

Application Program

GH20-0252-4

1130 Scientific Subroutine Package

Programmer's Manual

Program Number 1130-CM-02X

The Scientific Subroutine Package (SSP) is a collection of 121 FORTRAN subroutines divided, for the sake of presentation, into three groups: statistics, matrix manipulation, and other mathematics. It is a collection of input/outputfree computational building blocks that can be combined with a user's input, output, or computational routines to meet his needs. The package can be applied to the solution of many problems in industry, science, and engineering.

Fifth Edition (June 1970)

This edition, GH20-0252-4, is a reprint of H20-0252-3 incorporating TNL N20-1962 and changing the order number prefix from H20 to GH20. It does not obsolete H20-0252-3 as updated by N20-1962.

This edition applies to Version 1, Modification 2 of the 1130 Scientific Subroutine Package (1130-CM-02X) and to all subsequent versions and modifications until otherwise indicated in new editions or Technical Newsletters.

Changes are continually made to the specifications herein. Before using this publication in connection with the operation of IBM systems, consult the latest 1130 SRL Newsletter, N20-1130, for the editions that are applicable and current.

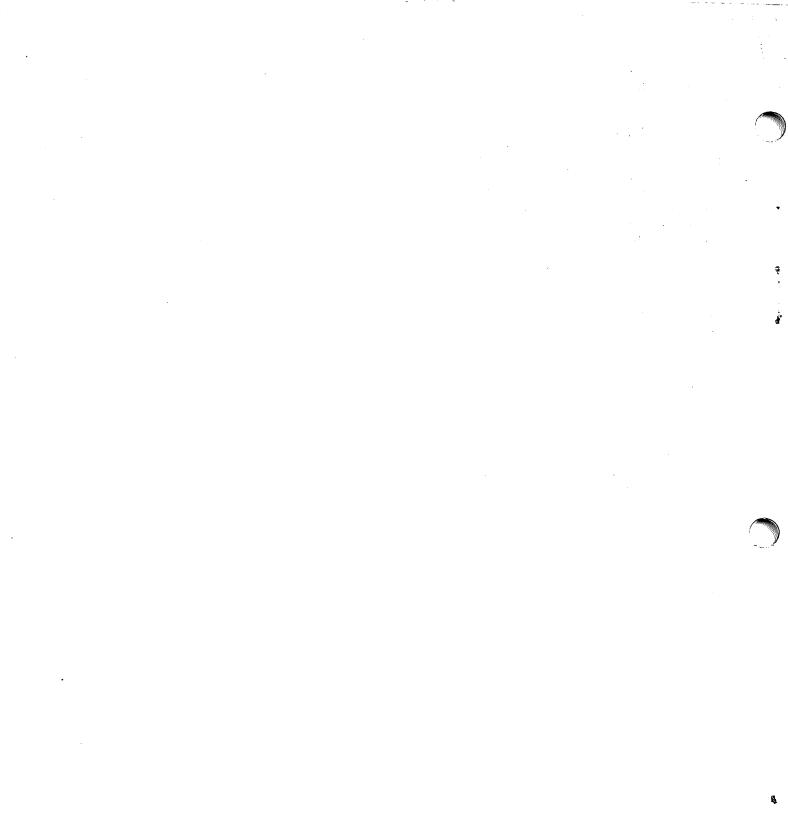
Copies of this and other IBM publications can be obtained through IBM branch offices.

A form for readers' comments is provided at the back of this publication. If this form has been removed, address comments to: IBM, Technical Publications Department, 112 East Post Road, White Plains, N.Y. 10601.

© Copyright International Business Machines Corporation 1967, 1968

CONTENTS

.


•

.....

Introduction	1
Areas of Application	1
Statistics	1
Matrix Manipulation	1
Other Mathematical Areas	1
Characteristics	1
Design Philosophy	2
Choice of Algorithms	2
Programming	2
Overall Rules of Usage	3
General Rules	3
Matrix Operations	3
Variable Dimensioning	3
Storage Compression	4
Matrix Element References	5
	5

Program Modification	7
Optimization of Time	7
Extended Precision	7
Format of the Documentation	8
Subroutine Descriptions	8
Sample Program Descriptions	8
Machine Configuration	8
Guide to Subroutines	9
Subroutine Listings and Writeups	13
Appendix A. Alphabetic Guide to Subroutines and Sample Programs, with Storage	
Requirements	128
Appendix B. Accuracy of Subroutines	133
Appendix C. Timing	137
Appendix D. Sample Programs	138

.

INTRODUCTION

The IBM 1130 Scientific Subroutine Package makes available a mathematical and statistical subroutine library. The user may supplement or modify the collection to meet his needs. This library includes a wide variety of subroutines to perform the functions listed below, but is not intended to be exhaustive in terms of either functions performed or methods used.

AREAS OF APPLICATION

Individual subroutines, or a combination of them, can be used to carry out the listed functions in the following areas:

Statistics

- Analysis of variance (factorial design)
- Correlation analysis
- Multiple linear regression
- Polynomial regression
- Canonical correlation
- Factor analysis (principal components, varimax)
- Discriminant analysis (many groups)
- Time series analysis
- Data screening and analysis
- Nonparametric tests
- Random number generation (uniform, normal)

Matrix Manipulation

- Inversion
- Eigenvalues and eigenvectors (real symmetric case)
- Simultaneous linear algebraic equations
- Transpositions
- Matrix arithmetic (addition, product, etc.)
- Partitioning
- Tabulation and sorting of rows or columns
- Elementary operations on rows or columns

Other Mathematical Areas

- Integration of given or tabulated functions
- Integration of first-order differential equations
- Fourier analysis of given or tabulated functions
- Bessel and modified Bessel function evaluation
- Gamma function evaluation
- Legendre function evaluation
- Elliptic, exponential, sine, cosine, Fresnel integrals
- Finding real roots of a given function
- Finding real and complex roots of a real polynomial
- Polynomial arithmetic (addition, division, etc.)
- Polynomial evaluation, integration, differentiation

CHARACTERISTICS

Some of the characteristics of the Scientific Subroutine Package are:

- All subroutines are free of input/output statements.
- Subroutines do not contain fixed maximum dimensions for the data arrays named in their calling sequences.
- All subroutines are written in 1130 FORTRAN.
- Many matrix manipulation subroutines handle symmetric and diagonal matrices (stored in economical, compressed formats) as well as general matrices. This can result in considerable saving in data storage for large arrays.
- The use of the more complex subroutines (or groups of them) is illustrated in the program documentation by sample main programs with input/output.
- All subroutines are documented uniformly.

CHOICE OF ALGORITHMS

The algorithms in SSP have been chosen after considering questions of storage, accuracy, and past experience with the algorithm. Conservation of storage has been the primary criterion except in those situations where other considerations outweighed that of storage. As a result, many compromises have been made both with respect to level of sophistication and execution time. One such compromise is the use of the Runge-Kutta integration technique rather than predictor-corrector methods. A departure from the primary criterion of storage is illustrated by the algorithm for matrix inversion. If only row pivoting had been used, the subroutine would not have required working storage and would have needed fewer FORTRAN statements for implementation. However, pivoting on both rows and columns was chosen because of the accuracy requirement for matrix inversion in statistical operations.

PROGRAMMING

The subroutines in SSP have been programmed in 1130 FORTRAN. Many of the larger functions such as those in statistics have been programmed as a series or sequence of subroutines. An example of the use of sequences of subroutines is the statistical function called factor analysis. Factor analysis is a method of analyzing the intercorrelations within a set of variables. It determines whether the variance in the original set of variables can be accounted for adequately by a smaller number of basic categories; namely, factors. In the Scientific Subroutine Package, factor analysis is normally performed by calling the following five subroutines in sequence:

1. CORRE - to find means, standard deviations, and correlation matrix

2. EIGEN - to compute eigenvalues and associated eigenvectors of the correlation matrix

ø

3. TRACE - to select the eigenvalues that are greater than or equal to the control value specified by the user

4. LOAD - to compute a factor matrix

5. VARMX - to perform varimax rotation of the factor matrix

The multiple use of subroutines is illustrated by the fact that subroutine CORRE is also utilized in the multiple linear regression and canonical correlation. Subroutine EIGEN is used in canonical correlation as a third level subroutine.

GENERAL RULES

All subroutines in the Scientific Subroutine Package (SSP) are entered by means of the standard FORTRAN CALL statement. These subroutines are purely computational in nature and do not contain any references to input/output devices. The user must therefore furnish, as part of his program, whatever input/ output and other operations are necessary for the total solution of his problem. In addition, the user must define by DIMENSION statements all matrices to be operated on by SSP subroutines as well as those matrices utilized in his program. The subroutines contained in SSP are no different from any usersupplied subroutine. All of the normal rules of FORTRAN concerning subroutines must, therefore, be adhered to with the exception that the dimensioned areas in the SSP subroutine are not required to be the same as those in the calling program.

The CALL statement transfers control to the subroutine and replaces the dummy variables in that subroutine with the value of the actual arguments that appear in the CALL statement if the argument is a constant or a variable. When the argument is an array or function subprogram name, the address of the array or subprogram is transmitted to the called subroutine.

The arguments in a CALL statement must agree in order, number, and type with the corresponding arguments in the subroutine. A number may be passed to a subroutine either as a variable name in the argument list or as a constant in the argument list. For example, if the programmer wishes to add matrix AR1 to matrix AR2 in order to form matrix AR3 using the SSP subroutine GMADD and if AR1 and AR2 are both matrices with ten rows and twenty columns, either of the two following methods could be used:

Method 1

CALL GMADD (AR1, AR2, AR3, 10, 20)

```
Method 2
```

N = 10

$$M = 20$$

Many of the subroutines in SSP require the name of a user function subprogram or a FORTRANsupplied function name as part of the argument list in the CALL statement. If the user's program contains such a CALL, the function name appearing in the argument list must also appear in an EXTERNAL statement at the beginning of that program.

For example, the SSP subroutine RK2 integrates a function furnished by the user. It is therefore necessary for the user to program the function and give the name of the function to RK2 as a parameter in the CALL statement. If the user wished to integrate the function $\frac{dy}{dx} = 3.0x + 2.0Y$, his main program might look like:

EXTERNAL DERY

His function subprogram could be:

FUNCTION DERY (X, Y) DERY=3.0*X+2.0*Y RETURN END

The user's main program gives the name of the programmed function to RK2 by including that name in the CALL statement and in an EXTERNAL statement. RK2, in turn, goes to the function DERY each time it requires a value for the derivative. The subroutine RK2 is not modified by the programmer. The dummy function name FUN in subroutine RK2 is, in effect, replaced by the name appearing in the user's CALL statement during execution of the subroutine.

MATRIX OPERATIONS

Special consideration must be given to the subroutines that perform matrix operations. These subroutines have two characteristics that affect the format of the data in storage--variable dimensioning and data storage compression.

Variable Dimensioning

Those subroutines that deal with matrices can operate on any size array limited, in most cases, only by the available core storage and numerical analysis considerations. The subroutines do not contain fixed maximum dimensions for data arrays named in their calling sequence. The variable dimension capability has been implemented in SSP by using a vector storage approach. Under this approach, each column of a matrix is immediately followed in storage by the next column. Vector storage and two-dimensional storage result in the same layout of data in core, so long as the number of rows and columns in the matrix are the same as those in the user's dimension statement. If, however, the matrix is smaller than the dimensioned area, the two forms of storage are not compatible.

Consider the layout of data storage when operating on a 5 by 5 array of numbers in an area dimensioned as 10 by 10. If the programmer has been using double subscripted variables in the normal FORTRAN sense, the 25 elements of data will appear as shown in Figure 1. FORTRAN stores double subscripted data by column based on the column length specified in the DIMENSION statement. Thus, in the example, sequential core locations would contain data elements 1 to 5, five blank locations, data elements 6 to 10, five blank locations, etc. The matrix subroutines take a vector approach in storing arrays by column, which means that they assume the data is stored as shown in Figure 2.

		Column									
		1	2	3	4	5	6	7	8	9	10
W	1 2 3 4 5 6 7 8	(1) (2) (3) (4) (5)	(6) (7) (8) (9)	(11) (12) (13) (14)) (15)	(16) (17) (18) (19)	(2) (2) (2) (2)	1) 2) 3) 4)				
	9 10										

Figure 1. Double subscripted data storage

(1)	(11)	(21)
(2)	(12)	(22)
(3)	(13)	(23)
(4)	(14)	(24)
(5)	(15)	(25)
(6)	(16)	
(7)	(17)	
(8)	(18)	
(9)	(19)	
(10)	(20)	

Figure 2. Vector storage

As has been stated previously, for the case where the dimensioned area is the same as the matrix size, the two approaches will have the same data storage layout and the user can proceed in a regular double subscripted fashion. If, however, he is operating in a mode where the dimensioned area is larger than the arrays and if he wishes to use the SSP subroutines, he must be certain that his data is stored in the vector fashion illustrated by Figure 2. A subroutine called ARRAY is available in SSP to change from one form of storage to the other. In addition, a subroutine called LOC is available to assist in referencing elements in an array stored in the vector fashion.

2

Storage Compression

Many subroutines in SSP can operate on compressed forms of matrices, as well as the normal form. Using this capability, which is called "storage mode", considerable savings in data storage can be obtained for special forms of large arrays. The three modes of storage are termed general, symmetric, and diagonal. In this context, general mode is one in which all elements of the matrix are in storage. Symmetric mode is one in which only the upper triangular portion of the matrix is retained columnwise in sequential locations in storage. (The assumption is made that the corresponding elements in the lower triangle have the same value.) Diagonal mode is one in which only the diagonal elements of the matrix are retained in sequential locations in storage. (The off-diagonal elements are assumed to be zero.) This capability has been implemented using the vector storage approach. To illustrate the effect of the storage mode capability, refer to Figure 3. A symmetric matrix is shown in Figure 3A. If this array is to be manipulated using the SSP matrix subroutines with storage mode capability, then the array may be stored as shown in Figure 3B. This is the upper triangular portion of the array and corresponds to a storage mode code of 1. Symmetric matrices of order N may be stored in a vector only $N^{*}(N+1)/2$ locations rather than N*N locations. For larger matrices, this will be a saving of almost one half.

The effect of storage mode when dealing with diagonal matrices is even more pronounced. Diagonal matrices of order N may be stored in a vector only N locations long. Figure 3C shows a 3 by 3 diagonal matrix. If this array is to be manipulated using the SSP matrix subroutines with storage mode capability, then only the diagonal elements of the array need be stored. This is shown in Figure 3D and corresponds to a storage mode code of 2.

General matrices of order N by M require a vector N*M long and use a storage mode code of 0.

Roy

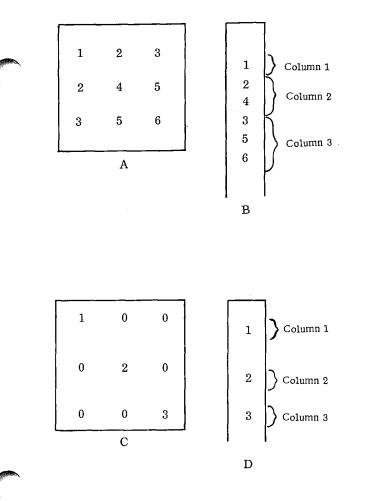


Figure 3. Storage mode

Thus, if the programmer wishes to use SSP subroutines on matrix A, which is general, matrix B, which is symmetric, and matrix C, which is diagonal, and all matrices are 10 by 10 or smaller, the dimension statement in his program could be:

DIMENSION A(100), B(55), C(10)

Matrix Element References

Subroutine LOC in the Scientific Subroutine Package may be used to reference elements within a matrix that is stored in a vector fashion and may involve storage mode compression. The calling sequence for LOC is:

CALL LOC (I, J, IJ, N, M, MS)

The capabilities of subroutine LOC are as follows: If reference is required to the element at row I and column J of matrix A whose dimensions are N by M and if the storage mode code is MS, then a CALL to the LOC subroutine as shown above will result in the computation of the subscript IJ such that A(IJ) is the desired element. The parameters represented by I, J, N, M, MS can either be integer variables or integer constants. The parameter represented by IJ is an integer variable. Note that the user must dimension the array A as a single subscripted variable to meet the restrictions of some FORTRAN systems. To illustrate the use of LOC: If reference is required to the element at row 2, column 2 of the 3 by 3 symmetric matrix illustrated in Figure 3A and stored as shown in Figure 3B (storage mode code 1), the sequence might be:

The value of IJ computed by LOC would be 3; meaning that the proper element is the third element in the specially stored symmetric matrix (Figure 3B). If the storage mode code is for a symmetric matrix where only the upper triangular portion is retained in storage and if I and J refer to an element in the lower triangular portion, IJ will contain the subscript for the corresponding element in the retained upper triangle. Thus if the user wanted the element in row 3, column 1 of the matrix shown in Figure 3A and the array was stored as in Figure 3B, the statement:

CALL LOC (3, 1, IJ, 3, 3, 1)

would result in LJ having the value of 4; that is, the fourth element in Figure 3B. If a matrix is stored as shown in Figure 3D (storage mode 2) and LOC is used to compute the subscript for an off-diagonal element (I not equal to J), the result in LJ will be zero. This is due to the fact that the element does not exist in storage. In this situation, the user must not utilize LJ as a subscript. Following is an illustration of how to take care of this condition and also handle the case where the current storage mode is unknown.

If the user wishes to set a variable X equal to the element in the third row and fourth column of a 10 by 10 array named A for either a symmetric, diagonal, or general matrix, the required program can be implemented for any storage mode MS as follows:

CALL LOC (3, 4, IJ, 10, 10, MS) X = 0.0 IF(IJ)20, 30, 20 20 X = A(IJ)

30 -----

MS is assumed to have been set at 0, 1, or 2 at some earlier point in the program. This sequence would then set the proper value for X given any storage mode that might be encountered. The second and third statements take care of the off-diagonal condition for a matrix with a storage mode of 2.

As a special case, LOC can be used to compute the total length of an array in storage with a statement such as:

CALL LOC (N, M, IJ, N, M, MS)

For example, if the user has a 3 by 3 matrix whose storage mode is 1 (Figure 3B), the statement:

CALL LOC (3, 3, IJ, 3, 3, 1)

will result in LJ being set to 6. This is not only the proper subscript to reference element 3, 3 but is also the actual length of the vector in storage.

The information contained in the fifth parameter (number of columns) in the calling sequence for LOC is not actually used in the calculations performed by LOC. It has been included in the calling sequence in case the user wishes to expand LOC to cover other forms of data storage.

2

OPTIMIZATION OF TIME

G

The subroutines in SSP are designed to conserve storage. If the user wishes to exchange space for time, there are several ways in which SSP may be modified to effect this end. For example, many of the subroutines in SSP make use of LOC subroutine to handle vector storage and storage mode referencing. The execution time of these subroutines can be substantially reduced by implementing LOC in Assembler Language. (The distributed version of LOC is implemented in FORTRAN.) Another approach is to incorporate the function of LOC within each subroutine and thus avoid the "setup" costs of repeated calls to LOC. This has the effect of reducing execution time but at some cost in subroutine storage and in the ease with which other modes of storage such as triangular matrix storage or storage by row rather than by column can be implemented. Figure 4 shows how matrix addition and the LOC capabilities can be implemented within the same subroutine.

In the mathematical area, the user may find it desirable to implement entirely different algorithms for integration. The use of techniques that automatically adjust the integration interval depending on the rate of change of the function will often have the effect of reducing total execution time.

EXTENDED PRECISION

The accuracy of the computations in many of the SSP subroutines is highly dependent upon the number of significant digits available for arithmetic operations. Matrix inversion, integration, and many of the statistical subroutines fall into this category. All of the subroutines will compile correctly for extended precision by placing the *EX-TENDED PRECISION control card at the appropriate place in the deck. Note that 1130 FORTRAN does not allow the intermixing of regular and extended precision in the same program.

```
SUBROUTINE MACK(A,B,R,N,M,MSA,PSE)
DIMENSION A(1),B(1),R(1)
č
              TEST FOR SAME STORAGE MODE
         IF(MSA-MSB) 30,10,30
              COMPUTE VECTOR LENGTH
    10 ND=N+M
IF(MSA-1) 2
22 ND=(ND+N)/2
GO TC 24
                      24,22,23
    23 ND=N
C
              ADD MATRICES OF SAME STORAGE MODE
č
    24 CO 25 I=1.NC
25 R(1)=A(1)+B(1)
RETURN
С
С
С
              GET STORAGE MCDE OF GUTPUT MATRIX
     30 MTEST=MSA+MSB
         mak=0
IF(MTEST) 35,35,32
MSR=1
     35 DB 60 J=1.M
CC 60 I=1.N
C
C
C
              LOCATE ELEMENT IN OUTPUT MATRIX
         KX=-1
MS=MSR
GO TO (
IJR=IR
     40
000
              LOCATE ELEMENT IN MATRIX A
          KX=0
PS=HSA
         FS=FSA
GO TO 65
IJA=IR
AEL=0.0
IF(IJA) 46,48,46
AEL=A(IJA)
     45
              LOCATE ELEMENT IN MATRIX 8
     48
         KX=1
          MS*MSB
GO TC 65
     50 IJE=18
          BEL=0.0
     IF(IJB) 55,60,55
55 BEL=B(IJE)
C
C
C
              ADD MATRICES OF DIFFERENT STORAGE MODES
     60 R(IJR)≃AEL+BEL
RETURN
CCCC
              IN LINE LOC
     65 IF(#S-1) 70,75,9C
70 IR=N+(J-1)+1
    70 IN=K*((-1)+1
GC TC 95
75 IF(I-J) 80,85,85
80 IN=I+(J*J-J)/2
GO TC 95
85 IR=J+(I*I-1)/2
GO TC 95
90 IR=0
     90 IR=0
          IF(I-J) 95,92,95
     92 IR=1
95 IF(KX) 40,45,50
         ENC
```

Figure 4. Inline LOC

The major portion of this manual consists of the documentation for the individual subroutines and the sample programs.

SUBROUTINE DESCRIPTIONS

A guide to the subroutines, designed to aid in locating any particular subroutine, is given in the pages that follow. Each of the subroutine descriptions contains a program listing and, in some cases, a mathematical description. If there are restrictions on the ranges of values that the parameters may take, these are included under the remarks section of each subroutine description. References to books and periodicals will be found under the method section of the description. The mathematical description pages do not, in most cases, indicate the derivation of the mathematics. They are intended to indicate what mathematical operations are actually being performed in the subroutines. Some of the major statistical functions are performed by a sequence of SSP subroutines. An abstract describing this sequence will be found just before the description of the first subroutine that is specific to this function.

SAMPLE PROGRAM DESCRIPTIONS

The sample program listings are given in Appendix D. They are immediately preceded by a guide to aid in locating the sample program calling a particular SSP subroutine or (where applicable) typical user-written subroutine. Each sample program consists of a detailed description including information on the problem, the program, input, output, program modification, operating instructions, error messages, and machine listings of the programs, input data and output results. Timings for these programs is given in Appendix C. The sample programs have been chosen to (1) illustrate a sequence of SSP subroutines, (2) illustrate the use of a complex subroutine, or (3) show the way in which one member of a large set of related subroutines might be used.

As part of the development of the sample programs, some special sample subroutines have been implemented that may prove useful to the programmer. These include:

HIST - Print a histogram of frequencies

- MATIN Read an input matrix into storage in vector form for use by SSP matrix subroutines
- PLOT Plot several variables versus a base variable
- MXOUT Print a matrix stored in the SSP vector format

ø

Listings of the above subroutines are included in the sample program documentation in this manual.

The sample programs all require 8K words of core for execution and several of them require (in addition) the overlay capabilities of the Disk Monitor.

MACHINE CONFIGURATION

The machine configuration necessary to run SSP/1130 is dependent upon the use that is to be made of the package. All of the subroutines are I/O free, compile to less than 1500 words of core, and are, therefore, configuration independent. However, many of the routines are intended to be used in conjunction with other subroutines or to solve problems using large arrays of data. For this reason, many of the subroutines are not useful with less than 8K words of core.

The following items should be taken into consideration when deciding upon the applicability of this package to a particular machine configuration:

1. The size of problem which may be executed on a given 1130 depends upon the number of subroutines used, the size of the compiled subroutines, the size of the compiled main program, the size of the control program, and the data storage requirements.

2. SSP/1130 programs will be distributed in card form only.

3. Several of the sample problems require 8K words of core and the use of the Disk Monitor, and the remaining sample problems require 8K words of core.

It is possible to estimate program sizes by using the manual <u>Core Requirements for 1130 FORTRAN</u> (C20-1641) in conjunction with the core size listing found in Appendix A.

GUIDE TO SUBROUTINES

ŧ

Q

Û

ą

õ

	Page	
STATISTICS		Analysis of Variance
Data Screening		AVDATdata storage allocation
TALLYtotals, means, standard	13	AVCAL Σ and Δ operation
deviations, minimums, and maximums		MEANQmean square operation
BOUNDselection of observations within bounds	14	Discriminant Analysis
	15	DMATXmeans and dispersion matrix
SUBSTsubset selection from observation matrix	15	DISCRdiscriminant functions
ABSNTdetection of missing data	16	Factor Analysis
TAB1tabulation of data (1 variable)	16	TRACEcumulative percentage of eigenvalues
TAB2tabulation of data (2 variables)	18	-
SUBMXbuild subset matrix	20	LOADfactor loading
Elementary Statistics		VARMXvarimax rotation
MOMENfirst four moments	20	Time Series
MOMENfirst four moments	20	AUTOautocovariances
TTSTTtests on population means	21	CROSScrosscovariances
Correlation		
CORREmeans, standard deviations, and correlations	23	SMOapplication of filter coefficients (weights)
		EXSMOtriple exponential smoothing
Multiple Linear Regression		Nonparametric Statistics
ORDERrearrangement of inter- correlations	25	CHISQ x^2 test for a contingency table
MULTRmultiple regression and correlation	26	UTESTMann-Whitney U-test
Polynomial Regression		TWOAVFriedman two-way analysis o variance
GDATAdata generation	28	QTESTCochran Q-test
Canonical Correlation		SRANKSpearman rank correlation
CANORcanonical correlation	30	KRANKKendall rank correlation
NROOTeigenvalues and eigenvectors of a special nonsymmetric matrix	32	WTESTKendall coefficient of concordance

Page

 $\mathbf{42}$

 $\mathbf{43}$

	Page		Page
RANKrank observations	59	Random Number Generators	
TIEcalculation of ties in ranked observations	59	RANDUuniform random numbers	60
		GAUSSnormal random numbers	60

٠

•

ĝ

	Page		Page
MATHEMATICS OPERATIONS		CINTinterchange two columns	74
Special Matrix Operations		RSUMsum the rows of a matrix	74
MINVmatrix inversion	61	CSUMsum the columns of a matrix	75
EIGENeigenvalues and eigenvectors of a real, symmetric matrix	62	RTABtabulate the rows of a matrix	75
Matrices		CTABtabulate the columns of a matrix	76
GMADDadd two general matrices	64	RSRTsort matrix rows	77
GMSUBsubtract two general matrices	64	CSRTsort matrix columns	78
GMPRDproduct of two general matrices	65	RCUTpartition row-wise	79
GMTRAtranspose of a general matrix	65	CCUTpartition column-wise	79
GTPRDtranspose product of two general matrices	66	RTIEadjoin two matrices row-wise	80
MADDadd two matrices	66	CTIEadjoin two matrices column-wise	80
MSUBsubtract two matrices	67	MCPYmatrix copy	81
	67	XCPYcopy submatrix from given matrix	81
MPRDmatrix product (row into column)		RCPYcopy row of matrix into vector	82
MTRAtranspose a matrix	68	CCPYcopy column of matrix into vector	82
TPRDtranspose product	68	DCPYcopy diagonal of matrix into vector	83
MATAtranspose product of matrix by itself	69	SCLAmatrix clear and add scalar	83
SADDadd scalar to matrix	69	DCLAreplace diagonal with scalar	84
SSUBsubtract scalar from a matrix	70	MSTRstorage conversion	84
SMPYmatrix multiplied by a scalar	70	MFUNmatrix transformation by a function	85
SDIVmatrix divided by a scalar	71	RECPreciprocal function for MFUN	85
RADDadd row of one matrix to row of another matrix	71	LOClocation in compressed-stored	86
CADDadd column of one matrix to col- umn of another matrix	72	matrix ARRAYvector storage-double dimen-	86
SRMAscalar multiply row and add to another row	72	sioned storage conversion Integration and Differentiation	
SCMAscalar multiply column and add to	73	QSFintegral of equidistantly tabulated function by Simpson's Rule	87
another column RINTinterchange two rows	73	QATRintegral of given function by trapezoidal rule using Romberg's extrapolation method	88

.

6

Q

4

	Page		Page
Ordinary Differential Equations		Nonlinear Equations	
RK1integral of first-order differential equation by Runge-Kutta method	90	RTWIrefine estimate of root by Wegstein's iteration	116
RK2tabulated integral of first-order differential equation by Runge-Kutta method	91	RTMIdetermine root within a range by Mueller's iteration	117
RKGSsolution of a system of first-order differential equations with given	92	RTNIrefine estimate of root by Newton's iteration	119
initial values by the Runge-Kutta method		Roots of Polynomial	
Fourier Analysis		POLRTreal and complex roots of a real polynomial	120
FORIFFourier analysis of a given func-	95	Polynomial Operations	
tion		PADDadd two polynomials	122
FORITFourier analysis of a tabulated function	96	PADDMmultiply polynomial by constant and add to another polynomial	122
Special Operations and Functions		PCLAreplace one polynomial by another	122
GAMMAgamma function	97	PSUBsubtract one polynomial from another	123
LEPLegendre polynomial	98	PMPYmultiply two polynomials	123
BESJ-J Bessel function	99	PDIVdivide one polynomial by another	124
BESYY Bessel function	101	PQSDquadratic synthetic division of a polynomial	124
BESII Bessel function	103	PVALvalue of a polynomial	124
BESKK Bessel function	104	PVSUBsubstitute variable of polynomial	125
CEL1elliptic integral of the first kind	105	by another polynomial	
CEL2elliptic integral of the second kind	106	PCLDcomplete linear synthetic division	125
EXPIexponential integral	108	PILDevaluate polynomial and its first derivative	125
SICIsine cosine integral	110	PDERderivative of a polynomial	126
CSFresnel integrals	112	PINTintegral of a polynomial	126
Linear Equations		PGCDgreatest common divisor of two polynomials	126
SIMQsolution of simultaneous linear, algebraic equations	115	PNORMnormalize coefficient vector of polynomial	127

The following pages give the subroutine listings. Wherever necessary, additional explanatory matter on the routine, or a discussion of the underlying mathematics has been included.

Statistics - Data Screening

TALLY

Purpose:

Calculate total, mean, standard deviation, minimum, maximum for each variable in a set (or a subset) of observations.

Usage:

CALL TALLY(A, S, TOTAL, AVER, SD, VMIN, VMAX, NO, NV)

Description of parameters:

Α	-	Observation matrix, NO by NV
S		Input vector indicating subset of A.
		Only those observations with a non-
		zero S(J) are considered. Vector
		length is NO.
TOTAL	-	Output vector of totals of each vari-
		able. Vector length is NV.
AVER	-	Output vector of averages of each
		variable. Vector length is NV.
SD	-	Output vector of standard deviations
		of each variable. Vector length is
		NV.
VMIN	_	Output vector of minima of each
		variable. Vector length is NV.
VMAX	-	Output vector of maxima of each

vMAX - Output vector of maxima of each variable. Vector length is NV.

NO	- Number of observations.
NV	- Number of variables for each obser-
	vation.

Remarks:

None.

Subroutines and function subprograms required: None.

Method:

All observations corresponding to a non-zero element in S vector are analyzed for each variable in matrix A. Totals are accumulated and minimum and maximum values are found. Following this, means and standard deviations are calculated. The divisor for standard deviation is one less than the number of observations used.

	SUBROUTINE TALLY(A.S.TOTAL.AVER.SD.VMIN.VMAX.NO.NV)	TALLY 1
	DIMENSION A(1), S(1), TOTAL(1), AVER(1), SD(1), VMIN(1), VMAX(1)	TALLY 2
С	CLEAR DUTPUT VECTORS AND INITIALIZE VMIN.VMAX	TALLY 3
	DO 1 K=1-NV	TALLY 4
	TOTAL(K)=0.0	TALLY 5
	AVER (K)=0.0	TALLY 5
	SD[K]=0.0	TALLY 7
	VMIN(K)=1.0F38	TALLY 8
	1 VMAX(K)=-1.0E38	TALLY 9
с	TEST SUBSET VECTOR	TALLY 10
-	SCNT=0.0	TALLY 11
	D0 7 J=1-NO	TALLY 12
	IJ=J-NO	TALLY 13
	[F(S(J)) 2.7.2	TALLY 14
	2 SCNT=SCNT+1.0	TALLY 15
C	CALCULATE TOTAL. MINIMA. MAXIMA	TALLY 15
•	DD 6 I=1.NV	TALLY 17
	IJ=IJ+NO	TALLY 18
	TOTAL(1)=TOTAL(1)+A(1)	TALLY 19
	IF(A([J)-VMIN([)) 3,4,4	TALLY 20
	3 VNIN([])=A([])	TALLY 21
	4 [F(A(IJ)-VMAX(I)) 6.6.5	TALLY 22
	5 VNAX[]]=A[]])	TALLY 23
	6 SD(1)=SD(1)+A(1)) +A(1)	TALLY 74
	7 CONTINUE	TALLY 25
с	CALCULATE MEANS AND STANDARD DEVIATIONS	TALLY 26
-	DD 8 1=1.NV	TALLY 27
	AVER(1)=TOTAL(1)/SCNT	TALLY 28
	8 SD([]=SQRT(ABS((SD(1)-TDTAL(1)+TOTAL(1)/SCNT)/(SCNT-1.0)))	TALLY 29
	RETURN	TALLY 30
	END	TALLY 31
		ALL I II

14

BOUND

Purpose:

Select from a set (or a subset) of observations the number of observations under, between and over two given bounds for each variable.

Usage:

CALL BOUND (A, S, BLO, BHI, UNDER, BETW, OVER, NO, NV)

Description of parameters:

- A Observation matrix, NO by NV
- S Vector indicating subset of A. Only those observations with a non-zero S(J) are considered. Vector length is NO.
- BLO Input vector of lower bounds on all variables. Vector length is NV.
- BHI Input vector of upper bounds on all variables. Vector length is NV.
- UNDER Output vector indicating, for each variable, number of observations under lower bounds. Vector length is NV.
- BETW Output vector indicating, for each variable, number of observations equal to or between lower and upper bounds. Vector length is NV.
- OVER Output vector indicating, for each variable, number of observations over upper bounds. Vector length is NV.

- NO Number of observations
 - Number of variables for each observation

Remarks:

NV

None.

Subroutines and function subprograms required: None.

Method:

¢

с

с

c

Each row (observation) of matrix A with corresponding non-zero element in S vector is tested. Observations are compared with specified lower and upper variable bounds and a count is kept in vectors under, between, and over.

	SUBROUTINE BOUNDIA, S, BLO, BHI, UNDER, BETW, OVER, NO, NVI	ACUND	1
	DIMENSION A(1),S(1),BLO(1),BHI(1),UNDER(1),BETW(1),OVER(1)	BOUND	2
	CLEAR BUTPUT VECTORS.	BOUND	3
	0D 1 K=1,NV	BOUND	4
	UNDER (K) ≈0 •0	BOUND	5
	BETH(K)=0.0	BOUND	5
1	OVER(K)=0.0	BOUND	7
-	TEST SUBSET VECTUR	BOUND	8
	DD 8 J=1,ND	BOUND	9
		BOUND	10
	[F(S(J)) 2,8,2	BOUND	11
	COMPARE DESERVATIONS WITH BOUNDS	BOUND	12
2	DQ 7 1=1-NV	BOUND	13
-	IJ=IJ+ND	BUIND	14
	1F(A(14)-BLO(11) 5.3.3	BOUND	15
3	IF(A([J)-BHI([)) 4+4+6	ROUND	16
•	COUNT	BOUND	17
4	BETW(1)=8ETW(1)+1.0	BOUND	19
	GQ TO 7	BOUND	19
5	UNDER (1)=UNDER (1)+1+0	BOUND	20
-	GO TO 7	ROUND	21
6	OVER(1)=OVER(1)+1 -0	BOUND	22
	CONTINUE	BOUND	23
	CONTINUE	BOUND	24
	RETURN	BOUND	25
	END	BOUND	
	×		

SUBST

Purpose:

Derive a subset vector indicating which observations in a set have satisfied certain conditions on the variables.

Usage:

CALL SUBST (A, C, R, B, S, NO, NV, NC) Parameter B must be defined by an external statement in the calling program.

Description of parameters:

- A Observation matrix, NO by NV
- C Input matrix, 3 by NC, of conditions to be considered. The first element of each column of C represents the number of the variable (column of the matrix A) to be tested, the second element of each column is a relational code as follows:
 - 1. for less than
 - 2. for less than or equal to
 - 3. for equal to
 - 4. for not equal to
 - 5. for greater than or equal to
 - 6. for greater than

The third element of each column is a quantity to be used for comparison with the observation values. For example, the following column in C:

- 2.
- 5.
- 92.5

causes the second variable to be tested for greater than or equal to 92.5.

- R Working vector used to store intermediate results of above tests on a single observation. If condition is satisfied, R(I) is set to 1. If it is not, R(I) is set to 0. Vector length is NC.
- B Name of subroutine to be supplied by the user. It consists of a Boolean expression linking the intermediate values stored in vector R. The Boolean operators are '*' for 'and', '+' for 'or'. Example:

```
SUBROUTINE BOOL (R, T)
DIMENSION R(3)
T=R(1)*(R(2)+R(3))
RETURN
END
```

The above expression is tested for R(1).AND.(R(2).OR.R(3))

- S Output vector indicating, for each observation, whether or not proposition B is satisfied. If it is, S(I) is non-zero. If it is not, S(I) is zero. Vector length is NO.
- NO Number of observations.
- NV Number of variables.
- NC Number of basic conditions to be satisfied.

Subroutines and function subprograms required:

B The name of actual subroutine supplied by the user may be different (e.g., BOOL), but subroutine SUBST always calls it as B. In order for subroutine SUBST to do this, the name of the user-supplied subroutine must be defined by an EXTERNAL statement in the calling program. The name must also be listed in the "CALL SUBST" statement. (See usage above.)

Method:

The following is done for each observation. Condition matrix is analyzed to determine which variables are to be examined. Intermediate vector R is formed. The Boolean expression (in subroutine B) is then evaluated to derive the element in subset vector S corresponding to the observation.

 SUBROUTINE SUBST(A,C,R,B,S,NO,NY,NC)
 SUBST 1

 DIMENSION A(1),C(1),R(1),S(1)
 SUBST 3

 JOP 1=1,NO
 SUBST 3

 IQ=1-NO
 SUBST 3

 DO 8 J=1,NC
 SUBST 3

 C
 CLEAR VECTOR
 SUBST 7

 R(J)=0,0
 SUBST 7

 C
 LOCATE ELEMENT IN OBSERVATION MATRIX AND RELATIONAL CODE
 SUBST 7

 R(J)=0,0
 SUBST 1
 SUBST 1

 C
 LOCATE ELEMENT IN OBSERVATION MATRIX AND RELATIONAL CODE
 SUBST 1

 IA=10+120MO
 SUBST 1
 SUBST 1

 IA=10+120MO
 SUBST 1
 SUBST 1

 C
 FORM R VECTOR
 SUBST 1

 IA=10+120MO
 SUBST 1
 SUBST 1

 IA=10+120MO
 SUBST 1
 SUBST 1

 IA=10+120MO
 SUBST 10
 SUBST 11

 IA=10+120MO
 SUBST 11
 SUBST 11

 IA=10+120MO
 SUBST 11
 SUBST 11

 IA=10+120MO
 SUBST 11
 SUBST 11

 IA=10+120MO
 SUBST 12
 SUBST 11

 IA=10+120MO
 SUBST 11
 SUBST 11

 DO

Statistics - Data Screening 15

Purpose:

Test missing or zero values for each observation in matrix A.

Usage:

S

CALL ABSNT (A, S, NO, NV)

Description of parameters:

- A Observation matrix, NO by NV.
 - Output vector of length NO indicating the following codes for each observation:
 - 1 There is not a missing or zero value.
 - 0 At least one value is missing or zero.
- NO Number of observations.
- NV Number of variables for each observation.

Remarks:

None.

Subroutines and function subprograms required: None.

Method:

A test is made for each row (observation) of the matrix A. If there is not a missing or zero value, 1 is placed in S(J). If at least one value is missing or zero, 0 is placed in S(J).

SUBROUTINE ABSNTLA, S, NO, NVI	ABSNT 1
DIMENSION ALLESS (1)	ARSNT 2
DP 20 J=1.NO	ABSNT 3
[]=]-N ⁽)	AHSNT 4
S(J)=1.0	485NT 5
00 10 t=1.NV	ABSNT 6
1J=1J+WD	ABSNT 7
[F(A(1J)) 10,5,17	ABSNT 8
5 5(1)=0	ARSNT 9
00 11 00	ABSNT 10
LO CONTINUE	ABSNT 11
20 CONTINUE	ABSNT 12
RETURN	ABSNT 13
END	ABSNT 14

TAB1

This subroutine tabulates for a selected variable in an observation matrix, the frequencies and percent frequencies over class intervals. Interval size is computed as follows:

$$k = \frac{UBO_3 - UBO_1}{UBO_2 - 2}$$
(1)

where UBO_1 = given lower bound

 UBO_9 = given number of intervals

 $UBO_{2} = given upper bound$

If $UBO_1 = UBO_3$, the subroutine finds and uses the minimum and maximum values of the variable.

A table lookup is used to obtain the frequency of the i-th class interval for the variable, where $i = 1, 2, ..., UBO_2$. Then, each frequency is divided by the number of observations, n, to obtain the percent frequency:

$$P_{i} = \frac{100F_{i}}{n}$$
(2)

In addition, the following statistics are calculated for the variable:

Total:
$$T = \sum_{i=1}^{n} X_{ij}$$
 (3)

where j = selected variable

Mean:
$$\overline{X} = \frac{T}{n}$$
 (4)

Standard deviation:

$$s = \sqrt{\frac{\sum_{i=1}^{n} x_{ij}^{2} - \left(\sum_{i=1}^{n} x_{ij}\right)^{2/n}}{n-1}}$$
(5)

Subroutine TAB1

Purpose:

Tabulate for one variable in an observation matrix (or a matrix subset), the frequency and percent frequency over given class intervals. In addition, calculate for the same variable the total, average, standard deviation, minimum, and maximum.

