Systems Reference Library

IBM 1130 Disk Monitor System, Version 2
System Introduction

This publication describes the 1130 Disk Monitor System,
Version 2. It also provides the functional specifications for
programming the IBM 1130 Computing System using this
monitor system.

The 1130 Disk Monitor System, Version 2, is a combined
programming and operating system that provides for continuous
operation of the 1130 in a stacked job environment. This
monitor system supports the expanded hardware features and
the high-speed input/output devices available on the 1130.

File 1130-36
Form C26-3709-0

First Edition

Specifications contained herein are subject

to change from time to time. Any such change
will be reported in subsequent revisions or
Technical Newsletters.

Requests for copies of IBM publications should be
made to your IBM representative or to the IBM branch
office serving your locality.

Address comments concerning the contents of the publi-
cation to IBM Corporation, Programming Publications
Dept. 232, San Jose, California, 95114

© by International Business Machines Corporation 1967

The IBM 1130 Disk Monitor System, Version 2,
supports a wide range of I/0O devices and machine
configurations, including:

IBM 1131 Central Processing Unit, Model 2, with
4096,8192, 16,384, or 32,768 words of core storage

IBM 1131 Central Processing Unit, Model 3, with
8192, 16,384, or 32,768 words of core storage

IBM 2310 Disk Storage, Model B

IBM 1442 Card Punch, Model 5 - may not be used
with 1442-6 or 1442-7

IBM 1442 Card Read Punch, Models 6 and 7 - may
not be used with 1442-5

IBM 2501 Card Reader, Models Al and A2 - may
not be used with 1231

IBM 1231 Optical Mark Page Reader - may not be
used with 2501

' IBM 1134 Paper Tape Reader and IBM 1055 Paper
Tape Punch

IBM 1132 Printer

IBM 1403 Printer, Models 6 and 7
IBM 1627 Plotter

Synchronous Communications Adapter

The minimum machine configuration required by
the 1130-Disk Monitor System, Version 2, is:

IBM 1131 Central Processing Unit, Model 2, with
4096 words of core storage

and one of the following input/output devices:

IBM 1134 Paper Tape Reader in combination with
the IBM 1055 Paper Tape Punch

IBM 1442 Card Read Punch, Model 6

IBM 2501 Card Reader in combination with the IBM
1442 Card Punch, Model 5

iii

PREFACE

The 1130 Disk Monitor System, Version 2,
provides for the continuous operation of the 1130
Computing System, with minimal set-up time and
operator intervention, in a stacked job environment,
The monitor system consists of seven distinct but
interdependent elements - Supervisor, Disk Utility
Program, Assembler, FORTRAN Compiler, Core
Load Builder, Core Image Loader, and System
Library.

The Supervisor performs control functions for the
monitor system and provides the linkage between
user programs and monitor programs.

The Disk Utility Program is a group of IBM-
supplied programs which perform certain operations
involving the disk such as storing, moving, deleting,
and dumping data and/or programs.

The Assembler converts source programs written
in Assembler language into machine language object
programs.

The FORTRAN Compiler translates source pro-
grams written in 1130 Basic FORTRAN IV language
into machine language object programs.

The Core Load Builder constructs core image
programs from mainline object programs. The
mainline programs are converted into disk core
image format from disk system format and the
resultant program is readied for immediate execution
or for storing for future execution.

The Core Image Loader serves as both a loader
for core loads and as an interface for some parts of
the monitor system.

The System Library is a group of disk-resident
programs which perform 1/0, data conversion,
arithmetic, disk initialization, and maintenance
functions.

For an understanding of the 1130 Disk Monitor
System, Version 2, the reader should be familiar
with the following publications:

IBM 1130 Functional Characteristics
(Form A26-5881-3)

IBM 1130 Computing System Input/Output Units
(Form A26-5890-3)

IBM 1130 Assembler Language (Form C26-5927-2)

IBM 1130 Basic FORTRAN IV Language (Form
C26-5933-3) with Technical Newsletters N26-0510
and N26-0527

IBM 1130 Subroutine Library (Form C26-5929-2)
with Technical Newsletter N26-0557

In addition to the publications listed above the

iv

reader should familiarize himself with the terms in
the Glossary contained in this manual, It is
important that these terms be understood as they
are defined herein, in the context of the 1130 Disk
Monitor System, Version 2.

CONTENTS

INTRODUCTION ¢ et e nav ot o sossosesassntasonsns
Stacked Job Environment « ¢ ¢ o s s v o s 00 v s s o s s e oo
Input Stream «+ o v o o v vt i ittt st et

“From” and ““To’’ Symbols « e cvevveoavveseneess 21
Name o o e o0 0006 oesnnonssosseossonsaocsnsens 21
Count + o v e s v s o enonvoovosssusesannasssesasa 21
“From”’ and ““To’’ Cartridge IDS + v v s vovnosoovsea. 21
Unused Columns « . ooovoeoeveosscosoosenesseae 21
DUPOperations « s s s v s v e s sssoesonovocssasesansa 21
DUMP ¢ ¢ ¢ 6ttt et tvonsosesesseosensnsossnses 22
DUMPDATA ¢ v et v et s noosocsosssssncesnsneess 22
DUMPLET ¢ttt veovenenrooenassanonnsssonas 23
DUMPFLET s ¢ s ¢ e v v e e veesnnnnsseasannnsoses 23
STORE ottt vvsertonsvenenssnosnssnenseess 24
STOREDATA 44t vt v v enntennsesnnsoaososnneseas 24
STOREDATACI ¢ + v v v e v veveoeseoecssneossnsens 25
STORECI v v s s v et s e neeeaansenssssnsssnsees 26
STOREMOD . ¢ st vvesveoessovsossosnsscenass 27
DELETE ¢ ¢ o s o vt v nveeenennesssoasenensaneaas. 28
DEFINE + 4ttt eevovssnesenessanasensenesss 28
SUPERVISOR + ¢ sttt vvreenneasnennnncanennnase 10 DWADR ..ottt it nneenneessnnsnssaness. 30
Cold Start Procedure + ¢ o v oo v v vvononeeesevesnsass 10
Resident MODItOr « o ¢ ¢ o s s v v v s vvssenvvseeeonesses 10 ASSEMBLER + ot oo v vt v vsnnnssnsasansanessasss 31
Core Communications Area (COMMA)000vs0.. 10 Assembler Control Records o v v evvsvevevensonsass. 31
Skeleton SUPervisor « v e o v eees vt tenrvassesoaeas 10 TWOPASSMODE .4 ivevvnronrononnansananea. 31
Disk I/O SUbroutine + « v o ¢ s o s 00 v s s oo ssnnnsasess 11 1 -
Supervisor Programs « + s o v v oo v v v v oo e aanenas. 11 LISTDECK + i vvutteeonneenoanaseanssenenans 32
Monitor Control Record Analyzer .+« ¢ osveevuwoosss, 11 LISTDECKE +iovttnenneeeenonssnnassanneas 32
DUMP Program «+ « « s+ o s e s s 0 v oo s o v e vsvsonssesns 11 PRINT SYMBOL TABLE 4t cvvveeevnesssnaassa, 33
Monitor Control RECOIds « «+ ¢« ¢ ¢ ¢t v v e v v v v s nnesoes, 12 PUNCHSYMBOL TABLE¢oveveuvusssnessase. 33
L A -1 SAVESYMBOL TABLE 4 .vveevsvvsonssncasass. 33
N T SYSTEM SYMBOL TABLE. s v v v v v evsvvvsensenaas. 33
FOR ittt nennnnnnsnnnnssnesss 13 - 7
DUP i vttt tiisnnetanneesnnnsssasnsnsenss 13 OVERFLOW SECTORS 4 ¢ e v v vt vevessnsnnanseona. 34
KEQ v voteeteentenne e, 13 COMMON + e vt s avusennnnoenneenanessannss 34
PAUS & ittt it ittt iinntennenannnenoensss 14 Origin of Mainlines ++ ¢ v cvev e v eervenesssneasss 35
0 4 S 1 Assembler Paper Tape Formatveevveusenssve.. 35
TEND &« vttt ittt tnntrenensonsonennoenness 14 Assembler Language + « v vt v vt v ee vttt a.. 35
Comments » + oo s o vevnsresenssssonsonnenseaas 15 New (Extended) Machine Instruction Mnemonics 35
Supervisor Control Records ++ ¢ v e v vt evunsennnesaasa 15 New Assembler Instructions « . .s oo vosesevsnnaeoens. 37
LOCAL ¢t vttt tv it v eneeneeasnssnsnesoneess 15
NOCAL + ot vttt tstveoesosssssosasnssaseess 16 FORTRAN COMPILER ¢+t v v v vt s v vnnsnnnansononen
FILES « vt vttt it ittt n i tosrtssnssesansonsese 16 FORTRAN Control Records « e v oo v e v ososeennsvnnes
Rules for LOCAL and NOCAL Usage « + e v s o v s s s vsuses 17 IOCS ottt e it es et nanonsosnssossnensnnes
LISTSOURCEPROGRAM ¢t vttt neensnonnecnns
DISK UTHLITY PROGRAM + ¢ ¢ o v o s v e v et asonsvsenses 18 LIST SUBPROGRAMNAMES . « v v v vt et e v v anneaaa., 45
General FIOW ¢ vt vt vt ittt ie s snnerisnenrecnosess 18 LISTSYMBOL TABLE ¢ttt veevevsnensennasnaasss. 45
Information Transfer and Format Conversion « ... sse4.... 18 LISTALL ¢ o ottt s it vneernnesenneonsnnanas, 46
LET/FLET ot vttt ot tinunnaninsessnnonaneaneass 18 EXTENDED PRECISION ¢ sttt e vevevnensssansaess 46
DCOM INdicators « o s s s s s e s s vvnovssnsnnnssenaess 20 ONE WORD INTEGERS .+ ¢ .t vt v tnsvsvernnensens. 46
Working Storage Indicator « « + o e« e e v e v v v onessoss 20 NAME . st ottt v esssonnnesosannssnosnenanses 46
FormatIndicator « « v o o e st v vt oo vnnnsssnsssans 20 Header Information « ¢ v eeveevevvvveesnsansas 46
Temporary Mode Indicator «+«covvevevvvnrseesssss 20 ARITHMETIC TRACE .. ittt it tnnnnennnnsnsa, 47
Control Record FOImat « v ¢ « s v e s v v v s v essvnensesss 20 TRANSFER TRACE + ¢t vt nnetnnnennnanaesas, 47
Column 1. s v i iininnesneenenninnssnsnneas 20 FORTRAN Language .« « .o eevveseonrnnonsesannas, 48
Operation Name « .« v v e v v v v vunsnnonssoensesas 21 DATA Statement « « v o o v o v s v v vvnsavonssoennsss 48

Joband Subjob. « v ¢ ¢ e vttt ettt it e e e
System Operation « ..o ev e vvvenrovnrssnnnnnnns
Disk-Resident System + v o o o e s o oo s v vt e s s nsnnenne
Cylinder O on 2 System Cartridge + ¢ o oo v v s v v oo seeos
Cylinder O on a Non-System Cartridge « » « v oo s v 00 v oo
SYsStem Area + v v v o v vt 00 e et et s e s
Core Image Buffer (CIB). « v e s s s v v s e v v v nnnunnnnas
System Library. « « « o o v v 0 vt e vttt i i e
Fixed Area (FX).e « o o s e v v st et s s e ennnnsosnanens
Fixed Location Equivalence Table (FLET) ¢ v v s v v v v v v s
User Area (UA) « s e vt n s s v cnsonsnsnnnsosnnansas
Location Equivalence Table (LET) ¢ ¢ v ¢ v v v oo v v v vuan
Working Storage (WS) « ¢ v ¢ e e v et e v v v e nnonenenas

O O O 0000 00 00 Y W W W ik = e

GERR

Manipulative Input/Output Statements . ¢« .o oo v v

1/0 Without Data Conversion « . v e vo o v e oo v oo
A-Conversion . . . s o s e e e e s e oo oot ane
T-Format Code v v e s v oo v v o et oaessnsas

CORELCAD BUILDER « + s v e s v v s s s ennveanaesns
Core Load Construction o ¢ » ¢« s ¢ « o e s s a0 s 00 s 0060
Processing the Contents of the SCRA - + + e v v v v e v v e
Conversion of the Mainline Program « « ¢ ¢ e ¢ e v 0 0 v s
Incorporation of Subprograms « ¢+« e e v a0 o0
Provision for LOCALs and SOCALs « « e e v e v v e v v v

Construction of the Core Image Header =+« -+« ¢«

Processing Defined Files <« e v oo e v ev o e o noev

Use of the Core Image Buffer (CIB) and Working Storage

Assignment of the Core Load Origin + « + v s s 0 v 0 v v
Transfer Vector (TV)
System Overlays (SOCALS) ¢ « s ¢ o v v et v s e svnsons
LOCAL/SOCAL Flipper + + « ¢« «

R R R R I R P R)

COREIMAGE LOADER + e ¢ e s s s e s s s o s s 0000000
Fetching the Supervisor « « .
Fetching aLink «+ « e e e v o v v v v in vt encnenaneen

.
.
.
.
.

SYSTEMLIBRARY + ¢« o v v v v v s asnssnonssesanns

Interrupt Service Subroutines, . . « « v v e v v u st e s

2501 Card Reader Subroutines (READO and READ1) , ,

Card Punch Subroutines (PNCHO and PNCH1) ,,,....

Disk I/O Subroutines . .o v s s eevevesoovooene
1403 Printer Subroutine (PRNT3) e v e v v v
1231 Optical Mark Page Reader Subroutine (OMPR1) ,
Subroutines Used by FORTRAN . ¢ v e v s v v v v v 00 s e ue
General Specifications (Except DISKZ) . ., . .0 v v

Descriptions of I/O Subroutines. « o v v o s s e v 0 s v e v

Data Code Conversion Subroutines . « « + « o o ¢ ¢ a0 0 v 00

Descriptions of Data Codes. + v v vt v v v e s e s e
PAPPR
HOLPR e e e s e e e

s e s 4 B s s e e s e e e B e s

4 6 e s s e s s b u e s s s s e

49
50
50
50
51

52
52
53
53
53
53
53
53
54
54
54

55

56
56
56

58
58
58
59
61

65
67

. 67

68
69
69
70
71
72

BIDEC . oo vvessvoeosoovononsssoanosss
DECBI v v evosenessonnesosnsssssonsosss
ZIPCO v v v e vvverosoanncassenanonssans
Arithmetic and Function Subroutines « .. .esoeoo.
Writing 1SSs and ILSS + o ¢ e e e 0 s s e s v s o eosonson
Disk Maintenance Programs . .« s o e oo oo o oo 000
DISC--Disk Initialization Program . . s s ¢ v e v v 0o
IDENT--Print Cartridge ID Program @+ « ¢ » ¢ ¢ s ¢ ¢ ¢
ID--Change Cartridge ID Program « ¢ ¢ ¢ ¢ ¢ ¢ oo ¢ v
COPY--Disk Copy Programe « + « s e+ s oo e
ADRWS--Write Sector Addresses in Working Storage
Program s+ cccssev oo coosoccasenn
DLCIB--Delete CIB Program « ¢« o » e s o s 00 s 0 v s e
MODIF --System Maintenance Program « ¢ + = ¢ ¢ o ¢
SYSUP--DCOM Updating Program « s » « ¢ e s o 00 0 s
Paper Tape Mainline Programs « ¢ « ¢ e s s e v 00000 e e
PTREP + e ¢eeevennssososanns
PTUTL ¢+ ccveseoosssonossonnsssssnsss

APPENDIX A, UTILITY PROGRAMS + + e ¢ v e v e v oo
Console Printer Core Dump « s o s o e 0 sio 0o e v 0 v
Printer Core Dump « ¢ s e o o s s o s v e s o0 e s av o
Disk Cartridge Initialization Program (DCIP) « «» -«

APPENDIX B. CHARACTER CODECHART...... ..

APPENDIX C, FORMATS (ot venecncecanennn
Disk Formats ..o v ov e oo vonenon
Disk System Format (DSF) .. . e vt vt v v v vnnnes
Disk Data Format (DDF) . .« v v vt v v nveveoens
Disk Core Image Format(DCI) .. . v v v e s v v v e
CardFormats + e s oo v s o v oo esosococsssenons
Card System Format (CDS)e v s s v s e s 0 v e s s 000
Card Data Format (CDD) .« v v v v 00 s s 0 s 000 e s an
Card Core Image Format (CDC) « ¢ e e v v e v v 0o v
Paper Tape Formats « v o s s s o v s v s v e v e vt ovonen
Print FOrmats « ¢ o o v o o s s 0 s s s v s s osoneoeonun

GLOSSARY . ¢t vvsnssnsosasneronsonconsnos

INDEX ., ivvvvnvenossassnantassanossocs

72
73
73
75
75
75
76
76
76
76

76
76
77
79
79
79
79

80
80
80
80

82

86
86
86
87
87
88
88
89
89

90

91

97

Figures

Figure 1.
Figure 2,
Figure 3.
Figure 4.
Figure 5.

Figure 6.

Figure 7.
Figure 8.
Figure 9,

Tables

Table 1.
Table 2,
Table 3.
Table 4.,

Stacked Job Input + + + s v e vt ot
Overall Flow of the System « « ¢ s ¢ s« s e 000000
Layout of a System Cartridge s« » » ¢ o s e vt s v 0 v
Layout of a Non-System Cartridge «+ +« s« s+ 0o
Layout of Sector 0, Cylinder 0, on Any

Cartridge + «++ -« T T T R S ST
Layout of a Core Image Program Stored

in the User/Fixed Area + + ¢ ¢ v oo v ot o oo 0o n
List DeCKk FOrmat o« « o o o o a0 s 0o s a s s 6 006000
Layout of an Assembler Input Deck « + ¢+ o s s s s 0 4
Layout of a FORTRAN Compiler Input Deck « « « « «

Summary of DUP Data Transfer Operations » » + + + «
Restrictions on DUP Operations in Temporary Modes
Machine Instruction Mnemonics » « « v o o e 0 0 o o 0o
Examples of New (Extended) Machine

Instruction Mnemonics « + ¢ ¢ o o s s s 0 v s v v 0 s s 0

26
32
34
47

19
20
36

38

Figure 10,

Figure 11,
Figure 12,
Figure 13.

Figure 14,
Figure 185.

Figure 16,
Figure 17.

Table 5.

Table 6.
Table 7.
Table 8.

ILLUSTRATIONS

Distribution of a Core Image Program Being
Built ¢ oo s 6006806000 ss0osss00ss
Scheme for Saving COMMON Between Links
Layout of a Core Load Loaded for Execution
Layout of an Input Deck for a System

Program Update « <« s« s s oo oo o0ssoas
Layout of an Input Deck for a System

Library Update « s s+ ¢ v e o e v oo v aonann
Disk System Formate » e ¢ o s ¢« o 00000 e
Card Data Format » s » ¢+ s o s 60 6 0 0 0 000
Print Data Format « « ¢ « e ¢ s s e s s 0 0 ¢ 0 0 s

FORTRAN Logical 1/0O Unit

Designations « s oo s oo coeesonenssne
Monitor System ISS Names ++ = o e v o s o
Carriage Control Operations =+ + s e s o s s«
ISS/ILS Correspondence « + ¢ ¢ s v v oo s e

52
57
57

77

78
86
90
90

44
58
65
75

STACKED JOB ENVIRONMENT

The 1130 Disk Monitor System, Version 2, enables the
user to assemble, compile, and/or execute programs
written in the 1130 Assembler Language or 1130 Basic
FORTRAN IV Language. This system also provides
for the continuous operation of the 1130 Computing
System, with minimal set-up time and minimal oper-
ator intervention. This is accomplished through
stacked job input.

INPUT STREAM

The input stream (that is, the stacked job input) to
the monitor system consists of control records,
source programs, object programs, and data, as
shown in Figure 1.

The control record formats and input sequences
are shown in this manual in card form for purposes
of illustration. There is, however, no difference
between the control record formats and input se-
quences of card input and those of paper tape input.

JOB AND SUBJOB

In the input stream to the monitor system, a job is
defined as:

o The processing that takes place from the de-
tection of a JOB monitor control record until
the detection of another JOB monitor control
record.

e A JOB monitor control record and all the
following control records, source programs,
object programs, and data, up to, but not in-
cluding, the next JOB monitor control record.

A subjob is defined as:
e The processing that takes place from the de-

tection of a monitor control record until the
detection of another monitor control record.

INTRODUCTION

e A monitor control record and all the following
control records, source programs, object pro-
grams, and data, up to, but not including, the
next monitor control record.

A job is an independent unit of processing; a sub-
job is a unit of processing which is dependent on the
subjobs preceding it and upon which the following
subjobs are dependent. The successful completion
of the job depends on the successful completion of
each subjob within it., In some cases, a subjob is
not attempted if the preceding subjobs have not been
successfully completed.

SYSTEM OPERATION

The Supervisor is initially brought into control by
means of the Cold Start procedure. The Supervisor
then begins analyzing monitor control records from
the input stream. If a monitor control record indi-
cates a Supervisor operation only (JOB, PAUS, TYP,
TEND, or Comments), the appropriate operation is
performed and the Supervisor reads and processes
the next monitor control record from the input
stream.

When a monitor program is requested on a moni-
tor control record (DUP, FOR, or ASM), the appro-
priate program is fetched by the Supervisor and
control is transferred to it. Control is returned to
the Supervisor by the monitor program at the normal
completion of its operation(s) or when it detects a
monitor control record in the input stream.

If a core load execution is requested by a moni-
tor control record (XEQ), the Supervisor fetches
the Core Image Loader and transfers control to it.
If the program to be executed is in disk core image
format (that is, it is a core image program), it is
fetched and control is passed to it. If the program
is in disk system format, (that is, it is a DSF pro-
gram), the Core Image Loader calls the Core Load
Builder to construct a core image program. When
the building of the core image program is complete,
it is loaded into core by the Core Image Loader and
control is passed fo it.

Introduction 1

/ // 1OB

(// XEQ
FORTRAN Language

Source Program C 47/ /

FORTRAN Control Records ——————pm/

{

jSubiob 2 /

Subjob 1 Job 3
(// FOR
(// PAUS
(// * comments
(// JOB
Object Progrom B—7/
Csrone B
iz
(// JoB
Job 2
Data for Subjob 3 ~/
(os required) (
f // XEQ A
*STORE A

Subjob 3

; Subjob 2

Subjob 1

(// DUP

/

Assembler Language
Source Progrom A

Assembler Control —— g/

Records

(// ASM

(// PAUS

(// * comments

// JO8B

Figure 1, Stacked Job Input

¥ a core load terminates with a CALL LINK, the
Skeleton Supervisor is entered at the LINK entry
point. The Skeleton Supervisor calls the Core Image
Loader to (1) save any COMMON defined below loca-
tion 409610 by the previous core load, (2) look up the

next link (the DSF program or core image program
specified in the CALL LINKas the next programto be
executed) in LET/FLET, (3) build a core image pro-
gram, if necessary, via the Core Load Builder, and
4) fetch the core load and pass control to it.

If a core load terminates with a CALL EXIT, the
Skeleton Supervisor is entered at the EXIT entry
point. The Skeleton Supervisor calls the Core Image
Loader, which, in turn, calls the Supervisor into
core to read and process the next monitor control
record from the input stream.

If a dynamic dump of the contents of core is de-
sired during the execution of a user program, the
Skeleton Supervisor is entered at the DUMP entry
point. The Skeleton Supervisor saves core (pelow
location 40961) on the Core Image Buffer (CIB) and
calls the CoreOImage Loader, which, in turn, calls
the Supervisor DUMP program. The contents of
core are printed on the principal printer, core (below
location 4096 0) is restored from the CIB, and the
DUMP program returns control to the user program
at the core location following the call to the DUMP
program.

If a terminal dump of the contents of core is de-
sired following the execution of a user program, the
Supervisor is entered at the DUMP entry point plus 1.
The contents of core are dumped as described above
and the DUMP program terminates with a CALL
EXIT.

Figure 2 shows the overall flow of the 1130 Disk
Monitor System, Version 2.

DISK-RESIDENT SYSTEM

The 1130 Disk Monitor System, Version 2, is a disk-
resident system; this means that:

e The complete monitor system resides on
disk

e Only a minimal amount of core storage is taken
up by the core-resident program (the Resident
Monitor)

e Only the program required at any one time is
fetched for execution

The monitor system is initially loaded to a disk
cartridge, called a system cartridge, by means of
the System Loader provided by IBM. Placement of
a system cartridge on any physical drive readies the
system for the user-initiated Cold Start procedure.
The Cold Start establishes the physical drive on
which a system cartridge has been placed as logical

drive 0, which is, by definition, the system drive.
In addition, the system cartridge on logical drive 0
becomes the master cartridge; all other cartridges,
system or non-system, are satellite cartridges.
Figure 3 shows the layout of a system cartridge.
Figure 4 shows the layout of a non-system cartridge,
a cartridge that contains no monitor programs. Such
a cartridge on multi-drive 1130 systems can be used
exclusively for the storage of data and/or programs.
Note that no scale is intended in these figures.

CYLINDER 0 ON A SYSTEM CARTRIDGE

The cartridge identification or ID (a hexadecimal
number in the range 0001-7FFF that uniquely identi-
fies the cartridge) and the addresses of any defec-
tive cylinders (up to 3) on the cartridge reside on
the first sector (see Figure 5). The remainder of
the first sector is unused.

The Disk Communications Area resides on the
second sector (see the description of DCOM, below).

The third sector of cylinder 0 contains the Resi-
dent Image, that is, the disk image of the Resident
Monitor without the disk I/O subroutine (see "Cold
Start Procedure" and '"Resident Monitor' under
Supervisor, below).

The System Location Equivalence Table (SLET)
resides on the fourth and fifth sectors. SLET is
composed of an identification number, core loading
address, word count, and sector address for every
phase of every monitor program.

The sixth sector is occupied by the Cold Start
program (see the description of the Cold Start pro-
gram, below).

The seventh sector contains the Reload Table,
which is used by the System Loader program when
reloading a cartridge and by DUP when deleting the
Assembler or the FORTRAN Compiler.

The last sector of cylinder 0 is unused.

CYLINDER 0 ON A NON-SYSTEM CARTRIDGE

The first sector of cylinder 0 on a non-system car-
tridge contains the same kind of information as cyl~
inder 0 on a system cartridge. The second sector
contains only that information from DCOM applicable
to this non-system cartridge. (See the description
of DCOM, below.)

Introduction 3

.*....;.-.X‘DEFINE KEYBOARD*. ..
¥ AS PRINCIPAL *
INPUT DEVICE *
‘t"#‘t..*t'#t‘t‘

*AB *
* Al ¥.ae
* *
*k -
PR S
kb
* * * *
READ A RECORD Xease® Al *
* * X % *
. Rk
FARERRAARR AR .
. -
. estcccasssnsssccsscstsasn
. : .
X - .
.
¥ - .
«%* // IN CC *. NO .
*, 1-3 o -
- . .
*s ¥ .
*. o .
* YES -
- .
X .
FRERARC LARE RS .
PRINT -
* IHE RECORD N * -
PRINCIP, .
‘PR‘NT DEV]CE * .
FERRERDERARES :
N .
. .
P L L T
* * -
YES * UPDATE THE * .
eesenasX¥ SYSTEM TO *,
% PREPARE FOR A * X
* NEW JOB * -
P T e .
.
- ERRAKEZRRRRAEREER o
s*, * -
*, YES * TEMPORARILY * .
i
.
.

X .
¥, -
F1 %, AR 2Rk ARk .
« 1S5 THIS* * — — REVERT - s
«% A TEND *. YES * TO THE t -
*o RECORD e¥eaeevanaXE PERMANENT *eoos
*, ¥ *PRINCIPAL lNPU‘It
*o ok DEVICE
e oK t*‘###*‘#‘*t“‘t#
* NO
X
e
Gl _ *, G2
2 %S THIS*, * *
«* AN _ASM *e YES FETCH *
. RECORD ---......X THE ASSEMBLER, seeccosaeX® ASSEMBLE A *eeeanoes
-, ¥ * * PROGRAM * X
, o * * Aok
= L% PEE TP P LYY e TR TP e Y *AA *
* NO * Bl%
- - %
- *
X
¥y
H1l *, 12 3
+*IS THIS*, * *
¥ A FOR *. YES ¥ FETCH THE * * COMPILE *
*, RECORD e¥esasueeaX FORTRAN sessnnesX¥ A PROGRAM #eaeenans
*. ¥ * COMPILER * * *
*, ¥ * * Pt i
8, ok P s P *AA *
*"NO * B1*
. * %
« *
§ .
J1 %, Jz *, Aok AR § 3RAORK AR AR ttt##Jhtt*l'#t*tt
2 %15 THIS*, *
o¥ A DUP *. YES *. YES * PERFORM ALL
. RECORD PEMPSET e OPERATIDNS -‘-..-....X FETCH DUP -..‘-...X REQUES
"-». '.* é LOWABL. E : QOPERATIONS M
*, ¥ o on ELE s TR R
* NO * NO
- . Lot N
. . % * .
. ae X* Al * .
« * * *
X #kkk * ¥
ok, ok *AB *
K1 * o K2 *o * J4%
«*15 THIS*. e Lt il
«% AN XEQ *. YES ARE *, YES
*s RECORD el eeana ks EXECUTXCINS -"-..--.-.
*. - *,ALLOWABLE. X
, o *, ¥ A
%, WK , .k KAA
* NO NO * B2%¥
- L2 - ok * ¥
*
vX%* Al * .= X% Al ¥
hER Ll

Figure 2. Overall Flow of the System (Part 1 of 2)

t
TED DUP *ceeenens
* X

HrwE A2 BRSOk K
KK LRk R

* * EXECUTE *
START ENTRY *.ceesse«X®THE COLD START *

*
* POINT * * PROGRAM *
AR A kK * *
TR R
xR & -
EAA % .
* Bl *... -
X
e S P P R T TETPRR R)
. EXIT
X R HD SRR ARRRREE
R] REER KRR **’.BZ*‘*‘*'*** ¥ * *
* * * CAL LINK -* " EXECUTE SOME *
* EXIT _ENTRY * ewesee* LINK ENTRY *X--.on-..]ND UF CALL o“X..-...-..--.-.o--.q..--..-..-..... KIND OF *Xeue
* * . * * ¥ *SUPERVISUR CALL* -
Aok e ook Sk Aok 3 ok ¥ - Aok ek Ao ok ok ok R *. .* * -
. M X o % L o T T
. * DUMP -
- . .
: : : :
i . . .
ARG R R o *ttt#tczt*##*t*x**# X s
. FRhACIRBER R AR :
FETCH THE * X * LOLATIDNS * -
CORE IMAGE Xeanosase 6=4096 ON THE X DUMP ENTRY X aessesosvesssssssenescorsstosccssencensevrnoe -
* LOADER * * CURE IMAGE * * N - -
BUFFER Aok Ao AR R KK M :
Hok ok kR ko ok ok Aokl ok Rk ok K - -
. . .
. . .
i * YES :
01 "%, %ok ok K) 3 ok kR R KK F ok [4 AR KRR AR K 05" . S
% Ao DUMP o *, -
-% 1S THIS A #*, YES * FETCH * * BETWEEN * o* 1S *, -
w2 AL OOMP ikl iieieieceeicetneastianaaaceasaX THE DUMP reeeeeseX REQUESTED seesessoxsiHIS A TERMINAL® o
‘-. ‘.* * PROGRAM * * LIMITS * *, DUMP ¥ -
s, %0 P koK IR Ca. ok M
+"NO +*No :
: : :
: ,. : :
51' ‘. WA AR 2 Hoh R £3° k. SRR 4 AR AR . M
g * ETCH - -
.‘ [S THIS A *. NO * * -* I$ NO * THE HQN[TOR * . -
*¢ CALL LINK e®auvsesesX FETCH DISKZ eceemans X¥, CALL LINK e*eoeoveneX CONTROL - -
x, ¥ * * *a . ¥ * KECOKD * - -
*o -¥ *a '-“ ANALYZER - -
P P . o% PrS P TP : :
* YES X * YES . . -
N : : N . :
. . N X . .
. M : P : .
X . . *AB * .
ko . X * Al* X
[N kR R 3 AR kR K * % N L e
Wy * i
IS THERE *. NU : * FETCH THE * * RESTORE CORE * -
" ANY COMMON ¥ aaee - CORE LOAD FROM_LGCATION -
‘BEL“V ‘0096 * . . * BUILDER * * 6 TU 4096 % -
Tk o : prrprT— e :
* YES . - . .
.
.
: : : I
Aok kG] Rk kR ok R : “#“G3**"*t*#‘: ***“GE‘”..*“*.
* * - *
* * . . * * * UTE
SAVE LOW COMMON . . *BUILD THE CORE * * THE EUKE LOAD ‘.-
* * - - * LOAD : : :
* x .
e = T T S N A L T T e T
. . . X
- - - : -
. : vessenecns .
X :
* ztn**:nn* . {4 j5% %
*COHWON BETHEEN * . % FETCH PHASE 2 * * _ FETCH *
LOW COMMON - s¥eeasssneX F R . ««X THE CORE LOAD
*#AND LU%AT[UN * . *[MAGE LDADER * * *
AR : Rk Rk A AR AR
X X
. : .
T YES : . o
ko . X -
J2 *o - Aok koK 3Ok Ok AR OR K .
% ' *, .
¥ *. NO M RE CUMMUN¥*. NO o
*, INA E LlNK ‘- -.X*DELDHQLOCAT‘[OQ-*---- FETCH DUP
“x. o *. S
g .* *, o ¥ Ao oK kR AR
* YES * . -
: : :
. X .
M TR :
- *AB * -
X * J4k -
S St T x R SH RS SRR KK
*
* FETCH PHASE 1 #* *FETCH THE DISK #*
R R R A R R R R R R AR R AR A AR R A ARl ceme
*IMAGE LOADER * * SUBROUTINE *
SRR AR AR Aok R

Figure 2, Overall Flow of the System (Part 2 of 2)

Introduction 5

System Device
Subroutines, DISKZ
DISK1,DISKN

cyl. 0 | oup [For' | Asm® | sup | cLe ciL
Y

SCRA | FLET?

Fixed Area’ LET

5
User, Area
" «

~
\\\
| \\
~
| ~

Cold
Resident| Start Reload
ID |DCOM| Image |SLET | Program | Table |Unused

0 1 2 3,4 5 6 7

—~

Can be deleted from the system by the user

Present only if a Fixed Area is defined for this cartridge by the user

. Optionally defined by the user

May not be deleted by the user from a system cartridge.

Initially contains only the System Library; user-written programs may be added

G W N e

Figure 3. Layout of a System Cartridge

The Location Equivalence Table (LET) for the
cartridge (see the description of the Location Equiva-
lence Table, below) occupies the remaining six sec-
tors of cylinder 0.

SYSTEM AREA
The System Area is that area occupied by the ele-

ments described below. This area is found only on
a system cartridge.

Disk Communication Area (DCOM)

DCOM contains the parameters that must be passed
from one monitor program to another and that must
be accessed through disk storage (as opposed to core
storage). Generally speaking, parameters that are
not required when fetching a link stored in disk core
image format are found in DCOM.

Cyl. 0 l FLET? Fixed Q«reaz C'Ig3 User Area Working Storage I
1 1% Ux ! L
—— — ~ —
S~
—~—
—
\ ~
S— \

—
1D | DCOM I LET I
0 1 2-7

1. Present only if o Fixed Area is defined for this cortridge by the user

2. Optionally defined by the user

3. May be deleted by the user. However, a CIB must be present on at least
one of the cartridges on the system at any given time.

Figure 4. Layout of a Non-System Cartridge

C{Ek Workim;igorage

R

The first of the two parts of DCOM contains the
parameters that are not related to all the disk car-
tridges, for example, the core map switch. The
second contains the cartridge-related parameters.
Each of the parameters in this section is in the
form of a five-word table, one word for the corre-
sponding value for each of the five possible cart-
ridges. The five words of each table are arranged
in the order of logical drive numbers; that is, the
first is for logical drive 0, the second for logical
drive 1, etc.

Resident Image

The Resident Image is a copy of the Resident Moni-
tor without a disk I/0 subroutine; that is, it is a re-
flection of COMMA and the Skeleton Supervisor (see
"Resident Monitor" in the section Supervisor). It is
used to initialize the Resident Monitor during the
Cold Start procedure,

Word
320

Word Word | Word

Word
2

Y
Unused

Cartridge Identification
Address of the third” defective cylinder

Address of the second defective cylinder

L Address of the first” defective cylinder

*In the order found defective by DCIP

Figure 5. Layout of Sector 0, Cylinder O, on any Cartridge

Cold Start Program

The Cold Start Program initializes the 1130 Disk
Monitor System, Version 2, It is read into core as
a result of the Cold Start procedure (see "Cold Start
Procedure' under Supervisor),

DUP

The Disk Utility Program (DUP) is actually a group
of programs provided by IBM to perform certain
frequently-required operations involving the disk,
such as storing, moving, deleting, and dumping data
and/or programs. These operations are called, for

the most part, by user-supplied DUP control records.

FORTRAN Compiler

The FORTRAN Compiler translates source programs
written in 1130 Basic FORTRAN IV language into
machine language object programs. The compiler
also provides for the calling of the necessary arith-
metic, function, conversion, and input/output sub-
programs at execution time.

The compiler is initially loaded onto the system
cartridge with the rest of the system; however, it
can subsequently be deleted from the system at the
user's option (see "DEFINE' under Disk Utility

Program, below).

Assembler

The Assembler converts source programs written
in Assembler language into machine language object
programs.

The Assembler is initially loaded onto the system
cartridge with the rest of the system; however, it
can subsequently be deleted from the system at the
user's option (see "DEFINE" under Disk Utility

Prbg_x_‘am, below).

Supervisor

The Supervisor provides the linkage between user
programs and monitor programs. The Supervisor
is directed by the monitor control records in the
stacked job input.

Core Load Builder

The Core Load Builder builds a specified mainline
program into a core image program. The mainline
program, with its required programs (LOCALs and
SOCALs included), is converted from disk system
format to disk core image format. During the con-
version, the Core Load Builder also builds the core
image header record and the transfer vector. The
resultant core image program is suitable for im-
mediate execution or for storing on the disk in disk
core image format for future execution.

