
File No. 1130-25
Form C27-6934-0

IBM Systems Reference Library

IBM 1130/2250 Graphic Subroutine Package

Preliminary Specifications

This publication contains information that enables a
FORTRAN programmer to write programs for use with the
IBM 2250 Display Unit Model 4 in association with the
IBM 1130 Disk Monitor System, Version 2. It also
contains supplementary information that describes how
the same facilities may be used in a program written in
Assembler language.

The Graphic Subroutine Package (GSP) consists of
subroutines for displaying characters or graphic forms
on the 2250 screen and for controlling communication
between the program and the 2250 operator. The subrou-
tines may be called from a program written in the 1130
Basic FORTRAN IV language or from a program written in
1130 Assembler language.

It is assumed that the FORTRAN user of this publica-
tion has had experience with the IBM 1130 Disk Monitor
System and 1130 Basic FORTRAN IV language. It is
assumed that the Assembler-language user of this publi-
cation is experienced in both the 1130 FORTRAN IV and
Assembler languages.

PREFACE

This publication describes subroutines
that can be called from a FORTRAN program
to generate characters and graphic forms
and to display them on the screen of an IBM
2250 Display Unit Model 4 attached to an
IBM 1130 Computing System. The displays
may consist of charts, circles, arcs, rec-
tangles, or numerous other configurations.

This publication is divided into five
major sections, a series of appendixes, and
an index.

The first section introduces the reader
to the Graphic Subroutine Package (GSP) and
the 2250 model 4. It also discusses the
format used in the detailed descriptions of
each of the graphic subroutines.

The second section presents an overall
view of how the GSP may be used to create,
modify, and display an image. It also
defines terminology used in the publica-
tion.

The third section provides detailed de-
scriptions of all the graphic subroutines,
except subroutines associated with communi-
cation between the 2250 operator and the
program.

The fourth section describes subroutines
associated with communication between the
2250 operator and the program.

The fifth section describes program
errors and a subroutine that allows the
programmer to check whether a subroutine
was able to perform the desired operation.

Appendixes provide additional reference
material, including a sample FORTRAN pro-
gram, instructions for using GSP subrou-
tines in an Assembler-language program, and
the 2250 Assembler orders.

Before using this publication, the read-
er must be familiar with the publication
IBM 1130/1800 Basic FORTRAN IV Language,
Form C26-3715. He should also be familiar
with the following publications:

IBM 1130 Disk Monitor System, Version 2;
System Introduction, Form C26-3709

IBM 1130 Component Description: IBM 2250
Display Unit Model 4, Form A27-2723

In addition, the Assembler-language pro-
grammer should be familiar with the publi-
cation IBM 1130 Assembler Language, Form
C26-5927.

First Edition (August 1967)

Specifications contained herein are subject to change
from time to time. Any such change will be reported in
subsequent revisions or in Technical Newsletters.

This publication was prepared for production using an IBM computer to
update the text and to control the page and line format. Page impres-
sions for photo-offset printing were obtained from an IBM 1403 Printer
using a special print chain.

Copies of this and other IBM publications can be obtained through IBM
Branch Offices.

A form for reader's comments appears at the back of this publication.
Address any additional comments concerning the contents of this publica-
tion to IBM Corporation, Programming Publications, Department 637,
Neighborhood Road, Kingston, New York 12401

O International Business Machines Corporation 1967

CONTENTS

The 2250 Display Unit 	 7

Machine Requirements 	 7

Programming Requirements 	 7

Language Compatibility 	 8

Error Detection 	

Format of Subroutine Descriptions. .

CREATING A GRAPHIC DISPLAY	 9

Graphic Elements 	 9
Nesting 	 9
The Image Entity t } 	 10
The Controlled Entity [10
The Uncontrolled Entity () 	 10
The Subroutine Entity ISM 	 10
The Tracking Entity ITI 	 11
The Singular Entity < > 	 11

The Origin Entity <+> 	 11
The LPC Entity <•> 	 11
The Linkage Entity <f> 	 11
The Message Entity <M> 	 11

Correlation Value 	 11

Structure of A GSP Program 	 12
Initialization and Definition . . . 	 12

Initializing the Graphic
Subroutine Package 	 12
Initializing an Image
Construction Area 	 12

Initializing a Generation
Control Area 	 12

Creating, Modifying, and Displaying
an Image Entity 	 15

The Image Management Subroutines 	 15
The Image Generation Subroutines 	 15
Using the Subroutines 	 16

Communication Between a GSP Program
and the 2250 Operator 	 17

Attention Handling 	 17
Using the Alphameric Keyboard. . 	 19
Using the Light Pen 	 19
Using the Programmed Function
Keyboard 	 	 20

THE GSP SUBROUTINES 	 22

Arguments Used by Many of the
Subroutines 	 22

Image Management Subroutines 	 23
GSPIN--Graphic Subroutine
Package Initialization 	 23

ICAIN--Image Construction Area
Initialization 	 24

BELMT--Begin Element 	 25

EELMT--End Element 	 25
UELMT--Update Element 	 26
XELMT--Extend Element 	 27
DELMT--Delete Element 	 27
SATRB--Set Controlled Entity
Attributes 	 28

EXEC--Execute Display 	 29
TMDSP--Terminate Display 	 29
GSPTM--GSP Termination 	 29

SSCAL--Set Scaling Information . . 31
SSCIS--Set Scissoring Option . . . 32
SINDX--Set Index Values 	 32
SINCR--Set Increment Values. . . 	 33
SDATM--Set Input Data Mode . . . 	 33
SGRAM--Set Output Graphic Mode . 	 34
MVPOS--Move Element to a
Position 	 34

IDPOS--Indicate Element Position 	 35
PLINE--Plot Lines 	 35
PPNT--Plot Points 	 35
PSGMT--Plot Line Segments 	 36
PTEXT--Plot Text 	 36
LKSUB--Linkage to a Subroutine . 	 37
PGRID--Plot Grid Outline 	 37
PCOPY--Plot Copy 	 38

COMMUNICATING WITH THE 2250 OPERATOR . 	 39
Enabling and Disabling Attention
Sources 	 39

Saving Attention Information . . 	 39
Using the CANCEL Key 	 39

Attention-Handling Subroutines 	 40
SATNS--Set Attention Status. . . 	 40
RQATN--Request Attention
Information 	 40

ROCOR--Return Outer Correlation
Value 	 42

Entering Data With The Alphameric
Keyboard 	 42

DFMSG--Define Message Entity . . 	 42
MSGIN--Message Entity
Initialization 	 43

ICURS--Insert Cursor 	 44
RCURS--Remove Cursor 	 44
TLMSG--Translate Message Data. . 	 45

Entering Data With the Light Pen 45
LOCPN--Locate Position of Light
Pen 	 45

LOCND--Locate Position of Light
Pen on No Detect 	 46

LCPOS--Locate a Position with
the Tracking Symbol 	 46

TRACK--Track Position of Light
Pen 	 47

GENERAL INFORMATION 7

8 Image Generation Subroutines 	 29
GCAIN--Generation Control Area

8	 Initialization 	 30

CTLTK--Control Light Pen
Tracking 	 47

DISTE--Disconnect Tracking
Entity 	 49

CVTTD--Convert Tracking Data . . 	 49

Entering Data With The Programmed
Function Keyboard 	 51

SPFKL--Set Programmed Function
Keyboard Lights 	 51

ERROR HANDLING 	 52
IERRS--Interpret Errors 	 52

APPENDIX A: SAMPLE FORTRAN PROGRAM . . . 53

APPENDIX B: EXECUTING AN 1130 FORTRAN
PROGRAM USING GSP 	 59

*G2250 Control Card 	 59
XEQ Card 	 59
GSP Subroutines as LOCALs 	 59
Core Storage Layout Requirement. 	 59
Program Links 	 59

APPENDIX C: ASSEMBLER ORDERS AND ERROR
CODES 	 61

Set Graphic Mode Vector (Set
Graphic Mode) 	 61

Set Graphic Mode Point (Set
Graphic Mode) 	 61

Set Character Mode Basic (Set
Character Mode) 	 61

Set Character Mode Large (Set
Character Mode) 	 61

Set Pen Mode (Set Pen Mode). .61
•Start Regeneration Timer (Start

Timer) 	 61
Store Revert Register (Store
Revert Register) 	 62

Revert (Revert) 	 62
Graphic No-operation (Set Pen
Mode) 	 62

Move Beam Incremental
(Incremental XY) 	 62

Draw Beam Incremental
(Incremental XY) 	 62

Move Beam Absolute (Absolute XY) 	 62
Draw Beam Absolute (Absolute XY) 	 62
Move Beam Absolute X (Absolute

X/Y) 	 62
Move Beam Absolute Y (Absolute

X/Y) 	 62
Draw Beam Absolute X (Absolute
X/Y) 	 63

Draw Beam Absolute Y (Absolute
X/Y) 	 63

Move Beam Stroke (Character
Stroke Word) 	 63

Draw Beam Stroke (Character
Stroke Word) 	 63

Control Stroke (Character Stroke
Word) 	 63

Graphic Short Branch (Short
Branch) 	 63

Graphic Branch (Long
Branch/Interrupt) 	 64

Graphic Branch Conditional (Long
Branch/Interrupt) 	 64

Graphic Branch External (Long
Branch/Interrupt) 	 64

Graphic Branch Conditional
External (Long
Branch/Interrupt) 	 64

Graphic Interrupt (Long
Branch/Interrupt) 	 64

Graphic Interrupt Conditional
(Long Branch/Interrupt) 	 64

APPENDIX D: USING THE GSP IN AN
ASSEMBLER PROGRAM 	 65

Calling a GSP Subroutine 	 65

Array Arguments for GSP Subroutines. . 	 65

Additional Assembler-Language
Facilities 	 65

BXGEN--Begin External Generation 	 66
EXGEV--End External Generation . 	 67
IELMT--Include Element 	 67
EXEC--Execute Display 	 68
SATNS--Set Attention Status. . . 	 68
RQATN--Request Attention
Information 	 68

DSPYN--2250 I/O Routine 	 68

APPENDIX E: ASSEMBLER LANGUAGE AND FORTRAN
PROGRAM INTERACTION 	 71

APPENDIX F: STANDARD 1130/2250
CHARACTER SET 	 72

APPENDIX G: DIMENSIONS OF STANDARD
2250 CHARACTERS 	 73

INDEX 	 74

ILLUSTRATIONS

FIGURES

Figure 1. Required Core-Storage
Layout for Programs Using the GSP . . . 8

Figure 2. Screen and Grid Limits . . . 13
Figure 3. Mapping and Scaling 	 14
Figure 4. Scissoring Option 	 14
Figure 5. Beginning and Ending
Elements 	 26

Figure 6. Incrementation by SINCR and
SDATM 	 33

Figure 7. Graphic Elements in the
Sample Program 	 53

Figure 8. Sample Program 	 54
Figure 9. Displays Produced by

Sample Program 	 58
Figure 10. Program Links 	 60
Figure 11. Overflow of External
Generation Area 	 67

TABLES

Table 1. Format of the Array for
RQATN 	 41

Table 2. Assembler Error Codes for
2250 Orders 	 64

Table 3. Character Dimensions and
Spacing 	 73

5

GENERAL INFORMATION

The set of 1130/2250 subroutines availa-
ble for use by the FORTRAN programmer is
called the IBM 1130/2250 Graphic Subroutine
Package (GSP). This package is not an
extension of the FORTRAN IV language, but
may be used in conjunction with it. The
GSP allows a FORTRAN programmer to create
displays on an IBM 2250 Display Unit Model
4 attached to an IBM 1130 Computing System
having 16,384 words of core storage and one
disk. These displays can be constructed of
lines, points, and characters. The execu-
tion of each subroutine is requested by a
CALL statement.

A program that uses the GSP includes
calls to GSP subroutines in a sequence that
causes displays to be produced and provides
communication between the 2250 operator and
the program. Such a program is described
in detail in "Structure of a GSP Program."

Displays are produced on the basis of
control information and data supplied by
the programmer in the call to each GSP
subroutine. This control information and
data define what is to be displayed and
where it is to be displayed. The input
data can be provided in main storage
arrays. As supplied by the programmer,
this data is meaningful to the GSP, but not
to the 2250. Therefore, the GSP converts
this data to a format meaningful to the
2250.

THE 2250 DISPLAY UNIT

The 2250 model 4 is a cathode-ray tube
display console with a light pen and
optional features that enable data to be
entered directly from the 2250 into the
computer. Images are displayed on the
cathode-ray tube under program control.
The optional features are an alphameric
keyboard and a programmed function key-
board.

The screen (12 in. x 12 in.) is
defined by a matrix (1024 x 1024) of
addressable point positions. The distance
between any two adjacent points is a raster
unit. Each point, or screen location, is
specified by a pair of x- and y-coordinates
in the range 0 to 1023. The origin begins
at the lower-left corner of the screen
(0,0) and extends horizontally to the right
along the x-axis and vertically toward the
top along the y-axis, so that the coordi-
nates at the upper-right corner represent
the maximum boundary of the screen
(1023,1023).

A display is created when an electron
beam in the 2250 moves over the screen as
directed by graphic orders. The orders may
designate that the beam is to be unblanked
or blanked while it is being moved. Images
are displayed only if the beam is moved in
the unblanked mode. The images fade rapid-
ly, however, and must be continually regen-
erated to make the display appear steady
and stationary. Display regeneration is
accomplished by repeating the execution of
the orders thirty to forty times each
second. The actual regeneration rate is a
function of the amount of data displayed.

Alphameric characters are displayed by
drawing them with a series of strokes. The
IBM-supplied character generation subrou-
tine produces a standard set of characters
of one orientation (vertical), and upper or
lower case (see Appendix F). The charac-
ters are capable of being produced in
either of two sizes (basic or large). The
2250 model 4 provides the capability of
subscripting and superscripting characters.
The dimensions of characters produced and
their spacing are listed in Appendix G.

For a more detailed discussion of the
2250 model 4 (including descriptions of the
light pen, the alphameric keyboard, and the
programmed function keyboard), refer to the
publication IBM 1130 Component Description:
IBM 2250 Display Unit Model 4, Form
A27-2723.

MACHINE REQUIREMENTS

Programs using the GSP may be executed
on any IBM 1130 Computing System having
16,384 words of core storage, one disk, and
an attached 2250 model 4. Although the
programmer is not required to use the total
Graphic Subroutine Package, it is antici-
pated that an effective graphics applica-
tion will require at least 16K words of
1130 core storage.

PROGRAMMING REQUIREMENTS

The GSP provides the 1130 programmer
with a series of subroutines to aid him in
programming graphics applications using the
IBM 2250 Display Unit Model 4. The GSP is
used only in association with the IBM 1130
Disk Monitor System Version 2.

An 1130 program using the GSP must use
the *G2250 control card (see Appendix B),
which causes the GSP support package

General Information 7

0
T -

1	 Resident	 I	 Disk I/O	 1	 Main-line	 GSPSP	 (Remainder of
1	 Monitor	 1	 Routine	 1	 Program	 Subroutines

Figure 1. Required Core-Storage Layout for Programs Using the GSP

(GSPSP) to be loaded immediately following
the main-line program (see Figure 1).
Since the GSPSP must completely reside
below core location 8192, the number of
words occupied by the Resident Monitor, the
main-line program, and the GSPSP must not
exceed 8192. For more information about
this requirement, as well as information
about program links, see Appendix B.

LANGUAGE COMPATIBILITY

The facilities provided by the GSP can
be used by programs written in the 1130
Basic FORTRAN IV language or in the 1130
Assembler language. The body of this pub-
lication is directed to the use of the GSP
by programs written in the FORTRAN IV
language. The use of the GSP by programs
written in the Assembler language is de-
scribed in Appendix D.

ERROR DETECTION

Input/output errors that occur while the
program is communicating with the 2250 are
handled automatically by standard IBM
error-handling routines. These routines
diagnose the errors and apply error-
recovery procedures. If an error cannot be
corrected, error information is made
available to the program and/or the 2250
operator.

Invalid arguments in the CALL statement
for a GSP subroutine result in the GSP
making codes available to the program that
indicate what type of error occurred. For
further information see the section "Error
Handling."

FORMAT OF SUBROUTINE DESCRIPTIONS

In this publication, the detailed de-
scription of each GSP subroutine is organ-
ized as follows:

1. Name -- The mnemonic entry name of the
subroutine and a phrase explaining the
meaning of that mnemonic.

2. Function -- A brief summary of what
the subroutine accomplishes.

3. Format Description -- An illustration
of the statement for calling the sub-
routine.

4. Argument	 Descriptions -- Detailed
information about writing each argu-
ment.

5. Cautions -- Any special restrictions
on the use of the subroutine.

6. Programming Notes -- Tutorial material
describing the use of the subroutine
and the results it accomplishes.
Detailed information such as the use
of paired subroutines is covered here.

7. Errors -- Logical errors that can be
detected during the processing of a
program are noted.

Items 1 through 4 are included, without
headings, in all subroutine descriptions
(unless a subroutine has no arguments).
The remaining items are included when
applicable, with appropriate headings.

8

CREATING A GRAPHIC DISPLAY

This section provides an overall view of
the use of the GSP to create and modify
images and defines terminology used later
in this publication.

GRAPHIC ELEMENTS

The programmer is concerned with creat-
ing, modifying, and displaying an image.
He does this by defining graphic elements,
the constituent parts of the image, in the
form of data input to the GSP subroutines,
which then convert the data to a form
acceptable to the 2250. Element is a
generic term meaning any part of an image.
A specific type of element, one that serves
a particular function, is denoted by the
term entity preceded by another term iden-
tifying the type. An entity is either all
the graphic data making up an image (an
image entity) or is a discrete portion of
that data. Following are the types of
elements and their definitions; the symbols
representing the types of elements will be
of use in describing the structure of image
entities.

= Image entity, a collection of ele-
ments that can be displayed.

(] = Controlled entity, an element that is
given controllable attributes of:

• visibility
• detectablilty

() = Uncontrolled entity, an element that
is given fixed attributes of:

• visibility (always visible)
• non-detect

ISI = Subroutine entity, an element that
may be displayed at different screen
locations in the same display.

ITS = Tracking entity, an element used to
collect the coordinates of points
identified by the 2250 operator by
means of the light pen.

< > = Singular entity, a generic term for
an element that cannot contain other
elements. Singular entities are
specifically defined as follows:

<-1-> = Origin entity, an element that
establishes the position of the
element that follows it.

<•> = LPC (Line, Point, Character)

entity, a collection of lines,
points, or characters.

<t> = Linkage entity, a request for
linkage to a subroutine or
tracking entity.

<M> = Message entity, an element used
to collect characters entered
through the alphameric key-
board.

NESTING

In creating an image entity, the pro-
grammer not only defines its elements, but
also its structure. The GSP provides the
facility of nesting (embedding) elements
within other elements, subject to certain
rules. The nested elements may be named,
and depending on the name provided, the
program can refer to one element or an
entire set of nested elements. The nesting
of elements is similar in concept to the
nesting of FORTRAN DO statements.

A nested element must be completely
within the nesting element; overlapping of
elements is not permitted. The rules for
nesting elements can be stated as follows:

• An image entity can contain any ele-
ments except image and tracking enti-
ties.

• A controlled entity can contain any
elements except image, controlled, and
tracking entities.

• An uncontrolled entity can contain any
elements except image and tracking
entities.

• A subroutine entity can contain any
elements except image, controlled, and
tracking entities.

• A tracking entity cannot contain any
other elements.

• A singular entity cannot contain any
other elements.

Following are two examples of image
entity structures using the symbols defined
above. The first image entity comprises an
origin and an LPC entity. This simple
structure might represent, say, positioning
information (origin) and text (LPC) for
displaying a message.

Creating a Graphic Display 9

The second image entity comprises an
uncontrolled and a controlled entity, each
containing an origin and an LPC entity.
The first origin and LPC entities might
represent a message to the 2250 operator to
point at a portion of the display with the
light pen. The controlled entity would
represent the portion of the display that
can be detected by the light pen
(detectability attribute). In addition,
this portion of the display can be made to
disappear without deleting the element from
the program (visibility attribute).

f<+><•>1
f(<+><• >)[<-1-><• >])

THE IMAGE ENTITY

An image entity is the only element that
can be directly referenced for an actual
display. All other types of elements which
it is desired to display must therefore be
nested in an image entity. (The subroutine
and tracking entities are exceptions; see
below.) Conversely, an image entity cannot
be nested within any other element, includ-
ing another image entity. The content of
an image entity depends on the definition
of its constituent elements: controlled,
uncontrolled, subroutine, and singular
entities.

THE CCNTROLLED ENTITY]

A controlled entity is an element with
two controllable attributes -- visibility
and detectability.

The visibility attribute gives the pro-
gram the option of either displaying or not
displaying a controlled entity without
affecting its definition as part of an
image entity. The attribute is initially
set to display when the controlled entity
is defined. It can be set to non-display
by means of the Set Controlled Entity
Attributes (SATRB) subroutine at any point
in the program after the controlled entity
has been completely defined. If the visi-
bility attribute is to be set to non-
display, the element immediately following
the controlled entity must be absolutely
positioned or it will be repositioned on
the screen.

The detectability attribute is the
property of selective identification, by
means of the light pen, of the controlled
entity. Two options are available, detect
and non-detect.

The standard option established when the
controlled entity is defined is detect. If
detection is not desired, the attribute can

be set to non-detect by means of the SATRB
subroutine.

With detectability set to detect (and
when light pen attentions are enabled; see
"Attention Handling"), the closing of the
light pen switch when a detect is made
causes a light pen attention to be accepted
for the detected controlled entity, and the
attention data is made available upon
request. The attention data will include
the correlation value (identifye:r; see
below) of the controlled entity, the corre-
lation value of the innermost named element
detected, the character detected, or the x-
and y-coordinates of the point or end point
of the line detected. If the light pen is
withdrawn before the switch is closed, no
attention occurs.

THE UNCONTROLLED ENTITY ()

The uncontrolled entity has fixed attri-
butes of visibility (always visible) and
non-detect. It can be a collection of
controlled, uncontrolled, subroutine, or
singular entities. Any controlled entities
nested within an uncontrolled entity still
possess their controllable attributes.
Conversely, any uncontrolled entities nest-
ed within a controlled entity assume the
visibility and detectability attributes of
the controlled entity.

THE SUBROUTINE ENTITY ISM

A subroutine entity is similar in con-
cept to a program subroutine. Its princi-
pal use is to display a graphic form in
more than one area of the 2250 screen in
the same display.

The only entry into a subroutine entity
is by means of a linkage entity. It is not
therefore necessary that a subroutine enti-
ty be defined within an image entity. This
is one of the two exceptions to the rule
that all elements which are to be displayed
must be within an image entity (the other
exception being the tracking entity). The
linkage to a subroutine entity must be
deleted or made inactive (performs
no-operation) if the subroutine entity is
to be deleted.

A subroutine entity should contain only
incremental data. It should not contain
any controlled entities or absolute origin
entities.

The following image entity structure
will result in the simultaneous displaying
of three copies of the subroutine at three
different places on the 2250 screen
(assuming that all three origin entities
are to different positions).

10

ISIt<-1-><f><-1-><f><-1-><f>)

THE TRACKING ENTITY ITI

A tracking entity is like a singular
entity in that it cannot have other ele-
ments nested within it. It is also a
special form of subroutine entity, with the
following features of a subroutine entity:

• The generated graphic data may be
incremental and therefore may be relo-
cated on the surface of the screen.
This is dependent on the output graphic
mode defined for the generation control
area (GCA; see "Initializing a Genera-
tion Control Area").

• It may be requested by means of a
linkage entity and therefore may appear
at more than one screen location in the
same display.

• It must follow the rule for deletion of
a subroutine entity: linkage to the
tracking entity should be deleted or
made inactive before deletion of the
tracking entity.

The tracking entity differs from the
subroutine entity in that it may be in
absolute or optimized output graphic mode
(see "Initializing a Generation Control
Area"). In these cases it will be dis-
played in a fixed location on the screen.
It also differs from the subroutine entity
in that it does not have to be requested by
a linkage entity in order to be displayed.

THE SINGULAR ENTITY < >

The term "singular entity" is used as a
general name for elements that by their
nature are complete and cannot contain
other elements within them. The term com-
prises the following: origin entity, LPC
entity, linkage entity, and message entity.

The Origin Entity <-1->

An origin entity is an element that
establishes the position of the element
that follows it. The positioning will be
either absolute or incremental as deter-
mined by the output graphic mode defined in
the appropriate generation control area
(GCA; see "Initializing a Generation Con-
trol Area"). If the GCA output graphic
mode is absolute, the element will be
positioned to a specified point. If the
output graphic mode is incremental, the
positioning will be relative to the posi-
tion of the previous element. If the
output graphic mode is optimized, position-
ing will be either absolute or incremental,
as determined internally by the GSP.

The LPC Entity <•>

An LPC (Line, Point, Character) entity
is an element containing graphic data for
the combination of lines, points, and char-
acters that determine the appearance of the
displayed image entity. It is therefore
the principal building block of a typical
graphic image entity.

The Linkage Entity <t>

A linkage entity is a request for the
inclusion of a subroutine entity or a
tracking entity. A linkage entity can be
established as either active or inactive
(performs no operation); it can be named,
if desired, and updated later (e.g.,
changed from inactive to active).

The Message Entity <M>

A message entity is an element that
consists of alphameric data. The data can
be generated by the program for display on
the screen as a message to the 2250 Opera-
tor, or it can be entered from the alpha-
meric keyboard as a message from the opera-
tor. A message entity has attributes of:

• Character size (basic or large)

• Length (number of characters)

CORRELATION VALUE

In defining the elements of an image
entity to the GSP, the programmer may
require the facility of referring to a
particular element at some later point in
the program. This facility is provided by
the correlation value argument specified
when the element is defined. At any point
in the program after the element is named
(i.e., assigned a correlation value), this
name may be used as an argument to refer to
that element.

Of the elements defined above, the fol-
lowing must be named:

• Image entity

• Controlled entity

• Uncontrolled entity

• Subroutine entity

• Tracking entity

• Message entity

The origin and linkage entities may be
named at the programmer's option. An LPC
entity cannot be named.

Creating a Graphic Display 11

Correlation values should be unique
within a GSP program.

STRUCTURE OF A GSP PROGRAM

Preparation of a program that uses the
GSP requires the following basic steps:

1. Initialization and definition.

• Initializing the GSP

• Initializing an Image Construction
Area

• Initializing a Generation Control
Area

2. Creating, modifying, and displaying
the image entity.

3. Establishing communication between the
GSP program and the 2250 operator.

INITIALIZATION AND DEFINITION

Before the programmer can begin to
create image entities with the image gener-
ation subroutines, certain initializing
steps must be performed: activating the
GSP, defining environmental charac-
teristics, defining and initializing data
and control areas, establishing precision
specifications, identifying I/O devices,
etc. These initializing procedures are
performed by the GSPIN, ICAIN, and GCAIN
subroutines.