Usage:

CALL TAB1 (A, S, NOVAR, UBO, FREQ, PCT, STATS, NO, NV)

Description of parameters:

Α	-	Observation	matrix,	NO	by	N	v.

- Input vector giving subset of A. S Only those observations with a corresponding non-zero S(J) are considered. Vector length is NO.
- The variable to be tabulated. NOVAR -
- Input vector giving lower limit, UBO number of intervals and upper limit of variable to be tabulated in UBO(1), UBO(2) and UBO(3) respectively. If lower limit is equal to upper limit, the program uses the minimum and maximum values of the variable. Number of intervals, UBO(2), must include two cells for values under and above limits. Vector length is 3.
- Output vector of frequencies. Vec-FREQ tor length is UBO(2).
- Output vector of relative frequen-PCT cies. Vector length is UBO(2).
- STATS -Output vector of summary statistics, i.e., total, average, standard deviation, minimum and maximum. Vector length is 5.
- Number of observations. NO _
- Number of variables for each ob-NV _ servation.
- Remarks:

None.

Subroutines and function subprograms required: None.

Method:

The interval size is calculated from the given information or optionally from the minimum and maximum values for variable NOVAR. The frequencies and percent frequencies are then calculated along with summary statistics. The divisor for standard deviation is one less than the number of observations used.

		SUBROUTINE TABLEA+S+NOVAR+UBO+FREQ+PCT+STATS+NO+NV)	TABL	1
		DIMENSION A(1),S(1),UBO(3),FREQ(1),PCT(1),STATS(5)	TAB1	M07
		DIMENSION WBO(3)	TABL	
		D0 5 1=1-3	TABL	
		WBO(1)=UBO(1)	TAB1	
с		CALCULATE MIN AND MAX	TAB1	3
		VMIN=1+0E3B	TAB1	4
		VMAX=-1.0F38	TAB1	5
		IJ=NO*(NOVAR-1)	TAB1	6
		DO 30 J=1,NO	TAB1	7
		1J=1J+1	TAB1	8
		IF(S(J)) 10,30,10	TAB1	9
			TAB1	10
		IF(A(IJ)-VMIN) 15+20+20	TABI	iĭ
		(LI)A=NIMV		
		IF(A(IJ)=VMAX) 30+30+25	TABL	12
	25	(LI)A=XAMV	TAB1	13
	30	CONTINUE	TAB1	14
		STATS(4)=VMIN	TA81	15
		STATS(5)=VMAX	TAB1	16
с		DETERMINE LIMITS	TAB1	17
-		[F(UBO(1)-UBO(3)) 40.35.40	TAB1	18
	25	UBO(1)=VMIN	TAB1	19
	35	UBO(3)=VMAX	TAB1	20
			TABI	21
	40	INN=UBO(2)	TABI	22
с		CLEAR OUTPUT AREAS		
		00 45 I=1.1 INN	TAB1	23
		FREQ(1)=0.0	TAB1	24
	45	PCT(1)=0+0	TAB1	25
		DO 50 I=1,3	TAB1	26
	50	STATS(1)=0.0	TAB1	27
с		CALCULATE INTERVAL SIZE	TAB1	28
-		SINT=ABS((UBO(3)=UBO(1))/(UBO(2)=2.0))	TAB1	29
c		TEST SUBSET VECTOR	TAB1	30
c		SCNT=0+0	TABI	31
			TABI	32
		[J=NO+(NOVAR-1)	TABI	
		00 75 J=1+NO	TABI	
		IJ=IJ+1		
		IF(S(J)) 55+75+55	TABL	
	55	SCNT=SCNT+1+0	TAB1	
с		DEVELOP TOTAL AND FREQUENCIES	TAB1	37
		STATS(1)=STATS(1)+A(1J)	TAB1	38
		STATS(3)=STATS(3)+A(IJ)*A(IJ)	TAB1	39
		TEMP=UBO(1)-SINT	TAB1	40
		INTX=INN-1	TAB1	
		DO 60 1=1+INTX	TABI	
			TABI	
		TEMP=TEMP+SINT	TABI	
		IF(A(IJ)-TEMP) 70+60+60		
	60	CONTINUE	TAB1 TAB1	
		IF(A(IJ)-TEMP) 75,65,65		
	65	FREQ(INN) + FREQ(INN) + 1 · O	TAB1	
		GO TO 75	TAB1	
	70	FREQ(I)=FREQ(I)+1+0	TAB1	
	75	CONTINUE	TAB1	50
c		CALCULATE RELATIVE FREQUENCIES		
		De tot the Active PREQUENCIES	TAB	
		DO 80 1=1. INN	TAB1	
	80	PCT(1)=FREQ(1)+100.0/SCNT	TAB1	53
с		CALCULATE MEAN AND STANDARD DEVIATION	TABL	54
		IF(SCNT-1.0) 85.85.90	TAB1	55
	85	STATS(2)=0.0	TABI	
		STATS(3)=0.0	TABI	
		GO TO 95	TABI	
	90	STATS(2)=STATS(1)/SCNT	TABI	
		STATS(3)=SORT(ABS((STATS(3)=STATS(1)*STATS(1)/SCNT)/(SCNT=1.0)))	TABL	
	95	DO 100 [*1.3		
		UBO([]=WBO([])		M04
		RETURN		M05
		END		M06
			TAB1	62

TAB2

This subroutine performs a two-way classification of the frequency, percent frequency, and other statistics over given class intervals, for two selected variables in an observation matrix.

Interval size for each variable is computed as follows:

$$k_{j} = \frac{UBO_{3j} - UBO_{1j}}{UBO_{2j} - 2}$$
 (1)

where UBO_{1j} = given lower bound UBO_{2j} = given number of intervals UBO_{3j} = given upper bound j = 1, 2

If $UBO_{1i} = UBO_{3i}$, the subroutine finds and uses the minimum and maximum values of the jth variable.

A frequency tabulation is then made for each pair of observations in a two-way table as shown in Figure 5.

Symbols \geq and < in Figure 5 indicate that a count is classified into a particular interval if the data point is greater than or equal to the lower limit of that interval but less than the upper limit of the same interval.

Then, each entry in the frequency matrix, F_{ij} , is divided by the number of observations, N, to obtain the percent frequency:

$$P_{ij} = \frac{100F_{ij}}{N}$$
(2)

where $i = 1, 2, ..., UBO_{21}$

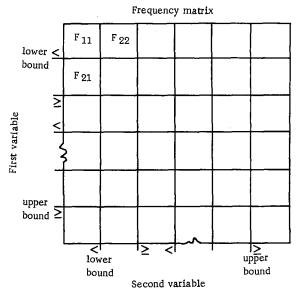
$$j = 1, 2, ..., UBO_{22}$$

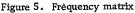
As data are classified into the frequency matrix, the following intermediate results are accumulated for each class interval of both variables:

1. Number of data points, n

2. Sum of data points,
$$\sum_{i=1}^{n} X_{i}$$

3. Sum of data points squared, $\sum_{i=1}^{n} X_{i}^{2}$


From these, the following statistics are calculated for each class interval:


Mean:
$$\overline{X} = \frac{\sum_{i=1}^{n} X_{i}}{n}$$

Standard deviation:

$$s = \sqrt{\frac{\sum_{i=1}^{n} X_{i}^{2} - \left(\sum_{i=1}^{n} X_{i}\right)^{2}/n}{n - 1}}$$
(4)

(3)

Subroutine TAB2

Purpose:

Perform a two-way classification for two variables in an observation matrix (or a matrix subset) of the frequency, percent frequency, and other statistics over given class intervals.

Usage:

A

S

CALL TAB2 (A, S, NOV, UBO, FREQ, PCT, STAT1, STAT2, NO, NV)

Description of parameters

- Observation matrix, NO by NV

- Input vector giving subset of A. Only those observations with a corresponding non-zero S(J) are considered. Vector length is NO.

NOV - Variables to be cross-tabulated. NOV(1) is variable 1, NOV(2) is variable 2. Vector length is 2.

3 by 2 matrix giving lower limit, UBO number of intervals, and upper limit of both variables to be tabulated (first column for variable 1, second column for variable 2). If lower limit is equal to upper limit for variable 1, the program uses the minimum and maximum values on each variable. Number of intervals must include two cells for under and above limits.

Output matrix of frequencies in the FREQ two-way classification. Order of matrix is INT1 by INT2, where INT1 is the number of intervals of variable 1 and INT2 is the number of intervals of variable 2. INT1 and INT2 must be specified in the second position of respective column of UBO matrix.

- PCT Output matrix of percent frequen---cies, same order as FREQ.
- Output matrix summarizing totals, STAT1 means, and standard deviations for each class interval of variable 1. Order of matrix is 3 by INT1.

STAT2 - Same as STAT1 but over variable 2. Order of matrix is 3 by INT2.

- Number of observations. NO Number of variables for each obser-

vation.

NV

Remarks:

None.

Subroutines and function subprograms required: None.

Method:

Interval sizes for both variables are calculated from the given information or optionally from the minimum and maximum values. The frequency and percent frequency matrices are developed. Matrices STAT1 and STAT2 summarizing totals, means, and standard deviations are then calculated. The divisor for standard deviation is one less than the number of observations used in each class interval.

		SUBROUTINE TAB2(A.S.NOV.UBO.FREG.PCT.STAT1.STAT2.NO.NV)	TAB2 1 TAB2 2
	1	DIMENSION A(1)+S(1)+NOV(2)+UBO(3+2)+FREQ(1)+PCT(1)+STAT1(1)+ STAT2(2)+SINT(2)	TAB2 2 TAB2 3
	•	DIMENSION WBO(3,2)	TAB2 MOL
		00 5 1=1+3	TAB2 MO2
	5	DO 5 J=1+2 WRO([+J]=UBO([+J)	TAB2 M03 TAB2 M04
c	-	DETERMINE LIMITS	TAB2 4
		00 40 I=1+2 IF(UB0(1+1)-UB0(3+1))40+10+40	TAB2 M05 TAB2 M06
	10	VMIN=1+0E38	TAB2 M07
		VMAX=-1+0E38	TAB2 8
		IJ=N0*(NOV(I)-1) D0 35 J=1+NO	TAB2 9 TAB2 10
		IJ=IJ+1	TAB2 11
		IF(5(J)) 15+35+15	TAB2 12
	15 20	IF(A(IJ)=VMIN) 20,25,25 VMIN=A(IJ)	TAB2 13 TAB2 14
	25	IF(A([J)=VMAX) 35,35:30	TA82 15
		VMAX=A(IJ) CONTINUE	TAB2 16 TAB2 17
	37	UBO(1+I)=VMIN	TAB2 18
		UBO(3+1)=VMAX	TAB2 MOB
c	40	CONTINUE CALCULATE INTERVAL SIZE	TAB2 M09 TAB2 20
•		DO 50 1=1+2	TAB2 21
	50	SINT(1)=ABS((UBO(3+1)=UBO(1+1))/(UBO(2+1)=2+0))	TAB2 22 TAB2 23
c		CLEAR OUTPUT AREAS INT1=UBO(2,1)	TAB2 23 TAB2 24
		INT2=UBO(2,2)	TAB2 25
		INTT=INT1+INT2 D0 55 I=1.INTT	TAB2 26 TAB2 27
		FREQ(1)=0.0	TAB2 28
	55	PCT([]=0+0	TAB2 29
		INTY=3#INT1 D0 60 I=1+INTY	TAB2 30 TAB2 31
	60	STAT1(I)=0.0	TA82 32
		INTZ=3*INT2	, TAB2 33
	65	00 65 I=1+INTZ STAT2(1)=0+0	TAB2 34 TAB2 35
c	0.5	TEST SUBSET VECTOR	TAB2 36
		SCNT=0.0	TAB2 37
		INTY=INT1-1 INTX=INT2-1	TAB2 38 TAB2 39
		1J=NO*(NOV(1)=1)	TAE2 40
		IJX=NO*(NOV(2)=1)	TA82 41
		DO 95 J=1+NO 1J=1J+1	TAB2 42 TAB2 43
		1+XLI=XLI	TA82 44
	-	1F(S(J)) 70+95+70	TAB2 45
с	10	SCNT=SCNT+1.0 CALCULATE FREQUENCIES	TAB2 46 TAB2 47
		TEMP1=UBO(1+1)~SINT(1)	TA82 48
		DO 75 1Y=1.INTY	TAB2 49 TAB2 50
		TEMP1=TEMP1+SINT(1) IF(A(IJ)=TEMP1) 80+75+75	TAB2 50 TAB2 51
	75	CONTINUE	TAB2 52
	80	1Y=1NT1 1YY=3*(1Y-1)+1	TAB2 53 TAB2 54
	-	STAT1(IYY)=STAT1(IYY)+A(IJ)	TAB2 55
		144=144+1	TAB2 56
		STAT1([YY)=STAT1(]YY)+1+0 [YY=IYY+1	TAB2 57 TAB2 58
		STAT1(IYY)=STAT1(IYY)+A(IJ)*A(IJ)	TAB2 59
		TEMP2=UBO(1+2)-SINT(2)	TAB2 60 TAB2 61
		DO 85 IX=1+INTX TEMP2=TEMP2+SINT(2)	TAB2 61 TAB2 62
		IF(A(IJX)-TEMP2) 90,85,85	TAB2 63
	85	CONTINUE	TAB2 64 TAB2 65
	90	IX=INT2 IJF=INT1+(1X-1)+1Y	TAB2 65 TAB2 66
		FREQ(IJF)=FRFQ(IJF)+1.0	TAB2 67
		[X=3#{[X-1]+1 STAT2([X]=STAT2([X)+A(]JX)	TAB2 68 TAB2 69
		IX=IX+1	TA82 70
		STAT2(IX)=STAT2(IX)+1+0 /	TAB2 71
		IX=IX+1 STAT2(IX)=STAT2(IX)+A(IJX)*A(IJX)	TAB2 72 TAB2 73
	95	CONTINUE	TA82 74
c		CALCULATE PERCENT FREQUENCIES DO 100 1=1.INTT	TAB2 75 TAB2 76
	100	PCT(1)=FREQ(1)*100,0/SCNT	TAB2 77
c		CALCULATE TOTALS, MEANS, STANDARD DEVIATIONS	TAB2 78
		IXY=-1 D0 120 I=1+INT1	TAB2 79 TAB2 80
		IXY=IXY+3	TAB2 81
		ISD=IXY+1 TEMP1=STAT1(IXY)	TAB2 82
		SUM=STAT1(IXY-1)	TAB2 83 TAB2 84
		IF(TEMP1=1.0) 120,105,110	TAB2 85
	105	STAT1(ISD)=0.0 GO TO 115	TAB2 86 TAB2 87
	110	STAT1(ISD)=SQRT(ABS((STAT1(ISD)=SUM#SUM/TFMP1)/(TEMP1=1+0)))	TAB2 88
	115	STAT1(1xy)=SUM/TEMP1	TAB2 89 TAB2 90
	120	CONTINUE IXX=-1	TAB2 90 TAB2 91
		DO 140 I=1.INT2	TAB2 92
		1XX=1XX+3	TAB2 93 TAB2 94
		ISO=IXX+1 TEMP2=STAT2(IXX)	TAB2 94 TAB2 95
		SUM=STAT2(IXX-1)	TAB2 96
	19-	IF(TEMP2-1.0) 140.125.130 STAT2(ISD)=0.0	TAB2 97 TAB2 98
		GO TO 135	TA82 99
		STAT2(ISD)=SORT(ABS((STAT?(ISD)-SUM*SU#/TEMP2)/(TEMP2-1.0)))	TAB2 100
		STAT2(IXX)=SUM/TEMP2	TAB2 101 TAB2 102
	140	CONTINUE Do 150 1=1+3	TAB2 102 TAB2 M10
		DO 150 J=1+2	TAB2 M11
	150	UPO([+J]=WBO([+J)	TAB2 M12 TAB2 103
		RE TURN END	TAB2 104

Statistics - Data Screening 19

SUBMX

Purpose:

Based on vector S derived from subroutine SUBST or ABSNT, this subroutine copies from a larger matrix of observation data a subset matrix of those observations which have satisfied certain condition. This subroutine is normally used prior to statistical analyses (e.g., multiple regression, factor analysis).

Usage:

CALL SUBMX (A, D, S, NO, NV, N)

Description of parameters:

- A Input matrix of observations, NO by NV.
- D Output matrix of observations, N by NV.
- S Input vector of length NO containing the codes derived from subroutine SUBST or ABSNT.
- NO Number of observations.
- NV Number of variables.
- N Output variable containing the number of non-zero codes in vector S.

Remarks:

Matrix D can be in the same location as matrix A.

Subroutines and function subprograms required: None.

Method:

If S(I) contains a non-zero code, I-th observation is copied from the input matrix to the output matrix.

SUBRINITINE SUBMX (A.D.S.N.).NV.N)	SUPMX 1
UIMENSION ALLI.OLII.SILI	SUBMX 2
L=0	SUBMX 3
LL=0	SUBMX 4
00 20 J=1.NV	SURMX 5
00 15 1=1.NO	SUBMX 6
L=L+l	SUPMX 7
IF(S(1)) 15. 15. 10	SUBMX R
10 LL=LL+1	SUBMX 9
D(LL)=A(L)	SUBMX 10
15 CUNTINUE	SURMX 11
20 CONTINUE	SUBMX 12
COUNT NON-ZER) CODES IN VECTOR S	SU8MX 13
N=0	SURMX 14
nu 10 t=1,40	SURMX 15
1F15(1)) 30, 30, 25	SUPMX 16
25 N=N+1	SUB#X 17
30 CONTINUE	SURMX 19
RETURN	SURMX 19
END	SUBME 20

Statistics - Elementary

MOMEN

This subroutine computes four moments for grouped data F_1, F_2, \ldots, F_n on equal class intervals. The number of class intervals is computed as follows:

$$n = (UBO_3 - UBO_1)/UBO_2$$
(1)

where UBO_1 = given lower bound

 UBO_2 = given class interval

 $UBO_3 =$ given upper bound

and the total frequency as follows:

$$\Gamma = \sum_{i=1}^{n} F_{i}$$
 (2)

where $F_i =$ frequency count in i-th interval.

Then, the following are computed:

First Moment (Mean):

$$ANS_{1} = \frac{\sum_{i=1}^{n} F_{i} \left[UBO_{1} + (i-0.5) UBO_{2} \right]}{T}$$
(3)

j-th Moment (Variance):

ANS_j =
$$\frac{\sum_{i=1}^{n} F_i \left[UBO_1 + (i-0.5) UBO_2 - ANS_1 \right]^{j}}{T}$$

j = 2, 3, 4

These moments are biased and not corrected for grouping

Subroutine MOMEN

Purpose:

To find the first four moments for grouped data on equal class intervals.

Usage:

F

CALL MOMEN (F, UBO, NOP, ANS)

Description of Parameters:

- Grouped data (frequencies). Given as a vector of length (UBO(3)-UBO(1))/ UBO(2)
- UBO 3 cell vector, UBO(1) is lower bound and UBO(3) upper bound on data.
 UBO(2) is class interval. Note that UBO(3) must be greater than UBO(1).
- NOP Option parameter. If NOP = 1, ANS(1) = MEAN. If NOP = 2, ANS(2) = second moment. If NOP = 3, ANS(3) = third moment. If NOP = 4, ANS(4) = fourth moment. If NOP = 5, all four moments are filled in.
- ANS Output vector of length 4 into which moments are put.

Remarks:

Note that the first moment is not central but the value of the mean itself. The mean is always calculated. Moments are biased and not corrected for grouping.

Subroutines and function subprograms required: None.

Method:

Refer to M. G. Kendall, 'The Advanced Theory of Statistics', V.1, Hafner Publishing Company, 1958, Chapter 3.

		SUBROUTINE MOMEN (F+UBO+NOP+ANS)	MOMEN 1
		DIMENSION F(1)+UBO(3)+ANS(4)	MOMENMO1
		DO 100 I=1.4	MOMEN 3
	100	ANS(1)=0.0	HOMEN 4
с		CALCULATE THE NUMBER OF CLASS INTERVALS	MUMEN 5
		N=(UBO(3)-UBO(1))/UBO(2)+0.5	MOMENMO2
с		CALCULATE TOTAL FREQUENCY	MOMEN 7
		T=0.0	MOMEN 9
		00 110 I=1+N	MOMEN 9
	110	T=T+F(1)	MOMEN 11
		IF(NOP-5) 130, 120, 115	40MEN 11
	115	NOP=5	MOMEN 12
	120	1=1 = 1	MOMEN 13
		GO TO 150	NOMEN 14
	130	JUMP=2	MOMEN 15
٤		FIRST MOMENT	MOMEN 15
	150	00 160 I=L+N	MAMEN 17
		F[=]	MOMEN 18
	160	ANS(1)=ANS(1)+F(()≠(UBO(1)+(FT-).5)*UBO(2))	MOMEN 19
		ANSI 11=ANSI 11/T	MOMEN 21
		GU TO (350,200,250,300,200), NUP	MOMEN 21
C		SECOND MOMENT	MOMEN 22
	200	00 210 J=1,N	MOMEN 23
		F1=1	MOMEN 24
	210	ANS(2)=ANS(2)+F([)+(USA(1)+(F1-).5)*(BA(2)-ANS(1))**2	MOMEN 25
		ANS(2)=ANS(2)/T	MOMEN 26
		GU TO (259,350), JUMP	40MEN 27
c		THIRD HOMENT	MOMEN 28
	250	DO 260 I=1+N	MOMEN 29
		f1=1	MOMEN 30
	250	4NS{3}=ANS{3}+F(1)#(URU{1}++{FI-0.5]*J97(7)-4NS{1})**3	404FN 31
		ANS(3)=ANS(3)/T	MOMEN 37
		G7 T3 (300,350), JUMP	MOMEN 33
C		FOURTH MOMENT	MOMEN 34
	300	2011 310 T=1+N	HOMEN 35
		F T = 1	40MEN 36
	110	4*-5{4}=AN5{4}+F{1}*{U37{}}+{F}-7+5}*J97{2}-495{}1}*#4	MOMEN 37
		ANS(4)=ANS(4)/T	MOMEN 38
	150	RETURN	MOMEN 39
		Ean	MITHEN 40

TTSTT

This subroutine computes certain t-statistics on the means of populations under various hypotheses.

The sample means of A_1 , A_2 , ..., A_{NA} and B_1 , B_2 , ..., \overline{B}_{NB} are normally found by the following formulas:

$$\overline{A} = \frac{\sum_{i=1}^{NA} A_i}{NA}; \qquad \overline{B} = \frac{\sum_{i=1}^{NB} B_i}{NB} \qquad (1)$$

and the corresponding sample variances by:

$$SA^{2} = \frac{\sum_{i=1}^{NA} (A_{i} - \overline{A})^{2}}{NA - 1}; SB^{2} = \frac{\sum_{i=1}^{NB} (B_{i} - \overline{B})^{2}}{NB - 1}$$
 (2)

 μ and σ^2 stand respectively for population mean and variance in the following hypotheses:

Hypothesis: $\mu_{B} = A$; A = a given value (Option 1): Let \overline{B} = estimate of μ_{B} and set NA = 1 (A is stored in location A).

The subroutine computes:

ANS =
$$\frac{\overline{B} - A}{SB} \cdot \sqrt{NB}$$
 (t-statistic) (3)

$$NDF = NB - 1$$

4

(degrees of freedom) (4)

Hypothesis: $\mu_A = \mu_B$; $\sigma_A^2 = \sigma_B^2$ (Option 2):

The subroutine computes:

ANS =
$$\frac{\overline{B} - \overline{A}}{S} \cdot \frac{1}{\sqrt{\frac{1}{NA} + \frac{1}{NB}}}$$
 (t-statistic) (5)

$$NDF = NA + NB - 2$$
 (degrees of freedom) (6)

where
$$S = \sqrt{\frac{(NA - 1)SA^2 + (NB - 1)SB^2}{NA + NB - 2}}$$
 (7)

|Hypothesis: $\mu_{A} = \mu_{B} \left(\sigma_{A}^{2} \neq \sigma_{B}^{2} \right)$ (Option 3):

The subroutine computes:

ANS =
$$\frac{\overline{B} - \overline{A}}{\sqrt{\frac{SA^2}{NA} + \frac{SB^2}{NB}}}$$
 (t-statistic) (8)

$$NDF = \frac{\left(\frac{SA^2}{NA} + \frac{SB^2}{NB}\right)^2}{\left(\frac{SA^2}{NA}\right)^2 / (NA+1) + \left(\frac{SB^2}{NB}\right)^2 / (NB+1)} -2$$
(9)

(degrees of freedom)

Note: The program returns a rounded NDF, not a truncated NDF.

Hypothesis: $\mu_A = \mu_B$ (no assumption on σ^2) (Option 4):

The subroutine computes:

ANS =
$$\frac{\overline{D}}{SD} \cdot \sqrt{NB}$$
 (t-statistic) (10)

NDF = NB - 1(degrees of freedom) (11)

where
$$\overline{D} = \overline{B} - \overline{A}$$
 (12)

SD =
$$\sqrt{\frac{\sum_{i=1}^{NB} (B_i - A_i - \overline{D})^2}{NB - 1}}$$
 (13)

NA = NB

Subroutine TTSTT

Purpose:

To find certain T-statistics on the means of populations.

Usage:

CALL TTSTT (A, NA, B, NB, NOP, NDF, ANS)

Description of parameters:

Α	-	Input vector of length NA containing
		data.
NA	-	Number of observations in A.

- Input vector of length NB containing в data.
- NB Number of observations in B.
- NOP -Options for various hypotheses:
 - NOP=1--- That population mean of B = given value A.(Set NA=1.) NOP=2--- That population mean of
 - B = population mean of A,given that the variance of B = the variance of A.

- NOP=3--- That population mean of B = population mean of A, given that the variance of B is not equal to the variance of A.
- NOP=4--- That population mean of B = population mean of A, given no information about variances of A and B. (Set NA=NB.)

2

Output variable containing degrees of NDF freedom associated with T-statistic calculated.

T-statistic for given hypothesis. ANS -

Remarks:

NA and NB must be greater than 1, except that NA=1 in option 1. NA and NB must be the same in option 4. If NOP is other than 1, 2, 3 or 4, degrees of freedom and T-statistic will not be calculated. NDF and ANS will be set to zero.

Subroutines and function subprograms required: None.

Method:

c

c

c

ε

Refer to Ostle, Bernard, 'Statistics in Research', Iowa State College Press, 1954, Chapter 5.

SUBROUTINE TTSTT (A,NA,B,NB,NDP,NDF,ANS) DIMENSION A(11,B(1) INITIALIZATION NUF=0. CALCULATE THE MEAN OF A ANS=0.0 CALCULATE THE MEAN OF A ANFAN=0.0 DD 10 lot,NA IIO AMEAN=AMEAN/FNA AMEAN=AMEAN/FNA AMEAN=AMEAN/FNA AMEAN=AMEAN/FNA IZO DEL.NB IIS MEAN=MEAN/FNA IZO DEL.NB IIS MEAN=MEAN/FNA BMEAN=MEAN/FNA BMEAN=MEAN/FNA BMEAN=MEAN/FNA IZO III,NB IZO DEL.NB IZO III,NB IZO DEL.NB IZO ALCULATE THE VARIANCE (IF 4 IZO SA2=SA2+IA(1)-AMEAN)=2 INITAN NIF=NH-1 GU TO 200 IPTION 3 IO AND AMEAN-AMEAN)/SQUAT(SA2+ISA2/FNA) IO AND AMEAN-AMEAN)/SQUAT(SA2+ISA2/FNA) TTSTT
 ITSTT
 21

 ITSTT
 21

 ITSTT
 22

 ITSTT
 23

 ITSTT
 24

 ITSTT
 26

 ITSTT
 27

 ITSTT
 26

 ITSTT
 26

 ITSTT
 27

 ITSTT
 27

 ITSTT
 27

 ITSTT
 28

 ITSTT
 27

 ITSTT
 30

 ITSTT
 37

 ITSTT
 37

 ITSTT
 37

 ITSTT
 37

 ITSTT
 41

 ITSTT
 41

 ITSTT
 41

 ITSTT
 41

 ITSTT
 41

 ITSTT
 51

 ITSTT
 51

 ITSTT
 51

 ITSTT
 54

 ITSTT
 54

 ITSTT
 54

 ITSTT
 54

 ITSTT
 54

 ITSTT
 54
 </tr S=314) [[[]=NA=[_0]=S374][NA=[_1]=S374][NA=[

Statistics - Correlation

CORRE

This subroutine calculates means, standard deviations, sums of cross-products of deviations from means, and product moment correlation coefficients from input data X_{ij} , where i = 1, 2, ..., n implies observations and j = 1, 2, ..., m implies variables.

The following equations are used to calculate these statistics:

Sums of cross-products of deviations:

$$\mathbf{S}_{jk} = \sum_{i=1}^{n} \left(\mathbf{X}_{ij} - \mathbf{T}_{j} \right) \left(\bar{\mathbf{X}}_{ik} - \mathbf{T}_{k} \right) - \frac{\sum_{i=1}^{n} \left(\mathbf{X}_{ij} - \mathbf{T}_{j} \right) \sum_{i=1}^{n} \left(\mathbf{X}_{ik} - \mathbf{T}_{k} \right)}{n}$$
(1)

where j = 1, 2, ..., m; k = 1, 2, ..., m

$$T_{j} = \frac{\sum_{i=1}^{m} X_{ij}}{m}$$
(2)

(These temporary means T_j are subtracted from the data in equation (1) to obtain computational accuracy.)

Means:
$$\overline{X}_{j} = \frac{\sum_{i=1}^{n} X_{ij}}{n}$$
 (3)

where j = 1, 2, ..., m

n

Correlation coefficients:

$$\mathbf{r}_{jk} = \frac{\mathbf{S}_{jk}}{\sqrt{\mathbf{S}_{jj}} \sqrt{\mathbf{S}_{kk}}}$$

where j = 1, 2, ..., m; k = 1, 2, ..., m

Standard deviations:

$$s_{j} = \frac{\sqrt{S_{jj}}}{\sqrt{n-1}}$$
(5)

where j = 1, 2, ..., m

Subroutine CORRE

Purpose:

Compute means, standard deviations, sums of cross-products of deviations, and correlation coefficients.

Usage:

CALL CORRE (N, M, IO, X, XBAR, STD, RX, R, B, D, T)

Description of parameters:

- N Number of observations.
- M Number of variables.
- IO Option code for input data.
 - 0 If data are to be read in from input device in the special subroutine named data. (See "subroutines and function subprograms required" below.)
 - 1 If all data are already in core.
- If IO=0, the value of X is 0.0.
 If IO=1, X is the input matrix (N by M) containing data.
- XBAR Output vector of length M containing means.
- STD Output vector of length M containing standard deviations.
- RX Output matrix (M by M) containing sums of cross-products of deviations from means.
- R Output matrix (only upper triangular portion of the symmetric matrix of M by M) containing correlation coefficients. (Storage mode of 1)
 - Output vector of length M containing the diagonal of the matrix of sums of cross-products of deviations from means.
 - Working vector of length M.
 - Working vector of length M.

Remarks:

(4)

None.

D

т

в

Subroutines and function subprograms required: DATA(M,D) - This subroutine must be provided by the user.

> (1) If IO=0, this subroutine is expected to furnish an observation in vector D from an external input device.

 (2) If IO=1, this subroutine is not used by CORRE but must exist in job deck. If user has not supplied a subroutine named DATA, the following is suggested. SUBROUTINE DATA RET URN END

IS		1F(STD(J)*STD(K))225+222+225
	222	R(JK)=0.0 GO TO 230
If		RIJKI=R(JK)/(STD(J)+STD(K)) CONTINUE CALCULATE STANDARD DEVIATIONS FW=SGRT(FN=1.0) DO 240 J=1.0M
, d.	240 C C	STD(J)=STD(J)/FN COPY THE DIAGONAL OF THE MATRIX OF SUMS OF CROSS-PRODUCTS OF DEVIATIONS FROM MEANS. L=-M DO 250 1=1.4 L=1.441
	250	B(])=RX(L) RETURN END

CORRE

CORREMO2 CORREMO3 CORREMO4

CORREMOS CORRE 95 CORRE100 CORRE101

CCRRE102

CORRE103

CCRRE104 CCRRE105

CCRRE106 CORRE107 CCRRE108

CORRE109 CORRE110

Method:

Product-moment correlation coefficients are computed.

		SUBROUTINE CORRE (N+M+10+X+XBAR+STD+RX+R+B+D+T)	CORRE 1
		DIMENSION X(1)*XBAR(1)*STD(1)*RX(1)*R(1)*B(1)*D(1)*T(1)	CCRRE 2
¢		INITIALIZATION DO 100 J=1.M	CORRE 3 CORRE 4
		8(J)=0.0	CORRE 5
	100		CCRRE 6
		K=(M+M+M)/2 D0 102 I=1+K	CORRE 7 CCRRE 8
	102	R(1)=0+0	CORRE 9
			CORRE 10
		L=0 IE(10) 105, 127, 105	CORRE 11 CORRE 12
c		IF(10) 105, 127, 105 Data are already in core	CORRE 13
	105	DO 108 J=1.4M DO 107 I=1.9N	CORRE 14 CORRE 15
		DO 107 [#1:N L=L+1	CORRE 15
	107	T(J)=T(J)+X(L)	CORRE 17
		XBAR(J)=T(J)	CCRRE 18
	108	T(J)=T(J)/FN DO 115 I=1+N	CORRE 19 CORRE 20
		JK=0	CORRE 21
		L=I=N	CORRE 22
		DO 110 J=1.M	CORRE 23
		L=L+N D(J)=X(L)-T(J)	CCRRE 24 CCRRE 25
	110	B())=B())=D())	CORRE 26
		DO 115 J=1+M DO 115 K=1+J	CORRE 27 CORRE 28
		DO 119 K=14J JK=JK+1	CORRE 28 CORRE 29
	115	R(JK)=R(JK)+D(J)*D(K)	CCRRE 30
-		GO TO 205	CORRE 31
c		READ OBSERVATIONS AND CALCULATE TEMPORARY MEANS FROM THESE DATA IN T(J)	CORRE 32 CORRE 33
	127	IF(N-M) 130, 130, 135	CORRE 34
	130		CCRRE 35 CORRE 36
	135	GO TO 137 KK≠M	CORRE 37
	137	DO 140 T=1+KK	CORRE 38
		CALL DATA (M,D) DO 140 J=1.M	CCRRE 39 CCRRF 40
		T(J)=T(J)+D(J)	CORRE 40
		L=L+1	CCRRE 42
	140	RX(L)=D(J)	CCRRE 43
		FKK=KK Do 150 J=1.M	CCRRE 44 CCRRE 45
		XBAR(J)=T(J)	CORRE 46
	150	T(J)=T(J)/FKK	CORRE 47
c		CALCULATE SUMS OF CROSS-PRODUCTS OF DEVIATIONS FROM TEMPORARY MEANS FOR M OBSERVATIONS	CORRE 48 CORRE 49
c		L=0	CORRE 50
		DO 180 I=1.KK	CORREM06
		JK=0 D0 170 J=1+M	CORRE 52 CORRE 53
		L=1+1	CORRE 54
	170	D(J)=RX(I)=T(J)	CORRE 55
		DO 180 J=1,M B(J)=B(J)+D(J)	CORRE 56
		B(J)=B(J)+D(J) DO 180 K=1.J	CORRE 57
		JK=JK+1	CORRE 58 CORRE 59
	180		CORRE 60
~		READ THE REST OF OBSERVATIONS ONE AT A TIME, SUM THE OBSERVATION, AND CALCULATE SUMS OF CROSS- PRODUCTS OF DEVIATIONS FROM TEMPORARY MEANS	CORRE 61
C C C		THE OBSERVATION AND CALCULATE SUMS OF CROSS-	CCRRE 62 CORRE 63
с		PRODUCTS OF DEVIATIONS FROM TEMPORARY MEANS	CORRE 64
	185		CCRRE 65
		DO 200 I=1,KK JK=0	CORRE 66 CORRE 67
		CALL DATA (M.D)	CCRRE 68
		DO 190 J=1+M XBAR(J)=XBAR(J)+D(J)	CCRRE 69
		D[J]=D[J]=T[J]	CORRE 70 CORRE 71
	190	B(J)=B(J)+D(J)	CORRE 72
		DO 200 J=1+M DO 200 K=1+J	CORRE 73
		JK=JK+1	CCRRE 74 CORRE 75
	200	R(JK)=R(JK)+D(J)=D(K)	CORRE 76
c	205	CALCULATE MEANS JK#0	CCRRE 77 CCRRE 78
	205	DO J=1+M	CCRRE 78 CCRRE 79
		XBAR(J)=XBAR(J)/FN	CORRE BO
ç		ADJUST SUMS OF CROSS-PRODUCTS OF DEVIATIONS FROM TEMPORARY MEANS	CCRRE 81
		DO 210 K=1+J	CCRRE 82 CCRRE 83
		JK≖JK+1	CCRRE 84
c	210	R(JK)=R(JK)=B(J)*B(K)/FN CALCULATE CORRELATION COEFFICIENTS	CORRE 85
-		JK=0	CCRRE 86 CCRRE 87
		DO 220 J=1.M	CORRE BB
	220	JK=JK+J STD(1)= SOPT(ARS(R(1K)))	CORRE 89 CORRE 90
		STD[J]= SQRT(ABS(R(JK))) DO 230 J=1+M DO 230 K=J+M	CCRRE 91
		DO 230 K=J+M	CCRRE 92
		JK=J+(K+K-K)/2 L=M*(J-1)+K	CCRRE 93 CCRRE 94
		RX(L)=R(JK)	CORRE 95
		L=M*(K-1)+J	CORRE 96

Statistics - Multiple Linear Regression

In the Scientific Subroutine Package, multiple linear regression is normally performed by calling four subroutines in sequence.

1. CORRE - to find means, standard deviations, and correlation matrix

2. ORDER - to choose a dependent variable and a subset of independent variables from a larger set of variables

3. MINV - to invert the correlation matrix of the subset selected by ORDER

4. MULTR - to compute the regression coefficients, $b_0,\ b_1,\ b_2,\ \ldots,\ b_m,$ and various confidence measures

The subroutine CORRE works in either of two ways: (1) it expects all observations in core, or (2) it triggers a user-provided input subroutine, DATA, to read one observation at a time into a work area. In either case, the user must provide a subroutine named DATA (see "Subroutines Required" in the description of subroutine CORRE).

ORDER

Purpose:

Construct from a larger matrix of correlation coefficients a subset matrix of intercorrelations among independent variables and a vector of intercorrelations of independent variables with dependent variable. This subroutine is normally used in the performance of multiple and polynomial regression analyses.

Usage:

CALL ORDER (M, R, NDEP, K, ISAVE, RX, RY)

Description of parameters:

- M Number of variables and order of matrix R.
- R Input matrix containing correlation coefficients. This subroutine expects only upper triangular portion of the symmetric matrix to be stored (by column) in R. (Storage mode of 1.)
- NDEP The subscript number of the dependent variable.

K - Number of independent variables to be included in the forthcoming regression.

ISAVE - Input vector of length K+1 containing, in ascending order, the subscript numbers of K independent variables to be included in the forthcoming regression.

> Upon returning to the calling routine, this vector contains, in addition, the subscript number of the dependent variable in K+1 position.

RX - Output matrix (K by K) containing intercorrelations among independent variables to be used in forthcoming regression.

RY - Output vector of length K containing intercorrelations of independent variables with dependent variables.

Remarks:

None.

Subroutines and function subprograms required: None.

Method:

From the subscript numbers of the variables to be included in the forthcoming regression, the subroutine constructs the matrix RX and the vector RY.

	SUBROUTINE OPDER (M.R.NDEP.K.ISAVE.RX.RY)	DRDER 1
	DIMENSION R(1),ISAVE(1),RX(1),RY(1)	ORDER 2
С	COPY INTERCORNELATIONS OF INDEPENDENT VARIABLES	GRDER 3
č	WITH DEPENDENT VARIABLE	ORDER 4
~	MM=0	ORDER 5
	DG 130 J=1.K	ORDER 5
	LZ=[SAVF(J)	ORDER 7
	IF(NDEP-L2) 122, 123, 123	ORDER 9
	122 L=N()EP+(L7+L7-L2)/2	ORDER 9
	G0 TO 125	ORDER 10
	123 L=L2+(NDEP+NDEP-NDEP)/2	ORDEP 11
	125 RY(J)=R(L)	ORDER 12
~		ORDER 13
C C	CUPT A SUBSET MAINING INTERCORRELATIONS AND AS	ORDER 14
ι		ORDER 15
	DD 130 I=1.K	
	L1=[SAVE([]	ORDER 15
	IF(L1-L2) 127, 128, 128	ORDER 17
	127 L=L1+(L7+L7-L2)/?	ORDER 19
	60 TO 129	ORDER 19
	128 L=12+(L]+L1-L1)/2	ORDER 20
	129 MM=44+L	ORDER 21
	130 RX(4M)=R(L)	ORDER 22
c	PLACE THE SUBSCRIPT NUMBER OF THE DEPENDENT	DRDFR 23
C C	VARIABLE IN ISAVE(K+1)	ORDER 24
-	ISAVE(K+L)=NDEP	ORDER 25
	RETURN	ORDER 24
	END	ORDER 27

MULTR

This subroutine performs a multiple regression analysis for a dependent variable and a set of independent variables.

Beta weights are calculated using the following equation:

$$\beta_{j} = \sum_{i=1}^{K} r_{iy} \cdot r_{ij}^{-1}$$
 (1)

where $r_{iy} =$ intercorrelation of ith independent variable with dependent variable

$$r_{ij}^{-1}$$
 = the inverse of intercorrelation r_{ij}
i, j = 1, 2, ..., k imply independent
variables

$$r_{iy}$$
 and r_{ij}^{-1} are input to this subroutine.

Then, the regression coefficients are calculated as follows:

$$\mathbf{b}_{j} = \boldsymbol{\beta}_{j} \cdot \frac{\mathbf{s}_{y}}{\mathbf{s}_{j}}$$
(2)

where $s_v = standard deviation of dependent variable$ $s_j = standard deviation of jth independent variable$

j = 1, 2, ..., k

s and s are input to this subroutine.