System Device Subroutine Area

The System Device Subroutine Area contains the
following:

1. The subroutines used by the monitor programs
to operate the following print devices:
1132 Printer
1403 Printer
Console Printer
2. The subroutines used by the monitor programs
to operate the following I/O devices:
1134/1055 Paper Tape Reader
Punch
1442 Card Read Punch, Model 6 or 7
2501 Card Reader/1442 Card Punch,
Model 5, 6, or 7
Keyboard/Console Printer
3. The I/0 character code conversion subroutines
used in conjunction with the I/O subroutine for
the following devices:
1134/1055 Paper Tape Reader
Punch
2501 Card Reader/1442 Card Read Punch
Keyboard/Console Printer
4. The disk I/0 subroutines:
DISKZ
DISK1
DISKN
These subroutines are found in this area rather
than in the System Library because they are
processed by the Core Load Builder differently

than the subroutines stored in the System Library.

All of the subroutines in the System Device Sub-
routine Area, except the disk I/O subroutines, are

Introduction 7

naturally relocatable and are intended for system
use only.

Core Image Loader

The Core Image Loader is the program that is called
to handle the three entries to the Skeleton Super-
visor — LINK, DUMP, and EXIT. The Core Image
Loader is assigned this task in order to achieve the
fastest possible link-to-link transfer of control (via
CALL LINK).

On a LINK entry to the Skeleton Supervisor, the
Core Image Loader handles the locating and fetching
of the core load and the calling of the Core Load
Builder, if necessary. On an EXIT or DUMP entry,
the Core Image Loader calls the appropriate Super-
visor program into operation.

Supervisor Control Record Area

The Supervisor Control Record Area (SCRA) is the
area in which Supervisor control records (LOCAL,
NOCAL, and FILES) are saved. They are read from
the input stream (following an XEQ or STORECI con-
trol record) and are stored in the SCRA for subse-
quent processing by the Core Load Builder.

CORE IMAGE BUFFER (CIB)

The CIB is the area on disk in which the Core Load
Builder builds any portion of a core load which re-

sides below location 4096 It is also used to save
any COMMON defined below location 4096_ = during

the transfer of control from one link to the next.

SYSTEM LIBRARY

The System Library consists of (1) a complete library
of input/output (except disk I/0) subroutines, data
. conversion subroutines, and arithmetic and function
subprograms, (2) selective dump subroutines, and
(3) special mainline programs for disk maintenance
(see '"Disk Maintenance Programs'' under System
Library).

The System Library is initially loaded into the
User Area on a system cartridge. However, the
user may, at his option, move the System Library

from a system cartridge to the User Area on a non-
system cartridge. Certain programs in the System
Library, namely, the disk maintenance programs,
are required for the operation of the system; these
programs may not be deleted from the System Li-
brary. Other portions of the System Library may be
deleted at the user's option.

FIXED AREA (FX)

The Fixed Area is the area in which the user may
store core image programs in disk core image
format and/or data files in disk data format if it is
desired that these core image programs and data
files always occupy the same sectors. The Fixed
Area is optionally defined on any cartridge by the
use of the DUP operation, DEFINE FIXED AREA.
This operation is also used to increase or decrease
the size of the Fixed Area.

When a core image program or data file is stored
in the Fixed Area, it is stored starting at the nearest
sector boundary. When a core image program or
data file is deleted from the Fixed Area, no packing
of the Fixed Area occurs. Hence, core irnage pro-
grams and data files in this area reside at fixed
sector addresses and can be referenced as such by
the user.

FIXED LOCATION EQUIVALENCE TABLE (FLET)

The Fixed Location Equivalence Table (FLET) is a
directory to the contents of the Fixed Area on the
cartridge on which it appears. There is cne FLET
entry for:

1. Each core image program stored in disk core
image format

2. Each data file stored in disk data format

3. The padding required to permit a core image
program or data file to be stored on a sector
boundary

Each FLET entry specifies the name of the core
image program or data file, its format, and its size
in disk blocks.

Each cartridge on the system having a Fixed Area
defined on it has a FLET. Regardless of the size of the
Fixed Area, the FLET for a cartridge occupies one
cylinder, which immediately precedes the Fixed Area.

The sector address of FLET on a given cartridge
is obtained from the LET on the same cartridge.

USER AREA (UA)

The User Area is the area in which the user can
store programs in disk system format, core image
programs in disk core image format, and/or data
files in disk data format. The User Area is defined
on any cartridge when the cartridge is initialized.
However, its size is 0 sectors until the first DSF
program, core image program, or data file is
stored in the User Area on that cartridge. The
User Area occupies as many sectors as are re-
quired to contain the DSF programs, core image
programs, and data files stored there.

When a DSF program, core image program, or
data file is to be added to the User Area, it is stored
at the start of Working Storage, that is, immediately
following the end of the User Area. The area occu-
pied by the new DSF program, core image program,
or data file is then incorporated into the User Area,
and Working Storage is decreased by the size of that
area.

DSF programs are stored in the User Area
starting at the beginning of a disk block; core image
programs and data files are stored starting at the
nearest sector boundary.

When a DSF program, core image program, or
data file is.deleted from the User Area, the User
Area is packed; that is, the DSF programs, core
image programs, and/or data files in the User Area
are moved so as to occupy the vacancy (the area
formerly occupied by the deleted DSF program, core
image program, or data file). In packing, DSF pro-
grams are moved to the first disk block boundary in
the vacancy; core image programs and data files
are moved to the first sector boundary in the vacancy.

All following DSF programs, core image programs,
and data files are similarly packed.

LOCATION EQUIVALENCE TABLE (LET)

The Location Equivalence Table (LET) on a car-
tridge is a directory to the contents of the User Area
on that cartridge. There is one LET entry for:

1. Each entry point for each program stored in
disk system format

2. Each core image program stored in disk core
image format

3. Each data file stored in disk data format

4., The padding required to permit a core image
program or data file to be stored on a sector
boundary

Each LET entry specifies the name of an entry
point, core image program, or data file; the format
of the DSF program, core image program, or data
file; and its size in disk blocks.

Each cartridge on the system has a LET. How-
ever, a cartridge has a User Area only if there is an
entry in the LET on that cartridge other than a
dummy entry. On a system cartridge LET occupies
the cylinder preceding the User Area.

COMMA contains the sector address of the first
sector of LET for each cartridge being used in a
given job.

WORKING STORAGE (WS)

Working Storage is that area on all cartridges that is
not defined as the User/Fixed Area or, on the sys-
tem cartridge, as the System Area. Working Storage
is available to monitor and user programs alike as
temporary disk storage. It extends from the sector
boundary immediately following the User Area to the
end of the cartridge (cylinder 199).

Introduction 9

SUPERVISOR

The Supervisor performs the control functions for the
monitor system. The Supervisor reads control
records included in the stacked job input, decodes
them, and fetches the appropriate monitor program
to perform the specified operation.

COLD START PROCEDURE

The Supervisor initially achieves control over the
1130 Computing System through the user-initiated
Cold Start procedure. The Cold Start procedure be-
gins with the IPL (Initial Program Load) of the Cold
Start record, which causes the Cold Start program to
be read into core storage from the system cartridge
and control to be transferred to it.

The Cold Start program, in turn, loads the Resi-
dent Monitor into its location in lower core storage.
The Cold Start procedure ends when control is given
to the job initialization program in the Supervisor.

RESIDENT MONITOR

The resident portion of the monitor system consists
of (1) a data area used for system parameters and
for communication between monitor programs
(COMMA), (2) the Skeleton Supervisor, and (3) a

disk I/0 subroutine (either DISK1, DISKN, or DISKZ).

CORE COMMUNICATIONS AREA (COMMA)

COMMA can generally be defined as that information
required by the Core Image Loader to perform a
link-to-link transfer of control without referring to
DCOM. This information is interspersed with parts
of the Skeleton Supervisor.

SKELETON SUPERVISOR

On any entry to the Resident Monitor (EXIT, LINK,
or DUMP), the Skeleton Supervisor calls the Core
Image Loader, which determines where the Skeleton
Supervisor was entered and either calls the Super-
visor if the entry was at EXIT or DUMP or fetches

10

and transfers control to the core load specified in
the CALL LINK statement if the entry was at LINK.
This use of the Core Image Loader as an inter-
mediate supervisor allows the monitor system to
achieve efficient link-to-link transfer of control.
The Skeleton Supervisor occupies approximately
90 words in low core storage, interspersed with
COMMA. The Skeleton Supervisor consists of the
subroutines and entry points described below.

LINK Entry Point

LINK is the entry point in the Skeleton Supervisor
used to accomplish a link-to-link transfer of control.

EXIT Entry Point

EXIT is the entry point in the Skeleton Supervisor
used to accomplish a link-to-Supervisor transfer of
control.

DUMP Entry Point

DUMP is the entry point in the Skeleton Supervisor
used to obtain a printout of the contents of core
storage between specified limits. Dynamic dumps
are obtained through the DUMP entry point; terminal
dumps are obtained through the DUMP entry point
plus 1.

I1.502 Subroutine

The ILS02 subroutine handles the servicing of inter-
rupts on level 2, All of the disk devices on the
system, and only they, interrupt on level 2, Due to
the necessary usage of the disk, the ILS02 sub-
routine is necessarily a part of the Resident Monitor.

11804 Subroutine

The ILS04 subroutine handles the servicing of inter-
rupts on level 4. One of the devices which interrupt

on level 4 is the Keyboard. Since the user may, at
any time, perform a console interrupt request, the
I1S04 subroutine is necessarily a part of the Resi-
dent Monitor.

Preoperative Error Trap

The preoperative error trap is entered by all ISS
subroutines when an error is found during the pre-
operative parameter checking. The trap consists
only of a WAIT and a branch. When the PROGRAM
START key is pressed, execution resumes following
the branch to this trap.

PROGRAM STOP Key Trap

The PROGRAM STOP key trap is entered if a level 5
interrupt occurs and there is no user-written device
subroutine associated with level 5. The trap con-
sists only of a WAIT and a branch, When the PRO-
GRAM START key is pressed, the interrupt level

is turned off and execution resumes following the
point of the level 5 interrupt.

This trap allows the user to stop the entire 1130
Computing System with the ability to continue execu-
tion without disturbing the system status or the
contents of core storage.

DISK 1/0 SUBROUTINE

The disk I/O subroutine required by the program in
control resides in core storage following the Skeleton
Supervisor. The following table lists the disk I/0O
subroutines, their approximate sizes, and the
corresponding addresses of the end of the Resident
Monitor.

Subroutine Size (in words) End of Resident Monitor

‘ (Core Location)
DISKZ 2254 4504,
DISK1 5004, 7254,
DISKN 7004 925,

DISKZ is the disk I/O subroutine used by all
system programs, the subroutine initially loaded
with the Resident Monitor.

Prior to execution of a core load requiring DISK1
or DISKN, the Core Image Loader overlays the re-
quired disk I/O subroutine on DISKZ. When control
is returned to the Supervisor, the Core Image Loader
restores DISKZ for use by the monitor programs,
using the disk I/0O subroutine currently in core
storage (DISK1 or DISKN). User programs, in-
cluding those written in the FORTRAN language, may
use any of the three disk I/O subroutines. However,
only one disk I/O subroutine may be referenced in
a given core load.

SUPERVISOR PROGRAMS

The programs described below are the disk-resident
programs which constitute the Supervisor. One of
these programs is fetched and given control by the
Core Image Loader, depending upon the entry made
in the Skeleton Supervisor; the Monitor Control
Record Analyzer is called following an EXIT entry,
the DUMP program following a DUMP entry.

MONITOR CONTROL RECORD ANALYZER

The Monitor Control Record Analyzer (1) reads a
monitor control record or Supervisor control record
from the input stream, (2) prints the control record
on the principal print device, and (3) fetches the re-
quired monitor program and transfers control to it.

Supervisor Control Record Area

The Supervisor Control Record Area is the area on
disk, within the System Area, in which the Supervisor
places the FILES, LOCAL, and NOCAL control
records read from the input stream. The Core Load
Builder reads these records from this area on disk
for analysis during' the building of the core image
program.

DUMP PROGRAM

The DUMP program provides the user with a printout
of the contents of core storage. See the description
of the PDMP and DUMP statements in the Assembler
Language section for details on the use of the DUMP
program,

Supervisor 11

Terminal and Dynamic Dumps

The DUMP entry point in the Skeleton Supervisor
(and, thus, the DUMP program in the Supervisor)
can be entered (1) by a BSI to the DUMP entry point,
(2) by a manually executed transfer to the DUMP 4,
entry point plus 1, or (3) by a branch to location zero,
which contains an MDX to the DUMP entry point
plus 1.

It the DUMP entry point is entered from any
location but zero, a dump is given in hexadecimal
format of the area of core storage bounded by the
limit parameters. Execution of the core load in
progress then resumes at the location following the
call to the DUMP entry point.

If the DUMP entry point is entered by a branch
through location zero or if the DUMP entry point 5.
plus 1 is entered by a branch or a manual transfer,
a dump is given in hexadecimal format of the entire
contents of core storage. The DUMP program then
executes a CALL EXIT, thereby terminating the
execution of the core load in progress.

causes all DSF programs, core image programs,
or data files stored in the User Area by DUP
during the current job to be deleted auto-
matically from that area at the end of the

job (that is, at the beginning of the next job).

The definition of the cartridges to be used dur-
ing the current job. IDs 1 through 5 on the

JOB control record specify the cartridges to be
used. These cartridges may be mounted on the
physical drives in any order. The order of the
IDs in the JOB control record specifies the logi-
cal assignments for the cartridges. IDs 1
through 5 correspond to logical drives 0 through
4, The cartridge-related entries of COMMA
and DCOM are filled in according to the logical
order specified by the user.

The definition of the cartridge on which the CIB
for the current job is to be found. The ID of the
cartridge containing the CIB must follow the field
of the fifth cartridge ID. If the CIB ID is omitted,
the CIB on the master cartridge is used. Core
image programs can be built faster if the CIB is
assigned to a cartridge other than the master
cartridge.

6. The definition of the cartridge containing the
Working Storage to be used by the monitor pro-
grams. The ID of the cartridge to be used for
MONITOR CONTROL RECORDS Working Storage must follow the ID of the CIB
cartridge. If the Working Storage ID is omitted,
The monitor control records are described below. the monitor programs use the Working Storage
Where shown in the control record format, the on the master cartridge. Core image programs
blank character (B) is required. Any unused can be built faster, however, if the system
columns following the end of the control record Working Storage is on some cartridge other than
options are available for remarks. the master cartridge. They can be built even
faster if the CIB, the system Working Storage,
and the monitor system itself are on separate
JOB cartridges. Assemblies are also faster if
Working Storage is on a separate cartridge.
The JOB control record defines the start of a new 7. The starting of a new page. A skip to channel 1
job. It causes the Supervisor to perform the job is executed on the 1132 and 1403 Printers; ten
initialization procedure, which includes: consecutive carriage returns are made on the
Console Printer. The page count is reset to 1,
1. The initialization of COMMA and the date information is replaced with what-
2. The initialization of the parameters in DCOM ever appears in columns 46-53 of the JOB con-
that are not related to all the disk cartridges. trol record.
3. The setting of the temporary mode indicator
ifa T is present in column 8 of the control The format of the JOB control record is described
record. If set, the temporary mode indicator below.

12

Card

Column Contents Notes

Card

Column Contents Notes

1-6 |//b JOB
7 Reserved

8 Temporary mode|A T indicates that tem—
indicator porary mode is desired
for this job.

9-10 | Reserved
11-14 | First ID This is the ID of the master

cartridge (logical drive 0)

15 Reserved
16-19 | Second ID This is the ID of the car-

tridge on logical drive 1,

20 Reserved
21-24 | Third ID This is the ID of the car-
tridge on logical drive 2.

25 Reserved
26-29 | Fourth ID This is the ID of the car-
tridge on logical drive 3.

30 Reserved
31-34 | Fifth ID This is the ID of the car-

tridge on logical drive 4,

35 Reserved
36-39 | CIB ID This is the ID of the car-

tridge containing the CIB

to be used during this
job.

40 Reserved
41-44 | Working Storage |This is the ID of the car-
D tridge containing the
Working Storage to be
used by the system
during this job.

45 Reserved
46-53 | Header Data, This information is printed
Date, Name, at the top of every page
etc. of the listing on the prin-
cipal print device during
this job,

54-80 |Not used

1-6 //% ASM
7-80 Not used

FOR

This control record causes the Supervisor to read
the FORTRAN Compiler into core storage and trans-
fer control to it. Any FORTRAN control records and
the source statements to be compiled must follow
this control record. Comments control records
may not follow this control record,

The format of the FOR control record is de-
scribed below.

Card

Column Contents Notes

1-6 //% FOR
7-80 | Not used

DUP

This control record causes the Supervisor to read
the control portion of the Disk Utility Program into
core storage and transfer control to it. The DUP
control record(s) must follow this control record.
Only one DUP monitor control record is required to
process a stack of DUP control records provided
no monitor control record other than the Comments
control record is encountered.

The format of the DUP control record is de-
scribed below.

ASM

This control record causes the Supervisor to read the
Assembler into core storage and transfer control to
it. Any Assembler control records and the source
statements to be assembled must follow this control
record. Comments control records may not follow
this control record.

The format of the ASM control record is de-
scribed below.

Card

Column Contents Notes
1-6 //b DUP
7-80 Not used

XEQ

This control record causes the Supervisor to initialize
for core load execution. If the name specified in this
control record (in columns 8 through 12) is that of a
mainline program stored in disk system format, the
Supervisor reads the Supervisor control records, if
any, from the input stream and writes them in the
Supervisor Control Record Area (SCRA). The Core
Load Builder is then called to build a core image
program from the mainline program.

If no name is specified on the control record, a
mainline program in disk system format is assumed

Supervisor 13

tobe storedin Working Storage. The Supervisor then
processes the Supervisor control records and calls
the Core Load Builder as outlined above.

After the core image program has beenbuilt, or if
the name in the control record was thatof a core image
program already stored on disk in core image format,
the Core Image Loader is calledto readthe core load
into core storage and to transfer control to it.

If an L is punched in column 14 of the control
record, a core map is printed by the Core Load
Builder during the building of the core image pro-
gram. In addition, a core map is printed for all
links during the current execution that are stored in
disk system format. These core maps include:

1. The execution address of the mainline program

2. The names and execution addresses of all
subprograms in the core load

3, Allfile allocations, withthe file number, car-
tridge ID, sector address, and size (in sectors)

Columns 16 and 17 of the control record contain
the right-justified decimal count of Supervisor con-
trol records to be read by the Supervisor before
calling the Core Load Builder.

Column 19 contains the character indicating the
disk I/O subroutine to be used by the core load at
execution time. If column 19 contains zero or one,
DISK1 is fetched by the Core Image Loader along
with the core load, If column 19 contains an N,
DISKN isfetched. If column 19 contains any other
character, including a blank, no disk 1/0 subroutine
is fetched (that is, DISKZ, which is in core storage
for use by the monitor programs, is used by the core
load). The only restriction is that all links in disk
system format that are called during a given execu-
tion utilize the same disk I/O subroutine.

The format of the XEQ control record is de-
scribed below.

Card
Column Contents Notes
1-6 //% XEQ
7 Reserved
8-12 |Name This is the name of the DSF

program or core image
program tobe executed.
13 Reserved
14 Core Map
indicator

An Lindicates that a core
map is to be printed for
this and'all following links
in disk system format
during this execution.

15 Reserved

14

Card
Column

16-17 Count

Contents Notes

This is the decimal number of
Supervisor control records
which follow.

18 Reserved

19 Disk I/0 sub- |This column specifies the

routine disk 1/0 subroutine to be
indicator loaded into core by the

Core Image Loader for

use by the core load at

execution time.

20-80 Not used

PAUS

This control record causes the Supervisor to WAIT.
When PROGRAM START is pressed, the Supervisor
continues processing monitor control records from
the input stream.

The format of the PAUS control record is
described below.

Card
Column Contents Notes
1-7 //® PAUS
8-80 Not used

TYP

This control record causes the Supervisor to tem-
porarily assign the Keyboard as the principal input
device. The Keyboard instead of the card or paper
tape reader is the principal input device until the
detection of the next TEND control record.

The format of the TYP control record is de-
scribed below.

Card

Column Contents Notes
1-6 //6 TYP
7-80 Not used

TEND

This control record causes the Supervisor to re-
assign the card or paper tape reader as the principal
input device. The reassignment is to whichever

unit was the principal input device prior to the de-
tection of the last TYP control record.

The format of the TEND control record is de-
scribed below.

Card
Column Contents Notes
1-7 //% TEND
8-80 Not used

COMMENTS

This control record allows the user to print alpha-
meric text on the listing printed on the principal
print device by the Supervisor and DUP. The Super-
visor and DUP simply print the control record and
continue reading control records from the input
stream. The Comments control record may not
immediately follow an XEQ, ASM, or FOR
control record.

The format of the Comments control record is
described below.

Card
Column Contents Notes
1-4 //b *
5-80 User comments Any alphameric

character(s) may
be used.

SUPERVISOR CONTROL RECORDS

The control records described below (LOCAL,
NOCAL, and FILES) are used by the Core Load
Builder to:

1. Provide for subprogram overlays at execution
time (LOCAL)

2. Include subprograms not called in the core load
(NOCAL)

3. Equate disk storage files defined in the mainline
program during compilation or agssembly to
specific files stored on the disk (FILES)

These control records are placed in the input
stream following a XEQ monitor control record
that names a mainline program stored in disk sys-
tem format or following an STORECI DUP control
record. In both cases the control records are
written on digk in the Supervisor Control Record
Area (SCRA), from which the Core Load Builder
reads them for processing.

Up to 99 of each of the types of Supervisor control
records may follow the XEQ or STORECI control
record. There is no specified order (by type) to be
followed; however, the types may not be intermixed.

LOCAL

LOCAL (Load-On-Call) subprograms are subpro-
grams specified by the user to be loaded at execution
time into a LOCAL overlay area as they are called.
The LOCAL subprograms are specified on the LOCAL
control record as follows:

u 2 3 4 5 & 7 8 9 10 11 12 13 M 1516 17 18 19 20 2V 22 23 24 25 26 27 28 29 30 31 32 33 34 28

F SN N N I T T TN N e N U T T T T N W SN WS W W NS AN NN TN | N I

N N W N O T N T T O TN N T N N N T O N N N NN N |) N N N N T

) N T T N T N T N T T s T TN TN G N Y AN (O O N AN 1 O
where

ML1 is the name of the mainline program,

SUBL1 through SUBn are the names of the LOCAL
subprograms for that mainline program.

In the case illustrated below, all the LOCAL con-
trol records except the last end with a comma, which
indicates continuation, and the mainline program
name appears on the first LOCAL control record only.

22 475 &7 8 9 1011 1213 14 15 16 17 1s 19 20 21 22 23 24 25 26 27 28 29 % 31 3233 34 35 :
%A—MMMMMM#M_LJg
»ILIOICIA'L‘S'M'B‘Q'gl T N YT T N WO N U S T S S S Y U S A B B B G A
L SO I T T T T T O T N T W T S Y Y S U T U0 Y B O 0 B
I S Y T T T T N O T T T Y B I A A Y B B B B R A

2 Y N O S S T T T U YT Y N S T T A M A T S N N S B G A O
WLOCALSWEBN + 1 v 0 g L
)/ Y N Y S G Y O N T N Y T N T W S T T A SO W0 W O
N Y Y N U T T T Y Y Y N T T T S S G Y S 0 M

NN N Y 5 T T N IO U U Y O T U T Y S T N NN S WO Y B S S
BN S TS W N O S T WY N S T T Y O S L B A O O B R BN R U

The same results would have been obtained if the
records had been:

[2.3 45 6 7 8 910 1 1213 14 1516 17 18 19 20 21 22 23 24 25 26 27 2 29 % 31 32 33 34 35 3

TN TN O W N N Y T O I T R

(] Lol

2 SO N N T T T T T Y O |) N N S S T N T OO O N

L VU W T N N T T T A O IO | | N T Y VOO T O Y B I R

L2 S Y Y Y T O T MO
WIOICIALLNDLIII} SuBn

I S T Y Y T T Y T W W
1

| N I S N D T T N N T Y W |
1

11y | N T T

F F F F -

A - - R R

1
i
1 J | 1 1
1 T T T TN TN NN T WO WO Y Y O
1 | S T | 1

| S Y T N N T T T N N Y N | B S N |

Supervisor 15

All of the LOCAL subprograms for each mainline
program in an execution must be specified on the
LOCAIL control records which follow the XEQ moni-
tor control record initiating the execution.

Separate LOCAL control records must be used
for each mainline program that calls LOCAL sub-
programs in the execution, for example,

[(T2 s a5 6 7 8 9 10 11 12 13 14 1316 17 18 19 20 21 22 23 2425 26 27 28 29 30 31 32 33 4 35 36

SUBS oo eSBR L1 1

NN [N T S W G

YRS WY UONK S U VAN NN N NS T N Y NN NN TN N G SN U VO N U G N SO U Y O N N O W o

where ML2 is a link called by ML1.

If the mainline program is to be executed from
Working Storage, the mainline program name must
be omitted from the LOCAL control record, for
example,

T 2 3 4 5 6 7 8 9 10 11 12 13 14 1516 37 1819 20 21 22 23 24 25 26 27 29 2P 30 3\ 32 33 34 35 36

croi o SIUBR 1 a1 s 111

llll‘lllllllllllllIlllllll]lllllllLJ

Illllllllllllllllllllllll]lllllllll

No embedded blanks are allowed in the LOCAL
control record.

NOCAL

NOCAL (Load-Although-Not-Called) subprograms are
subprograms specified by the user to be included in
the core load, even though they are not called. They
are specified on the NOCAL control record under the
same rules that apply for LOCAL control records
except that *NOCAL is used in place of *LOCAL.

FILES

By means of FILES control records the file numbers
specified at compilation or assembly time in
FORTRAN DEFINE FILE statements or in Assembler
FILE statements are equated to the names of data
files stored in the User and Fixed Areas. All the
filas to be used by all the core loads in an execution

16

must be defined in the FILES control records fol-
lowing the XEQ monitor control record initiating the
execution. All the files thus defined are available
to each core load in the execution.

The format of the FILES control record is as
follows:

[F7 3 45 & 7 8 9100 1213 18 516 17 1819 2021 22 39 242526 979 200 1 32 H NH MV BP0 G4 MEHG
s (F2LEL, LlL)uuLu_uLEALLLﬁD;MMA._L_L_u_I_A_‘_I_l_l_A

£, £, ero [ELLE NAMED . CAR2)\ |
UMMLI_L_I_LL.LJ_J_LI_J

IO B W A A |

L1t JE Il [I I I)

Ll FU R W T U0 VA A A 0 U0 WA G S W |

It [R S A |

1 1
Ly FE
L L
1 1

L

PR T T B B W
L

i

(I 1L A
L I L 1
Ly L1 18 NN WD U T T T N O T O U T N O O W
L1l 1t PUUT U0 N S N5 A N T W0 T T N T WA Y SO ST SO T VU O W G O A G S W

where

FILE1 through FILEn are the file numbers
specified in the FORTRAN DE FINE FILE
statements or Assembler FILE statements,

NAME1 through NAMEn are the names of

data files already stored on disk. If the name
is omitted, the file is placed in Working Storage
on the specified cartridge.

CARI1 through CARn are the IDs of the car-
tridges on which the respective data files are
to be found. If the cartridge ID is omitted,
it is assumed that the corresponding data file
has been defined on the master cartridge.

Continuation of FILES control record may be
indicated by a comma following the last file definition
on the control record, as follows:

T 2 3 4 5 6 7 8 9 10 11 12 13 14 1516 17 18 19 20 2\ 22 23 2425 26 27 28 2} 30 31 2 3 M I ¥

S5 S T R T T U S S O W i iy
D W T T T Y N W B S S

®) ¢ 1 ¢ 13 L1 11 [N SR (N0 WS NN VO N N VOIS WU G N Y S N I SN SO N W W W |

L 3T S N U S T T S I |

1
IS TN N OO T N T O NN TN T N N Y T N S S O s W |
1

[2O S N S W S W | S T VO T U W S S B | TN O W S0 U T S W |

1.1
I)Illlllllllll

[T EE 0 W S U T N TN S TR S U N W WA U0 ISU U TN U T S Y S Y W U G O

RS U N NS TN TS UNU UG NN WU SO NN (SO TN CNNE (UNY TNNN U U N U O I S N N [N T W T W v Wt e

The continuation comma may only appear immedia-
tely after a right parenthesis.

The information on all the FILES control records
for an execution may not exceed 640 words,

counting the file numbers as one word each, the file
names as two words each, and the cartridges IDs as
one word each.

No embedded blanks are allowed in the FILES

control record.

RULES FOR LOCAL AND NOCAL USAGE

The user must observe the following rules in the
usage of LOCAL and NOCAL control records:

1.

A subprogram cannot be specified as a LOCAL
subprogram if it causes another subprogram,
also specified-as a LOCAL subprogram in the
same mainline program, to be called. For ex-
ample, if A calls B and B calls C, and Ais a
LOCAL subprogram, neither B nor C can be
specified as a LOCAL subprogram for the same
mainline program.

NOCAL subprograms may call other NOCAL
subprograms.

If a subprogram is specified as a LOCAL sub-
program and system overlays (SOCALs) are
employed, the subprogram is made a LOCAL
subprogram, even if it would otherwise have
been included in one of the SOCALs.

If a subprogram is specified as a LOCAL sub~
program, it is included as a LOCAL subprogram
in the core image program even if it is not
called in the core load.

The information on all the LOCAL control
records for an execution may not exceed

640 words, counting the mainline program names
as three words each and the subprogram names
as two words each. This restriction applies to
NOCAL control records also.

Only subprogram types 3, 4, 5, and 6 canbe named
on LOCAL and NOCALcontrol records. Sub-
program types 3 and 5 are called with LIBF
statements, types 4 and 6 with CALL statements.
Types 5 and 6 are ISSs, types 3 and 4 are sub-
programs.

Supervisor 17

DISK UTILITY PROGRAM

The Disk Utility Program (DUP) provides the user
with the ability to perform the following operations
through the use of control records:

e Store DSF programs, core image programs,
and data files on the disk

e Make the DSF programs, core image programs,
and data files on the disk available in printed,
punched card, or punched paper tape format

e Remove DSF programs, core image programs,
and data files from the disk

e Determine the status of disk storage through a
printed copy of LET/FLET, the directory to the
disk

e Alter certain system parameters and, to a
limited extent, the contents of the system

o Perform other disk maintenance functions

GENERAL FLOW

DUP is called into operation when the Supervisor
recognizes a DUP monitor control record. The con-
trol portion of DUP is brought into core to read the
next record from the input stream, which should be
a DUP control record. The DUP control record is
then printed and analyzed. LET is searched for the
program specified and switches and indicators are
set in accordance with the information obtained from
the control record. The DUP program required to
perform the requested operation is then read into
core from the disk and given control.

The DUP program performs its assigned tasks
directed by the switches and indicators that were
set according to the information on the DUP control
record. Upon completion of its tasks, the DUP pro-
gram prints a message and returns control to the
control portion of DUP. The control portion indicates
the completion of the DUP operation with a printed
message and reads the next record from the input
stream.

18

If the record read is a monitor control record
other than Comments, control is returned to the
Supervisorto process the record. If the record read
is a DUP control record, DUP maintains control and
begins the performance of the indicated operation.
Comments monitor control records are simply
printed; blank records are passed.

INFORMATION TRANSFER AND FORMAT
CONVERSION

Table 1 summarizes the DUP operations that trans-
fer information from one area or medium to another
area or medium. In addition, the format conver-
sions made during the transfers of information are
shown. The acronyms for the various formats are
described below.

Acronym Format

DSF Disk System Format

DDF Disk Data Format

DCI Disk Core Image Format

CDS Card System Format

CDD Card Data Format

CDC Card Core Image Format

PTS Paper Tape System Format

PTD Paper Tape Data Format

PTC Paper Tape Core Image Format

PRD Printer Data Format
LET/FLET

The two tables LET and FLET constitute a direc-
tory to the contents of the User and Fixed Areas.
The allocation of disk storage and, correspondingly,
the contents of LET/FLET can be altered by the
user only through the use of DUP.

Before storing any DSF program, core image
program, or data file, DUP searches LET/FLET
to ensure that the name of the DSF program, core
image program, or data file does not already ap-
pear in LET/FLET on the cartridge specified on
the DUP control record. Disk storage is allocated

suoreredQ IofsuBl], 38 JN(JO ATEwming *y 9[qE,

IDV1va33oLs| vivazuoLs I5vLvaI¥OLS| vivaayols [Iovivasols| vivassols ol
VLVaIOLS I5VIVGIOLS| VIVAIWOLS [IDVIVAIOLS| VIVAIHOLS aud 1
Vivaaols | :oLs IDIUOLS | VIVAIOLS | DIOLS | vivaols | 3OLs sid
IDVIYAIOLs| YIVAROLS 1DV1vaWOLY VIVAMOLS JIovIvaI¥OoLs| vivazuols 2
VIVG3OLS 1DVLVAROLS| VIVAIIOLS [IovivazoLs| vivasoLs aa ®
vivaaols | 3ols 1DIOLS | VIvamols | 1DIWols | vivamols | 3ols sa>
Vivadwna a | vivaewna 15v1va3¥OLS| 1DV1YQ3OLS
N0a | awn awna | vivaawna Gonayows| vivamoLs (PYEIYANOL) o vazsors a
VIvaaWna VLYaaWna v1vadwna V1VaIIoLs vivazols |~ 400 o
awna awna awna QOWRHOLS QOWIIOLS
S<au¥m vivawna | 4wna vivawna | awna ID3OLS | vivaauols | IDIOIS | VIVAROLS ooswwwm 350
SSM__&MM awna | vivaawna awna | vivadwna v1vadwna a
x4
vivadwna Y1vadwna vivddwna VivGIWNa 1aq
4wna awna awna 4wna
S«Aﬂﬁum awna | vivaawna awna | vivadwna vivadwna 1na
vivadwna v1vadwna vivaawna v
awna vivaning awna anwna aa
vivamna vivawna | 4wna vivawna | dwna vivawnd | d4wna 15a
axd o1d o) sid >® a® s ba 4aa 4sa 1a 4aa 1a 4aq 150
sjou.
u 1 ® N x4 vn e
m “sjoquikg
o1y, WOM.

siowsod yitk “sjoquiAds oery Ol

19

Disk Utility Program

to the DSF program, core image program, or data
file and a corresponding entry is made in LET/
FLET only if the name is not found.

When dumping or deleting a DSF program, core
image program, or data file from the User/Fixed
Area, the DSF program, core image program, or
data file is located through LET/FLET using the
name specified by the user in the DUP control
record.

DCOM INDICATORS

WORKING STORAGE INDICATOR

DCOM contains a Working Storage indicator word
for each cartridge on the system. The Working
Storage indicator word for a cartridge is set to
the disk block count of any DSF program, core
image program, or data file placed in Working
Storage on that cartridge.

The Working Storage indicator for a cartridge is
set (1) at the completion of a DUP operation in
which information is transferred to Working Storage
and (2) at the completion of any assembly or a suc-
cessful compilation, at which time the Assembler or
FORTRAN Compiler places the assembled/compiled
object program in Working Storage.

The Working Storage indicator for a specific
cartridge is reset following any STORE operation to
the User Area on that cartridge. Because the User
Area is increased at the expense of Working Storage,
it is assumed that any STORE operation to the User
Area overlays some part of Working Storage, that
is, that which was stored. Therefore, the Working
Storage indicator is reset.

FORMAT INDICATOR

DCOM contains a Format indicator word for each
cartridge on the system. The Format indicator
word for a cartridge is set to indicate the format
of any DSF program, core image program, or data
file placed in Working Storage on that cartridge.

The Format indicator for a cartridge is set and
reset under the same conditions as the Working
Storage indicator for the same cartridge.

20

TEMPORARY MODE INDICATOR

The temporary mode indicator in DCOM is set by
the Supervisor when temporary mode is indicated
by the user in the JOB monitor control record (see
1 JOB' under Monitor Control Records, above).
Table 2 shows the DUP operations and the restric-
tions, if any, when in temporary mode.

Table 2. Restrictions on DUP Operations in Temporary Mode

DUP Operations Restrictions
DUMP None
DUMPDATA None
STORE None
STORECI To UA only
STOREDATA To UA and WS only
STOREDATACI To UA only
STOREMOD Not allowed
DUMPLET None
DUMPFLET None
DWADR Not allowed
DELETE Not allowed
DEFINE FIXED AREA Not allowed
DEFINE PRINC PRINT None
DEFINE VOID ASSEMBLER Not allowed
DEFINE VOID FORTRAN Not allowed

CONTROL RECORD FORMAT

DUP control records generally follow the format
described below. Note that all fields in the control
record, except the Count field, are always left-
justified and that, unless stated otherwise, all fields
are required.

COLUMN 1

Column 1 always contains an asterisk (¥). This
character identifies the DUP control recoxrd.

OPERATION NAME

Columns 2 through 12 (21 in the case of the DEFINE
operation) contain the name of the desired DUP op-
eration. Columns 2 through 6 identify the basic op-
eration (STOREDATACI); columns 7 through 12 (or
21) identify the extended operation (STOREDATACI).
Where shown, the blank character) is required
within or following the operation name.

"FROM" AND "TO'" SYMBOLS

Columns 13 and 14 contain the "FROM" symbol,
that is, the symbol specifying the disk area or 1/0
device from which information is to be obtained (the
source). Columns 17 and 18 contain the "TO" sym-
bol, that is, the symbol specifying the disk area or
1I/0 device to which information is to be transferred
(the destination). The symbols that must be used as
the "FROM" and ""TO" symbols are shown below.

Symbol Disk Area or I/O Device

UA User Area, Disk

FX Fixed Area, Disk

wSs Working Storage, Disk

CDh Card I/0O device. If the monitor
system has been loaded from paper
tape, CD is equivalent to PT.