Initializing the Graphic Subroutine Package

In order to activate the GSP and to
establish its environmental charac-
teristics, the first GSP subroutine to be
called must be GSPIN, the Graphic Subrou-
tine Package Initialization subroutine.
Based on the arguments provided by the
programmer, GSPIN sets up the control
structure needed by almost all other GSP
subroutines:

1. Precision specifications, to define
the format of integer and real input
data.

2. Error return variables, to which the
GSP returns indications of any errors
that have been detected. There are
two of these variables: one holds an
error indication for the most recent
call to a GSP subroutine, and the
other a cumulative indication of
errors for all previous calls. The
error variables are set by most GSP
subroutines.

3. Unit identification, to establish cor-

respondence between the device address
and its logical unit number. The
programmer defines the device address
and associates a logical unit number
with it. Once this association has
been established by means of the GSPIN
subroutine, the programmer uses the
logical unit number in calls to other
GSP subroutines to refer to the
device.

Initializing an Image Construction Area

Before the programmer can begin creating
image entities by means of the image gener-
ation subroutines, he must provide and
initialize an image construction area (ICA)
that will contain the image entity or
entities that he is to create. In this
area the input data, converted to 2250
format, is stored for subsequent display.

The ICA is also a control area. It
contains, in addition to the image entity,
information needed to define the structure
of the entity.

The ICA is initialized by a call to
ICAIN, the Image Construction Area Initial-
ization subroutine. More than one ICA can
be used in a GSP program, but only one at a
time can be active. To change ICAs, the
programmer must issue another call to
ICAIN.

The ICAIN subroutine does the following:

1. Assigns to the ICA an identifying
correlation value.

2. Establishes the limits of the ICA,
thereby specifying its length.

3. Makes the ICA referred to the active
ICA.

4. Provides an option for redefining an
ICA (re-activating an ICA without
changing its contents).

Initializing a Generation Control Area

Another area that must be provided and
initialized before the programmer can begin
creating image entities is the generation
control area (GCA). The GCA contains
information needed by image generation sub-
routines to properly generate elements of
the image entity. This information is
instrumental in performing the following
functions:

• Mapping (scaling and scissoring) of
input data to raster units representing
the entire 2250 screen or a smaller
area of the screen (grid).

• Conversion of graphic data (i.e., x-

12

and y-coordinates in raster units and
character data in 2250 format) to inte-
ger, real, or character arrays in pro-
gram format which can be used by non-
graphic FORTRAN statements.

• Selection of input data from arrays by
means of an index factor, rather than
sequentially.

• Specification of successive x- and y-
coordinates by means of an increment
value instead of requiring an input
data array to contain them.

• Specification of real or integer, and
absolute or incremental input data
mode; and absolute, incremental, or
optimized graphic output mode (see
definitions of absolute, incremental,
and optimized below).

More than one GCA may be defined for a
program using the GSP. For example, dif-
ferent grid areas of the 2250 screen may be
designated, different scaling factors
(i.e., data range to grid area) may be
specified, etc. However, each GCA must be
fully defined before it is referred to by
the subroutines concerned.

The GCA is a real array with 21 elements
if the program uses standard precision or
with 14 elements if the program uses non-
standard EXTENDED PRECISION.

Since the data within the GCA is
intended to be used only by GSP subrou-
tines, it must not be referred to in any
way other than as an argument in GSP
subroutine calls.

A GCA can be fully initialized with
standard values (see below) by means of the
GCAIN subroutine. Modification of the area
with other values is effected by means of
six supplementary subroutines, each of
which alters only a particular portion of
the GCA. The GCA can therefore be defined
by GCAIN alone, by a combination of GCAIN
and supplementary subroutines, or by all
six supplementary subroutines without
GCAIN.

The GCA definition subroutines are:

GCAIN - Generation Control Area Ini-
tialization

SSCAL - Set	 Scaling	 Information
(Screen, Grid, Data)

SSCIS - Set Scissoring Option
SINDX - Set Index Values
SINCR - Set Increment Values
SDATM - Set Input Data Mode
SGRAM - Set Output Graphic Mode

There may be, at some point in a pro-
gram, several GCAs that have been defined,

and depending on the options desired, the
appropriate GCA can be used in a call to an
image generation subroutine. This is
unlike the ICA where only one is active at
a time. Any and all GCAs are active.

THE SCREEN LIMITS: The 2250 screen con-
tains a square matrix of 1024 x 1024
addressable points, and the device treats
the screen coordinates as if they were all
in the first quadrant, i.e., from (X=0,
Y=0) to (X=1023, Y=1023). The programmer
need not be concerned with these device
coordinates. He may assign values in any
units to the lower-left corner and the
upper-right corner (see Figure 2).

THE GRID LIMITS: The programmer can also
define a grid, a rectangular portion of the
screen within which the elements are to be
placed. The same units must be used for
these as for the screen limits. He defines
the lower-left corner and the upper-right
corner of the grid. The grid size must be
less than or equal to the screen size (see
Figure 2).

SXU,SYU

Screen
GXU,GYU

Grid

L_ 	
GXL, GYL

SXL,SYL

SXL,SYL = x- and y-coordinates of lower-
left corner of the screen

SXU,SYU = x- and y-coordinates of upper-
right corner of the screen

GXL,GYL = x- and y-coordinates of lower-
left corner of the grid

GXU,GYU = x- and y-coordinates of upper-
right corner of the grid

The following are requirements for
establishing screen and grid limits:

SXU GXU > GXL 2 SXL
SYU GYU > GYL SYL

Figure 2. Screen and Grid Limits

Creating a Graphic Display 13

GXL = I
GYU = 2

.3-

Y-AXIS
INPUT

1.0

.9

GXU = 6
GYU = 6

THE DATA LIMITS (SCALING): The programmer
specifies the range of his data, in
programmer-defined units, that is to be
mapped (scaled) into the grid. Any data
which maps to a point outside the grid may
be scissored (see Figure 3).

SCISSORING OPTION: It is possible for user
data to map to a point outside the grid.
The programmer is provided two choices:
either nothing outside the grid will be
displayed (i.e., lines are scissored at the
grid limits) or everything outside the grid
is to be displayed (i.e., lines are scis-
sored at the screen limits). Figure 4
illustrates the two options.

INDEX VALUES: The programmer may provide
values to specify that every 'nth" element
of an input data array, used by image
generation subroutines, is to be used,
where n�1.

INCREMENT VALUES: These values provide the
capability of generating successive x- and
y-coordinates from some known starting
point. This eliminates the need for one or
more input data arrays for an image genera-
tion subroutine.

INPUT DATA MODE: This value specifies the
type of data that the x- and y-arrays

X - AXIS INPUT

100

SXL = 0
SYL = 01

DXL = 200	 DXU = 500
DYL = .1	 DYU = .9

Scissoring occurs if: X - axis data < 200 or > 500
Y-axis date < .1 or >.9

Figure 3. Mapping and Scaling

NOTES:

Dotted lines indicate points/vectors that would not be generated.

Solid lines indicate points/vectors that would be generated.

Figure 4. Scissoring Option

Contain. The types are: real absolute,
real incremental, integer absolute, integer
incremental.

Absolute data are the actual coordinates
(in programmer units) where an element is
to be displayed on the screen. Incremental
data are coordinate values that are dis-
placements from the coordinate values that
immediately precede them.

OUTPUT GRAPHIC MODE: Output data produced
by the image generation subroutines (i.e.
the elements in 2250 format) may be in
absolute, incremental, or optimized form.
Optimized data is input data that has been
transformed into that 2250 format which
requires the least amount of core storage.
This form usually consists of a combination
of absolute and incremental data.

STANDARD VALUES: The standard values es-
tablished by a call to GCAIN are:

screen limits: 0,0 to 1023,1023 (modify by
SSCAL)

grid limits: 0,0 to 1023,1023 (modify by
SSCAL)

data limits: 0,0 to 1023,1023 (modify by
SSCAL)

scissoring option: scissor to grid (modify
by SSCIS)

index values: all = 1 (modify by SINDX)

increment values: all = 0 (modify by SINCR)

input data mode: real absolute (modify by
SDATM)

output graphic mode: optimized (modify by
SGRAM)

0.0

Scissor at screen limits

14

CREATING, MODIFYING, AND DISPLAYING AN
IMAGE ENTITY

Once the communication paths to the GSP
have been established (i.e., GSPIN has been
called, and an ICA and at least one GCA
have been defined), the programmer can
begin defining an image entity. An image
entity has three major characteristics:

1. It consists of one or more elements.

2. It has a structure.

3. It can be displayed.

The structure of an image entity is
defined by a series of calls to the image
management subroutines, while the elements
of an image entity are defined by a series
of calls to the image generation subrou-
tines. In general, an element is defined
by a call to an image management subroutine
to define its beginning, one or more calls
to the image generation subroutines to
define its content (points, characters,
lines), and a call to an image management
subroutine to define its end. For some
elements, however, only one subroutine is
used to completely define the element.
This is true of the message, linkage, and
origin entities.

The Image Management Subroutines

The image management subroutines define
and control the structure of an image
entity. The following is a list of all the
image management subroutines and their
functions:

Mnemonic	 Name 6 Function
GSPIN Graphic Subroutine Package Ini-

tialization - specifies control
information required by other
GSP subroutines.

ICAIN Image Construction Area Ini-
tialization - initializes an
area for use by the GSP to
contain the image entity and
its control information.

BELMT	 Begin Element - defines the
beginning of a controlled,
uncontrolled,	 subroutine, or
image entity.

EELMT End Element - defines the end
of an element whose beginning
was specified by BELMT, UELMT,
or XELMT.

UELMT Update Element - identifies an
element whose content is to be
completely modified by subse-
quent calls to image generation
subroutines.

XELMT Extend Element - identifies an
element whose content is to be
extended by subsequent calls to
image generation subroutines.

DELMT Delete Element - identifies an
element that is to be complete-
ly deleted from the image enti-
ty.

SATRB Set Controlled Entity
Attributes - resets one or more
of the attributes of a con-
trolled entity.

EXEC Execute Display - performs the
processing required to display
an image entity.

TMDSP Terminate Display - performs
the processing required to stop
the display of an image entity.

GSPTM GSP Termination - provides an
optional dump of core storage
and terminates use of the GSP.

The Image Generation Subroutines

The image generation subroutines define
the content of an element by converting the
input data to 2250 format. The following
is a list of all the image generation
subroutines and their functions:

Mnemonic	 Name 6 Function
GCAIN Generation Control Area Ini-

tialization - initializes a GCA
with standard values.

SSCAL Set Scaling Information - sets
or resets the scaling informa-
tion in the GCA.

SSCIS Set Scissoring Option - sets or
resets the scissoring to grid
boundaries or screen boundar-
ies.

SINDX Set Index Values - sets or
resets the input array indexing
values in the GCA.

SINCR Set Increment Values - sets or
resets the increment values in
the GCA.

SDATM Set Input Data Mode - sets or
resets the input data type to
absolute or incremental, real
or integer.

SGRAM Set Output Graphic Mode - sets
or resets the output data type
to absolute, incremental, or
optimized.

MVPOS	 Move	 Element	 to	 a
Position - establishes the
starting coordinates for the
next element.

IDPOS	 Indicate	 Element
Position - indicates the start-
ing coordinates of the next
element for proper scissoring
after use of a linkage entity
or when modifying an existing
element.

PLINE Plot Lines - converts input
data to 2250 format for plot-
ting lines.

PPNT Plot Points - converts input
data to 2250 format for plot-
ting points.

Creating a Graphic Display 15

Plot Text - converts input data
to 2250 format for plotting
characters.
Plot Line Segments - converts
input data to 2250 format for
plotting line segments.
Linkage	 to	 a
Subroutine - establishes
linkage to a subroutine or
tracking entity.
Plot Grid Outline - generates
2250 format data to plot the
rectangular outline of a grid.
Plot Copy of an Element - gen-
erates a copy of an element at
another place in an image or
subroutine entity.

Using the Subroutines

For the purpose of illustration, assume
that it is desired to display a circle
using a series of points. The following
might be the series of GSP subroutines
called:

Subroutine
Called	 Reason

GSPIN	 GSP Initialization.
ICAIN	 ICA Initialization.
GCAIN	 GCA Initialization.
BELMT	 Define the beginning of an

image entity.
PPNT Generate the series of

points in 2250 format for
the circle.

EELMT	 Define the end of the image
entity.

EXEC	 Display the image entity on
the 2250.

The above series of calls defines a
single element, the image entity, whose
content is a circle. Symbolically, the
image entity can be represented as follows:

t<•>1

If it were desired to display a circle
using a series of lines, the following
might be the GSP subroutines called:

Subroutine
Called	 Reason

TMDSP	 Stop the display for updat-
ing.

UELMT	 Identify the element to be
changed.

MVPOS	 Define the starting posi-
tion of the square.

PLINE	 Generate the four sides of
the square in 2250 format.

EELMT	 Define the end of the new
contents of the element.

EXEC	 Display the image entity,
now a square.

Note that it is necessary to stop the
display (TMDSP) before updating can be
accomplished.

It is now desired to extend the defined
element, the square, to include another
square. The following series of subrou-
tines might be called:

Subroutine
Called

TMDSP

XELMT

MVPOS

PLINE

EELMT, EXEC

Reason
Stop the display for updat-
ing.
Define the element to which
data is being added.
Define the starting posi-
tion of the second square.
Generate the lines for the
second square.

The display now consists of two squares,
and the image entity can be symbolically
represented as follows:

PTEXT

PSGMT

LKSUB

PGRID

PCOPY

Symbolically, the image entity is rep-
resented as:

f<+><-40>1

Note: If points were used to construct the
circle, no origin entity would be needed.

Now suppose the programmer wishes to
change the display from that of a circle to
that of a square. The following series of
subroutines might be used:

Subroutine
Called	 Reason	 {<-p<•><-1-><•>}

GSPIN, ICAIN,	 Initialization.
GCAIN	 The following series of calls will

BELMT	 Define the beginning of an define the same displayable image entity,
image entity.	 but with the two squares as an uncontrolled

MVPOS	 Position the beam to the entity.
first point on the circle
from which the lines will Subroutine
begin.	 Called	 Reason

PLINE	 Generate the series of GSPIN, ICAIN,	 Initialization.
lines in 2250 format for 	 GCAIN
the circle.	 BELMT	 Define the beginning of the

EELMT, EXEC	 image entity.

16

BELMT Define the beginning of two
squares as an uncontrolled
entity.

MVPOS	 Position to a corner of the
first square.

PLINE	 Generate the first square.
MVPOS	 Position to a corner of the

second square.
PLINE	 Generate the second square.
EELMT	 Define the end of the two

squares.
EELMT	 Define the end of the image

entity.
EXEC	 Display the image entity.

Now the image entity is represented as:

((<-1-><•><+><• >))

indicating that an uncontrolled entity has
been defined within the image entity.

The following adds another uncontrolled
entity, a triangle, to the image entity.

Subroutine
Called	 Reason

TMDSP	 Stop display for updating.
XELMT	 Indicate that the image

entity is being extended.
BELMT	 Define the beginning of a

new uncontrolled entity.
MVPOS	 Define the starting posi-

tion of the triangle.
PLINE	 Generate the sides of the

triangle.
EELMT Referring to the image

entity defines the end of
both the triangle element
and the update of the
extended image entity.

EXEC Display the new image enti-
ty consisting of the two
squares and the triangle.

The structure of the above image entity
is represented as:

f(<-1-><•><-1-><*>)(<-1-><• >))

If it is wished to delete the uncon-
trolled entity containing the two squares
from the image entity, the following series
of calls can be used:

Subroutine
Called	 Reason

TMDSP	 Stop the display for updat-
ing.

DELMT Using the name of the ele-
ment containing the two
squares causes it to be
removed from the image
entity.

EXEC The display will now con-
tain only the triangle, and
the structure of the image
entity is: {(4><• >)}

In order to label,. the triangle with the
word TRIANGLE, the -=:r;-following procedure
might be used:

Subroutine
Called	 Reason

TMDSP	 Stop the display for updat-
ing.

XELMT Identify the triangle
uncontrolled entity for
extended update.

MVPOS Position to the point at
which the first character
is to appear.

PTEXT Generate the characters in
2250 format for the word
TRIANGLE.

EELMT	 Define the end of this ele-
ment.

EXEC Display the triangle, which
is now labeled with the
word TRIANGLE.

This final image entity can be rep-
resented thusly:

{(<-1-><e><-1-><.>)}

COMMUNICATION BETWEEN A GSP PROGRAM AND THE
2250 OPERATOR

The IBM 2250 Display Unit is a powerful
tool for two reasons:

1. It can quickly display a large amount
of data.

2. The 2250 operator can communicate with
and guide the running program by using
the light pen or keyboards.

Up to this point, this section has been
concerned mostly with the first item. The
following paragraphs deal with four major
areas in operator/program communication:

1. Attention handling

2. Using the alphameric keyboard

3. Using the light pen

4. Using the programmed function key-
board.

Attention Handling

An attention is the name of the signal
generated when the 2250 operator depresses
a programmed function key or an alphameric
keyboard key, or points at a displayed
image entity with the light pen and closes
the light pen switch. The keyboards and
the light pen are therefore attention sour-
ces. The attention causes the central

Creating a Graphic Display 17

processing unit to interrupt and enter a
GSP routine whose function is to gather all
the available information about the atten-
tion. This attention information is made
available to the program upon request.

The attention-handling subroutines of
the GSP are used to establish which atten-
tions are to be processed and which are to
be ignored, and to obtain attention infor-
mation. The following are the attention-
handling subroutines and their functions:

Mnemonic	 Name & Function
SATNS Set Attention Status - enables

the sources from which the
program will process atten-
tions.

RQATN Request Attention Information -
requests that available atten-
tion information be formatted
and provided to the program.

ROCOR	 Return Outer Correlation Value
- requests the correlation
value of an element within
which another element is nest-
ed.

There are four attention sources availa-
ble to the GSP programmer:

1. Light pen

2. END key

3. Alphameric keyboard (except END and
CANCEL keys)

4. Programmed function keyboard

The attention information returned is
different for the different sources. The
details appear in the discussion of the
RQATN subroutine.

The programmer determines which atten-
tion sources are meaningful to his program
and enables those. All others become dis-
abled. He may at any point in the program
change enabled sources.

When the program reaches a point that
requires the 2250 operator to specify or
have specified some information by means of
an attention, the program issues a call to
RQATN. RQATN formats any available atten-
tion information and places it into a
programmer-defined array. The program can
then determine if an attention has occurred
and, if so, whether it is the correct one.
If no attention has occurred, the program
might be able to continue processing that
is unrelated to the attention. If an
attention is required before further pro-
cessing can take place, the program could
issue a PAUSE statement followed by a GO TO
statement to the RQATN call.

If an attention has occurred and it is
the correct one, the program continues
processing. If the attention is incorrect,
the program could simply ignore it and
re-execute RQATN or notify the 2250 opera-
tor that his attention is inappropriate.

At some point in the program it may be
desirable to perform some unique function
which requires the 2250 operator to respond
with a series of attentions. However, the
present attention status is to be re-
established following performance of this
function. This may be accomplished by
saving the argument used in the last call
to SATNS. Another call to SATNS with a
different argument establishes the new
attention-handling environment (i.e., en-
ables a different set of sources). The
unique function can then be performed.
Another call to SATNS with the saved argu-
ment re-establishes the attention-handling
environment as it existed just prior to
performing the unique function.

In the previous examples of circles,
squares, and triangles, a series of atten-
tions could have been used to signal the
program to change the displays. The fol-
lowing might have been the series of calls
issued:

Subroutine
Called	 Reason

GSPIN, ICAIN,	 Initialization.
GCAIN

BELMT	 Define the beginning of the
image entity.

BELMT, MVPOS, Define a circle as a con-
PLINE, EELMT trolled entity in order to

be light-pen detectable and
define the end of the image
entity.

SATNS	 Enable light pen atten-
tions.

EXEC	 Display the image entity,
which can be represented
as: {[<-1-><Q>]}

RQATN Wait for the light pen
attention on the circle,
which indicates that the
next image entity is to be
displayed.

TMDSP, UELMT, Change the display to the
MVPOS, PLINE, square. The image entity
EELMT, EXEC	 is still represented as:

([<-1-><•>]}
RQATN	 Wait for the second light

pen attention.
TMDSP, XELMT, Change the display to that
MVPOS, PLINE, of two squares. The image
EELMT, EXEC	 entity is now represented

as: {(<1-><41><-1-><+>3}
SATNS Enable the programmed func-

tion keyboard, disabling
the light pen.

RQATN	 Wait for a programmed func-
tion keyboard attention.

18

Using the Alphameric Keyboard

The alphameric keyboard provides the
means of communicating characters
(alphabetic, numeric, and special) to the
program. The characters could be codes or
text, depending on their use by the pro-
gram.

If the program is enabled for alphameric
keyboard attentions and is not in message-
collection mode (i.e., a call to ICURS is
not in effect), the alphameric keyboard
attentions are returned one at a time in
the same fashion as programmed function
keyboard attentions. The alphameric
keyboard could be used as a programmed
function keyboard is used. In message-
collection mode, however, depressing a key
on the alphameric keyboard causes a
character to be placed into a message
entity. In this mode, the program does not
receive any alphameric keyboard attentions
until a call to RCURS is issued, which
terminates the message-collection mode.

The following is a list of the alphamer-
ic keyboard and message-collection subrou-
tines and their functions:

Mnemonic
DFMSG

MSGIN

ICURS

Name & Function
Define Message Entity - defines
an element into which alphamer-
ic keyboard characters will be
placed.
Message Entity Initialization -
initializes a message entity
with text.
Insert Cursor - places a cursor
into a message entity and

Enable the light pen, dis-
abling the programmed func-
tion keyboard.
Display the squares and
triangle. The image entity
is now represented as:
II<-1-><• ><1-><•>](<1-><•>)}
Wait for the next light pen
attention.
Delete the element on which
the attention occurred.
Display the remaining ele-
ment. Depending on which
element was deleted, the
image entity can be rep-
resented	 as	 either
((<1-><•><-1-><•>]} 	 or
f[<-1-><•>11
Wait for the next light pen
attention.
Terminate the display.
Terminate program execu-
tion.

Add the triangle and text
controlled entity to the
image entity.

establishes	 the	 message-
collection mode.

RCURS Remove Cursor - deletes the
cursor and terminates the
message-collection mode.

TLMSG Translate Message Data - con-
verts alphameric data in a mes-
sage entity to EBCDIC format
for manipulation by the FORTRAN
program.

The programmer defines one or more mes-
sage entities in his program and may ini-
tialize them with text, such as instruc-
tions to the 2250 operator. By issuing a
call to ICURS, the program enters message-
collection mode. The alphameric keyborad
attentions are no longer passed to the
program, if the alphameric keyboard was
enabled, but are sent to the GSP message-
collection routine. When the 2250 operator
depresses a key, the character is placed
into the message entity identified by the
call to ICURS, and the cursor advances one
position. The character appears on the
screen. The 2250 operator can key in as
many characters as the message entity can
hold. Once the message entity is filled,
all other characters keyed in replace the
last character until the JUMP key is
depressed. When the GSP message-collection
routine receives a JUMP signal, the cursor
is moved to the next available message
entity, and the 2250 operator can continue
keying in more characters.

The message entities are considered to
be a closed circle; that is, if the JUMP
function is executed often enough or if
there is only one message entity and the
JUMP key is depressed, the cursor returns
to the message entity identified by the
initial call to ICURS. The 2250 operator
signals that he is finished by depressing
the END key or by any other suitable
attention. When the program recognizes the
end-of-message attention (by means of
RQATN), it then calls RCURS to terminate
the message-collection mode, and TLMSG to
convert the characters from 2250 format to
EBCDIC for further manipulation.

Using the Light Pen

The light pen is used to communicate at
least two things to the program:

1. Identification of a particular con-
trolled entity.

2. The x- and y-coordinates of points or
lines being defined.

The SATNS subroutine enables or disables
light pen attentions. If enabled, certain
information is collected and, upon request,
made available on each light pen attention.
In particular, the correlation value of the

TMDSP, XELMT,
MVPOS, PLINE,
MVPOS, PTEXT,
EELMT

SATNS

EXEC

RQATN

DELMT

EXEC

RQATN

TMDSP
GSPTM

Creating a Graphic Display 19

element pointed at with the light pen is
returned. The program can then manipulate
or modify the element according to the
application.

The GSP provides the following subrou-
tines that facilitate communication by
means of the light pen.

Mnemonic	 Name & Function
LOCPN Locate the Position of the

Light Pen - used to identify
the x- and y-coordinates of the
point being defined by the
light pen.

LOCND Locate the Position of the
Light Pen on No Detect - used
to find the x- and y-
coordinates of the light pen if
no attention occurred on a
controlled entity during the
display of the image entity.

LCPOS Locate a Position with the
Tracking Symbol - used to iden-
tify the x- and y-coordinates
of a particular location on the
screen.

TRACK Track the Position of the Light
Pen - identifies a series of x-
and y-coordinates and creates a
tracking entity.

CTLTK Control Light Pen Tracking -
changes the initial light pen
tracking status or the status
set by a prior call to CTLTK.

DISTE Disconnect Tracking Entity -
disconnects the tracking entity
from the temporary linkage in
an image entity.

CVTTD	 Convert Tracking Data - con-
verts x- and y-coordinates from
2250 format to integer or real
FORTRAN format.

When a programmer calls a light pen
subroutine (except CVTTD and DISTE), the
GSP services light pen attentions, even if
the program is enabled for light pen atten-
tions, until the 2250 operator or the
program signals that the function is com-
pleted. (This is not true for every light
pen attention; see the description of
TRACK.) The completion is sometimes sig-
nalled by a light pen attention (for LOCPN
and LOCND) and sometimes by a call to CTLTK
(for LCPOS and TRACK). When the function
is signalled complete, the enable/disable
status of the light pen is restored to what
it was just prior to the call.

LOCPN and LOCND cause a scanning pattern
to be displayed until a light pen attention
occurs. When the attention occurs, the
scanning pattern disappears, and the data
about the light pen attention may be
accessed by calling RQATN.

LCPOS and TRACK display a special symbol
called a tracking symbol. For LCPOS, the
2250 operator places the light pen on the
tracking symbol, closes the switch, and as
he moves the light pen across the screen,
the tracking symbol moves. When the track-
ing symbol is at the point that the 2250
operator wishes the define to the program,
he signals the program that he has defined
the point. The program then calls CTLTK to
terminate LCPOS, the tracking symbol disap-
pears, and the defined x- and y-coordinates
are returned to the program.