The intercept is found by the following equation:

$$\mathbf{b}_{0} = \overline{\mathbf{Y}} - \sum_{j=1}^{k} \mathbf{b}_{j} \cdot \overline{\mathbf{X}}_{j}$$
(3)

where \overline{Y} = mean of dependent variable

$$\overline{X}_{j}$$
 = mean of jth independent variable
 \overline{Y} and \overline{X}_{j} are input to this subroutine.

Multiple correlation coefficient, R, is found first by calculating the coefficient of determination by the following equation:

$$R^{2} = \sum_{i=1}^{k} \beta_{i} r_{iy}$$
(4)

and taking the square root of R^2 :

$$R = \sqrt{R^2}$$
 (5)

The sum of squares attributable to the regression is found by:

$$SSAR = R^2 \cdot D_{yy}$$
 (6)

where $D_{yy} = sum of squares of deviations from <math>yy = sum of squares deviations from the state of the stat$ mean for dependent variable

$$D_{yy}$$
 is input to this subroutine.

The sum of squares of deviations from the regression is obtained by:

$$SSDR = D_{yy} - SSAR$$
(7)

9

Then, the F-value for the analysis of variance is calculated as follows:

$$F = \frac{SSAR/k}{SSDR/(n-k-1)} = \frac{SSAR(n-k-1)}{SSDR(k)}$$
(8)

Certain other statistics are calculated as follows:

Variance and standard error of estimate:

$$S_{y,12...k}^2 = \frac{SSDR}{n-k-1}$$
 (9)

where n = number of observations

$$s_{y.12...k} = \sqrt{s_{y.12...k}^2}$$
 (10)

Standard deviations of regression coefficients:

$$\mathbf{S}_{\mathbf{b}_{j}} = \sqrt{\frac{\mathbf{r}_{jj}^{-1}}{\mathbf{D}_{jj}} \cdot \mathbf{S}_{y.12...k}^{2}}$$
(11)

where $D_{jj} = sum of squares of deviations from mean$ $for jth independent variable. <math>D_{jj}$ is in-put to this subroutine.

j = 1, 2, ..., k

Computed t:

 $j = 1, 2, \ldots, k$

$$t_{j} = \frac{b_{j}}{S_{b_{j}}}$$
(12)

Subroutine MULTR

Purpose:

Perform a multiple linear regression analysis for a dependent variable and a set of independent variables. This subroutine is normally used in the performance of multiple and polynomial regression analyses.

Usage:

CALL MULTR (N, K, XBAR, STD, D, RX, RY, ISAVE, B, SB, T, ANS)

Description of parameters:

- N Number of observations.
- K Number of independent variables in this regression.
- XBAR Input vector of length M containing means of all variables. M is number of variables in observations.
- STD Input vector of length M containing standard deviations of all variables.
- D Input vector of length M containing the diagonal of the matrix of sums of cross-products of deviations from means for all variables.
- RX Input matrix (K by K) containing the inverse of intercorrelations among independent variables.
- RY Input vector of length K containing intercorrelations of independent variables with dependent variable.
- ISAVE Input vector of length K+1 containing subscripts of independent variables in ascending order. The subscript of the dependent variable is stored in the last, K+1, position.
- B Output vector of length K containing regression coefficients.
- SB Output vector of length K containing standard deviations of regression coefficients.
- T Output vector of length K containing T-values.
- ANS Output vector of length 10 containing the following information:
 - ANS(1) Intercept
 - ANS(2) Multiple correlation coefficient
 - ANS(3) Standard error of estimate
 - ANS(4) Sum of squares attributable
 - to regression (SSAR)

- ANS(5) Degrees of freedom associated with SSAR
- ANS(6) Mean square of SSAR
- ANS(7) Sum of squares of deviations from regression (SSDR)
- ANS(8) Degrees of freedom associated with SSDR
- ANS(9) Mean square of SSDR
- ANS(10) F-value

Remarks:

N must be greater than K+1.

Subroutines and function subprograms required: None.

Method:

The Gauss-Jordan method is used in the solution of the normal equations. Refer to W. W. Cooley and P. R. Lohnes, 'Multivariate Procedures for' the Behavioral Sciences', John Wiley and Sons, 1962, Chapter 3, and B. Ostle, 'Statistics in Research', The Iowa State College Press, 1954, Chapter 8.

		SUBROUTINE MULTR (N.K.*XBAR+STD.D.*X.*RY.ISAVE+B.58+T+ANS) DIMENSION XBAR(])+STD(])+D(])*RX(])+RY(])+ISAVE(])+B(])+SB(])+	MULTR	1 2
			MULTR	
		1 T(1)+ANS(10) MM=K+1	MULTR	4
c		BETA WEIGHTS	MULTR	5
		DO 100 J=1+K	MULTR	6
	100	B(J)=0.0	MULTR	7
		DO 110 J=1+K	MULTR	8
		L1=K+(J+1)	NULTR	ě,
		DO 110 1=1+K	HULTR	
		L=L1+1	MULTR	
	110	B(J)=B(J)+RY(1)#2X(L)	MULTE	
		R月∞()_0	MULTR	13
		80=0.0	MUL TR	14
		L1=ISAVE(MM)	MULTR	15
С		COEFFICIENT OF DETERMINATION	MULTR	
		DO 120 1=1,K	MUL TR	
		RM=RM+B([]#RY(])	MULTR	
с		REGRESSION COEFFICIENTS	MUL TP	
		L=ISAVE(I)	HUL TR	
с		8(1)=B(1)*(STD(1)/STD(1)) INTERCEPT	MUL TR	
Ľ	120	60=60+811)*XBAR(L)	MULTR MULTR	
	120	80=X8AR(L1)=80	MULTR	
c		SUM OF SQUARES ATTRIBUTABLE TO REGRESSION	MULTR	
v		SSAR=R4+D(11)	HULTR	
C		MULTIPLE CORRELATION COEFFICIENT	MULTR	
	122	KM= SORTI ABS(RN))	MULTR	
c		SUM OF SQUARES OF DEVIATIONS FROM REGRESSION	HUL TR	29
		SSDR=D(L1)-SSAR	MUL TR	30
c		VARIANCE OF ESTIMATE	MULTR	31
		FN=N-K-1	MULTR	
		SY=SSDR/FN	MULTP	
С		STANDARD DEVIATIONS OF REGRESSION COFFECTENTS	MULTR	
		00 130 J=1.K	NULTR	
		L1=K+(J-1)+J	MULTR	
	176	L=ISAVE(J) S8(J)= SQRT(ABS({RX(LL)/O(L))*SY))	MULTO	
с	15.0	COMPUTED T-VALUES	MULTR	
	130	T(J)=R(J)/SB(J)	401174	
c		STANDARD ERROR OF ESTIMATE	MULTR	
-	135	SY= SORT(ABS(SY))	MULTH	
c		FVALUE	HUL TP	
		FK≖K	MULTR	
		SSAR4=SSAR/FK	MULTH	
		SSDRM=SSDR/FN	MUL TP	46
		F=SSAR4/SSDRM	ዛዚቲ ፑ ዞ	
		ANS[1]=80	MULTR	
		ANS[2]=RM	MIJE TR	
		ANS(3)=5Y	MULTR	
		ANS(4)=SSAR	MULTR	
		ANS(5)=FK	401 18	
		ANS(6)=55ARM ANS(7)=55DR	MULTR	
		4NS(9)=FN	44U4_TR 44U4_TP	
		ANS (9) = \$\$0RM	MULTR	
		ANS(17)=55/84	MULTE	
		RETIJEN	MULTR	
		END	MUETR	

Statistics - Polynomial Regression

Polynomial regression is a statistical technique for finding the coefficients, b_0 , b_1 , b_2 , ..., b_m , in the functional relationship of the form:

$$y = b_0 + b_1 x + b_2 x^2 + \dots + b_m x^m$$

between a dependent variable y and a single independent variable x.

In the Scientific Subroutine Package, polynomial regression is normally performed by calling the following four subroutines in sequence:

1. GDATA - to generate the powers of the independent variable and find means, standard deviations, and correlation matrix

2. ORDER - to choose a dependent variable and subset of independent variables from a larger set of variables

3. MINV - to invert the correlation coefficient matrix

4. MULTR - to compute the regression coefficients, b_0 , b_1 , b_2 , ..., b_m , and various confidence measures

The special subroutine PLOT may be used to plot Y values and Y estimates.

GDATA

This subroutine generates independent variables up to the mth power (the highest degree polynomial specified) and calculates means, standard deviations, sums of cross-products of deviations from means, and product moment correlation coefficients.

X_{i1} denotes the ith case of the independent variable;

 \boldsymbol{X}_{ip} denotes the i^{th} case of the dependent variable,

where i = 1, 2, ..., n

n - number of cases (observations)

p = m + 1

m = highest degree polynomial specified

e

The subroutine GDATA generates powers of the independent variable as follows:

where i and m are as defined as above.

Then, the following are calculated:

Means:

$$\overline{X}_{j} = \frac{\sum_{i=1}^{n} X_{ij}}{n}$$
(2)

where j = 1, 2, ..., p

28

Sums of cross-products of deviations from means:

$$D_{jk} = \sum_{i=1}^{n} \left(X_{ij} - \overline{X}_{j} \right) \left(X_{ik} - \overline{X}_{k} \right) -$$

$$\sum_{i=1}^{n} \underbrace{\begin{pmatrix} x_{ij} - \overline{x}_{j} \\ & j \end{pmatrix}}_{n} \sum_{i=1}^{n} \begin{pmatrix} x_{ik} - \overline{x}_{k} \\ & & n \end{pmatrix}$$

where j = 1, 2, ..., p; k = 1, 2, ..., p.

Correlation coefficients:

$$\mathbf{r}_{ij} = \frac{\mathbf{D}_{ij}}{\sqrt{\mathbf{D}_{ii}} \sqrt{\mathbf{D}_{jj}}}$$

where i = 1, 2, ..., p; j = 1, 2, ..., p.

Standard deviations:

$$s_{j} = \frac{\sqrt{D_{jj}}}{\sqrt{n-1}}$$
(5)

where j = 1, 2, ..., p

Subroutine GDATA

Purpose:

Generate independent variables up to the Mth power (the highest degree polynomial specified) and compute means, standard deviations, and correlation coefficients. This subroutine is normally called before subroutines ORDER, MINV and MULTR in the performance of a polynomial regression.

Usage:

CALL GDATA (N, M, X, XBAR, STD, D, SUMSQ)

Description of parameters:

- N Number of observations.
- M The highest degree polynomial to be fitted.
- X Input matrix (N by M+1). When the subroutine is called, data for the independent variable are stored in the first column of matrix X, and data for the dependent variable are stored in the last column of the matrix. Upon returning to the calling routine, generated powers of the inde-

pendent variable are stored in columns 2 through M.

- XBAR Output vector of length M+1 containing means of independent and dependent variables.
 - Output vector of length M+1 containing standard deviations of independent and dependent variables.
 - Output matrix (only upper triangular portion of the symmetric matrix of M+1 by M+1) containing correlation coefficients. (Storage Mode of 1.)
- SUMSQ Output vector of length M+1 containing sums of products of deviations from means of independent and dependent variables.

Remarks:

STD

D

(3)

(4)

N must be greater than M+1. If M is equal to 5 or greater, single precision may not be sufficient to give satisfactory computational results.

Subroutines and function subprograms required: None.

Method:

Refer to B. Ostle, 'Statistics in Research', The Iowa State College Press, 1954, Chapter 6.

			GDATA	1
		SUBROUTINE GDATA (N.M.X.XBAR.STD.D.SUMSO)		
		DINENSION X(1), X1 AR(1), STO(1), O(1), SU450(1)	GOATA	
с		GENERATE INDEPENDENT VARIABLES	GDATA	3
		IF (M-1) 105.105.90	GOATA	- 4
	90	L1=9	SDATA	5
		UN 100 J≈2,M	GOATA	5
			GDATA	
			GDATA	
		DO 100 J=1+N		
		L=L1+J	GDATA	9
		K≠L−N	GDARA	
	100	X(L)=X(K)+X(J)	GDATA.	11
c		CALCULATE MEANS	GDATA	12
	105	MM=4+1	GDATA	13
		DF=N	GDATA	14
		Lag	GOATA	
		DO 115 1=1.4M	GDATA	
		XHAN (1)=0.0		
			GDATA	
		00 110 J≖1.N	GOATA	
		L=L+1	GNATA	
		XBAR([]=XBAR([)+X(L)	GDATA	
	115	XKA4(1)=XHA4(1)/7F	GDATA	21
		DO 130 1=1,4M	SDATA	22
	130	STD(1)=0.0	GDATA	23
с		CALCULATE SUMS OF CROSS-PRODUCTS OF DEVIATIONS	SOATA	26
		L={{MM+1}*MM1/2	SDATA	
		07 150 I=1.t	GOATA	
	160	0(1)=0.0		
	130		GDATA	
		DO 170 K=1,N	SOATA	
		L=0	GOATA	
		00 170 J=1,4M	GDATA	30
		L2=N#(J-l)+K	GDATA	31
		TZ≈x{L2)-XHAR(J)	SHATA	32
		STD(J)=STD(J)+T2	GDATA	11
		00 170 1=1.3	GOATA	
		L1=N+(1-1)+K	GDATA	
		T1=X(L1)-XBAR(1)	GOATA	
			SOATA	
	1 70	D(L)=D(L)+T1+T2		
	110		GRATA	
		140	SDATA	
		175 J=1, 4M	GDATA	
		DA 175 I=1,J	GDATA	41
		L=L+1	SUATA	47
	175	D(L)=O(L)+STO(J)+STO(J)/OF	GDATA	43
		L=D	GDATA	44
		D() 18() I=1,4M	SDATA	45
		E=L+Î	GDATA	44
		SU4SQ(1)=0(L)	GDATA	
	180	STOLIJ= SORTE 465 (D(L)))	SDATA	
с	• • •	CALCULATE COPRELATION CONFEICIENTS	GDATA	
c		L=0		
		00 190 Jel.4M	SDATA	
			SDATA	
		00 190 f=1+J	57474	
		L=L+I	SDATA	
	140	D(L)=D(L)/(STD(I)*STD(J))	SDATA	
С		CALCULATE STANDARD DEVIATEINS	GDATA	
		0[=\$Q4[10=1+0]	GDATA	
		00 200 1=1,44	GOATA	
	200	\$10(1)=\$T0(1)/0F	GDATA	59
		RETURN	GDATA	57
		END	GDATA	50

Statistics - Canonical Correlation

In the Scientific Subroutine Package, canonical correlation analysis is normally performed by calling the following five subroutines:

1. CORRE - to compute means, standard deviations, and correlation matrix

2. MINV - to invert a part of the correlation matrix

3. EIGEN - to compute eigenvalues and eigen-vectors

4. NROOT - to compute eigenvalues and eigenvectors of real nonsymmetric matrix of the form $B^{-1} A$

5. CANOR - to compute canonical correlations and coefficients

The subroutine CORRE works in either of two ways: (1) it expects all observations in core, or (2) it triggers a user-provided input subroutine, DATA, to read one observation at a time into a work area. In either case, the user must provide a subroutine named DATA (see "Subroutines Required" in the description of subroutine CORRE).

CANOR

This subroutine performs a canonical correlation analysis between two sets of variables.

The matrix of intercorrelations, R, is partitioned into four submatrices:

1

$$R = \begin{bmatrix} \frac{R_{11} & R_{12}}{R_{21} & R_{22}} \end{bmatrix}$$
(1)

- R₁₁ = intercorrelations among p variables in the first set (that is, left-hand variables)
- R₁₂ = intercorrelations between the variables in the first and second sets

 R_{21} = the transpose of R_{12}

R₂₂ = intercorrelations among q variables in the second set (that is, right-hand variables)

The equation:

$$\left| \begin{array}{ccc} R_{22}^{-1} & R_{21} & R_{11}^{-1} & R_{12} & -\lambda I \end{array} \right| = 0 \tag{2}$$

is then solved for all values of λ , eigenvalues, in the following matrix operation:

$$\Gamma = R_{11}^{-1} R_{12}$$
 (3)

$$A = R_{21}T$$
 (4)

The subroutine NROOT calculates eigenvalues (λ_i) with associated eigenvectors of R_{22}^{-1} A, where i = 1, 2, ..., q.

For each subscript i = 1, 2, ..., q, the following statistics are calculated:

Canonical correlation:

 $CANR = \sqrt{\lambda_i}$ (5) where $\lambda_i = i^{th}$ eigenvalue

Chi-square:

$$x^{2} = - [n-0.5 (p + q + 1)] \log_{e}^{\Lambda}$$
 (6)

where n = number of observations

$$\Lambda = \frac{\prod_{j=1}^{q} (1 - \lambda_j);}{\prod_{j=1}^{q} (1 - \lambda_j)};$$

Degrees of freedom for χ^2 :

$$DF = \left[p - (i - 1)\right] \left[q - (i - 1)\right];$$

ith set of right-hand coefficients:

$$\mathbf{b}_{\mathbf{k}} = \mathbf{v}_{\mathbf{k}\mathbf{i}} \tag{8}$$

where v_{ki} = eigenvector associated with λ_{i}

$$k = 1, 2, \ldots, q;$$

ith set of left-hand coefficients:

$$\mathbf{a_j} = \frac{\sum_{k=1}^{q} \mathbf{t_{jk}} \mathbf{b_k}}{CANR}$$

where $\{t_{jk}\} = T = R_{11}^{-1} R_{12}$

j = 1, 2, ..., p

Subroutine CANOR

Purpose:

Compute the canonical correlations between two sets of variables. CANOR is normally preceded by a call to subroutine CORRE.

Usage:

```
CALL CANOR (N, MP, MQ, RR, ROOTS, WLAM,
CANR, CHISQ, NDF, COEFR, COEFL, R)
```

Description

cription	of	parameters:
N	-	Number of observations.
MP	-	Number of left hand variables.
MQ	-	Number of right hand variables.
RR	-	Input matrix (only upper triangular
		portion of the symmetric matrix of
		M by M, where $M = MP + MQ$) con-
		taining correlation coefficients.
		(Storage mode of 1.)
ROOTS	-	Output vector of length MQ contain-
		ing eigenvalues computed in the

NROOT subroutine. WLAM - Output vector of length MQ containing lambda.

- Output vector of length MQ contain-CANR ing canonical correlations.
- CHISQ - Output vector of length MQ containing the values of chi-squares.
- Output vector of length MQ contain-NDF ing the degrees of freedom associated with chi-squares.
- COEFR -Output matrix (MQ by MQ) containing MQ sets of right hand coefficients columnwise.
- COEFL -Output matrix (MP by MQ) containing MQ sets of left hand coefficients columnwise.
 - Work matrix (M by M).

R Remarks:

(7)

(9)

The number of left hand variables (MP) should be greater than or equal to the number of right hand variables (MQ). The values of canonical correlation, lambda, chi-square, degrees of freedom, and canonical coefficients are computed only for those eigenvalues in roots which are greater than zero.

Subroutines and function subprograms required; MINV

> NROOT (which, in turn, calls the subroutine EIGEN.)

Method:

Refer to W. W. Cooley and P. R. Lohnes, 'Multivariate Procedures for the Behavioral Sciences', John Wiley and Sons, 1962, Chapter 3.

		SUBROUTINE CANOR (N, MP, MQ, RR, ROOTS, WLAM, CANR, CHISQ, NDF, COFFR,	CANOR	
		COEFL,R)	CANOR	;
		UTMENSION RR(1), ROOTS(1), WLAM(1), CANR(1), CHISQ(1), NOF(1), COEFR(1),	CANOR	3
		1 COFFL(1),R(1)	CANDR	4
С		PARTITION INTERCORRELATIONS AMONG LEFT HAND VAPIABLES, BETWEEN	CANOR	5
С		LEFT AND RIGHT HAND VARIABLES, AND AMONG RIGHT HAND VARIABLES.	CANOR	6
		H=MP+H3	CANDR	7
		N1=}	CANOR	A
		90 105 I=1,#	CANOR	9
		DO 105 J=1,M	CANOR	10
		IF(I-J) 102, 103, 103	CANOR	
		L=[+(J+J-J)/2	CANOP	
		GU TU 104	CANDS	
		L≈J+f]#[-]}/2 N1=N[+]	CANIP	
		NI=VI+[K(N1)=R(L)	CANOP	
	100	E=MP	CANOR	
		DO 108 J=2.MP	CANOP	
		N1=M*(J-1)	CANOR	
		D(1 10R 1=1, MP	CANOR	
			CANOR	
		NI=NI+1	CANOR	
	108	R(L)=R(N1)	CANOR	
		N2=MP+1	CANOR	
		L=0	CANOR	
		DO 110 J=N2,M	CANDR	
		N1=M+{J-1}	CANOR	27
		DO 110 I=1,MP	CANOR	78
		L = L + L	CANOR	79
		N1=V1+1	CANOR	
	119	COFFL(L)=R(N1)	CANOR	
			CANOR	
		00 120 J=N2,M	CANDR	
		NI=M*[J-L]+MP DO L20 T=N2,M	CANOR	
		L=L+1	CANPR	
		N1=N1+1	CANOR	
	120	CUEFR(L)=+(N1)	CANDE	
c		SULVE THE CANINICAL EQUATION	CANOR	
		L=NP+NP+1	CANOR	
		K=L+MP	CANOR	
		CALL MINV (R.MP.)ET.R(L), Q(K))	CANOP	
С		CALCULATE T = INVERSE OF RII + KL2	CANOR	
		DO 140 I=1,4P	CANOR	44
		N2=0	CANOR	45
		DO 130 J=1,MO	CANOP	44
		NI=[-MP	CANOR	
		RUDIS(J)=0.0	CANOR	
		DD 130 K=1,MP	CANOR	
		N1=N1+MP N2=N2+1	CANOP	
	130	N2=N2+1 RODTS(J)=4(()TS(J)+R(N1)+CDFFL(N2)	CANCR	
	1.30	L=1-MP	CANDR	
		DD 140 J=1.MQ	CANOR	
		NO TAN GETENG	CANUR	7.4

		L×L+MP	CANOR 55
	140	R(L)=ROOTS(J)	CANOR 56
C		CALCULATE A = R21 * T	CANDR 51
		L=MP+MQ	CANDR SP
		N3=L+1	CANDR 59
		DD 160 J=1,×Q	CANOR 60
		N1=0	CANOR 61
		DD 160 [≖L+MQ	CANOR 62
		N2=NP+(J-1)	CANDR 63
		SUM=0.0	CANOR 64
		DO 150 K*1,MP	CANOR 65
		N1=41+1	CANOR 66
		N2=N2+1	
	160	SUM=SUM+CDEFL {N1} *R (N2)	CANOR 67
	190		CANOR 68
			CANOR 69
-	190	R(L)=SUM	CANDR 70
c		CALCULATE EIGENVALUES WITH ASSOCIATED FIGENVECTORS OF THE	CANOR 71
С		INVERSE OF R22 + A	CANOR 72
		L=L+1	CANOR 73
		CALL NROOT (MQ,R(N3),COEFR,ROOTS,R(L))	CANOR 74
С		FOR EACH VALUE OF I = 1, 2,, MQ, CALCULATE THE FOLLOWING	CANGE 75
c		STATISTICS	CANOR 76
		DO 210 [=1.Mg	CANDR 77
С		TEST WHETHER EIGENVALUE IS GREATER THAN ZERD	CANOR 78
		IF(ROOTS(1)) 220, 220, 165	CANDE 79
с		CANUNICAL CORRELATION	CANDR 80
č	165	CANR(1)= SORT(RODIS(1))	CANOR 81
с		CH1-SQUARE	CANOR 92
		WLAH([)=1.0	
			CANOR 83
		DO 170 J=I,MQ	CANDR 84
	110	WLAH[[]*WLAH[[]#[1.0-ROOTS[J]]	CANDR 85
		FN=N	CANOR 86
		FMP=NP	CANOR 87
		F NQ=MQ	CANOR 98
		BAT = WLAM(1)	CANOR 89
	175	CHISQ([] = -(FN-3.5*{FMP+FMQ+L.0]}*ALOG(BAT)	CANOR 90
С		DEGREES OF FREEDOM FOR CHI-SQUARE	CANOR 91
		N1=[-]	CANOR 92
		NDF([]=(MP-NL)*(4Q-NL)	CANOR 93
С		I-TH SET OF RIGHT HAND COEFFICIENTS	CANDE 94
-		N1=#Q+(I-1)	CANOR 95
		N2=M0+(I-1)+L-1	CANDR 96
		D0 180 J=1.MQ	CANOR 97
		NI=NI+1	
			CANOR 98
		N7=N2+1	CANGE 99
	190	CDEFR(N1)=R(N2)	CANGRIOO
С		I-TH SET OF LEFT HAND COEFFICIENTS	CANOR101
		DO 200 J=1,MP	CANDRLO2
		NI=J-MP	CANOR103
		N2=MQ+(I-1)	CANOR104
		K=MP+{{-1}+J	CANOR105
		CDEFL(K)=0.0	CANORIOA
		DQ 190 JJ=1,MQ	CANOR107
		NI=NI+MP	CANDPIOS
		N2=N2+L	CANDRING
	190	COEFL(K)=COEFL(K) +R(N1)+COEFR(N2)	
		CDEFL(K)=CDEFL(K)/CANR(I)	CANORIIO
			CANOR111
		CONTINUE	CANDR112
-		RETURN	CANOR113
		END	CANORI14

NROOT

This subroutine calculates the eigenvalues, λ_i , and the matrix of eigenvectors, V, of a real square nonsymmetric matrix of the special form $B^{-1}A$, where both B and A are real symmetric matrices and B is positive-definite. This subroutine is normally called by the subroutine CANOR in performing a canonical correlation analysis. The computational steps are as follows.

A symmetric matrix (storage mode 1) is formed by using the upper triangle elements of the square matrix B. Then, the eigenvalues, h_i , and the matrix of eigenvectors, H, of the symmetric matrix are calculated by the subroutine EIGEN.

The reciprocal of square root of each eigenvalue is formed as follows:

$$\mu_{i} = \frac{1}{\sqrt{h_{i}}}$$
(1)

where i = 1, 2, ..., m

m = order of matrix B

The matrix $B^{-1/2}$ is formed by multiplying the jth column vector of H by μ_j , where $j = 1, 2, \ldots, m$. The symmetric matrix $S = (B^{-1/2})$, $AB^{-1/2}$ is formed in the following two matrix multiplications:

$$Q = (B^{-1/2})' A$$
 (2)

$$S = QB^{-1/2}$$
(3)

and eigenvalues, λ_i , and the matrix of eigenvectors, M, of S are calculated by the subroutine EIGEN.

The matrix $W = B^{-1/2}M$ is formed, and the vectors in W are normalized to form the matrix of eigenvectors, V, by the following equation:

$$V_{ij} = \frac{W_{ij}}{\sqrt{SUMV_j}}$$
(4)

where

j = 1, 2, ..., m

i = 1, 2, ..., m

$$SUMV_{j} = \sum_{i=1}^{m} W_{ij}^{2}$$
(5)

32

Subroutine NROOT

Purpose:

Compute eigenvalues and eigenvectors of a real nonsymmetric matrix of the form B-inverse times A. This subroutine is normally called by subroutine CANOR in performing a canonical correlation analysis.

Usage:

CALL NROOT (M, A, B, XL, X)

Description of parameters:

- M Order of square matrices A, B, and X.
- A Input matrix (M by M).
- B Input matrix (M by M).
- XL Output vector of length M containing eigenvalues of B-inverse times A.
- X Output matrix (M by M) containing eigenvectors columnwise.

Remarks:

None.

Subroutines and function subprograms required; EIGEN

Method:

Refer to W. W. Cooley and P. R. Lohnes, 'Multivariate Procedures for the Behavioral Sciences', John Wiley and Sons, 1962, Chapter 3.

SUBROUTINE NROOT (M.A.B.XL.X)	NROOT	1
DIMENSION A(1), B(1), XL(1), X(1)	NROOT	2
C COMPUTE EIGENVALUES AND EIGENVECTORS OF B	NREIOT	3
K=1	NRIIOT	- 4
DU 100 J=2+M	NROOT	5
	NROOT	6
DO 100 I=1.J	NROOT	7
L=L+1	NROOT	8
	NROOT	9
100 B(K)=B(L)	NROOT	10
C THE MATRIX B IS A REAL SYMMETRIC MATRIX.	NROOT	11
HV=0	NROOT	12
CALL EIGEN (B.X. N. MV)	NRDOT	13
C FURM RECIPROCALS OF SQUARE ROUT OF EIGENVALUES. THE RESULTS	NROOT	14
C ARE PREMULTIPLIED BY THE ASSIGLATED ELGENVECTORS.	NROOT	15
L=0	NROOT	16
00 119 J=1+M	NROOT	17
	NROOT	19

```
110 xL[J]=1.07 SQRT[ ABS[A[L]])
K=0
UD 115 J=1.4
DD 115 J=1.4
DD 115 J=1.4
I15 B[K]=X[K]=X[L]]
C FORM [B=*(-1/2])PRIME * A * (B**(-1/2])
UD 120 1=1.4
N2=0
UD 120 J=1.4
N1=*4(1-1)
L=*(1-1)*(
XL[]=0.6
UD 120 J=1.4
N2=*42+1
120 XL[]=X[L]=X[N]]*A[N2]
L=0
DD 130 J=1.4
N2=*42+1
120 XL[]=X[L]=X[N]]*A[N2]
L=0
UD 130 J=1.4
N1=*1+4
N2=*4*(J-1)
L=1+4
A[L]=0.0
DD 130 J=1.4
N1=*1+4
N2=*4*(J-1)
L=1
120 A(L]=X[L]=X[N]]*A[N]
C CUMPUTE TIE[SGNALUFS AND EIGENVECTORS OF A
CALL EIGEN [A,X,*],*NV]
L=0
DD 150 J=1.4
N2=0
DD 150
```

Statistics - Analysis of Variance

In the Scientific Subroutine Package, analysis of variance is normally performed by calling the following three subroutines in sequence:

1. AVDAT - to place data in properly distributed positions of storage

2. AVCAL - to apply the operators sigma and delta in order to compute deviates for analysis of variance

3. MEANQ - to pool the deviates and compute sums of squares, degrees of freedom, and mean squares

AVDAT

This subroutine places data for analysis of variance in properly distributed positions of storage.

The size of data array X, required for an analysis of variance problem, is calculated as follows:

$$n = \prod_{i=1}^{k} (L_{i} + 1)$$
 (1)

where $L_i =$ number of levels of ith factor

k = number of factors

The input data placed in the lower part of the array X are moved temporarily to the upper part of the array. From there, the data are redistributed according to the equation (4) below. Prior to that, multipliers, s_j , to be used in finding proper positions of storage, are calculated as follows:

$$s_1 = 1 \tag{2}$$

$$s_{j} = \prod_{i=1}^{j-1} (L_{i} + 1)$$
 (3)

where J = 2, 3, ..., k

Then, a position for each data point is calculated by the following equation:

$$S = KOUNT_{1} + \sum_{j=2}^{k} s_{j} \cdot (KOUNT_{j} - 1)$$
 (4)

where KOUNT_j = value of j^{th} subscript of the data to be stored.

The subroutine increments the value(s) of subscript(s) after each data point is stored.

Subroutine AVDAT

Purpose:

Place data for analysis of variance in properly distributed positions of storage. This subroutine is normally followed by calls to AVCAL and MEANQ subroutines in the performance of analysis of variance for a complete factorial design.

1

1

'n

3

Usage:

CALL AVDAT (K, LEVEL, N, X, L, ISTEP, KOUNT)

Description of parameters:

- LEVEL Input vector of length K containing levels (categories) within each variable.
- N Total number of data points read in.
- X When the subroutine is called, this vector contains data in locations X(1) through X(N). Upon returning to the calling routine, the vector contains the data in properly redistributed locations of vector X. The length of vector X is calculated by (1) adding one to each level of variable and (2) obtaining the cumulative product of all levels. (The length of X = (LEVEL(1)+1)*(LEVEL(2)+1)* ...*(LEVEL(K)+1).)
- L Output variable containing the position in vector X where the last input data is stored.
- ISTEP Output vector of length K containing control steps which are used to locate data in proper positions of vector X.

KOUNT - Working vector of length K.

Remarks:

Input data must be arranged in the following manner. Consider the 3-variable analysis of variance design, where one variable has 3 levels and the other two variables have 2 levels. The data may be represented in the form X(I,J,K), I=1,2,3 J=1,2 K=1,2. In arranging data, the inner subscript, namely I, changes first. When I=3, the next inner subscript, J, changes and so on until I=3, J=2, and K=2.

Subroutines and function subprograms required: None.

Method:

The method is based on the technique discussed by H. D. Hartley in 'Mathematical Methods for Digital Computers', edited by A. Ralston and H. Wilf, John Wiley and Sons, 1962, Chapter 20.

		SUBROUTINE AVDAT (K.LEVEL.N.K.L.ISTEP.KOUNT)	AVDAT	ı
		DIMENSION LEVEL(1),X(1),ISTEP(1),KOUNT(1)	AVDAT	2
С		CALCULATE TOTAL DATA AREA REQUIRED	AVDAT	3
•		M=LEVEL(1)+1	AVDAT	4
		00 105 I=2-K	AVDAT	5
	1.05	M=M+(LEVEL([)+1)	AVDAT	6
с		MOVE DATA TO THE UPPER PART OF THE ARRAY X	AVDAT	7
č		FOR THE PURPOSE OF REARRANGEMENT	AVDAT	R
ĩ		NI≖M+1	AVDAT	9
		N2 = N+ 1	AVDAT	10
		DO 107 1=1.N	AVDAT	11
		N1=N1-1	AVDAT	12
		N2=N2-1	AVDAT	13
	107	X(N1)=X(N2)	AVDAT	14
с		CALCULATE MULTIPLIERS TO BE USED IN FINDING STORAGE LUCATIONS	AVDAT	15
č		FOR INPUT DATA	AVDAT	16
		1STEP(1)=1	AVDAT	17
		DO 110 (=2.K	AVDAT	19
	110	[STEP(])=[STEP(]-1)*(LEVEL(]-1)*1)	AVDAT	19
		DO 115 1=1.K	AVDAT	
	115	KOUNT(I)=1	AVDAT	
С		PLACE DATA IN PROPER LOCATIONS	AVDAT	
		NL=N1-1	AVOAT	
		00 135 1=1-N	AVDAT	
		L=KGUNT(1)	AVDAT	
		DO 120 J=2,K	AVDAT	
	120	L=L+ISTEP(J]+(K0JNT(J)-1)	AVDAT	
		NI=¥1+1	AVDAT	
		x(L)=x(NL)	AVDAT	
		D0 13C J≈1,K	AVDAT	
		[F[KOUNT[J]-LEVEL[J]] 124, 125, 124	AVDAT	
	124	KOUNT (J)=KOUNT (J)+L	AVDAT	
		50 70 135	AVDAT	
	125	KOUNT(J)=1	AVDAT	
	130	CONTINUE	AVDAT	
	135	CONTINUE	AVDAT	
		RETURN	AVDAT	
		FND	AVDAT	38

AVCAL

This subroutine performs the calculus for the general k-factor experiment: operator Σ and operator Δ . An example is presented in terms of k=3 to illustrate these operators.

Let x_{abc} denote the experimental reading from the ath level of factor A, the bth level of factor B, and the cth level of factor C. The symbols A, B, and C will also denote the number of levels for each factor so that a = 1, 2, ..., A; b = 1, 2, ..., B; and c = 1, 2, ..., C.

With regard to the first factor A,

operator
$$\sum_{a} \equiv$$
 sum over all levels $a = 1, 2, ..., A$, holding the other subscripts at constant levels, and

operator
$$\Delta_a \equiv$$
 multiply all items by A and sub-
tract the result of \sum_a^{Σ} from all
items

In mathematical notations, these operators are defined as follows:

$$\sum_{a} x_{abc} \equiv X_{bc} \equiv \sum_{a=1}^{A} x_{abc}$$
(1)

$$\Delta_{a} x_{abc} \equiv A x_{abc} - X_{bc}$$
(2)

The operators Σ and Δ will be applied sequentially with regard to all factors A, B, and C. Upon the completion of these operators, the storage array X contains deviates to be used for analysis of variance components in the subroutine MEANQ.

Subroutine AVCAL

Purpose:

Perform the calculus of a factorial experiment using operator sigma and operator delta. This subroutine is preceded by subroutine ADVAT and followed by subroutine MEANQ in the performance of analysis of variance for a complete factorial design. Usage:

CALL AVCAL (K, LEVEL, X, L, ISTEP, LASTS)

Description of parameters:

К	Number of variables (factors).
	K must be greater than 1.

- LEVEL Input vector of length K containing levels (categories) within each variable.
- Input vector containing data. Data have been placed in vector X by subroutine AVDAT. The length of X is (LEVEL(1) + 1)*(LEVEL(2) + 1)*...
 *(LEVEL(K) + 1).
- L The position in vector X where the last input data is located. L has been calculated by subroutine AVDAT.
- ISTEP Input vector of length K containing storage control steps which have been calculated by subroutine AVDAT.
- LASTS Working vector of length K.

Remarks:

This subroutine must follow subroutine AVDAT.

Subroutines and function subprograms required: None.

Method:

The method is based on the technique discussed by H. O. Hartley in 'Mathematical Methods for Digital Computers', edited by A. Ralston and H. Wilf, John Wiley and Sons, 1962, Chapter 20.

	/	
	SUBROUTINE AVCAL (K,LEVFL,X,L,ISTEP,LASTS)	AVCAL 1
	DIMENSION LEVEL(1),X(1), (STEP(1),LASTS(1)	AVCAL ?
c	CALCULATE THE LAST DATA POSITION OF EACH FACTOR	AVCAL 3
v	LASTS(1)=L+1	AVCAL 4
	00 145 J=2+K	AVCAL 5
145	LASTS(1)=LASTS(1-1)+ISTEP(1)	AVCAL 6
6 143	PERFURM CALCULUS OF OPERATION	AVCAL 7
	0 DO 175 I=1.K	AVCAL 8
1 31		AVCAL 9
	ts: [[≠]	AVCAL 10
	SUM=0+0	AVCAL 11
	NN=LEVEL(1)	AVCAL 12
	FN=VN	AVCAL 13
	INCRE=1STEP(1)	AVCAL 14
	LAST=LASTS(1)	AVCAL 15
c	SIGNA OPERATION	AVCAL 16
	00 160 J=1.NN	AVCAL 17
155	SUM+X(L)	AVCAL 19
140	L=L+INCRE	AVCAL 19
101	x(L)=\$UM	AVCAL 22
с	DELTA OPERATION	AVCAL 21
L.	DU 165 J=1.NN	AVCAL 22
	x{LL}=FN*x{LL}=SJM	AVCAL 23
165	LL=LL+INCRE	AVEAL 24
	SUM=0.0	AVCAL 25
	IF(L-LAST) 167. 175. 175	AVCAL 25
167	IFIL-LAST+INCRE) 168, 169, 170	AVCAL 27
	L=L+INCRF	AVC.41 29
• • • •	LL=LL+INCRE	AVCAL 29
	GU TO 155	AVCAL 30
173	L=L+INCRE+1-LAST	AV(AL 31
	LL=LL+INCRE+1-LAST	AVEAL 32
	GU TO 155	AVCAL 33
175	CONTINUE	AVCAL 34
	RETURN	AVCAL 35
	END	AVCAL 36

MEANQ

This subroutine performs the mean square operation for the general k-factor experiment in the following two steps:

1. Square each value of deviates for analysis of variance stored in the array X (the result of the operators Σ and Δ applied in the subroutine AVCAI).

ļ

2. Add the squared value into summation storage. In a three-factor experiment, for example, the squared value is added into one of seven storages (7 = 2^3 - 1) as shown in the first column of Table 1. The symbols A, B, and C in the first column denote factor A, factor B, and factor C.

After the mean square operation is completed for all values in the storage array X, the subroutine forms sums of squares of analysis of variance by dividing the totals of squared values by proper divisors. These divisors for the three-factor experiment mentioned above are shown in the second column of Table 1. The symbols A, B, and C in the second column denote the number of levels for each factor.

The subroutine, then, forms mean squares by dividing sums of squares by degrees of freedom. The third column of the summary table shows the degrees of freedom. The symbols A, B, and C denote the number of levels for each factor.

Designation of Store and of Quantity Con- tained in it	Divisor Required to Form Sum of Squares of Analysis of Variance	Degrees of Freedor Required to Form Mean Squares
(A) ²	ABC · A	(A-1)
(B) ²	ABC B	(B-1)
(AB) ²	ABC AB	(A-1) (B-1)
(AB) ² (C) ²	ABC C	(C-1)
(AC) ²	ABC+AC	(A-1) (C-1)
(BC) ²	ABC BC	(B-1) (C-1)
(ABC) ²	ABC · ABC	(A-1) (B-1) (C-1)

Subroutine MEANQ

Purpose:

Compute sum of squares, degrees of freedom, and mean square using the mean square operator. This subroutine normally follows calls to AVDAT and AVCAL subroutines in the performance of analysis of variance for a complete factorial design.

Usage:

CALL MEANQ (K, LEVEL, X, GMEAN, SUMSQ, NDF, SMEAN, MSTEP, KOUNT, LASTS)

Description of parameters:

POLI	pulon c	чp	arameters;
K		-	Number of variables (factors).
			K must be greater than 1.
\mathbf{L}	EVEL	-	Input vector of length K containing
			levels (categories) within each vari-
			able.
Х		-	Input vector containing the result of
			the sigma and delta operators. The
			length of X is (LEVEL(1)+1)*
			(LEVEL(2) + 1)**(LEVEL(K) + 1).
G	MEAN	-	Output variable containing grand
			mean.
\mathbf{S}	UMSQ	-	Output vector containing sums of
			squares, The length of SUMSQ is 2
			to the K th power minus one,
			(2**K)-1.
Ν	DF	-	Output vector containing degrees of
			freedom. The length of NDF is 2 to
			the K th power minus one, (2**K)-1.
S	MEAN	-	Output vector containing mean
			squares. The length of SMEAN is 2
			to the K th power minus one, (2**K)-1.
			Working vector of length K.
			Working vector of length K.
L	ASTS	-	Working vector of length K.

Remarks:

This subroutine must follow subroutine AVCAL.

Subroutines and function subprograms required: None.