PT Paper Tape

PR Principal print device

When used, the symbols UA, FX, and WS each
specify an area on disk but do not identify the car-
tridge on which the area is to be found.

NAME

Columns 21 through 25 contain the name of the DSF
program, core image program, or data file involved
in the specified DUP operation. The name may con-
sist of up to five alphameric characters. The first
character must be alphabetic, and no embedded
blank characters are allowed.

When referencing a DSF program, core image
program, or data file already stored on disk, the
name must be an exact duplicate of the LET/FLET
entry.

COUNT

Columns 27 through 30 contain the count. The count
is always a right-justified, decimal integer. The
count is defined in the control record layouts for
those operations requiring it.

"FROM" AND ""TO" CARTRIDGE IDs

Columns 31 through 34 contain the cartridge ID of the
cartridge on which is found the disk area from which
information is to be obtained, that is, the "FROM"
(source) cartridge ID. Columns 37 through 40 con-
tain the cartridge ID of the cartridge on which is
found the disk area to which information is to be
transferred, that is, the '"TO" (destination) cartridge
ID.

Either one or both of these cartridge IDs may be
omitted. If a cartridge ID is omitted, a search is
made of the LET/FLET on each cartridge, starting
with the cartridge on logical drive zero (the master
cartridge) and continuing through logical drive four.
If a cartridge ID is specified, the LET/FLET on the
specified cartridge only is searched.

Use of the "FROM" and "TO" cartridge IDs makes
it possible for DUP (1) to transfer DSF programs,
core image programs, and data files from one car-
tridge to another without deleting them from the
source cartridge, and (2) to operate on a DSF pro-
gram,-core image program, or data file even though
the same name appears in the LET/FLET on more
than one cartridge.

UNUSED COLUMNS
All unused columns between columns 2 and 40 must
be left blank. Columns 41 through 80 are ignored

by DUP. These columns are available for user's
remarks.

DUP OPERATIONS

The following are descriptions of the various DUP
operations. Each description consists of (1) a brief
description of the processing performed, (2) a break-
down of the control record for the operation, and

(3) a table of the transfers and format conversions
possible in the operation.

Disk Utility Program 21

DUMP

The DUMP operation moves information from the
User/Fixed Area on disk to Working Storage or
makes information from the User/Fixed Area and
Working Storage available in punched card, punched
paper tape, or printed format.

The movement of DSF programs from the User/
Tixed Area to the output devices is accomplished in
two phases; that is, the information is first moved
to the Working Storage in use by the monitor pro-
grams and then to the output device. Hence, infor-
mation residing in Working Storage on the cartridge
defined in the JOB monitor control record by the
Working Storage ID (see "JOB' under Monitor Con-
trol Records, above) is destroyed during the DUMP
operation. Data files and core image programs are
moved directly from the User/Fixed Area to the
output devices.

The number of disk blocks to be dumped is ob-
tained from the LET/FLET entry, or, if the dump
is from Working Storage, from the appropriate
Working Storage indicator in DCOM.

The control record format is described below.

Card

Column Contents Notes

35-36 | Reserved
37-40 |'"TO" cartridge
ID

41-80 | Not used

The following is a summary of the information
transfers and format conversions performed by
DUMP.

Card

Column Contents Notes

1-6 |*DUMPbH

7-12 |Reserved
13-14 ("FROM" symbol | If the dump is from Work-
ing Storage and the cor-
responding Working
Storage indicator is
zero, an error message
is printed.

15-16 |Reserved

17-18 |["TO'" symbol If the dump is to cards,
each card is checked to
see that it is blank be-

fore it is punchgd.

19-20 |Reserved
21-25 |Program name |The name is required
except when the dump

is from Working Storage
to the printer.

26-30 |Reserved
31-34 |"FROM" car-
tridge ID

22

Possible Sources, Possible Destinations,
including Formats including Formats
UA (DSF) WS (DSF)

UA (DSF) CD (CDYS)
PT (PTS)
WS (DSF) PR (PRD)
UA (DDF) WS (DDF)
CD (CDD)
PT (PTD)
FX (DDF) PR (PRD)
UA (DCI) WS (DCI)
FX (DCI)
UA (DCI) PR (PRD)
WS (DCI) CD (CDC)
FX (DCI) PT (PTC)
WS (DDF) CD (CDD)
PT (PTD)
PR (PRD)
DUMPDATA

The DUMPDATA operation moves information from
the User/Fixed Area on disk to Working Storage or
makes information from the User/Fixed Area and
Working Storage available in punched card, punched
paper tape, or printed format. The DUMPDATA
operation differs from the DUMP operation in that
the information, after transfer, is always in a data
format.

Information is moved directly from the User/
Tixed Area to the output devices. The contents of
Working Storage are not changed.

The count in the DUMPDATA control record
specifies the number of sectors to be dumped. This

number of sectors is dumped regardless of the length
of the DSF program, core image program, or data
file, as indicated in the LET/FLET entry or in the
Working Storage indicator.

The control record format is described below.

Card

Column Contents Notes

1-10 *DUMPDATAD
11-12 Reserved
13-14 "FROM"
symbol
15-16 | Reserved
17-18 | "TO" symbol |If the dump is to cards,

each card is checked to

see that it is blank be-

fore it is punched.
19-20 Reserved
21-25 | Program name | The name is required ex-
cept when the dump is
from Working Storage
to the printer.

26 Reserved
27-30 Count The count specifies the

number of sectors to be

dumped. The count
overrides both the
contents of the Working

Storage indicator and

the disk block count in

the LET/FLET entry.
31-34 "FROM"

cartridge ID
35-36 | Reserved
37-40 | "TO"

cartridge ID

41-80 Not used

The following is a summary of the information
transfers and format conversions performed by
DUMPDATA.

DUMPLET

The DUMPLET operation prints the contents of LET
on the principal print device. In addition, the con-
tents of FLET are also printed on the principal print

device if a Fixed Area has been defined by the user.
If the name of a DSF program, core image pro-

gram, or data file is specified in the DUMPLET con-
trol record, only the LET/FLET entry correspond-
ing to that name is printed. If a cartridge ID is
specified in the control record, the LET/FLET on
that cartridge only is printed. Otherwise, the entire
contents of both LET and FLET on each cartridge on
the system are printed.

The control record format is described below.

Card
Column Contents Notes
1-8 *DUMPLET

9-20 Reserved
21-25 Program Use of the name specifies
name that the LET/FLET
entry for that name only
is to be printed.

26-30 Reserved

31-34 "FROM" If an ID is specified, the
cartridge LET/FLET on that
ID cartridge only is

printed.
35-80 Not used

DUMPFLET

The DUMPFLET operation prints the contents of
FLET on the principal print device.

If the name of a core image program or data file
is specified in the DUMPFLET control record, only
the FLET entry corresponding to that name is print-
ed. If a cartridge ID is specified in the control re-
cord, the FLET on that cartridge only is printed.
Otherwise, the entire contents of the FLET on each
cartridge on the system are printed.

Possible Sources, Possible Destinations, The control record format is described below.
including Formats including Formats
Card
UA (DSF, DDF, DCI) WS (DDF) Column Contents Notes
FX (DDF, DCI) CD (CDD) 1-10 *DUMPFLETD
PT (PTD) 11-20 Reserved
PR (]?RD) 21-25 Program Use of the name specifies
WS (DSF, DDF, DCI) CD (CDD) - name that the FLET entry for
PT (PTD) that name only is to be
PR (PRD) printed.

Disk Utility Program 23

Card

Column Contents Notes

26-30 Reserved
31-34 "FROM"
cartridge ID

If an ID is specified, the
FLET on that cartridge
only is printed.

35-80 Not used

STORE

The STORE operation moves information from Work-
ing Storage to the User Area or accepts information
from the input devices and moves it to Working Stor-
age or the User Area.

All movement of information from the input de-
vices to the User Area is accomplished in two
phases; that is, the information is first moved to the
Working Storage in use by the monitor programs
and then to the User Area. Hence, information
residing in Working Storage on the cartridge defined
in the JOB monitor control record by the Working
Storage ID (see '""JOB' under Monitor Control Rec-
ords, above) is destroyed during the STORE
operation.

Since the User Area and Working Storage are ad~
jacent areas, and since the User Area expands as
needed into what had been Working Storage, DUP
assumes that, on any STORE operation to the User
Area from Working Storage on the same cartridge,
the contents of Working Storage are destroyed.
Therefore, the appropriate Working Storage indica~
tor is reset to zero following the STORE operation
to the User Area,

DUP automatically makes the required LET
entry (or entries) for each program stored. A LET
entry is made for each entry point in the program.,
DUP supplies the disk block count required in the
LET entry for each entry point.

The control record format is described below.

Card

Column Contents Notes

1-6 *STORE
7-10 Reserved

11-12 Subtype (for See ""System Overlays"

type 3 and under Core Load
type 4 sub- Builder, below.
programs

only)

24

Card

Column Contents Notes

18-14 "FROM"
symbol

If the STORE operation is
from Working Storage
and the corresponding
Working Storage indi-
cator is zero, an error
message is printed.

15-16 Reserved

17-18 "TO" symbol

19-20 Reserved

21-25 Program The name is required

name except when the STORE

operation is to Working

Storage.

26-30 Reserved

31-34 "FROM"

cartridge

D

35-36 Reserved

37-40 "To"

cartridge

D

41-80 Not used

The following is a summary of the information
transfers and format conversions performed by
STORE.

Possible Sources,
including Formats

Possible Destinations,
including Formats

WS (DSF) UA (DSF)

CD (CDS) WS (DSF)

PT (PTS) UA (DSF)
STOREDATA

The STOREDATA operation moves information from
Working Storage to the User/Fixed Area or accepts
information from the input devices and moves it to
Working Storage or the User/Fixed Area. The input
to the STOREDATA operation is assumed by DUP to
be in a data format; the output from the STOREDATA
operation is always in a data format.

Information is moved directly from the input de-
vices to the User/Fixed Area. The contents of
Working Storage are not changed.,

DUP automatically makes the required LET/FLET
entry. The name specified on the STOREDATA con-
trol record is the name used to generate the LET/
FLET entry and is the name that must be used in all
subsequent references to the data file, DUP sup-
plies the disk block count required in the LET/FLET
entry if the source'is cards or paper tape. If the
source is Working Storage, the sector count speci-
fied in the STOREDATA control record is used.

The control record format is described below.

Card

Column Contents Notes

1-10 *STOREDATA
11-12 Reserved
13-14 "FROM"
symbol
15-16 Reserved
17-18 "TO" symbol
19-20 Reserved
21-25 | Program name | The name is not required
when the STORE opera-
tion is from cards or
paper tape to Working
Storage.

26 Reserved
27-30 | Count If the source is Working

Storage, the count is

the decimal number of

sectors of data to be
stored. This count
overrides the contents
of the Working Storage
indicator. If the source
is cards, the count is
the decimal number of
cards to be read. If the
source is paper tape,
the count is the decimal
number of paper tape
records to be read.
31-34 "FROM"
cartridge ID
35~-36 Reserved
37-40 "TO" cart-
ridge ID
41-80 Not Used

The following is a summary of the information
transfers and format conversions performed by
STOREDATA.

Possible Destinations,
including Formats

Possible Sources,
including Formats

WS (DSF, DDF, DCI) UA (DDF)
FX (DDF)
CD (CDS, CDD, CDC) UA (DDF)
FX (DDF)
PT (PTS, PTD, PTC) WS (DDF)

STOREDATACI

The STOREDATACI operation moves information
from Working Storage to the User/Fixed Area on
disk or accepts information from the input devices
and moves it to Working Storage or to the User/
Fixed Area. If the input is from cards or paper
tape, the STOREDATACI operation assumes the in-
put format to be card or paper tape core image
format. If the input is from Working Storage (the
information has been previously dumped to Working
Storage or stored in Working Storage from an input
device), the appropriate Format indicator must
indicate disk core image format; otherwise, no
STORE operation is performed. The output from
the STOREDATACI operation is always in disk core
image format.

All movement of information from the input de-
vices to the User/Fixed Area is done directly; that
is, the transfer is not made via Working Storage.
Hence, the contents of Working Storage are not
changed by the STOREDATACI operation when stor-
ing information from an input device to the User/
Fixed Area.

DUP automatically makes the required LET/FLET
entry. The name specified on the STOREDATACI
control record is the name used to generate the LET/
FLET entry and is the name which must be used in
all subsequent references to the core image program
or data file. DUP computes the disk block count re-
quired in the LET/FLET entry from the count speci-
fied in the STOREDATACI control record.

The control record format is described below.

Digk Utility Program 25

Card
Column Contents Notes
1-12 *STOREDATACI
13-14 "FROM" symbol
15-16 Reserved
17-18 | "TO" symbol
19-20 Reserved
21-25 | Program name [If the STORE operation
is to Working Storage,
the name is not
required.
26 Reserved
27-30 Count The count is the number
of records in the core
image input. The
count is not required
if the source is Work-
ing Storage.
31-34 "FROM"
cartridge ID
35-36 Reserved
37-40 "To"
cartridge ID
41-80 Not used

The following is a summary of the information
transfers and format conversions performed by
STOREDATACI.

Possible Sources,
including Formats

Possible Destinations,
including Formats

WS (DCI) UA (DCI)
FX (DCI)
CD (CDC, CDD) WS (DCI)
UA (DCI)
PT (PTC, PTD) FX (DCI)

The Core Load Builder is fetched to build a core
image program for the STORECI operation as if
execution were to follow; that is, that portion of the
core load residing above core location 40954 is
placed into core, that portion of the core load resid-
ing below core location 40964 is placed into the
CIB, and LOCALs and/or SOCALs are placed in
Working Storage. The STORECI operation stores all
these portions of the core image program into the
destination (""TO") area.

The core image program stored in the User/Fixed
Area includes the transfer vector built by the Core
Load Builder. Neither the disk I/0 subroutine nor
any COMMON area is included in the core image
program stored. Figure 6 shows the layout of a
core image program as it is stored in the Jser/Fixed
Area. Note that no scale is intended in this illus-
tration.

DUP automatically makes the required LET/FLET
entry for the core image program as it is stored.
The name specified on the STORECI control record
is the name used to generate the LET/FLET entry
and is the name which must be used in all subsequent
references to the core image program. DUP obtains
from the Core Load Builder the disk block count
required in the LET/FLET entry.

The control record format is described below.

l LOCAL/
SOCAL
Figure 6. Layout of a Core Image Program Stored in the User/Fixed Area

Flipper

Transfer
Mainline Vector

))
[SRY

Subprograms LOCALs SOCALs

1)
AR

Core Image Header

STORECI

The STORECI operation obtains an object program
from Working Storage or from an input device, con-
verts it into a core image program using the Core
Load Builder, and stores the core image program
into the User/Fixed Area.

26

Card
Column Contents Notes
1-8 *STORECI
9 Disk I/O sub-|This column specifies the
routine disk I/0 subroutine to be
indicator loaded into core by the
Core Image Loader for
use by the core load at
execution time.

Card
Column Contents Notes
Disk
Indicator Subroutine
0,1 DISK1
N DISKN
all others,
including
blank DISKZ
10-12 Reserved
13-14 "FROM" If the STORE operation
symbol is from Working Stor-
age and the correspond-
ing Working Storage
indicator is zero, an
error message is
printed.
15~-16 Reserved
17-18 "TO" symbol
19-20 Reserved
21-25 Program name
26 Reserved
27-30 Count The count is the decimal
number of FILES,
NOCAL, and LOCAL
control records which
follow the STORECI
" control record. This
number of records are
read by DUP for use by
the Core Load Builder
before the STORE oper-
ation is performed.
31-34 "FROM" cart~
ridge ID
35-36 Reserved
37-40 "TO" cartridge
ID
41-80 Not used

The following is a summary of the information
transfers and format conversions performed by

STORECI.

Possible Sources,
including Formats

Possible Destinations,
including Formats

WS (DSF)
CD (CDS)
PT (PTS)

UA (DCI)
FX (DCI)

STOREMOD

The STOREMOD operation moves information from
Working Storage into the User/Fixed Area. If the
name of the DSF program, core image program, or
data file specified on the STOREMOD control record
is identical to an entry in LET/FLET (that is, a DSF
brogram, core image program, or data field of the
same name already resides in the User/Fixed Area),
the information in Working Storage overlays (re-
places) that DSF program, core image program, or
data file in the User/Fixed Area,

If the name on the STOREMOD control record
does not match an entry in LET/FLET, a simple
STORE operation is performed (see above).

The STOREMOD operation permits the user to
modify a DSF program, core image program, or
data file in the User/Fixed Area without changing its
name or its relative position within the area. How-
ever, the length of the DSF program, core image
program, or data file in Working Storage cannot be
greater than the length of the DSF program, core
image program, or data file that it replaces in the
User/Fixed Area.

In the replacement of a DSF program or a data
file, no change is made to the LET/FLET entry, In
the replacement of a core image program, the LET/
FLET entry is updated with the length of the replace-
ment core image program.,

The control record format is described below.

Card
Column Contents Notes
1-10 *STOREMODbD
11-12 Reserved .
13-14 "FROM" The source is always
symbol Working Storage.
15-16 Reserved
17-18 "To"
symbol
19-20 Reserved
21-25 Program
name
26-30 Reserved
31-34 "FROM"
cartridge ID
35-36 Reserved
37-40 "To"
cartridge ID
41-80 Not used

Disk Utility Program 27

The following is a summary of the information
transfers and format conversions performed by
STOREMOD.

Possible Sources, Possible Destinations,
including Formats including Formats
WS (DSF) UA (DSF)
WS (DDF) UA (DDF)
FX (DDF)
WS (DCI) UA (DCI)
FX (DCI)
DELETE

The DELETE operation removes a specified DSF
program, core image program, or data file from
the User/Fixed Area. The deletion is accomplished
by the removal of the LET/FLET entry (or entries)
for the DSF program, core image program, oOr data
file, including the dummy entry for associated pad-
Jding, if any.

If a DSF program, core image program, or data
file is deleted from the User Area, that area is
packed so that (1) the areas represented by LET
entries are contiguous, and (2) Working Storage
can be increased by the amount of disk storage for-
merly occupied by the deleted DSF program, core
image program, or data file.

If a core image program or data file is deleted
from the Fixed Area, no packing of that area occurs.
The FLET entry for the deleted core image program
or data file, including the dummy entry for associ-
ated padding, if any, is replaced by a single dummy
entry representing the area formerly occupied by the
deleted core image program or data file and its
padding.

The control record format is described below.

DEFINE

The DEFINE operation (1) initially establishes the
size of the Fixed Area, (2) increases or decreases
the size of the Fixed Area, (3) deletes the Assembler
or the FORTRAN Compiler, or both, from the System
Area, (4) defines the device to be used as the princi-
pal print device for the system, (5) defines the de-
vice to be used as the principal I/0O device for the
system, and (6) defines to the system the size of
core.

Definition of a Fixed Area on disk allows the user
to store core image programs and data files in fixed
locations, which can subsequently be referred to by
sector address. The Fixed Area is defined as a
whole number of cylinders, two cylinders being the
minimum. One cylinder of the Fixed Area is always
reserved for FLET.

Increases and decreases in the size of the Fixed
Area are made in whole numbers of cylinders. How-
ever, the Fixed Area cannot be increased by a num-
ber greater than the number of unused cylinders at
the end of the Fixed Area. If all core image pro-
grams and data files have been deleted from the
Fixed Area and the Fixed Area is decreased to less
than two cylinders, the remaining Fixed Area, as
well as FLET, is deleted.

The control record format for definition of the
Fixed Area is described below.

Card

Column Contents Notes

Card

Column Contents Notes

1-8 *DELETE®D

9-20 | Reserved
21-25 | Program name
26-30 | Reserved
31-34 | "FROM" car-
tridge ID

The deletion is performed
on the specified car-
tridge only.

35-80 | Not used

1-8 *DEFINED
9-18 | FIXEDBAREA

19-26 | Reserved

27-30 | Count In initial definition of the
Fixed Area, the count is
the decimal number of
cylinders to be allocated
as the Fixed Area. A
minimum of two-cylinders
must be specified. After
initial definition, the
count is the number of
cylinders by which the
Fixed Area is to be in-
creased or decreased in
size.

28

Card
Column Contents Notes
31 Sign If the Fixed Area is being

decreased, this column
contains a minus sign;
otherwise, it is blank.

32-36 |Reserved
37-40 |Cartridge ID This ID specifies the car-
tridge which is to be

altered.

41-80 |Not Used

Deletion of the Assembler and/or FORTRAN
Compiler causes the specified monitor program/(s)
to be removed from the System Area on the master
cartridge. The System Area is then packed so that
following programs and areas occupy the area(s)
formerly occupied by the deleted monitor program/ (s).
SLET entries are updated to reflect the new disk
storage allocation for the monitor programs. The
Reload Table is used to make this adjustment. If
the Assembler and/or FORTRAN Compiler is to be
deleted, the user must do so before defining the
Fixed Area on the master cartridge.

The control record format for deletion of the
Assembler and/or FORTRAN Compiler is described
" below,

Card
Column Contents Notes
1-8 *DEFINED
9-13 | VOIDb
14-22 | ASSEMBLER or
FORTRANGD
23-80 | Not used

Definition of the principal print device estab~
lishes the device to be used by the system for the
printing of all system messages. DUP copies the
system device subroutine for the printer specified
in the control record into an area from which all
monitor programs obtain the subroutine used to
print on the principal printer.

The control record format for definition of the
principal print device is described below.

Card

Column Contents Notes

1-8 *DEFINED
9-20 | PRINCHPRINTH

Card

Column Contents Notes

The device number is 1403
if the 1403 Printer is to
be the principal print de-
vice or 1132 if the 1132
Printer is to be the
principal print device.

If the device number is
blank, the Console
Printer is assigned as
the principal print
device.

21-24 |Device number

25-80 |{Not used

Definition of the principal I/O device establishes the
device (exclusive of the Keyboard) to be used by the
system for reading and punching control records,
programs, and data, DUP copies the system device
subroutine and conversion subroutine for the I/O
device specified in the control record into an area
from which all monitor programs obtain the sub-
routine to be used to read from and punch on the
principal 1/0 device.

The control record format for definition of the
principal I/0 device is described below.

Card

Column Contents Notes

1-8 *DEFINED

9-20 |PRINCHINPUTD
21-24 [Device Number | This number is the number
of the device to which

IPL is wired.
25-80 |Not Used the IPL is wire

Definition of the core size establishes the upper
limit of the core storage within which the monitor
system is to operate. DUP alters the word in
COMMA that the system uses to determine core
size to the size specified on the control record.

The control record format for definition of the
core size is described below.

Contents Notes

1-8 *DEFINED
9-18 |COREDSIZED

Disk Utility Program 29

Card
Column Contents Notes

Cols.19-22 Core Size

4K6D 4096 words
8KbH 8192 words
16KDb 16384 words
32KH 32768 words

19-22 | Size (nominal)

23-80 | Not Used

The contents of Working Storage prior to the opera-
tion are destroyed.

Following the sector address word, the first two
words of each sector contain (in hexadecimal)
D120 2663. The next 238 words of each sector all
contain Axxx, where xxx is the hexadecimal sector
address. The remaining words of each sector con-
tain zeros.

The control record format is described below.

DWADR

The DWADR operation writes a sector address on
every sector of Working Storage on the cartridge
specified. The operation restores correct disk
sector addresses in Working Storage if they have
been modified during execution of a user's program.

30

Card

Column Contents Notes

1-6 |*DWADR

7-36 | Reserved
37-40 |Cartridge ID This ID specifies the car-

tridge which is to be

altered.

41-80 |[Not used

The basic language for the Assembler in the moni-
tor system is described in the publication IBM
1130 Assembler Language (Form C26-5927).
Therefore, this section contains only a general
description of the operation and the control records
for the monitor Assembler and the additions to the
language provided in the 1130 Disk Monitor System,
Version 2.

The monitor Assembler cannot be operated in-
dependently of the monitor system; however, the
Assembler can be deleted from the monitor sys-
tem if desired (see "DEFINE" under Disk Utility
Program, above).

An ASM monitor control record is used to call
the Assembler into operation. The Assembler
reads the source program, including control
records, from the principal input device. After
assembly, the object program resides in Working
Storage, and can be (1) called for execution with
an XEQ monitor control record, (2) stored in the
User/Fixed Area with a DUP STORE or STORECI
operation, or (3) punched as a binary deck or tape
with a DUP DUMP operation.

ASSEMBLER CONTROL RECORDS

Assembler control records are used to specify
options affecting the assembly and the output from
it. These control records must precede the
source program and can be in any order. As-
sembler control records can be entered in card
or paper tape form along with the source program
deck or tape, or they may be entered from the
Keyboard along with the source statements (see
"TYP'" under Monitor Control Records, above).

All Assembler control records have the follow-
ing format:

Column 1: * (asterisk)
2-71: Option

If an Assembler control record contains an asterisk

in column 1, but the option does not agree, character

for character, with its valid format, as described

ASSEMBLER

below, the asterisk is replaced by a minus sign on
the control record listing. The erroneous control
record is ignored in the assembly. The option is not
performed; however, no error results.

Assembler control records can be written in free
form; that is, any number of blanks may occur be-
tween the characters of the option. However, only
one blank must separate the last character in the op-
tion and the first character of any required numeric
field. Remarks may be included in the control record
following the option or numeric field; however, at
least one blank must separate the last character of the
option or numeric field and the remarks.

TWO PASS MODE

This control record causes the Assembler to read
the source deck (or tape) twice. TWO PASS MODE
must be specified when:

1. The user desires a list deck to be punched
(see LIST DECK and LIST DECK E).

2. One pass operation cannot be performed because
intermediate output (source records) fills the
Working Storage area of disk.

This control record is ignored when source state-
ments are entered through the Keyboard.

The format of this control record is described
below.

Card
Column Contents Notes
1 * (asterisk)

2-71 TWO PASS MODE
72-80 Not used

LIST

This control record causes the Assembler to provide
a printed listing on the principal print device (Con-
sole Printer, 1403 Printer, or 1132 Printer). The
format of the printed listing corresponds to that of
the list deck (see Figure 7).

Assembler 31

—
?

= Card
T T Tl e[el o] L Lzlal T Telirelislzofail T T Teshelr]l 1 lsolarlazlea 34\35| [T T T I, coitme
< T T
Blank Blank Blank Blank Blank Blank Blank
F t

Alddlf'ess t?f t!\e First Word of Error Flags, Label Op Code e

nfxﬁf o the Assembled if any Tag

Address Code*
Assigned to

the Label, if any

Relocation Indicators; Second Word of
Col. 7 is Blank for One- the Assembled
Word Instructions or DC ode™

or
Exponent for an
XFLC Statement .

[¢ Card
,L42IIIllII15°I||lllHlIéoIlIIl|Il|II7|727aIIlIII 80| Column
— 7 T ~—
ID and Se ce
Operands Nu(:nber, ?ﬁz:y
Blank
*For EBC statements, columns 9-12 contain the number of EBC characters.
For BSS and BES statements, columns 9-12 contain the number of words reserved for the block.
For ENT, ILS, and ISS statements, columns 9-16 contain the entry label in packed EBCDIC code.
Figure 7. List Deck Format
The format of this control record is described columns 1-19 of the source deck in pass 2 to make
below. the list deck.
The format of this control record is described
Card below.
Column Contents Notes
Card
1 * (asterisk)
9-71 LIST Column Contents Notes
2- N d
72-80 ot use 1 * (asterisk)
2-71 LIST DECK
LIST DECK 72-80 Not used
This control record causes the Assembler to punch LIST DECK E
a list deck, but only if the principal I/0O device is
a card reader. This option requires two passes This control record causes the Assembler to punch
(TWO PASS MODE). The list deck format is shown the assembly error codes only (columns 18-19) in the
in Figure 7. Object information is punched into list deck output (see LIST DECK).

32

The format of this control record is described
below.

Card
Column Contents Notes
1 * (asterisk)

2-7T1 LIST DECK E
72-80 Not used

PRINT SYMBOL TABLE

This control record causes the assembler to pro-
vide a printed listing of the symbol table on the
principal print device (Console Printer, 1403
Printer, or 1132 Printer). Symbols are grouped
five per line. Multiply-defined symbols are
preceded by the letter M3 symbols with absolute
values in a relocatable program are preceded by
the letter A. The M and A flags, however, are
not counted as assembly errors. _

The format of this control record is described
below.

SAVE SYMBOL TABLE

This control record causes the assembler to save
the symbol table generated in this assembly on the
disk as a System Symbol Table. The System Symbol
Table is saved until the next assembly having a
SAVE SYMBOL TABLE control record causes a new
assembly-generated symbol table to replace it.
This control record is also used with the SYSTEM
SYMBOL TABLE control record to add symbols
to the System Symbol Table. The SAVE SYMBOL
TABLE option requires that this assembly be
absolute. If any assembly errors are detected, or
if the symbol table exceeds the allowable size of the
System Symbol Table, the symbol table is not saved
as a System Symbol Table, and an assembly error
message is printed.

The format of this control record is described
below.

Card
Column Contents Notes
1 * (asterisk)

2-71 SAVE SYMBOL TABLE
72-80 Not used

Card
Column Contents Notes
1 * (asterisk)

2-71 PRINT SYMBOIL TABLE
72-80 Not used

PUNCH SYMBOL TABLE

This control record causes the assembler to punch
the symbol table as a series of EQU source cards.
These cards can be used as source input to the sys-
tem symbol table when the SAVE SYMBOL TABLE
control record is used with an assembly in which
they are included. The symbol table is punched
only when the principal I/0 device is a card reader.

The format of this control record is described
below.

SYSTEM SYMBOL TABLE

This control record causes the assembler to copy
the System Symbol Table (previously built by a
SAVE SYMBOL TABLE assembly) into the symbol
table for this assembly before the assembly begins.
This control record is used when it is desired to
refer to symbols in the System Symbol Table without
definition of those symbols in the source program,
or it is used together with the SAVE SYMBOL TABLE
control record when it is desired to add symbols to
the System Symbol Table. All symbols in the System
Symbol Table have absolute values.

The format of this control record is described
below.

Card
Column Contents ' Notes
1 * (asterisk)

2-71 PUNCH SYMBOL TABLE
72-80 Not used

Card
Column Contents Notes
1 * (asterisk)

2-71 SYSTEM SYMBOL TABLE
72-80 Not used

Assembler 33

LEVEL

This control record specifies the interrupt levels
serviced by an ISS and, hence, the associated ILS
subroutines. It is required for the assembly of an
ISS routine. The interrupt level number is a decimal
number in the range 0-5. If the device operates on
more than one level of interrupt (for example, 1442
Card Read Punch), one LEVEL control record is
required for each level of interrupt. At least one
blank must separate the word LEVEL and the inter-
rupt level number.

The format of this control record is described
below.

Card
Column Contents Notes
1 * (asterisk)

2-71 LEVELDBn n is an interrupt level

number.

72-80 Not used

OVERFLOW SECTORS

This control record specifies the number of sectors
of Working Storage for possible symbol table over-
flow to be allowed by the Assembler. The number
of overflow sectors is a decimal number in the
range 1-32. If this number is zero or blank, no
overflow sectors are allowed. If the number is
greater than 32, thirty-two overflow sectors are
allowed. If this control record is not used, no
overflow sectors are allowed.

The format of this control record is described
below.

COMMON

This control record specifies the decimal length (in
words) of COMMON as defined by a previously exe-
cuted FORTRAN core load. Use of this control
record provides for a COMMON area to be saved
in linking from a FORTRAN mainline to an assembler
mainline and back to a FORTRAN mainline. At least
one blank must separate the word COMMON and the
decimal number.

The format of this control record is described
below.

Card
Column Contents Notes
1 * (asterisk)

2-71 | COMMONDBnnnnn nnnnn is the num-
ber of words of
COMMUON to be
saved hetween
links.

72-80 Not used

Card
Column Contents Notes
1 * (asterisk)
2-71 OVERFLOW
SECTORSDHnn nn is the number

of sectors assigned
to symbol table
overflow.

72-80 Not used

34

Figure 8 shows the layout of an Assembler input
deck.

Next
Monitor
Control
Record

/

Assembler Source
Statements

(i
ﬁASM

// JOB

r
F
[
/

/ Assembler Control Records

Figure 8, Layout of an Assembler Input Deck

ORIGIN OF MAINLINES

The origin of a relocatable mainline program is
always set at relative zero unless otherwise speci-
fied in the source program.

The origin of an absolute mainline program, if
not otherwise specified in an ORG statement, is set
at the end of DISKN. If the program requires DISKN
or DISK1, the origin is set at the end of the re-
quested disk I/O subroutine. If no disk I/O sub-
routine is used by the program, the origin is set at
the end of DISKZ.

ASSEMBLER PAPER TAPE FORMAT

The paper tape input to the Assembler is punched in
PTTC/8 code, one frame per character. The format
of the tape control records is the same as the card
format. The format of the symbolic program tape
records is the same as the card format except for
the following:

1. The tape does not contain leading blanks cor-
responding to card columns 1-20.

2. The tape does not contain blanks or data cor-
responding to card columns 72-80.

3. Trailing blanks need not be punched. There-
fore, up to 51 characters (corresponding to
card columns 21-71) can appear in the tape
record.

Tape records are separated by new line charac-
ters (code DD). The delete character (code 7F)
is ignored whenever it is read, but the reader stop
character (code 0D) causes the program reading
the tape to WAIT and start reading again when
PROGRAM START is pressed. The case shift
characters (codes OE, 6E), when required, are not
considered to occupy a space in the format.

ASSEMBLER LANGUAGE

The following information describes the additions
to the basic language provided in the 1130 Disk
Monitor System, Version 2. This information
supplements the publication IBM 1130 Assembler
Language (Form C26-5927).

NEW (EXTENDED) MACHINE INSTRUCTION
MNEMONICS

A list ofthe IBM 1130 machine instruction mnemonics

including the new (extended) mnemonics is given in
Table 3.

Branch or Skip on Condition

The mnemonic Branch or Skip on Condition (BSC) has
been extended to simplify the coding of conditional
transfers.

Skip on Condition (SKP). The condition codes (+, -,
Z, E, O, and C) are specified as with a short BSC
instruction.

Branch Unconditionally (B). If the Format field con-
tains an L or I, the BSC operation code is used with
bit 5 set to one. Condition codes are not allowed
after the address expression in the Operand field.

If the Format field is left blank or contains an X,

the MDX operation code is used, and the expression
in the Operand field is used to form the displacement.

Branch Accumulator Positive (BP). Condition codes
for accumulator zero (Z) and accumulator negative
(-) are set to one.

Branch Accumulator Not Positive (BNP). Condition
code for accumulator positive (+) is set to one.

Branch Accumulator Negative (BN). Condition codes
for accumulator zero (Z) and accumulator positive
(+) are set to one.

Branch Accumulator Not Negative (BNN). Condition
code for accumulator negative (-) is set to one.

Branch Accumulator Zero (BZ). Condition codes for
accumulator positive (+) and accumulator negative
(-) are set to one.

Branch Accumulator not Zero (BNZ). Condition code
for accumulator zero (Z) is set to one.

Branch on Carry (BC). Condition code for Carry
indicator off (C) is set to one.

Branch on Overflow (BO). Condition code for Over-
flow indicator off (O) is set to one.

Assembler 35

Table 3.

Machine Instruction Mnemonics

Mnemonic OP Code i Instruction
(Hexadecimal Representation)
Load and Store
LD €00 Lood Accumulator
LDD €80 Lood Double
LDX 600 Lood Index
LD§* 200 Load Status
STO D00 Store Accumulator
STD D80 Store Double
STX 680 Store Index
STS 280 Store Status
Arithmetic
A 800 Add
AD 880 Add Double
S 900 Subtract
D 980 Subtract Double
M A0O Multiply
D A80 Divide
AND EOO And
OR E80 Or
EOR FOO Exclusive Or
MDM t5 740 Modify Memory
Branch
B t4 700 or 4CO Branch
BSI 400 Branch and Store Instruction Counter
8SC 480 Branch or Skip Conditionally
8P 16 4C30 Branch Accumulator Positive
BNP 16 4C03 Branch Accumulator Not Positive
BN 16 4C28 Branch Accumulator Negative
BNN 16 4C10 Branch Accumulator Not Negative
BZ 16 4C18 Branch Accumulator Zero
BNZ 16 4C20 Branch Accumulator Not Zero
BC 16 4C02 Branch on Carry
BO 16 4C01 Branch.on Overflow
BOD 16 4C04 Branch Accumulator Odd
SKP* + 480 Skip on Condition(s)
BOSC 2 484 Branch Out or Skip Conditionally
MDX 700 Modify Index and Skip
Shift
SLA* 100 Shift Left Accumulator
SLT* 108 Shift Left Accumulator and Extension
SLC* 10C Shift Left and Count Accumulator and Extension
SLCA* 104 Shift Left and Count Accumulator
SRA* 180 Shift Right Accumulator
SRT* 188 Shift Right Accumulator and Extension
RTE* 18C Rotate Right
XCH* t3 18D Exchonge Accumulator and Extension
Input/Output
X10 080 Execute 1/0O
MiscellaneousS
NOP* 100 No Operation
WAIT* 300 Wait
*Valid in short format only

+Not
1.

o U AWN

OP Code

included in card/poper tape Assembler or monitor Assembler, Version 1

The hexadecimal representation of the machine operation code is derived from the instruction format in the manner shown below.
Bits 5, 6, 7, 10, and 11 are assumed to be zeros because they do not enter into the makeup of any operation codes.

Same as BSC with Bit 9 set to one.

An operand should not be specified.

When branch is short (8lank or X format), this operation code is assembled as an MDX (700). If the branch is long (L or | format),
this operation code is assembled as a BSC with Bit 5 set to one (4C0).

This instruction is automatically assembled as:a long instruction (L is not required in the format field). Note that an attempt to use
indirect addressing will result in a syntox errar. Indexing is not permitted with this extended operation code .

Extended conditional branch operation codes are assembled automatically as long instructions. Note that the proper condition code
bits are preset, and further condition bits may not be specified following the operand.