TRACK uses the tracking symbol in much
the same way as LCPOS; but here a tracking
entity is being defined as the operator
identifies x- and y-coordinates with the
light pen. A call to TRACK causes the
tracking symbol to appear on the screen.
The 2250 operator places the light pen on
the tracking symbol, closes the switch, and
begins defining x- and y-coordinates.

As the tracking symbol is moved by the
2250 operator, the points being defined are
placed into a tracking entity, and the
defined points or lines appear on the
screen. The 2250 operator signals the
program when he wishes to change from curve
tracking (continuous sketching) to linear
tracking (defining points or straight
lines; i.e., rubber-banding) and vice
versa. The 2250 operator must also signal
the program that he has defined all the
desired points and lines. The program then
calls CTLTK to terminate light pen tracking
by removing the tracking symbol from the
screen. The program next calls CVTTD to
convert the x- and y-coordinates from 2250
format to a FORTRAN data format for further
manipulation. DISTE may be used to discon-
nect the defined tracking entity without
deleting it. It may still be treated as
any other defined tracking entity, but if
no linkage to it has been created, the
tracking entity disappears from the screen
after the call to DISTE.

Using the Programmed Function Keyboard

The programmed function keyboard (PFKB)
provides 32 pushbutton keys with 32 indica-
tor lights and eight code-sensing contacts
that sense notches punched in a plastic
overlay sheet. The overlay code is a
binary configuration giving values from 0
to 255, thereby allowing each key to issue
256 unique signals, or a total of 8192
signals for all 32 keys. The meaning of
each signal is defined by the program.

The programmed function keyboard is
either enabled or disabled. If enabled,
any key depressed causes an attention, and
the attention data is made available by
calling RQATN. In addition to the key

20

number, the overlay number is also returned
with the PFKB attention.

A subroutine is provided to enable the
program to selectively light the programmed
function keys. This subroutine, SPFKL,
provides the programmer the means of indi-
cating to the 2250 operator which of the
PFKB keys are meaningful at any particular
point in the program. SPFKL sets each of
the 32 key lights independently, either on
or off, as specified by the program.

Creating a Graphic Display 21

THE GSP SUBROUTINES

This section describes in detail each
GSP subroutine (except for subroutines for
communicating with the 2250 operator). It
begins with a discussion of those arguments
used in many of the argument lists for the
subroutines. Attention related, light pen,
and keyboard subroutines are described in
the section "Communicating With the 2250
Operator." count

elements (extended precision). If the
precision of the FORTRAN program is
changed, the DIMENSION statement
should be changed accordingly.
(However, if the GCA dimension is 21,
it	 will be valid for either
precision.)

ARGUMENTS USED BY MANY OF THE SUBROUTINES

In order to avoid repeated descriptions
of arguments that are common to several GSP
subroutines, a general description of such
arguments is given at this point. When an
argument has an extension to the primary
definition given here, the extended meaning
is included in the description of the
specific subroutine.

corrval
represents any correlation value, used
as an identifier of an element. It is
used by the defining subroutine and
other GSP subroutines as a common
means of reference to the element
identified by it. It may be used by
the programmer to associate the ele-
ment with the data used to generate
the element.

The "corrval" argument is a positive
integer constant, integer variable, or
integer arithmetic expression in the
range 1 to 32767. The value should be
unique for each element defined; oth-
erwise, the reference will be taken to
mean the first element, in the active
ICA, having that correlation value.

qca
represents any generation control area
(GCA), which contains information
needed by image generation subroutines
to properly generate elements of the
image entity. This information is
initialized or defined by the follow-
ing GSP subroutines:

GCAIN - GCA Initialization (standard
values)

SSCAL - Set Scaling Information
SSCIS - Set Scissoring Option
SINDX - Set Index Values
SINCR - Set Increment Values
SDATM - Set Input Data Mode
SGRAM - Set Output Graphic Mode

The GCA is a real array with either 21
elements (standard precision) or 14

is a positive integer constant, inte-
ger variable, or integer arithmetic
expression specifying the number of
elements to be accessed from input
data arrays for generating lines, line
segments, points, or characters. This
count includes those lines, line seg-
ments, and points calculated but not
displayed because of scissoring. The
value of "count" must be equal to or
less than the number of elements in
the input array.

device
is a positive integer constant, inte-
ger variable, or integer arithmetic
expression, with values from 1 to 4,
specifying the logical unit number
assigned in the call to the GSPIN
subroutine to a 2250 display unit.

textcode
is a positive integer constant, inte-
ger variable, or integer arithmetic
expression that defines the format of
the alphameric data designated by the
"text" argument in the PTEXT, MSGIN,
and TLMSG subroutines. The "textcode"
argument has the following values and
meanings:

1 = "text" is a real variable or
array with either four charac-
ters (standard precision) or six
characters (extended precision)
in each element. The data cor-
responds to the FORTRAN A-type
format.

2 = "text" is an integer variable or
array with two characters in
each element. The data corre-
sponds to the FORTRAN A-type
format.

3 = "text"
is an integer variable or inte-
ger array; the data in each
element consists of a positive
integer value representing a
single character, enabling the
programmer to use character data
in terms of their decimal equiv-

22

character
subscripted,
characters as

Normal Subscript

for	 aligned,
or superscripted

follows:

Superscript

0	 1	 2
or <

alents. The data corresponds to
the FORTRAN I-type format
(EBCDIC codes and their decimal
equivalents are given in Appen-
dix F).

Characters can be displayed
aligned, subscripted, or super-
scripted, as defined by the
integer value in each element of
the "text" array. The normal
(aligned) character range is
0-255. Any decimal value in
this range plus 256 causes the
corresponding character to be
subscripted; any value plus 512
causes the character to be
superscripted.

Examples:

129 +	 0 = 129 aligned a

129 + 256 = 385 subscripted a

129 + 512 = 691 superscripted a

4 = "text" is an integer variable or
integer array with two charac-
ters in each element. The data
corresponds to the FORTRAN A-
type format; the first character
in each element is a control

Category	 Mnemonic
	 Name

	

Definition GSPIN	 Graphic Subroutine
Package Initialization

	

ICAIN	 Image Construction
Area Initialization

	

Identifica- BELMT	 Begin Element
tion	 EELMT	 End Element

	

Image Con- UELMT	 Update Element
trol	 XELMT	 Extend Element

	

DELMT	 Delete Element

	

SATRB	 Set Controlled Entity
Attributes

	

Image Dis- EXEC	 Execute Display
play	 TMDSP	 Terminate Display

	

Termination GSPTM	 GSP Termination

GSPIN--Graphic Subroutine Package
Initialization

The GSPIN subroutine specifies control
information required by other GSP subrou-
tines: the precision used by the program,
variables for GSP error handling, and asso-
ciation of the device address with the
logical unit number.

r'General Form
I-	 ----- --1
'CALL GSPIN(integer,real,return,
I	 cumulative,unitl,unit2,unit3,1
I	 unit4)	 I
L 	 J

integer
is an integer constant or integer
variable with the following values and
meanings:

0 = standard precision
1 = "ONE WORD INTEGERS" FORTRAN con-

trol record used
Examples:

OA or <A = aligned A

1A or (A = subscripted A

2A or +A = superscripted A

IMAGE MANAGEMENT SUBROUTINES

Image management subroutines are image
"housekeeping" subroutines that are used to
establish the environmental characteristics
of a GSP program and to define and control
the structure of an image or subroutine
entity. They perform functions such as
defining and identifying areas, establish-
ing operating modes, etc. They do not
normally generate display data. They can
be considered as being analogous to FORTRAN
Specification statements. The image man-
agement subroutines are listed below, and a
detailed description of each, in the listed
sequence, follows:

real
is an integer constant or integer
variable with the following values and
meanings:

0 = standard precision
1 = "EXTENDED PRECISION" FORTRAN con-

trol record used

return
is an integer variable specifying
where the called GSP subroutines will
return an error code. (See "Error
Handling.")

cumulative
is an integer variable specifying
where the called GSP subroutines will
accumulate error indicators. (See
"Error Handling.")

unitl,unit2,unit3,unit4
are integer constants or integer vari-
ables defining the device address
associated with the logical unit num-

The GSP Subroutines 23

	

her (unitl...unit4).	 These logical
unit numbers are arguments in many GSP
subroutines. If an argument has a
value of zero, the corresponding logi-
cal unit number will not have a 2250
device associated with it. Only one
logical unit number can be associated
with a device address. The device
address must be the integer value 25.
All other logical unit numbers must
have the value 0.

CAUTION: A call to GSPIN must be issued
before any other GSP subroutines are
called. The call is issued at least once
per program or link; additional calls to
GSPIN within a program or link should be
preceded by calls to GSPTM (GSP
termination). An error will be indicated
by the GSP if GSPIN is not the first GSP
subroutine called.

GSPIN disables all attention sources.
No attentions can be received till after
the Set Attention Status (SATNS) subroutine
is called enabling one or more attention
sources (see "Attention Handling").

PROGRAMMING NOTES:

1. The 1130 FORTRAN precision rules are
described in the 1130 Disk Monitor
publication, and are summarized below.
The numbers specify number of words.

	

Integer	 Real
Con- Vari- Con- Vari-
stant able	 stant able

Standard	 1	 2	 2	 2
Precision

ONE WORD	 1	 1

ERRORS:

1. The "integer" or "real" argument is
not 0 or 1.

2. A "unit" argument is not 0 or 25.

ICAIN--Image Construction Area
Initialization

The ICAIN subroutine defines and initi-
alizes or redefines an image construction
area (ICA) where image entities and asso-
ciated control information are to be gener-
ated. The ICA so defined is the active
ICA.

r	 1
1General Form
i 	 i
'CALL ICAIN(corrval,ica(start),ica(end), 1

I	 option)	 I
L 	 	 .1

corrval
is defined in "Arguments Used by Many
of the Subroutines." This ICA corre-
lation value functions as an ICA iden-
tifier and is included in light pen
attention data (see the discussion of
the RQATN subroutine).

ica(start)
is a subscripted or non-subscripted
integer variable specifying the first
element of the array where image man-
agement and image generation subrou-
tines will construct image entities
and their control information. The
subscript, if used, is defined by
"(start)".

ica (end)
is a subscripted integer variable

1	 specifying the last element of the
3*	 3	 3	 array named by "ica(start)". The sub-

script is defined by "(end)".

INTEGERS

EXTENDED	 1
PRECISION	 3*

* if ONE WORD INTEGERS is specified,
use 1 word; if not specified, use 3
words.

2. If a program is recompiled with a
different set of precision control
records, the arguments of the GSPIN
call must be altered to agree with the
new precision options.

3. 2250 display units will have device
addresses assigned when they are
installed. The "unitl...unit4" argu-
ments permit the programmer to relate
a logical number (1,2,3,4) to the
actual device address, and in other
GSP calls to refer to logical device
numbers. By changing the arguments
for GSPIN, the logical device may be
reassigned and thus will not require
extensive changes for other GSP calls.

option
is an integer constant, integer vari-
able, or integer arithmetic expression
with the following values and mean-
ings:

0 = define and initialize an ICA
1 = redefine an ICA

(See the programming notes for discus-
sion and meanings of define, initial-
ize, and redefine.)

CAUTIONS:

1. A redefine "option" code should not be
used unless the ICA has been previous-
ly defined with a zero "option" code.

2. When	 redefining	 an	 ICA,	 the

24

"ica(start)" and "ica(end)" arguments
must be the same as they were when the
ICA was last defined.

3. If a defined ICA is referred to by
statements other than calls to GSP
subroutines, the results will be
unpredictable.

PROGRAMMING NOTES:

1. Multiple ICAs may be defined, although
this may not be necessary for most
programs since more than one image
entity may be constructed in a single
ICA. The ICA last defined by ICAIN is
the active ICA and is used by image
management and image generation sub-
routines until another ICA is defined
as the active ICA.

2. Redefining an ICA does not change its
contents, but merely establishes it as
the active ICA.

3. If a previously defined ICA is used as
an argument in a call to ICAIN, with
"option"=0, the ICA is set in an
initial status, with no elements es-
tablished; therefore, a previously
defined ICA may be reused (redefined
and reinitialized).

ERRORS:

1. The correlation value is not in the
range 1 to 32767.

2. The "ica(end)" argument is equal to or
less than the "ica(start)" argument.

3. The "option" argument is not 0 or 1.

BELMT--Begin Element

The BELMT subroutine specifies the
beginning of an element and establishes an
identification of the element.

3 = subroutine entity
4 = image entity

CAUTIONS:

1. Although elements may be nested, there
are certain restrictions which must be
observed. These are provided in
"Nesting."

2. Nesting of subroutine entities within
elements which may be deleted (see
DELMT) should be done with caution,
since the deletion of an element also
deletes all embedded elements. A
linkage to a subroutine entity thus
deleted causes unpredictable results.

3. A subroutine entity must be defined
before any linkages are made to it.

PROGRAMMING NOTES:

1. A light pen attention on a controlled
entity ("elementcode" = 2) makes the
correlation value available along with
other attention data (see RQATN.),
thus identifying the element detected
by the light pen.

2. Message entities, linkage entities,
tracking entities, and origin entities
are defined, named, and generated by
means of other GSP subroutines and
therefore do not require BELMT and
EELMT calls.

ERRORS:

1. The correlation value is not in the
range 1 to 32767.

2. The "elementcode" argument is not in
the range 1 to 4.

EELMT--End Element

The EELMT subroutine defines the end of
one or more elements.

IGeneral Form

'CALL BELMT(corrval,elementcode)

1	 r
I	 'General Form	 I

1	 E 	 I

I	 'CALL EELMT(corrval) 	 I
J	 L 	 J

corrval
is defined in "Arguments Used by Many
of the Subroutines."

elementcode
is an integer constant, integer vari-
able, or integer arithmetic expression
defining the type of element which is
to be begun:

1 = uncontrolled entity
2 = controlled entity

corrval
is defined in "Arguments Used by Many
of the Subroutines." It specifies the
outermost element to be ended.

PROGRAMMING NOTE: The EELMT subroutine
defines the end (close) of all elements
within and including the element identified
by the "corrval" argument that have been
previously defined and have not been pre-
viously closed. Figure 5 illustrates the
concept.

The GSP Subroutines 25

I	 #2

1

1

1

I	 #3

1	 #5

f

10	 CALL BELMT(1,n)

20	 CALL BELMT(2,n)

30	 CALL EELMT(2)
40	 CALL BELMT(3,n)

50	 CALL BELMT(4,n)

60	 CALL BELMT(5,n)

70	 CALL BELMT(6,n)

80	 CALL EELMT(5)
90	 CALL BELMT(7,n)

Begin Element #1

Begin Element #2

End Element #2
Begin Element #3

Begin Element #4

Begin Element #5

Begin Element #6

End Element #5 & 6
Begin Element #7

100	 CALL EELMT(1) 	 End Elements
#1,3,4, & 7

Figure 5. Beginning and Ending Elements

ERRORS:

I #7

	 	 -L 	 1	 .1.

3 = subroutine entity
4 = image entity

1. The correlation value is not in the
range 1 to 32767. 	 CAUTIONS:

2. The correlation value is not currently
defined.

UELMT--Update Element

The UELMT subroutine specifies the
beginning of an element update, starting at
the beginning of the element. UELMT
includes the option of changing the element
type.

r
'General Form

ICALL UELMT(corrval,elementcode)

corrval
is defined in "Arguments Used by Many
of the Subroutines."

elementcode
is an integer constant, integer vari-
able, or integer arithmetic expression
identifying the type of element which
is to be generated:

1. UELMT is in effect a combination of
DELMT and BELMT. Therefore, if the
element which is to be updated con-
tains other embedded elements, these
are also deleted, and their control
information is lost. To avoid this,
the cautions mentioned in the descrip-
tion of DELMT should be applied to
UELMT as well.

2. A UELMT call may not be followed by
XELMT or other UELMT calls until the
updated element is ended.

3. If a subroutine entity is changed to
another element type, linkages to that
subroutine entity should first be
deleted or made inactive.

PROGRAMMING NOTES:

1. UELMT, when applied to an embedded
element, updates the element without
disturbing its structural relation to
the element(s) within which it is
embedded.

1

1 = uncontrolled entity 	 2. After a call to UELMT is issued and
2 = controlled entity	 before updating is halted by a call to

26

EELMT, other inner elements may be sonable estimate can be made, a value of
defined.	 zero can be used.

3. If it is expected that an element is
to be inserted between other elements,
the contingency may be provided for by
defining a named, inactive, linkage
entity. This inactive element can be
updated when required.

ERRORS:

1. The correlation value is not in the
range 1 to 32767.

2. The correlation value is not currently
defined.

3. The call to UELMT was issued while the
GSP was already in update mode.

4. The "elementcode" argument is not in
the range 1 to 4.

XELMT--Extend Element

The XELMT subroutine designates the
beginning of an element update, starting at
the end of the element. The programmer
provides an estimate of the number of
lines, points, or characters that are to be
added to the element.

ERRORS:

1. The correlation value is not in the
range of 1 to 32767.

2. The correlation value is not currently
defined.

3. The correlation value is not for a
controlled, uncontrolled, subroutine,
or image entity.

4. The XELMT call was issued while the
GSP was already in update mode.

DELMT--Delete Element

The DELMT subroutine deletes one or more
previously defined elements. If the delet-
ed element contains embedded elements, the
embedded elements are also deleted.

'General Form

ICALL DELMT(corrval)
L 	 J

corrval
is defined in "Arguments Used by Many
of the Subroutines."'General Form

CALL XELMT(corrva1,1pcvalue)

1

I
CAUTIONS:

corrval
is described in "Arguments Used by
Many of the Subroutines."

1pcvalue
is a positive integer constant, inte-
ger variable, or integer arithmetic
expression and should be an estimate
of the number of lines, points, or
characters which are to be added to
the element.

CAUTIONS:

1. An XELMT call may not be followed by
UELMT or other XELMT calls until the
updated element has been ended.

2. XELMT may only be used to extend
elements defined by BELMT or UELMT.

PROGRAMMING NOTE: The purpose of the
"lpcvalue" argument is to improve the per-
formance of the XELMT function. A value
equal to or greater than the actual number
of generated lines, points, or characters
provides maximum efficiency. If the value
is lower, efficiency is lost. If no rea-

1. Since the deletion of an element also
causes the deletion of embedded ele-
ments, care must be taken to prevent
the inadvertent deletion of subroutine
entities that are still referred to by
linkage entities. To avoid the possi-
bility of undesired deletion, such
subroutine entities should not be
defined as embedded elements.

2. The element following a deleted ele-
ment may be repositioned on the screen
unless it is absolutely positioned.

PROGRAMMING NOTE: When an element is
deleted, its correlation value is no longer
defined as currently valid, and the element
may therefore not be referred to.

ERRORS:

1. The correlation value is not in the
range 1 to 32767.

2. The correlation value was never
defined, or the element has been pre-
viously deleted.

The GSP Subroutines 27

SATRB--Set Controlled Entity Attributes

The SATRB subroutine is used to change
the visibility and detectability attributes
of a completed controlled entity. When a
controlled entity is first defined, the GSP
assigns standard attributes to the entity.
The SATRB subroutine can be used to alter
the attributes from the standard attri-
butes, or it can be used to change the
attributes from those set by a previous
call to the SATRB subroutine.

r 1

detectcode)
I. 	 J

corrval
is defined in "Arguments Used by Many
of the Subroutines." It must identify
a completed controlled entity.

displaycode
is an integer constant or integer
variable specifying whether or not the
controlled entity is to be displayed
on the screen, as follows:

-1 = the controlled entity is not to
be displayed

0 = the visibility attribute is not
to be changed

+1 = the controlled entity is to be
displayed
Note: This is the standard
visibility attribute estab-
lished by the BELMT and UELMT
subroutines.

detectcode
is an integer constant or integer
variable specifying the detectability
attribute for the controlled entity,
as follows:

-1 = no light pen attentions provid-
ed

0 = the detectability attribute is
not to be changed

+1 = light pen attention provided
upon light pen detect with the
light pen switch closed
Note: This is the standard
detectability attribute estab-
lished by the BELMT and UELMT
subroutines.

PROGRAMMING NOTES: The following para-
graphs contain further information concern-
ing the visibility and detectabity attri-
butes:
displaycode = -1: When a "displaycode" of
minus one is specified for a controlled
entity, neither the controlled entity nor

any embedded elements are displayed on the
screen. However, the controlled entity
remains available (i.e., it is not deleted)
and is displayed if the programmer issues
another call to the SATRB subroutine speci-
fying that the controlled entity is to be
displayed. When a controlled entity is not
being displayed, the positions of elements
following it are affected if they are not
absolutely positioned.

displaycode = 0: This permits changing of
the detectability attribute without affect-
ing the existing visibility attribute.

displaycode = +1: The controlled entity and
all embedded elements are displayed on the
screen.

detectcode = -1: No light pen detect occurs
within the specified controlled entity or
any element nested within it.

detectcode = 0: This permits changing of
the visibility attribute without affecting
the existing detectability attribute.

detectcode = +1: A light pen attention is
provided, if enabled, when a light pen
detect with switch closure ccurs in the
specified controlled entity or any element
nested within it. The light pen attention
data includes: (1) the light pen attention
code; (2) one of the following:

a. the x- and y-coordinates for the point
on which the detect occurred,

b. the x- and y-coordinates for the end
point of a line on which the detect
occurred,

c. the actual character on which the
detect occurred;

(3) the correlation values of the ICA,
image entity, and controlled entity; (4)
the correlation value of the innermost
named element within the controlled entity,
in which the detect occurred; and (5) the
correlation value of the lowest level sub-
routine entity or the innermost named ele-
ment in the lowest level subroutine entity
in which the light pen detect occurred.
Items (4) and (5) above will be zero if not
applicable.

ERRORS:

1. The correlation value is not in the
range 1 to 32767.

2. The correlation value is not for a
controlled entity.

3. The definition of the controlled enti-
ty was never completed with a call to
the EELMT subroutine.

'General Form
V	'CALL SATRB(corrval,displaycode,

28

4. An invalid "detectcode" argument was
provided.

5. An invalid "displaycode" argument was
provided.

ERROR:

1. The "device" argument is invalid.

2. The display has already been terminat-
ed.

EXEC--Execute Display

The EXEC subroutine causes an image
entity to be displayed.

r
[General Form

'CALL EXEC(device,corrval,zero)

device and corrval
are defined in "Arguments Used by Many
of the Subroutines." The "corrval"
argument must identify a completed
image entity residing in the active
ICA.

zero
is an integer constant or integer
variable and must have a value of
zero.

PROGRAMMING NOTE: While an image entity is
being displayed, other image entities may
be generated in other ICAs. Image genera-
tion or updating of an image entity in the
ICA containing the image entity being dis-
played must be preceded by a call to TMDSP
to terminate the display.

ERRORS:

1. The correlation value is not in the
range 1 to 32767.

2. The correlation value is not defined
in the active ICA as an image entity.

3. The "device" argument is invalid.

TMDSP--Terminate Display

The TMDSP subroutine terminates the dis-
play of an image entity.

r
'General Form

'CALL TMDSP(device)

device
is defined in "Arguments Used by Many
of the Subroutines."

PROGRAMMING NOTE: Keyboard attentions may
be accepted from the 2250 display unit
after the display has been terminated by a
call to TMDSP.

GSPTM--GSP Termination

The GSPTM subroutine resets the 2250,
turns off the programmed function keyboard
indicators, provides a dump of a specified
length, and terminates the use of the GSP.
The GSPTM subroutine should be called when
the graphic processing portion of the pro-
gram has been completed.

1
'CALL GSPTM(dump,frmt,lolim,uplim)

J

dump
is an integer constant or integer
variable specifying whether a dump is
required:

0 = no dump
1 = dump

frmt
is an integer constant or integer
variable and must have a value of zero
to specify hexadecimal format.

lolim
is an integer constant or integer
variable specifying the lower limit of
the core dump.

uplim
is an integer constant or integer
variable specifying the upper limit of
the core dump.

PROGRAMMING NOTE: To reinitialize the GSP,
the GSPIN subroutine must be called.

ERRORS:

1. The "dump" code is not 0 or 1.

2. The "frmt" argument does not have a
value of zero.

3. The dump limits are negative.

IMAGE GENERATION SUBROUTINES

Image generation subroutines are con-
cerned with the creation of graphic ele-
ments that will eventually be displayed.
They define the content of an element by
converting the input data to 2250 format.
They do not actually cause a display; this
is done by means of the EXEC subroutine.

r
'General Form

The GSP subroutines 29

The image generation subroutines can be
considered as being analogous to Arithmetic
statements, which process data with no
actual output produced until the issuance
of I/O statements. The image generation
subroutines are listed below, and a
detailed description of each, in the listed
sequence, follows:

Category	 Mnemonic	 Name

	

GCA Defini- GCAIN	 Generation Control
tion	 Area Initialization

	

SSCAL	 Set Scaling Informa-
tion

	

SSCIS	 Set Scissoring Option

	

SINDX	 Set Index Values

	

SINCR	 Set Increment Values

	

SDATM	 Set Input Data Mode

	

SGRAM	 Set Output Graphic
Mode

	

Positioning MVPOS	 Move Element to a
Position

	

IDPOS	 Indicate Element Posi-
tion

	

LPC Genera- PLINE	 Plot Lines
tion	 PPNT	 Plot Points

	

PSGMT	 Plot Line Segments

	

PTEXT	 Plot Text
Linkage	 LKSUB	 Linkage to a Subrou-

tine

	

Miscella- PGRID	 Plot Grid Outline
neous	 PCOPY	 Plot Copy

GCAIN--Generation Control Area
Initialization

The GCAIN subroutine initializes a gen-
eration control area (GCA) with standard
values.

r
General Form

V 	

ICALL GCAIN(gca)
L 	

gca
is defined in "Arguments Used by Many
of the Subroutines."

PROGRAMMING NOTES:

1. GCAIN enables the programmer to ini-
tialize a GCA with a set of standard
values and options which may corre-
spond to some or all of the values and
options he would specify using the six
supplementary GCA definition subrou-
tines: SSCAL, SSCIS, SINDX, SINCR,
SDATM, and SGRAM. In many cases,
GCAIN in combination with one or two
supplementary GCA definition subrou-
tines is sufficient to completely
define a GCA. If all six supplementa-
ry GCA definition subroutines are used
to define all values and options,
GCAIN may be omitted.

2. A GCA may be altered at any time by
one or more of the GCA definition
subroutines.

3. A GCA must be fully defined before it
is used as an argument for GSP subrou-
tines other than the GCA definition
subroutines.