Method:

The method is based on the technique discussed by H. O. Hartley in 'Mathematical Methods for Digital Computers', edited by A. Ralston and H. Wilf, John Wiley and Sons, 1962, Chapter 20.

		SUBROUTINE MEANQ (K+LEVF! .X+GMEAN+SUMSQ+NDF+SMEAN+MSTEP+KOU		
		1 LASIS)	MEANQ	
		DIMENSION LEVEL(1),X(1),SUMSQ(1),NDF(1),SMEAN(1),MSTEP(1),	MEANO	
		1 KOUNT(1)+LAST5(1)	MEANQ	
c		CALCULATE TOTAL NUMBER OF DATA	MEANQ	
		N=LEVEL(1)	MEANQ	
		DO 150 I=2+K	MEANQ	
	150	N=N+LEVEL(I)	MEANO	
с		SET UP CONTROL FOR MEAN SQUARE OPERATOR	MEANO	9
		LASTS(1)=LEVEL(1)	MEANQ	10
		DO 178 1=2.K	MEANQ	11
	178	LASTS(I)=LEVEL(I)+1	MEANQ	12
		NN=1	MEANQ	13
c		CLEAR THE AREA TO STORE SUMS OF SQUARES	MEANO	14
		LL=(2**K)-1	MEANQ	15
		MSTEP(1)=1	MEANO	16
		DO 180 I=2+K	MEANQ	17
	160	MSTEP(1)=MSTEP(I-1)+2	MEANQ	
		DO 185 [=1.LL	MEANO	19
	185	SUMSQ(I)=0.0	MEANQ	20
c		PERFORM MEAN SQUARE OPERATOR	MEANQ	21
		DO 190 I=1.K	MEANQ	22
	190	KOUNT(1)=0	MEANQ	23
	200	L=0	MEANQ	24
		DO 260 1=1.K	MEANQ	25
		IF(KOUNT(I)-LASTS(I)) 210, 250, 210	MEANQ	
	210	IF(L) 220+ 220+ 240	MEANQ	27
	220	KOUNT(I)=KOUNT(I)+1	MEANQ	28
		IF(KOUNT(I)-LEVEL(I)) 230, 230, 250	MEANO	29
	230	L=L+MSTEP(I)	MEANQ	
		GO TO 260	MEANQ	31
	240	IF(KOUNT(I)=LEVEL(I)) 230, 260, 230	MEANQ	
	250	KOUNT(I)=0	MEANQ	33
	260	CONTINUE	MEANQ	34
		IF(L) 285, 285, 270	MEANQ	
	270	SUMSQ(L)=SUMSQ(L)+X(NN)*X(NN)	MEANO	
		NN=NN+1	MEANO	
		GO TO 200	MEANQ	
с		CALCULATE THE GRAND MEAN	MEANG	
	285	FN=N	MEANG	
		GMEAN=X(NN)/FN	MEANQ	
c		CALCULATE FIRST DIVISOR REQUIRED TO FORM SUM OF SQUARES		
c		DIVISOR. WHICH IS EQUAL TO DEGREES OF FREEDOM, REQUIRED	TO FORMMEANO	43

	MEAN SOUARES
	DO 310 1=2+K
310	MSTEP(1)=0
	NN=0
	MSTEP(1)=1
320	ND1=1
	ND2=1
	DO 340 I=1+K
	IF(MSTEP(1)) 330+ 340+ 330
330	ND1=ND1*LEVEL(I)
	ND2=ND2+(LEVEL(I)=1)
340	CONTINUE
	FN1=ND1
	FN1=FN*FN1
	FN2=ND2
	NN=NN+1
	SUMSO(NN) = SUMSO(NN) /FN1
	NDF (NN) =ND2
	SMEAN(NN)=SUMSQ(NN)/FN2
	IF(NN-LL) 345, 370, 370
345	no 360 1=1•K
	IF(MSTEP(1)) 347. 350. 347
347	MSTEP(I)=0
	GO TO 360
	MSTEP(1)=1 GO TO 320
	CONTINUE
	RETURN
570	END
	CNU

MFANO

EANO

MEARAC 43 MEARAC 43 MEARAC 43 MEARAC 43 MEARAC 43 MEARAC 43 MEARAC 54 MEARAC 54 MEARAC 54 MEARAC 54 MEARAC 55 MEARAC

c

Statistics - Discriminant Analysis

In the Scientific Subroutine Package, discriminant analysis is normally performed by calling the following three subroutines in sequence:

- 1. DMATX to compute means of variables in each group and a pooled dispersion matrix
- 2. MINV to invert the pooled dispersion matrix
- 3. DISCR to compute coefficients of discriminant functions and evaluate the functions for each observation (individual)

DMATX

This subroutine calculates means of variables in each group and a pooled dispersion matrix for the set of groups in a discriminant analysis.

For each group k = 1, 2, ..., g, the subroutine calculates means and sums of cross-products of deviations from means as follows:

Means:

$$\overline{x}_{jk} = \frac{\sum_{i=1}^{n_k} x_{ijk}}{n_k}$$
(1)

where $n_k = \text{sample size in the } k^{\text{th}} \text{ group}$

 $j = 1, 2, \ldots, m$ are variables

Sum of cross-products of deviations from means:

$$\mathbf{s}_{k} = \left\{ \mathbf{s}_{j\ell}^{k} \right\} = \sum \left(\mathbf{x}_{ijk} - \overline{\mathbf{x}}_{jk} \right) \left(\mathbf{x}_{i\ell k} - \overline{\mathbf{x}}_{\ell k} \right) \quad (2)$$

where j = 1, 2, ..., m

$$l = 1, 2, ..., m$$

The pooled dispersion matrix is calculated as follows:

$$D = \frac{\sum_{k=1}^{g} S_{k}}{\sum_{k=1}^{g} n_{k} - g}$$
(3)

where g = number of groups

Subroutine DMATX

Purpose:

Compute means of variables in each group and a pooled dispersion matrix for all the groups. Normally this subroutine is used in the performance of discriminant analysis.

Usage:

CALL DMATX (K, M, N, X, XBAR, D, CMEAN)

Description of parameters:

K - Number of groups.

- Number of variables (must be the same for all groups).

N - Input vector of length K containing sample sizes of groups.

- X Input vector containing data in the manner equivalent to a 3-dimensional FORTRAN array, X(1, 1, 1), X(2, 1, 1), X(3, 1, 1), etc. The first subscript is case number, the second subscript is variable number and the third subscript is group number. The length of vector X is equal to the total number of data points, T*M, where T = N(1) + N(2) + ... + N(K).
 XBAR Output matrix (M by K) containing
- means of variables in K groups.D Output matrix (M by M) containing

pooled dispersion.

CMEAN - Working vector of length M.

Remarks:

М

The number of variables must be greater than or equal to the number of groups.

Subroutines and function subprograms required: None.

Method:

Refer to 'BMD Computer Programs Manual', edited by W. J. Dixon, UCLA, 1964, and T. W. Anderson, 'Introduction to Multivariate Statistical Analysis', John Wiley and Sons, 1958, Section 6.6-6.8.

		SUBROUTINE DMATX (K.M.N.X.XBAR.D.CHEAN)	OMATX	1
		DIMENSION N(1) . X(1) . XBAR(1) . D(1) . CHEAN(1)	DMATX	-
		MN=MAM	DMATX	
		DO 100 [=1.4M	DMATX	-
	100	D(1)=0.0	DMATX	
c		CALCULATE MEANS	OMATX	
÷		N4=0	DHATX	- 3
		L=0	DNATX	
		LH=0	DNATX	
		DD 160 NG=1.K	DHATX	
		N1=N(NG)	DMATX	
		FN=N1	DMATX	
		DD 130 J≃1.M	OMATX	
		LM=LM+1	DMATX	
		KBAR(LH)=0.0	DNATE	
		DG 120 I=1+NI	DMATX	
			OHATX	
	1 20	L=L+1 XBAR (LM1=XBAR (LM)+X(L)	DHATA	
		XBAR (LM)=XBAR (LM) /FN	DMATX	
c	1.30	CALCULATE SUMS OF CROSS-PRODUCTS OF DEVIATIONS	DMATX	
Ľ		LAEGNELATE SUMS OF CRUSS-PRIDUCTS OF DEVIATIONS	DMATX	
		DD 150 [=1.N]	DMATE	
		LL=N4+T-N1	DMATX	
		LL=N++ -N DO 140 J=1.M	XTARO	
		LL=LL+N1	DMATX	
			DMATX	
			DMATX	
	140	CMEANIJ)=XILL}-X7AR(N2) LL=0	DMATX	
		DC 150 J=1+M	DMATX	
		DO 150 J=1.M	DMATX	
			DMATE	
	160	LL=LL+I D{LL}=D(LL)+CMFAN(J)*CMEAN(JJ)	DHATX	
		N4=N4+N1+M	DMATX	
c	100	CALCULATE THE POQLED DISPERSION MATRIX	DMATX	
۰.		LL=-K	DMATX	
		DO 170 J=1.K	DHATX	
		LL=L1+N(T)	DMATE	
	1/0	LL#LL#N(I) FN#LL	DHATX	
		DO 180 1=1.4M	DMATX	
	180	D(1)=D(1)/FN	DMATX	
	1.40	RETURN	DMATX	
		END	DHATX	
		Luo -		

DISCR

This subroutine performs a discriminant analysis by calculating a set of linear functions that serve as indices for classifying an individual into one of K groups.

For all groups combined, the following are obtained:

Common means:

$$\overline{\mathbf{X}}_{\mathbf{j}} = \frac{\sum_{k=1}^{g} \mathbf{n}_{k} \,\overline{\mathbf{x}}_{\mathbf{j}k}}{\sum_{k=1}^{g} \mathbf{n}_{k}} \tag{1}$$

where g = number of groups

$$j = 1, 2, ..., m$$
 are variables
 $n_k = sample size in the kth group$
 $\overline{x}_{jk} = mean of jth variable in kth group$

Generalized Mahalanobis D² statistics, V:

$$v = \sum_{i=1}^{m} \sum_{j=1}^{m} d_{ij} \sum_{k=1}^{g} n_k (\overline{x}_{ik} - \overline{x}_i) (\overline{x}_{jk} - \overline{x}_j)$$
(2)

where $d_{ij} =$ the inverse element of the pooled dispersion matrix D

V can be used as chi-square (under assumption of normality) with m(g-1) degrees of freedom to test the hypothesis that the mean values are the same in all the g groups for these m variables.

For each discriminant function k = 1, 2, ..., g, the following statistics are calculated:

Coefficients:

$$C_{ik*} = \sum_{j=1}^{m} d_{ij} \overline{x}_{jk}$$
(3)

where i = 1, 2, ..., m

k = k*

Constant:

$$C_{ok*} = -1/2 \sum_{j=1}^{m} \sum_{l=1}^{m} d_{jl} \overline{x}_{jk} \overline{x}_{lk}$$
(4)

For each ith case in each kth group, the following calculations are performed:

Discriminant functions:

$$f_{k*} = \sum_{j=1}^{m} C_{jk} x_{ijk} + C_{ok*}$$
 (5)

where $k^* = 1, 2, ..., g$

Probability associated with largest discriminant function:

$$P_{L} = \frac{1}{\sum_{k=1}^{g} e^{(f_{k*} - f_{L})}}$$
(6)

where $f_L =$ the value of the largest discriminant function

L = the subscript of the largest discriminant function

Subroutine DISCR

Purpose:

Compute a set of linear functions which serve as indices for classifying an individual into one of several groups. Normally this subroutine is used in the performance of discriminant analysis.

Usage:

Ν

х

CALL DISCR (K, M, N, X, XBAR, D, CMEAN, V, C, P, LG)

Description of parameters:

K	-	Number of groups. K must be	
		greater than 1.	
м	-	Number of variables.	

- Input vector of length K containing sample sizes of groups.
- Input vector containing data in the manner equivalent to a 3-dimensional FORTRAN array, X(1,1,1), X(2,1,1), X(3,1,1), etc. The first

subscript is case number, the second subscript is variable number and the third subscript is group number. The length of vector X is equal to the total number of data points, T^*M , where $T = N(1) + N(2) + \dots + N(K)$.

XBAR - Input matrix (M by K) containing means of M variables in K groups.

D - Input matrix (M by M) containing the inverse of pooled dispersion matrix.

CMEAN - Output vector of length M containing common means.

V - Output variable containing generalized Mahalanobis D-square.

C - Output matrix (M+1 by K) containing the coefficients of discriminant functions. The first position of each column (function) contains the value of the constant for that function.

P - Output vector containing the probability associated with the largest discriminant functions of all cases in all groups. Calculated results are stored in the manner equivalent to a 2-dimensional area (the first subscript is case number, and the second subscript is group number). Vector P has length equal to the total number of cases, T (T = N(1)+N(2)+...+N(K)).

LG - Output vector containing the subscripts of the largest discriminant functions stored in vector P. The length of vector LG is the same as the length of vector P.

Remarks:

The number of variables must be greater than or equal to the number of groups.

Subroutines and function subprograms required: None.

Method:

Refer to 'BMD Computer Programs Manual', edited by W. J. Dixon, UCLA, 1964, and T. W. Anderson, 'Introduction to Multivariate Statistical Analysis', John Wiley and Sons, 1958.

	SUBROUTINE DISCR (K,M,N,X,XBAR,D,CMEAN,V,C,P,LG)	DISCR	1
	DIMENSION N(1), X(1), XBAR(1), D(1), CMEAN(1), C(1), P(1), LG(1)	DISCR	2
C	CALCULATE CONTON MEANS	DISCR	3
	N1=N(1)	DISCR	4
	00 100 I=2,K	DISCR	5
100	N1=N1+N(I)	DISCR	6
	FNT=N1	DISCR	7
	DO 110 I=1.K	DISCR	8
110	P([]=N(])	DISCP	9
	DO 130 [≃1.M	DISCR	10
	CHEAN(I)=0	DISCR	11
	NL=I-#	DISCR	12
	DO 120 J=1,K	DISCR	13
	N1=N1+M	DISCR	14
120	CMEAN(I)=CMEAN(I)+P(J)*XBAR(N1)	DISCR	15

	1 30	CHEAN(I)=CHEAN(I)/FNT	DISCR	16
¢		CALCULATE GENERALIZED MAHALANOBIS D SQUARE	DISCR	17
		L=0	DISCR	18
		DO 140 [=1.K	DISCR	19
		DD 140 J=1+M L≃L+1	DISCR	20
	140	C(L)=XBAR(L)-CMEAN(J)	DISCR	21 22
	140	¥=0.0	DISCR	23
		L=0	DISCR	24
		DO 160 J=1.M	DISCR	25
		DO 160 I=1,M	DISCR	26
		N1=1-M N2=J-M	DISCR	27
		N2-J-H SUM*0.0	DISCR	28 29
		00 150 IJ=1.*K	DISCR	30
		NI=NI+M	DISCR	ŝĩ
		N7=N2+M	DISCR	32
	150	SUH=SUH+P([])+C(Y1)+C(N2)	DISCR	33
	140	L=L+1 V=V+D(L}+SUM	DISCR	34
с	100	CALCULATE THE COEFFICIENTS OF DISCRIMINANT FUNCTIONS	DISCR	35 36
•		N2=0	DISCR	37
		DD 190 KA=1+K	DISCR	39
		DO 170 [=1.4	DISCR	39
		N2=N2+1	DISCR	40
	110	P{l}=X8AR{N2} [g=(M+l]#{KA-l]+[DISCR	
		SUM=0+0	DISCP	42
		DD 180 J=1+M	DISCR	
		M]+J-M	DISCR	45
		DO LBO L=1.M	DISCR	46
	1.00	Nl=Nl+M SUM=SUM+D(Nl)+P{J}+P(L)	DISCR	47
	100	C(IQ)=-(SUM/2.0)	DISCR	48 49
		DD 190 1=1,H	DISCR	50
		N1=[-M	DISCR	51
		19=10+1	DISCR	
		C(19)=0.0	DISCR	53
		DD 190 J=1+M N1=N1+M	DISCR	54 55
	190	C(10)=C(10)+D(N1)+P(J)	DISCR	
C		FOR EACH CASE IN EACH GROUP, CALCULATE	DISCP	57
C		DISCRIMINANT FUNCTIONS		59
		LBASE=0 N!=0		59 60
		DO 270 KG=1,K	DISCR	61
		NN=N(KG)	DISCR	67
		DO 260 I=1+NN	DISCP	63
		L=I-NN+LBASE	DISCR	64
		00 Z00 J≏1+M L×L+NN	DISCR	65 66
	200	D(J)=X(L)	DISCR	67
		N2=0	DISCR	68
		00 220 KA=1.K	DISCR	69
		N2=N2+1	DISCR	70
		SUM=C(N2) D0 210 J=1,M	DISCR	71
		N2=N2+1	DISCR	73
	210	SUN=SUM+C(N2)+D(J)	DISCR	
	220	XBAR (KA) = SUM	OISCR	75
С		THE LARGEST DISCRIMINANT FUNCTION	DISCR	76
		L=L SUM=XBAR(L)	DISCP	77 78
		00 240 J=2,K	DISCR	79
		[F(SUM-XBAR(J)) 230, 240, 240	DISCP	80
	230	L=J	DISCR	81
		SUM#XBAR(J)	DISCP	82
с	240	CONTINUE PROBABILITY ASSOCIATED WITH THE LARGEST DISCRIMINANT FUNCTION	DISCR	83 94
L		PROSABILITY ASSOCIATED WITH THE LARGEST DISCRIMINANT FUNCTION	DISCR	85
		DN 250 J=1,K	DISCR	86
	250	PL=PL+ EXP(XBAR(J)-SUM)	DISCR	87
		N1=N1+1	DISCR	99
	260	LG(N1)=L P(N1)=1.0/PL	DISCR	99 90
		LBASE=LRASE+NN*N	DISCR	91
	2.2	PETURN	DISCR	92
		END	DISCR	93

Statistics - Factor Analysis

Factor analysis is a method of analyzing the intercorrelations within a set of variables. It determines whether the variance in the original set of variables can be accounted for adequately by a smaller number of basic categories, namely factors.

In the Scientific Subroutine Package, factor analysis is normally performed by calling the following five subroutines in sequence:

- 1. CORRE to find means, standard deviations, and correlation matrix
- 2. EIGEN to compute eigenvalues and associated eigenvectors of the correlation matrix
- 3. TRACE to select the eigenvalues that are greater than or equal to the control value specified by the user
- 4. LOAD to compute a factor matrix
- 5. VARMX to perform varimax rotation of the factor matrix

The subroutine CORRE works in either of two ways: (1) it expects all observations in core, or (2) it triggers a user-provided input subroutine, DATA, to read one observation at a time into a work area. In either case, the user must provide a subroutine named DATA (see "Subroutines Required" in the description of subroutine CORRE).

TRACE

This subroutine finds k, the number of eigenvalues that are greater than or equal to the value of a specified constant. The given eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_m$ must be arranged in descending order.

Cumulative percentage for these k eigenvalues are:

$$d_{j} = \sum_{i=1}^{j} \frac{\lambda_{i}}{m}$$
(1)

where j = 1, 2, ..., k

m = number of eigenvalues (or variables)

 $k \, \leq \, m$

Subroutine TRACE

Purpose:

Compute cumulative percentage of eigenvalues greater than or equal to a constant specified by the user. This subroutine normally occurs in a sequence of calls to subroutines CORRE, EIGEN, TRACE, LOAD, and VARMX in the performance of a factor analysis.

Usage:

CALL TRACE (M, R, CON, K, D)

Description of parameters:

- M Number of variables.
- R Input matrix (symmetric and stored in compressed form with only upper triangle by column in core) containing eigenvalues in diagonal. Eigenvalues are arranged in descending order. The order of matrix R is M by M. Only M* (M+1)/2 elements are in storage. (Storage mode of 1.)
- CON A constant used to decide how many eigenvalues to retain. Cumulative percentage of eigenvalues which are greater than or equal to this value is calculated.
- Gutput variable containing the number of eigenvalues greater than or equal to CON. (K is the number of factors.)
- D Output vector of length M containing cumulative percentage of eigenvalues which are greater than or equal to CON.

Remarks:

None.

Subroutines and function subprograms required: None.

Method:

Each eigenvalue greater than or equal to CON is divided by M and the result is added to the previous total to obtain the cumulative percentage for each eigenvalue.

		SUBROUTINE TRACE (M.R.CON.K.D)
		DIMENSION R(1),D(1)
		FNeM
		L=0
		DD 100 J=1+M
		L=L+I
	100	D(1)=R(L)
		K=0
C		TEST WHETHER I-TH EIGENVALUE IS GREATER
¢		THAN OR EQUAL TO THE CONSTANT
		DO 110 I=1.H
		[F(0(1)-CON) 120, 105, 105
	105	K=K+1
	110	D(I)+D(I)/FM
С		COMPUTE CUMULATIVE PERCENTAGE OF EIGENVALUES
	120	DO 130 [=2,K
	130	D(1)=D(1)+D(I-1)
		RETURN
		END

LOAD

This subroutine calculates the coefficients of each factor by multiplying the elements of each normalized eigenvector by the square root of the corresponding eigenvalue.

$$a_{ij} = v_{ij} \cdot \sqrt{\lambda_j}$$

where i = 1, 2, ..., m are variables

j = 1, 2, ..., k are eigenvalues retained (see the subroutine TRACE)

(1)

\$

 $k \leq m$

Subroutine LOAD

Purpose:

TRACE TRACE

TRACE 18 TRACE 19

> Compute a factor matrix (loading) from eigenvalues and associated eigenvectors. This subroutine normally occurs in a sequence of calls to subroutines CORRE, EIGEN, TRACE, LOAD, and VARMX in the performance of a factor analysis.

Usage:

CALL LOAD (M, K, R, V)

Description of parameters:

- M Number of variables.
- K Number of factors.
- R A matrix (symmetric and stored in compressed form with only upper triangle by column in core) containing eigenvalues in diagonal. Eigenvalues are arranged in descending order, and first K eigenvalues are used by this subroutine. The order of matrix R is M by M. Only M*(M+1)/2 elements are in storage. (Storage mode of 1.)
- When this subroutine is called, matrix V (M by M) contains eigenvectors columnwise. Upon returning to the calling program, matrix V contains a factor matrix (M by K).

Remarks:

None.

Subroutines and function subprograms required: None.

Method:

Normalized eigenvectors are converted to the factor pattern by multiplying the elements of each vector by the square root of the corresponding eigenvalue.

	SUBROUTINE LOAD (M.K.R.V)	LOAD		
	DIMENSION R(1),V(1)		1	
	L=0	LOAD	2	
		LOAD	3	
	Jî≂O	LOAD	4	
	00 160 J=1.K		•	
	ار جان ل = ال ال	LOAD	5	
160		LOAD		
120	SQ= SQRT(R(JJ))	LOAD	7	
	DO 160 I=1,M	LOAD	à	
	L=L+1			
160		LOAD	9	
100		LOAD	10	
	RETURN	LOAD	11	
	END	LOAD		
			12	

VARMX

This subroutine performs orthogonal rotations on a m by k factor matrix such that:

$$\sum_{j} \left\{ m \sum_{i} \left(a_{ij}^2 / h_i^2 \right)^2 - \left[\sum_{i} \left(a_{ij}^2 / h_i^2 \right) \right] \right\}^2 \quad (1)$$

is a maximum, where i = 1, 2, ..., m are variables, j = 1, 2, ..., k are factors, a_{ij} is the loading for the ith variable on the jth factor, and h_i^2 is the communality of the ith variable defined below.

Communalities:

$$h_{i}^{2} = \sum_{j=1}^{k} a_{ij}^{2}$$
 (2)

where i = 1, 2, ..., m

Normalized factor matrix:

$$b_{ij} = a_{ij} / \sqrt{h_i^2}$$
(3)

where i = 1, 2, ..., m

j = 1, 2, ..., k

Variance for factor matrix:

$$V_{c} = \sum_{j} \left\{ \left[m \sum_{i} \left(b_{ij}^{2} \right)^{2} - \left(\sum_{i} b_{ij}^{2} \right)^{2} \right] / m^{2} \right\}$$
(4)

where c = 1, 2, ... (iteration cycle)

Convergence test:

If
$$V_c - V_{c-1} \le 10^{-7}$$
 (5)

four successive times, the program stops rotation and performs the equation (28). Otherwise, the program repeats rotation of factors until the convergence test is satisfied.

Rotation of two factors:

The subroutine rotates two normalized factors (b_{ij}) at a time. 1 with 2, 1 with 3, ..., 1 with k, 2 with 3, ..., 2 with k, ..., k - 1 with k. This constitutes one iteration cycle.

Statistics - Factor Analysis 43

Assume that x and y are factors to be rotated, where x is the lower-numbered or left-hand factor, the following notation for rotating these two factors is used:

$$\begin{bmatrix} x_{1} & y_{1} \\ x_{2} & y_{2} \\ \cdot & \cdot \\ \cdot & \cdot \\ \cdot & \cdot \\ \cdot & \cdot \\ x_{m} & y_{m} \end{bmatrix} \cdot \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix} = \begin{bmatrix} x_{1} & Y_{1} \\ x_{2} & Y_{2} \\ \cdot & \cdot \\ \cdot & \cdot \\ \cdot & \cdot \\ x_{m} & y_{m} \end{bmatrix}$$
(6)

where x_i and y_i are presently available normalized loadings and X_i and Y_i, the desired normalized loadings, are functions of ϕ , the angle of rotation. The computational steps are as follows:

A. Calculation of NUM and DEN:

$$A = \sum_{i} (x_{i} + y_{i}) (x_{i} - y_{i})$$

$$B = 2 \sum_{i} x_{i} y_{i}$$

$$C = \sum_{i} \left[(x_{i} + y_{i}) (x_{i} - y_{i}) + 2x_{i} y_{i} \right]$$

$$\left[(x_{i} + y_{i}) (x_{i} - y_{i}) - 2x_{i} y_{i} \right]$$

$$D = 4 \sum_{i} (x_{i} + y_{i}) (x_{i} - y_{i}) x_{i} y_{i}$$

$$NUM = D - 2AB/m$$

$$DEN = C - \left[(A + B) (A - B) \right] /m$$

$$DEN = C - \left[(A + B) (A - B) \right] /m$$

B. Comparison of NUM and DEN:

The following four cases may arise:

NUM < DEN, go to B1 below.

NUM > DEN, go to B2 below.

 $(NUM + DEN) \ge \epsilon^*$, go to B3 below.

(NUM + DEN) < ϵ , skip to the next rotation.

* ϵ is a small tolerance factor.

B1:
$$\tan 4\theta = |\text{NUM}| / |\text{DEN}|$$
 (8)

If $\tan 4\theta < \epsilon$ and

- (i) DEN is positive, skip to the next rotation.
- (ii) DEN is negative, set $\cos \phi =$ $\sin \phi = (\sqrt{2})/2$ and go to E below.

If $\tan 4 \theta \ge \epsilon$, calculate:

$$\cos 4 \theta = 1 / \sqrt{1 + \tan^2 4 \theta}$$
 (9)

 $\sin 4\theta = \tan 4\theta \cdot \cos 4\theta$ (10)

and go to C below.

B2:
$$\operatorname{ctn} 4\theta = |\operatorname{NUM}| / |\operatorname{DEN}|$$
 (11)

If $\operatorname{ctn} 4\theta < \epsilon$, $\operatorname{set} \cos 4\theta = 0$ and $\sin 4\theta = 1$. Go to C below.

If $\operatorname{ctn} 4\theta \geq \epsilon$, calculate:

$$\sin 4\theta = 1/\sqrt{1 + \operatorname{ctn}^2 4\theta}$$
 (12)

 $\cos 4\theta = \operatorname{ctn} 4\theta \cdot \sin 4\theta$ (13)

and go to C below.

- B3: Set $\cos 4\theta = \sin 4\theta = (\sqrt{2})/2$ and go to C below.
- C. Determining $\cos \theta$ and $\sin \theta$:

$$\cos 2\theta = \sqrt{(1 + \cos 4\theta)/2} \tag{14}$$

$$\sin 2\theta = \sin 4\theta / 2\cos 2\theta \tag{15}$$

$$\cos\theta = \sqrt{(1 + \cos 2\theta)/2}$$
 (16)

$$\sin\theta = \sin 2\theta / 2\cos\theta \tag{17}$$

- D. Determining $\cos \phi$ and $\sin \phi$:
 - D1: If DEN is positive, set

$$\cos \phi = \cos \theta$$

(18)

D

 $\sin \phi = \sin \theta$ and go to (D2) below.

If DEN is negative, calculate

$$\cos\phi = \frac{\sqrt{2}}{2}\cos\theta + \frac{\sqrt{2}}{2}\sin\theta \qquad (20)$$

$$\sin\phi = \left|\frac{\sqrt{2}}{2}\cos\theta - \frac{\sqrt{2}}{2}\sin\theta\right| \quad (21)$$

and go to (D2) below.

D2: If NUM is positive, set

$$\cos \phi = \left| \cos \phi \right| \tag{22}$$

$$\sin \phi = |\sin \phi| \tag{23}$$

and go to (E) below.

If NUM is negative, set

$$\cos\phi = \left|\cos\phi\right| \tag{24}$$

$$\sin\phi = -\left|\sin\phi\right| \tag{25}$$

E. Rotation:

$$X_{i} = X_{i} \cos \phi + y_{i} \sin \phi \qquad (26)$$

$$Y_{i} = x_{i} \sin \phi + y_{i} \cos \phi \qquad (27)$$

where i = 1, 2, ..., m

After one cycle of k(k - 1)/2 rotations is completed, the subroutine goes back to calculate the variance for the factor matrix (equation 4).

Denormalization:

$$\mathbf{a_{ij}} = \mathbf{b_{ij}} \cdot \mathbf{h_{i}}$$
(28)

where i = 1, 2, ..., m

$$j = 1, 2, ..., k$$

Check on communalities:

Final communalities $f_i^2 = \sum_{j=1}^k a_{ij}^2$ (29)

Difference $d_i = h_i^2 - f_i^2$

where i = 1, 2, ..., m

Purpose:

Perform orthogonal rotations of a factor matrix. This subroutine normally occurs in a sequence of calls to subroutines CORRE, EIGEN, TRACE, LOAD, VARMX in the performance of a factor analysis.

Usage:

CALL VARMX (M, K, A, NC, TV, H, F, D)

Description of parameters:

- M Number of variables and number of rows of matrix A.
- K Number of factors.
- A Input is the original factor matrix, and output is the rotated factor matrix. The order of matrix A is M by K.
- NC Output variable containing the number of iteration cycles performed.
- TV Output vector containing the variance of the factor matrix for each iteration cycle. The variance prior to the first iteration cycle is also calculated. This means that NC+1 variances are stored in vector TV. Maximum number of iteration cycles allowed in this subroutine is 50. Therefore, the length of vector TV is 51.
- H Output vector of length M containing the original communalities.
- F Output vector of length M containing the final communalities.
- D Output vector of length M containing the differences between the original and final communalities.

Remarks:

If variance computed after each iteration cycle does not increase for four successive times, the subroutine stops rotation.

Subroutines and function subprograms required: None.

Method:

(30)

Kaiser's varimax rotation as described in 'Computer Program for Varimax Rotation in Factor Analysis' by the same author, Educational and Psychological Measurement, Vol. XIX, No. 3, 1959.

		SUBROUTINE VARMX (M,K,A,NC,TV,H,F,D) Dimension A{l},TV(l},H(l},F{l},D{1}
C		INITIALIZATION EPS=0.00116
		TVLT≖0.0 Ll=K−1
		NC=0
		FN=M FFN=FN+FN
с		CONS=0.7071066
ι		CALCULATE DRIGINAL COMMUNALITIES DO 110 i=1.m
		H(I)=0.0 DN 110 J=1.K
	110	L=M#{]-]}+[H{]}+A{]}+A{]}
C		CALCULATE NORMALIZED FACTOR MATRIX D0 120 1=1+M
	115	H(T) = SCRT(H(T))
		D7 127 J=1.K L=M+(J-1)+I
	120	A(L)=A(L)/H(I) GO TO 132
c	130	CALCULATE VARIANCE FOR FACTOR MATRIX NV=NV+1
	132	TVLT=TV(NV-1) TV(NV)=0.0
	-	UD 150 J=1.K AA=0.0
		B6=0,0 LB=9#¢(J−1)
		DD 140 [=1,M
		L=LB+1 CC=A(L)+A(L)
		AA=AA+CC B8=B8+CC≉CC
	150	TV(NV)=TV(NV)+(FV*BB-AA*AA)/FFN [F(NV-51] 160, 430, 430
¢	160	PERFORM CONVERGENCE TEST If(ITV(NV)-TVLT)-(1.E-7)) 170, 170, 190
	170	NC=NC+I
ç		IF(NC-3) 190, 190, 430 ROTATION OF THO FACTORS CONTINUES UP TO
с	190	THE STATEMENT 120. DO 420 J=1.LL
		Ll=H*(J-1) II=J+1
С		CALCULATE NUM AND DEN ND 420 KI≖II+K
		L2=4*(K1-1) AA=0.0
		BB=0.0 CC=0.0
		DD=0.0 DD=0.0 DD 230 I=1.M
		L3≖L1+F
		L4=L2+I U={4{L3}+4{L4}]*{A{L3}−A{L4}}
		T=A(L3)+A(L4) T=T+T
		CC=CC+{U+T}*(U-T) DD=DD+2+0+U+T
	230	AA⇔A4+U BB=BB+T
		T=DD-2=0#AA#88/FV B=CC-{AA#AA-88#88}/FN
¢		COMPARISON OF NUM AND DEN
	240	IF(1+B)-EPS) 420, 250, 250
с с		IF(IT-0) 280, 240, 320 IF(IT+0)-EPS) 423, 250, 250 NUM + DEN IS 3REATER THAN 3R EQUAL TO THE TOLERANCE FACTOR
	2 30	SIN4T=CONS
с		GO TO 350 NUM IS LESS TTAN DEN TAN4T= AB5(T1/ A35(R)
	280	TAN4T= ABS(T)/ ABS(B) IF(TAN4T-EPS) 300, 290, 290
	290	COS4T=1.0/ SQRT(1.0+TAN4T*TAN4T) SIN4T=TAN4T*COS4T
	300	GO TO 350 IF(B) 310, 420, 420
	310	
		GD TO 400
с	320	NUM IS GREATER THAN DEN CTN4T= ABS(T/B)
	330	EF(CTN4T-EPS) 347, 30, 330 SIN4T=1.0/ SQRT(1.0+CTN4T+CTN4T)
		GO TO 350
	340	C0541≈0+0 SIN4T≈1+0
C	350	DETERMINE COS THETA AND SIN THETA COS2T= Sort(11.0+COS4T)/2.0)
		S1N2T=S1N4T/(2.0#COS2T) CDST= SQRT((1.0+COS2T)/2.0)
с		SINT=SIN2T/(2.0*COST) DETERMINE COS PHI AND SIN PHI
č		IF(A) 370, 370, 360
	360	COSP=COST S ENP=S ENT
	370	GO TO 380 COSP≏CUNS*COST+C3NS*S1NT
	380	SINP= ABS(CONS*COST-CONS*SINT) IF(T) 390, 390, 400
Ļ	390	SINP=-SINP PERFORM ROTATION
	400	DO 410 J=1.M L3=L1+f
		L4=L2+] AA=A(L3)+COSP+A(L4)+SINP
	410	A(L4)=-A(L3)*SIN ² *A(L4)*COSP A(L3)=AA
		GONTINUE GO TO 130
c	4.70	DENORMALIZE VARIMAX LOADINGS
	30	00 440 J=1,M 00 440 J=1,K
	440	L=M*(J=1)+[A(L)=A(L)*H(I)
С		CHECK ON COMMINALITIES NC=NV-1
	450	DO 450 [=1,M H{[]=H{[]+H{[]}
	430	00 470 [=1,# F{I}=0.0
	430	F(1)=0_0
	460	D0 470 [=1,4 F(1)=0. D0 460 J=1,K L=M*(J=1)=f(1) F(1)=F(1)=A(L)=A(L) D(1)=H(1)=F(1)

Statistics - Time Series

AUTO

I

This subroutine calculates the autocovariances for lags 0, 1, 2, ..., (L-1), given a time series of observations A_1, A_2, \ldots, A_n and a number L.

L

$$R_{j} = \frac{1}{n-j+1} \sum_{i=1}^{n-j+1} (A_{i} - AVER) (A_{i+j-1} - AVER) (1)$$

where AVER =
$$\frac{1}{n} \sum_{i=1}^{n} A_{i}$$

Subroutine AUTO

Purpose:

1 2 3 VARMX 1 2 VARMX 1 VARMX 2 VARMX 1 VARMX 2 VARMX 3 VARMX 4 VARMX 4 VARMX 4 VARMX 4 VARMX 4 VARMX 3 VARMX 4 VARMX 9 VARX 9 VARMX 9

VARMXI 07

VARMX1109 VARMX110 VARMX111 VARMX111 VARMX112 VARMX113 VARMX114 VARMX115 VARMX115 VARMX115 VARMX117 VARMX117 VARMX127 VARMX122 VARMX125 VARMX125 VARMX125

VARMX128 VARMX129 VARMX130 VARMX131 VARMX131 VARMX132 VARMX133 To find autocovariances of series A for lags 0 to L-1.

Usage:

CALL AUTO (A, N, L, R)

Description of parameters:

- A Input vector of length N containing the time series whose autocovariance is desired.
- N Length of the vector A.
- L Autocovariance is calculated for lags of 0, 1, 2,..., L-1.
- R Output vector of length L containing autocovariances of series A.

Remarks:

The length of R is different from the length of A. N must be greater than L. Otherwise, R(1) is set to zero and this routine exits.

Subroutines and function subprograms required: None.

Method:

The method described by R. B. Blackman and J. W. Tukey in <u>The Measurement of Power</u> <u>Spectra</u>, Dover Publications, Inc., New York, 1959.

			AUTO	,
		SUBROUTINE AUTO (A+N+L+R)		
		DIMENSION A(1)+R(1)	AUTO	
с		CALCULATE AVERAGE OF TIME SERIES A	AUTO	
		AVER=0.0	AUTO	4
		IF(N-L) 50,50,100	AUTO	M01
	50	R(1)=0.0	AUTO	M02
		RETURN	AUTO	M03
	100	DO 110 1=1+N	AUTO	M04
	110		AUTO	6
		FN=N	AUTO	7
		AVER=AVER/FN	AUTO	8
c		CALCULATE AUTOCOVARIANCES	AUTO	11
		DO 130 J=1+L	AUTO	12
		NJ=N-J+1	AUTO	13
		SUM=0+0	AUTO	14
		DO 120 I=1+NJ	AUTO	15
		1J=1+J=1	AUTO	16
	1 20	SUM=SUM+(A(I)+AVER)*(A(IJ)-AVER)	AUTO	M05
	120	SUM#SUM#(A(I/ AVER/*(A(IJ/ AVER/	AUTO	
			AUTO	
	130			
		RETURN	AUTO	
		END	AUTO	21

CROSS

s

This subroutine calculates the crosscovariances of series B lagging and leading A, given two time series A_1, A_2, \ldots, A_n and B_1, B_2, \ldots, B_n and given a number L.

(a) B lags A:

$$R_j = \frac{1}{n-j+1} \sum_{i=1}^{n-j+1} (A_i - AVERA) (B_{i+j-1} - AVERB)$$
(1)

(b) B leads A:

$$= \frac{1}{n-j+1} \sum_{(A_{i+j-1} - AVERA)}^{n-j+1} (B_i - AVERB)$$
(2)

where AVERA =
$$\frac{1}{n} \sum_{i=1}^{n} A_i$$

i = 1

AVERB =
$$\frac{1}{n} \sum_{i=1}^{n} B_{i}$$

- n = number of observations in each series.
- j = 1, 2, ..., L represent time lags (or leads) of 0, 1, 2, ..., (L-1).

Subroutine CROSS

Purpose:

To find the crosscovariances of series A with series B (which leads and lags A).

Usage:

CALL CROSS (A, B, N, L, R, S)

Description of parameters:

- A Input vector of length N containing first time series.
- B Input vector of length N containing second time series.
- N Length of series A and B.
- L Crosscovariance is calculated for lags and leads of 0, 1, 2,..., L-1.

- R Output vector of length L containing crosscovariances of A with B, where B lags A.
- S Output vector of length L containing crosscovariances of A with B, where B leads A.
- Remarks:

N must be greater than L. If not, R(1) and S(1) are set to zero and this routine exits.

Subroutines and function subprograms required: None.

Method:

The method is described by R. B. Blackman and J. W. Tukey in <u>The Measurement of Power</u> <u>Spectra</u>, Dover Publications, Inc., New York, 1959.

		SUBROUTINE CROSS (A+B+N+L+R+S)	CROSS	1
		DIMENSION $A(1) \cdot B(1) \cdot R(1) \cdot S(1)$	CROSS	
с		CALCULATE AVERAGES OF SERIES A AND B	CROSS	3
		FN=N	CROSS	4
		AVERA=0.0	CROSS	
		AVERB=0.0		5
		IF(N-L)50,50,100	CROSS	
			CROSSM	
	50	R(1)=0.0	CROSSM	
		5(1)=0.0	CR055M	
		RETURN	CROSSM	
	100	DO 110 I#1+N	CROSSM	105
		AVERA=AVERA+A(I)	CROSS	8
	110	AVERB=AVERB+B(I)	CROSS	9
		AVERA=AVERA/FN	CROSS	10
		AVER8=AVER8/FN	CROSS	11
С		CALCULATE CROSSCOVARIANCES OF SERIES A AND B	CROSS	14
		DO 130 J=1+L	CROSS	15
		NJ=N-J+1	CROSS	16
		SUMR=0.0	CROSS	
		SUMS≃00	CROSS	
		DQ 120 [=1.NJ	CROSS	
		1J≠I+J−1	CROSS	
		SUMR=SUMR+(A(I)+AVERA)*(S(IJ)-AVERB)	CROSSM	
	120	SUMS=SUMS+(A(IJ)=AVFRA)*(B(I)=AVFRB)	CROSSM	
	110	FNJ=NJ	CROSS	
		R(J)=SUMR/FNJ		
	1 1 0	5(J)=SUMS/FNJ	CROSSM	
	130	RETURN	CROSSM	
			CROSS	
		END	CROSS	Z7

<u>SMO</u>

This subroutine calculates the smoothed or filtered series, given a time series A_1, A_2, \ldots, A_n , a selection integer L, and a weighting series W_1, W_2, \ldots, W_m .

$$\mathbf{R}_{\mathbf{i}} = \sum_{j=1}^{m} \mathbf{A}_{p} \cdot \mathbf{W}_{j}$$
(1)

where $p = j \cdot L - L + k$

$$k = i - IL + 1$$
$$i = IL \text{ to IH}$$

$$IL = \frac{L(m-1)}{2} + 1$$
 (2)

$$IH = n - \frac{L(m-1)}{2}$$
(3)

- L = a given selection integer. For example, L = 4 applies weights to every 4^{th} item of the time series.
- m = number of weights. Must be an odd integer. (If m is an even integer, any fraction resulting from the calculation of $\frac{L(m-1)}{2}$ in (2) and (3) above will be truncated.

n = number of items in the time series.

