT (ATOMP X)) (ERROR 36 BAD FIRST ARG FOR SET/SETQ/SETQQG))
(T (RPLACD X Y) Y))))

SETQ (NLAMBDA (X Y) (SET X (EVAL Y1))
SETQ IS SIMILAR TO SET, BUT DOES NOT EVALUATE ITS FIRST ARGUMENT.

SETQG (NLAMBDA (X Y) (SETQ X Y))

SETOQ IS SIMILAR TO SET, BUT DOES NOT EVALUATE EITHER ARGUMENT.
ESPECIALLY USEFUL FOR DEFINING FUNCTIONS AND INITIALIZING VARIABLES.

SHRKAOKAKAKRKAAKAHKAOKIAKARAKAKAKAKAAKAAAKAK
ook OBLIST MANAGEMENT FUNCTIONS sokokokok
AORARARKARA KA AAAKAAKARAKAKAAAAAARAAAKAKAKK

INTERN (LAMBDA (X) ---

INTERN TAKES AS ITS ARGUMENT AN IDENTIFIER OR A STRING (ERROR IF NOT).

IF AN ATOM WITH THE SAME PRINT NAME IS ON THE OBLIST, THAT ATOM IS FOUND
AND RETURNED. IF NOT, SUCH AN ATOM IS CREATED AND PUT ON THE OBLIST IN
ALPHABETICAL ORDER AND RETURNED. THE CREATED ATOM WILL HAVE AN UNDEFINED
VALUE, UNLESS ITS PRINT NAME CONSISTS OF A "C" FOLLOWED BY ZERO OR MORE
"A"S AND "D"S FOLLOWED BY AN "R", IN WHICH CASE THE ATOM IS GIVEN A
SPECIAL FUNCTIONAL VALUE, CONSISTING OF THE DOTTED PAIR OF THE IDENTIFIER
C-R AND THE CREATED ATOM. THIS VALUE WILL CAUSE EVAL AND APPLY TO SEE
THIS AS A COMPOSITE CAR/CDR FUNCTION.

REMOB (NLAMBDA (X} ---

REMOB REMOVES THE GIVEN IDENTIFIER FROM THE OBLIST AND RETURNS NIL. IF THE
IDENTIFIER IS NOT ON THE OBLIST, NO ACTION IS TAKEN. NOTE THAT X
IS NOT EVALUATED.

SRR AR AR AR AR A AR FORAAAAAAK KK AR KAOIOK
soioiok JDENTIFIER CREATION FUNCTIONS seoroior
SRR AR AR KK KA KA A KAOKAA K IR ARK A KA A

GENSYM (LAMBDA X ——-

GENSYM TAKES ZERO OR ONE ARGUMENTS. GENSYM INCREMENTS THE "GENERATED SYMBOL
COUNTER™ AND CREATES A NEW IDENTIFIER AS SPECIFIED BY THIS COUNTER.

THIS IDENTIFIER 1S AUTOMATICALLY GIVEN TO INTERN (Q.V.) AND THEN RETURNED.
(NOTE THAT GENSYM'S IN MOST OTHER LISPS DO NOT INTERN THE CREATED ATOMS.)
IF AN ARGUMENT IS GIVEN, IT MUST BE A STRING, WHICH IS USED TO INITIALIZE
THE GENERATED SYMBOL COUNTER, AND THEN A NEW IDENTIFIER IS CREATED,
INTERNED, AND RETURNED. THE GENERATED SYMBOL COUNTER IS INITIALLY SET

TO ,Q0X383,; THUS, THE FIRST SYMBOLS GENERATED WILL BE QXeeg, Qxeel, ETC.

EXAMPLE: (GENSYM) = OX808
(GENSYM) = OXeel
(GENSYM) = QX882

(GENSYM ,BARFS36,) = BARF596

(GENSYM) = BARFS97

(GENSYM) = BARF598

(GENSYM ,VIOLINISTY,) = VIOLINISTS

(GENSYM) = VIOLINISTS

(GENSYM) = VIOLINIST1

(GENSYM ,PETERBAKERI99BIGAL9999998,) = PETERBAKER999BIGALI939938

{GENSYM) = PETERBAKERI39BICAL3333333
(GENSYM) = PETERBAKER3399BIGAL 0200800
(GENSYM) = PETERBAKERS33IBICALQ0B020601
(GENSYM) = PETERBAKERS33BIGALQB00862 ETC.

SRR ORI IR HAAAAAOKARAR AR RAAOK AR AAAAK
sotoiiok CHAPTER 9 seksorx FUNCTIONS ON NUMBERS sk
AR A ARACAK AR K KAAAAAAAAAKAAAARAR KKK AR ARKAK

THE FOLLOWING FUNCTIONS EXPECT NUMBERS AS ARGUMENTS. IF ANY ARGUMENT
IS NOT A NUMBER AN ERROR OCCURS. ALL ARGUMENTS ARE EVALUATED.
THE FUNCTIONS WHICH TAKE AN INDEFINITE NUMBER (ONE OR MORE)} OF ARGUMENTS
ALL WORK THE SAME WAY: THE OPERATION IS PERFORMED ON THE FIRST TWO, THEN ON THE
RESULT AND THE THIRO, THEN ON THE RESULT ANO THE FOURTH, ETC. THUS:
(DIFF A B C D E) = (DIFF (DIFF (DIFF (DIFF A B) C) D) E)
IF ONLY ONE ARGUMENT IS GIVEN, IT IS RETURNED: (DIFF 5} = 5. NOTE THAT THE

FUNCTION BOOLE TAKES TWO OR MORE ARGUMENTS, BUT OTHERWISE WORKS IN MUCH THE
SAME WAY.