4. The following set of standard values
and options are used to initialize the
specified GCA:

a. Scaling (see SSCAL for definitions
of mnemonics)

SXL, SYL, GXL, GYL,
DXL, DYL =	 0

SXU, SYU, GXU, GYU,
DXU, DYU = 1023

The grid limits are equated to the
screen limits, and both screen and
grid are defined by the diagonal
of a rectangle whose lower-left
corner is established by x- and
y-coordinates of 0,0 and whose
upper-right corner is established
by x- and y-coordinates of
1023,1023. The x and y upper and
lower data limits, specifying that
input data is to be scaled to the
grid area, are initialized with a
range from 0 to 1023. Therefore,
the x and y scaling factors are
both 1 to 1. Note that the 2250
coordinate system, in raster
units, has the same range, 0 to
1023.

b. Scissoring	 (see	 SSCIS	 for
definition)

scissoring option = 2
The scissoring option is set for
scissoring to occur at the grid
boundaries.

c. Indexing	 (see	 SINDX	 for
definitions)

XSIND, YSIND, XEIND, YEIND = 1
All array index values are set to
1.

d. Incrementation	 (see SINCR for
definitions)

XSINC, YSINC, XEINC, YEINC = 0.
All increment values are set to
zero.

e. Input data mode (see SDATM for
definitions)

XIPMD, YIPMD = 1
The x and y input data mode is set
to real absolute.

f. Output graphic mode (see SGRAM for
definitions)

output mode = 1

1

30

The optimized graphic output mode
is set.

SSCAL--Set Scaling Information

The SSCAL subroutine specifies scaling
information for a GCA.

r
'General Form
V 	

ICALL SSCAL(gca,scalearray)
L 	 	 J

gca is defined in "Arguments Used by Many
of the Subroutines."

scalearray
is a real array with 12 elements:
element 1 = SXL - screen lower-left x-

coordinate
2 = SYL - screen lower-left y-

coordinate
3 = SXU - screen upper-right

x-coordinate
4 = SYU - screen upper-right

y-coordinate
5 = GXL - grid lower-left x-

coordinate
6 = GYL - grid lower-left y-

coordinate
7 = GXU - grid upper-right x-

coordinate
8 = GYU - grid upper-right y-

coordinate
9 = DXL - data lower-left x-

coordinate
10 = DYL - data lower-left y-

coordinate
11 = DXU - data upper-right x-

coordinate
12 = DYU - data upper-right y-

coordinate

where:

SXL, SYL
are arbitrary real values (screen
units) representing the x- and y-
coordinates that correspond to the
lower-left corner of the screen.
These coordinate values must be less
than the coordinate values used to
represent the upper-right corner of
the screen.

SXU, SYU
are arbitrary real values (screen
units) representing the x- and y-
coordinates that correspond to the
upper-right corner of the screen.
These coordinate values must be
greater than the coordinate values
used to represent the lower-left cor-
ner of the screen.

GXL, GYL
are arbitrary real values representing
the x- and y-coordinates that corre-
spond to the lower-left corner of the
grid and must be in the same units
used to represent the screen. These
coordinate values must be less than
the coordinate values used to rep-
resent the upper-right corner of the
grid.

GXU, GYU
are arbitrary real values representing
the x- and y-coordinates of the upper-
right corner of the grid and must be
in the same units used to represent
the screen. These coordinate values
must be greater than the coordinate
values used to represent the lower-
left corner of the grid.

DXL, DYL
are real values (data units)
representing the x- and y-coordinates
of lower limits of the input data to
be mapped into the grid. These values
may be greater or less than the values
specified for DXU and DYU.

DXU, DYU
are real values (data units) rep-
resenting the x- and y-coordinate
values that correspond to the upper
limits of the input data to be mapped
into the grid.

PROGRAMMING NOTES:

1 The screen is the total usable surface
of the 2250 cathode-ray tube; the grid
is a rectangular area equal to or
smaller than the screen; the data
limits represent the minimum and maxi-
mum data values which are to be mapped
into the grid area.

2. Images projected beyond the grid or
screen boundaries are cut off or
"scissored" as specified by the scis-
soring option in the GCA (see SSCIS
and GCAIN).

3. The scaling data defined by SSCAL is
effective for elements generated by
any calls that refer to the specified
GCA until a new call to SSCAL alters
the scaling data.

4. The scale array may be altered after a
call to SSCAL without affecting the
GCA.

5. See Figure 3 in the preceding section
for an example of scaling data argu-
ments used by the SSCAL subroutine.

ERRORS:

1. The lower-left screen or grid coordi-

The GSP Subroutines 31

nate values are greater than the cor-
responding upper-right values.

2. The grid lies outside the screen boun-
daries.

SSCIS--Set Scissoring Option

The SSCIS subroutine specifies the scis-
soring option for a GCA (see Figure 4 in
the preceding section).

r
'General Form
F	 1
'CALL SSCIS(gca,scisoption)

gca
is defined in "Arguments Used by Many
of the Subroutines."

scisoption
is an integer constant, integer vari-
able, or integer arithmetic expression
with the following values and mean-
ings:

1 = scissoring occurs at screen
boundaries

2 = scissoring occurs at grid boun-
daries

PROGRAMMING NOTES:

1. The subroutine entity makes it possi-
ble to display a particular element at
various locations on the screen,
depending on the positioning prior to
the linkage to the subroutine entity.
The generation of data for subroutine
entities is therefore in incremental,
rather than absolute, graphic units.
Scaling is based on the GCA scaling
data which establishes scaling factors
from the screen, grid, and data defi-
nitions (see SSCAL). Within a subrou-
tine entity, however, the grid no
longer applies to a particular rectan-
gular area on the screen. Scissoring
is therefore suppressed for the gener-
ation of elements within a subroutine
entity.

2. The scissoring option defined by a
call to SSCIS is effective for ele-
ments generated by calls using the
specified GCA until a new call to
SSCIS changes the scissoring option
for that GCA.

ERROR: The "scisoption" argument does not
have a value of 1 or 2.

SINDX--Set Index Values

The SINDX subroutine specifies indexing

information used in accessing' data from
input arrays.

r	
1

ICALL SINDX(gca,indexarray)
-J

gca
is defined in "Arguments Used by Many
of the Subroutines."

indexarray
is an integer array with four ele-
ments:

element 1 = XSIND, X start index: used
in PLINE, PPNT, and PSGMT
subroutines to index the X
input array for successive
input data.

2 = YSIND, Y start index: per-
forms for the y-coordinate
the same function as
XSIND.

3 = XEIND, X end index: used
in the PSGMT subroutine,
which requires 2 arrays
for the X start and end
values of a line segment.

4 = YEIND, Y end index: per-
forms for the y-coordinate
the same function as
XEIND.

The value assigned to each element of
the index array must be a positive
integer.

PROGRAMMING NOTES:

1. Indexing provides a means of making a
small selection or sampling from a
large array.

2. Input data may be combined into one
array. For example, the input data
for the x- and y-coordinates used by
PLINE may be alternated in a single
input array, and identified by sub-
scripting (i.e. arrayname(1) for x
data and arrayname(2) for y data).
Then x and y start index values of +2
would refer to the desired data in
alternating sequence.

3. The first input data obtained from, or
placed in, an array is the array
element named as the argument. The
index applied to this array element
causes the second and succeeding ele-
ments to be obtained.

4. The index data defined by any call to
SINDX is used for elements generated
by subroutines using the specified GCA

1

'General Form

32

until a new call to SINDX alters the
indexing information for the GCA.

5. The index array may be altered after a
call to SINDX without affecting the
GCA.

ERRORS: Elements in the index array con-
tain zeros or negative values.

SINCR--Set Increment Values

The SINCR subroutine specifies the
incrementation of current x- and y-
coordinates by a designated amount for each
point, line, and line segment.

IGeneral Form
	 1

'CALL SINCR(gca,incrementarray)1 	

gca
is defined in "Arguments Used by Many
of the Subroutines."

incrementarray
is a real array with four elements,
each specified in data units:

element 1 = XSINC, X start increment:
the value by which the
x-coordinate is to be
incremented.

2 = YSINC, Y start increment:
the value by which the
y-coordinate is to be
incremented.

3 = XEINC, X end increment:
the value by which the
x-coordinate that defines
the end of a line segment
is to be incremented. It
is used only with the
PSGMT subroutine.

4 = YEINC, Y end increment:
the value by which the
y-coordinate that defines
the end of a line segment
is to be incremented. It
is used only with the
PSGMT subroutine.

PROGRAMMING NOTES:

1. If the value of an element in the
increment array is non-zero (e.g.
XSINC = 2), a new coordinate value is
computed by increasing the last estab-
lished coordinate by the specified
constant increment (here, 2).

2. If the value of an element in the
increment array is zero, the deriva-
tion of a new coordinate value depends
on the x or y input data mode which
has been established in the GCA. For

a further description of this condi-
tion, see SDATM.

3. It is possible for x-coordinates to be
derived by a constant increment and
y-coordinates to be derived by input
data, and vice versa. See Figure 6
for the relationship of a constant
increment specified by means of a call
to SINCR and x or y incremental data
specified by means of a call to SDATM.

4. Increments may be positive or nega-
tive.

5. The increment data defined by any call
to SINCR is used for elements generat-
ed by subroutines using the specified
GCA until a new call to SINCR alters
the incrementation values for that
GCA.

6. After a call to SINCR, the increment
array may be altered without affecting
the GCA.

SDATM--Set Input Data Mode

The SDATM subroutine specifies the input
data mode for a GCA.

New X = old
absolute X

Asaved by the
GSP plus XSINC

New X = old
absolute X0	
saved by the
GSP plus
xarray (n)

New X =
xarray (n)

NOTE: The increment specified by a call to SINCR has priority and
furnishes a fixed increment regardless of the input data mode or
contents of the data array (see A above).

Figure 6. Incrementation by SINCR and
SDATM

0

The GSP Subroutines 33

r
'General Form

1CALL SDATM(gca,xipmd,yipmd)

gca
is defined in "Arguments Used in Many
of the Subroutines."

xipmd,yipmd
are integer constants, integer vari-
ables, or integer arithmetic expres-
sions defining the mode in which input
data is available for the designation
of x- and y-coordinates:

1 = real absolute
2 = real incremental
3 = integer absolute
4 = integer incremental
5 = integer absolute in 2250 raster

units

CAUTION: If the GCA x or y input data mode
and the mode of the input data do not
agree, the results will be unpredictable.

PROGRAMMING NOTES:

1. The input data modes defined by any
call to SDATM are used for elements
generated by subroutines using the
specified GCA until a new call to
SDATM changes the mode, for that GCA.

2. No scaling is done if the input data
mode specifies 2250 raster units.

3. See Figure 6 for the relationship of
an increment specified by means of a
call to SINCR and x or y incremental
input data specified by means of a
call to SDATM.

ERRORS: The "xipmd" or "yipmd" argument is
not a positive integer in the range 1 to 5.

SGRAM--Set Output Graphic Mode

The SGRAM subroutine specifies the out-
put generation mode for a GCA.

r-
1General Form
	 4

'CALL SGRAM(gca,opmd)
L_

gca
is defined in "Arguments Used by Many
of the Subroutines."

opmd
is an integer constant, integer vari-
able, or integer arithmetic expression
with the following values and mean-
ings:

1 = optimized output graphic mode
2 = absolute output graphic mode
3 = incremental output graphic mode

PROGRAMMING NOTES:

1. The GSP image generation subroutines
generate incremental output data for
subroutine entities regardless of the
output mode specified for the GCA.

2. The output mode specified by any call
to SGRAM is used for elements generat-
ed by calls using the specified GCA
until a new call to SGRAM changes the
mode for that GCA.

ERRORS: The "opmd" argument is not a
positive integer in the range 1 to 3.

MVPOS--Move Element to a Position

The MVPOS subroutine creates an origin
entity, in either absolute or incremental
mode, which positions the next element. It
provides the option of naming the origin
entity or of updating a previously named
origin entity.

r
'General Form

'CALL MVPOS(gca,xcooreycoor,corrval)

gca and corrval
are defined in "Arguments Used by Many
of the Subroutines." The "corrval"
argument may have a value of zero (see
programming notes).

xcoor,ycoor
area constants, variables, or arith-
metic expressions representing the x-
and y-coordinates where the element is
to be positioned. These values must
be in the input data mode defined in
the GCA.

CAUTION: A previously defined non-zero
correlation value must have been defined as
an origin entity (see programming notes).

PROGRAMMING NOTES:

1. If the "corrval" argument is zero,
MVPOS generates an unnamed origin
entity.

2. If the "corrval" argument is non-zero,
and has not been previously defined,
MVPOS defines a named origin entity.
Thus defined, it may be updated by
subsequent calls to MVPOS.

3. If the "corrval" argument is non-zero,
and has been previously defined as
identifying an origin entity, MVPOS

1
I

4

1

34

updates the origin entity using the
specified location.

4. The output generation mode used is as
defined in the GCA, except that an
output mode of optimize results in
absolute positioning, and origin gen-
eration within a subroutine entity is
always in incremental form.

5. If MVPOS is called following a call to
a subroutine entity, input and output
should, ideally, be in absolute mode
in order to reestablish absolute posi-
tioning and to permit scissoring of
subsequently generated incremental
data.

6. If absolute repositioning does not
follow a call to a subroutine entity,
the GSP assumes a closed subroutine
entity where positioning after execu-
tion of the subroutine is the same as
it was just prior to calling the
subroutine entity.

7. The positioning may be indicated to
the GSP without causing generation of
graphic data by issuing a call to
IDPOS. With an absolute origin rees-
tablished, subsequent generation may
be incremental and still be capable of
scissoring.

ERRORS:

1. An attempt is made to update an ele-
ment previously defined as other than
an origin entity.

2. The correlation value is not in the
range 0 to 32767.

3. The correlation value is not currently
defined.

IDPOS--Indicate Element Position

The IDPOS subroutine indicates the
starting point from which subsequent x- and
y-coordinates are to be computed. IDPOS
produces no graphic data, but provides the
GSP with a starting point that is necessary
for applying scissoring as defined in the
GCA.

'General Form
F	
'CALL IDPOS(gca,xcoor,ycoor)

gca

is expressions representing the x- and
y-coordinates where the next element
is to be positioned. The "xcoor" and
"ycoor" arguments must be in the input
data mode defined in the GCA.

PROGRAMMING NOTE: The IDPOS will normally
be used following generation of a linkage
entity and during element updates.

PLINE--Plot Lines

The PLINE subroutine generates graphic
data to produce lines. Scaling, indexing,
incrementation, and scissoring are per-
formed in accordance with the control data
in the GCA.

r
'General Form
F 	 I
(CALL PLINE(gca,xcoor,ycoor,count)

gca and count
are defined in "Arguments Used by Many
of the Subroutines."

xcoor,ycoor
are constants, variables, arrays, or
arithmetic expressions specifying the
x- and y-coordinate input data. The
"xcoor" and "ycoor" arguments must be
in the input data mode defined in the
GCA.

CAUTION: If the value of the "count"
argument exceeds the number of elements in
"xcoor" and "ycoor", the results will be
unpredictable.

PROGRAMMING NOTE: The PLINE subroutine
assumes that the element has been posi-
tioned on the screen and that the first
input data, either from the x or y input
data arrays or computed by increment
values, represents the end position of the
first line to be generated.

ERROR: The "count" argument is negative or
zero.

PPNT--Plot Points

The PPNT subroutine generates graphic
data to produce points. Scaling, indexing,
incrementation, and scissoring are per-
formed in accordance with the control data
in the GCA.

is defined in "Arguments Used by Many
of the Subroutines."	 'General Form

xcoor,ycoor	 'CALL PPNT(gca,xcoor,ycoor,count)
are constants, variables, or arithmet-

The GSP Subroutines 35

gca and count
are defined in "Arguments Used by Many
of the Subroutines."

xcoor,ycoor
are constants, variables, arrays, or
arithmetic expressions specifying the
x- and y-coordinate input data.
"xcoor" and "ycoor" must be in the
input data mode defined in the GCA.

CAUTION: If the value of the "count"
argument exceeds the number of elements in
"xcoor" and "ycoor", the results will be
unpredictable.

PROGRAMMING NOTE: The PPNT subroutine
assumes that the element has been posi-
tioned on the screen and that the first
input data, either from the x and y input
data arrays or computed by increment
values, represents the position of the
first point to be generated.

ERROR: The "count" argument is negative or
zero.

PSGMT--Plot Line Segments

The PSGMT subroutine generates graphic
data to produce one or more line segments.
Scaling, indexing, incrementation, and
scissoring are performed in accordance with
the control data in the GCA.

r-
'General Form

'CALL PSGMT(gca,xscoor,yscoor,xecoor,
yecoor,count)

gca and count
are defined in "Arguments Used by Many
of the Subroutines."

xscoor,yscoor
are constants, variables, arrays, or
arithmetic expressions specifying the
x and y starting coordinates for each
line segment to be produced. The
"xscoor" and "yscoor" arguments must
he in the input data mode defined in
the GCA.

xecoor,yecoor
are constants, variables, arrays, or
arithmetic expressions specifying the
x and y end coordinates for each line
segment to be produced. The "xecoor"
and "yecoor" arguments must be in the
input data mode defined in the GCA.

CAUTION: If the value of the "count"
argument exceeds the number of elements in
the input data, the results will be unpre-
dictable.

ERROR: The "count" argument is negative or
zero.

PTEXT--Plot Text

The PTEXT subroutine generates graphic
data to produce characters (see Appendix
F).

r	 1
'General Form

ICALL PTEXT(gca,text,count,size,textcode)I

gca, count, and textcode
are defined in "Arguments Used by Many
of the Subroutines."

text
is a variable or array designating the
alphameric characters to be displayed.
The character data designated by
"text" must agree with the type (real
or integer) and format (A or I) speci-
fied in "textcode."

size
is an integer constant, integer vari-
able, or integer arithmetic expression
with the following values and mean-
ings:

1 = basic character size
2 = large character size

CAUTION: If the "count" argument exceeds
the number of elements in "text", the
results will be unpredictable.

PROGRAMMING NOTES:

1. The PTEXT subroutine assumes that the
beam has been positioned at the center
point of the first character to be
displayed.

2. If the "textcode" argument has a value
of 3 and the "count" argument has a
value of 1, a single character can be
generated from alphameric keyboard
data or light pen attention data
returned by a call to RQATN.

3. Scaling, incrementation, and scissor-
ing options are not applicable to
PTEXT.

4. Characters are either absolutely or
incrementally positioned as determined
by the output graphic mode for the
GCA. In absolute mode, a new line is
begun automatically when the x-
coordinate for a character is beyond
the right edge of the screen. If the
new line function should cause the
y-coordinate for a character to be
below the bottom of the screen, the

36

character is positioned in the upper-
left corner of the screen.

In incremental mode, the new line
function is not performed. When the
x-coordinate for a character is beyond
the right edge of the screen, that and
following characters are blank. If
there are more than 74 basic size or
49 large size characters beyond the
right edge of the screen, the excess
appear on the left side of the screen
and on the same line.

If the GCA specifies optimized output
graphic mode, characters are
positioned absolutely.

ERRORS:

1. The "count" argument is negative or
zero.

2. The "size" argument is not 1 or 2.

3. The "textcode" argument is not in the
range 1 to 4.

LKSUB--Linkage to a Subroutine

The LKSUB subroutine creates either an
active or inactive linkage to a subroutine
or tracking entity. It provides the option
to name the linkage entity or update a
previously named linkage entity.

r	 1
'General Form

'CALL LKSUB(subroutine,corrval,switch)
I. 	 	 J

subroutine
is a correlation value identifying a
previously named subroutine or track-
ing entity. This argument may have a
value of zero (see programming notes).

corrval
is defined in "Arguments Used by Many
of the Subroutines." It identifies
the linkage entity that is being
created or updated. This argument may
have a value of zero (see programming
notes).

switch
is an integer constant, integer vari-
able, or integer arithmetic expression
with the following values and mean-
ings:

1 = set as active linkage entity
2 = set as inactive linkage entity

PROGRAMMING NOTES:

1. Creating a linkage entity: LKSUB

creates an unnamed linkage entity if
the "corrval" argument has a value of
zero. A linkage entity so created
cannot be updated. LKSUB creates a
named linkage entity if the "corrval"
argument has a non-zero value that
does not identify a previously defined
element. A linkage entity so created
can be referred to by its correlation
value and modified (see below). The
named linkage entity may be either
active ("switch" = 1) or inactive
("switch" = 2). If the "subroutine"
argument has a value of zero, the
linkage entity is made inactive
regardless of the value specified for
"switch".

2. Modifying a linkage entity: LKSUB
updates a linkage entity if the
"corrval" argument identifies a pre-
viously created linkage entity. An
inactive linkage entity can be made
active and vice versa; the
"subroutine" argument can be respeci-
fied; or both the "subroutine" and
"switch" arguments can be respecified.
In changing an inactive linkage entity
to active, the "subroutine" argument
may have a value of zero if the
correlation value of a subroutine or
tracking entity was specified for that
argument when the linkage entity was
created.

ERRORS:

1. The linkage is being made to an ele-
ment not defined as a subroutine enti-
ty or tracking entity.

2. The correlation value is not in the
range 0 to 32767.

3. The "subroutine" argument is not in
the range 0 to 32767.

4. The correlation value of the subrou-
tine or tracking entity is not cur-
rently defined.

5. The "switch" argument is not 1 or 2.

EXAMPLES: The first example below creates a
named, inactive linkage entity. The second
example makes that linkage entity active.
Since the element being linked to is iden-
tified in the first statement, the
"subroutine" argument in the second state-
ment may have a value of zero.

CALL LKSUB(5,10.2)
CALL LKSUB(0,10,1)

PGRID--Plot Grid Outline

The PGRID subroutine generates the four

The GSP Subroutines 37

'CALL PGRID(gca)
L_

lines which form the grid as defined in the
GCA.

r-'General Form

gca
is defined in "Arguments Used by Many
of the Subroutines."

PROGRAMMING NOTES:

1. Any rectangle (grid outline) may be
generated by altering the GCA by means
of a call to SSCAL.

2. The data defined by SSCAL effectively
defines the "area of interest" of the
input data. PGRID provides a means of
putting a visible frame around this
area of interest. This may be even
more evident if scissoring on screen
boundaries is specified. In this
case, all scaled input data which
falls within the screen area will be
displayed, and the grid frame will
outline the area of interest.

PCOPY--Plot Copy

The PCOPY subroutine copies a previously
defined, named element and includes it as
all or part of the current element which is
being generated or updated.

r-'General Form

'CALL PCOPY(corrval)
L 	

corrval
is defined in "Arguments Used by Many
of the Subroutines." It identifies
the element which is to be copied.

CAUTIONS:

1. Named elements embedded within the
element being copied are also copied,
but in their new location will no
longer have correlation values asso-
ciated with them.

2. Any positioning data (see MVPOS) with-
in the element being copied becomes a
part of the new element which is being
generated or updated. If this posi-
tioning data is in absolute mode, the
copied element will be displayed at
the same location on the 2250 screen
as the original element.

PROGRAMMING NOTES:

1. The PCOPY subroutine permits duplica-
tion of previously generated elements
without the necessity either of pro-
viding the input data or of duplicat-
ing the image generation calls used to
produce the previous generation.

2. To be meaningful, the element being
copied should consist only of incre-
mental data, so that it may be relo-
cated on the 2250 screen.

ERRORS:

1. The correlation value is not in the
range 1 to 32767.

2. The correlation value is not currently
defined.

3. The element defined by the correlation
value is incomplete.

-1

-1

	1
I

--I

38

COMMUNICATING WITH THE 2250 OPERATOR

The GSP provides subroutines that permit
communication between the 2250 operator and
the program. The program communicates with
the operator by placing a message on the
2250 screen. It also provides the means by
which the operator can respond to the
message by making the light pen, programmed
function keyboard, or alphameric keyboard
available for use. The operator communi-
cates with the program by entering informa-
tion from the alphameric keyboard, by de-
pressing a programmed function key, or by
pointing the light pen at a displayed image
entity. Any such response causes an atten-
tion.

An attention is an interruption that
causes the program to change its course at
an unpredictable point. When an attention
occurs, processing of the user's program is
interrupted and control is passed to the
GSP to process the attention. This pro-
cessing results in information about the
attention being made available to the
user's program upon request.

How the attention information is to be
handled must be specified by the program-
mer. The information may be ignored or may
be held for later processing upon request.
The processing is done by routines written
by the programmer.

There are four attention sources avail-
able to the GSP user:

• The programmed function keyboard
• The END key on the alphameric keyboard
• The alphameric keyboard (except END or

CANCEL keys)
• The light pen

Note: The GSP redisplays the image entity
after a keyboard attention. The GSP
restarts the 2250 (initiates regeneration)
after a light pen attention, but does not
redisplay the image entity. The program
must therefore issue a call to EXEC follow-
ing light pen attentions to redisplay the
image entity.

Enabling and Disabling Attention Sources

The programmer permits the saving of
attention information from a particular
source by enabling that source. He causes
the attention information to be ignored by
disabling the source. The GSP provides one
subroutine that both enables and disables
attention sources.

Desired sources must be enabled by a
call to the Set Attention Status (SATNS)

subroutine. Attention information from
disabled sources is ignored. Attention
sources may be repeatedly enabled or dis-
abled.

The enabling of an attention source
causes all attentions from that source to
be accepted by the GSP. By calls to the
Set Controlled Entity Attributes (SATRB)
subroutine, the programmer can designate
controlled entities for which he does not
wish light pen attentions to be accepted.
Light pen attentions do not occur on ele-
ments so designated, thus preventing
unwanted light pen attentions from being
processed.

Saving Attention Information

When an attention occurs from an enabled
source, the program is interrupted and
attention information is saved. The atten-
tion information contains the identifi-
cation of the source that caused the atten-
tion. Additional information about that
attention (e.g., the character detected by
the light pen) is also provided.

Once the attention information is saved,
control is returned to the program at the
point where that program was interrupted.
The program is not notified that an atten-
tion has occurred until attention informa-
tion is requested by a call to the Request
Attention Information (RQATN) subroutine.

Using the CANCEL Key

The alphameric keyboard CANCEL key is
reserved for direct communication between
the 2250 operator and the GSP. The key is
automatically enabled as soon as the 2250
is identified by means of a call to GSPIN.
It is to be used when the 2250 operator has
recognized a condition in the program which
warrants interruption.

When the CANCEL key is depressed, all
activity on the 2250 is immediately sus-
pended, and the alphameric keyboard END key
is enabled. (The CANCEL key remains en-
abled.) All other attention sources are
temporarily disabled. The 2250 operator
must now make one of the following choices:

1. Depress the END key, which causes the
program to terminate and a core dump
to be produced.

2. Again depress the CANCEL key, which
restores the program as it was before
the preceding CANCEL key attention
occurred and causes it to continue
execution at the point of the initial
interruption.