Hexadecimal Characters

1st

2nd 3rd
Letadyve e trrad

0 1 2 3 456 7 8 910111213 14 15
Qo112 i3 14 s
| 4

Format (F)

Index Tag bits (T)

IA bit, part of
displacement, or extension

of OP code

Part of displacement,
or extension of OP code

Condition indicators,
'

or part of disp

36

Branch Accumulator Odd (BOD). Condition Code for
accumulator even (E) is set to one.

NOTE: Condition codes may not be used with any of
the above instructions, except SKP, since the condi-
tion code is implicit in the extended mnemonic. The
conditional branch instructions (all except SKP and
B) are always assembled as long instructions; thus,
the Format field need not contain an L, although the
instruction is not classed as an error if L is speci-
fied. Indirect addressing may be specified.

Modify Index and Skip

The mnemonic Modify Index and Skip (MDX) has been
extended to provide for incrementing or decrement-
ing the contents of a core storage location.

Modify Memory (MDM). Contents of the location speci-
fied by the first operand is incremented or decre-
mented by the value of the second operand. The sec-
ond operand must be in the range -128 to +127.

NOTE: This instruction is always assembled as a
long instruction; thus, the Format field need not
contair. an L, although the instruction is not classed
as an error if L is specified. Indexing and indirect
addressing may not be specified.

Rotate Right

The mnemonic Rotate Right (RTE) has been extended
to provide a means for exchanging the Accumulator
and Extension.

Excharige Accumulator and Extension (XCH). Ex-
change is identical to a RTE of 16. No operand is
specified with this instruction.

Examples of the new (extended) machine instruc-
tion mnemonics are shown in Table 4.

NEW ASSEMBLER INSTRUCTIONS

The Assembler instruction set has been expanded
by the addition of eight new statements. These

fall into three categories; New Data Definition
Statements, New Listing Control Statements, and
New Monitor System Statements.

New Data Definition Statements

DN — Define Name

The Define Name statement is used to convert a
name specified in the Operand field of the state-
ment to a name in name code in the object pro-
gram. The format of this statement is shown
below:

mﬂ

F F F F E FOF
e k= R

where
1 is any valid label (optional),

n is any valid label or name.

If a label is used, the address assigned to it is the
location of the first word of the two words generated
and is equal to the current value of the Location
Assignment Counter. Columns 32 and 33 must be
blank. The operand can have up to five characters
that comply with the rules for writing labels. The
name to be converted must be left-justified in the
Operand field. If remarks are used, one blank must
be left between the operand and the remarks. The
Location Assignment Counter is incremented by two
for this statement.

DMES — Define Message

The DMES statement is used to store a message with-
in a program in a form that is acceptable to the
printer output subroutines. The format of the DMES
statement follows:

Assembler 37

Table 4. Examples of New (Extended) Machine Instruction Mnemonics

38

New Instruction Statements Equivalent Statements
7 wl Js2{3] |38 27 30 s2fa3] Jas 40
SKP. F e AXoA by
PRI | IS SO SN SN U N WO T et | T S U O N W S
S.KR *-I". IS WS S T N N BJCt b» Sl EIT RTINS O ST RN OO
SKR l | U T W S T S N 1 RSCJ zl I T T U W T W |
3.1 A) I S T | I S . | S | - | i | F - |
KF, O 41 Ais‘lﬂl [0 N S
[.Y | WU S S N WS N S | U Pt | TSNS O W S T W W T |
SIKR 1 il 1 14 I1 1 ISdL al 1 -1 F I S W T
- T TN S [S W S W . | Lol F T W U N S TN T N I
KP P S A S k. hY <SRN RO
. | T NS N W U VU D W |) - Lo % ¢t 0 14 g
N DX, TR
L1 L i W T W W T | — 1 - ' | | - T W T 3
14t [T T O U [S W' [| TS S T WS WO N W T
h 41 |LIPAM T U W W W'} BSG L.ﬂh'. Y O T]
L1 VY T U S S Y U ST Y L1y N N W G T W S 't
_B,z. 1 ET A 14y .S.C’.. L A " T < Bl BN EN |
il T U W SO N S T T 1 S Y | U W WA TS S N T |
'lM 1 I[ITIA | T T .) __dzsln L #LELT:A " LZI O T
L 11 P T S W N S S S TR U T R W W S
l NE, o LBSG BETL, &\
looa. L | IS N (N O SN T Y S] il | T YOR T WAS T U T T §
i [T T YO T N N S S | T i WO T S G S Y S U
B TNA . [|BSC L
il d | TN TR T W T N DU T | VI - | W T W W W A T W |
m ITMB B.5.C lzT-ME,u:l__A_.L__n_.
P | T S T | L4 1 ' L1 | S W U U T S T)
| B2 .) : L LY SIUBE, E~, ,
PR | TN WO WY W U U S 1 S 5 TR U TONR N WY S T v
AR 1 Sﬁ.ﬁﬁ I T W Y .Sn{!. SI —
M | T U T OO I W W W B | ——— TN O W T W N T
.MP- T W SO T W S/ 1
L I VO T U B IO B W | 111 | Y D T U W S B |
e o erﬂ'ﬁ.Zl [R‘S" +
[[YR TN N TN W W S | Ll W W W T U T T
BA 1 WS IS VO T VO WO N | S/'
L | O W N S U O W Lt 1 | T S B B |
PN T W T S B N S VI | T S S G A S)
B.Q 1 Z | T U WU WO Y WD T W 1 Rs“{’ 5':101 I W S W
L1 I O T S B S B | - WS TS T T I T
P) VN YT VO WO T T S 1l S TRV D T W VO T T |
.00, AFE 1 BSL, BAFE A .
L1l | WO T W U O O | 1 S) S VO S U T
,DM IDAXI IAAVIAI ;lﬂj‘ L1
T | [N W U U W Y S VAT e | WD T U T O 1
MO.M, /.1.D, DX, LD,
1 T T O W A W N U | — RS WO WY O S N T T
,D,M l’,.'.z,,‘z. L1 nﬁan L /l,n"xIIZn 111
[T T W VO B A W O L1 | Y SN G OO T O S |
X.C’.M | TS YT S T SO N S N | Kﬂé—' Ilé T O S T
11 .1 | T U VN T Y T 1 11 | W TN TN S T N - _—

Operations Performed

Skip if accumulator is positive

Skip if accumulator is positive or negative

Skip if accumulator is zero

Skip if Overflow indicator is on

Skip if Carry indicotor is on

Skip if accumulator is positive or negative or if Carry indicator is on

Branch unconditionally to EXIT, where EXIT must be within riormal
displacement range.

Branch unconditionally to ALPH
Branch to BETA if accumulator is zero
Branch to BETA if aoccumulator is negative

Bronch indirectly to BETA (i.e., the address specified by contents of
BETA) if accumulator is non-zero

Bronch to RTNA if accumulator is negative

Branch to RTNB if accumulator is non-negative (zero or positive)
Branch to SUB@ if accumulator is positive

Branch indirectly to SUBS (i.e ., the address specified by the contents of
SUBS$) if accumulator is positive

Branch to SUBF if accumulator is non-positive (zero or negative)

Branch to ENTR+1 if Carry indicator is on

Branch indirectly to address specified by contents of index register 1
if Carry indicator is on

Branch to oddress specified by contents of index register 2 plus 5 if
Overflow indicator is on

Branch to $AFE if accumulator is odd

Increment contents of core location SAVA by 5
Increment contents of core location 1D6A, 6 by 100
Decrement contents of core location A by 12

Exchange the accumulator and extension (rotate right 16)

2 25 27 aol 32 a:I IJS “0

DMES

P

1
I
L1
L3
L1
Ll
et

rrrrrFrF

1
1 L
1 It
i 1
Il I
1 1

where
1 is any valid label (optional),
p is the printer type code,
m i3 any string of valid message and control

characters.

If a label is present, it is assigned to the location
of the first word generated. The Tag field (column
33) is used to specify the printer type code:

T_ag_ Printer
Horo Console Printer
1 1403 Printer
2 1132 Printer

If the Tag field (printer type code) contains a char-
acter cther than blank, zero, one, or two, an error
results and the message is stored two EBCDIC char-
acters per word.

The Operand field contains the control and mess-
age characters. Remarks are permitted only after
an 'E or b control character.

The output generated by one DMES statement can-
not exceed 60 words (120 characters). If an odd
number of characters is generated, the last word is
filled in with a blank, except when the statement
ends with "B. In this case, the first character of the
next DMES statement is used to fill out the word.

Control characters are used to specify certain
printer operations and to define message parameters.
Each control character is actually two characters,
the first of which is always an apostrophe. The apos -
trophe is a control delimiter and therefore is not
included in the character count. The control charac-
ters and their functions or meanings are as follows:

Control

Character Function or Meaning
X Blank (or space)
'"T Tabulate
'D Backspace
'B Print black
‘A Print red
'S Space (or blank)
'R Carriage return
'L Line feed
'F Repeat following character
'E End of message
b @=blank) continue text with next DMES

statement

All the above characters can be used when the printer
is the Console Printer. Only 'E, 'F, 'S, 'Xand %
are valid control characters when the 1132 or 1403
Printer is specified; any other control characters
are considered as errors.

The characters 'X and 'S are interchangeable. A
blank character is generated for either 'X or 'S if the
1132 or 1403 Printer is specified; a space is gener -
ated for either 'X or 'S if the Console Printer is
specified.

The character 'F (repeat following character)
refers only to message characters. The control
characters themselves, except 'A, 'B, 'E, and %,
can be repeated up to 99 times by inserting a number
(1-99) between the apostrophe and unique control
definition character. For example, '32S results in
32 space characters being inserted in the generated
message.

The character 'E is used to designate the end of
the message line. The character % is used to desig-
nate that the message is continued on the following
DMES statement. If neither 'E nor 'b is included, 'E
is assumed to follow column 71. DMES statements
that end with % must be followed by another DMES
statement.

Text apostrophes are generated by writing two
successive apostrophes.

The message characters can be any valid charac-
ter for the printer being used. Invalid characters
are replaced with blanks.

Assembler 39

The following example illustrates the DMES
statement.

Assembler input:

1 4 1 .Mﬁs ARSAA” PILIEI AP&O.G RIAMI J I5l 1 A |
MR MES WO UTPUT, L
L MES 2R 98" .7..92. .9..5‘.3. L9S4E
e HES '\£2234567899 223456789 .
L MES |¢.123¢mg7m1z34,5.gw¢45
v | IDMES 1 2R TX T EF i A DE LK) smim= Ty
e MES NZX B SDE (X i mm E
I [E Y WS SR T U NN TN ST T SN NN TS SONS TNNY SO NN GRS UD N WO S N S
O T I | 111 [U SO U T T AN U SN TN WU WNNS WOUN (N WA TN U TN TN S SN N N ¥
I S] L1 U SN (NN TN T VR S NN U0 T WU U N S Y N [SN S S SO S N
W Lot A L T S B B S B S e

Printed output:

SAMPLE PROGRAM'S OUTPUT

1 2 3 4
1234567890123456789012345678901234567890

F(X) F'(X)

Note that the device code specified in the preceding
example is blank in order to generate a message for
the Console Printer.

DSA — Define Sector Address

The DSA statement is specified as stated in the
publication IBM 1130 Assembler Language (Form
C26-5927), except for the following change: the
third word generated for a data file is no longer
zero; instead, it is the sector count of the file.

New List Control Statement

These list control statements — LIST, SPAC, and
EJCT —provide the user with the means to control

40

the assembler output listing; however, these state-
ments themselves are never printed on the output
listing by the assembler.

LIST — List Segments of Program
The LIST statement allows the user to list certain
segments of a program and to avoid listing other

segments. The three variations of the LIST state-
ment are shown below:

21 25 27 30 32|33 35 40

IST T A
IST Ll I
|I|S|T IF-FI T IO W T S

.

L1

P

[I -
S Y I -
11 I T T |
[L1 1
1 PR |

The Label, Tag, and Format fields are not used with
the LIST statement and should be left blank. The
Operand field may be left blank or may contain the
operand ON or OFF.

The LIST statement does not cause the Location
Assignment Counter to be incremented.

If a LIST statement with the operand ON is en-
countered, the following statements (excluding list
control statements), up to the next LIST statement,
are listed by the Assembler.

If a LIST statement with the operand OFF is en-
countered, the following statements, up to the next
LIST statement, are not listed by the Assembler.

If a LIST statement with no operand is encountered,
the Assembler assumes an operand depending on the
use of the LIST control record. If the LIST control
record preceded the assembly, the ON operand is
assumed and the Assembler acts accordingly. If
the LIST control record did not precede the assembly,
the OFF operand is assumed and the Assembler acts
accordingly.

SPAC — Space Listing

The SPAC statement is used to insert one or more
blank lines in the listing immediately following the
SPAC statement. The format of the SPAC state-
ment is as follows:

21 25 27 30 32|33 35

L ISPAC 72

L1

where e is any valid positive expression.

The Label, Format, and Tag fields are not used
and should be left blank.

The number of blank lines inserted in the listing
is determined by the operand in the statement. The
operand can be any valid expression. The operand
(expression) value must be positive; otherwise, the
Assembler ignores the statement.

When the number of blank lines specified exceeds
the number of lines left on the page, the page is
spaced to the bottom, a restore occurs, a new
heading is printed, and spacing is resumed until the
numberr of blank lines specified has been exhausted.

The SPAC statement does not cause the Location
Assignment Counter to be incremented.

EJCT - Start New Page

The EJCT statement causes the next line of the list-
ing to appear at the top of a new page following the
page heading. The format of the EJCT statement is
as follows:

21 25 27 30 32133 35 40 45

- F - F F
T T

The Label, Tag, Format, and Operand fields are not
used and should be left blank.

A page overflow occurs immediately following the
EJCT statement. EJCT statements may be used in
succession to obtain blank pages (except for the
headings printed).

The EJCT statement does not cause the Location
Assignment Counter to be incremented.

New Monitor System Statements

DUMP — Dump and Terminate Execution

The DUMP statement provides an entry to the DUMP
program (see Supervisor), which prints the contents
of core storage on the principal print device in hexa-
decimal format.

The DUMP statement allows for flexible specifica-
tion of the upper and lower limits to be dumped with-
out altering core storage. The DUMP program, when
called by a DUMP statement, executes a CALI, EXIT
following the printout. The DUMP statement is
written as follows:

i

L1

|
F F o OF R OF
F F R F R K

where
1 is any valid label (optional),

a is any valid expression specifying the lowest-
addressed core location to be dumped,

b is any valid expression specifying the highest-
addressed core location to be dumped,

f is the dump format code (either a blank or
a zero).

The label, if used, is assigned the location of the
first of the six words generated. The Tag and For-

mat fields must be left blank.
The format of the DUMP program output is as

follows:

Assembler 41

AAAA XXXX XXXX XXXX 21 XXXX XXXX XXXX

The contents (xxxx) of 16 core storage locations are
printed per line. At the left is the address (AAAA)
of the first location printed on that line.

The Location Assignment Counter is incremented
by six for a DUMP statement.

The DUMP statement is translated by the Assem-
bler into a long BSI instruction branching to the ad-
dress of the DUMP entry point in the Skeleton Super-
visor. The parameters (operands) are converted
into three data words; the first is the starting loca-
tion of the core dump, the second is the ending loca-
tion of the core dump, and the third, the format indi-
cator (always zero). Unspecified operands are as-
signed values of: location zero for the first data
word; the highest core location for the second data
word., Following the data words the Assembler gen-
erates a short branch to the EXIT entry point in the
Skeleton Supervisor.

A DUMP statement can be used at any point in a
program; however, the user is reminded that DUMP
causes a terminal DUMP to be printed. At the com-
pletion of the dump printout, the branch to EXIT is
executed, thus transferring control to the Skeleton
Supervisor for processing of the next job or subjob.

PDMP — Dump and Continue Execution

The PDMP statement provides the ability to dump
core storage between specified limits and to continue
execution. The core dump is printed on the principal
print device without altering core. The PDMP state-
ment is specified in the same way as DUMP, except
that PDMP appears in columns 27-30 instead of
DUMP.

The PDMP statement is translated by the Assem-
bler into a long BSI instruction branching to the
DUMP entry point in the Skeleton Supervisor. The
parameters (operands) are converted as described
in the DUMP statement (see above).

Upon completion of the printout of the core dump,
control is returned to the next instruction following
the PDMP statement to continue execution.

42

FILE — Define Disk File

The FILE statement specifies to the Assembler the
file identification, the number of file records in a
file, and the size of each record in a disk data file
that will be used with a particular mainline and its
associated subprograms.

The FILE statement is used to divide the disk
into files. As the core load is constructed by the
Core Load Builder, these files are equated to data
files already assigned in the User/Fixed Area or
to files in Working Storage (see "FILES'" under
Supervisor Contirol Records, above).

The FILE statement must not appear in a sub-
program; it is permitted only in a relocatable main-
line program. Therefore, all subprograms used
by the mainline must use the defined files of the
mainline. The format of the FILE statement is as
follows:

FF F F F

F F F F O FOF
[T S T
e e
S SO T
S S N
e e b e

where
1 is any valid label (optional),

a is the file identification number, a decimal
integer in the range 1-32767,

m is a decimal integer that defines the number
of records in the file,

n is a decimal integer in the range 1-320 that de-
fines the length (in words) of each record in the
file,

U is a required constant, specifying that the file
must be read/written with no data conversion,

v is the associated variable, the label of a core
location (variable) defined elsewhere in the pro-
gram.

FILE statements must precede all other state- Word : Contents
ments except HDNG, EPR, SPR, EJCT, SPAC, and

LIST in the source program. The label, if used, is If the file is assigned to Working Storage
assigned the location of the first word of the seven by the Core Load Builder, the sector
words generated. The Format and Tag fields are not address is relative to the beginning of
used and should be left blank. Working Storage.

Each FILE statement causes the Location Assign- 6 r, the number of records per sector. The
ment Counter to be incremented by seven. The data number, computed by the Assembler, is
stored in these seven words, which constitute a the quotient of
DEFINE FILE Table entry in the object program is
as follows: 3920
Word Contents n

1 a, the file identification number (remainder ignored)

2 . 7 b, the number of disk blocks per file.
2 m, the number of records per file .
. This number, computed by the Assem-

3 n, the record length (in words) bler. is the quotient of
4 The address of the associated variable, v. ? a
5 Zeros. This word is filled by the Core 16(m)

Load Builder with the absolute sector

address of the data file if the file is al- r

ready stored in the User or Fixed Area. (remainder ignored)

Assembler 43

FORTRAN COMPILER

The basic language for the FORTRAN Compiler in
the monitor system is described in the publication
IBM 1130 Basic FORTRAN IV Language (Form C26-
5933). Therefore, this section contains only a gen-
eral description of the operation and the control
records for the monitor FORTRAN Compiler and the
additions to the basic language provided in the 1130
Disk Monitor System, Version 2.

The FORTRAN Compiler cannot be operated inde-
pendently of the monitor system; however, the com-
piler can be deleted from the monitor system if
desired (see "DEFINE" under Digk Utility Program,
above).

An FOR monitor control record is used to call the
FORTRAN Compiler into operation. The compiler
reads the source program, including control records,
from the principal input device. After compilation,
the object program resides in Working Storage and
can be (1) called for execution with an XEQ monitor
control record, (2) stored in the User/Fixed Area
with a DUP STORE or STORECI operation, or (3)
punched as a binary deck or tape with a DUP DUMP
operation.

For 1130 FORTRAN 1/0 logical unit definitions,
the I/O unit numbers are defined in Table 5.

FORTRAN CONTROL RECORDS

Before a FORTRAN program is compiled, the user
can specify certain options affecting both the compil-
ation and execution of the program by means of con-
trol records. These control records must precede
the source program and can be in any order.

FORTRAN control records can be entered in card
or paper tape form along with the source program
deck or tape, or they may be entered from the Key-
board along with the source statements (see "TYP"
under Monitor Control Records, above). The IOCS
and NAME control records can be used only in main~
line programs; the others can be used in both main-
line programs and subprograms.

All FORTRAN control records have the following
format:

44

Column 1: *(asterisk)
2-72: Option

If 2 FORTRAN control record contains an aster-
isk in column 1, but the option does not agree, char-
acter for character, with its valid format, as des-
cribed below, the asterisk is replaced by a minus
sign on the control record listing. The erroneous
control record is ignored in the compilation. The op-
tion is not performed; however, no error results.

FORTRAN control records can be written in free
form; that is, any number of blanks may occur be-
tween the characters of the option. No remarks are
allowed.

10CS

This control record is required to specify any 1/0
device that is to be used during execution of the
program; however, only the devices required should
be included. Because the IOCS control record can
appear only in the mainline program, it raust include

Table 5. FORTRAN Logical 1/O Unit Designations

ijgr‘i;d Device Kind of Record Size
Number Transmission Allowed
1 Console Printer Output only 120
2 1442 Card Read tnput/output 80
Punch
3 1132 Printer Output only 1 carriage
cantrol + 120
4 1134/1055 Input/output 8C, plus max. of
Paper Tape 80 case shifts for
Reader Punch P1TC/8 code,
plus NL code.
403 Print Output onl 1 carriage
5 1403 Printer utput only control 3120
6 Keyboard Input only 80
7 1627 Plotter Output only 120
8 2501 Cord Reader Input only 80
9 1442 Card Punch Output only 80
10 Disk Input/output 320
without Data
Conversion

all the I/0 devices used by all FORTRAN subpro-
grams that are called, The device names must be
in parentheses with a comma between each name.
The valid names and the devices to which they cor-
respond are listed below:

Name Device
CARD 1442 Card Read Punch, Models
6 and 7
2501 READER 2501 Card Reader
1442 PUNCH 1442 Card Punch, Model 5
TYPEWRITER Console Printer
KEYBOARD Keyboard

1132 PRINTER
1403 PRINTER

1132 Printer
1403 Printer

PAPER TAPE 1134/1055 Paper Tape Reader Punch
PLOTTER 1627 Plotter
DISK Disk

Note that CARD is used for the 1442 Card Read
Punch, Models 6 and 7 and that 1442 PUNCH is used
for the 1442 Card Punch, Model 5. These two
names are mutually exclusive.

Subprograms which are a part of a FORTRAN
core load but which are written in Assembler lan-
guage can use any I/0O subroutine for any device that
is not specified on the IOCS control record.

Any number of IOCS control records can be used
to specify the required device names.

The format of this control record is described

Card
Column Contents Notes
1 * (asterisk)
2-72 LIST SOURCE
PROGRAM
73-80 Not used

LIST SUBPROGRAM NAMES

This control record causes the compiler to list the
names of all subprograms (including EXTERNATL
subprograms) called directly by the compiled pro-
gram on the principal print device.

The format of this control record is described
below.

Card
Column Contents Notes
1 *(asterigk)

2-72 LIST SUBPRO-
GRAM NAMES

73-80 Not used

below.
Card
Column Contents Notes
1 *(asterisk)
2-72 10CS d is a valid device name
d,d,...d) (see table above).
73-80 Not used

LIST SOURCE PROGRAM

This control record causes the compiler to list the
source program on the principal print device as it is
read in.

The format of this control recordis described below.

LIST SYMBOL TABLE

This control record causes the compiler to list the
following items on the principal print device:

e Variable names and their relative addresses
° Statement numbers and their relative addresses

° Statement function names and their relative
addresses

) Constants and their relative addresses

The format of this control recordis described below.

Card
Column Contents Notes
1 *(asterisk)
2-72 LIST SYMBOL
TABLE
73-80 Not used

FORTRAN Compiler 45

LIST ALL

This control record causes the compiler to list the
source program, subprogram names, and symbol
table onthe principal print device. If this control
record is used, the other LIST control records are
not required.

The format of this control record is described
below.

Card
Column Contents Notes
1 *(asterisk)

2-72 LIST ALL
73-80 Not used

EXTENDED PRECISION

This control record causes the compiler to store
variables and real constants in three words instead
of two and to generate linkage to extended precision
subprograms. _

The format of this control record is described
below.

Card
Column Contents Notes
1 * (asterisk)
2-72 ONE WORD
INTEGERS
73-80 Not used
NAME

This control record causes the compiler to print the

specified program name on the listing. The name
is five consecutive characters (including blanks)
starting at the first non-blank column following
NAME. This control recordis used only on mainline
programs, since subprogram names are taken from
the FUNCTION or SUBROUTINE statement.

The format of this control record is described

Card
Column Contents Notes
1 *(asterisk)
2-72 EXTENDED
PRECISION
73-80 Not used

ONE WORD INTEGERS

This control record causes the compiler to allocate
one word of storage for integer variables rather
than the same allocation used for real variables.
Whether this control record is used or not, integer
constants are always contained in one word. When
this control record is used, the program does not
conform to the USASI Basic FORTRAN standard for
data storage and may require modification in order
to be used with other FORTRAN systems.

The format of this control record is described
below.

46

below.
Card
Column Contents Notes
1 * (asterisk)

2-72 NAME xxxxx xxxxx is the name
of the mainline
object program.

73-80 Not used

HEADER INFORMATION

This control record causes the compiler to print
the information in columns 3-72 at the top of each
page of compilation printout when an 1132 or a 1403
Printer is the principal print device.

The format of this control record is described

below.
Card
Column Contents Notes
1 *(asterisk)
2 *(asterisk)
3-72 Any string of
characters
73-80 Not used
/

ARITHMETIC TRACE

This control record causes the compiler to generate
linkage to the trace subprograms, which are execu-
ted whenever a value is assigned to a variable on the
left of an equal sign. If Console Entry Switch 15 is
turned on at execution time and program logic (see
Optional Tracing) does not prevent tracing, the
value of the assigned variable is printed as it is
calculated.

If tracing is requested, an IOCS control record
must also be present to indicate that either the Type-~
writer (that is, the Console Printer), 1132 Printer,
or 1403 Printer is needed. If more than one print
device is specified in the IOCS control record, the
fastest device is used for tracing.

The traced value for a variable to the left of an
equal sign of an arithmetic statement is printed with
one leading asterisk.

The format of this control record is described
below.

Card
Column Contents Notes
1 *(asterisk)
2-72 ARITHMETIC
TRACE
73-80 Not used

TRANSFER TRACE

This control record causes the compiler to generate
linkage to the trace subprograms, which are execu~
ted whenever an IF statement or Computed GO TO
statement is encountered. If Console Entry Switch
15 is turned on at execution time and program logic
(see Optional Tracing) does not prevent tracing, the
value of the IF expression or the value of the Com~
puted GO TO index is printed.

If tracing is requested, an IOCS control record
must also be present to indicate that either the Type-
writer (that is, the Console Printer), 1132 Printer,
or 1403 Printer is needed. If more than one print
device is specified in the I0CS control record, the
fastest device is used for tracing.

The traced value for the expression in an IF state~
ment is printed with two leading asterisks., The
traced value for the index of a Computed GO TO
statement is printed with three leading asterisks.

The format of this control record is described
below.

Card
Column Contents Notes
1 * (asterisk)
2-72 TRANSFER
TRACE
73-80 Not used

Optional Tracing

The user can elect to trace only selected parts of

the program by placing statements in the source pro-
gram logic flow to start and stop tracing. This is
done by executing a CALL TSTOP to stop tracing or a
CALL TSTRT to start tracing. Thus, tracing occurs
at execution time only if:

1. The trace control records were compiled with
the source program

2. Console Entry Switch 15 is on (can be turned off
at any time).

3. A CALL TSTOP has not been executed, or a
CALL TSTRT has been executed since the last
CALL TSTOP.

Figure 9 shows the layout of a FORTRAN Compiler
input deck.

< Next Monitor
Z Control Record
r FORTRAN Source

(L Statements

I// FOR /Z FORTRAN Control Records

// JOB

Figure 9, Layout of a FORTRAN Compiler Input Deck

FORTRAN Compiler 47

FORTRAN LANGUAGE

The following information describes the additions to
the basic FORTRAN IV language provided in the
1130 Disk Monitor System, Version 2. This infor-
mation supplements the publication IBM 1130 Basic
FORTRAN IV Language (Form C26-5933).

DATA STATEMENT

The DATA statement is used to define initial values
of variables and array elements assigned to areas
other than COMMON. Values assigned to variables
or array elements during execution override values
assigned via the DATA statement.’

General Form

12 3 Slel7 e 5 %o iy 12 13 Vs 15 16 17 1§ 19 20 21 23 24 25 26 27 28 29 30 31 37 31 A W I L T O SO T
olalral V4], 12]].1. [MA Azl2lelo]Z], [20l2], L] . [zl lwoini/],
/] ¥y ,...Y} p* p....I?];foa

where

V1 through Vz are variables or subscripted vari-
ables. Subscripts must be integer constants.

D1 through Dz are data constants. They may be
integer, real, hexadecimal, or literal data con-
stants. Integer and real constants may be
specified as negative. For the valid variable and
constant combinations, see Data-Variable Com-
binations, below.

I1 through Iz are optional, unsigned integer con-
stants which indicate the number of variables and/
or array elements which are to be assigned the
value of the data constant. They are separated
from the data constants by asterisks. Each data
constant must be of the same type (integer or real)
as its corresponding variable.

The slash is used to separate and enclose data
constants. When an array name is specified, con-
stants are assigned starting at the element specified
and continuing toward the end of the array. If no
subscript is specified, the first element is assumed
to be the starting element.

48

The DATA statement is a specification statement
and, as such, must precede all statement function
definition statements and the first executable state-
ment in the source program. Also, the DATA state-
ments cannot be intermixed with EQUIVALENCE
statements.

Example 1:
1 2 3 4 51¢l7 8 9 10 11 12 13 14 15 16 17 18 19 20 2\ 22 23 24 23 26 27 28 29 30 OV 32 33 M 5
7 1. 1d, 12,14,]

If A is a nine-element array for real variables, the
first five elements are initialized to 1.0, the sixth
to 2.0, and the remaining three to-3. 0.

Example 2:

1 2.3 4 31617 910 V1 13 13 14 15 ¢ 17 18 10 20 21 2 23 24 25 2¢ &7 28 29 0 31 32 33 34 37

;v.do. PATFIR

If A is a nine-element array for real variables and B
is an array for real variables of three or more ele-
ments, all nine elements of A and the first three ele-
ments of B are initialized to 1.0.

An error condition occurs if all constants are not
exhausted when the last variable or array has been
satisfied. Similarly, an error occurs when a variable
or array is specified for which no constants are
available. Partial filling of an array is permitted, as
shown in this example, assuming that B is an array
containing more than three elements.

Hexadecimal Constants

Hexadecimal constants are written as the letter Z
followed by one to four hexadecimal digits (0 through
F). Each constant is assigned one 16-bit word and
the constant is right-justified if three or less hexa-
decimal digits are used. Constants must be
separated by commas.

Example 3:

2 4 SYel7 o ® J0 11 12 1) 14 15 16 1718 19 20 2) 22 29 24 B BT AR XN Y DAY 37

L7l [/ 41J34&17

The first 6 elements of array I are initialized to the
following configuration:

EToToTo oo [o[o oo (o [i e]

The seventh element is initialized to:

[oft[o[t]oft]t]ofofoft t]ofo] 1]

A
Literal Data

Literal data must be enclosed by apostrophes. An
apostrophe within a literal field is represented by
two consecutive apostrophes. A literal constant may
not exceed the element length of the variable or
array to which it is assigned. Where necessary,
blanks are included, with the constant left-justified.

Example 4:

L2 3 4 J1¢

8§09 101 1B R WIE RN VRN TEN DR B AN EIRSRY
’ ’

4171 3 4.2 URUZE

4 ’

8< ‘|, 'W. 8¢’

7
D)

If the array A contains at least seven elements, and
is of standard (two-word) precision, the first three
elements are assigned the value ABCD, the fourth
and fifth the value AB%H (% is a blank), the sixth
element the value A'BC, and the seventh A.BC,

Data-Variable Combinations

d : ; ;
i ata real integer hexadecimal literal
variable
real yes no no yes
integer no yes yes yes

MANIPULATIVE INPUT/OUTPUT STATEMENTS

The statements BACKSPACE, REWIND, and END
FILE are used to manipulate the FORTRAN data file
on disk for unformatted I/0.

The purpose and use of the manipulative 1/0
statements in conjunction with the Unformatted 1/0
Area on disk is to allow the user to simulate the
operation of a magnetic tape device. The Unformat-
ted I/O Area, if desired, must be defined by the user
by first defining a Fixed Area and then storing a data
file with the name $$$$$ in the Fixed Area. This
data file constitutes the Unformatted I/O Area. Only
one Unformatted I/0 Area is permitted during a
given job.

BACKSPACE Statement

The BACKSPACE statement causes the file on unit n
to be backspaced one logical record. This statement
has no effect if the unit it refers to is positioned at
its initial point (the first sector of the data file $$$$$,
the equivalent of the load point on a magnetic tape).

General Form

1 2.3 4 3Vel7 8 9 10 11 12 19 14 15 16 17 18 19 20 2) 22 23 24 25 26 a7 28 29 30 31 37 3 4 BB M 37

BAlcI4S] »

where n is an unsigned integer constant or integer
variable specifying the unit number.
REWIND Statement

The REWIND statement causes the file on unit n to
be repositioned to its initial point.

General Form

1 2.3 4 STel7 8 9 10 11 12 13 14 15 16 17 18 19 2021 22 30 74 25 W 27 B A XN W D AW QY

Rewzm s

where n is an unsigned integer constant or integer
variable specifying the unit number.

FORTRAN Compiler 49

END FILE Statement

The END FILE statement causes an end-of-file
record to be written on unit n.

General Form

1.2 .3 43 7 9 7 10 11 1z 13 1413 1 17 1§ 19 20 9] 3

EACAAGERE

where n is an unsigned integer constant or integer
variable specifying the unit number.
I/0 WITHOUT DATA CONVERSION

The generalized READ and WRITE statements for
1/0 without data conversion appear as:

10 J1 1203 Ve 13 1o 17 19 Vv 20 21 27 33 34 §5 %o 37 24 26 0 SV) M) g6 J7

A2l/d
PERRNNRAR ...,Lq
Z\7E a2, (22 e L Ly

1 2 3 & 31517

£
£

where

a is an unsigned integer constant or integer
variable that specifies a logical unit number to be
used for I/0O data. The logical unit number is
associated with the actual I/0 unit when the core
load is built,

L1 through Ln is a list of variable names,
separated by commas, for the I/O data.

The form READ (a) L1, L2,...Ln is used to
read a core image record, without data conversion,
into core storage from unit a. No FORMAT state-
ment is required; the amount of data that is read is
determined by the number of list items and their
attributes.

The total length of the list of variable names must
not be longer than the logical record length, If the
length of the list is equal to the logical record length,

50

the entire record is read. If the length of the list
is shorter than the logical record length, the unread
items in the record are skipped.

The form READ (a) is used to skip an unedited
record on unit a.

The form WRITE (a) L1, L2, ... Ln is used to
write a core image record, without data conversion,
on unit a.

DUMP

The dump program PDUMP can be called by a
FORTRAN program or subprogram as follows:

3.2 4 sl¢

1011 12 13 14 13 16 47 18 wnnnunzsuzrhnsoall)zuuuun

L] PodAA (AL 1B, 1AL] e],

where

Al and Bl are variable data names, subscripted
or nonsubscripted, indicating the inclusive limits
of the first block of storage to be dumped,

An and Bn are variable data names, subscripted or
nonsubgcripted, indicating the inclusive limits of
the nth block of storage to be dumped. Either An
or Bn may represent upper or lower limits.

F1 through Fn are integers indicating the dump
format desired in the first through nth blocks of
storage to be dumped. Fn is assigned in the
following manner:

0 = Hexadecimal
4 = Integer
5 = Real

A-CONVERSION

Spacing, tabulating, and shifting on the Console
Printer can be controlled by outputting a unique value
for the operation desired. These values must be
assigned as integer constants and outputted through
A-conversion.

The operations that can be performed and the
unique values assigned to them are:

Operation Value
Backspace 5696
Carrier Return 5440
Line Feed 9536
Shift to print black 5184
Shift to print red 13632
Space 16448
Tabulate 1344

As an example of Console Printer control, assume
that a variable, X, is to be printed in the existing
black ribbon shift and that another variable, Y, is
to be printed in red following a tabulation. Follow-
ing the printing of Y, the ribbon is to be shifted back
to black. This can be accomplished as follows:

When the output is to be printed on an 1132 or
1403 Printer, w is not equal to the print position at
which printing begins. In this case, because of the
carriage control character, the first print position
is equal to w-1. For example, the following state-
ments

1 2.3 4 51617 9 % 10 11 12 13 14 15 1¢ 17 1§ 19 20 2\ @ 23 24 28 20 ¢7 2 29 0 J1 & 3 MW 0 8 J
FrataGIERGD) ; .
5 [rlodmair (iridld, ["l2lolel# ziMvievridely! |RelA
7 loldn ‘1, [7|gldl, |"1old 4 r Ll
2 A7 Mo. 95’11 L]

result in a printed line as follows:

PART NO. 10095(| 1964 INVENTORY REPORT{| DECEMBER

1 2.3 4 sTel? & 9 10 11 12 13 14 15 1¢ 17 19 19 1 23 24 25 26 27 28 2% X 31 3@ 33 34 38 38 37
71> [113]4]4
! 3“ 32| print print print
K= (5/118! position 1 position 39 position 79
)ﬂﬂtll?(i,B’)){.I, LY,
3| FlolkMAT|((Fl112. 1¢|, |24, IFiLl2l. ¢], 41)
The following statements
1 32 3 4 sTel7 8 9 10 1) 17 13 14 13 1¢ 17 19 20 21 22 3 24 25 ¢4 27 1 & P 3 @ 5 A F
el a(2l,5)] |
s |FoldMari(iridd, '] [Medoz ’

FORTRAN logical unit 1, as specified in the
WRITE statement, is the Console Printer. The se-
quence of operations to be performed are: print the
variable X, tabulate, shift to print red, print the
variable Y, shift to print black.

Each control variable counts as one character
and must be included in the count of the maximum
line length,

T-FORMAT CODE

Input and output may begin at any position in a
FORTRAN record by using the format code Tw where
w is an unsigned integer constant specifying the
position where the transfer of data is to begin.

cause the first 39 characters of the input data to be
skipped; the next 9 characters then replace the
blank @) and the characters H, E, A, D, I, N, G,
and S in storage.