From IL to IH elements of the vector R are filled with the smoothed series and other elements with zeros.

Subroutine SMO

Purpose:

To smooth or filter series A by weights W.

Usage:

CALL SMO (A, N, W, M, L, R)

Description of parameters:

- A Input vector of length N containing time series data.
- N Length of series A.
- W Input vector of length M containing weights.

뿘

- M Number of items in weight vector. M must be an odd integer. (If M is an even integer, any fraction resulting from the calculation of $(L^*(M-1))/2$ in (1) and (2) below will be truncated.)
- L Selection integer. For example, L=12 means that weights are applied to every 12th item of A. L=1 applies weights to successive items of A. For monthly data, L=12 gives year-to-year averages and L=1 gives month-to-month averages.
- R Output vector of length N. From IL to IH elements of the vector R are filled with the smoothed series and other elements with zero, where

IL=(L*(M-1))/2+1	 (1)
IH=N-(L*(M-1))/2	 (2)

Remarks:

N must be greater than or equal to the product of L*M.

Subroutines and function subprograms required: None.

Method:

Refer to the article 'FORTRAN Subroutines for Time Series Analysis', by J. R. Healy and B. P. Bogert, Communications of ACM, V.6, No. 1, Jan., 1963.

	SUBROUTINE SHO (4.N.W.M.L.R)	SMO	1
	DIMENSION A(1),W(1),R(1)	540	z
с	INITIALIZATION	SHO	3
	DO 110 I=1.N	SMO	4
110	R(1)=0.0	540	5
	IL=(L+(H-1))/2+1	SMO	6
	[H=N-(L*(M-1))/2	540	7
C	SMOOTH SERIES A BY WEIGHTS W	SHO	8
	DO 120 I=IL,IH	SMO	9
	K=1-1L+1	540	10
	DO 120 J=1.M	SMO	11
	[P=[]+L]-L+K	540	12
120) R{[]=R[[]+A[]P]@([])	SMO	13
	RETURN	SHO	14
	END	SMD	15

EXSMO

This subroutine calculates a smoothed series S_1 , S_2 , ..., S_{NX} , given time series X_1 , X_2 , ..., X_{NX} and a smoothing constant α . Also, at the end of the computation, the coefficients A, B, and C are given for the expression A + B(T) + C(T)²/2. This expression can be used to find estimates of the smoothed series a given number of time periods, T, ahead.

The subroutine has the following two stages for i = 1, 2, ..., NX, starting with A, B, and C either given by the user or provided automatically by the subroutine (see below).

(a) Find S_i for one period ahead

$$S_i = A + B + .5C \tag{1}$$

(b) Update coefficients A, B, and C

$$A = X_{i} + (1 - \alpha)^{3} (S_{i} - X_{i})$$
 (2)

$$B = B + C - 1.5 (\alpha^{2}) (2 - \alpha) (S_{i} - X_{i})$$
(3)

$$C = C - (\alpha^3) (S_i - X_i)$$
 (4)

where α = smoothing constant specified by the user

 $(0.0 < \alpha < 1.0).$

If coefficients A, B, and C are not all zero (0.0), take given values as initial values. However, if A = B = C = 0.0, generate initial values of A, B, and C as follows:

$$C = X_1 - 2X_2 + X_3$$
 (5)

$$B = X_2 - X_1 - 1.5C$$
 (6)

$$A = X_{1} - B - 0.5C$$
(7)

Subroutine EXSMO

Purpose:

To find the triple exponential smoothed series S of the given series X.

Usage:

х

CALL EXSMO (X, NX, AL, A, B, C, S)

Description of parameters:

 Input vector of length NX containing time series data which is to be exponentially smoothed.

Statistics - Time Series 49

NX - The number of elements in X.

- AL Smoothing constant alpha. AL must be greater than zero and less than one.
- A, B, C Coefficients of the prediction equation where S is predicted T periods hence by
 - A + B*T + C*T*T/2.
 - As input: If A=B₌C=0, program will provide initial values. If at least one of A, B, C is not zero, program will take given values as initial values.
 - As output: A, B, C, contain latest, updated coefficients of prediction.
 - Output vector of length NX containing triple exponentially smoothed time series.

Remarks:

S

None.

Subroutines and function subprograms required: None.

Method:

Refer to R. G. Brown, 'Smoothing, Forecasting and Prediction of Discrete Time Series', Prentice-Hall, N.J., 1963, pp. 140 to 144.

	SUBROUTINE EXSMO (X+NX+AL+A+B+C+S)	EXSMO 1
	DIMENSION X(1),S(1)	EXSMO 2
c	IF A=B=C=0.0, GENERATE INITIAL VALUES OF A. B. AND C	EXSMO 3
	IF(A) 140, 110, 140	EXSMU 4
110	[F(B) 140, 120, 140	EXSMO 5
	IF(C) 140+ 130+ 140	EX5MO 6
	L1=1	EXSNOM01
••••	L2=2	EX5MON02
	L3=3	EXSMON03
	C=X(L1)-2+0+X(L2)+X(L3)	EXSMOM04
	B=X(L2)-X(L1)-1.5+C	EXSMOM05
	A=X(L1)-B-0.5*C	EXSMOM06
140	BE=1.0-AL	EXSMO 10
	BECUB=BE+BE+BE	EXSMO 11
	ALCUB=AL#AL#AL	EXSMU 12
c	DO THE FOLLOWING FOR 1=1 TO NX	EXSMO 13
•	DO 150 1=1+NX	EX5MO 14
c	FIND S(1) FOR ONE PERIOD AHEAD	EXSMU 15
•	S(1)=A+B+0.5*C	EXSMO 16
c	UPDATE COEFFICIENTS A+ B+ AND C	EXSMO 17
•	DIF=S(I)=X(I)	EXSMO 18
	A=X(I)+BECUB+D1F	EXSMO 19
	B=B+C=1.5+AL+AL+(2.0-AL)+DIF	EXSMO 20
160	C=C+ALCUB+D1F	EXSMO 21
150	RETURN	EXSMO 22
	END	EXSMO 23
	ENF.	ENGING ES

Statistics - Nonparametric

CHISQ

This subroutine calculates degrees of freedom and chi-square for a given contingency table A of observed frequencies with n rows (conditions) and m columns (groups). The degrees of freedom are:

$$d.f. = (n-1) (m-1)$$
(1)

If one or more cells have an expected value of less than 1, chi-square is computed and the error code is set to 1.

The following totals are computed:

$$T_i = \sum_{j=1}^m A_{ij}; i = 1, 2, ..., n \text{ (row totals)}$$
 (2)

$$T_j = \sum_{i=1}^{n} A_{ij}; j = 1, 2, ..., m \text{ (column totals)}$$
(3)

$$GT = \sum_{i=1}^{n} T_i \text{ (grand total)}$$
(4)

Chi-square is obtained for two cases:

(a) for $2 \ge 2$ table:

$$\chi^{2} = \frac{\mathrm{GT}\left(\left|\begin{array}{c} A_{11} A_{22} - A_{12} A_{21} \\ \hline & -\frac{\mathrm{GT}}{2} \end{array}\right)^{2} \\ \overline{(A_{11} + A_{12})(A_{21} + A_{22})(A_{11} + A_{21})(A_{12} + A_{22})} \\ (5)$$

(b) for other contingency tables:

$$x^{2} = \sum_{i=1}^{n} \sum_{j=1}^{m} \frac{\left(A_{ij} - E_{ij}\right)^{2}}{E_{ij}}$$
 (6)

where
$$E_{ij} = \frac{T_i T_j}{GT}$$

 $i = 1, 2, ..., n$
 $j = 1, 2, ..., m$

Subroutine CHISQ

Purpose:

Compute chi-square from a contingency table.

Usage:

Α

Ν

CALL CHISQ(A, N, M, CS, NDF, IERR, TR, TC)

Description of parameters:

- Input matrix, N by M, containing contingency table.
- Number of rows in A.
- M Number of columns in A.
- CS Chi-square (output).
- NDF Number of degrees of freedom (output).
- IERR Error code (output):
 - 0 Normal case.
 - 1 Expected value less than 1.0 in one or more cells.
 - 3 Number of degrees of freedom is zero.
- TR Work vector of length N.
- TC Work vector of length M.

Remarks:

Chi-square is set to zero if either N or M is one (error code 3).

Subroutines and function subprograms required: None.

Method:

Described in S. Siegel, 'Nonparametric Statistics for the Behavioral Sciences', McGraw-Hill, New York, 1956, Chapter 6 and Chapter 8.

		SUBROUTINE CHISQLA+N+M+CS+NDF+IERR+TR+TC)	CHISQ	1
		DIMENSION A(1)+TR(1)+TC(1)	CH150	ž
			CHISO	3
		NM=N+M	CHISQ	4
		IERR=0	CH150	5
-		CS=0.0 FIND DEGREES OF FREEDOM	CHISQ	6
c			CHISQ	7
		NDF=(N-1)+(M-1)	CHISQ	B
		IF(NDF) 5+5+10	CHISQ	9
	•	IERR=3	CH150	
		RETURN	CHISQ	
c		COMPUTE TOTALS OF ROWS	CHISOM	
	10	DO 90 I=1+N	CH150	
		TR(1)=0+0	CHISO	
		I J=I+N	CHISO	
		DO 90 J=1+M	CHISO	
		1j=1j+N	CHISQ	
	90	TR(1)=TR(1)+A(1)	CHISQ	
¢		COMPUTE TOTALS OF COLUMNS	CHISO	
		1 J=0	CHISO	
		DO 100 J=1+M	CHISG	
		TC(J)=0.0	CHISQ	
		DO 100 I=1+N	CHISQ	
		IJ=IJ+1	CH159	
	100	TC(J)=TC(J)+A(IJ)	CHISO	
c		COMPUTE GRAND TOTAL	CHISQ	
		GT=0+0	CHISQ	
		DO 110 I=1.N	CHISQ	
	110	GT=GT+TR(1)	CHISQ	
c		COMPUTE CHI SQUARE FOR 2 BY 2 TABLE (SPECIAL CASE)	CHISQ	
		[F(NM-4) 130+120+130	CHISON	
	120	L1=1	CHISON	
		L2=2	CHISON	
		L3*3	CHISON	
			CHISO	
		CS=GT+(ABS(A(L1)+A(L4)+A(L2)+A(L3))+GT/2+0)++2/(TC(L1)+TC(L2)	CHISO	
		1+TR(L1)+TR(L2))	CHISQ	
		RETURN	CHIOU	

c		COMPUTE CHI SQUARE FOR OTHER CONTINGENCY TABLES
	130	1J=0
		DO 140 J=1.M
		DO 140 I=1+N
		IJ=IJ+1
		E=TR(I)*TC(J)/GT
		16(5-1.0) 135, 140, 140
	135	IERR=1
	140	CS=CS+(A(IJ)=E)*(A(IJ)=E)/E
		RETURN
		END

This subroutine tests whether two independent groups are from the same population by means of the Mann-Whitney U-test, given an input vector A with smaller group preceding larger group. The scores for both groups are ranked together in ascending order. Tied observations are assigned the average of the tied ranks.

The sum of ranks in the larger group, R2, is calculated. The U statistic is then computed as follows:

$$U' = n_1 n_2 + \frac{n_2 (n_2 + 1)}{2} - R_2$$
 (1)

where $n_1 =$ number of cases in smaller group

 n_{0} = number of cases in larger group

$$U = n_1 n_2 - U'$$

if U' < U, set U = U' (2)

A correction factor for ties is obtained:

$$T = \sum \frac{t^3 - t}{12}$$
 (3)

where t = number of observations tied for a given rank

The standard deviation is computed for two cases:

(a) if T = 0

$$s = \sqrt{\frac{n_1 n_2 (n_1 + n_2 + 1)}{12}}$$
(4)

(b) if T > 0

$$s = \sqrt{\left(\frac{n_1 n_2}{N(N-1)}\right) \left(\frac{N^3 - N}{12} - T\right)}$$
(5)

where N = total number of cases $(n_1 + n_2)$

The significance of U is then tested:

$$Z = \frac{U - \bar{X}}{s}$$
(6)

where $\overline{X} = \text{mean} = \frac{n_1 n_2}{2}$

Z is set to zero if n_2 is less than 20.

Subroutine UTEST

Purpose:

Test whether two independent groups are from the same population by means of Mann-Whitney U-test.

Usage:

CALL UTEST (A, R, N1, N2, U, Z)

Description of parameters:

- A Input vector of cases consisting of two independent groups. Smaller group precedes larger group. Length is N1+N2.
- R Output vector of ranks. Smallest value is ranked 1, largest is ranked N. Ties are assigned average of tied ranks. Length is N1+N2.
- N1 Number of cases in smaller group.
- N2 Number of cases in larger group.
- U Statistic used to test homogeneity of the two groups (output).
- Z Measure of significance of U in terms of normal distribution (output).

Remarks:

Z is set to zero if N2 is less than 20.

Subroutines and function subprograms required: RANK TIE

Method:

Described in S. Siegel, 'Nonparametric Statistics for the Behavioral Sciences', McGraw-Hill, New York, 1956, Chapter 6.

	SUBROUTINE UTEST(A,R,NL,N2,U,Z)	UTEST	1
	DIMENSION A(1)+R(1)	UTEST	2
С	RANK SCORES FROM BOTH GROUP TOGETHER IN ASCENDING ORDER, AND	UTEST	ż
с	ASSIGN TIED DESERVATIONS AVERAGE OF TIED RANKS	UTEST	4
	N=N1+N2	UTEST	5
	CALL RANK(A,R,N)	UTEST	6
	1=0.0	UTEST	7
С	SUM RANKS IN LARGER GRAUP	UTEST	8
	R2=0.0	UTEST	9
	NP=N1+1	UTEST	10
	DO 10 [=NP+N	UTEST	
	10 R2=R2+R(1)	UTEST	īž
C.	CALCULATE U	UTEST	13
	FNX=N1+N2	UTEST	Ĺ4
	FN=N	UTEST	15
	FN2=N2	UTEST 1	16
	UP=FNX+FN2+((FN2+1.0)/2.0)-R2	UTEST 1	17
	U=FNX-UP	UTEST	18
	IF(UP-U) 20,30,3)	UTEST	19
	20 U=UP	UTEST 2	29
С	TEST FOR N2 LESS THAN 20	UTEST 7	21
	30 [F[N2-20] 80,40,40	UTEST 2	22
С	COMPUTE STANDARD DEVIATION	UTFST 2	23
	40 KT=1	UTEST 2	24
	CALL TIE(R,N,KT,TS)	UTEST 2	25
	1F(TS) 50,60,50	UTEST 2	
	50 S=SQRT((FNX/(FN*(FN-1.0)))*(((FN*FN*FN-FN)/12.0)-TS))	UTEST 2	
	GO TO 70	UTEST 2	
с	60 S=SQRT(FNX*(FN+1.0)/12.0)	UTEST 2	
Ŀ.	COMPUTE 2	UTEST 3	
	70 Z=(U-FNX+0.5)/S	UTFST 3	
	BO RETURN	UTEST 3	
	END	UTEST 3	33

Z

TWOAV

This subroutine determines the Friedman two-way analysis of variance statistic, given a matrix A with n rows (groups) and m columns (cases). Data in each group is ranked from 1 to m. Tied observations are assigned the average of the tied ranks.

The sum of ranks is calculated:

$$R_{j} = \sum_{i=1}^{n} A_{ij}$$
(1)

Friedman's statistic is then computed:

$$x_r^2 = \frac{12}{nm(m+1)} \sum_{j=1}^m (R_j)^2 - 3n(m+1)$$
 (2)

The degrees of freedom are:

$$\mathbf{d} \cdot \mathbf{f} = \mathbf{m} - \mathbf{1} \tag{3}$$

Subroutine TWOAV

Purpose:

Test whether a number of samples are from the same population by the Friedman two-way analysis of variance test.

Usage:

CALL TWOAV(A, R, N, M, W, XR, NDF, NR)

Description of parameters:

- A Input matrix, N by M, of original data.
- R Output matrix, N by M, of ranked data.
- N Number of groups.
- M Number of cases in each group.
- W Work area of length 2*M.
- XR Friedman statistic (output).
- NDF Number of degrees of freedom (output).
- NR Code: 0 for unranked data in A; 1 for ranked data in A (input).

Remarks:

None.

Subroutines and function subprograms required: Rank.

Method:

Described in S. Siegel, 'Nonparametric Statistics for the Behavioral Sciences', McGraw-Hill, New York, 1956, Chapter 7.

	SUBROUTINE TWOAV (A.R.N.M.W.XR.NDF.NR)	TWDAV 1
	DIMENSION A(1),R(1),W(1)	TWOAV 2
с	DETERMINE WHETHER DATA IS RANKED	TWDAV 3
	[F(NR-1) 10, 30, 10	TWDAV 4
C	RANK DATA IN EACH GROUP AND ASSIGN TIED OBSERVATIONS AV	ERAGE TWOAV 5
с с	OF TIED RANK	TWDAV 6
	10 DD 20 [=1.N	TWOAV 7
	IJ=I-N	TWOAV 9
	tk=tj	TWOAV 9
	00 15 J=1.M	TWOAV 10
	[]=[]+N	TWOAV 11
	15 W(J)=A([J]	TW0AV 12
	CALL RANK (W.W(H+1).W)	TWOAV 13
	00 20 J=1.M	THOAV 14
	1K=1K+N	TWOAV 15
	L + W= M	TWOAV 16
	20 R(1K)=W(1W)	TWOAV 17
	GQ TQ 35	TWOAV 18
	30 NH=N#M	TWOAV L9
	00 32 I=1,NM	TH0AV 20
	32 R([]=A[])	TWOAV 21
c	CALCULATE SUM OF SQUARES OF SUMS OF RANKS	TWDAV 22
	35 RTSQ=0.0	TWOAV 23
	1R=0	TWOAV 24
	00 50 J=1,M	TW04V 25
	RT=0.0	THOAV 26
	00 40 [=1,N	TWOAV 27
	1R=[R+1	TWDAV 28
	40 RT=RT+R(IR)	TWOAV 29
	SO RTSQ=RTSQ+RT+RT	THOAV 30
С	CALCULATE FRIEDMAN TEST VALUE, XR	TWOAV 31
	FNM=N#{M+1}	TWDAV 32
	FM=M	TW0AV 33
	XR=(12.0/(FM#FNM))#RTSQ-3.0#FNM	TWOAV 34
c	FIND DEGREES JF FREEDOM	TW04V 35
	NDF = M-1	TWOAV 36
	RETURN	TWOAV 37
	END	TWOAV 34

QTEST

This subroutine determines the Cochran Q-test statistic, given a matrix A of dichotomous data with n rows (sets) and m columns (groups).

Row and column totals are calculated:

$$L_{i} = \sum_{j=1}^{m} A_{ij} \text{ (row totals)}$$
(1)

where i = 1, 2, ..., n

$$G_j = \sum_{i=1}^n A_{ij}$$
 (column totals) (2)

where j = 1, 2, ..., m

The Cochran Q statistic is computed:

$$Q = \frac{(m-1)\left[m\sum_{j=1}^{m} G_{j}^{2} - \left(\sum_{j=1}^{m} G_{j}\right)^{2}\right]}{m\sum_{i=1}^{n} L_{i} - \sum_{i=1}^{n} L_{i}^{2}}$$
(3)

The degrees of freedom are:

$$d.f = m - 1 \tag{4}$$

Subroutine QTEST

Purpose:

Test whether three or more matched groups of dichotomous data differ significantly by the Cochran Q-test.

Usage:

CALL QTEST(A, N, M, Q, NDF)

Description of parameters:

- A Input matrix, N by M, of dichotomous data (0 and 1).
- N Number of sets in each group.
- M Number of groups.
- Q Cochran Q statistic (output).
- NDF Number of degrees of freedom (output).

Remarks:

M must be three or greater.

Subroutines and function subprograms required: None.

Method:

Described in S. Siegel, 'Nonparametric Statistics for the Behavioral Sciences', McGraw-Hill, New York, 1956, Chapter 7.

¢

		SUBROUTINE QTEST(A, N, H, Q, NDF)	QTEST	1
		DIMENSION A(1)	OTEST	;
C		COMPUTE SUM OF SQUARES OF ROW TOTALS, RSQ, AND GRAND TOTAL OF	OTEST	3
c		ALL ELEMENTS, GD	OTEST	4
-		KSD=0.0	OTEST	5
		GD=0.0	OTEST	6
		DD 20 I=1.N	OTEST	7
		TR=0.0	OTEST	Ŕ
		IJ=I-N	OTEST	ġ.
		DD 10 J=1.M	OTEST	
		LJ=LJ+N		iñ.
	10	TR=TR+A(1)	OTEST	
		GD=GD+FR		ii.
	20	RSQ=RSQ+TR+TR	OTEST	
С		COMPUTE SUM OF SQUARES OF COLUMN TOTALS, CSO	OTEST	
		CS0=0.0	OTEST	
		1 J=0	QTEST	
		00 40 J=1,M		18
		TC=0.0	OTEST	19
		DD 30 [=1.N	OTEST	
		1 + L 1 = L 1	OTEST	21
	30	TC=TC+A(IJ)	OTEST	
	40	CSQ=CSQ+TC+TC	OTEST	23
¢		COMPUTE COCHRAN Q TEST VALUE	OTEST	24
		FMan	OTEST	25
		Q=(FM-1.0)*(FM*C5Q-GD*GD)/(FM*GD-R5Q)	OTEST	26
C		FIND DEGREES OF FREEDOM		27
		NDF=M-1	OTEST	28
		RETURN	OTEST	
		END	OTEST	

<u>SRANK</u>

This subroutine measures the correlation between two variables by means of the Spearman rank correlation coefficient, given two vectors of n observations for the variables.

The observations on each variable are ranked from 1 to n. Tied observations are assigned the average of the tied ranks.

The sum of squares of rank differences is calculated:

$$D = \sum_{i=1}^{n} (A_i - B_i)^2$$
 (1)

where $A_i =$ first ranked vector

 $B_i = second ranked vector$

n = number of ranks

A correction factor for ties is obtained:

$$T_{a} = \sum \frac{t^{3} - t}{12} \text{ over variable A}$$

$$T_{b} = \sum \frac{t^{3} - t}{12} \text{ over variable B}$$
(2)

The Spearman rank correlation coefficient is then computed for the following two cases:

a) if
$$T_a$$
 and T_b are zero,

$$r_s = 1 - \frac{6D}{n^3 - n}$$
(3)

(b) if T_a and/or T_b are not zero,

$$\mathbf{r}_{\mathbf{s}} = \frac{\mathbf{X} + \mathbf{Y} - \mathbf{D}}{2\sqrt{\mathbf{X}\mathbf{Y}}} \tag{4}$$

where
$$X = \frac{n^3 - n}{12} - T_a$$
 (5)

$$Y = \frac{n^3 - n}{12} - T_b$$
 (6)

The statistic used to measure the significance of r_s is:

$$t = r_{s} \sqrt{\frac{n-2}{1-r_{s}^{2}}}$$
 (7)

The degrees of freedom are:

d.f. =
$$n - 2$$
 (8)

Subroutine SRANK

Purpose:

Test correlation between two variables by means of Spearman rank correlation coefficient.

Usage:

CALL SRANK(A, B, R, N, RS, T, NDF, NR)

Description of parameters:

- A Input vector of N observations for first variable.
- B Input vector of N observations for second variable.
- R Output vector for ranked data, length is 2*N. Smallest observation is ranked 1, largest is ranked N. Ties are assigned average of tied ranks.
- N Number of observations.
- RS Spearman rank correlation coefficient (output).
- T Test of significance of RS (output).
- NDF Number of degrees of freedom (output).
- NR Code: 0 for unranked data in A and B; 1 for ranked data in A and B (input).

Remarks:

T is set to zero if N is less than ten.

Subroutines and function subprograms required: RANK TIE

Method:

Described in S. Siegel, 'Nonparametric Statistics for the Behavioral Sciences', McGraw-Hill, New York, 1956, Chapter 9.

	SUBROUTINE SRANK(A+B+R+N+RS+T+NDF+NR)	SRANK 1
	DIMENSION A(1)+B(1)+R(1)	SRANK 2
	D=N	SRANKM01
	FNNN=D+D-D	SRANKM02
с	DETERMINE WHETHER DATA IS RANKED	SRANK 4
	IF(NR-1) 5; 10; 5	SRANK 5
c	RANK DATA IN A AND B VECTORS AND ASSIGN TIED OBSERVATIONS	SRANK 6
с	AVERAGE OF TIED RANKS	SRANK 7
	5 CALL RANK (A+R+N)	SRANK B

		CALL RANK (B+R(N+1)+N)	SRANK
		GO TO 40	SRANK
с		MOVE RANKED DATA TO R VECTOR	SRANK
	10	DD 20 I=1+N	SRANK
	20	R(1) = A(1)	SRANK
		DO 30 I=1+N	SRANK
		J=I+N	SRANK
	30	R(J)=B(I)	SRANK
с		COMPUTE SUM OF SQUARES OF RANK DIFFERENCES	SRANK
	40	D=0+0	SRANK
		DO 50 I=1+N	SRANK
		J=I+N	SRANK
	50	D=D+(R(1)+R(J))*(R(1)-R(J))	SRANK
¢		COMPUTE TIED SCORE INDEX	SRANK
		KT=1	SRANK
		CALL TIE (R+N+KT+TSA)	SRANK
		CALL TIE (R(N+1)+N+KT+TSB)	SRANK
¢		COMPUTE SPEARMAN RANK CORRELATION COEFFICIENT	SRANK
		IF(TSA) 60+55+60	SRANK
	55	IF(TSB) 60,57,60	SRANK
	57	RS=1.0-6.0+D/FNNN	SRANK
		GO TO 70	SRANK
	60	X=FNNN/12.0-TSA	SRANK
		Y=X+TSA=TSB	SRANK
		R5=(X+Y-D)/(2.0*(SQRT(X*Y)))	SRANK
с		COMPUTE T AND DEGREES OF FREEDOM IF N IS 10 OR LARGER	SRANK
		T=0.0	SRANK
	70	IF(N-10) 80+75+75	SRANK
		T=R5*SQRT(FLOAT(N=2)/(1.0=RS*R5))	SRANK
		NDF=N-Z	SRANK
		RETURN	SRANK
		END	SRANK

<u>KRANK</u>

The subroutine computes the Kendall rank correlation coefficient, given two vectors of n observations for two variables, A and B. The observations on each variable are ranked from 1 to n. Tied observations are assigned the average of the tied ranks. Ranks are sorted in sequence of variable A.

A correction factor for ties is obtained:

$$T_{a} = \sum \frac{t(t-1)}{2} \text{ for variable A}$$

$$T_{b} = \sum \frac{t(t-1)}{2} \text{ for variable B}$$
(1)

where t = number of observations tied for a given rank

The Kendall rank correlation coefficient is then computed for the following two cases:

(a) if
$$T_a$$
 and T_b are zero,

$$r = \frac{S}{\frac{1}{2}n (n-1)}$$
 (2)

where n = number of ranks

7

S = total score calculated for ranks in variable B as follows: selecting each rank in turn, add 1 for each larger rank to its right, subtract 1 for each smaller rank to its right.

(b) if
$$T_a$$
 and/or T_b are not zero,

$$\tau = \frac{S}{\sqrt{\frac{1}{2}n(n-1) - T_a}} \sqrt{\frac{1}{2}n(n-1) - T_b}$$
(3)

The standard deviation is calculated:

$$s = \sqrt{\frac{2(2n+5)}{9n(n-1)}}$$
 (4)

The significance of τ can be measured by:

$$z = \frac{\tau}{s}$$
(5)

56

Subroutine KRANK

Purpose:

Test correlation between two variables by means of Kendall rank correlation coefficient.

Usage:

CALL KRANK(A, B, R, N, TAU, SD, Z, NR)

Description of parameters:

- A Input vector of N observations for first variable.
- B Input vector of N observations for second variable.
- R Output vector of ranked data of length 2*N. Smallest observation is ranked 1, largest is ranked N. Ties are assigned average of tied ranks.
- N Number of observations.
- TAU Kendall rank correlation coefficient (output).
- SD Standard deviation (output).
- Z Test of significance of TAU in terms of normal distribution (output).
- NR Code: 0 for unranked data in A and B; 1 for ranked data in A and B (input).

Remarks:

SD and Z are set to zero if N is less than ten.

Subroutines and function subprograms required: RANK

TIE

Method:

Described in S. Siegel, 'Nonparametric Statistics for the Behavioral Sciences', McGraw-Hill, New York, 1956, Chapter 9.

		SUBROUTINE KRANK(A,B,R,N,TAU,SO,Z,NR)	KRANK	1
		DIMENSION ALL)+BLLI+RLIJ	KRANK	2
		SD=0.0	KRANK	3
		7=0.0	KRANK	- 4
		FN=N	KRANK	- 5
		FN1=N*(N-1)	KRANK	6
c		DETERMINE WHETHER DATA IS RANKED	KRANK	7
-		IF(NR-1) 5, 10, 5	KRANK	9
с		RANK DATA IN 4 AND B VECTORS AND ASSIGN TIED OBSERVATIONS	KRANK	9
č		AVERAGE OF TIED RANKS	KRANK	10
-	5	CALL BANK (A.R.N)	KRANK	11
		CALL RANK (B.R (N+1).N)	KRANK	12
		GO TO 40	KRANK	13
с		MOVE RANKED DATA TO B VECTOR	KRANK	14
	10	DD 20 [=1-N	KRANK	15
	20	R([]=A([)	KRANK	16
		DD 30 I=1.N	KRANK	17
		J≂I+N	KRANK	18
	30	R(J)=8(T)	KRANK	19
С		SORT RANK VECTOR R IN SEQUENCE OF VARIABLE A	KRANK	20
	40	LS08T=0	KRANK	21
		00 50 1=2.N	KRANK	22
		IF(8(1)-R(1-1)) 45,50,50	KRANK	23
	45	ISORT=ISORT+1	KRANK	24
		RSAVE≈R(I)	KRANK	25
		R(1)=R(1-1)	KRANK	26
		B(I-1)=RSAVE	KRANK	
		12= I +N	KRANK	28
		SAVER=R(12)	KRANK	29
		R(12)=R(17-1)	KRANK	30
		R([2-1]=SAVER	KRANK	31
	50	CONTINUE	KRANK	32
		'IF(ISORT) 40,55,40	KRANK	
C		COMPUTE S ON VARIABLE B. STARTING WITH THE FIRST RANK, ADD 1	KRANK	
č		TO S FOR EACH LARGER RANK TO ITS RIGHT AND SUBTRACT 1 FOR EACH		
č		SMALLER RANK. REPEAT FOR ALL RANKS.	KRANK	

55 S≈0.0	KRANK	37
NM=N-1	KRANK	38
DQ. 60 [=1.NM	KRANK	39
J=N+1	KRANK	
D0 60 L≖I+N	KRANK	
K=N+L	KRANK	42
IF(R(K)-R(J)) 56,60,57	KRANK	41
56 S=S-1.0	KRANK	
GD TO 60	KRANK	4
57 S=S+1.0	KRANK	41
60' CONTINUE	KRANK	4
C COMPUTE TIED SCORE INDEX FOR BOTH VARIABLES	KRANK	
KT=2	KRANK	
CALL TIE(R,N,KT,TA)	KRANK	
	KRAN	
CALL TIE(R(N+11+N+KT+TB) C COMPUTE TAU	KRAN	
	KRAN	
IF(TA) 70,65,70	KRAN	
65 IF(TR) 70,67,70	KRANK	
67 TAU=\$/{0.5*FN1} G0 TO 80	KRANK	
GD 10 90 70 TAU=S/((SQRT(0.5*FN1+TA})*(SQRT(0.5*FN1-T8)))	KRAN	
	KRAN	
80 [F(N-10) 90,85,85	KRAN	
<pre>B5 SD=[SQRT[(2.0*(FN+FN+5.0))/(9.0*FN1)))</pre>	KRAN	
Z=TAU/SD	KRAN	
90 RETURN		
END	KRAN	

WTEST

This subroutine computes the Kendall coefficient of concordance, given a matrix A of n rows (variables) and m columns (cases). The observations on all variables are ranked from 1 to m. Tied observations are assigned the average of the tied ranks.

A correction factor for ties is obtained:

$$T = \sum_{i=1}^{n} \frac{t^3 - t}{12}$$
(1)

where t = number of observations tied for a given rank

Sums of ranks are calculated:

$$Y_{j} = \sum_{i=1}^{n} R_{ij}$$
 (2)

where j = 1, 2, ..., m

From these, the mean of sums of ranks is found:

$$\overline{R} = \frac{\sum_{j=1}^{m} Y_{j}}{m}$$
(3)

The sum of squares of deviations is derived:

$$s = \sum_{j=1}^{m} (Y_j - \bar{R})^2$$
 (4)

The Kendall coefficient of concordance is then computed:

$$W = \frac{s}{\frac{1}{12}n^2 (m^3 - m) - nT}$$
(5)

For m larger than 7, chi-square is:

$$x^2 = n(m-1) W$$
 (6)

The degrees of freedom are:

$$d.f. = n - 1$$
 (7)

Subroutine WTEST

Purpose:

Test degree of association among a number of variables by the Kendall coefficient of concordance. Usage:

CALL WTEST (A, R, N, M, WA, W, CS, NDF, NR)

Description of parameters:

- A Input matrix, N by M, of original data.
 R Output matrix, N by M, of ranked data. Smallest value is ranked 1; largest is ranked N. Ties are assigned average of tied ranks.
 - Number of variables.
- M Number of cases.
- WA Work area vector of length 2*M.
- W Kendall coefficient of concordance (output).
- CS Chi-square (output).

NR - Code: 0 for unranked data in A; 1 for ranked data in A (input).

Remarks:

Ν

Chi-square is set to zero if M is 7 or smaller.

Subroutines and function subprograms required: RANK

TIE

Method:

Described in S. Siegel, 'Nonparametric Statistics for the Behavioral Sciences', McGraw-Hill, New York, 1956, Chapter 9.

		SUBROUTINE WIFST (A,R,N+M,WA,W+CS,NDF,NR)	WTEST	1
		DINENSION A(1).R(1).WA(1)	WTEST	
		FM=H	WTEST	
		FN=N	WTEST	
~				
ç		DETERMINE WHETHER DATA IS RANKED	WTEST	
C		RANK DATA FOR ALL VARIABLES ASSIGNING TIFD OBSERVATIONS AV		
с		OF TIED RANKS AND COMPUTE CORRECTION FOR TIED SCORES	HTEST	
		f=0.0	WTEST	A
		KT≃1	WTEST	9
		DO 20 1=1.N	WTEST	10
		IJ=I-N	WTEST	
		IK=IJ	WTEST	
		IF(NR-1) 5,2,5	WTEST	
	4	DO 3 J=1.M	WTEST	
		IJ=IJ+N	WTEST	
		X=H+J	WTEST	
	3	; WA(K)=A(IJ)	WTEST	17
		GO TO 15	WTEST	18
	5	DO 10 J=1.H	WTEST	19
		IJ=IJ+N	WTEST	
	10	(L) A(L)	WTEST	
	10	CALL RANK(WA.WA(M+1).M)	WTEST	
	15	CALL TIE(WA(M+1), M,KT,TT)	WTFST	
		T×T+TI	WTFST	
		00 20 J≖1,M	WTEST	
		1K=1K+N	WTEST	26
		I Waadh J	WTFST	27
	20	R(IK)=WA(IW)	WTEST	28
C		CALCULATE VECTOR OF SUMS OF RANKS	WTEST	
•		IR=0	WTEST	
		DD 40 J=1.M	WTEST	
		WA(J)=0.0	WTEST	
		00 40 I=1,N	WTEST	
		[R=[R+]	WTEST	
	40	HA(J)=WA(J}+R(1R)	WTEST	
c		COMPUTE MEAN OF SUMS OF RANKS	WTEST	36
		SM=0.0	WTEST	37
		DO 50 J=L.N	WTEST	38
	50	SM=SM+WA[J]	WTEST	
		SN=SN/FM	WTEST	
c		COMPUTE SUM OF SQUARES OF DEVIATIONS	WTFST	
Ċ.			WTEST	
		S=0.0		
		00 60 J=1,M	WTEST	
	60	\$#\$+{W4{J}-\$#}#{M2-{L}A+}#{M2-{L}A+}	WTEST	
C		COMPUTE W	WTEST	45
		W=S/[[[FN#FN]#[F4#FN#FM-FM]/12=0}-FN#T}	WTEST	46
С		COMPUTE DEGREES OF FREEDOM AND CHI-SQUARE IF M IS OVER 7	WTEST	47
		CS=0.0	WTEST	48
		NDF=0	WTEST	
		IF(M-7) 70,70,65	WTEST	
			WTEST	
	03	CS=FN+(FN-1,0)+W		
	~	NDF=M-1	WTEST	
	10	RETURN	WTEST	
		END	WTEST	54

RANK

Purpose:

Rank a vector of values.

Usage:

CALL RANK(A, R, N)

Description of parameters:

- A Input vector of N values.
- R Output vector of length N. Smallest value is ranked 1; largest is ranked N. Ties are assigned average of tied ranks.

N - Number of values.

Remarks:

None.

Subroutines and function subprograms required: None.

Method:

Vector is searched for successively larger elements. If ties occur, they are located and their rank value computed. For example, if two values are tied for sixth rank, they are assigned a rank of 6.5 (= (6+7)/2).

		SUBROUTINE RANK (A.R.N)	RANK	1
		DIMENSION A(1)+R(1)	RANK	2
~		INITIALIZATION	RANK	3
c		DO 10 I=1+N	RANK	4
			RANK	5
-	10	R(I)=0.0	RANK	
c		FIND RANK OF DATA Do 100 J=1+N	RANK	67
-			RANK	é
c		TEST WHETHER DATA POINT IS ALREADY RANKED		9
-		IF(R(1)) 20, 20, 100	RANK	10
¢		DATA POINT TO BE RANKED	RANK	11
	20	SMALL=0.0	RANK	12
		EGUAL=0.0 X=A(1)	RANK	13
			RANK	14
		DO 50 J=1.N	RANK	15
		IF(A(J)-X) 30, 40, 50	RANK	16
c		COUNT NUMBER OF DATA POINTS WHICH ARE SMALLER	RANK	17
	30	SMALL=SMALL+1.0	RANK	18
-		GO TO 50	RANK	
с		COUNT NUMBER OF DATA POINTS WHICH ARE EQUAL	RANK	19 20
	40	EQUAL=EQUAL+1.0		
		R(J) = -1.0	RANK	21 22
-	50	CONTINUE	RANK	
c		TEST FOR TIE		
		IF(EQUAL-1.0) 60. 60. 70	RANK	
с		STORE RANK OF DATA POINT WHERE NO TIE	RANK	25
	60	R(1)=5MALL+1=0	RANK	26
		GO TO 100	RANK	27
c		CALCULATE RANK OF TIED DATA POINTS	RANK	28
	70	P=SMALL+(EQUAL+1.0)/2.0	RANK	
		DO 90 J=1.N	RANK	30
		IF(R(J)+1.0) 90. 80. 90	RANK	31
		R(J)=P	RANK	32
		CONTINUE	RANK	33
	100	CONTINUE	RANK	34
		RETURN	RANK	35
		END	RANK	36

<u>TIE</u>

Purpose:

Calculate correction factor due to ties.

Usage:

CALL TIE(R, N, KT, T)

Description of parameters:

- R Input vector of ranks of length N containing values 1 to N.
- N Number of ranked values.
- KT Input code for calculation of correction factor:
 - 1 Solve equation 1.
 - 2 Solve equation 2.
- T Correction factor (output):
 - Equation 1 T=SUM(CT**3-CT)/12Equation 2 T=SUM(CT*(CT-1)/2)
 - where CT is the number of observations tied for a given rank.

Remarks:

None.

Subroutines and function subprograms required: None.

Method:

Vector is searched for successively larger ranks. Ties are counted and correction factor 1 or 2 summed.

		SUBRINTINE TIELP, N+KT+T)	TIE	ı
		DIMENSION R(1)	TIE	2
С		INITIALIZATION	TIE	3
		T=0+0	TIE	4
		A=0*0	TIE	5
	5	x=1.0E 38	TIF	6
		IND=0	TIF	7
с		FIND NEXT LARGEST HANK	TIF	8
		1) 30 I=1,N	TIE	9
		[F(R([]-Y) 30,30,10	TTE	10
	10	IF(R(1)-X) 20,30,30	115	11
	20	x=R([)	TIE	12
		1ND= END+1	TIE	13
	30	CONTINUE	TIE	14
С		IF ALL RANKS HAVE BEEN TESTED, RETURN	TIF	15
		LF11ND} 90,90,40	71E	16
	40	A≂X	TIE	17
		CT=0.0	TIF	18
С		COUNT TIES	TIF	19
		D() 60 [=1,N	TIF	20
		LF(R(T)-X) 60,50,60	TIE	21
	50	CT=CT+1.0	TIE	22
	60	CONTINUE	TIE	23
С		CALCULATE CURRECTION FACTOR	TIE	24
		IFICT) 70,5,70	TIE	25
	70	LF(KT-1) 75,80,75	TIE	26
	75	T=T+CT+{CT-1.}/2.0	TTE	27
		G0 T0 5	TIE	28
	80	₹= T+{CT*CT*CT+CT}/12+0	TIF	29
		GR TO 5	TIE	30
	90	RETURN	TIE	31
		END	TIE	32

RANDU

Purpose:

Computes uniformly distributed random floating point numbers between 0 and 1.0 and integers in the range 0 to 2^{**15} .