Communicating with the 2250 Operator 39

ATTENTION-HANDLING SUBROUTINES

This section describes the attention-
handling subroutines available for
communication between the program and the
2250 operator.	 These subroutines are as
follows:

Set Attention Status (SATNS)
Request Attention Information (RQATN)
Return Outer Correlation Value (ROCOR)

SATNS---Set Attention Status

The SATNS subroutine designates atten-
tion sources to be processed by the program
(enabled sources) and disables all other
sources, including any sources enabled by a
prior call to SATNS. Any unprocessed
attention information is removed.

Once attention sources are enabled,
attention information from the enabled
sources is accepted, while attention infor-
mation from sources not enabled is ignored.
Once attention information has been accept-
ed, it can be requested at any time by a
call to the RQATN subroutine.

The SATNS subroutine may be called as
often as desired to enable and disable
attention sources. Prior to the first call
to SATNS, all attention sources are dis-
abled.

1-
'General Form

/CALL SATNS(device,attnsource)
L 	

device
is defined in "Arguments Used by Many
of the Subroutines."

attnsource
is an integer constant, integer vari-
able, or integer arithmetic expression
representing the code of an attention
source, or attention sources, to be
enabled. The sources and their codes
are as follows:

0 = all sources disabled
2 = light pen
4 = END key
8 = alphameric keyboard key

16 = programmed function keyboard key
30 = all sources enabled

More than one source at a time can be
designated by adding the individual
codes and using the sum as the
"attnsource" argument (e.g., 6 for
Light pen and END key).

PROGRAMMING NOTES: The CANCEL key on the
alphameric keyboard is reserved for a sys-

tem function and is not under the control
of the SATNS subroutine. (See "Using the
CANCEL Key.")

ERRORS:

1. The "attnsource" code is invalid.

2. The "device" argument is invalid.

RQATN--Request Attention Information

The RQATN subroutine enables the pro-
grammer to obtain attention information at
any point in his program. By calling upon
this subroutine, the programmer can deter-
mine if an attention has occurred and can
identify its source.

-1
/General Form

/CALL RQATN(device,arrayname)I 	
device

is defined in "Arguments Used by Many
of the Subroutines."

arrayname
is a 20-element integer array into
which the attention information is to
be placed. The attention information
is inserted into the array as shown in
Table 1. An array element contains
meaningful information only for those
attention sources designated as appli-
cable to the element. For example,
elements 5, 6, and 7 do not contain
meaningful information if a keyboard
is the attention source.

PROGRAMMING NOTE: A call to RQATN should
normally be followed by an IF statement to
determine whether or not an attention has
occurred (a value of zero in the first
element of the array indicates that an
attention did not occur).

Example: The following sample coding illus-
trates a procedure that can be followed
when it is necessary to wait for an atten-
tion before proceeding with program execu-
tion.

10 CALL RQATN(1,IARAY)
IF (IARAY(1)) 80,20,30

20 PAUSE
GO TO 10

30 (process attention)

80 (error - this condition should not
occur)

ERROR: The "device" argument is invalid.

1

-J

40

Table 1. Format of the Array for RQATN
r	 -T
'Element	 I	 Contents
E 	 -+	 	 1
Array(1)	 Zero if no attention occurred; or one of the following attention source

codes:

Code	 Source
	2 	 light pen

	

4	 END key

	

8	 alphameric key

	

16	 programmed function key

A decimal number in the range 1 to 4 corresponding to the logical unit
number.
For light pen, the decimal equivalent of the character detected, if
applicable (see the description of "textcode" = 3 in "Arguments Used by
Many of the Subroutines"); or minus one if the detect was not on a
character.
For programmed function key, a decimal number in the range 0 to 31
corresponding to the depressed key.

For alphameric key, the decimal equivalent of the character entered from
the keyboard (see Appendix F); or one of the following values:

256 for the JUMP key
512 for the BACKSPACE key

1024 for the ADVANCE key

For light pen, the x-coordinate beam position in 2250 raster units.

For programmed function key, a decimal number in the range 0 to 255
corresponding to the overlay.

For light pen, the y-coordinate beam position, in 2250 raster units.

For light pen, the correlation value of the ICA.

For light pen, the correlation value of the image entity.

For light pen, the correlation value of the controlled entity.

For light pen, the correlation value of the innermost named element within
the controlled entity in which the light pen detect occurred; or zero if
not applicable.
For light pen, the correlation value of the lowest level subroutine entity
or the innermost element within the lowest level subroutine entity in
which the light pen detect occurred; or zero of not applicable.

Reserved.

Reserved.

Array(2)

Array(3)

Array(4)

Array(5)

Array(6)

Array(7)

Array(8)

Array(9)

Array(10)

Array(11)

Array(20)

Communicating with the 2250 Operator 41

ROCOR--Return Outer Correlation Value 	 ENTERING DATA WITH THE ALPHAMERIC KEYBOARD

The ROCOR subroutine enables the pro-
grammer to obtain the correlation value and
the identity of an element in which another
element is nested.

r	 -1
'General Form
I. 	

CALL ROCOR(corrval,outer,elementcode)
L 	

corrval
is defined in "Arguments Used by Many
of the Subroutines."

outer
is an integer variable indicating
where the correlation value of the
outer element (the one in which the
element identified by the "corrval"
argument is nested) is to be returned.

elementcode
is an integer variable indicating
where a code identifying the outer
element is to be returned. The values
that can be returned are as follows:

0 = correlation value of an image
entity, tracking entity, or sub-
routine entity was provided

1 = uncontrolled entity
2 = controlled entity
:3 = subroutine entity
4 = image entity

CAUTION: Only the active image construc-
tion area (that is, the one last referred
to in a call to the ICAIN subroutine) is
searched. The "corrval" argument must
therefore identify an element within the
active ICA.

PROGRAMMING NOTE: The RQATN subroutine
returns the correlation value of an element
on which a light pen detect occurs (see
Table 1). This correlation value can be
used as the "corrval" argument for the
ROCOR subroutine to identify the next outer
element.

ERROR: The "corrval" argument is not
defined in the active ICA.

EXAMPLE: Given is the following image
entity:

678 9

(MOD

If the "corrval" argument identifies ele-
ment 8 or 9 the ROCOR subroutine returns
the correlation value of element 7 for the
"outer" argument and a value of 2
(controlled entity) for the "elementcode"
argument.

The following paragraphs describe the
subroutines that allow text data to be
entered from the alphameric keyboard.
These subroutines are as follows:

Define Message Entity (DFMSG)
Message Entity Initialization (MSGIN)
Insert Cursor (ICURS)
Remove Cursor (RCURS)
Translate Message Data (TLMSG)

DFMSG--Define Message Entity

The DFMSG subroutine is used to create a
message entity or to redefine a message
entity that was previously defined. A
message entity is an element in which
alphameric data entered from the alphameric
keyboard or generated by the program can be
placed. The message entity is identified
by the correlation value supplied in the
call to the DFMSG subroutine.

If the message entity was previously
defined, a call to this subroutine can be
used to change the number of characters
associated with the entity or to change the
size at which those characters are to be
displayed on the screen. The DFMSG subrou-
tine can also be used to fill the entity
with null characters or blank characters.

-1
'General Form

'CALL DEMSG(corrval,count,size,initwa) 1

corrval and count
are defined in "Arguments Used by Many
of the Subroutines." The "count"
argument indicates the number of char-
acters in the message entity. A value
of zero specifies no change.

size
is an integer constant, integer vari-
able, or integer arithmetic expression
specifying the size in which charac-
ters are to be displayed or, the
screen, as follows:

0 = no change
1 = basic size characters
2 = large size characters

initval
is an integer constant, integer vari-
able, or integer arithmetic expression
specifying whether the message entity
is to be initialized with null charac-
ters or blank characters, as follows:

0 = no change

142

1 = null characters (which do not
cause the beam to be
repositioned)

2 = blank characters (which do cause
the beam to repositioned)

CAUTION: If null characters are used in a
message entity and the entity is followed
by incremental graphic data, the replace-
ment of a null character with a blank or
alphameric character will cause the graphic
data following the message entity to be
displayed at a different point on the
screen. To avoid this, the programmer
should either: (1) initialize the message
entity with blank characters, or (2) ensure
that the following element is absolutely
positioned.

PROGRAMMING NOTES: Displayable characters
are placed in a message entity in one of
two ways. Either a call to the MSGIN
(Message Entity Initialization) subroutine
causes alphameric data from the program to
be placed in the message entity, or a call
to the ICURS (Insert Cursor) subroutine
permits characters entered at the alphamer-
ic keyboard to be placed in the message
entity.

See the programming notes for PTEXT for
information about the effect of the output
graphic mode on displaying characters.

ERRORS:

1. The correlation value is not in the
range 1 to 32767.

2. The correlation value does not iden-
tify a message entity.

3. The "count" argument is negative.

4. The "size" argument is not 0, 1, or 2.

5. The "initval" argument is not 0, 1, or
2.

6. The "count", "size', or "initval"
argument is 0, but the message entity
was not previously defined.

MSGIN--Message Entity Initialization

The MSGIN subroutine is used to place
alphameric data into a previously defined
message entity.

1'General Form

CALL MSGIN(corrval,charpos,text,count, I

textcode)

corrval, count, and textcode
are defined in "Arguments Used by Many

of the Subtoutines." The correlation
value identifies the message entity
into which the characters are to be
placed. The "count" argument speci-
fies the nUmber of characters to be
placed in the message entity.

charpos
is an integer constant, integer vari-
able, or integer arithmetic expression
indicating the character position
within the message entity at which the
first character is to be placed. Its
value must be positive. A value of 1
indicates the first character posi-
tion; 2 indicates the second character
position, etc. By using a variable
and by increasing its value by 1 each
time the variable is used, the pro-
grammer cart place one character at a
time into the message entity.

text
is a variable or array designating the
alphameric characters to be placed in
the message entity. The character
data designated by "text" must agree
with the type (real or integer) and
format (A or I) specified in
"textcode".

CAUTION: The total number of character
positions in a message entity is estab-
lished by the "count" argument provided
when the entity is defined by a call to the
DFMSG (Define Message Entity) subroutine.
The "count" and "charpos" arguments of the
MSGIN subroutine determine the maximum num-
ber of character positions that are filled
in the message entity. If the number of
characters in the variable or array exceeds
the available character positions in the
message entity, the rightmost characters in
the variable o4 array are omitted. If the
number of characters in the variable or
array is not sufficient to fill the avail-
able character positions, the remaining
characters in the message entity are
unchanged.

PROGRAMMING NOTE: The message entity spec-
ified in a call to the MSGIN subroutine can
later be specified in a call to the ICURS
(Insert Cursor) subroutine.

See the programming notes for PTEXT for
information about the effect of the output
graphic mode on displaying characters.

ERRORS:

1. The correlation value is not in the
range 1 to 32767.

2. The correlation value does not iden-
tify a message entity.

Communicating with the 2250 Operator 43

3. The "count" argument is not a positive
non-zero integer.

4. The value of "count" plus "charpos"
specified in this call exceeds the
value of the "count" argument used in
the last call to the DFMSG subroutine
for this message entity.

5. The "textcode" argument is not in the
range 1 to 4.

ICURS--Insert Cursor

The ICURS subroutine causes a cursor to
be placed at a specified position in a
message entity and to be displayed. Once
the cursor has been set, characters entered
at the alphameric keyboard are placed in
the message entity and displayed on the
screen.

r	 1
1CALL ICURS(device,corrval,charpos)
	 J

device and corrval
are defined in "Arguments Used by Many
of the Subroutines." The "corrval"
argument identifies the message entity
into which the cursor and alphameric
data are to be placed.

charpos
is an integer constant, integer vari-
able, or integer arithmetic expression
specifying the character position
within the message entity at which the
cursor is to be set. Its value must
be positive. A value of 1 indicates
the first character position; 2 speci-
fies the second character position,
etc.

CAUTION: Before calling this subroutine,
the image entity containing the message
entity (identified by the "corrval"
argument) must have been displayed by means
of a call to EXEC.

PROGRAMMING NOTES:

1. After the cursor appears on the
screen, a character entered from the
alphameric keyboard is placed at the
location of the cursor, and the cursor
is moved to the next position in the
message entity. A space produces a
blank character. If a character is
entered in the last position of the
message entity, the cursor is not
moved, and any new characters are
entered at the cursor.

2. The cursor can be backspaced using the
BACKSPACE key, but not beyond the

first position of the message entity.
Backspacing does not destroy charac-
ters.

3. The same character can be entered
several times in succession by holding
down the CONTINUE key and depressing
the desired character key. Note that
the multiple entries are accepted
until the CONTINUE key is released or
until the message entity is filled.

4. Depression of the JUMP key causes the
cursor to be moved to the first posi-
tion of the next message entity in the
image entity, if any, or to the first
position of the same message entity if
there is only one. This enables the
2250 operator to "tabulate" or "skip
to next line", depending on where the
message entities are positioned on the
screen.

5. When a call to the ICURS subroutine is
issued for a 2250, all alphameric
keyboard attentions are processed by
the GSP even though those attentions
may have been enabled for program
processing.

6. The cursor produced by the ICURS sub-
routine remains visible until it is
removed from the screen by a call to
the RCURS (Remove Cursor) subroutine.

7. If a second call to the ICURS subrou-
tine is issued before a call is made
to the RCURS subroutine, the arguments
in the second ICURS call become effec-
tive immediately.

ERRORS:

1. The correlation value does not iden-
tify a message entity.

2. The image entity containing the mes-
sage entity is not being displayed by
means of a call to EXEC.

3. The "device" argument is invalid.

4. The "charpos" argument is greater than
the size of the message entity, or is
zero or negative.

RCURS--Remove Cursor

The RCURS subroutine removes the cursor
from the 2250 screen and terminates message
collection from the device.

1
ICALL RCURS(device)

'General Form
F 	

r
'General Form

44

device
is defined in "Arguments Used by Many
of the Subroutines."

PROGRAMMING NOTE: This subroutine is
called when the programmer no longer wants
to accept alphameric keyboard input from
the device. The cursor is removed from the
screen, no further alphameric input is
accepted from the device, and the alphamer-
ic keyboard reverts to its previous atten-
tion status.

ERROR: The "device" argument is invalid.

TLMSG--Translate Message Data

The TLMSG subroutine is used to convert
data associated with a message entity from
2250 format to EBCDIC format and to place
the translated data into a specified vari-
able or array. When in 2250 format, alpha-
meric data is suitable only for display.

r
'General Form
F 	
CALL TLMSG(corrval,text,elcount,

1	 textcode) 1
I 	 J

corrval and textcode
are defined in "Arguments Used by Many
of the Subroutines." The correlation
value identifies the message entity
that is to be translated. The message
entity must have been defined pre-
viously by a call to the DFMSG subrou-
tine.

text
is a variable or array specifying
where the translated data is to be
placed. The character data designated
by "text" must agree with the type
(real or integer) and format (A or I)
specified in "textcode".

elcount
is an integer constant, integer vari-
able, or integer arithmetic expression
defining the number of elements in the
text array.

CAUTIONS:

1. If the message entity contains fewer
characters than the capacity of the
variable or array, the character posi-
tions in the unused portion of the
variable or array are filled with
blanks.

2. If the number of characters associated
with the message entity exceeds the
capacity of the variable or array,
excess characters at the end of the
message entity are not translated.

ERRORS:

1. The correlation value is not in the
range 1 to 32767.

2. The correlation value does not iden-
tify a previously defined message
entity.

3. Message entity characters were not
translated because the message entity
exceeds the capacity of the variable
or array.

4. The "textcode" argument is not in the
range 1 to 4.

5. The "elcount" argument is zero or
negative.

ENTERING DATA WITH THE LIGHT PEN

The following paragraphs describe the
subroutines that facilitate communication
between the GSP program and the 2250 opera-
tor through use of the light pen. The
subroutines involve locating a position on
the screen at which the light pen is
pointed and using the light pen to move a
tracking symbol from one screen location to
another. The subroutines are as follows:

Locate Position of Light Pen (LOCPN)
Locate Position of Light Pen on No
Detect (LOCND)
Locate a Position with the Tracking
Symbol (LCPOS)
Track Position of Light Pen (TRACK)
Control Light Pen Tracking (CTLTK)
Disconnect Tracking Entity (DISTE)
Convert Tracking Data (CVTTD)

LOCPN--Locate Position of Light Pen

The LOCPN subroutine displays a scanning
pattern for locating the position of the
light pen. Its use allows the program to
identify the position of the light pen when
the light pen is pointing at a blank area
of the screen. Closing the light pen
switch causes a light pen attention to
occur.	 The original display is then
restored. The program can access the
attention information by calling the
Request Attention Information (RQATN) sub-
routine. The coordinates returned by RQATN
are in 2250 raster units.

r
'General Form

'CALL LOCPN(device,corrval)
I. 	

device and corrval
are defined in "Arguments Used by Many
of the Subroutines." The "corrval"

1

Communicating with the 2250 Operator 45

argument must identify an image entity
that is being displayed.

PROGRAMMING NOTES: During the scan for the
light pen, the original display is not. on
the screen. To locate a position that
bears some relationship to the original
display, therefore, the 2250 operator
should point the light pen at the appropri-
ate position on the screen and then, by an
alphameric or programmed function keyboard
attention, signal the program to initiate
the scan.

After the scanning is begun, the LOCPN
subroutine returns control to the calling
program. Thus the program can continue
processing while the 2250 operator is sel-
ecting a position for the light pen. When
a light pen attention occurs, it is ser-
viced by the GSP, the programmer's
enable/disable status for light pen atten-
tions is restored, and a light pen atten-
tion is available to the program. The
correlation values supplied as part of the
attention information are zero (see RQATN).

The x- and y-coordinates returned by the
RQATN subroutine can be used as arguments
for other subroutine calls, for example,
MVPOS or TRACK.

ERRORS:

1. The correlation value is not in the
range 1 to 32767.

2. The correlation value does not iden-
tify an image entity that is being
displayed.

3. The "device" argument is invalid.

LOCND--Locate Position of Light Pen on No
Detect

The LOCND subroutine displays a scanning
pattern for locating the position of the
light pen, but only if there was no light
pen detect on the image entity that was
being displayed and the light pen switch is
closed. Except for these conditions, it
functions in the same manner and provides
the same services as the LOCPN subroutine.

r	 	 -1
'General Form	 I

Ir	 	 i
ICALL LOCND(device,corrval) 	 i

device and corrval
are defined in "Arguments Used by Many
of the Subroutines. The "corrval"
argument must identify, an image entity
that is being displayed.

PROGRAMMING NOTES: Until the light pen
switch is closed the display is not affect-
ed, and scanning is not initiated. Other-
wise, the programming notes for the LOCPN
subroutine also apply to the LOCND subrou-
tine.

ERRORS:

1. The correlation value is not in the
range 1 to 32767.

2. The correlation value does not iden-
tify an image entity that is being
displayed.

3. The "device" argument is invalid.

LCPOS--Locate a Position with the Tracking
Symbol

The LCPOS subroutine displays a tracking
symbol which the 2250 operator uses to
define the absolute x- and y-coordinates of
a position on the screen. Using the light
pen with the switch closed, the 2250 opera-
tor moves the tracking symbol till its
center point is in the desired position.
He then signals the program to call CTLTK
(Control Light Pen Tracking) to indicate
that the desired position has been found.
The coordinates of the position are
returned in integer variables specified in
the call to CTLTK.

L	

device and gca
are defined in "Arguments Used by Many
of the Subroutines."

xstart,ystart
are constants or variables indicating
the initial x- and y-coordinates for
the center of the tracking symbol.
These values must be real or integer
type as currently defined for input
data mode in the generation control
area, and must be absolute coordi-
nates.

CAUTION: If the coordinates for the ini-
tial position of the center point of the
tracking symbol are off the screen, the
tracking symbol is positioned on the near-
est boundary of the screen.

PROGRAMMING NOTES: After the tracking sym-
bol is displayed, the LCPOS subroutine
returns control to the calling program.
Thus the program can continue processing
while the 2250 operator is positioning the
tracking symbol. See the programming notes

r
(General Form

gca)	
I

ICALL LCPOS(device,xstart,ystart,

46

for CTLTK for information about 2250 opera-
tor communication with the program.

The coordinates returned by the CTLTK
subroutine can be used as arguments for
other subroutine calls, for example, MVPOS
and TRACK.

ERROR: The "device" argument is invalid.

TRACK--Track Position of Light Pen

The TRACK subroutine enables the pro-
grammer to define and create a tracking
entity. The TRACK subroutine displays a
tracking symbol which it uses to follow pen
movement as the 2250 operator sketches.
The sketching is displayed immediately.
The programmer specifies the tracking mode,
whether lines or points are to be dis-
played, and the smoothness of the curves
displayed by means of a call to CTLTK.

r	 1
IGeneral Form	 1
1- 	 	 4
1CALL TRACK(device,corrval,xstart,ystart,1
1	 gca)	 1
L 	 	 J

device, corrval, and gca
are defined in "Arguments Used by Many
of the Subroutines." The "corrval"
argument identifies the tracking enti-
ty being defined by this call to
TRACK.

xstart,ystart
are constants or variables indicating
the starting position for the center
of the tracking symbol. These values
must be absolute and must agree with
the input data mode (integer or real)
defined in the GCA.

CAUTIONS: If the generated data fills the
image construction area while the 2250
operator is sketching, the letter F (for
Full) is superimposed on the tracking sym-
bol, and the tracking symbol no longer
follows the movement of the light pen.

TRACK must not be specified for a device
on which an image entity is not currently
being displayed. Note, however, that an
image entity need not contain visible
graphic data.

PROGRAMMING NOTES: After TRACK has placed
the tracking symbol on the 2250 screen, it
returns control to the calling program,
thus enabling the calling program to con-
tinue other processing. TRACK intercepts
light pen attentions on the tracking sym-
bol, but other light pen attentions are
made available to the calling program if
they are enabled.

Sketching by means of TRACK is essen-
tially image generation, and though pro-
cessing may continue after a call to TRACK
(see above), this processing must not
include image generation in the ICA that
contains the image entity being displayed.
Image generation in the same ICA may be
accomplished by (1) calling TMDSP, (2)
calling image management and image genera-
tion subroutines for updating or image
generation, and (3) reestablishing the dis-
play and tracking by a call to the EXEC
subroutine. Note that, once displayed, the
tracking symbol remains a part of the image
entity till a call to CTLTK specifying the
end function is issued.

If the ICA becomes full during tracking
(indicated by the letter F in the tracking
symbol), the 2250 operator should inform
the program of this condition. He may do
this in the same manner as he communicates
tracking options to the program, as dis-
cussed under CTLTK, "Communicating Tracking
Options to the Program." The program, upon
being notified of this condition, should
call CTLTK to remove the tracking symbol
and end light pen tracking.

During the creation of a tracking enti-
ty, the tracking entity is linked to by
means of graphic data that is part of the
image entity being displayed. Another
tracking entity should not be defined with
TRACK until the end function for the first
tracking entity has been indicated by means
of CTLTK. If this rule is not followed,
the last line or point may be lost.

If only one tracking entity is to be
defined for an image entity, it is not
necessary to update a linkage entity to
call the tracking entity. However, if
another tracking entity is defined for the
image entity being displayed, the first
tracking entity is "disconnected" from the
image entity and will not be visible on the
screen until it has been called by means of
LKSUB. To avoid the GSP automatic
"disconnect," the program may call DISTE
(Disconnect Tracking Entity).

ERRORS:

1. The correlation value is not in the
range 1 to 32767.

2. The "device" argument is invalid.

CTLTK--Control Light Pen Tracking

The CTLTK subroutine, in conjunction
with the TRACK subroutine, permits the 2250
operator to sketch with the light pen.
CTLTK allows the program to select one of
the three modes of tracking performed by
TRACK. These tracking modes are described
in the programming notes below. CTLTK also

Communicating with the 2250 Operator 47

enables the program to choose whether lines
or points are to be used for sketching; to
control the smoothness of curved lines
sketched by the 2250 operator; to signal
the end of light pen tracking or to fix a
point and continue tracking, either in the
same or a different tracking mode; and to
obtain the x- and y-coordinates of the
tracking symbol.

CTLTK, in conjunction with the LCPOS
subroutine, permits the 2250 operator to
locate a position with the tracking symbol.
Unlike TRACK, LCPOS does not generate any
tracking data. LCPOS and TRACK are there-
fore mutually exclusive. If a tracking
entity is being created by means of TRACK,
a call to LCPOS terminates generation of
the tracking entity. Similarly, a call to
TRACK following a call to LCPOS causes a
tracking entity to be created from subse-
quent light pen attentions on the tracking
symbol.

r -1
'General Form

(CALL CTLTK(device,trackmode,distance,
plopt,xyarray)

device
is defined in "Arguments Used by Many
of the Subroutines." It must be the
same as the "device" argument used in
a call to TRACK or LCPOS.

trackmode
is an integer constant, integer vari-
able, or integer arithmetic expression
specifying the tracking mode or end
function, as follows:

0 = do not change the tracking mode
1 = position tracking mode
2 = curve tracking mode
3 = linear tracking mode
4 = end function; remove the track-

ing symbol and terminate light
pen tracking (TRACK) or locating
a position (LCPOS)

Note: The coordinates of the center of
the tracking symbol are stored (see
"xyarray") each time CTLTK is called.
In addition, when tracking is being
performed by means of TRACK, these
coordinates are used to fix a point
each time CTLTK is called, regardless
of the "trackmode" option chosen. See
the programming notes below for
details about tracking modes.

distance
is an integer constant, integer vari-
able, or integer arithmetic expression
in the range 1 to 63 indicating the
distance in raster units (measured

along the x- or y-axis) by which the
light pen must be moved before a new
point or line is generated in curve
tracking mode. A value of zero indi-
cates that the prior "distance" value
is not to be changed.

plopt
is an integer constant, integer vari-
able, or integer arithmetic expression
indicating whether points or lines are
to be generated, as follows:

0 = do not change last setting
1 = generate lines
2 = generate points

xyarray
is a 2-element integer array where the
CTLTK subroutine is to place the cur-
rent x- and y-coordinates of the cen-
ter point of the tracking symbol. The
first element contains the x-
coordinate, and the second Element
contains the y-coordinate, both in
2250 raster units.

PROGRAMMING NOTES: The following
paragraphs discuss the tracking modes and
communication of tracking options to the
program by the 2250 operator.

Tracking Modes: Three tracking modes are
available to the program: curve tracking,
linear tracking, and position tracking.
All tracking is done with the light pen
switch closed. If the switch is open, the
tracking symbol does not follow the move-
ment of the pen.