The T-format code may be used in a FORMAT
statement with any type of format code. For
example, the following statement is valid:

L 2 3 & 50el7 o 9 10 1 12 13 14 15 16 17 1§ 19 20 21 22 2) 24 25 26 27 28 29 X I 3 3 MU 3
A(A1ld4d, [FA1ld. 13, 715, 4. |3,
7l [’ nee fzis’)

FORTRAN Compiler 51

CORE LOAD BUILDER

The Core Load Builder constructs a core image pro-
gram from a mainline object program.
The Core Load Builder is called by:

o The Supervisor. After the Supervisor has de-
tected the XEQ monitor control record in the
input stream and has read the Supervisor con-
trol records, if any, and written them in the
Supervisor Control Record Area (SCRA) on disk,
the Core Load Builder is called to construct a
core image program if the mainline program
named in the XEQ control record is in disk sys-
tem format (see Core Load Construction, be-
low). After the core image program has been
built, the Core Load Builder transfers control
to the Core Image Loader, which reads any
portion of the core load that resides below lo-
cation 4096, = into core from the CIB (the re-
mainder of ‘!Ege core load has already been placed
in core by the Core Load Builder). Control is
then transferred to the core load itself.

e DUP. After DUP has detected the STORECI
control record, it reads the Supervisor control
records, if any, and writes them in the Super-
visor Control Record Area (SCRA) on disk.
Unless the program is already in Working Stor-
age, DUP fetches the program, converts it to
disk system format, if necessary, and stores it
in Working Storage. Next, the Core Load Builder
is fetched to construct the core image program
(see Core Load Construction, below). After the
core image program has been built, the Core
Load Builder returns control to DUP to store
the core image program in the User or Fixed
Area,

e The Core Image Loader. When the Resident
Monitor is entered at the LINK entry point, the
Core Image Loader is called to accomplish the
link-to-link transfer of control. The Core
Image Loader determines the format of the link
from the LET/FLET entry and, if the program
to be executed is in disk system format, calls
the Core Load Builder to construct the core
image program (see Core Load Construction,
below). After the core image program has been

52

built, the Core Load Builder returns control to
the Core Image Loader to fetch the core load and
transfer control to it. If the link is in disk core
image format, the Core Image Loader fetches it
and transfers control to it, without calling any
other monitor program.

CORE LOAD CONSTRUCTION

The following paragraphs describe the functions of
the Core Load Builder in the construction of a core
image program. These functions are not necessarily
performed in this order.

Figure 10 (see Use of the Core Image Buffer and
Working Storage, below) shows the core image pro-
gram being built. Figure 6 (see "STORECI" under
Disk Utility Programs) shows the core image pro-
gram stored on disk. Figure 12 (see '""Fetching a
Link'" under Core Image Loader) shows the core load
ready for execution.

Working Storage Files
Defined by the

Core Load Builder LOCALs SOCALs Not Used
A

e
Working Storage

That Part of the Core

Load Below 409610 Not Used Saved COMMON
A A A
e N
|\ J
Y
Core Image Buffer
Resident
Monitor Core Load Builder That Part of the Core Load Above 4095)q
A AL P A -
Location “End of DISKZ Location End
000079 409610 of
Core
v
Core Storage

Figure 10, Distribution of a Core Image Program being Built

PROCESSING THE CONTENTS OF THE SCRA

The LOCAL, NOCAL, and FILES control records are
read from the Supervisor Control Record Area (SCRA)
on disk and analyzed. Tables are built from the in-
formation obtained from the respective control rec-
ord types. These tables are used in later phases of
the construction of the core image program (see
below).

CONVERSION OF THE MAINLINE OBJECT PROGRAM

The mainline object program is converted from disk
system format to disk core image format.

INCORPORATION OF SUBPROGRAMS

All the subprograms called by the mainline program
and by other subprograms are included in the core
load, except for (1) the disk I/O subroutine, (2) any
LOCAL subprograms specified, and (3) SOCALS (see
System Overlays, below), if they are employed.

If LOCALs have been specified or if SOCALS are
employed by the Core Load Builder, the LOCAL/
SOCAL flipper is included in the core load.

PROVISION FOR LOCALs AND SOCALs

If LOCALs have been specified, a LOCAL area as
large as the largest LOCAL is reserved in the core
load, into which the LOCAL subprograms are read
by the LOCAL/SOCAL flipper. In addition, the sub-
programs specified on the LOCAL control records
are written in Working Storage following any files
defined in Working Storage. If the core load is ex-
ecuted immediately, each LOCAL is read from
Working Storage into the LOCAL area by the LOCAL/
SCCAL flipper as it is called. If the core load is
stored in disk core image format before it is exe-
cuted, the LOCALs are stored following the core
load. During the execution the LOCAL/SOCAL
flipper fetches them from the User/Fixed Area.

If SOCALs are employed by the Core Load Builder,
a SOCAL area as large as the largest overlay is re-
served in the core load, into which the SOCALs are
read by the LOCAL/SOCAL flipper. In addition, the
subprograms comprising the SOCALs are written in

Working Storage following any files defined in Work-
ing Storage and any LOCALs stored there. If the
core load is executed immediately, each SOCAL is
read from Working Storage into the SOCAL area by
the LOCAL/SOCAL flipper as it is called. If the
core load is stored in disk core image format before
it is executed, the SOCALs are stored following the
core load and the LOCALs, if any. During the ex-
ecution the LOCAL/SOCAL flipper fetches the
SOCALs from the User/Fixed Area.

CONSTRUCTION OF THE CORE IMAGE HEADER

During the construction of the core image program,
the Core Load Builder also constructs the core
image header record, which contains the information
required by the Core Image Loader to initialize the
core load for execution. This record becomes a
part of the core image program and at execution
time resides in core along with the rest of the core
load.

PROCESSING DEFINED FILES

The Core Load Builder uses the information in the
FILES control record to equate files defined in the
mainline program by the FORTRAN DEFINE FILE
statement or by the Assembler FILE statement to
data files on disk. The processing consists of com-
paring the file number in a 7-word DEFINE FILE
Table entry with each of the file numbers from the
FILE control records, which have been stored in the
SCRA by the Supervisor or DUP. If a match occurs,
the name of the disk area associated with the file
number on the FILES control record is found in LET/
FLET and the sector address of that disk area is
placed in word 5 of the DEFINE FILE Table entry.
If none of the file numbers from the FILES control
records matches the number in the DEFINE FILE
Table entry or if no name is specified on the FILES
control record, the Core Load Builder assigns an
area in Working Storage for the data file, and the sec-
tor address of the data file, relative to the start of
Working Storage, is placed in word 5 of the DEFINE
FILE Table entry. This procedure is repeated for
each 7-word DEFINE FILE Table entry in the main-
line program.

Core Load Builder 53

USE OF THE CORE IMAGE BUFFER (CIB) AND
WORKING STORAGE

The Core Load Builder places in the CIB any parts
of the core load which, when loaded, are to reside
below location 40961 Any parts of the core load
which are to reside rﬂ)ove location 40951 0 are placed
directly into core storage.

Working Storage is used by the Core Load Builder
to contain (1) any data files defined by a FILES con-
trol record and assigned by the Core Load Builder in
Working Storage, (2) all the LOCAL subprograms
specified, and (3) the SOCALs, if they are required.
Figure 10 shows the distribution of a core image pro-
gram being built between core storage, the CIB, and
Working Storage.

ASSIGNMENT OF THE CORE LOAD ORIGIN

The Core Load Builder origins core loads built from
relocatable mainline programs at the next higher-
addressed word above the end of the disk I/O sub-
routine to be used by the core load:

Disk 1/0 Core Load
Subroutine Origin
DISKZ 451 10
DISK1 72 61 0
DISKN 926, 0

The origins for core loads built from absolute
mainline programs are not controlled by the Core
Load Builder. Therefore, the user must origin ab-
solute mainline programs above the end of the disk
I/0 subroutine to be used by the core load.

TRANSFER VECTOR

The transfer vector is a table included in each core
load that provides the linkage to the subprograms.

It is composed of the LIBF TV, the transfer vector
for subprograms referenced by LIBF statements, and
the CALL TV, the transfer vector for subprograms
referenced by CALL statements.

Each CALL TV entry is a single word; each word
contains the absolute address of an entry point in a
subprogram included in the core load that is refer-
enced by a CALL statement. In the case of a sub-
program referenced by a CALL statement but speci-

54

fied as a LOCAL, the CALL TV entry contains the
address of the special LOCAL linkage instead of the
subprogram entry point address. If SOCALs are re-
quired, the CALL TV entries for function subpro-
grams contain the address of the special SOCAL
linkage instead of the subprogram entry point ad-
dress.

Each LIBF TV entry consists of three words.
Word 1 is the link word in which the return address
is stored. Words 2 and 3 contain a branch to the
subprogram entry point. In the case of a subpro-
gram referenced by a LIBF statement but specified
as a LOCAL, the LIBF TV entry for its entry point
contains a branch to the special LOCAL linkage in-
stead of to the subprogram entry point address. If
SOCALs are required, the LIBF TV entry for a
SOCAL subprogram contains a branch to a special
entry in the LIBF TV for the SOCAL of which the
subprogram is a part. This special entry provides
the linkage to the desired SOCAL subprogram.

SYSTEM OVERLAYS

SOCALs (System-Overlays-to-be-loaded-on-call) are
subprogram groups (by type and subtype) which are
made into overlays by the Core Load Builder. They
may make it possible for a FORTRAN core load
which would otherwise not fit into core to be loaded
and executed. If, in constructing a core image pro-
gram from a FORTRAN mainline program, the Core
Load Builder determines that the core load will not
fit into core, SOCALs are created by the Core Load
Builder for the core load. In addition, the LOCAL/
SOCAL flipper, which fetches the SOCALs when
they are required at execution time, is included in
the core load along with the area into which the
SOCALs are loaded (the SOCAL area).

The SOCALs are created by subprogram type
and subtype (see the description of program type
and subtype under '"Disk System Format' in
Appendix C, Formats). The following table de- -

scribes the SOCALs:

Subprogram Class Type Subtype Overlay

Arithmetic 3 2 1
Function 4 8 1
Non-disk FORTRAN 3 3 2

I/0 and "Z" conver-
sion subroutines
"Z'" device subroutines
Disk FORTRAN I/0

w o
= ow
@ N

There are two SOCAL options. The Core Load
Builder first attempts to make the core load fit into
core by using overlays 1 and 2 only (option 1). If the
core load still will not fit into core, overlays 1, 2,
and 3 are used (option 2). If use of option 2 still
does not make it possible for the core load to fit into
core, an error condition is indicated.

Option 1 reduces the core requirement of the core
load by an amount equal to the size of the smaller of
the two overlays used minus approximately 15 addi-
tional words required for the special SOCAL linkage.
Option 2 reduces the core requirement by an amount

equal to the sum of the sizes of the two smallest over-

lays minus approximately 15 additional words re-
quired for the special SOCAL linkage.

Each SOCAL does not contain all the available sub-

programs of the specified type(s) and subtype(s);
only those subprograms of the specified type(s) and
subtype(s) required by the core load are contained in
the SOCAL.

If a subprogram which would otherwise be included
in a SOCAL is specified as a LOCAL subprogram,

that subprogram is made a LOCAL and is not included

in the SOCAL in which it would ordinarily be found.
SOCALs are never built for core loads in which the
mainline program is written in Assembler language.

LOCAL/SOCAL FLIPPER

The LOCAL/SOCAL flipper is included in each core
load in which LOCAL subprograms have been speci-
fied or in which SOCALSs have been employed. If
execution of the core load immediately follows the
building of the core image program, this subroutine
reads a LOCAL/SOCAL from Working Storage into
the LOCAL/SOCAL area as it is called at execution
time. If the core image program was stored in

the User or Fixed Area in disk core image format
prior to execution, the flipper reads a LOCAL/
SOCAL at execution time from the User or Fixed
Area, where it was stored following the core load,
into the LOCAL/SOCAL area.

The flipper is entered via the special LOCAL/
SOCAL linkage. A check is made to determine if
the required LOCAL/SOCAL is already in core.

If it is not in core, the flipper reads the required
LOCAL/SOCAL into the LOCAL/SOCAL area from
the disk, modifies the special LOCAL/SOCAL link-
age, and transfers the LOCAL/SOCAL subprogram
via the special linkage.

Core Load Builder 55

CORE IMAGE LOADER

The Core Image Loader serves both as a loader for
core loads and as an interface for some parts of the
monitor system.

On any entry to the Skeleton Supervisor, the Core
Image Loader is fetched and control is transferred
to it. The Core Image Loader determines where the
Skeleton Supervisor was entered, i.e., at LINK,
DUMP, or EXIT,.

FETCHING THE SUPERVISOR

If an entry was made to the Skeleton Supervisor at
the EXIT entry point, the Core Image Loader first
restores to core the disk I/O subroutine used by the
monitor programs (DISKZ), if it is not already in
core. It then fetches and transfers control to the
Monitor Control Record Analyzer to read monitor
control records from the input stream.

If an entry was made to the Skeleton Supervisor
at the DUMP entry point, the Core Image Loader
first saves the contents of the core below location
40961 in the CIB and fetches and transfers control
to theQDUMP program to perform the core dump
according to the parameters specified. At the com-
pletion of the dump, the DUMP program either re-
stores the contents of core below location 4096
from the CIB and transfers control back to the core
load or terminates the execution with a CALL EXIT
(see "Terminal And Dynamic Dumps'' under Super-
visor, above).

56

FETCHING A LINK

If an entry was made to the Skeleton Supervisor at
the LINK entry point, the Core Image Loader first
saves low COMMON (locations 1216 —153510 if
DISK1 or DISKN is in core or locations 896 —12151
if DISKZ is in core). It then determines from
COMMA the lowest-addressed word of COMMON, if
any, defined by the core load just executed. Any
COMMON below location 40961 0 is saved in the CIB
by the Core Image Loader.

Figure 11 illustrates the scheme used in saving
COMMON between links.

The LET/FLET entry for the link to be fetched
is then located and the Core Image Loader deter-
mines from it whether the link is in disk core image
format or disk system format. If the link is in
disk core image format, the Core Image Loader
fetches the disk I/O subroutine required by the core
load, if it is not already in core. Next, the Core
Image Loader restores low COMMON if it lies
within the COMMON defined by the core load just
executed. The core load is then fetched and control
is transferred to it.

If the link is in disk system format, the Core
Image Loader calls the Core Load Builder to con-
struct a core image program from the mainline
program. When the core image program has been
built, the Core Load Builder returns to the Core
Image Loader, which then fetches the core load, as
described above, and transfers control to it.

Figure 12 shows the layout of a core lecad loaded
into core, ready for execution.

0

Core Image Buffer

{ Core Load Built A Saved COMMON)
——— A———————
Sector 1 2 3 4 5 6 7 10 1 12 13 14 15 16
I I /I | | /I |1 /l /I /I /I |
ad /
S s // e
7 os s A A A4 Z
S S s
Ay el
/S s J 7 J /
s s 0 7 s S S
S S S S S,
S S S,
A AR AR A A A A
S 7 L L s LS S S S s
E::tion '896 '1216 I1536 '1856 l2176 '2496 '2816 '3136 '3456 l3776 j40‘?6
Figure 11. Scheme for Saving COMMON between Links
LOCAL/
Resident Monitor Mainline Subprograms i?CAL LOCAL Area SOCAL Area Unused Transfer Vector COMMON
T 1 L i - »——J
Location Core Image Header End
OOOO]o onore

Figure 12, Layout of a Coxe Load Loaded for Execution

Core Image Loader 57

SYSTEM LIBRARY

The System Library is a group of disk-resident sub-
programs and mainline programs which perform 1/0,
conversion, arithmetic, and disk initialization and
maintenance functions.

This publication describes only the System Library
programs found in the 1130 Disk Monitor System,
Version 2. Programs carried over from Version 1
are described in the Subroutine Library publication
(see preface), Introductory material on each specific
type of subprogram is found in that publication.

INTERRUPT SERVICE SUBROUTINES

The interrupt service subroutines (ISSs) manipulate
the I/0 devices attached to the 1130 Computing Sys-
tem, handling all programming details peculiar to
each device.

A complete description of ISS characteristics is
found in the Subroutine Library publication. Table 6
lists the ISSs used by the monitor system.

Table 6. Monitor System ISS Names

Device Subroutine

1442 Card Read Punch CARDO or CARD1

2501 Card Reader

1442 Cord Punch

Disk

1132 Printer

1403 Printer

Keyboard/Console Printer

Console Printer

1134/1055 Paper Tape Reader Punch
1627 Plotter

1231 Optical Mark Page Reoder

READO or READ1
PNCHO or PNCH1
DISK1 or DISKN
PRNT1

PRNT3

TYPEO

WRTYO

PAPT1 or PAPTN
PLOTI

OMPR1

2501 CARD READER SUBROUTINES (READO and READ1)

These card subroutines perform read and test func-
tions relative to the IBM 2501 Card Reader.

READO is shorter than READ1, provides no error
parameter, and is the standard subroutine for opera-
tion of the 2501 Card Reader.

READO can be used if the error parameter is not
needed. On an error, the subroutine branches to an
error trap in the Skeleton Supervisor, waiting for
operator intervention. Last card conditions cause
an exit tothe Preoperative Error Trap (see Supervisor).

READL can be used for operation of the 2501 Card
Reader if a user error exit is desired rather than the
trapping of READO.

Calling Sequence

21 25 |22 30 32} 313 15 “w 45 50 55 60,

e | LIBE READa. OALL CARD INPUT . . .
L S Loge CONTROM PARAMETER .
e Co . QAR 1 . L/0, AREA FPARAMETER,
NP Lo RROR , . . . ERROR PARAMETER . . .
T | * 1L § WD SRS NS U WY (NN SN N TN SO0 (N SN (N NN SN UNOUN TN T NRG VU TN N I SN S W S
L1 1 1 ® . 1 SR T ISR T T WY SN S TSN WO WA WA AN WA SO (D OO SR SN G Y US
e LA | WUR T SR NN SN WORY TANOT SN TN SN NN SN TR N SN N NN SR NUF NS0 (S U T U S T S
| D M- 0 RETMRN ADDRESS 1 ..

Lot 11 ot | S TS WO S S W B PURSS TRS Y A ST SN U0 WHNE TN NS S T2 T AW A S 'S
T W s LAY FYNNTUNS N0 SO0 VO TN S U N VNN [TR U SONS SR [N Y S WU SO S S N 1 | -
P S| ®, L YRS RN W NN TR NN NS VY TN U NN NN T TN NN U S S I WY U TSN OO VA A WY S
B.S.C. ERROR: 1+ . RN _T0 CALLER . .
*,) I 1 | S S SO TN T N S SO | A‘l PR TN WA WS NS W SN RO S N S N
FEE S |) 11 [VY WU TN TN TN YN TONN VRN NN NN NN NN U U G N NN SO DU SN N TN S N '}
R N - | LI F NN TN NS U0 N U Y T U NN TUN NN SN NN WA [N N SN G W N0 U WO S SRR
DAR, L caav . MORD COUNT s 0n
58, it TidO AREA o
PR W - 111 L PENS U TN TR TR WU SN NN SN R VNN TN NN SN TN T A Y SN O T N B 1
LR S R & § I - [T T T WS YO TN WU OO TR SN NN TN SN N WY DU WO S S S S S SN O B P)
L N) o T VR S PO W U TN TR T WU G NN NN O U NN (S N VNS WY S N Y I | |

where

aisOorl,
b is the I/O function digit,
e is the device identification digit,

f is the number of columns to be read from the
card,

h is the length of the I/O area. h must be equal
to or greater than f.

Control Parameter

This parameter consists of four hexadecimal digits
as shown below:

1 2 3 4

1/0 Function.__._j] ’

Not Used

Device Identification

1/0 Function

The I/0 function digit specifies a particular opera-
tion to be performed on the 2501 Card Reader. The
functions, associated digital values, and required
parameters are listed and described below.

Function Digital Value Required Parameters*

Test 0 Control

Read 1 Control, I/O Area,
Error**

*Any parameter not required for a particular func-
tion must be omitted.
**The error parameter is not required for READO.

Test. Branches to LIBF+2 if the previous operation
has not been completed, to LIBF+3 otherwise.

Read, Reads one card and transfers a specified
number of columns of data to the user's input area.
The number of columns read (1-80) is specified by
the user in the first location of the input area. The
subroutine initiates the Read function and returns
control to the user's program.

When an operation complete interrupt occurs, the
card subroutine checks for errors. ¥ an error oc-
curred, READO exits to an error trap; READI1
informs the user of the error and sets up to termi-
nate or retry the operation.

The data in the user's input area is in IBM Card
Code; that is, each 12-bit column image is left-
justified in one 16-bit word.

There is no separate Feed function. However, a
Feed can be obtained by a Read function with a word
count of zero.

Device Identification

This digit must be zero.

I/O Area Parameter

The I/0 area parameter is the label on the control
word that precedes the user's input area. The con-
trol word consists of a word count that specifies the
number of columns of data to be read, always start-
ing with column 1.

Error Parameter

READO. READO has no error parameter. If an error
is detected while an operation complete interrupt is
being processed, the subroutine branches to an error
trap in the Skeleton Supervisor, with interrupt level 4
on, waiting for operator intervention. When the con-
dition has been corrected and the 2501 made ready,
the subroutine attempts the operation again.

READ1. READI1 has an error parameter. If an error
is detected, the user can request the subroutine to
terminate (that is, to clear the subroutine's busy
indicator and turn off the interrupt level) or to branch
to an error trap in the Skeleton Supervisor, with
interrupt level 4 on, waiting for operator intervention.

Last Card

A Read function requested after the last card has been
detected causes the last card to be ejected and a
branch to be taken to the Preoperative Exrror Trap.

CARD PUNCH SUBROUTINES (PNCHO and PNCH]I)

These card subroutines perform all I/0 functions
relative to the IBM 1442-5 Card Punch, that is,
Punch and Feed. These subroutines may also be
used with the 1442-6 or 1442-7 Card Read Punch for
Punch and Feed functions.

The PNCHO subroutine is shorter than PNCH1,
provides no error parameter, and is the standard
subroutine for operation of the 1442 Card Punch.

PNCHO can be used if the error parameter is not
needed. On an error, the subroutine branches to an
error trap in the Skeleton Supervisor, waiting for
operator intervention. Last card conditions cause
an exit to the Preoperative Error Trap.

PNCHI1 can be used for operation of the 1442 Card
Punch if a user error exit is desired rather than the
trapping of PNCHO,.

System Library 59

Calling Sequence

2 3] |z :un_u_)_{u‘ © «© %0 35 ®
o | WTAF LARD OUTPNT . .
PR S .) PARAMETER. .
PR { J 10.4.R IRy
L RROR £ERRORL PARAMETER . . .
Aol Jd_ 4 ® 4 A o4 g4 & A o4 4 4 4 A & kb o A3 A 4 L & 1 1 4) AL &
Loas LT P YRR U S S A S VNS U Y WU S SN0 S S TN S VOO0 S SO [T U N G R S
LAY A4 4 &3 A& 4 4 & A R 4 3o) 4 AP FIRE N D U W R N S &
mcl ''_m_‘_n_l_.n_J_.u SN N
o5 sl LN PV S N0 SO T YT Y S ST U N T A U W SN SH VA S A [W N G G S
A a1 Lt FYRPERS NI WA U N S ST U S A UV T U U T ST W S S N S A T U
PR W W § 4 1 I YOI U DUN TN U W WS U S VN U0 S U0 WU SN WA VY SO N N N N N S S W
o Bs.C RROR . . . RETHRM TO CALLER . .
@, 4 [VR VEE ST ST S T U WY A SN N SN WA T WA [N G WO S W S S S B S WS
PR S 'S Cr— PV U U S TSR S VA WA TN THAN TN SN S (U U U U NN NN N S N B N T
o4 L PR U ST UAE T WY U UUST S NN W SN TN S TN WY WY S SO [N SN S B G N S
r . VNN X S OMMT 1 o
... 1 8ss v o AREA vy
1 1 14) ‘jllllllllljllll‘llllllll‘ll
where

aisOor 1,
b is the I/0 function digit,
e is the device identification digit,

f is the number of columns to be punched into the
card,

h is the length of the I/O area. h must be equal
to or greater than f.

Control Parameter

This parameter consists of four hexadecimal digits
as shown below:

1

/0 Function—-———J

Not Used

e N
e—c

Device Identificationr

I/O Function

The 1/0 function digit specifies a particular operation
to be performed on the 1442 Card Punch. The func-
tions, associated digital values, and required param-
eters are listed and described below.

Function Digital Value Required Parameters*

Test 0 Control

Punch 2 Control I/0 Area,
Error**

Feed 3 Control, Error**

*Any parameter not required for a particular fune-
tion must be omitted.
**The error parameter is not required for PNCHO.

60

Test. Branches to LIBF+2 if the previous operation
has not been completed, to LIBF+3 otherwise.

Punch. Punches into one card the number of columns
of data specified by the word count found at the begin-
ning of the user's output area. As each column comes
under the punch dies, a column interrupt occurs, the
subroutine transfers a word from the user's output
area to the punch, and then returns control to the
user's program. The character punched is the image
of the leftmost 12 bits in the word.

This sequence is repeated until the requested
number of columns has been punched, after which an
operation complete interrupt occurs. At this time
the card subroutine checks for errors. If an error
occurred, PNCHO exits to an error trap; PNCH1
informs the user of the error and sets up to termi-
nate or retry the operation.

Feed. Initiates a card feed cycle. This function ad-
vances all cards in the machine to the next station;
that is, a card at the punch station advances to the
stacker, a card at the read station advances to the
punch station, and a card in the hopper advances to
the read station. No data is punched as a result of
a Feed function and no column interrupts occur.
When the card advance is complete, an operation
complete interrupt occurs. At this time the card sub-
routine checks for errors. If an error occurred,
PNCHO exits to an error trap; PNCH1 informs the
user of the error and sets up to terminate or retry
the operation.

Device Identification

This digit must be zero.

1/0 Area Parameter

The I/0 area parameter is the label of the control
word that precedes the user's output area. The con-
trol word consists of a word count that specifies the
number of columns of data to be punched, always
starting with column 1.

Error Parameter

PNCHO. PNCHO has no error parameter. If an error
is detected while an operation complete interrupt is
being processed, the subroutine branches to an error
trap in the Skeleton Supervisor, with interrupt level

4 on, waiting for operator intervention. When the
condition has been corrected and the 1442 made ready,
the subroutine attempts the operation again.

PNCH1. PNCHI1 has an error parameter. If an error
is detected, the user can request the subroutine to
terminate (that is, to clear the subroutine's busy
indicator and turn off the interrupt level) or to branch
to an error trap in the Skeleton Supervisor, with
interrupt level 4 on, waiting for operator intervention.

DISK I/0 SUBROUTINES

All disk subroutines (including DISKZ) reside in the
System Area separate from the other programs in
the System Library because they must be processed
differently than other I/O subroutines, since the
monitor system always requires a disk I/O subrou-
tine. They are fetghed by the Core Image Loader
just prior to execution.

DISKZ is intended for use in a FORTRAN environ-
ment in which FORTRAN I/0 is used. DISKZ makes
no preoperative parameter checks and offers no file
protection. It is the shortest of the three disk I/0O
subroutines and requires a special calling sequence.
(See Subroutines Used by FORTRAN, below.)

DISK1 is intended for use by Assembler language
programs in which the core storage requirement is
of more importance than execution time, DISK1 is
longer than DISKZ but is the shorter of the two sub-
routines intended for use in Assembler language pro-
grams (DISK1 and DISKN). However, DISK1 does not
minimize extra disk revolutions when transferring
more than 320 words nor does it provide a Write
Immediate function.

DISKN minimizes extra disk revolutions in trans-
ferring more than 320 words. It provides all the
functions provided by DISK1 as well as the ability to
operate all five drives simultaneously. DISKN also
provides the Write Immediate function.

One of the major differences among the disk sub-
routines is the ability to read or write consecutive
sectors on the disk without taking extra revolutions.
If full sectors are written, the time in which the 1I/0
command must be given varies. DISKN is pro-
grammed so that transfers of more than 320 words
are made with a minimum number of extra revolu-
tions occurring between sectors.

Both DISK1 and DISKN have the same error han-
dling procedures.

NOTE: Inthe monitor system, the disk I/O sub-
routines are not stored in the System Library; conse-
quently, they do not have LET entries.

Sector Numbering and File Protection

In the interest of providing disk features permitting
versatile and orderly control of disk operations, three
important conventions have been adopted. They are
concerned with sector numbering, file protection, and
defective sector handling. Successful use of the disk
I/0 subroutines can be expected only if user programs
are built within the framework of these conventions.
The primary concern behind the conventions is the
safety of data recorded on the disk. To this end, the
file protection scheme plays a major role, but does
so in a manner that is dependent upon the sector-
numbering technique. The latter contributes to data
safety by allowing the disk I/O subroutine to verify
the correct positioning of the access arm before it
actually performs an operation. This verification
requires that sector identifications be prerecorded

on each sector and that subsequent writing on the

disk be done in a manner that preserves the existing
identification, The disk I/O subroutines support
these requirements.

Sector Numbering

Each disk sector is assigned an address from the se-
quence 0, 1, ... 1599, corresponding to the sector
position in the ascending sequence of cylinder and
sector numbers from cylinder 0, sector 0 (outermost),
through cylinder 199, sector 7 (innermost).

Each cylinder contains eight sectors and each sector
contains 321 words, counting the sector address. The
sector address is recorded in the first word of each
sector and occupies the rightmost eleven bit positions.
Of these eleven positions, the three low-order positions
identify the sector (0-7) within the cylinder. Utiliza-
tion of this first word for identification purposes re-
duces the per sector availability of data words to 320;
therefore, transmission of full sectors of data is per-
formed in increments of 320 words.

Sector addresses must be initially recorded on the
disk by the user (via DISC or DCIP) and are thereafter
rewritten by the disk I/O subroutines as each sector
is written.

NOTE: Although not actually written on the disk, the
logical drive code must be part of the sector address
parameter (bits 0-3) which is stored in the second
word of the 1/0 area.

System Library 61

File Protection

File protection is provided to prohibit the inadvertent
destruction of previously recorded data. This con-
trol is achieved by having all Write functions (except
Write Immediate) test for the file-protection status
of sectors they are about to write.

Each cartridge has a file-protection address in
COMMA. This address is the address of the first
unprotected sector, i.e., the address of the begin-
ning of Working Storage. Every sector, from sector

0 up tothe sector address maintained in COMMA, is file-

protected. The initial assignment of the file-
protection address is done by the disk initialization
program (see '""DCIP" in Appendix A, Utility Pro-
grams). Subsequent updating of the file-protection
address is performed by the monitor programs.

Defective Sector Handling

A defective sector is a sector on which a Write func-
tion cannot be successfully completed during initiali-
zation of the cartridge. A cylinder having one or
more defective sectors is defined as a defective cyl-
inder. The disk I/0 subroutines can accommodate
as many as three defective cylinders per cartridge.
Since there are 203 cylinders on each disk, the disk
I/O subroutines can "overflow' the 200 cylinders
normally used when defective cylinders are en-
countered (see Effective Address Calculation).

Calling Sequence

n af lo sl ln|s [s o “ w " ©
s I.BF I.5Ka2 o ... CAbl DISK I/Jeo 1.
i Qo ddde , . CONTROL PARAMETER .
s C . ZoAR 4 Z/0O AREA PARSMET.ER

L o v ERROR PARAMET ER 1 i .
U W 'S LA T 1 PR N R (OO WY TS WA TN WOR T SN TR NS (NN SN WO SN I NN SN NN W U S
Lol 4 LAV | [R S WO W NS NN NN TN TN SN SN NN WO SR TN TN SN U SO U N SN S T N N T
YR T T § ® | RN NN WO WS U NN TR TN SN NN NN NN U T R NN TS S O S N T N N B W |
RROR| DC . - i RETUWURN ADDRESS: 1+ s
T S] L2 I 1 1 PR YN NENE U VU TR NN U TN SNV WA (NS VAU O NN SO S N N I § | B
TR T LA [T SO0 ST T SN TN WO TR TN DN NN Y VRDNY N N TN T S VO N S S S | 11
L V| LIt P UEE RN U DTN T S AN T N [N O WY SN SN N A U Uy S U S N S I R 't
s .SC. ERROR. « . 1 RETURN T:0 CARLLER | .

L 1 1 ® , | T T W S . | PR TR T UHS UUUN (N SN NS [UUNY TR S TG UUUN Y WU S W W N 'S
U S S} Lt T T N W B | FURSY NN (N VAN TN NS TN NN U WAy SN (SR IS N SRR W (Y N W §
o411 LA [N WS V0 VR WA NN WO SN Y SN NN OO U SNV SN NN SO UG DU SN WO TN N N WS S S W
QAR [A WoRD, COMNT & 1 i1 s 2o
b Y ceia s SECTOR ADDRESS (1 oo
cia | BSS 4 v IO AREA . xiaias i
TR S i1 1 [Y WU W U (NN (NN TN WU VNN VOON WO Y SO0 (NN WU NN TR O O N AT S NS W S S
[Y L g PRI S U0 N PO TS Uy S S S T S I I U S Sy N R B R U B

where

a is 1 or N, Note that LIBF DISKO is equivalent
to LIBF DISK1,

b is the I/0 function digit,
d is the Seek option digit,

e is the Displacement option digit,

62

f is the number of words to be transferred to or
from the disk,

g is the sector address at which the transfer is to
begin,

h is the length of the I/0 area. h must be equal to
or greater than f,

Control Parameter

This parameter consists of four hexadecimal digits,

shown below:
1 2 3 4

1/O Function ~——2

Not Used
Seek Option

Displacement Option

I/0 Function _

&
The I/0 function digit specifies the operation to be
performed on disk storage. The functions, their
associated digital value, and the required parame-
ters are listed and described below.

Digital Required
Function Value Parameters¥*
Test 0 Control, I/0 Area
Read 1 Control, I/O Area,
Error
Write without RBC 2 Control, I/0 Area,
Error
Write with RBC 3 Control, I/O Area,
Error
Write Immediate** 4 Control, I/0O Area
Seek 5 Control, I/0O Area,
Error

*Any parameter not required for a particular func-
tion must be omitted.
**The Write Immediate function is valid only for
DISKN.

Test. Branches to LIBF+3 if the previous operation
on the drive has not been completed, to LIBF+4 other-
wise.

NOTE: This function requires the I/O area parameter
even though it is not used.

Read. Positions the access arm and reads data into
the user's I/0O area until the specified number of words

has been transmitted. Although sector identification
words are read and checked for agreement with ex-
pected values, they are neither transmitted to the I/0
area nor are they counted in the tally of words trans-
ferred. ’

If, during the reading of a sector, a read check
occurs, up to 16 retries are attempted. If the error
persists, the function is temporarily discontinued,
an error code is placed in the accumulator, the ad-
dress of the faulty sector is placed in the extension,
and an exit is made to the error subroutine specified
by the error parameter.

Upon return from the error subroutine, the opera-
tion is either reinitiated or terminated, depending on
whether the accumuitor isﬂ‘. non-zero or zero, re-
spectively.)

Write With Readback Check. First checks whether
or not the specified sector address is in a file-
protected area. If it is, the subroutine places the
appropriate error code in QEG accumulator and exits
to the Preoperative Error Trap. ,

If the specified sector address is not in a file-
protected area, the subroutine positions the access
arm and writes the contents of the indicated I/0
area onto the disk. Writing begins at the designated
sector and continues until the specified number of
words have been transmitted. A readback check is
performed on the data written.

If a partial sector (less than 320 words) is written,
the remaining words of the sector are automatically

set to zero.
If any errors are detected, the operation is retried

up to 16 times. If the function cannot be accomplished,
an appropriate error code is placed in the accumu-
lator, the address of the faulty sector is placed in the
extension, and an exit is made to the error subroutine
designated by the error parameter.

Upon return from this error subroutine, the opera-
tion is either reinitiated or germinated, depending
upon whether the accumulator is non-zero or zero,
respectively.

As each sector is written, the subroutine supplies
the sector identification word. The identification word
for the first sector is obtained from the I/0 area, al-
though it and subsequently generated identification
words are not included in the word count.

Write Without Readback Check. Performs the same
as the Write With Readback Check function described
above except that no readback check is performed.

Write Immediate (DISKN only). Writes data with no
attempt to position the access arm, check for file-
protect status, or check for errors. Writing begins

at the sector number specified in the user's I/0 area.
This function provides more rapid writing to the disk
than is provided in the previously described Write
functions; it provides, for example, the ability to
""stream'' data to the disk for temporary bulk storage
or to write addresses in Working Storage (see
"DWADR'" under Disk Utility Program).

If a partial sector (less than 320 words) is written,
the remaining words of the sector are automatically

set to zero.
As each sector is written, the subroutine supplies

the sector identification word. The identification
word for the first sector is obtained from the I/O
area, although it and subsequently generated identi-
fication words are not included in the word count.

Seek, Imitiates a seek as specified by the seek option
digit. If any errors are detected, the operation is
retried up to 16 times.

The Seek function requires that the user set up the
normal I/0 area parameters (see I/O Area Parame-
ter) even though only the sector address in the I/0
area is used.

Seek Option

If digit 3 of the control parameter is zero, a Seek is
executed to the cylinder whose sector address is in
the I/0 area; if non-zero, a seek is executed to the
next non-defective cylinder toward the center, re-
gardless of the sector address in the I/O area. This
seek to the next non-defective cylinder must be taken
into consideration when planning for the "'streaming"
of data.

This option is valid only when the Seek function is
specified.

Displacement Option

If digit 4 of the control parameter is zero, the sector
address word contains the absolute sector identifica-
tion; if non-zero, the file-protection address for the
specified cartridge is added to bits 4-15 of the sector
address word to generate the effective sector identi-
fication. The file~protection address is the sector
identification of the first unprotected sector.

I/O Area Parameter

The I/0 area parameter is the label of the first of two
control words which precede the user's I/0 area. The
first word contains the number of data words that are
to be transferred during the disk operation. This
number need not be limited by sector or cylinder size,
since the subroutines cross sector and cylinder

System Library 63

boundaries, if necessary, in order to transmit the
specified number of words.