HORACHAAAA A AAKHKAAAKAKAARAAARNK
soiok ARITHMETIC FUNCTIONS skskokokok
HORKAHAHAAKKIAKAKAHAK AR AR KKK K

PLUS (PLUS X1 X2 X3 --- XN} = X14X2+4X3+ --- +XN (ADDITION)

DIFF (OIFF X1 X2 X3 --- XN} = X1-X2-X3- --- -XN (SUBTRACTION)
NOTE THAT IN OTHER LISPS THIS FUNCTION IS NAMED "DIFFERENCE".

TIMES (TIMES X1 X2 X3 -—- XN} = X1kX2xX3% --- %XN (MULTIPLICATION)
QUOTIENT (QUOTIENT X1 X2 X3 --- XN} = X1/X2/X3/ --- /XN (DIVISION)
NOTE THAT SINCE 1138 LISP NUMBERS ARE INTEGERS ONLY, THE RESULT OF
A DIVISION OPERATION IS TRUNCATED TO THE INTEGER NEXT LOWEST IN ABSOLUTE
VALUE. THUS: 5/3=1 11/2=5 (-12)/5=-2
MINUS (MINUS X) = -X (NEGATION)
REMAINDER (REMAINDER X1 X2 X3 --- XN) = X1%X2%X3% --- %XN (REMAINDER)

WHERE A%B = A-(A/B)xB

MAX (MAX X1 X2 X3 --- XN} = LARGEST OF NUMBERS X1 X2 X3 --- XN (MAXIMUM)
MIN (MIN X1 X2 X3 --- XN} = SMALLEST OF NUMBERS X1 X2 X3 --- XN (MINIMUM)
GCD (GCD X1 X2 X3 --- XN) = GREATEST COMMON DENOMINATOR OF X1 X2 X3 --- XN
EXPT (EXPT X Y} = XaxY (EXPONENTIATION)

A COMPLEX ALGORITHM IS USED SO THAT EXPRESSIONS LIKE 4xx8, (-1)x%xN,

5

TN, AND Noox (-14) WILL EVALUATE TO EXPECTED VALUES.

ADOL (ADBL X} = X+1
SuB1 (SUB1 X} = X-1
ABS (ABS XJ = [X]

SRR AAA K KKK KKK A KKK KKK
soiokior LOGICAL FUNCTIONS sk
AORORAKA A KK ARKIOK KKK KAANHOKK K

BOOLE (BOOLE K X1 X2 X3 --- XN)

(ABSOLUTE VALUE)

= X17X27X3? --- ?XN

WHERE ? IS ONE OF SIXTEEN BOOLEAN FUNCTIONS WHICH IS APPLIED BIT BY BIT
TO TWO SIXTEEN-BIT LOGICAL NUMBERS. FOR EACH BIT IN A AND B, THE RESULTING

BIT IS DEFINED AS FOLLOWS:

K RESULT

A&B AND

(~A}&B

B

A& ("B)

A

~{A=B) EXCLUSIVE OR
AlB INCLUSIVE OR

NOOFWNEF®

K RESULT

8 (~A)&("B) ~(A|B)

3 A=B EQUIVALENCE
18 ™A

11 (*A)|B IMPLIES

12 "B

13 A(B)

14 ("AY | (7B) ~(A8B)

15 1

WHERE &, |, ~, AND = REPRESENT THE LOGICAL AND, LOGICAL OR, LOGICAL NOT,
AND LOGICAL EQUIVALENCE FUNCTIONS RESPECTIVELY. NOTE THAT IF K<8 OR K>15,

K IS REDUCED MODBULUS 16.

EXAMPLES: (BOOLE 1 /FF@@ /Foer)

= /Foeo

(BOOLE 7 /0123 /1234 /2345) = /3377
(BOOLE 18 /5678 8) = /A387

(BOOLE 18 /5678)

= /5678

(BOOLE 48 3 5) = (BOOLE @ 3 5) =8

LSH

(LSH X Y) = RESULT OF A LOGICAL SHIFT OF THE NUMBER X BY Y PLACES

LSH PERFORMS A LOGICAL SHIFT ON X OF Y BITS: TO THE LEFT IF Y IS POSITIVE,
TP THE RIGHT IF NEGATIVE. THE ABSOLUTE VALUE OF Y IS REDUCE MODULUS 64
BEFORE THE SHIFT IS PERFORMES. BITS SHIFTED OUT ARE LOST; ZERO BITS

ARE SHIFTED IN.
EXAMPLES: (LSH /1234 1) = /2468
(LSH /FACE 8) = /FACE
(LSH /FS47 -7) = /B1C2
(LSH X 16) =

SRR IRR KKK KRR AOKR KKK A A K
sk RANDOM NUMBER GENERATOR skksokk
KKK AR A AR AR AKAOK KKK KKK KK

(LSH X -16) =8

RANDOM (RANDOM N} = RANDOM NUMBER FROM 8 TO N-1

IF N IS ANY POSITIVE NUMBER, RANDOM RETURNS A RANDOM NUMBER FROM

8 TO N-1, WITH EQUAL PROBABILITY GIVEN TO EACH CHOICE. FOR N=g RANDOM
PROCEEDS TO DO TWO DISK SEEKS WHICH PROVIDE RANDOM TIMING FOR
RANDOMIZING THE SEED USED TO GENERATE RANDOM NUMBERS. (NOTE: THIS OPERATION
TAKES ON THE ORDER OF .1 SECOND TO 1 SECOND.) THE POWER-RESIDUE METHOD

OF PSEUDO-RANDOM NUMBER GENERATION IS EMPLOYED.