Curve Tracking is used for continuous
sketching of curved images. The images are
displayed on the screen as they are
sketched by the 2250 operator. The smooth-
ness of the curves can be controlled by the
program by means of the "distance" argu-
ment. When the 2250 operator is finished
sketching, he signals the program to call
CTLTK, specifying the end function
("trackmode" = 4). The tracking symbol is
removed. Specifying "trackmode" = 0, 1, 2,
or 3 fixes a point at the current position
of the tracking symbol, even if it has been
moved a distance less than the value of the
"distance" argument since the last point
was fixed, and allows tracking to continue
in the mode specified by "trackmode".

Linear tracking is used to define points
or straight lines. In this mode, the 2250
operator moves the tracking symbol with the
light pen, and the line or point is not
fixed till the program issues a call to
CTLTK, specifying either the end function,
if tracking is to be terminated,, or
"trackmode" = 0, 1, 2, or 3 if tracking is
to be continued. If the end function is
specified, the tracking symbol is removed.

48

The end point of a line can be made to move
up or down, right or left, till it is fixed
(rubber-banding).

Position tracking is used to move the
tracking symbol to a new position and
re-origin using that position. When the
tracking symbol is in the desired position,
the 2250 operator signals the program to
call CTLTK, specifying the end function, if
tracking is to be terminated, or
"trackmode" = 0, 1, 2, or 3 if tracking is
to be continued. If the end function is
specified, the tracking symbol is removed.

Note: The GSP is initialized as follows:

"trackmode" = 1 (position tracking)
"distance" = 30
"plopt" = 1 (lines)

These initial values may be changed any
time after GSP initialization (GSPIN) by
means of CTLTK.

Communicating Tracking Options to the Pro-
gram: The program using the light pen
tracking subroutines LCPOS, TRACK, and
CTLTK may choose its own techniques for the
2250 operator to communicate the light pen
tracking options represented by the
"trackmode", "distance", and "plopt" argu-
ments. The programmed function keyboard,
alphameric keyboard, or light pen may be
used to communicate these options. If the
light pen is used, the image entity being
displayed should contain controlled enti-
ties for the various options, since con-
trolled entities can have the attribute of
light pen detection. The correlation value
of the controlled entity returned in the
attention information would inform the pro-
gram of the option chosen. The programmer
may also consider the inclusion of atten-
tions to signal the "distance" option eith-
er by fixed amounts or by amounts indicated
by means of the attentions.

ERRORS:

1. The "device" argument is invalid.

2. The "trackmode" argument is not in the
range 0 to 4.

3. The "distance" argument is not in the
range 0 to 63.

4. The "plopt" argument is not 0, 1, or
2.

5. The "trackmode" argument is 2, and the
current "distance" value is 0.

DISTE--Disconnect Tracking Entity

The DISTE subroutine causes the speci-
fied tracking entity to be disconnected

from the image entity to which it had been
temporarily linked while the tracking enti-
ty was being created by light pen sketching
(see TRACK).

1
'CALL DISTE(corrval)
L 	 J

corrval
is defined in "Arguments Used by Many
of the, Subroutines." In addition,
"corrval" must identify a previously
defined (via TRACK) tracking entity
that is in the active ICA.

PROGRAMMING NOTE: When a tracking entity
is disconnected from the temporary linkage
in an image entity, it is no longer dis-
played unless it has been linked to as a
subroutine by means of LKSUB. Disconnect-
ing a tracking entity does not delete it,
and it may still be referred to in other
GSP subroutine calls, e.g., LKSUB, PCOPY,
DELMT.

ERRORS: The correlation value is not in
the range 1 to 32767 or does not identify a
tracking entity.

CVTTD--Convert Tracking Data

The CVTTD subroutine is used to convert
the x- and y-coordinate data associated
with a tracking entity to program coordi-
nates. In addition, a call to CVTTD may be
used to convert the x- and y-coordinate
data in origin entities, attention data
arrays, or xyarrays used by CTLTK to pro-
gram coordinates.

'CALL CVTTD(gca,{corrvallatnarrayl
I	 xyarray},xarray,yarray,
I	 elcount,audit,tereturn,
I	 source)L 	 1

gca and corrval
are defined in "Arguments used by Many
of the Subroutines." In addition,
"corrval" identifies either a tracking
entity or an origin entity.

atnarray
is an integer array that has been used
as the "arrayname" argument in a call
to RQATN.

xyarray
is an integer array that has been used
as the "xyarray" argument in a call to
CTLTK.

r
'General Form

r
'General Form

Communicating with the 2250 Operator 49

xarray,yarray
are variables or arrays specifying
where CVTTD is to place the x- and
y-coordinate data. They must agree in
type (real or integer) with the input
data mode specified in the GCA; howev-
er, the converted data placed in
"xarray" and "yarray" corresponds to
the mode (absolute, incremental) in
the tracking entity, origin entity,
xyarray, or attention data array.
Optimized tracking entities are con-
verted to absolute program units,

elcount
is an integer constant, integer vari-
able, or integer arithmetic expression
specifying the number of elements in
each of the arguments "xarray " and
"yarray".

audit
is an integer variable specifying
where the CVTTD subroutine is to place
a positive value indicating the number
of x- and y-coordinates converted.
This value will not exceed the
"elcount" argument value.

tereturn
is an integer variable that provides
CVTTD the means for continuing the
conversion of graphic data to program
data. This variable must be set with
a zero value on the first of a series
of calls to CVTTD. If CVTTD returns a
value of zero for this variable, the
convert function was completed. If a
non-zero value is returned, there is
more graphic data to convert. In this
case the "tereturn" argument must not
be altered for subsequent calls to
CVTTD.

source
is an integer variable that indicates
whether the second argument specifies
a correlation value, an attention
array, or an xyarray:

1 = correlation value
2 = attention array
3 = xyarray

In addition, CVTTD sets this variable
with a return code indicating the type
of data returned in the "xarray" and
"yarray" arguments:

1 = origin data absolute
2 = origin data incremental
3 = line data absolute
4 = line data incremental
5 = point data absolute
6 = point data incremental

CAUTIONS: The "corrval" argument, if used,

must identify a previously defined tracking
entity or origin entity.

The "tereturn" argument must have an
initial value of zero when converting
tracking entity data to program data and
must not be altered in a series of calls to
convert all of a tracking entity.

PROGRAMMING NOTES: If the second argument
is an attention array or an xyarray, the
"tereturn" argument is returned as zero,
and no further conversion is required.

Since the programmer will not know how
many points, lines, or origins may be
sketched by the 2250 operator by means of
light pen tracking, the "audit",
"tereturn", and "source" arguments provide
the facility to convert all of the tracking
entity to program coordinate units and
maintain a count of the number of these
units.

The CTLTK subroutine provides the facil-
ity for switching the tracking mode while
the tracking entity is being created. How-
ever, CVTTD converts only one type of
graphic data during a single call. The
"audit" argument specifies the number of
coordinates converted. The "tereturn"
argument specifies if there is more data to
be converted. The "source" argument speci-
fies the type of data placed in "xarray"
and "yarray."

It is the programmer's option as to the
disposition of data returned in "xarray"
and "yarray". This data may be moved or
saved as disk records and the same "xarray"
and "yarray" may be used for subsequent
calls; or new "xarray" and "yarray" argu-
ments may be used in subsequent calls.

The x- and y-coordinates may be placed
in a single array by furnishing subscripted
array arguments and indicating indexing in
the GCA; however, CVTTD assumes that the
"elcount" argument includes the indexing
factor, as in the following example:

xarray = array(1)
yarray = array(2)
x index = 2
y index = 2
elcount = 10

Unless the tracking entity data changes
(from points to lines, etc.), 10 x-
coordinates and 10 y-coordinates will be
placed in alternate elements of the array
from array(1) to array(20).

ERRORS:

1. The correlation value is not in the
range 1 to 32767.

50

2. The "tereturn" argument is invalid.

3. The "source" argument is not 1, 2, or
3.

4. The "elcount" argument is invalid.

ENTERING DATA WITH THE PROGRAMMED FUNCTION
KEYBOARD

The GSP includes one subroutine, Set
Programmed Function Keyboard Lights
(SPFKL), that allows the program to
indicate to the 2250 operator which pro-
grammed function keys are available for
use.

SPFKL--Set Programmed Function Keyboard
Lights

The SPFKL subroutine turns on programmed
function keyboard lights. The lights to be
turned on are controlled by values in an
array supplied by the programmer. All
lights not specified are turned off.

'General Form

'CALL SPFKL(device,arrayname,elcount)
L 	

device
is defined in "Arguments Used by Many
of the Subroutines."

arrayname
is an integer array that contains
values to indicate which lights at the
programmed function keyboard are to be
turned on.

elcount
is an integer constant, integer vari-
able, or integer arithmetic expression
indicating the number of elements in
the array. The "elcount" argument may
also be used to turn on or off all 32
lights. The values that can be
assigned to "elcount" and their mean-
ings are as follows:

-1 = All lights are turned on.
0 = All lights are turned off.

1 to 31 = The number of elements in
the array. Each element
contains a decimal number
(0 to 31) indicating a
light to be turned on.

32 = The array contains 32 ele-
ments. The first element
corresponds to the first
light, the second element
to the second light, etc.
Each element contains a 0
or 1, indicating off (0)
or on (1).

ERRORS:

1. The value of the "elcount" argument is
outside the range -1 to 32.

2. The "elcount" argument is 32, but
array elements do not contain 0 or 1.

3. The "elcount" argument is 1 to 31, but
array elements contain values outside
the range 0 to 31.

4. The "device" argument is invalid.

Communicating with the 2250 Operator 51

ERROR HANDLING

All of the GSP subroutines (image man-
agement, image generation, attention han-
dling, etc.) are accessed by means of the
FORTRAN CALL statement. The FORTRAN com-
piler detects and identifies CALL state-
ments which do not follow 1130 FORTRAN
rules for CALL statement arguments.

During compilation and execution, there
are no checks for an invalid number of
arguments in the CALL statements. The
result of this type of error is unpredict-
able

During compilation there are no checks
for the validity of the type of arguments
(array, variable, constant, etc.). During
execution, the GSP subroutines assume that
the arguments provided are valid in type.
If they are not the result is unpredict-
able

The GSPIN (GSP Initialization) subrou-
tine defines two error variables which will
be set by GSP subroutines. The "return"
variable is reset by each GSP subroutine
(except GSPIN) with an integer value indi-
cating the error detected by the GSP sub-
routine. The "cumulative" variable is not
reset by each GSP subroutine, but contains
the accumulated error indicators set by
each GSP subroutine.

The FORTRAN programmer may use these
variables as he deems necessary. Both
error• variables may be tested for a zero
value (no errors) by means of the FORTRAN
IF statement. The "return" variable might
also be tested by the computed GO TO
statement. The FORTRAN programmer cannot
test the individual error indicators in the
"cumulative" error variable but may call
the IERRS (Interpret Errors) subroutine to
have the accumulated errors printed. The
error code values set in the "return"
variable or printed by the IERRS subroutine
are the same.

The programmer may employ FORTRAN state-
ments to test the error variables in the

initial debugging of a program using GSP.
He might also retain error variable tests
in a final version of the program, espe-
cially if errors might result from input
from the 2250 operator.

IERRS--Interpret Errors

The IERRS subroutine produces a print-
out, on the system print-out device, of the
error codes that correspond to accumulated
errors resulting from GSP subroutine calls.

1
F-1CALL IERRS
L	 	 J

No arguments are required.

PROGRAMMING NOTES: If no errors were
detected, the output of this call is:

GSP ERRORS = 0

If any errors were detected, the output of
this call is:

GSP ERRORS = N1
•

•
GSP ERRORS = Nn

where N1 is an integer value corresponding
to the lowest error code identifying a
detected error, and Nn is the highest. A
message appears for each type of error that
occurs, but only once for each type. Thus,
for example, if a program contained several
invalid "device" arguments, only one mes-
sage for that particular kind of error
would appear. The error codes in the
messages are the same as those returned in
the "return" variable defined by GSPIN.

The IERRS call is a debugging aid and
does not provide the capability for testing
and correcting errors dynamically.

!General Form

52

APPENDIX A: SAMPLE FORTRAN PROGRAM

The sample program in Figure 8 illus-
trates the use of GSP subroutines in a
FORTRAN program. It assumes that the 2250
model 4 is equipped with the programmed
function keyboard, in addition to the light
pen. Comments in the coding explain the
purpose of the program and the functions of

its parts. Displays produced by the sample
program are shown in Figure 9.

Figure 7 represents the graphic elements
of the same program in terms of the symbols
described in the second section of this
publication.

16 26 7
iS13{70><•>]6[<+><O>) [<+><t >] [<+><•>]
17 27	 13	 23 33 5
[<+><t>]	 [<+><•>) (<1-><f>] [0><•>...])

Correlation Value Element Contents Comments

2 Subroutine entity Increment data to form
circle with 72 lines

3 Image entity Total display except
For circle subroutine

Circles displayed by means of
linkages to circle subroutine

4 Controlled entity Origin entity - large X

6 - 13 Controlled entity Origin entity - small X

16 - 23 Controlled entity Origin entity - named
linkage entity

Linkage entity initialized as inactive

26 - 33 Linkage entity Linkage to circle subroutine

5 Controlled entity Eight origin entities for

labels - eight labels

Initialized as non - display

Figure 7. Graphic Elements in the Sample Program

Appendix A 53

IBM
	

FORTRAN Coding Form

-	 FORTRAN GSP SAMPLE PROGRAM
vxt 2GRn

PO	 G
G,,,,,

A. 1 . 7
IH TRUCE.

PUNCH
CARD ELECTED NUMBER

STATEMENT
NVA41118	 12 FORTRAN STATEMENT

1D2NTIFICATION
sEwfw

12

BE
ril

56 8	 25	 27	 28	 29	 10	 33	 34	 3	 6	 38	 41	 4A	 46	 se	 s	 so	 42	 56	 A	 39	 60	 62	 1,5	 67	 6	 M19	 0	 71 72	 73	 74	 75 7A 77

1-
1_

78	 70 00

Nog soz ME PROMOT DRA S A c Rffiggiammg

A E gmegmu
WOOROM wffigmgo

BABOBOROOMIMMINTH A1BER@IggiumigE	 DEPENDING
THEIOEMMO	 MM

___, I

igopmE sffigggiggfiggieggpmulgR
OM1D	 ♦LIMMUNON CREATED, THR

_s
■ ii ,

cl ouggpmp's omNpml 1 '
C
6-- --

gm
M

___ I1 LIGHT PEN DE EC	 ON CENTERIILABIMIIHE
0 NUMB (STATtMtNT 149)

LIG4HT4PENI Dt	 FICAON OUTER
. -L

ISP	 I	 4- CALE:Lb-FS CENTtlI R
--

II
Mil

♦ismumgempgrED
NOMMEN

x
'DEMON

sTATEmEmp 264011111111	 I 1 r
CIRCA cammumumRlocammlemATImpexE 1 1

1111 ORMNOPROMRINO AT MENT EiliP, 1 111■11111011111101111111 III 1 II
C . LIMMUIPE4 0 TECT ON1 A Y LABEL

C 1
kSTATE ENT 2261
PROGRAMED FUNCTION KE

I
1

'AMES
11	 1

END'SwUN

AMMIIIBEI♦INVISIBLE

(III!	 EN	 0) •32 1 11 6. PREMTEUOIWUNCTION KEY 2 MMMIOMMIIIRCL S IN I
4
SIBL

■ 1111 ' CUENIENIESITAIN I	 11111111111111111
BMW PRA7MOMMIOUNCTION KE(3 ZAKESIOMMISORCLES VISIBLE,

C (STATENT1,91). 1 I II NM	 II=
c
C

l__	 _ -
SUATEMLNT

'FUN PRO	 Malll
FOR V	 IOU@IARRADM111

111.11 -I
1

-
1111DIMENSION

111 MANSIONIMEM(4061,CIRX(8 1 ,C1RYMOOTAMMOUS (32),
11 MIEDIMAT N 20'1 1 i p prmoi

7smAMOONNUOUIT
11111111E11111111M -

1., 11	 11111111ffiNITIA GSPPPECISIONARGOOR VARIOBLES, AND DEVICE

1 2s,) o ip EMMEN= Mill 1CALLIGSPON(0) offiglii / 1 c um
1	 I	 11150BOOLIzE' 1	 A 1G coIsIOROMMUM4100331112011MAMOON1111 I

CALL IcAImmicA ilmicA(400 70)	 IIIIIIIIIIII♦♦♦♦♦IIIIIIIIII♦I

IBM
	

FORTRAN Coding Form

--..,
-	 FORTRAN GSP SAMPLE PROGRA

=CPUL70E4S

FORTRAN STATEMENT

l'A'

-- -2-7
PUNCH

IDSEC/VENCE

,..”-.
2

' S
,

M	 I
., , ii iliiii,	 ..6"„miF

011	 UITIA C INCREMEN AL
c	 .,.	 .,...,..... -

♦AIM 1G c APareEAMENINNIII

L 2.CALL SD'AT	 GcAl2,111 1 1 1	 ,	 ,
c	 1

+7

I

12 ;2-B% 01

iiH ^ETA = 5.

C,...13.1415/6/180.0
L COMPUTE

1 IN 	
1

1111111

1
CpORDINATEG

1

-1—_,.___

FOR CIRCLE	 	

1

SUBROUTINE L

-
1
'

r

,_,—

[

II DO 1910:011181011111111 IIII

111
RADIN = THETA*FL AT II)*C 1
SMALX(I)=R*COGORADIND

-

1
C I

MALYTI)=R*ISIN
GENERATE

'RAPIN)
1--. - -CI CLE

]1
SUBROUTINE, COR

III
g	 g

MB BEL
gpm PLINE ,G ICA,S

UNBORN=
ALX,SMALY,72) I I

i CALL	 EEL 112) 1	 ,- III
1

20

1	 1	 0 FOV

FORMAT(A4)
READ(2,20),x

-
'

,I	 READ
-

-

AN	 LABELu
-I----	 ,

1_

CHARACTERS PRO READER i1
- _

it

-I

-
1

1 _IAT(8AIZEMI 11.1
NM AD(2,3 RLABL

11111111
In IdalB]=178)

=51.X	 2___
=EWA

_
OORDINATE

-

F	 R LAp E +-

-
_

YI.--512.0
,	 ■ 1	 1

,--

III	 	

Figure 8. Sample Program (Sheet 2 of 7)

514

TATEMENT
UMBER

183 4 3022 242016 2210

FORTRAN STATEMENT

430 40 5842 574 45 46 .17 48 49 50 51 52 53 54 55 56

CARDELECTROMMBER.

9O6MULS666]6069M71	 nun,o,n7am

lowoniArion
sicuouci

111_ ,

110111111111111■11
111111EAMMIECOOTRES
ill15111141.71

)1H
II
I
u

RIA
III

T

0011111011111111111111

7

il

1

--1--

1

!
1

_.i.
1

1h

1

,.

lei: ,

1 til •	 10	 TIL	19 I I
1111111EGINIMP0IIIIIIIIMME11131•111111111111

mommumm me nnlnlnnl i 1	 ,

ROMILEMBRE1110111 NNINIIi
m a

i

 1
,

'1	 ' I.	 I	 I	 '

1

'

:	 •

111111
R	 001.' fi 	 IIII:II II

IMO4 5 16111
DEON019010011

I
II

IMMO
111111 II

IRA animism
Cr 411g111

crR y (I)=c
CORRVA

Eg
1
I
I
I
1
g

50	 1=1
'' E SMALL = - 1

-
' '

,
DO
CALL
mom

cAugium

B

II

E L

SONIIPTEA(1GcA) x)1 1 1,1
VPOENGCA)CI.R'X

mg11.11111211
MEM

,	 ,

(5+1)77
II

,	 L I
1 - NI f,,

FORTRAN GSP SAMPLE PROGRAM
PROGRAMMER

PUNCHING
INSTRUCTIONS

FORTRAN GSP SAMPLE PROGRAM PUNOIING
INSTR.:110M

RAGE4 " 7
CARD ELECTRO NUMBER*

STATEMENT
FORTRAN STATEMENT IDENTIFIt Al ION

5EQUEr

75 7	 '7 7 79 0 0 27 28 72

NEN Egg INNEEERE N E R A ffigrumjung pp Elmo CI RMIIIMBROUT:I NE 	
C1ORRVAL	 3-123	

,_Egg	 g'E ARNggg	 Eg 4I =MON TR
1111	 an BELIMO4M1 2 I	 1111 111111111 11111111111111111

mvPos(GcAnciRx(1 c P I
 i

1

Illi LKSUB(2)25-1-I12)1
T(151+I)IEEL

r i

1
OEM
IN IMMI1111111 €111111MIT E

INN 18 E EGIMEI81111 all 11111111111111111111111 7
111 1 =1 11111111111111111111 I 11111111111

71

IIALL VPOS(GCANCIR IX(I)+100.0
o L L PTEXT(GCAIRLABIRII) 74,10

IIIIN
1111

1 III ©1ILABiELI SORER IMAGE
T
ENTITY

T1311EUE11111111 III
1111 1.11111111111111111121A11131A BE L s a10111 NMI	 II

111111111111 i-1111111111111MIT Re(5 -1) 1 1111■111

ll
gl N A B L 1E	 LI GH

IIMADIUMIZEIRMs 1
i MMEDIEINIEMIKEYBOARD

1111111E11 1 1	 1
1111 M SAIN MEMP1111111 1 11	 1	 11 1

7

MINI III IIIIIIIMP R DINEME111 !
,

VINO gam(4)=Immommomm
R 0G RWMAI

II 11110 11111111111M
1111 MO (12) =2 11111•1111111111 111111111 IIIIIIIIIIIIIIIME
1111

SPFKL(1
113) =3 [I !	 SWIM III 111111111111

III■ 111111111
!

IIII 7 E0112110/11111 NI
IIII■ 11111111111E111111 II III	 111111111111

IBM
	

FORTRAN Coding Form

2 3 d 5 6 7 8 9 10 II 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 4b 47 dB 49 50 51 52 53 54 55 56 57 58 50 60 61 62 63 6,1 65 66 67 6B 69 70 71 72 73

IBM
	

FORTRAN Coding Farm

1	 2	 6 7 2B 29 30 31 32 33 34 35 36 37 38 30 40 41 42 43 44 45 . 47 48 119 50 51 52 53 54 55 56 57 58 50 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 /5 76	 /8 79

Figure 8. Sample Program (Sheet 4 of 7)

Appendix A 55

IBM FORTRAN Coding Form

---- FORTRAN GSP SAMPLE PROGRAM G8481.11C PA ,F 5 OF 7
ARD fltC1- 1713 mum.,

817(758.81,0E17

FORTRAN STATEMENT SFQIIENCL

4 6s6 67 68 69 70 71 72 70 74 75 76 77 7B 79 80

ELL 	 i START DISPLAY
70 MULLIMENDOMIERIII 	 11111 	 1IIIIIIIIIIIIIIII

'	 717- 11	 111111R EQUEST AT	 ENT1ONS !	ATTENTION	 1	 I	 1	 1
130	 CALL	 ROATN(11TATND1	 mill	 1,1111

IIF ,(IATNWD100,104,1101	
1111111111	

i	 1
.100 PAUSE	 1 IIIII	 '	 t:	 i---,

@0 TO 8 r 	 1
(Mill	 I F INIKOMMEMBIoN AVAILAftt	 MEET PEN' 	 ITK8
C:	 NE	 EINIIIMEHT PE	 60 rg 2 0	

,.,___
110MINIATN I (1) I-2	 1201,210,d2OL 	 .	 "T

_I	 _,I	 ,1	 F	 PFX	 ,do	 TO 430	 1ELS	 EST	 I '5	
-44

120	 IF	 CIATN(1 1 Hi)0,i301,80	
II LL 	 .

II	 11
tffli	 I	 1111 Fl PrKB 1 OR 0 G) TP	 ,	 ii II	 "	 I

S	 111111111	
1F	 PFKB , 3 0	 MORE	 GD	 TO	 180

C	 mum	 miggignwpw, 2 GO TO 160	 1I	 1	 II,
 L I_

,	 ,	 ,	 1	 ---.	 , !
130	 IF	 TATi N I (3)-2)1140716],48 6	 All	 l	

L
i_	 I	 !_	 I I	 -LH--

C 1 	 IF	 PE I KB	 41-40 lb	 1501	 EL8EIREPE	 ,
I 140 IF	 TAMA/MEW 1.5078 1— 11
Ell	 1	 1	 1111fio INATE DISPiAY
1 150	 CALL	 T.MDSP	1)

	 ,
,,1	 CAI	 GSPir

-1-Lt 	 'M A S K 	 AL 'L	 CIRCLES	 NVIS1BLE
1 460	 66	 70	 I-1,6'	 11

Mil1[7,0	 L	 LK 1 S	 B(2,24i-I,) 	 I;II	 I	 1–	 I	 I
I	 I	 I	 I

Figure 8. Sample Program (Sheet 5 of 7)

IBM FORTRAN Coding Form

--	 FORTRAN GSP SAMPLE PROGRAM

FORTRAN

-m-
STATEMENT

::

—6 or 7
OG,

1-,.
PUNCI■

CARD ELECTRO NUMBEr

1581,1FICA110

ZZIT

6
8 	 9	 10	 11	 12	 13	 .	 5	 16	 17	 18	 19	 20	 2	 27	 28	 2	 0	 J1	 J	 16	 37 38	 37	 40	 41	 42	 .	 44	 45	 46	 4/	 48	 49	 50	 51	 52	 53	 54	 55	 56	 57	 58	 59	 60	 62	 64	 '	 66	 6/	 68 69	 70	 71 72	 73	 74	 75	 76	 8	 BO

■ 60 TO 1 80 1
I1 4	 i

31- 3)

11111111111
AK'E	 AIL
8071 90118SO

C
ILL il	 IIIIIIIIIIMMIIIIIIIM

III
I

C
:,

RESU
Li

VISIBLE
1

IFPFKB
I 1

3!
',,

E	 EAPIEMTES
11111111 II,	 ,, 1 110 (I AlTN(

! 190,_- 2001 111=11/18 1 :11
r '---

1 M
—1-

, 1111111 I [•1120'.0 IL ILKSIL1B (I21)25+I)1- I	 i [WI I I
O 80 i .	 1 1 I 1111	 I

C II l it I F LIGHT PEN CE 't-Ec .i.-H- 04 L AB EL4 MA Eg1111
I DM

210 1 ,	 I !IF	 (IIATN:() 23 10) 2 7 23 ,	 i	 : !, 11 I	 111111111 I
i2,20 CALL

GIO	 TO : :70
SATLRB(5_1-f,111)1

I

7--r---i	 1

1

,
1

1

'	 ,1_.