The second word contains the sector address at
which reading or writing is to begin. Bits 0-3 are
the device identification (drive code) and must be 0,
1, 2, 3, or 4. Bits 4-15 specify the sector address.
The user's I/O area follows the two control words.

Error Parameter

If an error is detected, the user can request the sub-
routine to terminate (that is, to clear the subroutine's
busy indicator and turn off interrupt level 2) or to
branch to an error trap in the Skeleton Supervisor
with interrupt level 2 on, waiting for operator inter-
vention.

Effective Address Calculation

Effective address calculation is as follows:

1. Obtain the sector address found in the sector
address word of the I/O area.

NOTE: This address causes a preoperative error

exit tothe Preoperative Error Trap if it exceeds 1599.

2. If the displacement option digit in the control
parameter is non-zero, add the sector address
of the first sector that is not file-protected.

3. If the resultant address is equal to or greater
than the sector address of the first defective cyl-
inder, add 8.

4. If the resultant address is equal to or greater
than that of the second defective cylinder, add 8.

5. If the resultant address is equal to or greater
than that of the third defective cylinder, add 8.

The address obtained from steps 1-5 is the effec-
tive sector address.

Disk Initialization

Before the monitor system is stored on a cartridge,
the Disk Cartridge Initialization Program (DCIP)
must be executed. The functions of this program
are to write sector addresses on a disk cartridge,
to detect any defective cylinders, to store defective
cylinder information and a cartridge ID in sector 0
of cylinder 0 and to initialize DCOM. (See Appendix
A. Utility Programs.) -

1403 PRINTER SUBROUTINE (PRNT3)

The printer subroutine PRNT3 handles all print and
carriage control functions relative to the 1403 Printer.
Only one line of data can be printed and/or one car-
riage operation executed with each call to the printer
subroutine.

Calling Sequence

2 x| |z o] [i2fal ls « 4 5 &

T LBF PRNT3. . . LA Lk Rmrwﬂs. OLT PURT,
Y docdg .« . CONTROL FARA MET.ER. . .
L Co . 0AR 1 . TJo. AREA PARAMET.ER .
MMA&JEAARMM&& IR

L LW PRRT RN WU SN ST N0 SN N ST G WY S0 O AN Y WS U T B T R W O |

L X

1 LAY USRS SRR NS YD VO T TN YA ST WO T S S G G T WY T O B WS S0 WA SN 1

L LU PRI S0 S VN YO TN S UG A U DU S S TN G A S S U WO W W S |

ER RO R WG d P wmmtﬂﬁlil_pl_x S

LI ..annn.A.AA'nn|||.|.|..|.I‘|

1 1 LA, | T Y UOE N U N TR T S | I U WY VT W T S W S SO U N P B |

L4 B.S.C EIRMMLMMM_LTQIM

LA T T . | VS T U TNV NN W SR U SN TN U AU SO N [N WY WO T SO TN N S TN S T S S |

ERR— PP VS ST U WU AT S TN S ST S N N S S S S WY W

L CH PRI ST S S S ST S U ST S N T RN S S S ST S

0AR, Co] ‘,i T T D OOUNT L e

... 1BSS, Ao Il AREA s

| 1 it) s YR S WS (U N TN WS VRN TN NN NN U WY N WU TOUNN TR0 O SN N U W SN SN N B |

F I - It 1 [RS TSN NN T N NS VRS TN WO TN (NN SN NS SN N0 N SN SN W S SN N D TV U N S B |

P L PO ST TR T SN N WA SN U T S S SN S EF U AT G T
where

b is the I/0 function digit,
¢ is the "immediate' carriage operation digit,
d is the "after-print'' carriage operation digit,

f is the number of words to be printed on the
1403 Printer,

h is the length of the I/O area. h must be equal
to or greater than f.

Control Parameter

This parameter consists of four hexadecimal digits
which are used as shown below.
3

1 4

2
I/O Function 4 T

Carriage Control

Not Used

I/0 Function

The I/0 function digit specifies the operation to be
performed on the 1403 Printer. The functions, their
associated digital values, and the required param-
eters are listed and described below.

Function Digital Value Required Parameters*
Test 0 Control

Print 2 Control, I/0 Area, Error
Control Carriage 3 Control

*Any parameter not required for a particular function
must be omitted.

Test. Branches to LIBF+2 if the previous operation
has not been completed, to LIBF+3 otherwise.

Print. Prints characters from the user's I/0 area,
checking for channel 9 and 12 indications. If either
of these conditions is detected, the subroutine
branches to the user's error subroutine after the line
of data has been printed. Upon return from this
error subroutine, a skip to channell is initiated or
the function is terminated, depending upon whether
the accumulator is non-zero or zero, respectively.

Control Carriage. Controls the carriage as speci-
fied by the carriage control digits listed in Table 7.

Carriage Control

Digits 2 and 3 specify the carriage control functions
listed in Table 7. An "immediate" request is exe-
cuted before the next print operation; an "after-
print" request is executed after the next print opera-
tion and replaces the normal space operation.

If the function is Print, only digit 3 is examined;
if the function is Control, and digits 2 and 3 both
specify carriage operations, only digit 2 is used.

NOTE: An "after-print'" request is lost if it is fol-
lowed by an "immediate" request. If a series of
"after-print" requests is given, only the last one is
executed.

I/O Area Parameter

The 1/0 area parameter is the label of the control
word that precedes the user's I/0 area. The control
word consists of a word count that specifies the
number of words of data to be printed. The data must
be in 1403 Printer code, packed two characters per
word.

Error Parameter

See Calling Sequence.

Table 7. Carriage Control Operations

Digit #2: Immediate Carriage Operations

Print Functions
Not Used

Control Function

- Immediate Skip To Channel 1
= Immediate Skip To Channel 2
- Immediate Skip To Channel 3
Immediate Skip To Channel 4
Immediate Skip To Channel 5
Immediate Skip To Channel 6
Immediate Skip To Channel 7
Immediate Skip To Channe! 8
Immediate Skip To Channel 9
Immediate Skip To Channel 10
Immediate Skip To Channel 11
Immediate Skip To Channel 12
Immediate Space Of 1
Immediate Space Of 2
Immediate Space Of 3

MMOO®DH> ORI NEWN —
L I I T I I I B IR R I

Digit #3: After-Print Carriage Operations

Print Functions

0 - Space One Line After Printing
1 - Suppress Space After Printing

Control Function

- Skip After Print To Channel 1
Skip After Print To Channel 2
Skip After Print To Channel 3
Skip After Print To Channel 4
Skip After Print To Channel 5
Skip After Print To Channel 6
Skip After Print To Channel 7
Skip After Print To Channel 8
Skip After Print To Channel 9
Skip After Print To Channel 10
Skip After Print To Channel 11
Skip After Print To Channel 12
Space 1 After Print

Space 2 After Print

Space 3 After Print

1

2
3
4
5
6
7
8
9
A
B
C
D
E

F

1231 OPTICAL MARK PAGE READER SUBROUTINE
(OMPR1)

The Optical Mark Page Reader subroutine OMPR1
handles the reading of paper documents eight and one-
half inches wide by eleven inches deep through the 1231
Optical Mark Page Reader. A maximum of 100 words
from one page can be read with one call to the sub-
routine, ’ i : '

When called to perform a Read function, OMPR1
performs a Feed function and reads a page into core
storage according to the Master Control Sheet (see

the publication IBM 1231, 1232 Optical Mark Page

Readers, Form A21-9012), and the setting of the

switches on the reader. Other functions performed
are Feed, Stacker Select, and Disconnect.

System Library 65

Calling Sequence

a| {an] |s » - ,. M © o
Y3 PRA, « . .. LALL OPT MARK PAGE INPUT.
. doede . . CONTROL PARAMETER: 1111+
i Tl0, AREA PARAMETER: (1 11
RROR, . . ., ERROR PARAMETER 1« 1+ s a1 x

PR LR PYRPRRPERT A YOO SO YTV O VOIS 0 AU WA AN A5 VOO T W T U S0 B W U T T T B B

n B

z
L

elelel

LR PR URT U TTUA NPT UN W N U GO WY ST S TR H S N T U Y U W S B U0 BT

PRt PUIET T T T N U U U U TN N TN TR0 N0 0% SN S NN T W00 SO Y TR S W W 000 O S
Co s - 2 RN ADDRES S 4 i1t

FUTR— LEU—t PURPUI ST ENTUN W ST URT U T T S UO0 VA N ST AN 00 W N ST U NV A AU UV SV B B SRS

ORI SOV YA ST ST U VO ST ST VAP TN S SO N S0 WA WA S T B

AL L) &4 4 {TRSE VT N SV T WY T WA W W S S U TR T WY W T T O WU W W S N W B S W
CALLER e

—ha LAY I Y FERE SR S B | U W U0 U N W O A T S WS N W

® e U S S N BT U U WA U U0 100 VOIS0 SRV NN SN T N G T WA S 00 W S G S S

AT U WU U WY H IO SO S U B R N

I T T S T O S S G S
e /O AREA s hh ot iy

PR U S SO R D AN U S SO Y 1

PP EO S B P S T U WU Y I B WY

TR R

Ll T T Y ST S ST R S E U S T N S

LA PPN B SO | PRI SR,

PRRTEEE W U5 VA0 00 U N N N WO U S SO WU AT O T S SO L

I
n
1 1
I 1
P WSS W S U U0 WA S T T W ST S T A ROV S G B
i N
1 A
I
1

[

PRRPR W U0 W T A ST U W0 U0 0 W 0 TV G IO W S R U R P

where
b is the I/0 function digit,

c is the stacker select digit,
e is the timing-mark-check test digit,

h is the length of the I/O area. h must be equal
to or greater than the number of words designated
to be read on the Master Control Sheet,

Control Parameter

This parameter consists of four hexadecimal digits
as shown below.

1

2
I/0 Function —--———————T T

Stacker Select

w
IS

Not Used
Timing-Mark-Check-Test

I/0 Function

The 1/0 function digit specifies the operation to be
performed on the 1231 reader. The functions, their
associated digital values, and the required param-
eters are:

66

Function Digital Value Required Parameters*
Test 0 Control
Read 1 Control, I/O Area, Exrror
Feed 3 Control
Disconnect 4 Control

*Any parameter not required for a particular
function must be omitted.

Test. Branches to LIBF+2 if the previous operation
has not been completed, to LIBF+3 otherwise.

The operation to be tested is specified by the
fourth digit of the control parameter. A zero value
in digit 4 specifies a normal device-busy test; that
is, a test to determine if there is an operation in
progress for which no operation complete interrupt
has occurred. The subroutine is "not busy' once
the operation complete interrupt takes place. A
value of one for digit 4 specifies a Timing-Mark-
Check-Busy test. This test indicates a "busy' con-
dition as long as the Test-Timing-Mark-Check indi-
cation in the Device Status Word is on. If the user
wishes to run with the Timing Mark Switch set on, it
is recommended that digit 4 be set to one when
performing a Test function.

Read. Reads words or segments from a document
page into core storage starting at the I/O area address.
Tt is not necessary for the user to perform a Feed
function prior to a Read. In the absence of a Feed,
the Read feeds the document before reading. When

a Read function follows a Feed, the Read begins with
the document started by the Feed. The number of
bits per word read and the number of words per docu-
ment read depends upon the way in which the Master
Control Sheet is programmed (see the publication
IBM 1231, 1232 Optical Mark Page Readers, Form
A21-9012), OMPRI1 reads a maximum of 100 words.
Any word not programmed to be read (mark positions
8 or 18 not penciled on the Master Control Sheet) is
skipped. Digit 2 of the control parameter specifies
whether or not the document being read is to be
stacker-selected. If digit 2 is set to one, the docu-
ment is stacker-selected; if digit 2 is set to zero, it
is not.

Feed. Initiates a feed cycle. This function advances
a document from the hopper through the read station.
A Read function following a Feed causes this docu-
ment to be read. If a Feed function is followed by
another Feed function without an intervening Read
function, the document corresponding to the first
Feed is disconnected; that is, it is passed through the
1231 without being read.

Disconnect. Terminates the Read function on the

sheet currently being read. The subroutine's busy
indicator is cleared.

I/0 Area Parameter

The I/O area parameter is the label of the user's
1/0 area.

Exrror Parameter

There is an error parameter for the Read function
only. Exits are made to the user's error sub-
routine when the following conditions are detected:

Master Control Sheet Error
Timing Mark Error
Read Error
Hopper Empty
Not Ready
(See Calling Sequence.)

SUBROUTINES USED BY FORTRAN

Many of the I/0 and conversion subroutines cannot
be specified in FORTRAN. Therefore, the System
Library includes a set of limited-function I/0 and
conversion subroutines for FORTRAN programs.
Any Assembler language I/O subroutines used by
FORTRAN programs must employ these special sub-
routines for any I/O device specified in a mainline
I0CS control record.

Of all the FORTRAN device subroutines, only
DISKZ, PRNZ, and PLOTX return control to the
caller after initiating an operation.

The System Library contains the following sub-
routines for FORTRAN programs:

CARDZ — 1442 Input/Output Subroutine
PNCHZ — 1442 Output Subroutine

READZ — 2501 Input Subroutine

TYPEZ — Keyboard Subroutine

WRTYZ — Console Printer Subroutine

PRNTZ — 1132 Printer Subroutine

PRNZ — 1403 Printer Subroutine

PAPTZ — Paper Tape Input/Output Subroutine
PLOTX — 1627 Plotter Subroutine

DISKZ — Disk Input/Output Subroutine
HOLEZ — IBM Card Code/EBCDIC Conversion
Subroutine

EBCTB — EBCDIC/Console Printer Code Table

HOLTB — IBM Card Code Table

GETAD — Subroutine to Locate Start Address
of EBCTB/HOLTB

GENERAL SPECIFICATIONS (EXCEPT DISKZ)

The "Z" device subroutines are ISS subroutines.
They use a 121-word input/output buffer, contained
in the non-disk FORTRAN I/ O subroutine SFIO. The
maximum amount of data transferable is listed in
the description of each subroutine. Output data
must be stored in unpacked (one character per word)
EBCDIC format. Input data is converted to unpacked
EBCDIC format.

The EBCDIC character set recognized by the sub-
routines is composed of the digits 0-9, alphabetic
characters A-Z, blank, and special characters
-+.&=(), '/ *<%#@. Any other character
is recognized as a blank.

The accumulator, extension, and index registers
1 and 2 are used by the FORTRAN device subroutines
and must be saved, if required, before entry into
the subroutines. The accumulator must be set to
zero for input operations.

For output operations, the accumulator must be
set to 000216, except for PRNZ and PRNTZ, in which
output is the only valid operation. Index register 2
set to the number of characters to be transferred,
except for PRNZ and PRNTZ; for these two sub-
routines, index register 2 contains the number of
characters to be printed plus an additional character

System Library 67

for carriage control. Index register 1 contains the
starting address of the input buffer.

DESCRIPTIONS OF I/0 SUBROUTINES

The following subroutines do not provide a check to
determine the validity of parameters (contents of
accumulator and index register 2). Invalid param-
eters cause unpredictable operation by the sub-
routines.

PNCHZ — 1442 Output Subroutine

Buffer Size. Maximum of 80 words.

Card Output. This subroutine punches from the I/0
buffer the number of characters indicated in the
location preceding the buffer. Punching is done in
IBM Card Code.

Subroutines Loaded. The following subroutines are
loaded with PNCHZ:

HOLEZ, GETAD, EBCTB, HOLTB

READZ — 2501 Input Subroutine

Buffer Size. Maximum of 80 words.

Card Input. This subroutine reads 80 columns from
a card and stores the information in the I/0 buffer in
EBCDIC format.

Subroutines Loaded. The following subroutines are
loaded along with READZ:

HOLEZ, GETAD, EBCTB, HOLTB

PRNZ — 1403 Printer Subroutine

Buffer Size. Maximum of 121 characters.

Index Register 2. The first character in the I/0
buffer is the carriage control character, followed
by up to 120 characters to be printed. Therefore,
index register 2 must contain the number of char-
acters to be printed plus one.

68

The carriage is controlled prior to the printing of
a line; no "after-print'" carriage control is performed.
Following is a list of the carriage control characters
and their related functions:

Character Function
00F1 Skip to channel 1 prior to printing
00F0 Double space prior to printing
004E No skip or space prior to printing
Any other Single space prior to printin,
character g

Channel 12 Control, If a punch in channel 12 is en-
countered while a line is being printed, skip to
channel 1 is executed prior to printing the next line.

DISKZ - Disk Input/Output Subroutine

The DISKZ subroutine offers no file protection, no
preoperative parameter checks, no Write Immediate
function, and no Write Without Readback Check
function. It is intended for use by the monitor pro-
grams and by FORTRAN programs in which disk
FORTRAN I/0 is used.

The calling sequence for DISKZ is:

n =) | sl | w o » s “ “ » |1
A KX A L.OAD. JA&AMM_J‘
s, RGeS . . BRANCH T0 DISKE o0 000y !
e AT s
[FENa U U0 S5 U W U0 VU N0 UUD 00 WS WD SN U 0 A S JY UN Y S S S WY WY I U R T B
11"
LIST. C . $bde. I/, 0 FUNCTI.ON PAKAMETER . .
TOAR . I/O ARESN PARAMET.ER . .) 1\ i
Y 1 ®, 1 4 FYRTURS AT T N N SO U AN T S U U N U S YN VOV VAN SN U A U N R 1 n 1
P LI L g 1 P T T W S Y U A W S G 0 W G S S i TR W B 'Y 1
LOAR | G PENTra boaat 1 " 'l
L 1D 1. SECTOR ADDRESS . 4 . .. 3 ... o1
S5, |7 AN Z/0 AREA 4 o oiaaa L
O S | 4 L8 O WA U U U0 WU WO TR SN T WA SN U TN D U VAU WS WO Y D A S W) T SN S S S B R 1 i
..... R i P N R
R A i R R N N
where

a is the I/O function digit. Zero indicates a Read,
one a Write.

b is the number of words to be transferred to or
from the disk

¢ is the sector address at which the transfer is to
begin,

d is the length of the I/0 area. d must be equal to
or greater than b.

The word count (first word of the buffer) must be
non-negative. The sector address must be the

second word of the buffer. The drive code (0, 1, 2,
3, or 4) is in bits 0-3 of the sector address.

A word count of zero indicates a seek to the
cylinder denoted in the sector address. File pro-
tection is not provided. If the access arm is not
positioned at the cylinder addressed, DISKZ seeks
to that cylinder before performing the requested
function. A Read follows each Seek to verify that
the Seek was successful. No buffer is required for
this Read.
Buffer Size. Maximum of 320 words.

Operation, DISKZ performs Read, Seek, and Write
With Readback Check functions. Each function re-
turns control to the user after it has been initiated.
To determine completion of a disk operation, the
user may test DBUSY (in COMMA) until it is cleared
to zero. However, DISKZ itself tests this word
before initiating an operation. Following a Write,
the subroutine performs a Readback Check on the
data just written. If it detects an error, it re-
executes the Write. Similarily, if a sector is not
located or an error is detected during a Read,
DISKZ repeats the operation. All operations are
attempted 16 times before DISKZ indicates an ir-
recoverable error.

If a partial sector (less than 320 words) is written,
the remaining words of the sector are automatically
set to zero.

Subroutines Required. No other subroutines are
required by DISKZ,

DATA CODE CONVERSION SUBROUTINES

These subroutines convert data to and from 16-bit
binary words and I/O device codes. Refer to the
Subroutine Library publication for a detailed intro-
duction to conversion subroutines and for descrip-
tions of the conversion subroutines and codes used
by both the 1130 Disk Monitor System, Version 1,
and the 1130 Card/Paper Tape System.

The following conversion subroutines are part
of the 1130 Disk Monitor System, Version 2:

BINDC — Binary value to IBM Card Code
decimal value.

DCBIN — IBM Card Code decimal value to
binary value.
BINHX - Binary value to IBM Card Code

hexadecimal value.

HXBIN

HOLEB

SPEED

PAPEB

PAPHL

PAPPR

HOLPR

EBPRT

BIDEC

DECBI

ZI1IPCO

IBM Card Code hexadecimal value to
binary value.

IBM Card Code subset to EBCDIC
subset; EBCDIC subset to IBM Card
Code subset.

IBM Card Code characters to EBCDIC;
EBCDIC to IBM Card Code characters.

PTTC/8 subset to EBCDIC subset;
EBCDIC subset to PT'TC/8 subset.

PTTC/8 subset to IBM Card Code
subset; IBM Card Code subset to
PTTC/8 subset.

PTTC/8 subset to Console Printer or
1403 Printer code.

IBM Card Code subset to Console
Printer or 1403 Printer code.

EBCDIC subset to Console Printer or
1403 Printer code.

32-bit binary value to IBM Card Code
decimal value.

IBM Card Code decimal value to 32-bit
binary value.

Supplement to all standard conversions
except those involving PTTC/8.

DESCRIPTIONS OF DATA CODES

In addition to the internal 16-bit binary representation,
the conversion subroutines handle the following codes:

¢ Hexadecimal Notation

e IBM Card Code

e Perforated Tape and Transmission Code (PTTC/8)

e Console Printer (1053) Code

e 1403 Printer Code

e Extended Binary Coded Decimal Interchange
Code (EBCDIC)

1403 Printer Code

The 1403 Printer uses a six-bit binary code with one
Data format is two seven-bit characters
per word, as follows:

parity bit.

System Library 69

Bit 012 345671{89101112131415
Value | *P 32168421 |*P3216 8 4 2 1

1stdata character| 2nd data character

*=Not Used
P=Parity Bit

Parity bits are not assigned by the hardware. The
conversion subroutine must assign the parity bits and

arrange the characters in the form in which they are
to be printed.

PAPPR
This subroutine converts PTTC/8 subset to either

Console Printer or 1403 Printer code. The conver-
sion to 1403 Printer code is illustrated below.

/0 Conversion Bits in Core Storage
Locations Data 0 15
INPUT uC J 0000 1110 0101 0001
INPUT+1 LC 0110 1110 0101 1011
OUTPT J 0101 1000 0110 0010

Calling Sequence

s| |» sl [s2]n] | “ s 0 s w s
ltzs.F APLPR o Ll PTTC/B CONV.ERSILON.
L Qo Sgde v . CONTROL PARAMETER | . 4 .
. C . WAWT: (o o LNPUT AREA ADDEESS. . 1.
L 1 W T PT . L OUT PUT, AREA ADDRESS | .,
PR 01 T P i a s COHARACTER COMNT o 1+ 1.
L. L 1 1 NN SN R S SO0 OOV WU WY U S SO SO S U ST SN [S N N S NS
BN LY T T S T WO T Y U WUNRY W TN W W HYT TN T U W N SH WH S MR B N
SN T S 3 LA Wl § VNS T O T WO TSN TN TS YOOI S WO N U S N WU U S SO TN A Y W N W il
NPT 8.5 SRR SR GAREA v v v
P e YRS NN SN U N TN TN T NN SO T NN N UM OO0 TOY UONY SN NS VAT S T S NS ST SRS WO S O
N | LA | W T TN U S T SN TN U T NN Y WY TN K U0 A WO O AN NN SN SN WY T (S S SHESNS B B
i 4 - IR Y TR N S T SO SO WY U WS WY S SN0 SIS SN GO N N BAY .
louT.p.r| |BS.S \ L OWTPUT AREA. « o s o ru. L
L4 1 L TS N B 'S N 't L | T IO TS T U A S Y | L
L1 J [s 1 Lo Lokt b L N T T N) T
) b tu 1 R L
. R Lo i it L
L . L L4 LAt e L
. . G i b) st

where

d is the case initialization digit,
e is the output printer code digit,

f is the number of characters in the input area to
be converted,

70

g is the length of the input area. g must be equal
to or greater than /2 if the character count is
even, (f + 1)/2 if the character count is odd.

h is the length of the output area. h must be
equal to or greater than f/2, minus the number of
paper tape control characters in the input area,
plus 1 if the result is odd.

Control Parameter

This parameter consists of four hexadecimal digits.
Digits 1 and 2 are not used. The third digit indi-
cates whether or not the case is to be initialized be-
fore conversion begins:

0 = Initialize case
1 Do not alter case

The fourth digit determines the output printer code.

0 = Console Printer code
1 1403 Printer code

Input

Input consists of PTTC/8 characters starting in lo-
cation INPUT. PTTC/8 characters are packed two
per binary word. All control characters except case
shift (LC or UC) characters are converted to output.
Case shift characters are used only to define the case
mode of the graphic characters that follow.

Output

Output consists of either Console Printer or 1403
Printer characters starting in location OUTPT. This
code is packed two characters per binary word. If
overlap of the input and output areas is desired, the
address INPUT must be equal to or greater than the
address OUTPT. This is necessary because the
subroutine starts processing at location INPUT.

Character Count

This parameter specifies the number of PTTC/8
characters in the input area. The count must include

case shift characters, even though they do not appear
in the output. Because the input is packed, the
character count is not equal to the number of binary
words in the input area.

If an odd number of output characters is produced,
bits 8-15 of the last used word in the output area are
set to a space character,

The conversion is halted whenever the character
count is decremented to zero or whenever a new line
(NL) control character is detected.

Errors Detected

Any input character not marked by an asterisk in
Appendix B is in error.

HOLPR

This subroutine converts IBM Card Code subset to
either Console Printer or 1403 Printer code. The
conversion to 1403 Printer code is illustrated below.

1/0 Conversion Bits in Core Storage
Locations Data 0 15
INPUT J 0101 0000 0000 0000
INPUT+1 s 0010 0100 0010 0000
OUTPT J, 0101 1000 0001 o110

Calling Sequence

R

where
e is the output printer code digit,

f is the number of characters in the input area
to be converted,

g is the length of the input area. g must be equal
to or greater than f£.

h is the length of the output area. h must be
equal to or greater than f/2.

Control Parameter

This parameter consists of four hexadecimal digits.
Digits 1-3 are not used. The fourth digit determines
the output printer code.

0 = Console Printer code
1 1403 Printer code

Input

Input consists of IBM Card Code characters, starting
in location INPUT. The characters are not packed.

Output

Output consists of either Console Printer or 1403
Printer characters, starting in location OUTPT. The
code is packed two characters per binary word.

The input area may overlap the output area if the
address INPUT is equal to or greater than the address
OUTPT. The subroutine starts processing at lo-
cation INPUT.

-
< igda CONTROL PARAMETER . . .\

<. WNPUT. . INPUT AREA ADDLESS. . . 1 . ..

£ A S

£ BTsor QUTEAT AREA ADDRESS . iiin Character Count

 B.5.S.

TNPuT
lf‘“”..‘,ﬂ“.’.‘. oot AUTAUT ARER oo e
|"|‘|"' Lot ‘v" L1k Loy

This number specifies the number of IBM Card Code
characters to be converted and is equal to the number
of words in the input area. If an odd count is speci-
fied, bits 8-15 of the last word used in the output
area are not altered.

System Library 71

Errors Detected

Any input character not marked with an asterisk in
Appendix B is in error.

EBPRT

This subroutine converts EBCDIC subset to either
Consgole Printer or 1403 Printer Code. The con-
version to 1403 Printer code is shown below.

1/0 Conversion Core Storage Bits
Locations Data 0 15
INPUT LE 1101 0011 1100 0101
INPUT+1 ES 1100 0101 1110 0010
OouTPUT LE 0001 1010 0110 1000
OUTPT+1 ES 0110 1000 0000 1101

Calling Sequence

sl o | lalm| [© o » " “ o

L T.BE] _’_.n,r.m-r. v AL DERCDTL, CONVERSION,

. X pgde . . . CONTROL PARAMET.ER .« . (a1

s P NPUT o o LNPUT. AREA ADDRESS 11

L P OMTLT & .\ . OMTPUT AREA ADDRESS .1 .
Lt o

it aa s CHARACTER COMNT: 3 tsr 1y

PSRRI SR P ST U0 T T TN S 0 S N S S

PR CIT— L PR N WU S U W S S W A N O S U VO O S O T YO O B S G O

o1t PR PR W S U S ST U S0 FON S S U SR W
et oo JENPRT CAREA s s i da e d1
L a1

RTINS TS W VU VA SN S I S S PR I U SISt

n

LI PRRFUSANCH SN TR T TN W T S VA U S U AT O WA T S W S S DAL B
1
X

PP 0 T SV Y WO GO S T S WA Y S

T
LOUTPUT AREA: o 1\ v 4 o

Lt RIS VOV TV T WA WA S S YU U N0 T S U0 S S S W

P TR ST S SO U S U S A N S S T A U A S G O

PSP ES T ST VAT EY Y SN W WA S S SN S S S SO0 Y SO0 SRR

PEETUTEV RIS ST S TR SN SR U S0 159 SO A Y WL S RN [V Sa SV A B B S

where
e is the output printer code digit,

f is the number of characters in the input area to
be converted,

g is the length of the input area. g must be equal
to or greater than f.

b is the length of the output area. h must be equal
to or greater than f.

Control Parameter

This parameter consists of four hexadecimal digits,
Digits 1-3 are not used. The fourth digit determines
the output printer code.

72

0 = Console Printer code
1 = 1403 Printer code
Input

Input consists of EBCDIC characters starting in
location INPUT. EBCDIC characters are packed
two per word.

Output

Output consists of either Console Printer or 1403
Printer code starting in location OUTPT. The code
is packed two characters per binary word.

The address INPUT must be equal to or greater
than the address OUTPT if overlap of the input and
output areas is desired. The subroutine starts
processing at location INPUT.

Character Count

This parameter specifies the number of EBCDIC
characters to be converted. This count is not equal
to the number of words in the input area. If an odd
count is specified, bits 8-15 of the.last word used
in the output area are not altered.

Errors Detected

Any input character not marked with an asterisk in
Appendix B is in error.

BIDEC

This subroutine converts a 32-bit binary value to its
decimal equivalent in ten IBM Card Code numeric
characters and one sign character. The conversion
is illustrated below.

1/0 Conversion Core Storage Bits
Locations Data 0 15
Accumulator] 0000 0001 0000 0000

+0016777218
Extension 0000 0000 0000 0010

1/0 Conversion Core Storage Bits
Locations | Data 0 +~15
OUTPT + 1000 0000 1010 0000
OUTPT+1 0 0010- 0000 0000 0000
OUTPT+2 0 0010 0000 0000 0000
OUTPT+3 1 0001 0000 0000 0000
OUTPT+4 6 0000 0000 1000 0000
OUTPT+5 7 0000 0000 0100 0000
OUTPT+6 7 0000 0000 0100 0000
OUTPT+7 7 0000 0000 0100 0000
OUTPT-8 2 0000 1000 0000 0000
OUTPT+9 1 0001 0000 0000 0000
OUTPT+10 8 0000 0000 0010 0000
Calling Sequence
2 s| o 0| Ja|a] s o . 30 55)

R LBF
G OWTLAUT: | OWTPUT AREA, ADDRESS. ...
bwr.PTl |Bss. A kTP Apra T

.......... 1 P IS T R R SRR I

Input

Input is a 32-bit binary value in the accumulator and
extension.

Output
Output is an IBM Card Code sign character (+ or -)

in location OUTPT, and ten IBM Card Code numeric
characters in OUTPT+1 through OUTPT+10.

Errors Detected

The BIDEC subroutine does not detect errors.

DECBI

This subroutine converts a decimal value consisting
of ten IBM Card Code numeric characters and a sign
character to a 32-bit binary word. This subroutine
is the inverse of the BIDEC subroutine (see above)
except that fewer than ten characters may be
specified.

Calling Sequence

3] ja ol laafw] Jas “©

) 30 35 “ A3
- s LALL DECIMAL CONV.ERST.ON.
| e LNPWT, . TNPUT. AREA ADDRESS.

where
a is the number of characters to be converted not
including the sign character,

b is the length of the input area. b must be equal
to a plus 1.

Input

Input is an IBM Card Code sign character in location
INPUT, the address (WDCNT) of the number of
characters (1 to 10) to be converted, and specified
number of characters in IBM Card Code in locations
INPUT+1 through INPUT+N (where N =1, 2...10).

Output

Output is a 32-bit binary word, containing the con-
verted value, in the accumulator and extension.

Errors Detected

Any of the following conditions causes the Overflow
indicator to be turned on, the Carry indicator to be
turned off, and an immediate exit to be made back to
the caller:

1. Any sign other than a plus, minus, blank, or
ampersand.

2. Any character other than a space or 0 through 9.

3. Any converted value greater than +2, 147,483,647
or less than -2,147, 483, 648,

ZIPCO

This subroutine supplements all standard conversions
except those involving PTTC/8 code. It offers the

System Library 73

user the option of supplying his own conversion
tables and codes., ZIPCO uses direct table access
and is considerably faster than the other conversion

subroutines.

Calling Sequence

wl o sl lsls] |s ° . w 5 w .
LzaF WM,MWM&,WWL
lpe tads , . CONTROM PARAMET ER . . i1 ..
Llme NPUT . . INPUT AREA ADDRESS . 1, o
Lo De WTLT. \ . OUTPUT .AREA .A:D.'DR.LSS e
v C . CHARACTER CQOMMT . .+ oo
A CALL TS N R A R U S N S S S RS U I Lttt 4 g bt
L PR S N N SN (RN TR G T R B B T S S T) TR SO N0 DO T A VA SO S N B
1 L1 § SRS T N T WY T U N AN O VRS DU SN W VSO S S R L1 1| . -) -
Lot g CEPTTTT W N G G SO0 S T T Al I SN Y T S S W ¥ | U VO OO T N N T ST R T Y S By
T.NPuTl BSS. e INPUT AREA it
T B | A NS DU T VRN NN N U N OO W DU Y YRR AT T T U NN WU N N NS UHN UUNY NV TN U S S T S Y E D 1
L3 1 41 4.1 i 14 1 1 1 1L R | 1 v
) L 1 1 i 1 1 1 P FURTONS NS T 'S | S
PT| 1855 ' A OUTPUT AREA . . 1.1
i A 441 1) S T W T T S W N T N j T S WU O T T T) i) i .
A B PP B B O R i st
[FSRTUTONN N ST S W N AN NN U N T U T T Y T W VU N R R B R S oL T -t U
A I A B L Lii i taaan R -
where

b is the input code digit,

¢ is the packed input digit,

d is the output code digit,

¢ is the packed output digit,

f is the number of characters to be converted,

g is the length of the input area,

h is the length of the output area,

j is the name of the conversion table to be used.
This CALL is not executed; however, it is re-
quired to cause the loading of the desired conver-

sion table.

Control Parameter

This parameter consists of four hexadecimal digits

as follows.

Digit 1

Digit 2

Digit 3

Digit 4

74

1 for 12-bit IBM Card Code input

0 for all other types of input

1 for unpacked input

0 for packed input

1 for 12-bit IBM Card Code output

, 0 for 8-bit IBM Card Code and all

other types of output

1 for unpacked output

0 for packed output

Input

Input consists of packed or unpacked characters in
the code specified by the conversion table and
starting at location INPUT.

Output

Output consists of packed or unpacked characters in
the code specified by the conversion table and
starting at location OUTPT.

Character Count

This parameter specifies the number of input
characters to be converted. If an odd count is speci-
fied with packed input, bits 8-15 of the last word
used in the output area are not altered.

Table

The type of conversion is determined by the table
called with ZIPCO. The user may call one of the
IBM-~supplied conversion tables or he may supply
his own.,

The following IBM-supplied System Library
tables may be called with ZIPCO.,

EBCCP — EBCDIC to Console Printer Code.

EBHOL — EBCDIC to IBM Card Code.

EBPT3 — EBCDIC to 1403 Printer code.

CPEBC - Console Printer code to EBCDIC.

CPHOL - Console Printer code to IBM Card
Code.

CPPT3 — Console Printer code to 1403
Printer code.

HLEBC — IBM Card Code to EBCDIC.

HOLCP -— IBM Card Code to Console Printer
code.

HLPT3 — IBM Card Code to 1403 Printer
code.

PT3EB — 1403 Printer code to EBCDIC.

PT3CP — 1403 Printer code to Console Printer
code.

PTHOL — 1403 Printer code to IBM Card Code.

Each conversion table consists of 256 characters--
128 words with two 8-bit characters per word. The
seven low-order bits of the character to be con-
verted (input character) are used as an address. The

address designates the position in the table of the
corresponding conversion character.
order bit (bit 0) of the input character designates
which half of the table word is to be used. When
bit 0 is 1, the left half of the word is used. When
bit 0 is 0, the right half of the word is used. All
dummy entries of the IBM-supplied tables contain
the code for a blank.

The following is an example of the conversion per-

The high-

formed by ZIPCO, The tables show (1) the input
EBCDIC values, (2) the table EBPT3 used for the
conversion, and (3) the output characters in 1403

Printer code.

Input Location

Value

INPUT
INPUT+1
INPUT+2

1111 0010 0111 0010
0000 0000 1000 0000
0111 13111 1111 1111

Table Location Value
EBPTS3 0111 1111 o111 1111
EBPT3+1 0111 1111 0111 1111
EBPTS3 +113 0000 0001 0111 1111
EBPT3+127 0111 1111 o111 1111
1403 Print
Output Location Value Character
OUTPT 0000 0001 0111 1111 2, b
OUTPT+1 0111 1111 0111 1111 b, d
OUTPT+2 0111 1111 0111 1111 b, b

Errors Detected

No errors are detected by ZIPCO,

ARITHMETIC AND FUNCTION SUBROUTINES

The arithmetic and function subroutines in the 1130
Disk Monitor System, Version 2, System Library
are described in the Subroutine Library publication.

WRITING ISSs AND I1Ss

ISS and ILS subroutines are written as described in
the Subroutine Library publication. Table 8 lists the
ISS/ILS correspondence applicable to the 1130 Disk
Monitor System, Version 2.