Usage:

CALL RANDU(IX, IY, YFL)

Description of parameters:

- IX For the first entry this must contain any odd positive integer less than 32,768. After the first entry, IX should be the previous value of IY computed by this subroutine.
- IY A resultant integer random number required for the next entry to this subroutine. The range of this number is from zero to 2**15.
- YFL The resultant uniformly distributed, floating point, random number in the range 0 to 1.0.

Remarks:

This subroutine is specific to the IBM 1130. This subroutine should not repeat its cycle in less than 2 to the 13th entries.

Note: If random bits are needed, the high order bits of IY should be chosen.

Subroutines and function subprograms required: None.

Method:

Power residue method discussed in IBM manual Random Number Generation and Testing (C20-8011).

	SUBROUTINE RANDU(IX, IY, YFL)	RANDU	1
	IY=1X#899	RANDU	2
	IF(1)15.6.6	RANDU	3
5	IY=IY+32767+1	RANDU	4
	YFL=IY	RANDU	5
-	YFL=YFL/32767.	RANDU	6
	RETURN	RANDU	7
	END	RANDU	8

GAUSS

This subroutine computes a normally distributed random number with a given mean and standard de-viation.

An approximation to normally distributed random numbers Y can be found from a sequence of uniform random numbers* using the formula:

$$Y = \frac{\sum_{i=1}^{K} X_{i} - \frac{K}{2}}{\sqrt{K/12}}$$
(1)

where X_i is a uniformly distributed random number, $0 < X_i < 1$

K is the number of values X_{i} to be used

Y approaches a true normal distribution asymptotically as K approaches infinity. For this subroutine, K was chosen as 12 to reduce execution time. Equation (1) thus becomes:

$$Y = \sum_{i=1}^{12} X_i - 6.0$$

The adjustment for the required mean and standard deviation is then

$$\mathbf{Y'} = \mathbf{Y} * \mathbf{S} + \mathbf{A}\mathbf{M} \tag{2}$$

where Y' is the required normally distributed random number

S is the required standard deviation

AM is the required mean

* R. W. Hamming, <u>Numerical Methods for</u> <u>Scientists and Engineers</u>, McGraw-Hill, N.Y., <u>1962</u>, pages 34 and 389.

Subroutine GAUSS

Purpose:

Computes a normally distributed random number with a given mean and standard deviation.

Usage:

CALL GAUSS(IX, S, AM, V)

Description of parameters:

- IX IX must contain an odd positive integer less than 32, 768. Thereafter it will contain a uniformly distributed integer random number generated by the subroutine for use on the next entry to the subroutine.
- S The desired standard deviation of the normal distribution.
- AM The desired mean of the normal distribution.
- V The value of the computed normal random variable.

Remarks:

This subroutine uses RANDU which is machine specific.

Subroutines and function subprograms required: RANDU

Method:

Uses 12 uniform random numbers to compute normal random numbers by central limit theorem. The result is then adjusted to match the given mean and standard deviation. The uniform random numbers computed within the subroutine are found by the power residue method.

	SUBROUTINE GAUSS([X,S,AM,V)	GAUSS	1	
	A=0.0	GAUSS	2	
	DO 50 1=1,12	GAUSS	3	
	CALL RANDU(IX, IY, Y)	GAUSS	4	
	IX=IY	GAUSS	5	
50	A=A+Y	GAUSS	6	
	V=[A-6.0]*S+AM	GAUSS	7	
	RETURN	GAUSS	A	
	END	GAUSS	9	

Mathematics - Special Matrix Operations

MINV

Purpose:

Invert a matrix.

Usage:

CALL MINV(A, N, D, L, M)

Description of parameters:

- A Input matrix, destroyed in computation and replaced by resultant inverse.
- N Order of matrix A.
- D Resultant determinant.
- L Work vector of length N.
- M Work vector of length N.

Remarks:

Matrix A must be a general matrix.

Subroutines and function subprograms required: None.

Method:

The standard Gauss-Jordan method is used. The determinant is also calculated. A determinant with absolute value less than $10^{*}(-20)$ indicates singularity. The user may wish to change this.

		SUBROUTINE MINV(A+N+D+L+M)	MINV	1
		DIMENSION A(1)+L(1)+M(1)	MINV	2
c		SEARCH FOR LARGEST ELEMENT	MINV	3
		D=1+0	MINV	4
		NK=-N	MINV	5
		DO 80 K=1.N	MINV	6
		NK=NK+N	MINV	7
		L(K)=K	MINV	ė
		M(K)=K	MINV	9
		KK=NK+K	MINV	10
		BIGA#A(KK)	MINV	11
		DO 20 J=K+N	MINV	12
		1Z=N+(J=1)	MINV	13
		DO 20 I=K+N	MINV	14
		IJ=IZ+I	MINV	15
	10	IF(ABS(BIGA)- ABS(A(IJ))) 15+20+20	MINV	16
		BIGA=A(IJ)	MINV	17
	10		MINV	18
		M(K)=J	MINV	19
	-	CONTINUE	MINV	20
c	20	INTERCHANGE ROWS	MINV	21
· ·		J=L(K)	MINV	22
		1F(J=K) 35.35.25	MINV	23
		KI=K-N		
	20	DO 30 [=1+N	MINV	24 25
			MINV	
		KI=KI+N	MINV	26
		HOLD=-A(KI)	MINV	27
		JI=KI-K+J	MINV	28
		A(K1)=A(J1)	MINV	29
-	30	A(J1) =HOLD	MINV	30
с		INTERCHANGE COLUMNS	MINV	31
	35	I=M(K)	MINV	32
		IF(I-K) 45,45,38	MINV	33
	38	JP=N*(I-1)	MINV	34
		DO 40 J=1.N	MINV	35
		JK=NK+J	MINV	36
		JI=JP+J	MINV	37
		HOLD=-A(JK)	MINV	38
		A(JK)=A(JI)	MINV	39
-	40	A(JI) =HOLD	MINV	40
ç		DIVIDE COLUMN BY MINUS PIVOT (VALUE OF PIVOT ELEMENT IS	MINV	41
с		CONTAINED IN BIGA)	MINV	42
		IF (ABS(BIGA)-1.E-20)46.46.48	MINV	
	*0	D≖O,0 RETURN	MINV	44
			MINV	45
	40	DO 55 I=1+N		46
		IF(I-K) 50+55+50 IK=NK+I	MINV	47
	90		MINV	48 49
		A(IK)=A(IK)/(-BIGA) CONTINUE	MINV	50
с	22		MINV	
C		REDUCE MATRIX	MINV	51 52
		DO 65 I=1+N IK=NK+I	MINV	53
		1.4-11.71	MINV	23

		HOLD=A(IK)	MINV
		IJ=I-N	MINV
		DO 65 J=1.N	MINV
		IJ=IJ+N	MINV
		IF(I-K) 60,65,60	MINV
	60	1F(J-K) 62+65+62	MINV
		KJ=IJ-1+K	MINV
		A(IJ)=HOLD*A(KJ)+A(IJ)	MINV
	65	CONTINUE	MINV
с		DIVIDE ROW BY PIVOT	MINV
		KJ=K=N	MINV
		DO 75 J=1+N	MINV
		KJ#KJ+N	MINV
		IF(J-K) 70+75+70	MINV
	70	A(KJ)=A(KJ)/BIGA	MINV
		CONTINUE	MINV
c		PRODUCT OF PIVOTS	MINV
		D=D+BIGA	MINV
с		REPLACE PIVOT BY RECIPROCAL	MINV
		A(KK)=1+0/BIGA	MINV
	80	CONTINUE	MINV
c		FINAL ROW AND COLUMN INTERCHANGE	MINV
~		K=N	MINV
	100	K=(K=1)	MINV
	100	IF(K) 150+150+105	MINV
	105	I=L(K)	MINV
	105	IF(I-K) 120+120+108	MINV
	100	JO=N+(K-1)	MINV
	100	JR=N+(I=1)	MINV
		DO 110 J=1+N	MINV
		JK=JQ+J	MINV
		HOLD=A(JK)	MINV
		JI=JR+J	MINV
		A(JK) = -A(JI)	MINV
	110	A(JI) =HOLD	MINV
		J=M(K)	MINV
	120	IF(J-K) 100,100,125	MINV
	1.75	K1=K-N	MINV
	129	DO 130 I=1+N	MINV
		K1=K1+N	MINV
		HOLD=A(KI)	MINV
		HOLDEA(KI) JIEKI-K+J	MINV
			MINV
		A(KI)=-A(JI)	MINV
	130	A(JI) =HOLD GO TO 100	MINV
			MINV
	150	RE TURN END	MINV
		CNV	

EIGEN

This subroutine computes the eigenvalues and eigenvectors of a real symmetric matrix.

Given a symmetric matrix A of order N, eigenvalues are to be developed in the diagonal elements of the matrix. A matrix of eigenvectors R is also to be generated.

ŧ

An identity matrix is used as a first approximation of R.

The initial off-diagonal norm is computed:

$$\nu_{\rm I} = \left\{ \sum_{i \le k} 2A_{ik}^2 \right\}^{1/2}$$
 (1)

 $\nu_{\rm T}$ = initial norm

ŀ

A = input matrix (symmetric)

This norm is divided by N at each stage to produce the threshold.

The final norm is computed:

$$\nu_{\rm F} = \frac{\frac{\nu_{\rm I} \times 10^{-6}}{\rm N}}{\rm N}$$
(2)

This final norm is set sufficiently small that the requirement that any off-diagonal element A_{lm} shall be smaller than ν_F in absolute magnitude defines the convergence of the process.

An indicator is initialized. This indicator is later used to determine whether any off-diagonal elements have been found that are greater than the present threshold.

Each off-diagonal element is selected in turn and a transformation is performed to annihilate the offdiagonal (pivotal) element as shown by the following equations:

$$\lambda = -A_{lm}$$
(3)

$$\mu = 1/2 (A_{11} - A_{mm})$$
 (4)

$$\omega = \text{sign}(\mu) \frac{\lambda}{\sqrt{\lambda^2 + \mu^2}}$$
 (5)

$$\sin \Theta = \frac{\omega}{\sqrt{2(1 + \sqrt{1 - \omega^2})}}$$
(6)

$$\cos \theta = \sqrt{1 - \sin^2 \theta}$$
 (7)

$$B = A_{il} \cos \theta - A_{im} \sin \theta$$
 (8)

$$C = A_{i1} \sin \theta + A_{im} \cos \theta$$
 (9)

$$B = R_{il} \cos \theta - R_{im} \sin \theta \qquad (10)$$

$$R_{im} = R_{il} \sin \theta + R_{im} \cos \theta$$
 (11)

$$R_{il} = B$$
(12)

$$A_{11} = A_{11} \cos^2 \theta + A_{mm} \sin^2 \theta$$

$$-2A_{1m} \sin \theta \cos \theta$$
(13)

$$A_{mm} = A_{ll} \sin^2 \theta + A_{mm} \cos^2 \theta + 2A_{lm} \sin \theta \cos \theta$$
(14)

$$A_{lm} = (A_{ll} - A_{mm}) \sin \theta \cos \theta$$

+ $A_{lm} (\cos^2 \theta - \sin^2 \theta)$ (15)

The above calculations are repeated until all of the pivotal elements are less than the threshold.

Subroutine EIGEN

Purpose:

Compute eigenvalues and eigenvectors of a real symmetric matrix.

Usage:

CALL EIGEN(A, R, N, MV)

Description of parameters:

- А - Original matrix (symmetric), destroyed in computation. Resultant eigenvalues are developed in diagonal of matrix A in descending order.
- R - Resultant matrix of eigenvectors (stored columnwise, in same sequence as eigenvalues).
- Order of matrices A and R. Ν
- MV Input code:
 - 0 Compute eigenvalues and eigenvectors.
 - 1 Compute eigenvalues only (R need not be dimensioned but must still appear in calling sequence).

Remarks:

Original matrix A must be real symmetric (storage mode=1). Matrix A cannot be in the same location as matrix R.

Subroutines and function subprograms required: None.

Met	hod:	
	Diagonalization method originated by	y Jacobi and
	adapted by von Neumann for large c	omputers as
	found in 'Mathematical Methods for	Digital
	Computers', edited by A. Ralston a	nd H. S. Wilf,
	John Wiley and Sons, New York, 197.	62, Chapter
	SUBROUTINE EIGENLA,R,N,NVI	EIGEN 1
C	DIMENSION A(1),R(1) Generate Identity Matrix IF(MV-1) 10,25,13	EÍGEN 2 EIGEN 3 EIGEN 4
10	10=-N 00 20 J=1,N	FIGEN 5 EIGEN 6
	IQ=IQ+N DO 20 [=1,N	EIGEN 7 EIGEN R
	IJ=[0+1 R(IJ)=0.0	FIGEN 9 FIGEN 10
15	IF(I-J) 20,15,70 R(IJ)=1.0 Continue	EIGEN 11 FIGEN 12 EIGEN 13
c	COMPUTE INITIAL AND FINAL NORMS (ANDRM AND ANORMX) ANORMS (ANDRM AND ANORMX)	FIGEN 13 FIGEN 14 FIGEN 15
	DD 35 I=L.N DD 35 J=L.N	EIGEN 16 EIGEN 17
30	IF([-J) 30,35,30 [A=[+(J#J-J}/2 ANGM=ANGM+A([A) +A([A]	EIGEN 18 FIGEN 19
35	GONTINUE IFLANDRMJ 165,165,40	EIGEN 29 EIGEN 21 FIGEN 22
40	ANORM=1.414+SQRT(ANORM) ANRMX=ANORM+1.0E-6/FL0AT(N)	EIGFN 23 FIGEN 24
C	INITIALIZE INDICATORS AND COMPUTE THRESHOLD, THR IND=0	FIGEN 25 FIGEN 26
45	THR=ANORM THR=THR/FLOAT(N) L≈1	EIGEN 27 Figen 28
	H=L+1 COMPUTE SIN AND COS	EIGEN 29 EIGEN 30 EIGEN 31
60	MQ=[M+M-H]/2 LQ=[L+L-L]/2	EIGEN 32 FIGEN 33
62	1M=1+MQ IF(ARS(A(LM))-T+R) 130,65,65 IND=1	ELGEN 34 ELGEN 35
	LL=L+LQ HM=N+MQ	EIGEN 36 EIGEN 37 EIGEN 39
68	X=0+5*(A(LL)-A(M)) Y=-A(LM)/ SQRT(A(LM)*A(LM)+X*X)	EIGEN 39 EIGEN 40
	IF(X) 70,75,75 Y=-Y SINX=Y/ SQRT(2.0*(1.0+(SQRT(1.0-Y*Y)))	EIGEN 41 EIGEN 42
	SINX2=SINX+SINX COSX= SQRI(1.0-SINX2)	EIGFN 43 EIGFN 44 FIGEN 45
	COSX2=COSX+COSX SINCS =SINX+COSX	EIGEN 46 FIGEN 47
С	ROTATE L AND M COLUMNS ILo=N#(L-1) IMG=N*(M-1)	EIGEN 49 EIGEN 49
	10={1+1,N 10={1+1-1}/2	EIGEN 50 EIGEN 51 EIGEN 52
80	[F(I-L) 80,115,80 IF(I-M) 85,115,90 IM=(+M)	EIGEN 53 EIGEN 54 EIGEN 55
90	G0 TN 95 IM≃M+IQ	EIGEN 56 EIGEN 57
95 100	IF([-L] 100,105,105 IL=1+LQ G0 TO 110	EIGEN 59 EIGEN 59 EIGEN 60
105	U=L+UΩ X≈A(IL)+COSX-A(IN)+SINX	EIGEN 67 EIGEN 61 EIGEN 62
	A(14)=A(1L)+S]NX+A(14)+COSX A(1L)=X	EIGEN 63 Figen 64
120	IF(4V-1) 120,125,120 ILR=ILQ+I IRR=INQ+I	EIGEN 65 EIGEN 66 EIGEN 67
	X=R(ILR)#CNSX-R(IMR)#SINX R(IMR)=R(ILR)#SINX+R(IMR)#COSX	EIGEN 68 EIGEN 69
125	R([LR)=X CONTINUE X=2.044(V]+SINCS	FIGEN 70 Figen 71
	X=241L J*COSX2+A(44)*SINX2-X X=A(LL J*SINX2+A(44)*COSX2+X	ELGEN 73 ELGEN 74
	A[LM]=[A(LL]-A(MM)]#S[NCS+A(LM)#(CDSX2-S]NX2) A[LL]=Y	EIGEN 75 EIGEN 76
C C	AIMHI=X TESTS FOR COMPLETION TEST FOR M = LAST COLUMN	EIGEN 77 Figen 78 Eigen 79
130 135	IF(M-N) 135,140,135 M=M+1	EIGEN RO EIGEN RI
C 140	GO TO &O TEST FOR L = SECOND FROM LAST COLUMN IFIL-(N-L1) 145+150+145	EIGEN 82 Eigen 83 Eigen 84
145	L#L+L G0 TO 55	EIGEN 95 EIGEN 96
150 155	IF(IND-1) 160,155,160 IND=0 F0 F0 F0	FIGEN 87 Eigen 88
C 160	GO TO 50 Compare Threshold with Final Norm Ifithe-Anrmai 165,165,45	EIGEN 89 Eigen 99 Eigen 91
C	SGRT EIGENVALJES AND EIGENVECTORS IQ=-N	EIGEN 92 EIGEN 93
	00 185 [=1,N IQ=IQ+N LL=1+{[0]-1}/2	EIGEN 94 EIGEN 95 FIGEN 94
	JQ≈N*([-2] DO 185 J≠[+N	EIGEN 97 EIGEN 98
	JQ=JQ+N MM×J+(J#J-J}/2 IF(4(1L)-4(4M)) 170,145,195	EIGEN 99 EIGENLOD EIGENLOI
170	X=A(LL) A(LL)=A(MM)	EIGENLOI EIGENLO2 FIGENLO3
	A(MM)≠X [F(MV-1) 175,185,175	EIGEN104 EIGEN105
	DD 100 K=1+N ILR=IQ+K Mk=JQ+K	EIGEN106 Figen107 Eigen107
1	(=R(ILR) ((LLR)=R([MR))	EIGEN109 EIGEN110
195 0	LIIME)⇒X :ONTINUE :ETURN	£1GFN111 EIGFN117 E1GFN113
I	NO	EIGENII4

Mathematics - Matrices

<u>GMADD</u>

Purpose:

Add two general matrices to form resultant general matrix.

Usage:

CALL GMADD(A, B, R, N, M)

Description of parameters:

- A Name of first input matrix.
- B Name of second input matrix.
- R Name of output matrix.
- N Number of rows in A, B, R.
- M Number of columns in A, B, R.

Remarks:

All matrices must be stored as general matrices.

Subroutines and function subprograms required: None.

Method:

Addition is performed element by element.

MADD	1
	2
	3
MADD	4
MADD	5
	6
MADD	7
MADD	B
MAND	9

<u>GMSUB</u>

Purpose:

Subtract one general matrix from another to form resultant matrix.

Usage:

CALL GMSUB(A, B, R, N, M)

Description of parameters:

- A Name of first input matrix.
- B Name of second input matrix.
- R Name of output matrix.
- N Number of rows in A, B, R.
- M Number of columns in A, B, R.

Remarks:

All matrices must be stored as general matrices.

Subroutines and function subprograms required: None.

Method:

Matrix B elements are subtracted from corresponding matrix A elements.

		SUBROUTINE GMSUB(A, B+R, N, M)
		DIMENSION A(1),B(1),R(1)
C		CALCULATE NUMBER OF ELEMENTS
		NM=N+M
с		SUBTRACT MATRICES
		DO LO E=1,NM
	10	R(1)=A(1)-B(1)
		RETURN
		END

GMPRD

Purpose: Multiply two general matrices to form a resultant general matrix.

Usage:

CALL GMPRD(A, B, R, N, M, L)

Description of parameters:

- A Name of first input matrix.
- B Name of second input matrix.
- R Name of output matrix.
- N Number of rows in A.
- M Number of columns in A and rows in B.
- L Number of columns in B.

Remarks:

All matrices must be stored as general matrices. Matrix R cannot be in the same location as matrix A.

Matrix R cannot be in the same location as matrix B.

Number of columns of matrix A must be equal to the number of rows of matrix B.

Subroutines and function subprograms required: None.

Method:

The M by L matrix B is premultiplied by the N by M matrix A and the result is stored in the N by L matrix R.

```
        SUDKUUTINE GMPRD(A,8,R,N,4,L)
        GMPRD

        DIMENSION A(1),B(1),R(1)
        GMPRD

        IA=0
        GMPRD

        IA=0
        GMPRD

        IA=0
        GMPRD

        IA=0
        GMPRD

        IA=1L
        GMPRD

        IA=1R+1
        GMPRD

        J1=J-N
        GMPRD

        IA=1K
        GMPRD

        IA=1N
        GMPRD</t
```

GMTRA

Purpose:

Transpose a general matrix.

Usage:

CALL GMTRA(A, R, N, M)

Description of parameters:

- A Name of matrix to be transposed.
- R Name of resultant matrix.
- N Number of rows of A and columns of R.
- M Number of columns of A and rows of R.

Remarks:

Matrix R cannot be in the same location as matrix A.

Matrices A and R must be stored as general matrices.

Subroutines and function subprograms required: None.

Method:

Transpose N by M matrix A to form M by N matrix R.

	SUBROUTINE GHTRALA,R,N,M)	GHTRA	1
	DIMENSION A(1),R(1)	GNTRA	2
	1R=0	GHTRA	3
	DO 10 1=1.N	GNTRA	- Ā
	1J=1-N	GMTRA	5
	00 10 J=1,M	GNTRA	
	IJ=EJ+N	GMTRA	7
	IR=1R+1	GMTRA	8
10	R(IR)=A(IJ)	GHTRA	õ
	RETURN	GMTRA	10
	END	GMTRA	

<u>GTPRD</u>

Purpose:

Premultiply a general matrix by the transpose of another general matrix.

Usage:

CALL GTPRD(A, B, R, N, M, L)

Description of parameters:

- A Name of first input matrix.
- B Name of second input matrix.
- R Name of output matrix.
- N Number of rows in A and B.
- M Number of columns in A and rows in R.
- L Number of columns in B and R.

Remarks:

Matrix R cannot be in the same location as matrix A.

Matrix R cannot be in the same location as matrix B.

All matrices must be stored as general matrices.

Subroutines and function subprograms' required: None.

Method:

Matrix transpose of A is not actually calculated. Instead, elements of matrix A are taken columnwise rather than rowwise for postmultiplication by matrix B.

> GTPRD 1 GTPRD 3 GTPRD 3 GTPRD 4 GTPRD 4 GTPRD 6 GTPRD 6 GTPRD 7 GTPRD 10 GTPRD 10 GTPRD 11 GTPRD 12 GTPRD 14 GTPRD 15 GTPRD 15 GTPRD 17

	SUBROUTINE GTPRD(A,B,R,N,M,L) DIMENSION A(1),B()),R(L)
	IR=D
	1K=-N
	DD 10 K=1.L
	IJ=0
	1K=1K+N
	00 10 J=1,M
	18=1K
	[R=[R+]
	R(IR)=0
	DO 10 [=1,N
	1J=1J+1
	18=18+1
10	R(IR)=R(IR)+A(IJ) #8(18)
	RETURN
	END

MADD

Purpose:

Add two matrices element by element to form resultant matrix.

Usage:

CALL MADD(A, B, R, N, M, MSA, MSB)

Description of parameters:

- A Name of input matrix.
- B Name of input matrix.
- R Name of output matrix.
- N Number of rows in A, B, R.
- M Number of columns in A, B, R.
- MSA One digit number for storage mode of matrix A:
 - 0 General.
 - 1 Symmetric.
 - 2 Diagonal.

MSB - Same as MSA except for matrix B.

Remarks:

None.

Subroutines and function subprograms required: LOC

Method:

Storage mode of output matrix is first determined. Addition of corresponding elements is then performed.

The following table shows the storage mode of the output matrix for all combinations of input matrices:

Α	в	R
General	General	General
General	Symmetric	General
General	Diagonal	General
Symmetric	General	General
Symmetric	Symmetric	Symmetric
Symmetric	Diagonal	Symmetric
Diagonal	General	General
Diagonal	Symmetric	Symmetric
Diagonal	Diagonal	Diagonal

		SUBROUTINE MANDIA, B, R, N, M, MSA, MSBI	MADD
		OTMENSION A(1),B(1),R(1)	MADD
¢		DETERMINE STORAGE MODE OF OUTPUT MATRIX	MADD
	-	[F(MSA-MSB) 7.5.7	MADD
	5	CALL LOC(N.H.NM.V.H.MSA)	MADD
		GO TO 100	MADD
	7	MTEST=MSA+MSB	MADD
		MSR=0	MADD
		IF(MTEST) 20.20.10	MADD
	10	NSR=1	NADD
	20	IF (MTEST-2) 35,35,30	MADO
	30	MSR=2	MADO
С		LOCATE ELEMENTS AND PERFORM ADDITION	MADD
	35	DO 90 J=1,#	MADO
		00 90 I=1,N	MADO
		CALL LOC(I+J+IJR+N+M+MSR)	MADD
		[F{]JR} 40,90,40	MADD
	40	CALL LOC(1+J+1JA+N+M+MSA)	MADD
		AEL=0.0	MADD
		IF(IJA) 50,60,50	MADD
		AEL=A(IJA)	MADD
	60	CALL LOC(I.J.IJB, N.M.MSB)	MADD
		8FL=0.0	MADO
		IF([JB) 70,80,70	MADD
		BFL=8([J8)	MADO
		R(IJR)=AEL+BEL	MADD
	90	CONTINUE	MADD
		RETURN	MADD
c		ADD MATRICES FOR OTHER CASES	NADD
		DD 110 I=1,NM	MADD
	110	R[[]=A[])+B[]]	MADD
		RETURN	MADD
		END	MADO

MSUB

Purpose:

Subtract two matrices element by element to form resultant matrix.

Usage:

CALL MSUB(A, B, R, N, M, MSA, MSB)

Description of parameters:

- Name of input matrix. Α
- в - Name of input matrix.
- Name of output matrix. R
- Number of rows in A, B, R. Ν
- Number of columns in A, B, R. м
- MSA -One digit number for storage mode of matrix A:
 - 0 General.
 - 1 Symmetric.
 - 2 Diagonal.

MSB - Same as MSA except for matrix B.

Remarks:

None.

Subroutines and function subprograms required: LOC

Method:

Structure of output matrix is first determined. Subtraction of matrix B elements from corresponding matrix A elements is then performed. The following table shows the storage mode of the output matrix for all combinations of input matrices:

Α	в	R
General	General	General
General	Symmetric	General
General	Diagonal	General
Symmetric	General	General
Symmetric	Symmetric	Symmetric
Symmetric	Diagonal	Symmetric
Diagonal	General	General
Diagonal	Symmetric	Symmetric
Diagonal	Diagonal	Diagonal
(UTINE MSUB(4,8,8,8,8,4,4, NSIGN A(1),8(1),R(1) ETERMINE STGRAGE MODE C SA-MSB) 7,5,7 LGC(N,4,NM,0,9,4,M,MSA) G LGO T-MSA#MSB D	NUN NUN NUN NUN NUN NUN NUN NUN NUN	
v		

- DETERMINE STORAG IF(MSA-MSB) 7.5,7 5 CALL LOC(N,M,NM,N, GD TO 100 7 MTEST=MSA*MSB MSR=0 IF(MTEST) 20,20,10 10 MSR=1 IF (MTEST-2) 35,35,30 20 IFINE(SI-2) 35:33:30 0 MSR=2 LOCATE ELEMENTS AND PERFORM SUBTRACTION 30 00 J=1 HO COLL LOC(I,J,IJR,N,M,MSR) IFIJB 40,90,40 40 CALL LOC(I,J,IJR,N,M,MSA) AEL=0.7 IFIJA 50,60,50 50 AEL=AIJA) 60 CALL LOC(I,J,IJB,N,M,MSB) 8EL=0.0 IF(IJR) 70,80,70 70 8EL=8EJJB) 30 MSR=
- IF[13B] 70,80,70 TO 8EL-8118) 80 A(13R)=AEL-8EL 90 CONTINUE RETURN SUBTRACT MATRICES FOR OTHER CASES 100 D0 10 1-1,NM 100 A(1)=A(1)-B(1) RETURN END

SUBRI DINE

MPRD

Purpose:

Multiply two matrices to form a resultant matrix.

Usage:

CALL MPRD(A, B, R, N, M, MSA, MSB, L)

Description of parameters:

- Name of first input matrix. Α
- Name of second input matrix. В
- Name of output matrix. R
- Ν _ Number of rows in A and R.
- М -Number of columns in A and rows in B.
- MSA One digit number for storage mode of matrix A:
 - 0 General.
 - 1 Symmetric.
 - 2 Diagonal.
- MSB Same as MSA except for matrix B.
- Number of columns in B and R. \mathbf{L}

Remarks:

Matrix R cannot be in the same location as matrices A or B.

Number of columns of matrix A must be equal to number of rows of matrix B.

Subroutines and function subprograms required: LOC

Method:

6789011234567890123456789012333333333

NSUR

c

1

The M by L matrix B is premultiplied by the N by M matrix A and the result is stored in the N by L matrix R. This is a row into column product.

The following table shows the storage mode of the output matrix for all combinations of input matrices:

Α	В	R
General	General	General
General	Symmetric	General
General	Diagonal	General
Symmetric	General	General
Symmetric	Symmetric	General
Symmetric	Diagonal	General
Diagonal	General	General
Diagonal	Symmetric	General
Diagonal	Diagonal	Diagonal
SUBROUTINE MPRD14,8,8,4,N OIMENSION A(1),8(1),8(1) SPECIAL CASE FOR D1AU MS=MSA*10+MS8 IF(MS-22) 30,10,30 10 0U 20 I=1,N 20 R[1]=A(1)+8(1) RETURN ALL OTHER CASES 30 Rs-1 00 90 K-1,L 00 90 J=1,N R[18]=0 00 90 J=1,N R[18]=0 00 90 J=1,N R[18]=0 00 90 J=1,N R[16]=0 00 60 J=1,N F[16]=0 00 60 J=1,N F[16]=0 00 60 J=1,N F[16]=0 00 60 J=1,N F[16]=0 00 0,N F[16]=0 00 [14]=1,1-1,1-1 B=0=(K-1)+1 00 [14]=1,1-1,1-1 B=0 [16]=1,1-1,1-1 B=0 [16]=1,1-1,1-) GONAL BY DIAGONAL	MPRD 1 HPRD 2 HPRD 3 HPRD 4 MPRD 4 MPRD 6 MPRD 6 MPRD 6 MPRD 7 MPRD 7 MPRD 7 MPRD 1 MPRD 11 MPRD 12 MPRD 13 MPRD 14 MPRD 14 MPRD 17 HPRD 14 MPRD 17 HPRD 14 MPRD 21 MPRD 21 MPRD 23 MPRD 23 MPRD 23

MTRA

Purpose:

Transpose a matrix.

Usage:

CALL MTRA(A, R, N, M, MS)

Description of parameters:

- A Name of matrix to be transposed.
- R Name of output matrix.
- N Number of rows of A and columns of R.
- M Number of columns of A and rows of R.MS One digit number for storage mode of
- matrix A (and R):
 - 0 General.
 - 1 Symmetric.
 - 2 Diagonal.

Remarks:

Matrix R cannot be in the same location as matrix A.

Subroutines and function subprograms required: MCPY

Method:

Transpose N by M matrix A to form M by N matrix R by moving each row of A into the corresponding column of R. If matrix A is symmetric or diagonal, matrix R is the same as A.

SUBROUTINE MTRA(A.R.N.M.MS)	MTRA	1
DIMENSION A(1)+R(1)	MTRA	2
C IF MS IS 1 OR 2. COPY A	MTRA	3
IFINS) 10,20,10	MTRA	4
10 CALL MCPYLA.R.N.N.MSI	MTRA	5
RETURN	NTRA	6
C TRANSPOSE GENERAL MATRIX	(4TRA	7
20 IR=0	MTRA	8
DO 30 [=1+N	MTRA	9
[.]=[-N	MTRA	10
DO 30 J=1.M	MTRA	11
[]=[]+N	MTRA	12
IR=18+1	MTRA	13
30 R(IR)=A(IJ)	MTRA	14
RETURN	MTRA	15
END	MTRA	16

TPRD

Purpose:

Transpose a matrix and postmultiply by another to form a resultant matrix.

Usage:

в

CALL TPRD(A, B, R, N, M, MSA, MSB, L)

Description of parameters:

- A Name of first input matrix.
 - Name of second input matrix.
- R Name of output matrix.
- N Number of rows in A and B.
- M Number of columns in A and rows in R.
- MSA One digit number for storage mode of matrix A:
 - 0 General.
 - 1 Symmetric.
 - 2 Diagonal.
- MSB Same as MSA except for matrix B.
- L Number of columns in B and R.

Remarks:

Matrix R cannot be in the same location as matrices A or B.

Subroutines and function subprograms required:

LOC

Method:

Matrix transpose of A is not actually calculated. Instead, elements in matrix A are taken columnwise rather than rowwise for multiplication by matrix B.

The following table shows the storage mode of the output matrix for all combinations of input matrices:

Α		в		R
Genera	L	General	L	General
Genera	L	Symmet	ric	General
Genera	L	Diagona	1	General
Symme	tric	General	L	General
Symme	tric	Symmet	ric	General
Symme	tric	Diagona	1	General
Diagona	al	General	L	General
Diagona	ıl	Symmet	ric	General
Diagona	al	Diagona	d	Diagonal

 SUBROUTINE TPRD1A, H, R, N, H, MSA, MSB, L)
 TPRD
 I

 DIMENSION ALLI, BLLI, RLI, I
 TPRD
 TPRD</td

MATA

Purpose:

Premultiply a matrix by its transpose to form a symmetric matrix.

Usage:

CALL MATA(A, R, N, M, MS)

Description of parameters:

- A Name of input matrix.
- R Name of output matrix.
- N Number of rows in A.
- M Number of columns in A. Also number of rows and number of columns of R.
- MS One digit number for storage mode of matrix A:
 - 0 General.
 - 1 Symmetric.
 - 2 Diagonal.

Remarks:

Matrix R cannot be in the same location as matrix A.

Matrix R is always a symmetric matrix with a storage mode=1.

Subroutines and function subprograms required: LOC

Method:

Calculation of (A transpose A) results in a symmetric matrix regardless of the storage mode of the input matrix. The elements of matrix A are not changed.

	SUBROUTINE MATA(A,R,N,M,MS)	MATA	1	
	DIMENSION A(1)+R(1)	MATA	,	
	DO 50 K=1,#	4AT 4	3	
	KX=(K+K-K)/2	MATA	4	
	D0 60 J=1.M	MATA	5	
	IF(J-K) 10.10.60	MATA	6	
10	IR=J+KX	MATA	7	
	8(13)=0	MATA	9	
	DI) 60 [=1,N	MATA	9	
	IF(45) 20.40.20	MATA	10	
20	CALL LOCI 1. J. 14. N. 4. 451	MATA	11	
	CALL LUC(1.K. 18.N.M. 45)	MATA	12	
	IF(1A) 30,60,30	MATA	13	
30	IF(IB) 50+60+50	MATA	14	
	IA=N#(J-1)+1	MATA	15	
••	[B=N#[K-L]+]	MATA	16	
50	R(IR)=R(IR)+A(IA) +A(IB)	MATA	17	
	CONTINUE	MATA	19	
	RETURN	MATA	19	
	END	MATA	20	

SADD

Purpose:

Add a scalar to each element of a matrix to form a resultant matrix.

Usage:

CALL SADD(A, C, R, N, M, MS)

Description of parameters:

- A Name of input matrix.
- C Scalar.
- R Name of output matrix.
- N Number of rows in matrix A and R.
- M Number of columns in matrix A and R.
- MS One digit number for storage mode of matrix A (and R):
 - 0 General.
 - 1 Symmetric.
 - 2 Diagonal.

Remarks:

None.

Subroutines and function subprograms required: LOC

Method:

с

c

Scalar is added to each element of matrix.

	SUBROUTINE SADD(A.C.R.N.M.MS)
	DIMENSION A(1),R(1)
	COMPUTE VECTOR LENGTH, IT
	CALL LOC(N, M, IT, N, M, HS)
	ADD SCALAR
	DO-1 I=1,IT
1	R(1)=A(1)+C
	RETURN
	END

SADD	ı
SADD	2
SADD	3
SADD	4
SADD	- 5
SADO	6
SADD	7
SADD	8
SADD	9

SSUB

Purpose:

Subtract a scalar from each element of a matrix to form a resultant matrix.

Usage:

CALL SSUB(A, C, R, N, M, MS)

Description of parameters:

- A Name of input matrix.
- C Scalar.
- R Name of output matrix.
- N Number of rows in matrix A and R.
- M Number of columns in matrix A and R.
- MS One digit number for storage mode of matrix A (and R):
 - 0 General.
 - 1 Symmetric.
 - 2 Diagonal.

Remarks:

None.

Subroutines and function subprograms required: LOC

Method:

Scalar is subtracted from each element of matrix.

	SUBROUTINE SSUB(4.C.R.N.M.MS)	SSUA	1	
	DIMENSION A(1)+R(1)	SSUB	2	
C	COMPUTE VECTOR LENGTH, IT	SSUB	3	
	CALL LOCIN.M. IT.N.H.MS)	SSUB	4	
с	SUBTRACT SCALAR	SSUB	5	
	00 1 1=1.17	SSUB	6	
	1 R(])=A(])-C	SSUB	7	
	RETURN	SSUB	8	
	END	SSUR	9	

SMPY

Purpose:

Multiply each element of a matrix by a scalar to form a resultant matrix.

Usage:

CALL SMPY(A, C, R, N, M, MS)

Description of parameters:

- A Name of input matrix.
- C Scalar.
- R Name of output matrix.
- N Number of rows in matrix A and R.
- M Number of columns in matrix A and R.
- MS One digit number for storage mode of matrix A (and R):
 - 0 General.
 - 1 Symmetric.
 - 2 Diagonal.

Remarks:

None.

Subroutines and function subprograms required: LOC

Method:

C C Scalar is multiplied by each element of matrix.

	SUBROUTINE SMPY(4.C.R.N.M.MS)	SHPY	
	DIMENSION A(1),R(1)	SHPY	
	COMPUTE VECTOR LENGTH. IT	SMPY	1
	CALL LOC(N.M.IT.V.M.MS)	SMPY	
	MULTIPLY BY SCALAR	SHPY	
	00 1 I=1,IT	SHPY	6
1	R([]=A{]}+C	SMPY	1
	RETURN	SHPY	8
	END	SMPY	9

SDIV

Purpose:

Divide each element of a matrix by a scalar to form a resultant matrix.

Usage:

CALL SDIV(A, C, R, N, M, MS)

Description of parameters:

- A Name of input matrix.
- C Scalar.
- R Name of output matrix.
- N Number of rows in matrix A and R.
- M Number of columns in matrix A and R.
- MS One digit number for storage mode of matrix A (and R):
 - 0 General.
 - 1 Symmetric.
 - 2 Diagonal.

Remarks:

If scalar is zero, division is performed only once to cause floating-point overflow condition.

Subroutines and function subprograms required: LOC

Method:

Each element of matrix is divided by scalar.

	SUBROUTINE SDIV(4.C.R.N.M.MS)	SDIV	
	DIMENSION A(1),R(1)	SDIV	- 1
c	COMPUTE VECTOR LENGTH. IT	5017	
-	CALL LOCIN, M. T.N. M. MSI	SDIV	
с	DIVIDE BY SCALAR (IF SCALAR IS ZERD, DIVIDE ONLY ONCE)	SDIV	
-	IF(C) 2.1.2	SDIV	
	1 17=1	SDIV	-
	2 00 3 (=1.17	SDIV	1
	3 R(L)=A(L)/C	SDIV	
	RETURN	SDIV	1
	END	SDIV	-it

RADD

Purpose:

Add row of one matrix to row of another matrix.

Usage:

CALL RADD(A, IRA, R, IRR, N, M, MS, L)

Description of parameters:

- A Name of input matrix.
- IRA Row in matrix A to be added to row IRR of matrix R.
- R Name of output matrix.
- IRR Row in matrix R where summation is developed.
- N Number of rows in A.
- M Number of columns in A and R.
- MS One digit number for storage mode of matrix A:
 - 0 General.
 - 1 Symmetric.
 - 2 Diagonal.
- L Number of rows in R.

Remarks:

Matrix R must be a general matrix. Matrix R cannot be in the same location as matrix A unless A is general.

Subroutines and function subprograms required: LOC

Method:

Each element of row IRA of matrix A is added to corresponding element of row IRR of matrix R.

SUBROUTINE RADD(4,1RA,R,1RR,N,M,MS,L) Dimension A(1),R(1)		
	RADD	2
IR=IRR-L	RÁDD	3
DD 2 J=1.M	RADD	- 4
IR=IR+L	RADD	5
LOCATE INPUT ELEMENT FOR ANY MATRIX STORAGE MODE	RADD	6
CALL LOC(IRA, J. IA, N. N. MS)	RADD	7
TEST FOR ZERO ELEMENT IN DIAGONAL MATRIX	RADD	8
IF(IA) 1,2,1	RADD	9
ADD ELERENTS	RADD	10
R(IR)=R(IR)+A(IA)	RAOD	11
CONTINUE	RADD	12
RETURN	RADD	13
END	RADD	14
	IRFIRE-L DD 2 J=LM IRFIREL LCATE INPUT ELEMENT FOR ANY MATRIX STORAGE MODE CALL LOCITRA-J,IA.N.M.MS) TEST FOR ZERO ELEMENT IN DIAGONAL MATRIX IFIIAI 1.2.1 ADD ELEMENTS RITAIFRITENTAIIAI CONTINUE RETURN	IRTERE-L RAID RAID DD 2 J-I.W RADD RADD LOCATE INPUT ELEMENT FOR ANY MATRIX STORAGE MODE RADD CALL LOCITRAJJIA,N,M,MSI RADD TEST FOR ZERD ELEMENT IN DIAGONAL MATRIX RADD ADD ELEMENTS RADD ALTIRIAL RADD CATIRIAL RADD CONTINUE RADD CONTINUE RADD RETURN RADD

Purpose:

Add column of one matrix to column of another matrix.