4THA4 14 iREPEAT

1 1
TE IST1

FIUME
11

IIIIIII

ili

C

L _L 1
IF1CORRVAL LESS:

1 II I1	 .	 1 10111 I F1 CIO,R=LI --'	 14	 IGOI Tr0 240
4	 14 GO TO 2510

I
III-1 1	 , 1	 INZEURVAIL GRE,At ER	 ITiH

230 IF	 (I AT4)-41)701,2,407250 '	 , I 11 11111
CI	 ,	 j d

2 140
1	 I

CALL
GO T :70'

SATRB(E1171)
I	 I	 ,L

i
1

p	 D IEITECT
I 1 „	 I

-0N 'CENTER
'!

1--..

„1

XIIIIMIE ILABWIM IBLEI

II
I
IIII

1 1

CI 1 IF CORP'VAL LESS; THAN 14 0 0 260 EL imp I
IF	 (IA'T.4(7)-14)260127 , I2mi 1) 27f , 1 I

±
eALL LKSUB(21IATN(7) 1+21

LP DETECT, ,, 04 01UTER
''

X) MAKE
'];

_ITSIICIRCL	 IVISIBL

'	 IIIIIIIIIIIIII
1 ■

1
GO T01 70 h INNIS	 II

1 11111111111111
I 1 1 III	 IIIIIIIIIIII 1

12	 5 89	 0117	 15 i 6171819	 25	 26	 x7	 28	 x9	 J	 74	 35	 76	 77 38	 39	 60	 41	 42	 43	 44	 45	 46	 47	 48	 49	 50	 51	 52	 53	 54	 55	 56	 57	 58	 59 40	 4 1 	 62	 63	 64	 65	 66	 67	 68 69 70	 71 72	 73	 74	 IS	 76 77 78 79 8

Figure 8. Sample Program (Sheet 6 of 7)

6 31 38 39 40 41 42 47 44 45 46 47 AB 49 50 51 52 53 54 55 56 575a 	 6 6 6	 	 80,L5.„1,,,,,,,,,,:t.„,05, 11, ,12a0:, r:„,n	 ,2:41 J2., 23 24 25 26 27 2B 29 48 31 3'

56

IBM FORTRAN Coding Form

FORTRAN GSP SAMPLE PROGRAM OF 7
PROGRAM

PROGRAMMER
CARO REMO NUMFIER•

STATEMENT
NUMBER

IIRNIIVICAPON
SEQUENCF

F

A
0

F

L

A

L

T

7
K

	0

N
N

S

7

C 2

I F COR

T

7
2

RVAL

0

LESS

C

A

I

36 37 30

THAN
40

R

64 65 66 67 68 69 0 7	 74 75 76	 78 79 BO53,4„

16 REPEAT EST'

	II

	II	 MilINIM
prouSI BLE

N

MI lir

45 6 4715 17 19 20 6 27 30 3

FORTRAN

2 3 4 5	 6 7	 B 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 20 29 30 32 33 34 35 36 3738 39 40 41 42 40 44 6	 48	 50 51 52 53 56 57 58 59 60 61 62 63 64 65 66 67 6B 69 70 71 72 73 74 5 76	 78 79 85

Figure 8. Sample Program (Sheet 7 of 7)

Appendix A 57

X

X	 X

X

NUM 2

x NUM 3	 x NUM1

x NUM 4
	

x NUM8

x NUM 5
	

x NUM 7

x NUM 6

A. Display Produced After Call to EXEC
	

B. Display Produced After Light Pen Attention
on Center X.

X NUM 2

X NUM 3
	

O NUM1

x NUM 4	 x NUM8

x NUM 5	 x NUM 7

x NUM 6

C. Display Produced After Light Pen Attention
on X Labeled NUM1.

Figure 9. Displays Produced by Sample Program

58

APPENDIX B: EXECUTING AN 1130 FORTRAN PROGRAM USING GSP

*G2250 Control Card

The *G2250 is a Supervisor Control
Record, one of which must be entered for
each main-line program of a job that uses
the GSP. The format for this control
record is as follows:

cc 1
*G2250MLNME

where MLNME is the name of a main-line
program using GSP.

Note: If the main-line program is executed
from working storage, the main-line name
may be omitted.

The *G2250 control card follows the same
rules as *LOCAL, *NOCAL, and *FILES control
cards (see 1130 Disk Monitor publication).

XEQ Card

The following is a modification to the
format rules for the XEQ card required for
program execution using the GSP:

Columns 16 and 17 of the XEQ record
must contain the count of the *G2250,
*LOCAL, *NOCAL, and *FILES records.
The count is decimal and right justi-
fied.

GSP Subroutines as LOCALs

Any of the GSP subroutines called by the
program can be defined as LOCALs. GSP
internal subroutines must never be defined
as LOCALs.

Core Storage Layout Requirement

The requirement described in the first
section of this publication, that GSPSP
must completely reside below core location
8192, can be met as follows:

1. Compile and store the main graphic
processing program as a subroutine.

2. Compile and execute a main-line pro-
gram that contains nothing more than a
call to the main graphic processing
program.

*MAIN-LINE PROGRAM
CALL SUBX
STOP
END

*MAIN GRAPHIC PROCESSING PROGRAM
SUBX	 CALL GSPIN

CALL GSPTM
STOP
END

Program Links

When a program contains one or more
links and it is desirable to transmit an
image entity in an ICA residing in COMMON
from one link to another for display, GSPSP
must reside in the same core locations for
all links. This can be accomplished by
ensuring that the links use the same disk
I/O subroutine and that their main-line
programs are the same size. The above
requirement, that GSPSP reside completely
below 8192, must also be met. Both
requirements can be met as follows:

1. Compile and store the main graphic
processing programs as subroutines.

2. Compile and execute the main-line pro-
grams that contain nothing more than
calls to the appropriate main graphic
processing programs.

The skeleton coding in Figure 10 illus-
trates this approach in a program contain-
ing three links.

Note: FORTRAN DEFINE FILE statements, if
used, must appear in the main-line program.
Program links that must have main-line
programs of equal size must therefore con-
tain duplicate DEFINE FILE statements if
these statements are needed.

Appendix B 59

•

CALL GSPTM
CALL EXIT
RETURN
END

•

CALL LINK(C)
RETURN
END

A	 B	 C

	

Main-line ICALL SUBX I 	 CALL SUBY 1	 (CALL SUBZ
r	 r 	 "1	 r 	 1

Programs (STOP	 1	 ISTOP	 I	 (STOP
IEND	 1	 IEND	 I	 1END1 	 J	 L 	 .1	 L 	

SUBX	 SUBY	 SUBZ

Main CALL GSPIN CALL GSPIN CALL GSPIN
Graphic
Processing • • •
Programs • • •

•

CALL LINK(B)
RETURN
END

Figure 10. Program Links

60

Set Character Mode Basic (Set Character
Mode)

T27

1(lahel]	 ISTMR

Notes: The graphic mode point must be
established before generating points.	 121 1

APPENDIX C: ASSEMBLER ORDERS AND ERROR CODES

This appendix provides information about
the 1130/2250 assembler orders: their
names, mnemonics, and the corresponding
2250 model 4 orders; coding formats; and
notes pertaining to using the orders. The
information about each order is presented
as follows:

Assembler Order (2250 Order)
r 	 1
'Coding format and Assembler I

Imnemonic

Notes: Operand limitations, restrictions,
significance of format and tag fields, etc.

Functional descriptions of the 2250
model 4 orders are contained in the publi-
cation IBM 1130 Component Description: IBM
2250 Display Unit Model 4, Form A27-2723.
This appendix is to be used in conjunction
with that publication.

Table 2 lists the codes used to identify
errors encountered during assembly of the
orders, the causes of the errors, and the
actions taken by the Assembler.

Set Graphic Mode Vector (Set Graphic Mode)

1
F 	
I(label]	 ISGMV

Notes: The graphic mode vector must be
established before generating lines. Vec-
tor mode is set automatically if no graphic
mode has been previously set (see the 2250
model 4 Component Description publication).

Set Graphic Mode Point (Set Graphic Mode)

[21	 127
	

1
V 	

([label]	 ISGMP

Notes: A character mode must be estab-
lished before executing a character stroke
or entering a character stroke subroutine.

Set Character Mode Large (Set Character
Mode)

'[label]	 ISCML	

1

Notes: The notes for SCMB also apply for
SCML.

Set Pen Mode (Set Pen Mode)

T
[21	 T27	 135	
F 	 +	 + 	 i
([label]	 ISPM	 1/hex digit or	 I

i	 1	 'equivalent
L 	 i	 1	 I

Notes: The operand may be any hex digit or
any valid absolute Assembler expression in
the range 0 to F. The bit pattern of a hex
digit and the effect of a 1 in a bit
position are as follows:

L_->defer light pen interrupts

>enable light pen interrupts

>disable light pen detects

>enable light pen detects

For example, /9 (1001) defers interrupts
and enables detects. Hex values 0, 3, C,
and F result in no-operation.

Start Regeneration Timer (Start Timer)

-Tr
	 127

r
	 T27

8	 4	 2	 1

L 	

L	

r 	 1 Notes: The STMR order should be the first
121	 T27	 I	 order in an order program.	 Its use is
F 	 +	 i required for accepting keyboard attentions
1(label]	 ISCMB	 I	 and setting the status of the light pen
L 	 i	 J	 switch.

Appendix C 61

--1
T27 135

+	 -1
!MBA 1X,Y

-J

r
121
F 	

I	 ([label]
1	 I. 	

Revert (Revert)

r
	 T27

1[label]	 (RVT

Store Revert Register (Store Revert 	 Draw* Beam Incremental (Incremental XY)
Register)

r	 T	 T
- ,	 121	 127	 135	 I

	

I	 1- 	 + 	 + 	 	 -i
- 1	 lElabell	 IDBI	 1X,Y

	

I	 L 	 i	 L.]

121	 127

Illabell	 ISRVT

Notes: The SRVT order is used for return
linkage when multiple levels of subroutines
are used. A graphic branch indirect
through the second word of the SRVT order
returns control to the calling program.
The SRVT order should appear in the subrou-
tine preceding any graphic branch orders
within the subroutine.

Notes: In vector mode, beam movement is
unblanked; in point mode, only the end
point is unblanked. The notes for MBI also
apply.

*The word "draw" here and in following
orders relates to unblanked beam movement.

Move Beam Absolute (Absolute XY)

Notes: If an order subroutine does not
contain any graphic branch orders, the RVT
order can be used to return control to the
main order program at the order following
the branch to the subroutine. If the
subroutine is two or more levels from the
main order program, the RVT order does not
pass control to the main order program.

Graphic No-operation (Set Pen Mode)

Notes: The x- and y-coordinates may be any
valid absolute Assembler expressions, but
must be in the range 0 to 1023.

Draw Beam Absolute (Absolute XY)

r
121	 T27
	

T35
F-
lElabell	 IDBA	 1X,Y

121	 T27
- Notes: In vector mode, beam movement is

1	 unblanked; in point mode, only the end
-1 point is unblanked. The notes for MBA also

1	 apply.
- J

([label]	 IGNOP

Move Beam Absolute X (Absolute X/Y)
Notes: GNOP is assembled as an SPM order
with an operand of hexadecimal 00. It can r 	
be used to reserve a single word in an	 121	 T27	 T35
order stream for later modification.	 F	 +	 + 	

([label]	 IMBAX	 IX
L 	 I	 i	

Move* Beam Incremental (Incremental XY)

r-	 T	 T 	 -1 Notes: The operand may be any valid abso-
121	 127	 135	 I	 lute Assembler expression, but must be in
V-	 --1- 	 + 	 —I	 the range 0 to 1023.
1(labell	 IMBI	 IX,Y	 1
L 	 i	 1	 	 J

Move Beam Absolute Y (Absolute X/Y)
Notes: The x- and y-coordinates may be any
valid absolute Assembler expressions, but r 	
must be in the range +63 to -64.	 121	 T27	 T35

V-	 + 	 +	
*The word "move" here and in following	 ([label]	 IMBAY	 1Y
orders relates to blanked beam movement. 	 L 	 1	 J.

-1

-J

-1
1

62

Control Stroke (Character Stroke Word)
T35

Ix	 1 [21	 T27

I[label]	 ICS
I[label]	 ICS
I[label]	 ICS
1(labell	 ICS
l[label]	 ICS

[21	 T27
F 	
lElabel]	 IDBAX

Notes: In vector mode, beam movement is
unblanked; in point mode, only the end
point is unblanked. The notes for MBAX
also apply.

T	 T
132	 135	
+	 +	 1
1[R]	 11,[data]	 1
1	 12,[data]	 1
IR	 I2,[data]	 1
1 [R]	 I4,[data]	 1
IR	 17,(datal

ii	 J.

Notes: The notes for MBAX also apply here. facility to achieve desired results. The
notes for MBS also apply.

Draw Beam Absolute X (Absolute X/Y)

Draw Beam Absolute Y (Absolute X/Y)

T35	
1

F 	 -4-	 	 4
1	

([label]	 IDBAY	 1Y

Notes: In vector mode, beam movement is
unblanked; in point mode, only the end
point is unblanked. The notes for MBAX
also apply.

Move Beam Stroke (Character Stroke Word)

Notes: The x- and y-coordinates may be any
valid absolute Assembler expressions, but X
must be in the range 0 to 6, and Y must be
in the range 0 to 7. The x- and y-
coordinates occupy a half-word. For
consecutive orders, the coordinates for two
orders are placed in one word. The revert
function is executed if an R is placed in
column 32. Character stroke orders must be
executed out of line by means of a graphic
branch following a set character mode
order.

Draw Beam Stroke (Character Stroke Word)

-I- 	 1
;21	 1 27	 T32	

T
	

V 	 -+ 	 + 	 + 	 + 	
([label]	 IDBS	 1[R]	 1[D]	 IX,Y	 1
L _1 	 J.	 .I.	 1 	J

Notes: A D in column 33 indicates that
less than normal (decreased) intensity is
desired (recommended for character strokes
less than 3 character units long; see the
2250 model 4 Component Description publica-
tion for details about character units).
Programmed intensity provides a means of
generating characters that have nearly uni-
form intensity for all the strokes of the
character regardless of the stroke lengths.
The programmer should experiment with this

Notes: The first operand, which may be any
valid absolute Assembler expression, has
the following meanings:

1 = subscripting - the character grid is
offset downward 3 ver-
tical character units.

2 = no operation - the order performs no
operation if R is not
specified.

2 = null function - the order performs a
null function if R is
specified.

4 = superscripting - the character grid is
offset upward 3 verti-
cal character units.
the beam is positioned
at the next line (R
must be specified).

The "data" operand may be any data the
programmer wants, but must not exceed 7
bits. Data exceeding the limit is truncat-
ed to the 7 low-order bits.

If revert (R) is not specified for the
superscript control order, execution con-
tinues with the second word after the
superscript control order. Placing a sub-
script control after the superscript con-
trol order gives a character stroke subrou-
tine the capability of being executed in
superscript, subscript, or normal mode if
different entry points to the subroutine
are defined.

T
I-21	 T27	 135	
F 	 + 	 +	 i
([label]	 IGSB	 [address

.1L 	 L	 L_ 	

Notes: The address may be either symbolic
or an absolute Assembler expression, but
must have a value less than 8192. Use of
the symbolic operand is restricted to
referring to graphic orders that are within
the same Assembler-language program.

[21	 127

121	 127	 132	 135	 1
T	 1

1- 	 + 	 + 	 + 	 1	 7 = new line
I[label]	 IMBS	 1[R]	 IX,Y	 I
L 1	 J.	 1	 J

4 Graphic Short Branch (Short Branch)

Appendix C 63

X

y

z

L

Graphic Branch (Long Branch/Interrupt) 	 Graphic Branch Conditional External 4flong
Branch/Interrupt)

r-	 T

I-2i	 127	 132	 T33	 II. 	135
	 1	 r 	

V 	 	 -I- 	 f 	 f 	 f 	 i	 21	 T27	 T33
1[label]	 1GB	 1(I]	 1(N1	 'address I	 1- 	 + 	 +

L 1	 1	 1	 1 	 41	 I(label]	 1GBCE	 1(N]

1
135

'name,
'condition I

Notes: An I in column 32 specifies an
indirect branch. An N in column 33 speci-
fies a two-word no-operation. The notes
for GSB also apply, except that the address
is not restricted to a value of 8191.

Graphic Branch Conditional (Long
Branch/Interrupt)

Notes: The conditions for the branch are
the same as those described for GBC. The
notes for GBE also apply.

Graphic Interrupt (Long Branch/Interrupt)

II.	 127	 132 133	 T35
V	 f	

1(label] 'GBC 1(I] 1(N] 'address,
I	 1	 1	 I	 'conditionL 1	 1	 i	 i

1	 r
I	 1 21	 T27T 33	 T35	 1

-I

1	 $(label]	 (GI	 1(N]	 1(dataD
$	 L 	 1	 1	 A

Notes: The condition for the branch may be
one of the following:

D = branch if light pen detect
S = branch if light pen switch

closed
DS or SD = branch if light pen detect

and switch closed

The notes for GB also apply.

Notes: An N in column 33 specifies a
two-word no-operation. Data may be a sym-
bolic address, number, or expression. The
range of numerical data or an expression,
when resolved, must be +32767 to -32768.
The data word may be used for any purpose.

Graphic Interrupt Conditional (Long
Branch/Interrupt)

Graphic Branch External (Long T	 	 1

Branch/Interrupt) 	 [21	 T27 	T33	 135	 I

V	

-T 	 T	

f

1	 [label]	 1GIC	 1
f

(N]	 1
-V 	 	 i

(data),	 I

r2i	 127	 T33	 135	 I	 1 	 I

	

I	 (condition 1

V 	 f 	 -I- 	 f	 	 .1	 L 	 1 	1

Mabel]	 IGBE	 1[N]	 !name	 1
L_ 	 1	 J.	 1	 	 r

Notes: The conditions for the interrupt are
Notes: Name is the name of an external the same as for GBC. The notes for GI also
order program (subroutine). An N in column apply.
33 specifies a two-word no operation.

T Action Taken by
1
	 Assembler

W	 x- or y-coordinate, or both, not within Operand set to zero.
the specified range; or invalid operand.

Table 2. Assembler Error Codes for 2250 Orders

• Error
Code I	 Cause

Character other than R or I in
column 32; or character other than D or
N in column 33.

Unnecessary operand specified; or
unnecessary Tag or Format field entry.

Invalid condition in a conditional
branch or interrupt order.

Field set to zero.

Operand ignored; Tag or Format field
ignored.

Condition bits in first word set to
zero.

-J

64

APPENDIX D: USING THE GSP IN AN ASSEMBLER PROGRAM

The Assembler language programmer can
use the GSP in a number of ways:

[label] DC
[label] DC

address of first parameter
address of second parameter

1. He may use all the GSP subroutines as
defined for the FORTRAN programmer.

2. He may use only the image generation
subroutines.

3. He may use only the subroutines for
attention handling (except ROCOR).

4. He may use both image generation and
attention handling (except ROCOR) sub-
routines.

In order to use all the GSP subroutines
he must be thoroughly familiar with the
body of this publication.

In order to use only the image genera-
tion subroutines, the programmer must use
BXGEN and EXGEN as defined below under
"Generating Orders Outside of an ICA."

The programmer is required to use the
attention handling subroutines to allow the
2250 operator to communicate with the pro-
gram, unless no operator communication is
required or unless the programmer has
replaced the IBM-supplied 2250 ISS with his
own.

If any part of all of the GSP is being
used, the first GSP subroutine called must
be GSPIN. GSPIN starts the 2250 (the
device is regenerating but nothing is
displayed), therby activating the keyboards
for attentions. In particular, the CANCEL
key is activated, which the 2250 operator
can use to terminate a program. If the
Assembler language programmer wishes to
have complete control of the program, he
may call DSPYN (see below) to perform a
Reset Display. This action stops regenera-
tion and deactivates the keyboards. Since
the CANCEL key is not active, the 2250
operator can not terminate the program
until the device is restarted.

Since the format of the Assembler CALL
statement is different from that of the
FORTRAN CALL statement, the programmer must
be aware of the proper calling sequence.

CALLING A GSP SUBROUTINE

In Assembler language, the calling
sequence to a GSP subroutine is as follows:

[label] CALL GSP subroutine name

[label] DC	 address of last parameter

For example, to call GSPIN the Assembler
language programmer might code the follow-
ing:

CALL GSPIN
DC ZERO address of integer argu-

ment
DC ZERO address of real argument
DC RETRN address of return error

field
DC CUMUL address of	 cumulative

error field
DC UNIT1 address of logical unit 1
DC ZERO address of zero field

indicating no device 2
DC ZERO address of zero field

indicating no device 3
DC ZERO address of zero field

indicating no device 4

ZERO DC 0
RETRN DC 0
CUMUL DC 0
UNIT1 DC 25

The list of DCs following a call to any
GSP subroutine must contain nothing but
addresses, and there must be as many DCs as
there are arguments in the FORTRAN argument
list.

ARRAY ARGUMENTS FOR GSP SUBROUTINES

Input arrays to the GSP must be stored
in column order in descending storage
addresses, with the value of the first of
the array's subscripts increasing most
rapidly and the value of the last increas-
ing least rapidly. In other words, arrays
must be stored with element (1,1,1) in a
higher core location than element (2,3,4).
In scanning the array from element (1,1,1),
the left indices are advanced more rapidly
than those on the right. (See IBM 1130/1800
Basic FORTRAN IV Language, Form C26-3715,
"Arrangement of Arrays in Storage".)

ADDITIONAL ASSEMBLER-LANGUAGE FACILITIES

Three subroutines, BXGEN, EXGEN, and
IELMT, allow the Assembler-language pro-

Appendix D 65

grammer to use the GSP image generation
subroutines without the necessity of using
the image management subroutines, that is,
to generate orders outside of an ICA.
Before any call to an image generation
subroutine, the programmer calls BXGEN,
Begin External Generation.. He can now use
any of the image generation subroutines to
create a graphic order program. The gener-
ated orders are placed in an area that the
Assembler-language programmer designates,
not in an ICA. If the programmer is using
both external generation facilities and
image management, i.e., an ICA, he can
re-establish an ICA as the generation out-
put area by calling EXGEN, End External
Generation. IELMT, Include Element, allows
the Assembler-language programmer to define
to the GSP any subroutine entities that
have been generated outside of an ICA.

The EXEC, SATNS, and RQATN subroutines
have additional facilities for use by the
Assembler-language programmer as detailed
below. Finally, a 2250 ISS called DSPYN
has been defined to provide the Assembler-
language programmer with all the necessary
2250 I/O operations.

BXGEN, EXGEN, IELMT, EXEC, SATNS, RQATN,
and DSPYN are defined below for use by the
Assembler language programmer.

BXGEN--Begin External Generation

The BXGEN subroutine enables the
Assembler-language programmer to use image
generation subroutines to generate graphic
data outside of an image construction area.
It. initializes the GSP in the external
generation mode until a call to EXGEN has
been serviced.

CALL	 BXGEN
DC	 start
DC	 length
DC	 gen-count
DC	 non-gen-count

start
is the symbolic or absolute address
where the first graphic order generat-
ed is to be stored.

length
is the address of a one-word field
containing an integer value that
defines the length of the area in
which the image generation subroutines
can store generated orders.

gen-count
is the address of a one-word field
where the total number of words gener-
ated is to be stored. This field is
set to zero by BXGEN and is updated by
each image generation subroutine.

non-gen-count
is the address of a one-word field
that is set to zero by BXGEN. At the
completion of each image generation
subroutine call it is set to zero if
the generation was completed. If the
generation was incomplete, it contains
the amount of the "count" argument not
used by the image generation. subrou-
tines (which have a "count" argument)
when the area specified by the "start"
and "length" arguments has been
filled. Those image generation sub-
routines which do not have the "count"
argument (PGRID, PCOPY, LKSUB, and
MVPOS) store the number of words they
were unable to generate.

CAUTIONS:

1. Only image generation subroutines can
be called between a call to BXGEN and
a call to EXGEN. The generation pro-
duced by MVPOS and LKSUB is unnamed.

2. It is the Assembler language program's
responsibility	 to	 check
"non-gen-count" for a non-zero value
(see programming notes). 	 No error
return	 code	 is	 furnished if
"non-gen-count" is non-zero.

3. A second call to BXGEN before a call
to EXGEN is invalid.

PROGRAMMING NOTES: The Assembler-language
programmer may use the external generation
facility of GSP to generate, in line,
graphic data for displaying if he provides
those graphic orders necessary to form a
complete graphic program (i.e., an STMR
order at the beginning of the graphic
program and a GB order to the STMR order to
insure regeneration).

The Assembler-language program must take
corrective action if the "non-gen-count"
argument becomes non-zero. Two possible
approaches are as follows:

1 The program can maintain a pointer to
the last order generated by each image
generation subroutine. (The
"gen-count" argument provides the
information needed to maintain the
pointer.) Upon an occurrence of the
non-zero condition, the program can
(a) call EXGEN; (b) call BXGEN speci-
fying a new generation area; (c) tie
the two areas together by means of a
graphic branch order; (d) reissue the
last image generation call and contin-
ue.	 This sequence is illustrated in
Figure 11.

2. Following a call to BXGEN, a call to
PLINE (for example) contains arguments
XARRAY, YARRAY, and COUNT, where COUNT

66

1
A

(area A)

+ "gen-count"

+ "gen-count"
(returns non-zero "non-gen-count")

CALL BXGEN
CALL PLINE
pointer = "start"
CALL PPNT
pointer = "start"
CALL PSGMT

*CORRECTIVE ACTION
CALL EXGEN	 (area A)
CALL BXGEN	 (area B)
store GB order at pointer
reissue call to PSGMT for area B

r	 1
IPLINE orders1

- -> 	

IPPNT orders I

- -> 	

IPSGMT orders1
1(incomplete)1

B

IPSGMT orders!

Figure 11. Overflow of External Generation Area

is equal to 100. Upon return from
PLINE, "non-gen-count" has a value of
40. This value indicates that the
last 40 elements of XARRAY and YARRAY
could not be generated because the
area specified by "start" and "length"
became filled. The program can (a)
save the generated orders in another
area or on disk; (b) call EXGEN; (c)
call BXGEN, either for the same or a
new area; (d) repeat the call to PLINE
after adjusting the XARRAY and YARRAY
arguments to point to the sixty-first
elements in the arrays, and the COUNT
argument to 40.

The first approach is recommended should
corrective action be needed following a
call to PGRID, PCOPY, LKSUB, or MVPOS.
Either approach can be used following those
subroutines that have a "count" argument.

It is suggested that the external gener-
ation area be at least two words longer
than what is specified by the "length"
argument. Having the extra words ensures
that the program can insert a branch order
if the external generation area becomes
full.

With careful use of BXGEN and EXGEN, the
Assembler-language programmer can mix
graphic data produced by the image genera-
tion subroutines and pre-assembled graphic
orders moved to the same area.

ERRORS:

1. The value of the "length" argument is
zero or negative.

2. A call to BXGEN was issued when the
GSP was already in the external gener-
ation mode.

EXGEN--End External Generation

The EXGEN subroutine enables the
Assembler-language programmer to specify
the end of the external generation mode.