Table 8, ISS/ILS Correspondence

N\lifnsber Device Levelln::srsrit;e\'menfs
1 1442 Card Read Punch, 1442 Card Punch 0,4
2 Keyboard/Console Printer 4
3 1134/1055 Paper Tape Reader Punch 4
4 2501 Card Reader 4
5 Disk 2
[} 1132 Printer 1
7 1627 Plotter 3
8 Synchronous Communications Adapter . 1
9 1403 Printer 4

10 1231 Optical Mark Page Reader 4

DISK MAINTENANCE PROGRAMS

The disk maintenance programs are mainline pro-
grams and subroutines that are a part of the System
Library and that initialize and modify disk cartridge
IDs, addresses, and tables required by the monitor
system. Normally, they should never be deleted
from the System Library.

The disk maintenance programs are:

DISC — Disk Initialization Program
IDENT — Print Cartridge ID Program
ID — Change Cartridge ID Program
COPY — Disk Copy Program

System Library 75

ADRWS — Write Sector Address in Work-
ing Storage Program

DLCIB — Delete CIB Program

MODIF - System Maintenance Program

SYSUP — DCOM Updating Program

The disk maintenance programs (except ADRWS
and SYSUP) are called by an XEQ monitor control
record (see '"Monitor Control Records'' under
Supervisor). Some disk maintenance programs re-
quire an ID control record. The format and use of
the ID control record is described under the program
descriptions which follow.

DISC — DISK INITIALIZATION PROGRAM

This program initializes up to four satellite car-
tridges -- all but the master cartridge on logical
disk drive 0. It writes the sector addresses, de-
fective cylinder addresses, cartridge ID, a LET, a
DCOM, and a CIB on each cartridge initialized. The
calling sequence for DISC is

Y 2 3 4 5 6 7 B 9 10 i1 12 13 14 15 16 17 V8 19 20 21 22 23 24 25 26 27 28 2° 30 3| 32 33 34 35 °
All_lm DISC o aa bt
I DFIDL, TIDL , FIDR, TEIDR, o100 LT DR, T.IDN.

R RN N TR (O A A U 0 G OO NS U S I SO IO IO | NN TR U N SO N NN N TS U I o |
[N N T U U VNS NN SO U N N N0 N SO S W (N YOO N VU N S S N S s e | -
YR SRS NS NS U N TS Y VNN (NN NS (SN U VAN WY TN WO N N Y N AN U S § NSO TR U TS WA N VU S I |
IR TS NN VAN N SN NS N UONNS S AN SN A U SN A0S U0 [U VA N T WY S Ny S W S S W O N
where

FID1 through FIDn are the IDs currently on the
cartridges to be initialized.

TID1 through TIDn are the IDs to be written on
those cartridges.

IDENT — PRINT CARTRIDGE ID PROGRAM

This program prints out the ID, the physical drive
number, and the logical drive number of each disk
cartridge mounted on the system. The calling se-
quence for IDENT is

Yy 2 3 4 5 6 7 8 9 10 11 12 J3 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 0 31 32 33 34 33 3
/4y XlEQ LDEMT 1 1 1

[U DU S WU U U SN S O N N O e ¥

SN U U U T TS NU WO AN N S SO U N U I &

FIRNK U R T G W U SN TN N S [DAY (S0 S O S

(IS S TR SO SN NN N U N G S |

[1 N VU N TN OV T S T W

1
1
[UESS WES N YUK W S VO N U N GO QO N SO S B
1
1

T T N N VY N O T &

1

i
1 !
1 - I N Y N W
1 11t F IS N S N W |
i L1 1 11 1

1 L1 1 1 11 1
SIS O I S N W W 1 P11
IO DU D N S O T Y U | | S| 1.1 1 TR U AN TN N D W O N U o

76

ID — CHANGE CARTRIDGE ID PROGRAM

This program changes the ID on up to four disk
cartridges. The ID control record required is
identical to that used by DISC (see above). The
calling sequence for ID is

) 2 3 4 5 & 7 8 9 10 1t 12 13 14 15 16 17 16 19 20 21 22 23 24 25 26 27 28 29 3) 31 32 33 34 35 36

/|/| IXIEIOI IlD [R T U (N DA S VO T (U NN UM B S S S F NS NN WO W U S W S |

*.IDEIDI,,III)_!,EI.DQ, TIDRy e ei010 F I Duny TIDau
IR Y (0 U NS U U TN T I S S | [WS U RS N TN SN NN NN Y NN O N U Y S | L1111
[U G N N N (O A U G I OO S oy | NS N TN S U N U N U O S S W § bl 1
IR U TR (NN NN U0 NN WU NN AU SN W N S | [N U N N N NN WU (N NN NS S SN S s | - L1
FIRS RS W A O U N 1O U Y A U Y e ISR SR TN U U NS N N N N A S N W 411
[N S U (N TN NN W S S W S | NS VR VR WO S (U (N W N N W S | I TR T USRS T U N S T B §

COPY — DISK COPY PROGRAM

This program copies the contents (except the car-
tridge ID) of one disk cartridge onto another. The
cartridge to be copied onto must have been previously
initialized (see DISC). The calling sequence for
COPY is

1 2) 4 5 & 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3} 32 33 34 35 X N
I/l xlElQ ICIOIPIYI YN U U WORNN U N TN A SN N SN0 U U G NS S T S W} 111
ereieFTDR, T I D

| S S N W T ST U W s |

§ S U NN T N Y Ty I | I T B |

I W O T NN O I T I s | N N N Y Y SO0 U O N ey T |

[Y S N O O W T T S | IR S OO N S T O N U N B o

1
) N N W |
1
i

F I Y Y W N S B s | § U T N T | (S U U TN WO N OO N A S S Y &

where

FID1 through FIDn are the IDs of the cartridges
to be copies,

TID1 through TIDn are the IDs of the cartridges
onto which the copies are to be made

ADRWS — WRITE SECTOR ADDRESSES IN WORKING
STORAGE PROGRAM

This program, linked to from DUP on detection of a
DWADR DUP control record, writes the sector ad-
dress on all sectors of Working Storage of the disk
cartridge specified in the DWADR control record.
(See "DWADR!'" under Disk Utility Program.)

DLCIB — DELETE CIB PROGRAM

This program deletes the CIB from a non-system
cartridge. If a User Area is defined, the User Area

is moved one cylinder closer to cylinder 0. The
new addresses of disk areas moved as the result of
the deletion of the CIB are reflected in DCOM on the
master cartridge and on the non-system cartridge
from which the CIB is deleted, and in COMMA., The
calling sequence for DLCIB is:

1 203 45 6 7 3 9 10 11 1213 18 1516 17 18 19 20 21 22 23 24 25 26 27 26 29 30 31 32 93 34 35 3

/l/KIXIEIQLDILiCIIIBllLlIllllIlll]llllll
lc]A'RlTI]ll][lllllllll'lllllll|l

I

L1
§ IS S N |
S T I N S Y T N T T O Y J

F G S R T Y T T N ||

N G Y T N O T N | T | N Y Y O | I I

| S -

1
L
1
1
i
1

i
14 L

R P YU T T Y T T O T T W Y G S B U SO A N
L1 1 L1t L

;W U I I | I N T U B T T O A |

where

CART is the ID of the non-system cartridge
from which the CIB is to be deleted.

MODIF —SYSTEM MAINTENANCE PROGRAM

This program updates the master cartridge; that is,
it makes changes to the version and modification
level word in DCOM, the Supervisor, DUP, FORTRAN
Compiler, Assembler, and/or System Library. A
card deck or paper tape containing corrections to
update the monitor system to the latest version and
modification level is supplied by IBM. Every modi-
fication must be run to update the version and modi-
fication level even if the program affected has been
deleted.

The calling sequence for MODIF is:

L2 3 4.5 6 7 8B 90 11 1213 14 1516 17 1919 20 21 22 23 2425 2 27 28 29 3 31 32 33 a4 39

// XE@ MODIE ..

) S T T S T T Y O O I R I |

[ll1l|ll||lllllllllll

T SO T S T N T VY S Y T O O O S S W W N

S N T T O N T

Y NN VR S Y O Y S Y T O |

1
1
y WS I T S U W T Y T T S B O A O B DA |
lllllllllllllllllllll
T Y Y S S Y W T T Y T i

Y U S N T T T U T T W T SO SN A SO W O NN

A one must appear in position 19 of the XEQ
record to specify DISK1. Input to the program can
be cards or paper tape. This program uses the Re-
load Table to update all references to all monitor
programs which utilize SLET.

System Program Maintenance

Typical input for a system program update is shown
in Figure 13,

il

A

l «g——————— Next Monitor Control

Record
[*MON

// XEQ MODIF 1 “@—————— New Version of System
Progrom

«¢——————— System Program Maintenance
Control Record

System Maintenance Program
Call

Figure 13. Layout of an Input Deck for a System Program Update

System Program Maintenance (Patch) Control Record

Each monitor program phase to be changed requires
a patch control record. If the FORTRAN Compiler
or the Assembler is to be changed, MODIF deter-
mines if that monitor program has been voided from
the disk. If so, the modification is not made.

The format of the patch control record is:

Card

Columns Contents Notes

1-4 *MON These characters identify a
system patch to the FOR-
TRAN Compiler, Assembler,
DUP, Supervisor, Core Load
Builder, System device sub-
routines, or Core Image

Loader.

6-9 vimmm The version (v) and modifica-
tion level (mmm) are speci-
fied in hexadecimal.

11-14 XXXX The SLET ID of the monitor

program phase to which the
patch is to be made is speci-
fied in hexadecimal. 0000 =
an absolute patch (see col-
umns 28-31, 33-36).
"nnnn" specifies (in hex)

the number of patch records
following this patch control

record.
This character identifies the

format of the patch records
(Binary system format or
Hex patch format).

16-19 nnnn

21 BorH

System Library 77

Card
Columns

Contents

Notes

23-26

28-31

33-36

37-80

pppp

dsss

ccce

Not Used

"pppp'’ specifies (in hex) the
total number of patches.
This should be the exact
number of patch control
records to be processed.
This parameter is read
from the first patch control
record.

The drive code (d) and sector
address (sss) of the pro-
gram to be patched are
specified in hexadecimal.
This field is used only
when the SLET IDis 0.

"ecece" specifies (in hex) the
core address of the first
word of this sector.

Patch Data Record

Binary System Format .

Word Contents
1 Location
2 Checksum
3 Type Code (first 8 bits) 00001010
4-9 Relocation Indicators
10-54 Data words 1 through 45
55-60 ID and sequence number

Hex Patch Format.

Card

Column Contents Notes

1-4 aaaa "aaaa' specifies (in hex) the
core address (origin) of the
patch. Each patch record
must have a core address.

6-9, 11-14, Each 4-column field contains

16-19, etc. one word of patch data (in

hex). Up to 15 words of
patch data can be specified
per record.

System Library Maintenance

Changes to the System Library require reloading the
new mainline or subroutine. MODIF updates the ver-
sion and modification level word; the actual reload is
performed by a DUP DELETE operation, followed
by a DUP STORE operation.

Typical input for System Library maintenance
is shown in Figure 14.

System Library Maintenance (Subroutine Header)
Control Record

The subroutine header control record must go through
MODIF even if the subroutine being modified has been
deleted. The format of a subroutine header control
record is:

Card
Column Contents Notes

1-4 *SUB These characters identify a
system patch to the System
Library.

6-9 vmmm |The version (v) and modifica-
tion level (mmm) are speci-
fied in hexadecimal.

16-19 nnnn "nnnn'"' specifies (in hex) the
number of deletes and stores
to be processed.

20-80 Not Used

L

(

I'STORE XXXXX
(*DELETE XXXXX

(// DUP

(-sus

// XEQ MODIF 1}

“@— Next Monitor
Control Record

<@—— New Version of
System Library
Program XXXXX

DUP Control Records

System Library Maintenance
Control Record

~————— System Maintenance

78

Program Call

Figure 14, Layout of an Input Deck for a System Library Update

SYSUP—DCOM UPDATING PROGRAM

This subroutine is used whenever a core load re-
quires changing disk cartridges. It updates DCOM
on the master cartridge (logical drive 0) with the IDs
and DCOM information from all satellite cartridges
mounted on the system that are specified in the list
or array in the calling sequence.

The Assembler language calling sequence for
SYSUP is:

PAPER TAPE MAINLINE PROGRAMS

These programs perform paper tape utility functions.
The paper tape mainline programs are:

PTREP — Paper Tape Reproducing Program
PTUTL - Paper Tape Utility Program

PTREP

This program reproduces paper tapes. It reads and
punches characters with no intermediate conversion.
The calling sequence for PTREP is:

21 3 77 30 32|33 35 40 45 30 55 0
] ICALLL YSUWP CALL DCOM UPDATE.
N °, 4 4 I A e Sl 12 i a 1.2 3 4.8 & 7 8 910 1} 12 13 14 uunuwzozl:znuzsu27n2vn:x:znu:s:
Lot a2) le, 4 s N N TS T U0 Y SN W T Y U TS Y TN U (TSN WY RN N WA SNTUNN BT U XIEIQIITIRIEIRIIIIIIAIIIlllllllllllll
At &, 2 1 4 (9 1 | T . | S T T T T T G S U O N §
LIQT. ,L, e b i it |ll|ll|l|lllIllilllllllvllllllllIlLl
L C. . T T T e o N N N T T Y O A A A I A A A A A R A A S A A
T .C.. T S RN NN T VR0 WY SN G W W T T TN N WA SN ST W WA N U N N A IllllllllIlIllllllllllllllllllllll
C. :&" At Lt """: o Nt S Y N O T T B S A B B B I N B R S A O A R A
i\ n U S S S 'Y 11 [. 1 | - -
L T N I A e T S Y N A NN L WY Y B B R B O SN A R A AN O O I A A S A
1 i I I R N B N N 11 L1 1 1 1 i) . |
4 11 1 '} TR i 1 1
PTUTL
This program accepts input from the Keyboard or the
where 1134 Paper Tape Reader and provides output on the

a is the ID of the first cartridge on the system,
b is the ID of the second cartridge on the system,
c is the ID of the third cartridge on the system,

d is the ID of the last cartridge on the system.
This ID must be followed by a word of zeros.

The FORTRAN calling sequence for SYSUP is:

1 2.3 4 3lel7 @ ’Ioll|2|3ll|s|4|7Il|'?02Iﬂ2310252‘172l”w$|ﬂ

DILIL] SIVIS

where

a is the name of an array containing the IDs of
the cartridge on the system. The element of
the array following the last ID must be 0.

Console Printer and/or the 1055 Paper Tape Punch.
PTUTL allows changes and/or additions to FOR-
TRAN and Assembler language source records as
well as monitor control records according to the
Console Entry Switch options described below.

Switch Setting Option
0 Cn Print record after reading
1 Cn Read records from 1134
2 On Accept Keyboard input
3 On Punch records on 1055
14 On Wait after punching
15 On Wait after printing
All Off Exit to the Supervisor

The calling sequence for PUTUTL is:

12 3 45 6 7 8 91011 1213 14 1506 17 18 19 20 20 22 23 24 25 26_27 28 29 30 31 32 33 34 35 3
IIXIEIQIIPIKUITJ.J||||1|||||1|1I|||I|IILL_

lllll|l|ll|lll|llllllllll|IIIILJ_L,J_.

IlllllllIIIIIlllllllllllllllllJlllI

Jlllllll|l|lllllllllllllllllllllll

System Library 79

APPENDIX A, UTILITY PROGRAMS

These utility programs — each self-loading and
complete with subroutines —are separate from the
System Library and enable the user to perform oper-
ations external to the monitor system. The utility
programs are:

e Console Printer Core Dump

) Printer Core Dump

e Disk Cartridge Initialization Program (DCIP)

CONSOLE PRINTER CORE DUMP

This program aids the user in debugging programs
by dumping selected portions of core on the Console
Printer.

Each core location is dumped as a four-digit hexa-
decimal word. A space separates each word. The
number of words typed per line depends on the mar-
gin settings of the Console Printer. The first word
dumped is the starting address of the dump (as speci-
fied in the Console Entry Switches).

PRINTER CORE DUMP

This program dumps core in hexadecimal format on
either the 1403 Printer or the 1132 Printer.

Each line contains a four-digit hexadecimal ad-
dress, followed by 16 four-digit hexadecimal words.
A space separates the address and each word in the
printed line. An additional space is inserted between
each group of four words.

To decrease dump time, the program does not
print consecutive duplicate lines. Before printing
a line, it compares the 16 words with the 16 words
printed on the previous line. If they are identical,
the program goes on to the next 16 words in core.

I not, it spaces one line and prints. The address
printed is that of the first word on the line. The pro-
gram skips to the top of a new page at the start of

the dump and whenever it encounters channel 12 on
the printer. NOTE: I both the 1132 and the 14.03
Printers are on the system and both are ready, the
dump is printed on the 1403 Printer.

80

DISK CARTRIDGE INITIALIZATION PROGRAM
(DCIP)

The Disk Cartridge Initialization Program (DCIP)
is composed of

e A disk initialization subroutine
e A disk copy subroutine

e A disk dump subroutine

INITIALIZATION
The disk initialization subroutine of DCIP

1. Writes disk sector addresses on all cylinders.
2. Determines which, if any, sectors are defective
and writes the address (es) of the cylinder(s)
containing the defective sectors on sector 0.

3. Establishes a file-protected area for the disk
cartridge.

4. Puts an ID on the disk cartridge.

5. Establishes a DCOM, LET, and CIB.

The disk I/O subroutines operate effectively with
up to three cylinders containing defective sectors.
An attempt to read or write a defective sector that
is not identified in sector 0 results in a read or
write error after the operation has been attempted
16 times.

Cylinder zero may not be a defective cylinder.

If it is, the cartridge cannot be initialized.

At the completion of DCIP, a four-word table is
written on sector 0. Words one, two, and three
contain the first sector address of any defective cyl-
inders found (maximum of three). When there is no
defective cylinder, these words contain 0658, ..
Word four contains the cartridge ID, in binary.

COPY

The disk copy subroutine of DCIP

1. Checks to ensure that both the cartridge to be
copied and the cartridge onto which the copy is
to be made have been correctly initialized.

2. Copies a cartridge from any drive onto a car-
tridge on any other drive.

DUMP
The disk dump subroutine of DCIP

1. Dumps any disk sector(s) from any drive,

2. Prints the dump on the fastest printer on the
system (in the order of speed — 1403, 1132, or
Console Printer)

The number of consecutive sectors to be dumped,
as well as the address of the sector to be dumped (the
first sector if more thanone) is specified in the
Console Entry Switches.

Each sector printout is 20 lines - 16 four-digit
hexadecimal words per line. Two sectors are printed
on each page and each sector is preceded by a 3-word
header. The first digit of the first header word is the
number of sectors remaining to be dumped. The re-
maining three digits show the sector address of the
sector being dumped. The second header word, which
is the first word of the sector, is the correct address
of the sector. The third word is the logical sector
address, taking into account any defective cylinders.

Appendix A 81

APPENDIX B. CHARACTER CODE CHART

oot EBCDIC (BM Card Code P”32 PTHTC/B Console 1403
e . Graphics and Control rinter ex Printer .
No. Binary Hex Rows Hex P Names EBCDIC |U-Upper Case ';_'2: Printer
0123 4567 12 11 09 8 7-1 Subset Hex |- ©*° Notes Hex

0 0000 0000 00 12 098 1 B030 | NUL

1 0001 01 12 9 1 9010

2 0010 02 12 9 2 8810

3 0011 03 12 ? 3 8410

4 0100 04 12 9 4 8210 | PF Punch Off

5% 0101 05 | 12 9 5 |810 | HT Horiz.Tab 6D (U/L) 41 Q@

6* 0110 06 12 9 6 8090 | LC Lower Case 6E (U/L)

7* o 07 12 9 7 8050 | DEL Delete 7F (U/L)

8 1000 08 12 9 8 8030

9 1001 09 12 9 8 1 9030

10 1010 0A 12 9 8 2 8830

n 1011 0B 12 9 8 3 8430

12 1100 oC 12 9 8 4 8230

13 1101 oD 12 9 8 5 8130

14 } 1110 OE 12 9 8 6 80BO

15 nm OF 12 9 8 7 8070

16 0001 0000 10 12 11 9 8 1 D030

17 0001 n n 9 1 5010

18 0010 12 11 9 2 4810

19 0011 13 1 9 3 4410

20* 0100 14 1 9 4 | 4210 | RES Restore 4C (U/L) 05

21* 0101 15 1" 9 5 4110 | NL New Line DD(U/L) 81

22* 0110 16] 9 6 | 4090 | 8BS Backspace 5E§U/L) il

23 otn 17 1 9 7 4050 | iDL Idle

24 1000- 18 1 9 8 4030

25 1001 19 11 9 8 1 5030

26 1010 1A 1 9 8 2 4830

27 101 1B 1 9 8 3 4430

28 1100 1C 1 9 8 4 4230

29 1101 1D 11 9 8 5 4130

30 1110 1E 1 9 8 6 4080

31 11 1F 1 9 8 7 4070

32 0010 0000 20 11 098 1 7030

33 0001 21 09 1 3010

34 0010 22 09 2 2810

35 0011 23 09 3 2410

36 0100 24 09 4 2210 | BYP Bypass

37* 0101 25 09 5 2110 | LF Line Feed 3D (U/L) 03

38* 0110 26 09 6 2090 | EOB End of Block 3E (U/LD)

39 o1 27 09 7 2050 | PRE Prefix

40 1000 28 09 8 2030

41 1001 29 09 8 1 3030

42 1010 2A 098 2 2830

43 1011 28 09 8 3 2430

44 1100 2C 09 8 4 2230

45 1101 2D 098 5 2130

46 } 1110 2E 09 8 6 2080

47 111 2F 098 7 2070

48 0011 0000 30 12 11 09 8 1 FO30

49 0001 31 9 1 1010

50 0010 32 9 2 0810

51 001 33 9 3 0410

52 0100 34 9 4 0210 | PN Punch On

53* 0101 35 9 5 |0110] RS Reader Stop 0D(U/L) 09 @

54* 0110 36 9 6 0090 | UC Upper Case 0E(U/L)

55 o111 37 9 7 0050 | EOT End of Trans.

56 1000 38 9 8 0030

57 1001 39 9 8 1 1030

58 1010 3A 9 8 2 0830

59 1011 38 9 8 3 0430

60 1100 3C 9 8 4 0230

61 1101 3D 9 8 5 0130

462 1110 3E 9 8 6 00BO

63 1111 3F 9 8 7 0070

NOTES: Typewriter Output

82

@ Tabulate
@ Shift to black

@ Carrier Return
@) Shift to red

* Recognized by all Conversion subroutines

Codes that are not asterisked are recognized only by the SPEED subroutine

Console

EBCDIC IBM Card Code 132 PTTC/8 1403
Ref Binary Hex | Rows Hex | CGrophics and Control Printer Hex Printer Printer
No. Names EBCDIC | U-Upper Case H
0123 4567 12 11 09 8 7-1 Subset Hex | L-Lower Case Hex ex
64* 0100 0000 40 no punches 0000 { blank + 10 (U/L) 21 7F
65 0001 41 12 09 1 fBO10
66 0010 42 | 12 09 2 | A810
67 0011 43 | 12 09 3 | a410
68 0100 4 | 12 09 4 |A210
69 0101 45 | 12 09 5 |AlI0
70 0110 46 | 12 09 6 | A090
71 01 47 | 12 09 7 | A0s0
72 1000 48 | 12 09 8 A030
73 1001 49 | 12 8 1 |9020
74* 1010 | 4A | 12 8 2 |8820 |¢ 20 (U) 02
75* 101 48 | 12 8 3 |8420 | . (period) 48 B (L) 00 6E
76* 1100 4C | 12 8 4 |8220 [< 02 iu) DE
7 1101 4D | 12 8 5 |8120 | (4D 19 (U) FE 2F
78* 1110 4 | 12 8 6 |80a0 | + 4 70 (U) DA 6D
79% 1 4# | a2 8 7 | 8060 | I (logical OR) 38 (U) Cé
80* 0101 0000 50 | 12 8000 | & 50 70 (L) 44 15
81 0001 51 12 1 9 1 | polo
82 0010 52 |12 9 2 |csi0
83 0011 53 | 12 1 9 3 | car0
84 0100 54 |12 11 9 4 1c210
85 0101 55 112 1 9 5 |cio
86 0110 56 | 12 11 9 6 | co9o
87 o 57 12 N 9 7 C050
88 1000 58 12 11 9 8 C030
89 1001 59 " 8 1 | 502
90* 1010 5A 11 8 2 |4820 | ! 58 (U) 42
91 1011 5B 1 8 3 |4420 | $ 5B 5B §L) 40 62
92* 1100 5C 11 8 4 4220 | » 5C 08(V) D6 23
93* 1101 5D 11 8 5 |4120 |) 5D 1A (V) F6 57
94* 1110 5E 1 8 6 | 4040 |; 13 (U; D2
95% 1N 5F 1 8 7 | 4060 | (logical NOT) 6B (U F2
96* 0110 0000 60 1 4000 | - (dash) 60 40 (L) 84 61
o7+ 0001 61 0 1 |3000 |/ 61 31 (L) BC 4C
98 0010 62 o9 2 | 6810
99 0011 63 1109 3 | 6410
100 0100 64 n o9 4 | 6210
101 0101 65 o9 5 |eém0
102 0110 66 1M o9 6 | 6090
103 0111 67 1m o9 7 1 6050
104 1000 68 1 09 8 6030
105 1001 69 o 8 1 |3020
106 1010 6A | 12 1 €000
107* 1011 4B 0 8 3 |2420 |, (comma) 6B 38 (L) 80 16
108* 1100 6C 0 8 4 |2220 | % 15 (U) 06
109* 1101 6D 0 8 5 2120 | _ (underscore) 40 §U) BE
110* 1110 6E 0 8 6 |20A0]> 07 (U) 46
1 111 &F 0 8 7 |2060 |7 31 (U) 86
112 0111 0000 70 |12 110 E000
113 0001 7t 112 11 09 1 | Fol0
114 0010 721122 1109 2 | es10
15 0011 73 112 11009 3 | E410
116 0100 74 12 11 09 4 | E210
17 0101 75 |12 11 09 5 | E10
118 0110 7 |12 11 09 6 | E090
119 011 77 |12 11 0 9 7 | eos0
120 1000 78 |12 11 09 8 E030
121 1001 79 8 1 1020
122% 1010 7A 8 2 |o082 |: 04 (U) 82
123* 01 78 8 3 |o420 |7# 0B (L) co
124* 1100 7C 8 4 |o0220 |@ 20 (L) 04
125% 1101 7D 8 5 0120 | ' (apostrophe) 7D 16 iU) E6 0B
126% 1110 7E 8 6]ooao | = 7E 01 (V) C2 4A
127% I 7F 8 7 |oos0 | " 0B (U) E2

¥ Any code other than those defined will be interpreted by PRNT1 as a space.

Appendix B 83

1132

EBCDIC IBM Card Code ; PTTC/8 Console 1403
{i‘ef Binary Hox Rows Hex Graphlcliland Control Printer Hex Printer Printer
. ames EBCDIC U-Upper Case H Hex

0123 4567 12 11 0 9 8 7-1 Subset Hex | L-Lower Case ex

128 1000 0000 80 | 12 o 8 1 |Bo20
129 0001 81 12 0 1 BOOO | o
130 0010 82 12 0 2 AB800 | b
131 0011 83 | 12 0 3 | A400 | <
132 0100 84 | 12 0 4 Y azo0 | d
133 0101 85 12 0 5 Al00 | e
134 0110 86 | 12 0 6 | aogo |
135 0111 87 | 12 0 7 |aoso] g
136 1000 88 | 12 0 8 A020 | h
137 1001 89 | 12 09 A010 | i
138 1010 8A 12 0 8 2 A820
139 1011 88 | 12 0 8 3 | A420
140 1100 8c | 12 0 8 4 | A220
14 1101 8D | 12 0 8 5 | A2
142 1110 8 | 12 0 8 6 | A0AO
43 v nun | e |12 0 8 7 | ‘aoe0
144 1001 0000 % |12 11 8 1 | Dpo20
145 0001 91 |12 1 1 | D000 | j
146 0010 92 |12 1 2 | cso0 | k
147 0011 93 |12 1 3 |c400 |1
148 0100 94 | 12 1 4 1 c200 | m
149 0101 95 |12 1 5 Jcioo|n
150 0110 9% | 12 1" 6 | cCo80| o
151 0111 97 |12 1 7 |coslp
152 1000 98 |12 11 8 €020 | q
153 1001 9% |12 11 9 coi0 | r
154 1010 oA | 12 1 8 2 |c820
155 1011 9 |12 1 8 3 | cC420
156 1100 oc |12 1 8 4 |cC220
157 1101 oD | 12 1 8 5 |cizo
158 1110 9 |12 1 8 6 | coao
159 ! 111 9 |12 N 8 7 | coeo
160 1010 0000 A0 1Mo 8 1 | 702
161 0001 Al 110 1| 7000
162 0010 A2 n o 2 16800 {s
163 0011 A3 1n o 3 {6400 |t
164 0100 Ad 1o 4 | 6200 {u
165 0101 A5 n o 5 {6100 |v
166 0110 Ab 1n o 6 | 6080 | w
167 0111 A7 1m0 7 | 6040 | x
168 1000 | A8 1mo 8 6020 |y
169 1001 A9 1moy 6010 | 2
170 1010 | AA 1mo 8 2 |es20
171 1011 AB 11 o 8 3 |ed20
172 1100 AC 1Mo 8 4 |e22
173 1101 AD 1m0 8 5 |6120
174 1110 AE 1M 0 8 6 | 60A0
175 ' un AF N o 8 7 {6060
176 1011 0000 BO |12 11 0 8 1 F020
177 0001 Bl |12 11 o 1 FO00
178 0010 B2 |12 11 0 2 | Eso0
179 0011 B3 |12 11 0 3 | E400
180 0100 B4 |12 11 0 4 | E200
181 0101 B5 |12 11 0 5 | E100
182 0110 B6 |12 11 0 6 | E0s0
183 0111 B7 |12 11 0o 7 | E040
184 1000 B8 |12 11 0 8 E020
185 1001 B9 |12 11 0 9 EO10
186 1010 BA |12 11 0 8 2 |E820
187 1011 B8 |12 11 0 8 3 |E420
188 1100 BC |12 11 0 8 4 |E220
189 1101 BD {12 11 0 8 5 |EI20
190 1110 BE |12 11 0 8 6 |EoAO
191 1111 BF |12 11 o 8 7 |Eos0

84

et : EBCDIC IBM Card Code 1132 PTTC/8
Ref Binary Hex Rows Hex Graphics and Control Printer Hex Co?sole 1403
0123 4567 12 11 09 8 7-1 Names EBCDIC fUi-lpper Case P:lmer g
LL c ex H
o3 rioe 8880 co | 12 0 A000 | (+zero) e -
1| ca | 12]
194* o010 | c2 | 12 o | b & %
}gg: 8%(‘) €2 | 12 § gigg g c2 62 %8; ?sc o 13,5 gg
ca | 12 & #
197+ 0101 | C5 | 12 g 3?08 E & S éb’; ;g o 315 26
198+ 0110 | c6 | 12 6 sogo F & A o3 s
e ono | Cé [12 6 | 800 | F cé 76 (U) 10 or 12 gg
gg?* }88? gg 12 . 8040 | G c7 67 (U) 14 or 16 2A
12 o cs 68 (U 4
7 &6 o 8010 | | s R Ik 5
098 3 |A430
205 Hot | 65|15 094 & | A%
206 1mo | ce | 12 09 | aoe
8 6
207 Y mi | cr |2 098 7 ﬁggg
208 1101 0000
200" o001 | o1 n e N
210 0010 | D2 " e
210 oo | oz | 2 | om0 | By 20 | waw |
212+ 0100 | D4 n 4 zoo ALA o i) 5o 3¢ }Z
213* 0101 D5 n 5 4180 N Ba e 1o 7
214" o110 | Dé 1 6 |4 5 B3 2 Lol ?g
214 o110 De n 6 4880 r? D6 46 (U) 50 or 52 5D
216* 1000 | D8 1 8 4 go o A 540 38 ;
218 1000 oe " o 4310 r? D8 58 (U) 64 2: 66 ?F
g}g }8}? g@ }g ., ca3% D9 49 (U) 60 or 62 20
1m 98 3
m | | ol pe i |G
1211 98 5
ggg ‘ 1mo { bE |12 11 98 & gcl)gg
nm oF |12 11 98 7 |con
24 1
224 10 888? E(I) o 8 2 | 280
225 wor | E] n ooy 1 | 7010
2264 a0t E2 0 2 | 2800]s £2
227 il | E3 8 3 |2400] 71 E3 gg o o o O o
229+ 0101 E5 0 g %200 v £5 a §B§ gg - :5 ‘jE
gg?* 8} }? ES 0 5|2 (l)gg c/v E5 25 (U) B4 or BS 15
Ee E6
232 1000 | E8 8 8 7 gogo ¥ A §3 gg; 32 o 32 2
233+ 1001 | E9 09 28 ol s ! e :6 ?g
234 1010 | EA 1M 098 2 |6 ol ” it z) SER
ggz 10N EB 1M1 098 3 6?138 " !
LIl
23 6130
233 ‘ mo EE 1M 098 6 | 6080
1 EF 1M 098 7 | 6070
g:c]): 1111 0000 | Fo 0 2000 | ©
0001
mr o | |3 ool al | B8
243+ 001 2 | %02 () 0s o
i F2 2 | osoo | 2 F2 02 (1) D8 01
ol e 3 00 F3 13 (L) ’
245+ 0101 | F5 00| % i % v %
246* 0110 | Fé e | %02 re] (t) F4 o
247* ol | 7 e b 15) 00 i
ot 2000 e 7 0040 | 7 F7 og (t) be p
249* 1001 8 Q020 1 3 i c4 i
F8 . F8 08 (1) E
250 010 | F gl 0 07
A1z mog9s 2 F 170 E
gsl 1011 | FB f12 11 098 3 Eggg 0 ’
zgg ”8(1) FC (12 11 098 4 |E20
2 "o FD 12 11 0 9 8 5 E130
fy 0 FE 12 11 0 9 8 6 ‘EOBO
¢ 1 L |12 1098 7 |Eo70

Appendix B 85

APPENDIX C. FORMATS

DISK FORMATS

DISK SYSTEM FORMAT (DSF)

Disk system format is the format in which absolute
and relocatable programs (mainlines and sub-
programs) are stored on disk. Disk system format
is shown in Figure 15.

Program Header

The format of words 1-12 of the program header is
the same for all program types (see Program Types
below). These words contain the following infor-
mation:

Word Contents
1 Zero
2 Checksum, if the source was cards;

otherwise, zero.

Word Contents

9 Number of files defined
10-11 Name of entry point 1 (in name code)
12 Address of entry point 1 (absolute for type
1 programs, relative for all others)

The format of words 13-54 of the program header
varies according to the program type. For program
types 1 and 2, the program header consists of words
1-12 only.

For program types 3 and 4, the program header,
in addition to words 1-12, contains the following
information:

Word Contents

13-14 Name of entry point 2 (in name code)
15 Relative address of entry point 2
16 Not Used

17-18 Name of entry point 3 (in name code)
19 Relative address of entry point 3
20 Not used

3 Progr'fxm type, subtype, a.n.d precision 21-54 Names and relative addresses of entry points
4 Effective program length, i.e., the . -
. . 4 through 14, as required, inthe format
terminal address in the program
R shown above. The program header ends fol-
5 Length of COMMON (in words) . . ad fthe 1
6 Length of the program header (in words) lowing the relative address of the last entry
minas 9 point defined; hence, it is of variable length.
7 Zero For program types 5 and 6, the program header,
8 Length of the program, including the in addition to words 1-12, contains the following
program header (in disk blocks) information:
DSF Module
A
s)
3
e A A v A " A . A/
Progrem Header DSF Blocks T DSF Modules
{12-54 words):

DSF Block (2-9 Data words):
Word 1 - Indicator Data Word
Words 2-9 = Data Words

See description.

Dato Header (2 words):
Word 1 - Loading address
Word 2 = Number of words

following to the next
data header, plus the
number of words (2) in
the next data header

Figure 15, Disk System Format

86

End-of-Program
Data Header (2 words):

Word 1 - Relative
address of the next
available core
location

Word 2 - zero

Data Break -
Caused by:
1. ORG, BSS, BES, or DSA
statement
2. Start of a new sector
3. End of the program

Word Contents

13 ISS number plus 50
14 ISS number

15 Number of interrupt levels required*

16 Interrupt level number associated with
the primary interrupt*

17 Interrupt level number associated with

the secondary interrupt*

*The 1442 Card Read Punch is the only device re-
quiring more than one interrupt level,

For type 7 programs, the program header, in
addition to words 1-12, contains the associated
interrupt level number in word 13.

Program Types

The program types are defined as follows:

Type Type of Program

1 Mainline (absolute)

2 Mainline (relocatable)

3 Subprogram, not an ISS, referenced by a
LIBF statement

4 Subprogram, not an ISS, referenced by a
CALL statement

5 Interrupt service subroutine (ISS)
referenced by a LIBF statement

6 Interrupt service subroutine (ISS)
referenced by a CALL statement

7 Interrupt level subroutine (ILS)

Program Subtypes

Subtypes are defined for program types 3, 4, and 5
only. When not used, the subtype indicator in the
program header contains a zero.

The program subtypes are defined as follows:

Subtype Type Description
0 3, 4 In-core subprograms
1 3 Disk FORTRAN I/0 subroutines
2 3 Arithmetic subroutines
3 3 Non-disk FORTRAN I/0 and"Z"
conversion subroutines
3 5 "Z'" device subroutines
8 4 Function subprogram

DISK DATA FORMAT (DDF)

Disk data format is the format in which data files
are stored on the disk. Disk data format consists
of 320 binary words per sector. There are no
headers, trailers, indicator words, etc.

DISK CORE IMAGE FORMAT (DCT)

Disk core image format is the format in which a core
image program is stored on disk. A core image pro-
gram consists of the core image header, the main-
line program, all subprograms referenced in the
mainline program or other subprograms (except the
disk I/O subroutine), the transfer vector, and any
LOCALSs and SOCALs required. Figure 6 (see
"STORECI" under Disk Utility Programs) shows the
layout of a core image program stored on disk.