Usage:

CALL CADD(A, ICA, R, ICR, N, M, MS, L)

Description of parameters:

- A Name of input matrix.
- ICA Column in matrix A to be added to column ICR of R.
- R Name of output matrix.
- ICR Column in matrix R where summation is developed.
- N Number of rows in A and R.
- M Number of columns in A.
- MS One digit number for storage mode of matrix A:
 - 0 General.
 - 1 Symmetric.
 - 2 Diagonal.
- L Number of columns in R.

Remarks:

Matrix R must be a general matrix.

Matrix R cannot be in the same location as matrix A unless A is general.

Subroutines and function subprograms required: LOC

Method:

Each element of column ICA of matrix A is added to corresponding element of column ICR of matrix R.

	SUBROUTINE CADD(A,ICA,R,ICR,N,4,MS,L)	CADD	1
	DIMENSION A(1),R(1)	CADD	2
	IR=N#{ICR-1}	CADD	3
	DD 2 [=1.N	CADD	4
	IR=IR+1	CADD	5
С	LOCATE INPUT ELEMENT FOR ANY MATRIX STORAGE MODE	CADD	6
•	CALL LOC(I,ICA,IA,N,M,MS)	CADO	7
с	TEST FOR ZERO ELEMENT IN DIAGONAL MATRIX	CADD	8
	(F(1A) 1,2,1	CADD	9
с	ADD ELEMENTS	CADD	10
•	1 R[[R]=R[[R]+A[]A]	CADD	11
	2 CONTINUE	CADD	12
	RETURN	CADD	13
	END	CADD	14

<u>SRMA</u>

Purpose:

Multiply row of matrix by a scalar and add to another row of the same matrix.

Usage:

CALL SRMA(A, C, N, M, LA, LB)

Description of parameters:

- A Name of matrix.
- C Scalar.
- N Number of rows in A.
- M Number of columns in A.
- LA Row in A to be multiplied by scalar.
- LB Row in A to which product is added. If 0 is specified, product replaces elements in row LA.

Remarks:

Matrix A must be a general matrix.

Subroutines and function subprograms required: None.

Method:

c

c c c Each element of row LA is multiplied by scalar C and the product is added to the corresponding element of row LB. Row LA remains unaffected by the operation.

If parameter LB contains zero, multiplication by the scalar is performed and the product replaces elements in row LA.

SUBROUTINE SRMAIA,C.N.M.LA,LB)	SRMA	1
OIMENSION A(1)	SRMA	2
LAJ=LA-N	SRMA	3
L BJ =L B-N	SRMA	4
DD 3 J=1.4	SRMA	5
LOCATE ELEMENT IN BOTH ROWS	SRMA	6
LAJ=LAJ+N	SRMA	7
LBJ=LBJ+N	SRMA	9
CHECK LB FOR 7 FRO	SRMA	9
IF(LB) 1.2.1	SRMA	10
IF NOT. MULTIPLY BY CONSTANT AND ADD TO OTHER ROW	SRMA	ii
1 A(LBJ)=A(LAJ)+C+A(LBJ)	SRMA	12
GO TO 3	SRMA	13
OTHERWISE, MULTIPLY ROW BY CONSTANT	SRMA	14
2 A(LAJ)=A(LAJ)+C	SRMA	15
3 CONTINUE	SRMA	16
RETURN	SRMA	17
END	SRMA	18

3

SCMA

Purpose:

Multiply column of matrix by a scalar and add to another column of the same matrix.

Usage:

CALL SCMA(A, C, N, LA, LB)

Description of parameters:

- A Name of matrix.
- C Scalar.
- N Number of rows in A.
- LA Column in A to be multiplied by scalar.
- LB Column in A to which product is added. If 0 is specified, product replaces elements in LA.

Remarks:

Matrix A must be a general matrix.

Subroutines and function subprograms required: None.

Method:

Each element of column LA is multiplied by scalar C and the product is added to the corresponding element of column LB. Column LA remains unaffected by the operation.

If parameter LB contains zero, multiplication by the scalar is performed and the product replaces elements in LA.

	SUBROUTINE SCMA(A,C,N+LA,L0)	SCMA	1
	DIMENSION ATTI	SCMA	2
С	LOCATE STARTING POINT OF BOTH COLUMNS	SCMA	3
	ILA=N#{LA-1]	SCHA	4
	[LB=N+(LB-1)	SCMA	5
	DO 3 1=1,N	SCHA	6
	[LA=]LA+]	SCMA	7
	[LB=1LB+1	SCMA	8
С	CHECK LB FOR JERO	SCHA	9
	(F(L9) 1,2,1	SCHA	10
С	IF NOT MULTIPLY BY CONSTANT AND ADD TH SECOND COLUMN	SCMA	Ū1
	1 A{ILB}=A(ILA}*C+A(ILB)	SCMA	12
	GO TO 3	SC MA	13
С	ATHERWISE, MULTIPLY COLUMN BY CONSTANT	SCMA	14
	2 A(ILA)=A(ILA)*C		15
	3 CONTINUE	SCMA	15
	RETURN		17
	END	SCMA	18
	END	SCMA	ι

RINT

Purpose:

Interchange two rows of a matrix.

Usage:

CALL RINT(A, N, M, LA, LB)

Description of parameters:

- A Name of matrix.
- N Number of rows in A.
- M Number of columns in A.
- LA Row to be interchanged with row LB.
- LB Row to be interchanged with row LA.

Remarks:

Matrix A must be a general matrix.

Subroutines and function subprograms required: None.

Method:

c

с

Each element of row LA is interchanged with corresponding element of row LB.

SUBROUTINE RINT(4.N.M.LA.LB)	PINT	1
DIMENSION A(1)		ż
LAJ=LA-N		3
LBJ=LB-N		4
00 3 J=L.H		5
LOCATE ELEMENTS IN BOTH ROWS		6
LAJ=LAJ+N		7
LBJ=LBJ+N		à
INTERCHANGE ELEMENTS	RINT	9
SAVE=A(LAJ)	RINT	10
A(LAJ)=A(LBJ)	BINT	-ii
3 A(LBJ)=SAVE	RINT	12
RETURN	9 INT	13
END	RINT	14
	DIMENSION ALL) LAJ=LA-N LAJ=LA-N LOCATE ELEMENTS IN BOTH ROWS LAJ=LAJ+N INTERCHANGE ELEMENTS SAVE=ALLAJ) A(LAJ)=AA(LBJ) 3 A(LBJ)=SAVE RETURN	DIMENSION A(1) RINT LAJ=LA-N RINT LBJ=LB-N RINT UCATE ELEMENTS IN BOTH ROWS RINT LBJ=LAJ+N RINT LBJ=LAJ+N RINT LBJ=LAJ+N RINT LBJ=LAJ+N RINT SAVEALLAJ+N RINT A(LAJ)=A(LAJ) RINT 3 A(LBJ)=SAVE RINT REJORN RINT

Purpose:

Interchange two columns of a matrix.

Usage:

CALL CINT(A, N, LA, LB)

Description of parameters:

- A Name of matrix.
- N Number of rows in A.
- LA Column to be interchanged with column LB.
- LB Column to be interchanged with column LA.

Remarks:

Matrix A must be a general matrix.

Subroutines and function subprograms required: None.

Method:

Each element of column LA is interchanged with corresponding element of column LB.

	SUBROUTINE CINT(4,N,LA,LB)	CINT	1
	DIMENSION A(1)	CINT	2
С	LOCATE STARTING POINT OF BOTH COLUMNS	CENT	3
	1LA=N*(LA-1)	CINT	4
	[1.B=N+(1.8-1)	CINT	5
	00 3 1×1.N	CINT	6
	[LA=]1 A+1	CINT	7
	ILB=ILB+L	CINT	9
c	INTERCHANGE ELEMENTS	CINT	9
-	SAVE=A(ILA)	CINT	10
	ATTLA)=ATTLB)	CINT	11
	3 A(IL8) = SAVE	CINT	12
	RETURN	CINT	13
	END	CINT	14

RSUM

Purpose:

Sum elements of each row to form column vector.

Usage:

CALL RSUM (A, R, N, M, MS)

Description of parameters:

- A Name of input matrix.
- R Name of vector of length N.
- N Number of rows in A.
- M Number of columns in A.
- MS One digit number for storage mode of matrix A:
 - 0 General.
 - 1 Symmetric.
 - 2 Diagonal.

Remarks:

Vector R cannot be in the same location as matrix A unless A is general.

Subroutines and function subprograms required: LOC

Method:

с с с с Elements are summed across each row into a corresponding element of output column vector R.

	SUBROUTINE RSUMIA, R+N+ 4+MSI	RSUM	1
	DIMENSION A(1).R(1)	RSUM	2
	DA 3 1=1.N	RSUM	3
	CLEAR OUTPUT LICATION	RSUM	- 4
	R(1)=0.0	RSUM	5
	DO 3 J=1.H	RSUM	6
	LOCATE ELEMENT FOR ANY MATRIX STORAGE MODE	RSUM	7
	CALL LOC(1.J.IJ.N.N.MS)	RSUN	8
	TEST FOR ZERO ELEMENT IN DIAGONAL MATRIX	RSUM	9
	(F(1) 2.3.2	RSUM	10
	ACCUMULATE IN OUTPUT VECTOR	RSUM	11
2	R(1)=R(1)+A(1)	RSUM	12
	CONTINUE	RSUM	13
	RETURN	RSUM	14
	END	RSUM	15

<u>.</u>

CSUM

Purpose:

Sum elements of each column to form row vector.

Usage:

CALL CSUM(A, R, N, M, MS)

Description of parameters:

- A Name of input matrix.
- R Name of vector of length M.
- N Number of rows in A.
- M Number of columns in A.
- MS One digit number for storage mode of matrix A:
 - 0 General.
 - 1 Symmetric.
 - 2 Diagonal.

Remarks:

Vector R cannot be in the same location as matrix A unless A is general.

Subroutines and function subprograms required: LOC

Method:

Elements are summed down each column into a corresponding element of output row vector R.

	SUBROUTINE CSUM(4,R,N,M,MS)	CSUM	ı
	DIMENSION A(1)+R(1)	CSUM	2
	00 3 J≠1.M	CSUM	3
С	CLEAR BUTPUT LOCATION	CSUM	4
	R(J)=0.0	CSUM	5
	DD 3 I=1.N	CSUM	6
c	LOCATE ELEMENT FOR ANY MATRIX STORAGE MODE	CSUM	7
	CALL LOC(I.J.IJ.N.M.MS)	CSUM	8
C	TEST FOR ZERO ELEMENT IN DIAGONAL MATRIX	CSUN	9
	IF(IJ) 2.3.2	CSUM	10
с	ACCUMULATE IN OUTPUT VECTOR	CSUM	11
-	2 R(J) =R(J)+A([J)	CSUM	12
	3 CONTINUE	CSUM	13
	RETURN	CSUM	14
	END	CSUM	15

RTAB

The function of this subroutine is graphically displayed by Figure 6 (see description under "Method").

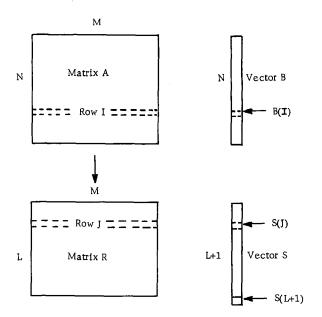


Figure 6. Row tabulation

Subroutine RTAB

Purpose:

Tabulate rows of a matrix to form a summary matrix.

Usage:

CALL RTAB(A, B, R, S, N, M, MS, L)

Description of parameters:

- A Name of input matrix.
- B Name of input vector of length N containing key.
- R Name of output matrix containing summary of row data. It is initially set to zero by this subroutine.
- S Name of output vector of length L+1 containing counts.
- N Number of rows in A.
- M Number of columns in A and R.
- L Number of rows in R.
- MS One digit number for storage mode of matrix A:
 - 0 General.
 - 1 Symmetric.
 - 2 Diagonal.

Remarks:

Matrix R is always a general matrix.

Subroutines and function subprograms required: LOC

RADD

Method:

Rows of data in matrix A are tabulated using the key contained in vector B. The floating point number in B(I) is truncated to form J. The Ith row of A is added to the Jth row of R, element by element, and one is added to S(J). If J is not between one and L, one is added to S(L+1). This procedure is repeated for every element in vector B. Upon completion, the output matrix R contains a summary of row data as specified by vector B. Each element in vector S contains a count of the number of rows of A used to form the corresponding row of R. Element S(L+1) contains a count of the number of rows of A not included in R as a result of J being less than one or greater than L.

		SUBROUTINE RTAB(A+B+R+S+N+M+MS+L)
		DIMENSION A(1),8(1),8(1),5(1)
C.		CLEAR OUTPUT AREAS
		CALL LOC(M.L.IT. 4,L.0)
		00 10 IR=1.IT
	10	R(IR)=0.0
	••	DO 20 [S=1+L
	20	S(IS)=0.0
	20	S(L+1)=0.0
		DD 60 1=1,N
С		TEST FOR THE KEY OUTSIDE THE RANGE
		1F(8([)) 50+50,30
	30	E=L
		JF(8/1)-E) 40,40,50
	40	JR=8(1)
C		ADD ROW OF A TO ROW OF R AND 1 TO COUNT
		CALL RADDIA, I, R, JR, N, M, MS, L)
		S(JR)=S(JR)+1.0
		GO TO 60
	50	S(L+1)=S(L+1)+1.7
	60	CONTINUE
		RETURN
		END

CTAB

The function of this subroutine is graphically displayed by Figure 7 (see description under "Method").

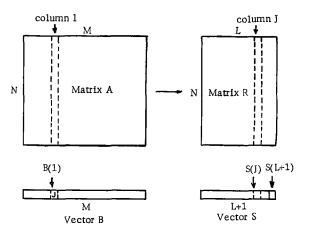


Figure 7. Column tabulation

Subroutine CTAB

Purpose:

Tabulate columns of a matrix to form a summary matrix.

Usage:

1234567890112345678901223

CALL CTAB(A, B, R, S, N, M, MS, L)

Description of parameters:

- A Name of input matrix.
- B Name of input vector of length M containing key.
- R Name of output matrix containing summary of column data. It is initially set to zero by this subroutine.
- S Name of output vector of length L+1 containing counts.
- N Number of rows in A and R.
- M Number of columns in A.
- L Number of columns in R.
- MS One digit number for storage mode of matrix A:

ŝ

- 0 General.
- 1 Symmetric.
- 2 Diagonal.

Remarks:

Matrix R is always a general matrix.

Subroutines and function subprograms required: LOC CADD

Method:

c

c

c

Columns of data in matrix A are tabulated using the key contained in vector B. The floatingpoint number in B(I) is truncated to form J. The Ith column of A is added to the Jth column of matrix R and one is added to S(J). If the value of J is not between one and M, one is added to S(L+1). Upon completion, the output matrix R contains a summary of column data as specified by vector B. Each element in vector S contains a count of the number of columns of A used to form R. Element S(L+1) contains the number of columns of A not included in R as a result of J being less than one or greater than L.

		SUBROUTINE CTABIA, 8, R, S, N, M, MS, L	CTAB	ı
		DIMENSION A(1),8(1),8(1)	CTAB	2
		CLEAR OUTPUT AREAS	CTAB	3
•		CALL LOCIN,L, IT,N,L,0)	CTAB	4
			CTAB	5
		DO 10 IR=1,IT	CTAB	6
	10	R(IR)=0.0	CTAB	7
		00 20 IS=1,L	CTA8	ŝ
	20	S([S]=0.0	CTAB	9
		S(L+1)=0.0	CTAB	10
		DO 60 I=1,M		
		TEST FOR THE KEY DUTSIDE THE RANGE	CTAB	11
		IF(8(1)) 50,50,30	CTAB	12
	30	E=L	CTAB	13
		IF(B(1)-E) 40,40,50	CTAB	14
	40	JR=B(I)	CTAB	15
		ADD COLUMN OF A TO COLUMN OF R AND 1 TO COUNT	CTAB	16
•		CALL CADD(A, [,R, JR, N, M, MS, L)	CTAB	17
		S(JR)=S(JR)+1.0	CTAB	18
			CTAB	19
		GO TO 60	CTAB	20
		S(L+1)=S(L+1)+1+)	CTAB	21
	60	CONTINUE	CTAB	22
		RETURN	CTAB	23
		END	LIAD	23

RSRT

Purpose:

Sort rows of a matrix.

Usage:

CALL RSRT(A, B, R, N, M, MS)

Description of parameters:

- A Name of input matrix to be sorted.
- B Name of input vector which contains sorting key.
- R Name of sorted output matrix.
- N Number of rows in A and R and length of B.
- M Number of columns in A and R.
- MS One digit number for storage mode of matrix A:
 - 0 General.
 - 1 Symmetric.
 - 2 Diagonal.

Remarks:

Matrix R cannot be in the same location as matrix A.

Matrix R is always a general matrix..

N must be greater than 1. This routine sorts into ascending order. Sorting into descending order requires changing card RSRT 013 to read IF (R(I-1)-R(I)) 30, 40, 40

Subroutines and function subprograms required:

LOC

Method:

Rows of input matrix A are sorted to form output matrix R. The sorted row sequence is determined by the values of elements in column vector B. The lowest valued element in B will cause the corresponding row of A to be placed in the first row of R. The highest valued element of B will cause the corresponding row of A to be placed in the last row of R. If duplicate values exist in B, the corresponding rows of A are moved to R in the same order as in A.

c		SUBROUTINE RSRT(A,8,8,8,8,8,4,4,5) DIMENSION A(1),8(1),8(1) Move Scring key vector to first column of output matrix	RSRT RSRT RSRT	1 2 3
ē		AND BUILD ORIGINAL SEQUENCE LIST IN SECOND COLUMN	RSRT	4
		DO 10 I=1+N	RSRT	
		R(I)=B(I)	RSRT	6
	10	[2=[+N R([2)=[RSRT	7
c	10	SORT ELEMENTS IN SORTING KEY VECTOR (ORIGINAL SEQUENCE LIST	RSRT	ş
è		IS RESEQUENCED ACCORDINGLY)	RSRT	10
-		L=N+1	RSRT	M01
	20	ISORT=0	RSRT	11
		L=L-1	RSRT	
		DO 40 I=2+L	RSRT	
	-	IF(R(I)=R(I=1)) 30,40,40 ISORT=1	RSRT	13
	30	RSAVE=R(I)	RSRT	15
		R(I)=R(I=1)	RSRT	16
		R(I-1)=RSAVE	RSRT	17
		12=1+4	RSRT	18
		SAVER=R(12)	RSRT	19
		R(I2)=R(I2+1)	RSRT	20
		R(I2-1)=SAVER	RSRT	21
	40	CONTINUE	RSRT	22
~		IF(ISORT) 20,50,20 MOVE ROWS FROM MATRIX A TO MATRIX R (NUMBER IN SECOND COLUMN	RSRT	23 24
ç		OF R REPRESENTS ROW NUMBER OF MATRIX A TO BE MOVED	RSRT	25
•	50	DO BO I=1+N	RSRT	26
с		GET ROW NUMBER IN MATRIX A	RSRT	27
		12=1+N	RSRT	28
		IN=R(12)	RSRT	
		IR=I=N	RSRT	30
с		DO 80 J=1.4M	RSRT	31 32
c		LOCATE ELEMENT IN OUTPUT MATRIX IR=IR+N	RSRT	32
c		LOCATE ELEMENT IN INPUT MATRIX	RSRT	34
•		CALL LOC(IN.J.IA.N.M.MS)	RSRT	35
c		TEST FOR ZERO ELEMENT IN DIAGONAL MATRIX	RSRT	36
		IF(IA) 60.70.60	RSRT	37
с		MOVE ELEMENT TO OUTPUT MATRIX	RSRT	38
	60	R(IR)=A(IA)	RSRT	39
		GO TO 80 R([R)=0	RSRT	40 41
		CONTINUE	RSRT	42
		RETURN	RSRT	43
		END	RSRT	44

Mathematics - Matrices 77

CSRT

Purpose:

Sort columns of a matrix.

Usage:

CALL CSRT(A, B, R, N, M, MS)

Description of parameters:

- Α - Name of input matrix to be sorted.
- Name of input vector which contains в sorting key.
- Name of sorted output matrix. R
- Ν - Number of rows in A and R.
- M Number of columns in A and R and length of B.
- MS One digit number for storage mode of matrix A:
 - 0 General.
 - 1 Symmetric.
 - 2 Diagonal.

Remarks:

Matrix R cannot be in the same location as matrix A.

Matrix R is always a general matrix.

N must be greater than 1. This routine sorts into ascending order. Sorting into descending order requires changing card CSRT 016 to read IF(R(IP)-R(IQ)) 30, 40, 40

Subroutines and function subprograms required:

LOC

CCPY

Method:

Columns of input matrix A are sorted to form output matrix R. The sorted column sequence is determined by the values of elements in row vector B. The lowest valued element in B will cause the corresponding column of A to be placed in the first column of R. The highest valued element of B will cause the corresponding row of A to be placed in the last column of R. If duplicate values exist in B, the corresponding columns of A are moved to R in the same order as in A.

		SUBROUTINE CSRT(A+B+R+N+M+M5)	CSRT 1
		DIMENSION A(1),B(1),R(1)	CSRT Z
с		MOVE SORTING KEY VECTOR TO FIRST ROW OF OUTPUT MATRIX	CSRT 3
ē		AND BUILD ORIGINAL SEQUENCE LIST IN SECOND ROW	CSRT 4
-		[K=]	CSRT 5
		DO 10 J=1+M	CSRT 6
		R(IX)=B(J)	CSRT 7
		R(IK+1)=J	CSRT 8
	10	IK=IK+N	CSRT 9
с	••	SORT ELEMENTS IN SORTING KEY VECTOR (ORIGINAL SEQUENCE LIST	CSRT 10
ē		15 RESEQUENCED ACCORDINGLY)	CSRT 11
			CSRT MO1
	20	ISORT=0	CSRT 12
		L=L=1	CSRT MO2
		IP=1	CSRT 13
		IQ=N+1	CSRT 14
		00 50 J=2+L	CSRT M03
		IF(R(10)-R(1P)) 30,40,40	CSRT 16
	30	ISORT=1	CSRT MO4
		RSAVE=R(IQ)	CSRT 18
		R(IQ)=R(IP)	CSRT 19
		R(IP)=RSAVE	CSRT 20
		SAVER=R(IQ+1)	CSRT 21
		R(1Q+1)=R(1P+1)	CSRT 22
		R(IP+1)=SAVER	CSRT 23
	40	IP=1P+N	CSRT 24
		IQ=IQ+N	CSRT 25
	50	CONTINUE	CSRT 26
		IF(ISORT) 20+60+20	CSRT 27
с		MOVE COLUMNS FROM MATRIX & TO MATRIX R (NUMBER IN SECOND ROW	C5R7 28
с		OF R REPRESENTS COLUMN NUMBER OF MATRIX A TO BE MOVED	CSRT 29
	60	10=-N	CSRT 30
		DO 70 J=1+M	CSRT 31
		1Q=1Q+N	CSRT 32
с		GET COLUMN NUMBER IN MATRIX A	CSRT 33
		12=10+2	CSRT 34
		IN=R(12)	CSRT 35
c		MOVE COLUMN	CSRT 36
		IR=IQ+1	CSRT 37
		CALL CCPY(A+IN+R(IR)+N+M+MS)	CSRT 38
	70	CONTINUE	CSRT 39
		RETURN	CSRT 40
		END	CSRT 41

3

RCUT

Purpose: Partition a matrix between specified rows to

form two resultant matrices.

Usage:

CALL RCUT (A, L, R, S, N, M, MS)

Description of parameters:

- A Name of input matrix.
- L Row of A above which partitioning takes place.
- R Name of matrix to be formed from upper portion of A.
- S Name of matrix to be formed from lower portion of A.
- N Number of rows in A.
- M Number of columns in A.
- MS One digit number for storage mode of matrix A:
 - 0 General.
 - 1 Symmetric.
 - 2 Diagonal.

Remarks:

Matrix R cannot be in same location as matrix A. Matrix S cannot be in same location as matrix A. Matrix R cannot be in same location as matrix S. Matrix R and matrix S are always general matrices.

Subroutines and function subprograms required: LOC

Method:

с

c

с

c

Elements of matrix A above row L are moved to form matrix R of L-1 rows and M columns. Elements of matrix A in row L and below are moved to form matrix S of N-L+1 rows and M columns.

	SUBROUTINE ROUT(A+L+R+S+N+H+HS)	RCUT	1
	DIMENSION A(1),8(1),5(1)	RCUT	2
	IR=0	RCUT	3
	15=0	RCUT	4
	DO 70 J=1.M	RCUT	5
	DD 70 I=1.N	RCUT	6
	FIND LOCATION IN OUTPUT MATRIX AND SET TO ZERO	RCUT	7
•	IF(I-L) 20,10,10	RCUT	8
10	IS=IS+1	RCUT	9
	5([5]=0.0	RCUT	10
	60 10 30	RCUT	11
20	[R=[R+1	RCUT	12
	R(IR)=0_0	RCUT	13
	LOCATE ELEMENT FOR ANY MATRIX STORAGE MODE	RCUT	14
30	CALL LOC(I.J.IJ.N.M.MS)	RCUT	15
	TEST FOR ZERO ELEMENT IN DIAGONAL MATRIX	RCUT	16
	IF(1J) 40.70.40	RCUT	17
	DETERMINE WHETHER ABOVE OR BELOW L	RCUT	18
40	IF(1-L) 60,50,50	RCUT	19
	S(1S)=A(IJ)	RCUT	20
	GO TO 70	RCUT	21
60	R([R)=A([])	RCUT	22
70	CONTINUE	RCUT	23
	RETURN	RCUT	24
	END	RCUT	25

CCUT

Purpose:

Partition a matrix between specified columns to form two resultant matrices.

Usage:

CALL CCUT (A, L, R, S, N, M, MS)

Description of parameters:

- A Name of input matrix.
- L Column of A to the left of which partitioning takes place.
- R Name of matrix to be formed from left portion of A.
- S Name of matrix to be formed from right portion of A.
- N Number of rows in A.
- M Number of columns in A.
- MS One digit number for storage mode of matrix A:
 - 0 General.
 - 1 Symmetric.
 - 2 Diagonal.

Remarks:

Matrix R cannot be in same location as matrix A. Matrix S cannot be in same location as matrix A. Matrix R cannot be in same location as matrix S. Matrix R and matrix S are always general matrices.

Subroutines and function subprograms required: LOC

Method:

Elements of matrix A to the left of column L are moved to form matrix R of N rows and L-1 columns. Elements of matrix A in column L and to the right of L are moved to form matrix S of N rows and M-L+1 columns.

	SUBROUTINE CCUTI4.L.R.S.N.M.MS)	CCUT	1
	DIMENSION A(1)+R(1)+S(1)	CCUT	2
	18=0	CCUT	3
	IS=0	CCUT	Ā
	DO 70 J=1,#	CCUT	5
	00 70 1=1-N	CCUT	6
c	FIND LOCATION IN OUTPUT MATRIX AND SET TO ZERO	CCUT	7
Ċ,			
	IF(J-L) 20,10,10	CCUT	8
	10 IS=IS+1	CCUT	9
	S(IS)=0.0	CCUT	10
	GO TO 30	COUT	11
	20 IR=IR+1	CCUT	12
	R[[R]=0.0	CCUT	13
c	LOCATE ELEMENT FOR ANY MATRIX STORAGE MODE	CCUT	14
	30 CALL LOC(1,J,IJ,N,H,HS)	CCUT	15
C	TEST FOR ZERO ELEMENT IN DIAGONAL MATRIX	CCUT	16
-	IF(IJ) 40,70,40	CCUT	17
c	DETERMINE WHETHER RIGHT OR LEFT OF L	CCUT	18
•	40 IF(J-L) 60.50.50	CCUT	19
	50 S(15)=A(1J)	CCUT	20
	GO TO 70	CCUT	21
	60 R(IR)=4(IJ)	CCUT	22
	TO CONTINUE	CCUT	23
	RETURN	CCUT	24
	END	CCUT	25

Purpose: Adjoin two matrices with same column dimension to form one resultant matrix. (See Method.)

Usage:

CALL RTIE(A, B, R, N, M, MSA, MSB, L)

Description of parameters:

- A Name of first input matrix.
- B Name of second input matrix.
- R Name of output matrix.
- N Number of rows in A.
- M Number of columns in A, B, R.
- MSA One digit number for storage mode of matrix A:
 - 0 General.
 - 1 Symmetric.
 - 2 Diagonal.
- MSB Same as MSA except for matrix B.
- L Number of rows in B.

Remarks:

Matrix R cannot be in the same location as matrices A or B.

Matrix R is always a general matrix.

Matrix A must have the same number of columns as matrix B.

Subroutines and function subprograms required: LOC

Method:

Matrix B is attached to the bottom of matrix A. The resultant matrix R contains N+L rows and M columns.

		SUBROUTINE RTIE(A,B,R,N,M,MSA,MSB,L)	RTIE	1
		DIMENSION A(1),8(1),R(1)	RTIE	2
		NN=N	RTIE	3
		18=0	RTIF	- 4
		NX=NN	RTIE	5
		MSX=MSA	RTIE	6
		DD 9 J=1.M	RTIE	7
		DO 8 11=1+2	RTIF	8
			RTIE	ġ
		DU 7 [=1, NN	RTIE	10
		IR=IR+1	RTIE	iĭ
-		R(IR)=0.0	RTIF	12
C		LOCATE ELEMENT FOR ANY MATRIX STORAGE MODE	RTIF	13
		CALL LOC(I, J, (J, VN, M, MSX)		
с		TEST FOR ZERO ELEMENT IN DIAGONAL MATRIX	RTIE	14
		IF([J] 2,7,2	RTIE	15
C		MOVE ELEMENT TO MATRIX R	RTIF	16
	2	GD T0(3,4),[]	RTIE	17
	3	R(IR)=A(IJ)	RTJE	18
	-	GD TO 7	RTIE	19
	4	R(IR)=B(IJ)	RTIE	20
		CONTINUE	RTIE	21
с	•	REPEAT ABOVE FOR MATRIX B	RTIE	22
•		MSX=MSB	RTIE	23
	8	NN=L	RTIE	Z4
c		RESET FOR NEXT COLUMN	RTIE	25
•		MSX=MSA	RTIE	26
	•	NN=NX	RTIE	27
	7	RETURN	RTIF	28
			RTIE	29
		END	~****	27

CTIE

Adjoin two matrices with same row dimension to form one resultant matrix. (See Method.)

Usage:

CALL CTIE(A, B, R, N, M, MSA, MSB, L)

Description of parameters:

- A Name of first input matrix.
- B Name of second input matrix.
- R Name of output matrix.
- N Number of rows in A, B, R.
- M Number of columns in A.
- MSA One digit number for storage mode of matrix A:
 - 0 General.
 - 1 Symmetric.
 - 2 Diagonal.
- MSB Same as MSA except for matrix B.
- L Number of columns in B.

Remarks:

Matrix R cannot be in the same location as matrices A or B.

Matrix R is always a general matrix.

Matrix A must have the same number of rows as matrix B.

Subroutines and function subprograms required: LOC

Method:

c

С

c

Matrix B is attached to the right of matrix A. The resultant matrix R contains N rows and M+L columns.

	SUBROUTINE CTIE(A,B,R,N,M,MSA,NSB,L)	CTIE	1
	DIMENSION A(1), B(1), R(1)	CTIF	2
	MH=M	CTIE	3
	I R=0	CTIE	4
	MSX=MSA	CTIE	5
	D0 6 JJ=1+2	CTIE	6
		CTIE	ź
	DO 5 [×1.N	CTIE	B
		CTIE	9
	R(IR)=0.0	CTIE	10
	LOCATE ELEMENT FOR ANY MATRIX STORAGE MODE	CTIE	11
	CALL LOC(I+J+[J+N+MM+MSX]	CTIF	12
	TEST FOR ZERD ELEMENT IN DIAGONAL MATRIX	CTIE	13
	IF(IJ) 2,5,2	CTIE	14
	MOVE ELEMENT TO MATRIX R	CTIF	15
2	GD T0(3,4),JJ	CTIE	16
	R([R)=A([J)	CTIE	17
	GD TD 5	CTIF	18
	R([R)=B([])	CTIF	19
		CTIE	20
	CONTINUE		
	REPEAT ABOVE FOR MATRIX B	CTIE	21
	MSX=MSB	CTIF	22
	MMail	CTIE	23
6	CONTINUE	CTIE	24
	RETURN	CTIE	25
	END	CTIE	26

MCPY

Purpose:

Copy entire matrix.

Usage:

CALL MCPY (A, R, N, M, MS)

Description of parameters:

- A Name of input matrix.
- R Name of output matrix.
- N Number of rows in A or R.
- M Number of columns in A or R.
- MS One digit number for storage mode of matrix A (and R):
 - 0 General.
 - 1 Symmetric.
 - 2 Diagonal.

Remarks:

None.

Subroutines and function subprograms required: LOC

Method:

c

c.

Each element of matrix A is moved to the corresponding element of matrix R.

SUBROUTINE MCPY(A+R+N+M+MS)	MCPY	1	
DIMENSION ALLI.R(1)	NCPY	?	
COMPUTE VECTOR LENGTH. IT	MCPY	3	
CALL LOC(N.M. 17, N. 4, 45)	MCPY	4	
COPY MATRIX	MCPY	5	
DO 1 [=1.IT	HCPY'	6	
1 R(1)=A(1)	MCPY	7	
RETURN	NCPY.	A	
END	HCPY	9	

XCPY

Purpose:

Copy a portion of a matrix.

Usage:

CALL XCPY(A, R, L, K, NR, MR, NA, MA, MS)

Description of parameters:

- A Name of input matrix.
- R Name of output matrix.
- L Row of A where first element of R can be found.
- K Column of A where first element of R can be found.
- NR Number of rows to be copied into R.
- MR Number of columns to be copied into R.
- NA Number of rows in A.
- MA Number of columns in A.
- MS One digit number for storage mode of matrix A:
 - 0 General.
 - 1 Symmetric.
 - 2 Diagonal.

Remarks:

Matrix R cannot be in the same location as matrix A.

Matrix R is always a general matrix.

Subroutines and function subprograms required: LOC

Method:

Matrix R is formed by copying a portion of matrix A. This is done by extracting NR rows and MR columns of matrix A, starting with element at row L, column K.

	SUBROUTINE XCPY (A.R.L.K.NR, MR, NA, MA, MS)	XCPY	1
	DIMENSION A(1),R(1)	XCPY	2
С	INITIALIZE	XCPY	3
	[R=0	XCPY	4
	L2=L+NR-1	XCPY	5
	K2=K+MR-1	XCPY	6
	DN 5 J=K+K2	XCPY	7
	DO 5 I=L,L2	XCPY	8
	[R=[R+]	XCPY	9
	R(IR)=0.0	XCPY	10
C	LOCATE ELEMENT FOR ANY MATRIX STORAGE MODE	XCPY	11
	CALL LOCII, J, IA, NA, MA, MS)	XCPY	12
С	TEST FUR ZERO ELEMENT IN DIAGUNAL MATRIX	XCPY	13
	IF(14) 4,5,4	XCPY	14
	4 R([R)=A([A)	XCPY	15
	S CONTINUE	XCPY	16
	RETURN	XCPY	17
	END	XCPY	19

Purpose:

Copy specified row of a matrix into a vector.

Usage:

CALL RCPY (A, L, R, N, M, MS)

Description of parameters:

- A Name of input matrix.
- L Row of A to be moved to R.
- R Name of output vector of length M.
- N Number of rows in A.
- M Number of columns in A.
- MS One digit number for storage mode of matrix A:
 - 0 General.
 - 1 Symmetric.
 - 2 Diagonal.

Remarks:

None.

Subroutines and function subprograms required: LOC

Method:

Elements of row L are moved to corresponding positions of vector R.

	SUBROUTINE RCPY(4.L.R.N.M.MS)
	DIMENSION A(1),R(1)
	DO 3 J=1.W
С	LOCATE ELEMENT FOR ANY MATRIX STORAGE MODE
	CALL LOC(L.J.LJ.N.M.MS)
C	TEST FOR ZERO ELEMENT IN DIAGONAL MATRIX
	[F(LJ) 1,2,1
с	MOVE ELEMENT TO R
	1 R(J)=A(LJ)

<u>CCPY</u>

Purpose:

Copy specified column of a matrix into a vector.

1

1

1

Usage:

CALL CCPY(A, L, R, N, M, MS)

Description of parameters:

- A Name of input matrix.
- L Column of A to be moved to R.
- R Name of output vector of length N.
- N Number of rows in A.
- M Number of columns in A.
- MS One digit number for storage mode of matrix A:
 - 0 General.
 - 1 Symmetric.
 - 2 Diagonal.

Remarks:

None.

Subroutines and function subprograms required: LOC

Method:

Elements of column L are moved to corresponding positions of vector R.

	SUBROUTINE CCPY(A.L.R.N.M.MS)	CCPY	1	
	DIMENSION A(1)+R(1)	CCPY	2	
	DO 3 [=1.N	CCPY	3	
C	LOCATE ELEMENT FOR ANY MATRIX STORAGE MODE	CCPY	4	
-	CALL LOC(I.L.IL.N.H.MS)	CCPY	5	
с	TEST FOR ZERO ELEMENT IN DIAGONAL MATRIX	CCPY	6	
-	IF(1L) 1,2,1	CCPY	7	
С	MOVE ELEMENT TO R	CCPY	8	
	1 R(1)=A(1L)	CCPY	9	
	GO TO 3	CCPY	10	
	2 R(1)=0.0	CCPY	ii	
	3 CONTINUE	CCPY	12	
	RETURN	CCPY	13	
	END	CCPY	14	

DCPY

Purpose:

Copy diagonal elements of a matrix into a vector.

Usage:

CALL DCPY (A, R, N, MS)

Description of parameters:

- A Name of input matrix.
- R Name of output vector of length N.
- N Number of rows and columns in matrix A.
- MS One digit number for storage mode of matrix A:
 - 0 General.
 - 1 Symmetric.
 - 1 Bymmetric.
 - 2 Diagonal.

Remarks:

Input matrix must be a square matrix.

Subroutines and function subprograms required: LOC

Method:

c

c

Elements on diagonal of matrix are moved to corresponding positions of vector R.

SUBROUTINE DCPY(A,R.N.MS)	OCPY	1	
DIMENSION A(1).R(1)	DCPY	2	
DO 3 J=1,N	DCPY	3	
LOCATE DIAGONAL ELEMENT FOR ANY MATRIX STORAGE MODE	DCPY	4	
CALL LOC(J,J,IJ,N,N,MS)	DCPY	5	
MOVE DIAGONAL ELEMENT TO VECTOR R	DCPY	6	
R(J)≈(IJ) €	DCPY	7	
RETURN	DCPY	8	
END	DCPY	9	

SCLA

Purpose:

Set each element of a matrix equal to a given scalar.

Usage:

CALL SCLA (A, C, N, M, MS)

Description of parameters:

- A Name of input matrix.
- C Scalar.
- N Number of rows in matrix A.
- M Number of columns in matrix A.
- MS One digit number for storage mode of matrix A:
 - 0 General.
 - 1 Symmetric.
 - 2 Diagonal.

Remarks:

None.

Subroutines and function subprograms required: LOC

Method:

Each element of matrix A is replaced by Scalar C.

	SUBROUTINE SCLA(A+C+N+M+MS)	SCLA	1
	DIMENSION A(1)	SCLA	2
с	COMPUTE VECTOR LENGTH, IT	SCLA	3
	CALL LOC(N.H.IT.N.H.MS)	SCEA	4
с	REPLACE BY SCALAR	SCLA	5
	DO 1 [=1,[T	SCLA	6
	1 ALEJ=C	SCL A	7
	RETURN	SCLA	8
	END	501 4	

DCLA

Purpose:

Set each diagonal element of a matrix equal to a scalar.

Usage:

CALL DCLA (A, C, N, MS)

Description of parameters:

- Name of input matrix. A
- С - Scalar.
- Ν - Number of rows and columns in matrixA.
- MS One digit number for storage mode of matrix A:
 - 0 General.
 - 1 Symmetric.
 - 2 Diagonal.

Remarks:

Input matrix must be a square matrix.

Subroutines and function subprograms required: LOC

Method:

Each element on diagonal of matrix is replaced by scalar C.

SUBROUTINE DCLA(A,C+N,MS)	OCLA	1
DIMENSION A(1)	DCL A	2
DO 3 [=1.N	DCLA	3
LOCATE DIAGONAL ELEMENT FOR ANY MATRIX STORAGE MODE	DCLA	4
CALL LOCTIVINON NAME	DCLA	5
REPLACE DIAGONAL ELEMENTS	DCLA	6
3 A(ID)=C	DCLA	7
RETURN	DCLA	8
END	DCL A	9
	DIMENSION A(1) DO 3 H=1,N LOCATE DIAGONAL ELEMENT FOR ANY MATRIX STORAGE MODE CALL LOCHI, ID, ID, IN, MSI Replace Diagonal elements 3 AIIDI=C Refurm	OTMERSION ATT: OCLA DO 3 IPLAN OCLA LOCATE DIAGONAL ELEMENT FOR ANY MATRIX STORAGE MODE OCLA CALL LOCITI, ID-Y, M, MS) DCLA REPLACE DIAGONAL ELEMENTS DCLA 3 ATTOI~C DCLA RETURN DCLA

MSTR

Purpose:

Change storage mode of a matrix.

Usage:

CALL MSTR(A, R, N, MSA, MSR)

Description of parameters:

- Α - Name of input matrix.
- R - Name of output matrix.
- Ν - Number of rows and columns in A and R.
- MSA One digit number for storage mode of matrix A:

1

- 0 General.
- 1 Symmetric.
- 2 Diagonal.
- MSR Same as MSA except for matrix R.

Remarks:

Matrix R cannot be in the same location as matrix A.

Matrix A must be a square matrix.

Subroutines and function subprograms required: LOC

Method:

0 0

0

1

с c ,с С c

Matrix A is restructured to form matrix R. MSA MSR

0 Matrix A is moved to matrix	R.	
-------------------------------	----	--

- 1 The upper triangle elements of a general matrix are used to form a symmetric matrix.
- 2 The diagonal elements of a general matrix are used to form a diagonal matrix.
- 0 A symmetric matrix is expanded to form a general matrix.
- 1 Matrix A is moved to matrix R. 1
- 1 2 The diagonal elements of a symmetric matrix are used to form a diagonal matrix.
- 2 A diagonal matrix is expanded by 0 inserting missing zero elements to form a general matrix.
- 2 1 A diagonal matrix is expanded by inserting missing zero elements to form a symmetric matrix. 2
 - 2 Matrix A is moved to matrix R.