CALL	 EXGEN

ERROR: A call to EXGEN was issued when the
GSP was not in the external generation
mode.

IELMT--Include Element

The IELMT subroutine identifies to the
GSP any subroutine entities outside an ICA
that are to be included in the active ICA.

CALL	 IELMT
DC	 corrval
DC	 startaddr
DC	 endaddr

corrval
is the address of a one-word field
containing a correlation value, as
defined in "Arguments Used by Many of
the Subroutines."

startaddr
is the address of the first order of
the included element.

endaddr
is the address of the last order of
the included element.

CAUTIONS: The included element is not moved
from its defined area. IELMT establishes
control information pointing to its loca-
tion. The included element is assumed to
be a subroutine entity and may be referred
to only by means of a call to LKSUB.

PROGRAMMING NOTES: Included elements may be

Appendix D 67

deleted by means of DELMT. Only the con-
trol information established by IELMT is
deleted; the subroutine entity itself is
not altered.

ERRORS:

1. The correlation value is not in the
range 1 to 32767.

2. The the address for the first order is
equal to or greater than the address
for the last order.

3. No ICA has been defined.

EXEC--Execute Display

The EXEC subroutine causes an image to
be displayed on the 2250 screen.

CALL	 EXEC
DC	 device
DC	 corrval or stadd
DC	 idopt

device and corrval
are addresses of one-word fields con-
taining the logical unit number and
correlation value, as defined in
"Arguments Used by Many of the Subrou-
tines." When "corrval" is used, it
must have been previously defined as
an image entity (order program).

stadd
is the address of a graphic order in
an order program. It may be used
instead of correlation value in
Assembler-language programs, and is
written as an integer constant, inte-
ger variable, or integer arithmetic
expression.

idopt
is the address of a one-word field
that specifies whether the second
argument is a correlation value or a
starting address. It is written as an
integer constant or integer variable
with the following meanings:

0 = the second argument is a corre-
lation value

1 = the second argument is a start-
ing address

CAUTION: The correlation value, when used,
must have been previously defined as a
completed image entity. The image entity
must reside in the active ICA when the
"idopt" argument equals zero.

PROGRAMMING NOTE: While an image entity is
being displayed, other image entities may
be generated in other ICAs. Image genera-
tion or updating of an image entity in the
ICA containing the image entity being dis-

played must be preceded by a call to TMDSP
to terminate the display.

ERRORS:

1. The correlation value is not in the
range 1 to 32767.

2. The "idopt" argument is zero, but the
correlation value is not defined in
the active ICA as an image entity.

3. The "device" argument is invalid.

SATNS--Set Attention Status

The "attnsource" codes for this subrou-
tine differ for the Assembler-language pro-
grammer as follows:

	

Code	 Meaning

	

1	 Order controlled attentions
are enabled.

30 All sources except order con-
trolled attentions are en-
abled.

	

31	 All sources are enabled.

All other codes remain as described for the
FORTRAN programmer.

When code 1 is specified (or code 31),
an attention occurs when a Graphic Inter-
rupt or Graphic Conditional Interrupt order
is encountered. (If conditional, the con-
dition or conditions for the interrupt must
be met.) The interrupt orders are de-
scribed in Appendic C.

RQATN--Request Attention Information

For order controlled attentions, RQATN
places attention source code 1 in Array(1);
a decimal number in the range 1 to 4
corresponding to the logical unit number in
Array(2); the address of the order causing
the attention in Array(11); and the address
of the next sequential order in Array(12).
The other elements of the array are filled
with zeros.

Following an order controlled attention,
the GSP restarts the display but does not
redisplay the image entity (the 2250 is
regenerating, but the screen is blank).

For light pen attentions, in addition to
the data explained in Table 1, RQATN places
the address of the order detected by the
light pen in Array(11) and the address of
the next sequential order in Array(12).

DSPYN--2250 I/O Routine

This subroutine provides the Assembler-
language programmer with various I/O
functions for the 2250, in addition to
those provided by other GSP subroutines.

68

LIBF DSPYN
DC	 Control parameter
DC	 I/O area
DC	 Error routine

The calling sequence parameters are de-
scribed in the following paragraphs.

Control Parameter

This parameter consists of four hexa-
decimal digits as shown below:

The I/O area consists of eight hexadeci-
mal digits which represent a bit pattern to
indicate the keys to be lighted. All other
keys are turned off. The keys are speci-
fied by bits 0-31 as follows:

r
KeysTKeysTKeysTKeysTKeysTKeysTKeysTKeys I

I 0-3 14-7 18-11112- 116- 120- 124- 128- I

1	 1	 1	 115	 119	 123	 127	 131	 1
1	 I.	 1	 1	 J.	 -L.	 .1

The calling sequence for this function

	

1 2 3 LL
	

is:
I	 1	 I	 Idevice<	 J. J 1 1	 LIBF DSPYN

I/O function<	 1 J	 DC	 /1958
DC	 AREA

Device is the actual device in use. A
hexadecimal 19 is required.

The I/O function digits specify the
operation to be performed. The functions,
their associated hexadecimal values, and
the required parameters are listed and
described below.

Hex Required
Function	 Code Parameters*
Start Regeneration 50 Control,I/O area,

Error
Set Programmed

Function Lights 58 Control,I/O area
Read Status	 60 Control,I/O area
No-Operation	 40 Control
Reset Display	 48 Control,Error
Sense Device	 70 Control,Error

*Any parameter not required for a particu-
lar function must be omitted.

Start Regeneration: Starts regeneration of
the display at the core address specified
by the I/O area parameter. If the device
is busy, regeneration is stopped and
restarted at the address specified. Regen-
eration is stopped by any interrupt.

Should regeneration fail to start, a
second attempt is made. Should this fail,
DSPYN branches to the specified error rou-
tine, or to a standard error routine,
described under "Error Parameter," if zero
is specified for the error parameter.

The calling sequence for this function
is:

LIBF DSPYN
DC	 /1950
DC	 AREA
DC	 ERROR

Set Programmed Function Lights: Resets the
display (sed below) and lights the pro-
grammed function lights specified in a
two-word I/0 area. The display is not
restarted.

Read Status: Causes the status of the 2250
at the time of the last attention to be
transferred from the area where it was
stored when the attention was recognized to
a six-word area specified as the I/O area.
When an attention occurs, subsequent atten-
tions are ignored until the program exe-
cutes the Read Status function. If no
attention has occurred since the last Read
Status function was executed, the first
word of the six-word area will contain
zero.

For the status format see the Component
Description publication for the 2250 model
4. Since Read Status does not initiate a
read, no error conditions are applicable.

The calling sequence for this function
is:

LIBF DSPYN
DC	 /1960
DC	 AREA

No-Operation: Provides no-operation; no
input/output command is issued. The call-
ing sequence for this functiOn is:

LIBF DSPYN
DC	 /1940

Reset Display: Resets the address reg-
ister, device status word, keyboards, all
data registers, and stops regeneration.

Should Reset Display fail to effect a
reset, a second attempt is made. Should
this fail, DSPYN branches to the specified
error routine, or to a standard error
routine, described under "Error Parameter,"
if zero is specified for the error paramet-
er.

The calling sequence for this function
is:

Appendix D 69

LIBF DSPYN
DC	 /1948
DC	 ERROR

Sense Device: Reads the device status word
and places it in the accumulator.

Should the operation be unsuccessful, a
second attempt is made. Should this fail,
DSPYN branches to the specified error rou-
tine, or to a standard error routine,
described under 'Error Parameter," if zero
is specified for the error parameter.

The calling sequence for this function
is:

LIBF DSPYN
DC	 /1970
DC	 ERROR

I/O Area Parameter

The I/O area parameter applies to the
Start Regeneration, Set Programmed Function
Lights, and Read Status functions. Infor-
mation about this parameter is contained in
the above descriptions of these three func-
tions.

Error Parameter

The error parameter is the address of
the user's routine that is to receive
control in the event of an error, or is

zero. When control is passed to the user's
error routine, the accumulator contains a
code identifying the error. If the accumu-
lator contains zero when control is
returned from the user's error routine, the
function is retried. If the error code is
still in the accumulator when control is
returned from the user's error routine, or
if zero is specified for the error paramet-
er, the following action is taken.

A Reset Display followed by a final
attempt is made to effect the desired
operation. Should this fail the following
information is typed out on the system
print-out device:

1. Last status information

2. Function being performed

3. The error

4. Last DSW sensed

5. Address of last instruction executed

The routine then waits for either a D
(for terminate with dump), R (for retry),
or T (for terminate without dump) to be
entered on the 1130 console keyboard. Upon
sensing a D, the 2250 is reset, the PFKB
lights are turned off, and the program
exits. If an R is sensed, the operation is
retried.

70

APPENDIX E: ASSEMBLER LANGUAGE AND FORTRAN PROGRAM INTERACTION

An Assembler-language programmer can
generate graphic elements for use by FOR-
TRAN programs in one of three ways:

1. By using a common ICA.

2. By using BXGEN, EXGEN, and IELMT.

3. By using preassembled order subrou-
tines and IELMT.

If the FORTRAN program calls the
Assembler-language program as a subroutine
or vice versa, one of the programs will
call GSPIN and define an ICA. If the GCA
is passed as an argument, or if the called
program sets up its own GCA, both programs
can now use any of the GSP subroutines, and

the elements generated will be placed in
the ICA for subsequent display.

On the other hand, a FORTRAN program can
call an Assembler-language program passing
as an argument the ICA. The Assembler-
language program can then use the external
generation mode to create one or more
subroutine entities and include them in the
ICA (see Appendix D). The correlation
values for the subroutines can either be
provided by the FORTRAN program as
arguments or passed back to the FORTRAN
program by the Assembler-language program.
Care must be exercised to ensure that these
correlation values are unique within that
ICA.

Appendix E 71

APPENDIX F; STANDARD 1130/2250 CHARACTER SET

The following are the characters and
their decimal equivalents that can be gen-
erated for display on the 2250 by using the
PTEXT or MSGIN subroutne, or can be entered
from the alphameric keyboard.

Character	 Decimal
Graphic	 Equivalent

Character
Graphic

Decimal
Equivalent

Character	 Decimal
Graphic	 Equivalent

A 193 *d 132 6 246
B 194 *e 133 7 247
C 195 *f 134 8 248
D 196 *g 135 9 249
E
F

197
198

*h
*i

136
137

4,

.

74
75

G 199 *j 145 < 76
H 200 *k 146 (77
I 201 *1 147 + 78
J 209 *m 148 *1 79
K 210 *n 149 & 80
L 211 *0 150 40. 90
M 212 *p 151 $ 91
N 213 *q 152 * 92
0 214 *r 153) 93
P 215 *s 162 *; 94
Q 216 *t 163 *7 95
R 217 *u 164 - (minus) 96
S 226 *v 165 / 97
T 227 *w 16 107
U 228 *x 167 i 108
V 229 *y 168 * (under- 109
W 230 *2 169

_

score)
X 231 0 240 *> 110
Y 232 1 241 *? 111
Z 233 2 242 *: 122

*a 129 3 243 # 123
*b 130 4 244 @ 124
*c 131 5 245 1 125

= 126
* It 127

(space) 64

*These characters are not in the 1130 FORTRAN Source Program Character set.

72

APPENDIX G: DIMENSIONS OF STANDARD 2250 CHARACTERS

Table 3 lists the dimensions and spacing unit (r.u.) equals approximately .012
of the characters produced by the 2250 inches. All inch dimensions are approxi-
character stroke subroutines. Character mate.
spacing is center to center. One raster

Table 3.	 Character Dimensions and Spacing
r 	 T	 1

1	 Character Size
Characteristics	 F 	 -1

Basic	 1	 Large
1- 	
Characters per line (maximum) 74 49

Lines per display (maximum) 52 35

Number of characters on display (maximum) 3,848 1,715

Spacing between characters (r.u.) 14 21

Spacing between characters (inches) .16 .25

Spacing between lines of characters (r.u.) 20 30

Spacing between lines of characters (inches) .24 .36

Character size (r.u. - vertical x horizontal) 14 x 10 21 x 15

Character size (inches - vertical x horizontal) .16 x .12 .24 x .18

Subscript offset (r.u. - grid movement down) 6 9

Subscript offset (inches - grid movement down) .07 .11

Superscript offset (r.u. - grid movement up) 6 9

Superscript offset (inches - grid movement up) .07 .11
L 	 J.

Appendix G 73

INDEX

When more than one reference is given,
the first page number indicates the major
reference.

absolute data 14
absolute position 35,36
active ICA 12,24
active linkage entity 11,37
addressable screen positions 7,13
ADVANCE key 41
alphameric characters

character dimensions and spacing 73
character set 7,72
character stroke 7,61,63
decimal equivalents 72
generation of 36
off-screen 36,37

alphameric keyboard 19,41,42
alphameric keyboard subroutines

DFMSG, define message entity 42
ICURS, insert cursor 44
MSGIN, message entity initialization
RCURS, remove cursor 44
TLMSG, translate message entity 45

array
attention data (RQATN) 41
input data 14,32,65
text data 22

Assembler language
additional facilities for 65-66
CALL statement format 65
error codes 64
interaction with FORTRAN 71
use of the GSP 65

Assembler orders
CS, control stroke 63
DI3A, draw beam absolute 62
UBAX, draw beam absolute x 63
DRAY, draw beam absolute y 63
DBI, draw beam incremental 62
DBS, draw beam stroke 63
GB, graphic branch 64
GBC, graphic branch conditional 64
GBCE, graphic branch conditional
external 64

GBE, graphic branch external 64
GI, graphic interrupt 64
GIC, graphic interrupt conditional 64
GNOP, graphic no-operation 62
GSB, graphic short branch 63
MBA, move beam absolute 62
MBAX, move beam absolute x 62
MBAY, move beam absolute y 62
MBI, move beam incremental 62
MBS, move beam stroke 63
RVT, revert 62
SCMB, set character mode basic 61
SCML, set character mode large 61
SGMP, set graphic mode point 61
SGMV, set graphic mode vector 61
SPM, set pen mode 61,62
SRVT, store revert register 62

STMR, start regeneration timer 61
attention 17,39
attention information

for detect on a controlled entity 10,28
for order controlled attention 68
returned by RQATN 39-41
unprocessed 40

attention-handling subroutines
ROCOR, request outer correlation
value 42

RQATN, request attention information 40
SATNS, set attention status 40

attentions on the tracking symbol 47
attention sources 17,39,40,68
A-type format 22

CALL statement, Assembler-language
format 65

CANCEL key 39,40,65
changing an element type 26
character data (see alphameric characters)
character generation subroutine 7
character mode orders

SCMB, set character mode basic 61
SCML, set character mode large 61

character stroke orders
CS, control stroke 63
DBS, draw beam stroke 63
MBS, move beam stroke 63

character stroke subroutine 61,63
COMMON, ICA residing in 59
communication between 2250 operator and
program 17,39,49

constant increment 33
CONTINUE key 44
controlled entity

definition 9,10
attributes 10,28
setting or changing attributes 28

conversion of tracking data 49
coordinates 7
copy an element 38
core-storage layout 8,59
core-storage requirements 7
correlation value 11,22,28,41,42
CS, control stroke 63
CTLTK, control light pen tracking 47
cursor 19,44
curve tracking mode 48,49

BACKSPACE key 41,44
basic size characters 36,42,61,73
BELMT, begin element 25
blanked beam movement 7
branch orders

43	 GB, graphic branch 64
GBC, graphic branch conditional 64
GBCE, graphic branch conditional
external 64

GBE, graphic branch external 64
GSB, graphic short branch 63

BXGEN, begin external generation 66

curves 47,48
CVTTD, convert tracking data 49

data limits 14,31
DBA, draw beam absolute 62
DBAX, draw beam absolute x 63
DBAY, draw beam absolute y 63
DBI, draw beam incremental 62
DBS, draw beam stroke 63
decimal equivalents of characters 72
defer light pen interrupts 61
DEFINE FILE statement 59
DELMT, delete element 27
detect 10
detect ability attribute 10,28
device address 12,23
device status word 70
DFMSG, define message entity 42
dimensions of characters 73
disabled attention sources 18,39,40
disable light pen detects 61
displaying an image 29,68
DISTE, disconnect tracking entity 49
draw beam orders

DBA, draw beam absolute 62
DBAX, draw beam absolute x 63
DBAY, draw beam absolute y 63
DBI, draw beam incremental 62
DBS, draw beam stroke 63

DSPYN, 2250 input/output routine 65,68
dumps 29,39,70

EELMT, end element 25
element 9
enable light pen detects 61
enable light pen interrupts 61
enabled attention sources 18,39,40
END key 19,39,40,41
end light pen tracking 48
ending an element 25,26
entity

controlled 9,10,28
image 9,10
linkage 9,11,37
LPC 9,11
message 9,11,42-45
origin 9,11,34
singular 9,11
subroutine 9,10
tracking 9,11,47-50
uncontrolled 9,10

error
codes 52,70
input/output 8
invalid arguments 8,52
print-out of codes 52
return variables 12,52
user's routine (Assembler language) 70

EXEC, execute display 29,68
EXGEN, end external generation 66,67
extended precision 23,24
external generation 66,67

GB, graphic branch 64
GBC, graphic branch conditional 64
GBCE, graphic branch conditional
external 64

GBE, graphic branch external 64

GCA, generation control area
contents 12,13
definition 12,22
dimension 22
initialization 12,22,30
standard values 14,30
used in interacting FORTRAN/Assembler
programs 11

GCA definition subroutines
GCAIN, GCA initialization 13,30
SDATM, set input data mode 33
SGRAM, set output graphic mode 34
SINCR, set increment values 33
SINDX, set index values 32
SSCAL, set scaling information 31
SSCIS, set scissoring option 32

GCAIN, generation control area
initialization 13,30

generation control area (see GCA)
GI, graphic interrupt 64
GIC, graphic interrupt conditional 64
GNOP, graphic no-operation 62
graphic element (see entity)
graphic order (see Assembler orders)
grid limits 13,30,31,37
GSB, graphic short branch 63
GSP subroutines as LOCALS 59
GSP support package (GSPSP) 7,8,59
GSP termination 29
GSPIN, graphic subroutine package
initialization 12,23,65

GSPSP, GSP support package 7,8,59
GSPTM, GSP termination 29
*G2250 control card 7,59

ICA, image construction area
active and inactive 12,24
contents 12
definition 12
initialization 12,24-25
multiple ICAs 12,25
programs not using an ICA 66
redefining and reinitializing 24-25
used in interacting FORTRAN/Assembler
programs 71

ICAIN, image construction area
initialization 12,24

IDPOS, indicate element position 35
ICURS, insert cursor 44
IELMT, include element 66,67
IERRS, interpret errors 52
image construction area (see ICA)
image entity

definition 9,10
displaying 29
outside an ICA 66

image generation subroutines 15,29
image management subroutines 15,23
inactive linkage entity 11,37
increment values 14,30,33
incremental input data 14,33
incremental output 34
incremental positioning of text 36
index values for input arrays 14,30,32
initial tracking mode 49
initialization subroutines

GCAIN, GCA initialization 13,30
GSPIN, GSP initialization 12,23

Index 75

ICAIN, ICA initialization 12,24
initializing a message entity 43
input data arrays 14,32,33
input data mode 14,30,32,33
input/output errors 8
input/output functions (DSPYN) 68-70
inserting an element 27
intensity of character strokes 63
interrupt orders

GI, graphic interrupt 64
GIC, graphic interrupt conditional 64

I-type format 22

JUMP key 9,41,44

large size characters 36,42,61,73
LCPOS, locate a position with the tracking
symbol 46

light pen 19,45
light pen attention information 41
light pen subroutines

CTLTK, control light pen tracking 47
CVTTD, convert tracking data 49
DISTE, disconnect tracking entity 49
LCPCS, locate a position with the track-
ing symbol 46

LOCND, locate position of light pen on no
detect 46

LOCPN, locate position of light pen 45
TRACK, track position of light pen 47

light programmed function keys 21,51
line plotting 35
line segments 36
linear tracking 48
linkage entity

active and inactive 11,37
creating 37
definition 9,11
linkage to deleted elements 10,11,27
linkage to a tracking entity 47,49
modifying 37
named and unnamed 37

LKSUB, linkage to a subroutine 37
LOCAL control card 59
LOCND, locate position of light pen on no
detect 46

LOCPN, locate position of light pen 45
logical unit number 12,22,23,24
LPC entity 9,11

main-line program 8,59-60
mapping 14
MBA, move beam absolute 62
MBAX, move beam absolute x 62
MBAY, move beam absolute y 62
MBI,
MBS,

move
move

beam
beam

incremental
stroke	 63

62

message-collection mode 19,44-45
message-collection subroutines (see alpham-
eric keyboard subroutines)

message entity
creating 42
definition 9,11
initialization 43
inserting characters from the
keyboard 44

inserting and removing a cursor 44
move beam orders

MBA, move beam absolute 62
MBAX, move beam absolute x 62
MBAY, move beam absolute y 62
MBI, move beam incremental 62
MBS, move beam stroke 63

MSGIN, message entity initialization 43
MVPOS, move element to a position 34

named elements 11
named linkage entity 37
nesting elements 9
new line 36,63
non-detect 10,28
non-display 10,28
no-operation

CS order 63
GNOP order 62
DSPYN function 69
SPM order 61

null characters 42,63

off-screen text 36
one word integers 23,24
optimized data 14
order controlled attentions 68
orders (see Assembler orders)
origin entity

creating 34
definition 9,11
following a subroutine entity 35
incremental and absolute positioning 35
named and unnamed 34

output graphic mode 14,30,34
overlay (PFKB) 20,41

PCOPY, plot copy 38
pen mode order 61
PGRID, plot grid outline 37
PLINE, plot lines 35
plotting subroutines

PCOPY, plot copy 38
PGRID, plot grid outline 37
PLINE, plot lines 35
PPNT, plot points 35
PSGMT, plot line segments 36
PTEXT, plot text 36

point mode order 61
point plotting 35,61
position tracking 49
positioning an element 11,34,35,36
PPNT, plot points 35
precision 12,23,24
print-out of error codes 52
programmed function keyboard 20,41,51
programmed intensity of character
strokes 63

program links 59-60
program termination 29,39
PSGMT, plot line segments 36
PTEXT, plot text 36

raster unit 7
RCURS, remove cursor 44
read status (DSPYN) 69
redefine an ICA 24,25
redisplay an image 39
regeneration 7,61,66
reinitializing the GSP 29

76

reposition after a subroutine entity 35
reset display (DSPYN) 65,69
restart the 2250 39
retry an operation (DSPYN) 70
return linkage 62
revert orders

RVT, revert 62
SRVT, store revert register 62

ROCOR, return outer correlation value 42
RQATN, request attention infor-
mation 39,40,68

rubber-banding 49
RVT, revert 62

SATNS, set attention status 39,40,68
SATRB, set controlled entity
attributes 28,39

scaling 14,30,31
scan for light pen 46
scanning pattern 45,46
scissoring in a subroutine entity 32
scissoring option 14,30,32,35
SCMB, set character mode basic 61
SCML, set character mode large 61
screen limits 7,13,30,31
SDATM, set input data mode 33
sense device (DSPYN) 70
SGMP, set graphic mode point 61
SGMV, set graphic mode vector 61
SGRAM, set output graphic mode 34
SINCR, set increment values 33
SINDX, set index values 32
singular entity 9,11
sketching with the light pen 47,48
smoothness of curves 48
SPFKL, set programmed function keyboard
lights 51

SPM, set pen mode 61
SRVT, store revert register 62
SSCAL, set scaling information 31
SSCIS, set scissoring option 32
standard precision 23,24
standard values for GCA 14,30
start regeneration (DSPYN) 69
start regeneration timer order 61
status of 2250 69
STMR, start regeneration timer 61
stroke intensity 63
stroke orders

CS, control stroke 63
DBS, draw beam stroke 63
MBS, move beam stroke 63

subroutine entity

contents 10
definition 9
deletion 27
entry to a subroutine 10
subroutines outside an ICA 67

subscripting characters 7,23,63,73
superscripting characters 7,23,63,73
supervisor control record (*G2250) 7,59

termination
of display 29
of light pen tracking 48
of message-collection mode 19,44
of program 29,39

text array 22
text formats 22,23
TLMSG, translate message data 45
TMDSP, terminate display 29
TRACK, track position of light pen 47
tracking entity

creating 47
compared with subroutine entity 11
conversion of tracking data 49
definition 9
disconnect from an image entity 49
linkage 47
termination 48

tracking modes 20,47,48
tracking symbol 20,46,47

UELMT, update element 26
unblanked beam movement 7
uncontrolled entity 9,10
unit identification 12,23,24
unnamed linkage entity 37
unprocessed attention information 40
updating

a linkage entity 37
an element 26,29
an origin entity 34-35

user's error routine (Assembler
language) 70

vector mode order 61
visibility attribute 10,28

wait for an attention 40

XELMT, extend element 27
XEQ card 59

2250 display unit 7
2250 input/output routine (DSPYN) 65,68

Index 77

READER'S COMMENTS

IBM 1130/2250 Graphic Subroutine Package; Preliminary Specifications

C27-6934-0.

Your comments will help us produce better publications for your use. Please check or
fill in the items below, adding explanations and other comments in the space provided.
All comments and suggestions become the property of IBM.

Which of the following terms best describes your job?
3 Programmer	 H Systems Analyst	 V Customer Engineer
3 Manager	 V Engineer	 V Systems Engineer
V Operator V Mathematician V Sales Representative
V Instructor V Student/Trainee V Other (explain)

Does your installation subscribe to the SRL Revision Service? 	 V Yes	 V No

How did you use this publication?
3 As an introduction
3 As a reference manual
3 As a text (student)
3 As a text (instructor)
3 For another purpose (explain) 	

Did you find the material easy to read and understand?No (explain below)V Yes

Did you find the material organized for convenient use? V Yes 	 V No (explain below)

Specific criticisms (explain below)
Clarifications on pages 	
Additions on pages 	
Deletions on pages 	
Errors on pages 	

Explanations and other comments:

No postage necessary if mailed in U.S.A.

C27-69311-0

FOLD	 FOLD

FIRST CLASS
PERMIT NO. 116

KINGSTON, N. Y.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A.

POSTAGE WILL BE PAID BY

IBM CORPORATION

NEIGHBORHOOD ROAD

KINGSTON, N. Y. 12401

ATTN: PROGRAMMING PUBLICATIONS

DEPARTMENT 637

•=11111111111111=

•11111111•1111111=

FOLD	 FOLD

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.10601
[USA Only]

IBM World Trade Corporation
B21 United Nations Plaza, New York, New York 10 017
[International]

C27-69314-0

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10 017
[International]

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80