Core Image Header

The core image header contains the following infor-
mation:

Word Contents

1 Execution address of the core load

2 Length of COMMON (in words)

3 Disk I/0 subroutine indicator---FFFF1 6
for DISKZ, ()00016 for DISK1, 000116
for DISKN

4 Number of files defined

5 Length of the core image header (in words)

6 Sector address of the first LOCAL, rela-
tive to the sector address of the program

7 Loading address of the core load

8 Sector address of the first SOCAL, rela-
tive to the sector address of the program

9 Length of the transfer vector (in words)

10 Length of the core load (in words)

11 Setting for index register 3 during execu-
tion of the core load

12 Contents of word 8 during execution

13 Contents of word 9 during execution

14 Contents of word 10 during execution ITV

15 Contents of word 11 during execution

16 Contents of word 12 during execution

17 Contents of word 13 during execution

Appendix C 87

Word Contents
18-20 Reserved)
21 Interrupt entry to 1231 ISS
22 Interrupt entryto 1403 ISS
23 Interrupt entry to 2501 ISS
24 Interrupt entry to 1442 ISS I?ngzr
25 Interrupt entry to Keyboard/
Console Printer ISS
26 Interrupt entryto 1134/1055
ISS 7
27 LOCAL/SOCAL switch —

zero indicates no LOCALs
and/or SOCALs, non-zero
otherwise

28-40 Reserved

CARD FORMATS

CARD SYSTEM FORMAT (CDS)

Card system format is the format in which absolute
and relocatable programs (mainlines and subpro-
grams) are punched into cards. Each deck in card
system format consists of (1) a header card, (2) data
cards, and (3) an end-of-program card.

Mainline Header Card

The mainline header card is the first card of every
type 1 or 2 program in card system format. It con-
tains the following information:

Word Contents
1 Reserved
2 Checksum
3 Type code (first 8 bits):

0000 0001 — absolute

0000 0010 — relocatable
Precision code (last 8 bits):

0000 0001 — standard

0000 0010 — extended

0000 0000 — undefined

4 Reserved
5 Length of COMMON, in words
(FORTRAN mainline program only)
6 0000 0000 0000 0011
7 Length of the work area required, in
words (FORTRAN only)
8-54 Reserved

88

Subprogram Header Card

The subprogram header card is the first card of
every type 3 or 4 program in card system format.
It contains the following information:

Word Contents
1 Reserved
2 Checksum
3 Type code (first 8 bits):

0000 0011 — to be called by a LIBF
statement only

0000 0100 — to be called by a CALL
statement only

Precision code (last 8 bits):

0000 0001 — standard

0000 0010 — extended

0000 0000 — undefined

4-5 Reserved
6 Number of entry points times three
7-9 Reserved
10-11 Name of entry point 1 (in name code)
12 Relative address of entry point 1
13-51 Names and relative addresses of entry

points 2 through 14, as required
52-54 Reserved

ISS Header Card

The ISS header card is the first card of every type
5 or 6 program in card system format. It contains
the following information:

Word Contents
1 Reserved
2 Checksum
3 Type code (first 8 bits):

0000 0101 — to be called by a LIBF
statement only

0000 0110 — to be called by a CALL
statement only

Precision code (last 8 bits):

0000 0001 — standard

0000 0010 — extended

0000 0000 — undefined

4-5 Reserved
6 Number of interrupt levels required plus 6
7-9 Reserved
10-11 Subroutine name (in name code)
12 Relative entry point address

Word Contents

13-14 Reserved for parameters used by the
1130 Card/Paper Tape System

15 Number of interrupt levels required*

16 Interrupt level number associated with
the primary interrupt*

17 Interrupt level associated with the

secondary interrupt level*
18-29 Reserved
30 One
31-54 Reserved

*The 1442 Card Read Punch is the only device re-
quiring more than one interrupt level.

ILS Header Card

The ILS header card is the first card of every type 7
program in card system format. It contains the
following information:

Word Contents
1 Reserved
2 Checksum
3 Type code (first 8 bits):
0000 0111
Reserved (last 8 bits)
4-5 Reserved
6 0000 0000 0000 0100
7-9 Reserved
10-12 Reserved
13 Interrupt level number

14-54 Reserved

Data Cards

In all types of programs data cards contain the in-
structions and data that constitute the machine
language program. The format of each data card is
as follows:

Word Contents

1 The loading address of the first data
word in the card. Succeeding words
go into higher-numbered core loca-
tions. The relocation factor must be
added to this address to obtain the
actual load address. For an absolute

program the relocation factor is zero.

Word Contents

2 Checksum
3 Type code (first 8 bits):
0000 1010

Count of data words, excluding indica-
tor data words, in this card (last
8 bits)
4-9 Relocation indicator data words (2 bits
for each following data word):
00 — absolute
01 — relocatable
10 — LIBF
11 —CALL
10 Data word 7
11-54 Data words 8 through 51

End-of-Program (EOP) Card

The end-of-program card is the last card of all pro-
grams in card system format. It contains the
following information:

Word Contents
1 Effective length of the program. This

number is always even and is assigned
by the Assembler,or FORTRAN Compiler.

2 Checksum
3 Type code (first 8 bits):
0000 1111
Last 8 bits:
0000 0000
4 Execution address (mainline program only)

5-54 Reserved

CARD DATA FORMAT (CDD)

Card data format is the format in which data files
are punched into cards. Card Data format consists
of 54 binary words per card. Each binary word
occupies 1-1/3 columns. There are no headers,
trailers, indicator words, etc.

Card Data format is illustrated in Figure 16,

CARD CORE IMAGE FORMAT (CDC)

Card core image format is the format in which zore
image programs are punched into cards. Card core
image format is identical to card data format; that
is, one binary word occupies 1-1/3 columns and 54
binary words can be punched per card.

Appendix C 89

PAPER TAPE FORMATS

The paper tape formats — paper tape system format
(PTS), paper tape data format (PTD), and paper tape
core image format (PTC) — are analogous to the
corresponding card formats (see above).

Two frames in paper tape (data or core image)
format contain one binary word and are equivalent
to 1-1/3 columns in card (data or core image) format.
A data record in paper tape (data or core image)
format differs from a data record in card (data or
core image) format in that 2 special frames precede
the data record; the first contains 7F_ , and the

second contains the word count, the number of frames
in this data record. A data record in paper tape
(data or core image) format contains a maximum of
108 frames (54 binary words) plus the 2 special
frames.

Information that would appear in columns 73-80
in card format must not appear in paper tape format.

PRINT FORMAT

PRINT DATA FORMAT (PRD)

Print data format is the format in which DUP prints
a DSF program, core image program, or data file
on a print device (1132, 1403, or Console Printer).
Each line of the output is printed in the format shown
in Figure 17.

The Address which precedes each printed line is
the core address of Word 1 on that line if a core
image program is being printed. If a DSJ program
or data file is being printed, the Address is the
address of Word 1 on that line relative to the start
of the DSF program or data file. Each Word printed
consists of four hexadecimal characters and repre-
sents one binary word.

Word 54

AS[2 E
BTEFBJSFB

7|3 ¢lelri3 Flelria Fleir]3Flo 9 999999

Al6100000000

fAnunsnnw

IBM 1130-1800 BINARY CARD

518 1’-:11,0‘30:” ¥ 61 Joisa B4[8a[56 |87 wisarofn 1273 74 75 76 77 18 79 80 ‘
Figure 16. Card Data Format
Add 4 Word 2 Word 2 Word 2 Word 4
ress Spaces 1 Spaces| 2 Spaces| 3 Spaces| 4 Spaces
AN J
Y
Words 5-16

Figure 17, Print Data Format

90

Absolute address. An address that either should not
be incremented or has already been incremented by
a relocation factor.

Absolute program. A program which, although
stored in disk system format, has been written in
such a way that it can be executed from only one
core location.

Assembler core load. A core load that was built
from a mainline written in Assembler language.

CALL subprogram. A subprogram that must be
referenced with a CALL statement. The type codes
for subroutines in this category are 4 and 6.

CALL TV. The transfer vector through which CALL
subroutines are entered at execution time. See the
section on the Core Load Builder for a description
of this transfer vector.

Card core image format (abbr. CDC). The format
in which a program stored in disk core image format
is dumped to cards.

Card data format (abbr. CDD). The format in which
a data file is dumped to cards.

Card system format (abbr. CDS). The format in
which absolute and relocatable programs are punched
into cards. In this format, columns 73-80 are used
only to contain the card ID and sequence number.

CDC. (See "card core image format".)
CDD. (See "card data format'.)
CDS. (See '"card system format'.)

Checksum. The two's complement of the logical sum
of the record count (the position of the record with
the program) and the data word(s). The logical sum
is obtained by summing the data word(s) and the
record count arithmetically, with the addition of one
each time a carry occurs out of the high-order
position of the accumulator. The first record is
record 1, not record 0.

This term should not be confused with the se-
quence number that appears in columns 73-80 in
card formats.

GLOSSARY

CIB. (See 'core image buffer".)

Cold start card. The card that contains the coding
necessary for initial program loading (IPL), that is,
fetching the Cold Start Program.

Cold start program., The disk-resident program
that initializes the monitor system by reading the
Resident Monitor into core from the digk.

COMMA. (See "core communications area'.)

Comment. The text contained on a monitor control
record with an asterisk in column 4, an Assembler
language source record with an asterisk in column
21, or a FORTRAN source record with a C in
column 1.

Control record. One of the records (card or paper
tape) that direct the activities of the monitor system.,
For example, the DUP monitor control record
directs the monitor to initialize DUP, the DUMPLET
DUP control record directs DUP to initialize the
DUMPLET program; the EXTENDED PRECISION
FORTRAN control record directs the compiler to
allot three words instead of two for the storage of
variables.

Core communications area (abbr. COMMA). The
part of core which is reserved for work areas and
parameters that are required by the monitor pro-
grams. In general a parameter is found in COMMA
if it is required by two or more monitor programs
and is required to load a program stored in disk core
image format. Otherwise the parameter is found in
DCOM. COMMA is initialized by the Supervisor at
the beginning of each job.

Core image buffer (abbr. CIB). The buffer on which
most of the first 4K of core are saved while a core
load is being built. It is also used to save any part
of COMMON defined below location 4096 during a
link-to-link transfer of control. See the Section on
the Core Load Builder for a description of the CIB
and its use.

Core image header record. A part of a core image
program including such parameters as the word
count of the core load, the ITV, and the setting for
index register 3.

Glossary 91

Core image program. A mainline that has been
converted, along with all of its required subroutines,
to disk core image format, Included in the core
image program are any LOCALs and/or SOCALs that
are required. This term should not be confused with
"eore load", which refers to only that part of a core
image program that is read into core just prior to
execution.

@3@2‘1: A mainline, its required subroutines,
and its interrupt, CALL, and LIBF transfer vectors.
This term should not be confused with '"core image
program'".

CSF block. A group of not more than 51 data words
of a program in card system format. In this format,
the first six data words of every CSF block are indi-
cator words. These six words are always present,
even though all six are not needed. A CSTF block is
equivalent to words 4-54 of the CSF module (Data
card) of which it is a part.

CSF module. A group of words consisting of a data
header and CSF blocks for a program in card system
format. A CSF module is equivalent to a Data card
in card system format. A new CSF module is
created for every data break. A data break occurs
(1) whenever there is an ORG, BSS, BES, or DSA
statement, (2) whenever a new Data card is required
to store the words comprising a program, and (3)

at the end of the program.

Data break. (See "DSF module'.)

Data file. An area in either the User Area or the
Fixed Area in which data is stored. ''Data file' may
also refer to the data itself.

Data header. The first pair of words in a module
for a program in disk system format. The first
word contains the loading address of the module;
the second the total number of words contained in
the module. The data header for the last module
contains the effective program length, followed by
a word count of zero.

DCI. (See "disk core image format'.)

DCOM. (See "disk communications area'.)

DDF. (See "disk data format'.)

DEFINE FILE table. The table which appears at

the beginning of every mainline that refers to defined

files. There is one 7-word entry for each file that
has been defined.

92

Disk block. One sixteenth of a disk sector, that is,
20 disk words. The disk block is the smallest dis-
tinguishable increment for programs stored in disk
system format. Thus, the monitor system permits
packing of disk system format programs at smaller
intervals than the hardware would otherwise allow.

Disk communications area (abbr. DCOM). The disk
sector that contains the work areas and parameters
for the monitor programs.

Disk core image format (abbr. DCI). The format in
which core image programs are stored on the disk
prior to execution.

Disk data format (abbr. DDF). The format in which
a data file is stored in either the User Area or the
Fixed Area.

Disk system format (abbr. DSF). The format in
which mainlines and subprograms are stored on the
disk as separate entities. It is not possible to
execute a program in disk system format; it must
first be converted to disk core image format as a
result of either an XEQ monitor control record or a
STORECI DUP control record.

Disk system format program. A program that is
Stored in disk system format. It is sometimes
called a DSF program.

DSF. (See "disk system format'.)

DSF block. A group of not more than nine data words
of a program in disk system format. In this format,
the first data word of every DSF block is an indicator
word. Normally every DSF block in a DSF module
consists of nine data words, including an indicator
word; but if the DSF module contains a number of
data words that is not a multiple of nine, then the next-
to-last DSF block contains less than nine data words.

DSF module. A group of words consisting of a data
header and DSF blocks for a program in disk system
format. A new DSF module is created for every data
break. A data break occurs (1) whenever there is an
ORG, BSS, BES, or DSA statement, (2) whenever a
new sector is required to store the words comprising
a program, and (3) at the end of the program.

Effective program length. The terminal address
appearing in a relocatable program. For example,
in Assembler language programs, this address is
the last value taken on by the Location Assignment
Counter and appears as the address assigned to the
END statement.

Entry point. Either (1) the symbolic address (name)
of a place at which a program is entered, (2) the
absolute core address at which a program is to be
entered, or (3) the address, relative to the address
of the first word of the subprogram, at which it is
to be entered.

Execution. The execution of the program specified
on an XEQ monitor control record and any subsequent
links executed via CALL LINK statements. The

execution is complete when a CALL EXIT is executed.

Fetching. The process of reading something into
core storage, usually from disk.

Fixed area (abbr. FX). The area on disk in which
core image programs and data files are stored if it
is desired that they always occupy the same sectors.
No programs in disk system format may be stored
in this area. No packing ever occurs in the Fixed
Area.

FLET (See "LET/FLET'".)

FORTRAN core load. A core load that was built
from a mainline written in the FORTRAN language.

Function. A subprogram that evaluates a mathe-
matical relationship between a number of variables.
In FORTRAN, a FUNCTION is a subprogram that is
restricted to a single value for the result. This
type of subprogram is called by direct reference.

FX. (See 'fixed area'’.)

IBM area. That part of disk storage that is occupied
by DCOM, the CIB, and the monitor programs.
This area is also known as the System Area.

IBT. (See "ILS branch table'.)
ILS. (See "interrupt level subroutine'.)

ILS branch table (abbr. IBT). A table consisting of
the addresses of the interrupt entry points for each
ISS used for an interrupt level. An IBT is required
by the ILS for an interrupt level with which more
than one device is associated.

In-core subprogram. A subprogram in a given core
load which remains in core storage during the entire
execution of the core load. ILSs are always in-core
subprograms, whereas LOCALS and SOCALs never

are,

Indicator Word. The first word of a DSF block
indicating which of the following data words should be
incremented (relocated) when relocating a program
in disk system format. This word also indicates
which words are LIBF, CALL, and DSA names.
Programs in disk system format all contain indicator
words. Each pair of bits in the indicator word is
associated with one of the following data words--the
first pair with the first data word following the
indicator word, etc.

Interrupt level subroutine (abbr. ILS). A subroutine
that services all interrupts on a given level; that is,
it determines which device on a given level causes
the interrupt and branches to a servicing subroutine
(ISS) for processing of that interrupt.

Interrupt service subroutine (abbr. ISS). A sub-
routine that is associated with one or more of the
six levels of interrupt; for example, CARDO, which
services interrupts on two levels.

Interrupt transfer vector (abbr. ITV)., The contents
of words 8-13, which are the second words of the
automatic BSI instructions which occur with each
interrupt. In other words, if an interrupt occurs on
level zero and if core location eight contains 500, an
automatic BSI to core location 500 occurs. Similarly,
interrupts on levels 1-5 cause BSIs to the contents of
core locations 9-13, respectively.

IOAR Header. The word(s) required by an I/0 device
subroutine. They must be the first or the first and
second words of the I/O buffer.

ISS. (See "interrupt service subroutine'.)

ISS counter. A counter in COMMA (word 003274)
that is incremented by 1 upon the initiation of every
I/0 operation and decremented by 1 upon receipt of
an I/O operation complete interrupt.

ITV. (See "interrupt transfer vector'.)

Job., A group of tasks (subjobs) that are to be per-
formed by the monitor system and which are
interdependent; that is, the successful execution

of any given subjob (following the first) depends upon
the successful execution of at least one of those that
precede it,

LAC. (See "location assignment counter'.)

LET/FLET (the location equivalence table for the
user area/the location equivalence table for the fixed

Glossary 93

area). The disk-resident table through which the
disk addresses of programs and data files stored in
the User/Fixed Area may be found. On a system
cartridge, LET occupies the cylinder preceding

the User Area. If a Fixed Area has been defined,
FLET occupies the cylinder preceding it; otherwise,
there is no FLET.

LIBF subroutine. A subprogram that must be
referenced with an LIBF statement. The type codes
for subroutines in this category are 3 and 5.

LIBF TV. The transfer vector through which LIBF
subprograms are entered at execution time. See
the section on the Core Load Builder for a descrip-
tion of this transfer vector.

Link. A link is a core image program that is read
into core for execution as a result of the execution
of a CALL LINK statement.

Loading address. The address at which a mainline,
subprogram, core load, or DSF module is to begin.
For mainlines and DSF modules, the loading ad-
dress is either absolute or relative. For subpro-
grams, it is always relative, whereas, for core
loads, it is always absolute.

Load-on-call (abbr. LOCAL) subroutine. A sub-
program in a core image program that is not an in-
core subprogram. It is read from the disk into a
special overlay area in core only when it is called
during execution time. LOCALs, which are specified
for any given execution by the user, are a means of
gaining core storage at the expense of execution

time. The Core Load Builder constructs the
LOCALs and all linkages to and from them.

Load-although-not-called (abbr. NOCAL) sub-
program. A subprogram that is to be included in a
core image program although it is never referenced
in that core image program by an LIBF or CALL
statement. Debugging aids such as a trace or a
dump fall into this category.

LOCAL. (See '"load-on-call subroutine',)

Location assignment counter. A counter maintained
inthe Assembler for assigning addresses tothe in-

structions it assembles. A similar counteris main-
tained inthe Core Load Builder for loading purposes.

Long instruction. An instruction that occupies two
core storage locations.

94

Low COMMON. Words 896,, - 1215, , if DISKZ is in
core or words 1216 - 1535 if DISK1 or DISKN is
in core. This area exists even if there is no
COMMON.

Mainline. The program about which a core image
program is built. The mainline is normally the
program in control, It calls subprograms to per-
form various functions.

Master cartridge. The cartridge residing on logical
drive zero. The master cartridge must be a system
cartridge.

Modified EBCDIC code. A six-bit code used inter-
nally by the monitor programs. In converting from
EBCDIC to Modified EBCDIC, the leftmost two-bits
are dropped. (See "nmame code''.)

Monitor, A synonym for the entire 1130 Disk
Monitor System, Version 2, which is also known as

the monitor system or the Disk Monitor.

Monitor control record. (See 'control record'.)

Monitor program. One of the following parts of the
monitor system: Supervisor (SUP), Core Image
Loader (CIL), Core Load Builder (CLB), Disk
Utility Program (DUP), Assembler (ASM), or
FORTRAN Compiler (FOR).

Name code. The format in which the names of sub-

programs, entry points, labels, etc., are stored for
use in the monitor programs. The name consists of
five characters, terminal blanks being added if
necessary to make five characters. Each character
is in Modified EBCDIC code, and the entire 30-bit
representation is right-justified in two 16-bit words.
The leftmost two bits are used for various purposes
by the monitor.

Naturally relocatable program. A program that may
be executed from any core storage location without
first being relocated. The only absolute addresses in
such a program refer to parts of the Resident Monitor,
which, of course, are fixed.

NOCAL. (See "load-although-not-called
subprogram''.)

Non-gystem cartridge. A cartridge that dees not

contain the monitor programs, although it does
contain DCOM, LET, etc. A non-system cartridge
may be used only as-a satellite cartridge.

NOP. An acronym used to denote the instruction,
No operation.

Object progi‘a;m. The output from either the
Assembler,or the FORTRAN Compiler.

Packing. The process of storing programs in the
User Area to the nearest disk block, thus reducing
the average wasted disk space from 160 disk words/
program to 10 disk words/program.

Padding. Areas in the User/Fixed Area required to
permit core image programs and data files to start
on a sector boundary. The length of the padding,
which is reflected in LET/FLET with a dummy
entry, is from 1 to 15 disk blocks.

Principal 1/0 device. The device used for stacked
job input to the monitor system. The 2501/1442,
1442/1442, or 1134/1055 may be assigned as the
principal I/0 device. The keyboard may be assigned
temporarily as the principal input device (see "TYP"
under Monitor Control Records). The System Loader
considers the fastest device on the system to be the
principal I/0 device.

Principal print device.. The device used by the
monitor system for printing system messages.
Either the 1403, 1132, or Console Printer may be
assigned as the principal print device. The System
Loader considers the fastest print device on the
system to be the principal print device.

Program. The highest level in the hierarchy
describing various types of code. Subprograms and
mainlines are subsets of this set.

Program header record. The part of a program
stored in disk system format that precedes the first
DSF module. Its contents vary with the type of
program with which it is associated. It contains the
information necessary to identify the program, to
describe its properties, and to convert it from disk
system format to disk core image format.

Relocatable program. A program that can be
executed from any core location. Such a program
is stored on the disk in disk system format. It is
relocated by the Core Load Builder.

Relocation. The process of adding a relocation
factor to address constants and to those long instruc-
tions whose second words are not (1) invariant
quantities, (2) absolute core addresses, or (3)

symbols defined as absolute core addresses. The
relocation factor for any program is the absolute
core address at which the first word of that program
is found.

Relocation indicator. The second bit in a pair of
bits in an indicator word. If the data word with
which this bit is associated is not an LIBF, CALL,
or DSA name, then it indicates whether or not to
relocate the data word. If the relocation indicator is
set to 1, the word is to be relocated. Pairs of re-
location indicators indicate LIBF, CALL, or DSA
names. The combinations are 1000, 1100, and 1101,
respectively.

Remark. An explanation of the use or function of a
statement or statements. A remark is a part of a
statement, whereas a comment is a separate
statement.

Resident image. The mirror-image of the Resident
Monitor minus the disk I/O subroutine. It resides
on disk and is read into core by the Cold Start
Program.

Resident Monitor. The area required in core by the
monitor system for its operation. This area is
generally unavailable to the user for his own use.
The Resident Monitor consists of COMMA, the
Skeleton Supervisor, and one of the disk I/O sub-
routines, nominally DISKZ.

Satellite cartridge. A cartridge residing on a drive
other than logical drive zero. A satellite cartridge
can be either a system or a non-system cartridge.

Short instruction. An instruction that occupies only
one core storage location.

Skeleton supervisor. The part of the Supervisor
that is always in core and that is, essentially, the
logic necessary to process CALL DUMP, CALL
EXIT, and CALL LINK statements. Certain traps
are also considered to be part of the Skeleton
Supervisor.

SOCAL. (See '"system overlay to be loaded-on-
call,)

Subjob. A monitor operation to be performed during
a job. Each subjob is initiated by a monitor control
record such as ASM or XEQ. It may also be initiated
by a CALL LINK.

Glossary 95

Subprogram. A synonym used mainly in FORTRAN
for both FUNCTIONs and SUBROUTINEs. This term
is equivalent to subroutine when subroutine is used in
its broadest sense.

Subroutine. A subset of the set program. In FOR-
TRAN, a SUBROUTINE is a type of subprogram that
is not restricted to a single value for the result and
that is called with a CALL statement.

Supervisor control record area (abbr. SCRA). The
cylinder in which the Supervisor control records are
written. The first two sectors are reserved for
LOCAL control records, the next two for NOCAL
control records and the next two for FILES control
records. See the Supervisor section for the formats
of these records.

System area. (See "IBM area'.)

System cartridge. A cartridge that contains the
monitor programs. A system cartridge may be
used as either a master or a satellite cartridge.

System overlay to be loaded-on-call (abbr. SOCAL).
One of two or three overlays automatically prepared
by the Core Load Builder under certain conditions
when a core load is too large to fit into core storage.
See the section on the Core Load Builder for an
‘explanation,

96

Transfer vector (abbr. TV). A collection of both the
LIBF TV and the CALL TV.

TV. (See "transfer vector'.)
UA. (See '"user area'.)

User area (abbr. UA). The area on the disk in which
all programs in disk system format are found. Core
image programs and data files may also be stored in
this area. All IBM-supplied programs are found
here. This area occupies as many sectors as are
required to store the programs and files residing
there.

User programs. Mainlines, subprograms, or core
loads that have been written by the user and stored
in the User/Fixed Area.

Working storage (abbr. WS). The area on disk
immediately following the last sector occupied by the
User Area. This is the only one of the three major
divisions of disk storage (IBM Area, User/Fixed
Area, Working Storage) that does not begin at a
cylinder boundary.

WS. (See "working storage'.)

ADRWS program 76
Arithmetic subroutines 75
ARITHMETIC TRACE (see FORTRAN control records)
ASM (see monitor control records)
Assembler 31
Assembler control records
COMMON 34
LEVEL 34
LIST 31
LIST DECK 32
LISTDECKE 32
OVERFLOW SECTORS 34
PRINT SYMBOL TABLE 33
PUNCH SYMBOL TABLE 33
SAVE SYMBOL TABLE 33
SYSTEM SYMBOL TABLE 33
TWO PASS MODE 31
Assembler instructions, new 31
Assembler language 35
A-Conversion (FORTRAN) 50

BACKSPACE statement (FORTRAN) 49
BIDEC subroutine 72

Card core image format (CDC) 89
Card data format (CDD) 89
Card system format (CDS) 88
Cartridge ID (see cylinder 0, system cartridge)
Cartridge identification (see cylinder O, system cartridge)
Cartridge -related parameters
in core (see core communications area)
on disk (see disk communications area)
Character codes 82
CIB ID (see JOB monitor control record)
Cold start procedure 10
Cold start program 7
(see also cold start procedure)
COMMA (see core communications area)
Comments (see monitor control records)
COMMON saved between links 56
(see also assembler control records)
COPY program 76
Core communications area (COMMA) 10
Core dump program
console printer 80
printer (1403/1132) 80
Core image buffer (CIB)
general 6
use by core load builder 54
use by core image loader 56
Core image header
construction by the core load builder 53
disk core image format 87
(see also core load)

INDEX

Core image loader
detail 56
general 8
Core load builder
detail 52
general 7
Core load
construction 52
layout in core 57
layout on disk 26, 52
origin assignment 54
Cylinder O
non-system cartridge 3
system cartridge 3

Data cards, card system format 89
Data code conversion subroutines 69
Data codes 69
Data definition statements (assembler)
DMES 37
DN 37
DATA statement (FORTRAN) 48
DCIP program 80
DCOM (see disk communications area)
DECBI subroutine 73
Defective sectors
detected by DCIP 80
handled by disk I/0 62
(see also cylinder 0, system cartridge)
DEFINE
core size 29
fixed area 28
principal input 29
principal print 29
void assembler 29
void FORTRAN 29
Defined files, processed by core load builder (see core load builder)
(see also FILES supervisor control record and FILE statement)
DELETE 28
DISC program 76
Disk address calculation 64
Disk cartridge initialization program (DCIP) 80
Disk communications area (DCOM) 6
Disk core image format (DCI) 87
Disk data format (DDF) 87
Disk I/O subroutine
DISKO (see DISK1)
DISK!1 61
DISKN 61
DISKZ 68
general 61
in resident monitor 11
length 11
Disk system format (DSF) 86

Index 97

Disk maintenance programs
ADRWS 76
COPY 76
DISC 76
DLCIB 76
m 76
IDENT 76
MODIF 77
Sysup 79
Disk system format (DSF) 86
Disk utility program (DUP)
control record format 20
DCOM indicators 20
DEFINE 28
DELETE 28
detail 18
DUMP 22
DUMPDATA 22
DUMPFLET 23
DUMPLET 23
DWADR 30
format conversion 18
general 7
snformation transfer 18
STORE 24
STORECI 26
STOREDATA 24
STOREDATACI 25
STOREMOD 27
use of LET/FLET 18
DISKN subroutine 61
DISKZ subroutine 68
DISKO subroutine (see DISK1 subroutine)
DISK1 subroutine 61
Disk-resident system 3
DLCIB program 76
DMES statement (assembler) 37
DN statement (assembler) 37
DUMP entry point (see skeleton supervisor)
DUMP program (see supervisor programs)
DUMP statement (assembler) 41
DUMPDATA 22
DUMPFLET 23

DUMPLET 23
Dumps
dynamic 12

from FORTRAN 50

terminal 12
DUP (see disk utility program)

(see also monitor control records)
DWADR 30

(see also ADRWS subroutine)

EBPRT subroutine 72

EJCT statement (assembler) 41

END FILE statement (FORTRAN) 50
End-of-program (EOP) card, card system format 89
EOP card (see end-of-program card)

EXIT entry point (see skeleton supervisor)

98

Extended machine instruction mnemonics, new
B 35
BC 35
BN 35
BNN 35
BNP 38
BNZ 35
BO 35
BOD 37
BP 35
BZ 35
MDM 37
SKP 35
XCH 37
EXTENDED PRECISION (see FORTRAN control records)

File protection 61, 62
FILE statement (assembler) 42
FILES (see supervisor control records)
Fixed area (FX) 8
Fixed location equivalence table (FLET) 8
FLET (see fixed location equivalence table)
FOR (see monitor control records)
Format conversion via DUP 18
Format indicator (see disk utility program)
FORTRAN compiler

detail 44

general 7
FORTRAN control records

ARITHMETIC TRACE 47

EXTENDED PRECISION 46

header information 46

10CS 44

LIST ALL 46

1IST SOURCE PROGRAM 45

LIST SUBPROGRAM NAMES 45

LIST SYMBOL TABLE 45

NAME 46

ONE WORD INTEGERS 46

TRANSFER TRACE 47
FORTRAN I/0O subroutines 67
FORTRAN language 48
FORTRAN logical I/O unit.numbers 44
Function subroutines 75
FX (see fixed area)

Header information (see FORTRAN control records)
HOLPR subroutine 71

1D program 76

IDENT program 76

ILS header card, card system format 89

11802 subroutine (see skeleton supervisor)

11.S04 subroutine (see skeleton supervisor)

ILS/1SS correspondence 75

Information transfer via DUP 18

Initial program load-IPL (see cold start procedure)
Input stream 1

Interrupt service subroutines (ISSs) 58 Monitor system statements (assembler)

IOCS (see FORTRAN control records) DUMP 41
IPL (see cold start procedure) FILE 42
1SS header card, card system format 88 PDMP 42
I8Ss (see interrupt service subroutines)
ISS/ILS correspondence 75 NAME (see FORTRAN control records)
1/0O without data conversion (FORTRAN) 50 NOCAL (see supervisor control records)
NOCAL usage, rules for 17
Job 1 Non-system cartridge (see disk-resident system)
JOB (see monitor control records)
Job initialization procedure (see JOB monitor control record) OMPRI1 subroutine 65
ONE WORD INTEGERS (see FORTRAN control records)
LET (see location equivalence table) Origin
LET/FLET usage by DUP 18 of mainlines (assembler) 35
LEVEL (see assembler control records) of core load 54
LINK entry point (see skeleton supervisor) OVERFLOW SECTORS (see assembler control records)
Link~to-link transfer (see core image loader)
Link-to-supervisor transfer (see core image loader) Paper tape core image format (PTC) 90
LIST (see assembler control records) Paper tape data format (PTD) 90
LIST ALL (see FORTRAN control records) Paper tape format, assembler input 35
List control statements (assembler) Paper tape mainline programs
EJCT 41 PTREP 79
LIST 40 PTUTL 79
SPAC 41 Paper tape system format (PTS) 90
LIST DECK (see assembler control records) PAPPR subroutine 70
LIST DECK E (see assembler control records) PAUS (see monitor control records)
List deck format 32 PDMP statement (assembler) 42
LIST SOURCE PROGRAM (see FORTRAN control records) PDUMP subprogram (see dumps from FOR TRAN)
LIST statement (assembler) 40 PNCHZ subroutine 68
LIST SUBPROGRAM NAMES (see FORTRAN control records) PNCHO subroutine 59
LIST SYMBOL TABLE (see FORTRAN control records) PNCH1 subroutine 59
LOCAL (see supervisor control records) Preoperative error trap (see skeleton supervisor)
LOCAL flipper 55 Print data format (PRD) 90
LOCAL usage, rules for 17 PRINT SYMBOL TABLE (see assembler control records)
LOCALs, provision for (see core load builder) PRNT3 subroutine 64
Location equivalence table (LET) 9 PRNZ subroutine 68
Logical 1/O unit numbers (FORTRAN) 44 Program header, disk system format 86
Low COMMON 56 PROGRAM STOP key trap (see skeleton supervisor)
Program subtype, disk system format 87
Machine instruction mnemonics 35 Program type, disk system format 87
Mainline header card, card system format 88 PTREP program 79
Mainline object program, conversion by core load builder 53 PTUTL program 79
Mainline origin (assembler) 35 PUNCH SYMBOL TABLE (see assembler control records)
Manipulative input/output statements (FORTRAN)
BACKSPACE 49 READZ subroutine 68
END FILE 50 READO subroutine 58
REWIND 49 READ1 subroutine 58
Master cartridge (see disk-resident system) Resident image 6
MODIF program 77 Resident monitor 10
Monitor control record analyzer (see supervisor programs) REWIND statement (FORTRAN) 49
Monitor control records
ASM 13
comments 15 Satellite cartridge (see disk-resident system)
DUP 13 SAVE SYMBOL TABLE (see assembler control records)
FOR 13 SCRA (see supervisor control record area)
JOB 12 Sector numbering 61
PAUS 14 Skeleton supervisor
TEND 14 DUMP entry point 10
TYP 14 EXIT entry point 10
XEQ 13 ILSO2 subroutine 10

Index 99

JLS04 subroutine 10 System library maintenance (see MODIF program)

LINK entry point 10 System operation 1

preoperative error trap 11 System overlays (SOCALs) 54

PROGRAM STOP key trap 11 System program maintenance (see MODIF program)
SOCAL flipper 55 SYSTEM SYMBOL TABLE (see assembler control recordls)
SOCALs, provision for (see core load builder) SYSUP program 79
SPAC statement (assembler) 41
Stacked job environment 1 Temporary mode indicator (see disk utility program)
STORE 24 (see also JOB monitor control record)
STORECI 26 TEND (see monitor control record)
STOREDATA 24 Terminal dumps 12
STOREDATACI 25 TRANSFER TRACE (see FORTRAN control records)
STOREMOD 27 Transfer vector (TV) 54
Subjob 1 TV (see transfer vector)
Subprogram header card, card system format 88 TWO PASS MODE (see assembler control records)
Subprogram(s), incorporated in a core load (see core load builder) TYP (see monitor control records)
Subroutines used by FORTRAN 67 T-Format code (FORTRAN) 51
Supervisor

detail 10 UA (see user area)

general 7 User area (UA) 9
Supervisor control record area (SCRA) Utility programs

detail 11 console printer core dump 80

general 8 disk cartridge initialization program (DCIP) 80
Supervisor control records printer (1403/1132) core dump 80

FILES 16

LOCAL 15 Working storage (WS) 9

NOCAL 16 Working storage ID (see JOB monitor control record)

processed by core load builder 53 Working storage indicator (see disk utility program)
Supervisor programs 11 Working storage, used in core load construction (see core load
System area 6 builder) '
System cartridge (see disk-resident system) WS (see working storage)

System device subroutine area 6
4 . . XEQ (see monitor control records)
System device subroutines 7

System library 58 ; ZIPCO subroutine 73

100

C26-3709-0

LBV

®

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
~ 821 United Nations Plaza, New York, New York 10017
[International]

‘vs'nurpaiutd Q¢IT WAl

0-604€-92D

e e e e e e e e e e e — — . . — —— . . . —_— e e . — — — s . e . . — —— — —— . — —— — . —— — — — — —

|
|

REASER'S COMMENT FORM

IBM 1130 Disk Monitor System, Version 2 Form C26-3709-0
System Introduction

® Your comments, accompanied by answers to the following questions, help us produce better
publications for your use. If your answer to a question is “No” or requires qualification,
please explain in the space provided below. Comments and suggestions become the property of

IBM.
Yes No
® Does this publication meet your needs? O O
¢ Did you find the material:
Easy to read and understand? O O
Organizéd for convenient use? O O
Complete? O OJ
Well illustrated? | O
Written for your technical level?] O
® What is your occupation?
® TJow do you use this publication?
As an introduction to the subject? O As an instructor in a class? []
For advanced knowledge of the subject? O As a student in a class? O
For information about operating procedures? [] As a reference manual? |

Other
® Please give specific page and line references with your comments when appropriate.

COMMENTS

" e Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

C26-3709-0

YOUR COMMENTS, PLEASE...

This SRL bulletin is one of a series which serves as reference sources for systems analysts,

programmers and operators of IBM systems. Your answers to the questions on the back of

this form together with your comments, will help us produce better publications for your

use. Each reply will be carefully reviewed by the persons responsible for writing and pub-
~ lishing this material. All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in utilizing your IBM
system should be directed to your IBM representative or to the IBM sales office serving
your locality.

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A,

POSTAGE WILL BE PAID BY . . .

IBM Corporation
Monterey & Cottle Rds.
San Jose, California
95114

Attention: Programming Publications, Dept. 232

TSI,

@

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y.10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

FIRST CLASS
PERMIT NO. 2078
SAN JOSE, CALIF.

‘vV'snupaiund QO¢TT WAL

0-60L£-920

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	replyA
	replyB