	SUBROUTINE MSTR(A.R.N.MSA.MSR)	MSTR	
	DIMENSION ALLI,R(1)	MSTR	
	DO 20 1=1.N	MSTR	
	DO 20 J=1.N	MSTR	
	IF R IS GENERAL, FORM ELEMENT	MSTR	
	1F(MSR) 5,10,5	MSTR	
	IF IN LOWER TRIANGLE OF SYMMETRIC OR DIAGONAL R, BYPASS	MSTR	
5	IF(1-J) 10.10.20	MSTR	
	CALL LOC(1.J.IR.N.N.MSR)	MSTR	
	IF IN UPPER AND OFF DIAGONAL OF DIAGONAL R, BYPASS	MSTR	1
	IF(IR) 20,20,15	MSTR	ī
	OTHERWISE, FORM R(I,J)	NSTR	ī
15	R(1R)=0.0	MSTR	i
• • •	CALL LOCII, J, IA, N, N, MSA)		i
	IF THERE IS NO A(I.J). LEAVE R(I.J) AT 0.0	MSTR	i
	IF (TA) 20,20,18	MSTR	i
	R(1R)=A(1A)	MSTR	
	CONTINUE	MSTR	-
20		MSTR	-
	RETURN		
	END	MSTR	2

MFUN

Purpose:

Apply a function to each element of a matrix to form a resultant matrix.

Usage:

CALL MFUN (A, F, R, N, M, MS)

An external statement must precede call statement in order to identify parameter F as the name of a function.

Description of parameters:

- A Name of input matrix.
- F Name of FORTRAN-furnished or user function subprogram.
- R Name of output matrix.
- N Number of rows in matrix A and R.
- M Number of columns in matrix A and R.
- MS One digit number for storage mode of matrix A (and R):
 - 0 General.
 - 1 Symmetric.
 - 2 Diagonal.

Remarks:

Precision is dependent upon precision of function used.

Subroutines and function subprograms required:

LOC

F (see Description of Parameters)

Method:

Function F is applied to each element of matrix A to form matrix R.

	SUBROUTINE MFUN(A.F.R.N.M.MS)	MEUN	1
	DIMENSION A(1),R(1)	MEUN	ž
C	COMPUTE VECTOR LENGTH, IT	MEUN	3
	CALL LIC(N.M.IT.N.M.MS)	MEUN	4
С	BUILD MATRIX & FOR ANY STORAGE MODE	MEUN	5
	00 5 [=1,1]	MEUN	6
	8=4(1)	MEUN	7
	5 R(1)=F(8)	HEUN	9
	RFTURN	MEUN	9
	END	MFUN	10

Function RECP

Purpose:

Calculate reciprocal of an element. This is a FORTRAN function subprogram which may be used as an argument by subroutine MFUN.

Usage:

RECP(E)

Description of parameters: E - Matrix element.

Remarks:

Reciprocal of zero is taken to be 1.0E38.

Subroutines and function subprograms required: None.

Method:

Reciprocal of element E is placed in RECP.

	FUNCTION RECPIE)	RECP	1	
	8IG=1.0E38	RECP	2	
с	TEST ELEMENT FOR ZERO	RECP	3	
	IF(E) 1.2.1	RECP	4	
С	IF NON-ZERO, CALCULATE RECIPROCAL	RECP	5	
	1 RECP=1.0/E	RECP	6	
	RETURN	RECP	7	
с	IF ZERO, SET EQUAL TO INFINITY	RECP	A	
	2 RECP=SIGN(BIG,E)	RECP	9	
	RETURN	RECP	10	
	END	RECP	ii.	

LOC

Purpose:

Compute a vector subscript for an element in a matrix of specified storage mode.

Usage:

CALL LOC (I, J, IR, N, M, MS)

Description of parameters:

- I Row number of element.
- J Column number of element.
- IR Resultant vector subscript.
- N Number of rows in matrix.
- M Number of columns in matrix.
- MS One digit number for storage mode of matrix:
 - 0 General.
 - 1 Symmetric.
 - 2 Diagonal.

Remarks:

None.

Subroutines and function subprograms required: None.

Method:

- MS=0 Subscript is computed for a matrix with N*M elements in storage (general ma-trix).
- MS=1 Subscript is computed for a matrix with N*(N+1)/2 in storage (upper triangle of symmetric matrix). If element is in lower triangular portion, subscript is corresponding element in upper triangle.
- MS=2 Subscript is computed for a matrix with N elements in storage (diagonal elements of diagonal matrix). If element is not on diagonal (and therefore not in storage), IR is set to zero.

	SUBROUTINE LOC(1.J.IR.N.M.MS)	LOC	1	
	11=1	LOC	2	
	1 - 1	LOC	ŝ	
	IF(MS-1) 10,20,30	LOC	4	
10	[RX=N*(JX-1)+IX	LOC	5	
	GO TO 36	L 0C	6	
20	1F([X-JX) 22,24,24	LOC	7	
22	[RX=]X+{JX+JX-JX}/2	LOC	8	
	GU TO 36	LUC	9	
24	IRX=JX+([X*]X-[X)/2	LOC	10	
	GO TO 36	LUC	11	
30	1RX=0	LOC	12	
	IF([X-JX] 36,32,36	LOC	13	
32	IRX=1X	LOC	14	
36	IRCIRX	LINC	15	
	RETURN	LOC	16	
	END	LUC	17	

<u>ARRAY</u>

Purpose:

Convert data array from single to double dimension or vice versa. This subroutine is used to link the user program which has double dimension arrays and the SSP subroutines which operate on arrays of data in a vector fashion.

Usage:

I

J

CALL ARRAY (MODE, I, J, N, M, S, D)

Description of parameters:

- MODE Code indicating type of conversion:
 - 1 From single to double dimension.
 - 2 From double to single dimension.
 - Number of rows in actual data matrix.
 - Number of columns in actual data matrix.
- N Number of rows specified for the matrix D in dimension statement.
- M Number of columns specified for the matrix D in dimension statement.
- If MODE=1, this vector contains, as input, a data matrix of size I by J in consecutive locations columnwise.
 If MODE=2, it contains a data matrix of the same size as output. The length of vector S is IJ, where IJ=I*J.
- D If MODE=1, this matrix (N by M) contains, as output, a data matrix of size I by J in first I rows and J col-umns. If MODE=2, it contains a data matrix of the same size as input.

Remarks:

Vector S can be in the same location as matrix D. Vector S is referred as a matrix in other SSP routines, since it contains a data matrix. This subroutine converts only general data matrices (storage mode of 0).

Subroutines and function subroutines required: None.

Method:

Refer to the discussion on variable data size in the section describing overall rules for usage in this manual.

```
        SUBROUTINE ARRAY (MODE,I,J,N,4,5,D)
        ARRAY 1

        DIMENSION S(1),D(1)
        ARRAY 2

        NI44-I
        ARRAY 3

        C
        TEST TYPE OF CONVERSION
        ARRAY 4

        IF/MODE-1) 100, 100, 120
        ARRAY 7

        C
        CONVERT FROM SINGLE TO DOUGLE DIMENSION
        ARRAY 7

        N=N=J+L
        ARRAY 7

        N=N=J+L
        ARRAY 7

        NM=NM-N1
        ARRAY 7

        NM=NM-N1
        ARRAY 10

        O
        ARRAY 10

        O
        ARRAY 11

        J=J-1
        ARRAY 14

        GO TO 140
        ARRAY 14

        MO 130 K=1,J
        ARRAY 14

        GO TO 140
        ARRAY 14

        MO 130 K=1,J
        ARRAY 15

        MO 140 F
        ARRAY 14

        MO 150 K=1,J
        ARRAY 14

        MO 130 K=1,J
        ARRAY 15

        MO 120 K=1,J
        ARRAY 26

        MARAY 15
        ARRAY 27

        MARAY 14
        ARRAY 27
```

Mathematics — Integration and Differentiation QSF

This subroutine performs the integration of an equidistantly tabulated function by Simpson's rule. To compute the vector of integral values:

$$z_{i} = z(x_{i}) = \int_{a}^{x_{i}} y(x) dx$$

with $x_{i} = a + (i-1) h$ (i = 1, 2, ..., n)

for a table of function values y_i (i = 1,2,...,n), given at equidistant points $x_i = a + (i-1) h$ (i = 1,2,...,n), Simpson's rule together with Newton's 3/8 rule or a combination of these two rules is used. Local truncation error is of the order h^5 in all cases with more than three points in the given table. Only z_2 has a truncation error of the order h^4 if there are only three points in the given table. No action takes place if the table consists of less than three sample points.

The function is assumed continuous and differentiable (three or four times, depending on the rule used).

Formulas used in this subroutine $(z_j \text{ are integral values, } y_j \text{ function values})$ are:

$$z_j = z_{j-1} + \frac{h}{3} (1.25 y_{j-1} + 2y_j - 0.25 y_{j+1})$$
 (1)

$$z_{j} = z_{j-2} + \frac{h}{3} (y_{j-2} + 4y_{j-1} + y_{j})$$
 (Simpson's (2)
rule)

$$z_{j} = z_{j-3} + \frac{3}{8}h(y_{j-3} + 3y_{j-2} + 3y_{j-1} + y_{j})$$
(3)
(Newtonia 2/8 mula)

(Newton's 3/8 rule)

$$z_{j} = z_{j-5} + \frac{\pi}{3} (y_{j-5} + 3.875 y_{j-4} + 2.625 y_{j-3} + 2.625 y_{j-2} + 3.875 y_{j-1} + y_{j})$$

$$(4)$$
[combination of (2) and (3)]

Sometimes formula (2) is used in the following form:

$$z_{j} = z_{j+2} - \frac{h}{3}(y_{j} + 4y_{j+1} + y_{j+2})$$
 (5)

Local truncation errors of formulas (1)...(4) are, respectively:

$$R_{1} = \frac{1}{24} h^{4} y'''(\xi_{1}) \quad (\xi_{1} \epsilon [x_{j-1}, x_{j+1}])$$

$$R_{2} = -\frac{1}{90} h^{5} y''''(\xi_{2}) \quad (\xi_{2} \epsilon [x_{j-2}, x_{j}])$$

$$R_{3} = -\frac{3}{80} h^{5} y''''(\xi_{3}) \quad (\xi_{3} \epsilon [x_{j-3}, x_{j}])$$

$$R_{4} = -\frac{1}{144} h^{5} y''''(\xi_{4}) \quad (\xi_{4} \epsilon [x_{j-5}, x_{j}])$$

However, these truncation errors may accumulate. For reference see:

- F.B. Hildebrand, <u>Introduction to Numerical</u> <u>Analysis</u>. McGraw-Hill, New York/ Toronto/London, 1956, pp. 71-76.
- (2) R. Zurmühl, <u>Praktische Mathematik für</u> <u>Ingenieure und Physiker</u>. Springer, Berlin/ Göttingen/Heidelberg, 1963, pp. 214-221.

Subroutine QSF

Purpose:

To compute the vector of integral values for a given equidistant table of function values.

Usage:

Y

CALL QSF(H, Y, Z, NDIM)

Description of parameters:

- H The increment of argument values.
 - The input vector of function values.
- Z The resulting vector of integral values. Z may be identical to Y.

NDIM - The dimension of vectors Y and Z.

Remarks:

No action in case NDIM less then 3.

Subroutines and function subprograms required: None

Method:

Beginning with Z(1) = 0, evaluation of vector Z is done by means of Simpson's rule together with Newton's 3/8 rule or a combination of these two rules. Truncation error is of order H**5 (that is, fourth-order method). Only in case NDIM=3 truncation error of Z(2) is of order H**4.

		SUBROUTINE QSF(H,Y,Z,NDIM)	USF	M01
		DIMENSION Y(1),2(1)	QSF	M02
		HT=•3333333#H	USF	M03
		L1=1	QSE	MO4
		L2=2	USF	MOS
		L3=3	QSF	MOS
		L4=4	OSF	MO7
		L5=5	OSF	MOB
		L6=6	QSF	MOS
		IF(NDIM-5)7.8.1	QSF	M10
с		NDIM IS GREATER THAN 5. PREPARATIONS OF INTEGRATION LOOP	OSF	M11
-	1	SUM1=Y(L2)+Y(L2)	QSF	M12
	-	SUM1=SUM1+SUM1		
		SUM1=HT*(Y(L1)+SUM1+Y(L3))	USF	M13
		AUX1=Y(L4)+Y(L4)	QSF	M14
		AUX1=AUX1+AUX1	QSF	M15
		AUX1=SUM1+HT*(Y(L3)+AUX1+Y(L5))	QSF	M16
		AUX2=HT=(Y(L1)+3.875+(Y(L2)+Y(L5))+2.625+(Y(L3)+Y(L4))+Y(L6))	OSF	M17
			QSF	M18
		SUM2=Y(L5)+Y(L5)	QSF	M19
		SUM2+SUM2+SUM2	QSF	M20
		SUM2=AUX2-HT*(Y(L4)+SUM2+Y(L6))	USF	M21
		2(L1)=0.	USF	M22
		AUX=Y(L3)+Y(L3)	QSF	M23
		AUX=AUX+AUX	QSF	M24
		2(L2)=SUM2-HT*(Y(L2)+AUX+Y(L4))	QSF	M25
		Z(L3)=SUM1	QSF	M26
		Z(L4)=SUM2	WSF	M27
		IF(NDIM-6)5+5+2	QSF	MZB
c		INTEGRATION LOOP	QSF	M29
	2	DO 4 1=7.NDIM.2	QSF	M30
		SUM1=AUX1	QSF	M31
		SUM2=AUX2	QSF	M32
		AUX1=Y(1-1)+Y(1-1)	QSF	M33
		AUX1=AUX1+AUX1	USF	M34
		AUX1=SUM1+HT#(Y(I=2)+AUX1+Y(I))	QSF	M35
		Z(1-2)=SUM1	QSF	M36
		IF(I-NDIM)3+6+6	QSF	M37
	3	AUX2=Y(I)+Y(I)	QSF	M38
		AUX2=AUX2+AUX2	USF	M39
		AUX2=SUM2+HT+(Y(1-1)+AUX2+Y(1+1))	USF	M40
	4	Z (1=1)= SUM2	USF	M41
		2(ND1M-1)=AUX1	USF	M42
		2 (ND1M) + AUX2	USF	M43
		RETURN	USF	M44
	6	Z(NDIM-1)=SUM2	OSF	M45
		Z(NDIM)=AUX1	USF	M46
		RETURN	QSF	
c		END OF INTEGRATION LOOP	Q5F	M47 M48
	7	IF(ND1M-3)12+11+8	OSF	M49
¢	•	NDIM IS EQUAL TO 4 OR 5	USF	M50
•	н	SUM2=1+125#HT#(Y(L1)+Y(L2)+Y(L2)+Y(L2)+Y(L3)+Y(L3)+Y(L3)+Y(L4))	OSF	M51
		SUM1=Y(L2)+Y(L2)	OSF	M52
		SUM1=SUM1+SUM1		
			QSF	M53
		SUM1=HT*(Y(L1)+SUM1+Y(L3)) Z(L1)=0.	QSF	M54
			USF	M55
		AUX1=Y(L3)+Y(L3)	QSF	M56
		AUX1=AUX1+AUX1	USF	M57
		Z(L2)=SUM2=HT+(Y(L2)+AUX1+Y(L4))	uSF	M58
		IF(NDIM-5)10.9.9	USF	M59
	9	AUX1=Y(L4)+Y(L4)	JSF	M60
		AUX1=AUX1+AUX1	JSF	M61
		Z(L5)=SUM1+HT*(Y(L3)+AUX1+Y(L5))	JSF	M62
	10	2(L3)=SUM1	USF	M6 3
		2(L4)=SUM2	USF	M64
-		RETURN	USF	M65
с		NDIM IS EQUAL TO 3	USF	M66
	11	SUM1=HT+(1.25+Y(L1)+Y(L2)+Y(L2)25+Y(L3))	USF	M67
		SUM2=Y(L2)+Y(L2)	QSF	M68
		SUM2=SUM2+SUM2	USF	M69
		Z(L3)=HT*(Y(L1)+SUM2+Y(L3))	USF	M70
		Z(L])*0.	USF	M71
		2(L2)=SUM1	USF	M72
	12	RETURN	USF	M73
		END	USF	M74
			-	

This subroutine performs the integration of a given function by the trapezoidal rule together with Romberg's extrapolation method in order to compute an approximation for:

$$y = \int_{a}^{b} f(x) dx$$
 (1)

Successively dividing the interval [a,b] into 2^{i} equidistant subintervals (i = 0, 1, 2, ...) and using the following notations:

$$h_i = \frac{b-a}{2^i}$$
; $x_{i,k} = a + k \cdot h_i$, $f_{i,k} = f(x_{i,k})$
(k = 0, 1, 2, ..., 2ⁱ)

the trapezoidal rule gives approximations $T_{0,i}$ to the integral value y:

$$T_{o,i} = h_i \left\{ \sum_{k=0}^{2^{1}} f_{i,k} - \frac{1}{2} (f(a) + f(b)) \right\}$$
(2)

Then the following can be written:

$$T_{o,i} = y + \sum_{r=1}^{\infty} C_{o,2r} \cdot h_i^{2r}$$

with unknown coefficients $C_{0,2r}$ which do not depend on i. Thus there is a truncation error of the order h_i^2 .

Knowing two successive approximations, $T_{0,i}$ and $T_{0,i+1}$, an extrapolated value can be generated:

$$T_{1,i} = T_{0,i+1} + \frac{T_{0,i+1} - T_{0,i}}{2^2 - 1}$$
(3)

This is a better approximation to y because:

$$T_{1,i} = y + \frac{1}{2^2 - 1} \sum_{r=1}^{\infty} C_{0,2r} (2^2 h_{i+1}^{2r} - h_i^{2r})$$

Noting that $2^2 h_{i+1}^2 - h_i^2 = 0$ and setting:

$$C_{1,2r} = \frac{1}{2^2 - 1} (2^2 - 2^{2r}) \cdot C_{0,2r}$$

T_{1,i} becomes:

$$T_{1,i} = y + \sum_{r=2}^{\infty} c_{1,2r} h_{i+1}^{2r}$$

This gives a truncation error of the order h_{i+1}^4 .

Knowing T_0 , i+2 also, T_1 , i+1 can be generated (formula 3), and:

$$T_{2,i} = T_{1,i+1} + \frac{T_{1,i+1} - T_{1,i}}{2^4 - 1}$$
 (4)

Thus:

$$T_{2,i} = y + \sum_{r=3}^{\infty} C_{2,2r} \cdot h_{i+2}^{2r}$$

with $C_{2,2r} = \frac{1}{2^4 - 1} (2^4 - 2^{2r}) C_{1,2r}$

with a truncation error of the order h_{i+2}^6 . Observe that the order of truncation error increases by 2 at each new extrapolation step.

The subroutine uses the scheme shown in the figure below for computation of T-values and

generates the upward diagonal in the one-dimensional storage array AUX, using the general formula:

$$T_{k,j} = T_{k-1,j+1} + \frac{T_{k-1,j+1} - T_{k-1,j}}{2^{2k} - 1} (k+j=i, j = i-1, i-2, \dots, 2, 1, 0)$$
(5)

and storing:

$$T_{0,i}$$
 into AUX (i+1)
 $T_{1,i-1}$ into AUX (i)

$$\Gamma_{k}$$
 into AUX (1)

Truncation error		0(h ² _i)	0(h <mark>4</mark>)	0(h <mark>6</mark>)	O(h ⁸ _i)
step length h	i	0	1	2	3
b-a	0	T _{0,0}	T1,0	T _{2,0}	T _{3,0} ···
<u>b-a</u> 2	1	T _{0,1})	T 1 , 1)	^T 2,1	:
<u>b-a</u> 4	2	T _{0,2}	T _{1,2}	÷	
<u>b-a</u> 8	3	T _{0,3}]	:		
•	:				

Computation of T-values (QATR)

The procedure stops if the difference between two successive values of AUX (1) is less than a given tolerance, or if the values of AUX (1) start oscillating, thus showing the influence of rounding errors.

Subroutine QATR

Purpose:

To compute an approximation for integral (FCT(X), summed over X from XL to XU).

Usage:

CALL QATR(XL, XU, EPS, NDIM, FCT, Y, IER, AUX) Parameter FCT required an EXTERNAL statement.

Description of parameters:

\mathbf{XL}	-	The	lower	bound	of	the	interval.

- XU The upper bound of the interval.
- EPS The upper bound of the absolute error.

- NDIM The dimension of the auxiliary storage array AUX. NDIM-1 is the maximal number of bisections of the interval (XL, XU).
- FCT The name of the external function subprogram used.
 - The resulting approximation for the integral value.
- IER A resulting error parameter.
- AUX An auxiliary storage array with dimension NDIM.

Remarks:

Y

Error parameter IER is coded in the following form:

- IER=0 It was possible to reach the required accuracy. No error.
- IER=1 It is impossible to reach the required accuracy because of rounding errors.
- IER=2 It was impossible to check accuracy because NDIM is less than 5, or the required accuracy could not be reached within NDIM-1 steps. NDIM should be increased.
- Subroutines and function subprograms required: The external function subprogram FCT(X) must be coded by the user. Its argument X should not be destroyed.

Method:

Evaluation of Y is done by means of the trapezoidal rule in connection with Romberg's principle. On return Y contains the best possible approximation of the integral value and vector AUX the upward diagonal of the Romberg scheme. Components AUX(I) (I=1, 2,..., IEND, with IEND less than or equal to NDIM) become approximation to the integral value with decreasing accuracy by multiplication by (XU-XL).

For reference see:

- Filippi, Das Verfahren von Romberg-Stiefel-Bauer als Spezialfall des Allgemeinen Prinzips von Richardson, Mathematik-Technik-Wirtschaft, Vol. 11, Iss. 2 (1964), pp. 49-54.
- Bauer, Algorithm 60, CACM, Vol. 4, Iss. 6 (1961), pp. 255.

	SUBROUTINE GATR(XL+XU+EPS+NDIM+FCT+Y+IER+AUX)	GATR	1
	DIMENSION AUX(1)	QATR	ź
c	PREPARATIONS OF ROMBERG-LOOP	QATR	3
	AUX(1)=_5=(FCT(XL)+FCT(XU))	GATR	- 4
	H=XU=XL	QATR	5
	IF (NDIM-1)8+8+1	GATR	6
	1 IF(H)2.10.2	QATR.	7
c	NDIM IS GREATER THAN 1 AND H IS NOT EQUAL TO 0.	QATR	8
	2 HH=H	QATR	9
	E=EPS/ABS(H)	QATR	10
	DELT2=0.	QATR	11
	P=1.	QATR	12
	JJ=1	GATR	13
		GATR	14
	DO 7 I=2.NDIM		
	Y=AUX(1)	QATR	15
	DELT1=DELT2	GATR	16
	HD=HH	QATR	17
	HH=+5*HH	QATR	18
	P=.5*P	QATR	19
	X=XL+HH	QATR	20
	SM=0.	QATR	21

OATR GATR GATR OMPUTED BY MEANS OF GATR	22 23 24 25
QATR QATR	24 25
QATR	25
MOUTED BY MEANS OF OATP	
	26
QATR	27
GATR	28
QATR	29
GATR	30
QATR	31
QATR	32
QATR	33
QATR	34
.) GATR	35
QATR	36
QATR	37
QATR	38
QATR	39
QATR	40
QATR	41
GATR	42
QATR	43
QATR	44
QATR	45
QATR	46
GATR	47
QATR	48
QATR	49
	ÖATR OATR OATR OATR OATR OATR OATR OATR O

Mathematics - Ordinary Differential Equations

<u>RK1</u>

This subroutine integrates a given function using the Runge-Kutta technique and produces the final computed value of the integral.

The ordinary differential equation:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathbf{f}(\mathbf{x}, \mathbf{y}) \tag{1}$$

with initial condition $y(x_0) = y_0$ is solved numerically using a fourth-order Runge-Kutta integration process. This is a single-step method in which the value of y at $x = x_n$ is used to compute $y_{n+1} = y(x_{n+1})$ and earlier values y_{n-1} , y_{n-2} , etc., are not used.

The relevant formulae are:

$$y_{n+1} = y_n + 1/6 [k_0 + 2k_1 + 2k_2 + k_3]$$
 (2)

where we define, for step size h

$$\begin{pmatrix} k_0 = hf(x_n, y_n) \\ k_1 = hf(x_n + h/2, y_n + k_0/2) \\ k_2 = hf(x_n + h/2, y_n + k_1/2) \\ k_3 = hf(x_n + h, y_n + k_2)$$
(3)

Subroutine RK1

Purpose:

Integrates a first order differential equation DY/DX = FUN(X, Y) up to a specified final value.

Usage:

CALL RK1(FUN, HI, XI, YI, XF, YF, ANSX, ANSY, IER)

Description of parameters:

- FUN User-supplied function subprogram with arguments X, Y which gives DY/DX.
- HI The step size.
- XI Initial value of X.YI Initial value of Y who
 - Initial value of Y where YI=Y(XI).
- XF Final value of X.
- YF Final value of Y.
- ANSX Resultant final value of X.
- ANSY Resultant final value of Y. Either ANSX will equal XF or ANSY will equal YF depending on which is reached first.

IER - Error code: IER=0

IER=0 No error. IER=1 Step size is zero.

Remarks:

If XI is greater than XF, ANSX=XI and ANSY=YI.

If H is zero, IER is set to one, ANSX is set to XI, and ANSY is set to zero.

Subroutines and function subprograms required: FUN is a two argument function subprogram furnished by the user: DY/DX=FUN (X, Y). Calling program must have FORTRAN external statement containing names of function subprograms listed in call to RK1.

Method:

Uses fourth-order Runge-Kutta integration process on a recursive basis as shown in F. B. Hildebrand, 'Introduction to Numerical Analysis', McGraw-Hill, 1956. Process is terminated and final value adjusted when either XF or YF is reached.

		SUBROUTINE RELIFUN.HI.XI.YI.XF.YF.ANSX.ANSY.IER)	RKI	1
с		IF XF IS LESS THAN OR EQUAL TO XI. RETURN XI.YI AS ANSWER	RKI	
		(F(xF-x1) 11, 11, 12)	9K1	
	11	AN SX = X I	RK1	4
		ANSY=YI	RKI	5
		RFTURN	RKI	5
С		TEST INTERVAL VALUE	RK1	7
	12	H≖H[RK 1	8
		IF(H11 16,14,20	RKI	9
	14	[ER≠1	RKI	10
		ANS X + X I	RKI	ii
		ANSY =Q - D	RKI	12
		RETURN	RKI	13
	16	H=-H[RKI	14
с		SET XN=INITIAL X+YN=INITIAL Y	RKI	15
-	20	XN=X1	RK 1	16
		YN=Y I	RK 1	17
c		INTEGRATE UNE TIME STEP	961	18
-		HNEWSH	RKI	19
		JURP=1	RK1	20
		GU TO 170	RKI	21
	25	xn1=xx	9K 1	22
		YN1=YY	8K I	23
С		COMPARE XNL (=X{N+1}) TO X FINAL AND BRANCH ACCORDINGLY	RK1	24
		1F{XN1-XF}50,30,40	RK 1	25
C		XNI=XF, RETURY (XF,YNI) AS ANSWER	PKI	76
	30	ANSX⇒XF	RK1	27
		AN 5 Y = YN 1	RKI	28
		GO TO 160	9 K L	29
С		XN1 GREATER THAN XF, SET NEW STEP SIZE AND INTEGRATE ONE STEP	RK1	30
С		RETURN RESULTS OF INTEGRATION AS ANSWER	RK1	31
	40	HNEW=XF-XN	8K (32
		JUNP=2	RK1	- 33
		GO TO 170	RKI	34
	45	ANSX=XX	RK 1	35
		AN SY=YY	PKI	36
		GO TO 160	RK]	37
С		XNI LESS THAN X FINAL, CHECK IF (YN,YNI) SPAN Y FINAL	RKİ	38
	50	IF((YN1-YF)*(YF-YN))60,70,117	841	30

c		YNI AND YN DO NOT SPAN YF, SET (XN,YN) AS (XNI,YNI) AND REPEAT	RK 1	41
-		YN=YN1	RK 1	41
		XN= XN1	RKI	47
		GO TO 170	RK 1	43
C		EITHER YN DR YN1 =YF. CHECK WHICH AND SET PROPER (X.Y) AS ANSWE	RK1	44
	70	IF(YNL-YF)80,100,80	PK 1	45
	80	ANSY=YN	RK 1	45
		4N5X=XN	RK 1	47
		GU TO 160	RK 1	48
	100	ANSY=YN1	RKL	49
		ANSX=XN1	RKI	51
			RK 1	51
c		YN AND YNI SPAN YF. TRY TO FIND X VALUF ASSOCIATED WITH YF	RKI	52
	110	00 140 1=1+10	9K1	53
c		INTERPOLATE TO FIND NEW TIME STEP AND INTEGRATE ONE STEP	9K1	54
c		TRY TEN INTERPOLATIONS AT HOST	RK1	55
°,			RK1	56
		JIMP#3	RK1	57
			RK1	58
	115		RK1	59
	,		RKI	60
с			RK1	61
Ŭ		IF(YNEW-YF)120.150.130	RK1	62
с			RK1	63
	120	YN=YNEW	RK1	64
			RK1	65
		GU TO 140	RKI	66
ċ		ADVANCE, YE IS BETWEEN YN AND YNEW	RK1	67
	130	YNI=YNEW	RK1	68
		XN1=XNEW	RK1	69
	140	CONTINUE	RK1	70
С		RETURN IXNEW, YET AS ANSWER	RK1	71
	150	ANSX=XNEW	RK L	72
		ANSY=YF	RK 1	73
	160	RETURN	RK1	74
			RK1	75
		TL=HNEW#FUN(XN.YN)	RK 1	76
		T2=HNEW*FUN(XN+H2, YN+T1/2.0)	RK 1	77
			RKL	78
		T4=HNEW#FUN(XN+HNEW,YN+T3)	RK 1	79
			RKL	80
			RK1	81
			RK I	87
			RKI	83

RK2

This subroutine integrates a given function using the Runge-Kutta technique and produces tabulated values of the computed integral.

The ordinary differential equation:

$$\frac{dy}{dx} = f(x, y) \tag{1}$$

with initial condition $y(x_0) = y_0$ is solved numerically using a fourth-order Runge-Kutta integration process. This is a single-step method in which the value of y at $x = x_n$ is used to compute $y_{n+1} =$ $y(x_{n+1})$ and earlier values y_{n-1} , y_{n-2} , etc., are not used.

The relevant formulae are:

$$y_{n+1} = y_n + 1/6 [k_0 + 2k_1 + 2k_2 + k_3]$$
 (2)

where we define, for step size h

$$\begin{cases} k_0 = hf(x_n, y_n) \\ k_1 = hf(x_n + h/2, y_n + k_0/2) \\ k_2 = hf(x_n + h/2, y_n + k_1/2) \\ k_3 = hf(x_n + h, y_n + k_2) \end{cases}$$
(3)

Subroutine RK2

Purpose:

Integrates a first-order differential equation DY/DX=FUN(X, Y) and produces a table of integrated values.

Usage:

CALL RK2(FUN, H, XI, YI, K, N, VEC)

Description of parameters:

- FUN User-supplied function subprogram with arguments X, Y which gives DY/DX.
- H Step size.
- XI Initial value of X.
- YI Initial value of Y where YI = Y(XI).
 - The interval at which computed values are to be stored.
 - The number of values to be stored.
- VEC The resultant vector of length N in which computed values of Y are to be stored.

Remarks:

Κ

Ν

None.

Subroutines and function subprograms required:

FUN - User-supplied function subprogram for DY/DX.

Calling program must have FORTRAN EXTER-NAL statement containing names of function subprograms listed in call to RK2.

Method:

Fourth-order Runge-Kutta integration on a recursive basis as shown in F. B. Hildebrand, 'Introduction to Numerical Analysis', McGraw-Hill, New York, 1956.

SUBROUTINE RKZ(FJN,H,X1,YI,K,N,VEC)	862	1
DIMENSION VEC(1)	RK2	;
H2=H/2.	RK2	i
Y=Y1	862	í.
X=X[RK2	5
DO 2 [=1,N	RK7	6
00 L J=1,K	RK2	7
Tl=H+FUN(X,Y)	RK2	9
[2=H#FUN[X+H2,Y+[1/2.]	982	9
T3=H*FUN(X+H2,Y+T2/2.)	842	10
T4=H#FUN(X+H,Y+T3)	RK2	- 11
Y= Y+{f1+7.*T2+2.*T3+T41/6.	RK2	12
1 X=X+H	RK 7	13
2 VEC(I)=Y	RKZ	14
RETURN	٩.٢.2	15
END	RK7	16

<u>RKGS</u>

This subroutine uses the Runge-Kutta method for the solution of initial-value problems.

The purpose of the Runge-Kutta method is to obtain an approximate solution of a system of firstorder ordinary differential equations with given initial values. It is a fourth-order integration procedure which is stable and self-starting; that is, only the functional values at a single previous point are required to obtain the functional values ahead. For this reason it is easy to change the step size h at any step in the calculations. On the other hand, each Runge-Kutta step requires the evaluation of the right-hand side of the system four times, which is a great disadvantage compared with other methods of the same order of accuracy, especially predictorcorrector methods. Another disadvantage of the method is that neither the truncation errors nor estimates of them are obtained in the calculation procedure. Therefore, control of accuracy and adjustment of the step size h is done by comparison of the results due to double and single step size 2h and h.

Given the system of first-order ordinary differential equations:

$$y_{1}' = \frac{dy_{1}}{dx} = f_{1}(x, y_{1}, y_{2}, \dots, y_{n})$$

$$y_{2}' = \frac{dy_{2}}{dx} = f_{2}(x, y_{1}, y_{2}, \dots, y_{n})$$

$$\dots$$

$$y_{n}' = \frac{dy_{n}}{dx} = f_{n}(x, y_{1}, y_{2}, \dots, y_{n})$$

and the initial values:

$$y_1(x_0) = y_{1,0}, y_2(x_0) = y_{2,0}, \dots, y_n(x_0) = y_{n,0}$$

and using the following vector notations:

$$\mathbf{Y}(\mathbf{x}) = \begin{pmatrix} \mathbf{y}_{1}(\mathbf{x}) \\ \mathbf{y}_{2}(\mathbf{x}) \\ \cdot \\ \cdot \\ \cdot \\ \mathbf{y}_{n}(\mathbf{x}) \end{pmatrix}, \quad \mathbf{F}(\mathbf{x}, \mathbf{Y}) = \begin{pmatrix} \mathbf{f}_{1}(\mathbf{x}, \mathbf{Y}) \\ \mathbf{f}_{2}(\mathbf{x}, \mathbf{Y}) \\ \cdot \\ \cdot \\ \cdot \\ \mathbf{f}_{n}(\mathbf{x}, \mathbf{Y}) \end{pmatrix}, \quad \mathbf{Y}_{0} = \begin{pmatrix} \mathbf{y}_{1, 0} \\ \mathbf{y}_{2, 0} \\ \cdot \\ \cdot \\ \mathbf{y}_{n, 0} \end{pmatrix}$$

where Y, F and Y_0 are column vectors, the given problem appears as follows:

$$Y' = \frac{dY}{dx} = F(x, Y)$$
 with $Y(x_0) = Y_0$

With respect to storage requirements and compensation of accumulated roundoff errors, Gill's modification of the classical Runge-Kutta formulas is preferred. Thus, starting at x_0 with $Y(x_0) = Y_0$ and vector $Q_0 = 0$, the resulting vector $Y_4 = Y(x_0 + h)$ is computed by the following formulas:

$$K_{1} = h F(x_{0}, Y_{0}) ; Y_{1} = Y_{0} + \frac{1}{2}(K_{1} - 2Q_{0})$$

$$Q_{1} = Q_{0} + 3\left[\frac{1}{2}(K_{1} - 2Q_{0})\right] - \frac{1}{2}K_{1}$$

$$K_{2} = h F(x_{0} + \frac{h}{2}, Y_{1}) ; Y_{2} = Y_{1} + (1 - \sqrt{\frac{1}{2}})(K_{2} - Q_{1})$$

$$Q_{2} = Q_{1} + 3\left[(1 - \sqrt{\frac{1}{2}})(K_{2} - Q_{1})\right] - (1 - \sqrt{\frac{1}{2}})K_{2}$$

(1)

$$K_{3} = h F(x_{0} + \frac{h}{2}, Y_{2}) ; Y_{3} = Y_{2} + (1 + \sqrt{\frac{1}{2}})(K_{3} - Q_{2})$$

$$Q_{3} = Q_{2} + 3 \left[(1 + \sqrt{\frac{1}{2}})(K_{3} - Q_{2}) \right] - (1 + \sqrt{\frac{1}{2}})K_{3}$$

$$K_{4} = h F(x_{0} + h, Y_{3}) ; Y_{4} = Y_{3} + \frac{1}{6} (K_{4} - 2Q_{3})$$

$$Q_{4} = Q_{3} + 3 \left[\frac{1}{6} (K_{4} - 2Q_{3}) \right] - \frac{1}{2}K_{4}$$

where K_1 , K_2 , K_3 , K_4 , Y_1 , Y_2 , Y_3 , Y_4 , Q_1 , Q_2 , Q_3 , Q_4 are all column vectors with n components. If the procedure were carried out with infinite precision (that is, no rounding errors), vector Q_4 defined above would be zero. In practice this is not true, and Q_4 represents approximately three times the roundoff error in Y_4 accumulated during one step. To compensate for this accumulated roundoff, Q_4 is used as Q_0 for the next step. Also ($x_0 + h$) and Y_4 serve as x_0 and Y_0 respectively at the next step.

For initial control of accuracy, an approximation for $Y(x_0 + 2h)$ called $Y^{(2)}(x_0 + 2h)$ is computed using the step size 2h, and then an approximation called $Y^{(1)}(x_0 + 2h)$, using two times the step size h. From these two approximations, a test value δ for accuracy is generated in the following way:

$$\boldsymbol{\delta} = \frac{1}{15} \sum_{i=1}^{n} a_{i} \cdot |y_{i}^{(1)} - y_{i}^{(2)}| \qquad (2)$$

where the coefficients at are error-weights specified in the input of the procedure.

Test value δ is an approximate measure for the local truncation error at point x_0+2h . If δ is greater than a given tolerance ϵ_2 , increment h is halved and the procedure starts again at the point x_0 . If δ is less than ϵ_2 , the results Y(1) (x0+h) and Y(1) (x0+2h)

are assumed to be correct. They are then handed, together with $x_0 + h$ and $x_0 + 2h$ and the derivatives at these points -- that is, the values of $F[x_0 + h, Y^{(1)}(x_0+h)]$ and $F[x_0+2h, Y^{(1)}(x_0+2h)]$ respectively -- to a user-supplied output subroutine.

If δ is less than $\epsilon_1 = \epsilon_2/50$, the next step is carried out with the doubled increment. However, care is taken in the procedure that the increment never becomes greater than the increment h specified as an input parameter, and further that all points $x_0 + jh$ (where j = 1, 2, ...) which are situated between the lower and upper bound of the integration interval are included in the output. Finally, the increment of the last step of the procedure is chosen in such a way that the upper bound of the integration interval is reached exactly.

The entire input of the procedure is:

1. Lower and upper bound of the integration interval, initial increment of the independent variable, upper bound ϵ_2 of the local truncation error.

2. Initial values of the dependent variables and weights for the local truncation errors in each component of the dependent variables.

3. The number of differential equations in the system.

4. As external subroutine subprograms, the computation of the right-hand side of the system of differential equations; for flexibility in output, an output subroutine.

5. An auxiliary storage array named AUX with 8 rows and n columns.

Output is done in the following way. If a set of approximations to the dependent variables Y(x) is found to be of sufficient accuracy, it is handed -together with x, the derivative F[x, Y(x)], the number of bisections of the initial increment, the number of differential equations, the lower and upper bound of the interval, the initial step size, error bound ϵ_2 , and a parameter for terminating subroutine RKGS -- to the output subroutine. Because of this output subroutine, the user has the opportunity to choose his own output format, to handle the output values as he wants, to change the upper error bound, and to terminate subroutine RKGS at any output point. In particular, the user is able to drop the output of some intermediate points, printing only the result values at the special points $x_0 + nh (n = 0, 1, 2, ...)$. The user may also perform intermediate computation using the integration results before continuing the process.

For better understanding of the flowchart and of the FORTRAN program, the following figure shows the allocation of special intermediate result vectors within the storage array AUX.

For reference see A. Ralston/H. S. Wilf, <u>Mathematical Methods for Digital Computers</u>, Wiley, New York/London, 1960, pp. 110-120. AUX

function vector Y(x)	1. row (AUX (1) in flowchart)
derivative vector F(×, Y(x))	2. row (AUX (2) in flowchart)
vector of accumulated roundoff at point x	3. row (AUX (3) in flowchart)
function vector Y(x+2h) for testing purposes	4. row (AUX (4) in flowchart)
function vector Y(x+h)	5. row (AUX (5) in flowchart)
vector of accumulated roundoff at point x + h	6. row (AUX (6) in flowchart)
derivative vector F(x+h, Y(x+h))	7. row (AUX (7) in flowchart)
vector of error weights multiplied by 1/15	8. row (AUX (8) in flowchart)

Storage allocation in auxiliary storage array AUX (RKGS)

Subroutine RKGS

Purpose:

To solve a system of first-order ordinary differential equations with given initial values.

Usage:

CALL RKGS(PRMT, Y, DERY, NDIM, IHLF, FCT, OUTP, AUX) Parameters FCT and OUTP require an external statement.

Description of parameters:

- PRMT An input and output vector with dimension greater than or equal to 5, which specifies the parameters of the interval and of accuracy and which serves for communication between the output subroutine (furnished by the user) and subroutine RKGS. Except for PRMT(5), the components are not destroyed by subroutine RKGS and they are:
- PRMT(1) Lower bound of the interval (input).
- PRMT(2) Upper bound of the interval (input).
- PRMT(3) Initial increment of the independent variable (input).
- PRMT(4) Upper error bound (input). If absolute error is greater than PRMT(4), the increment gets halved. If the increment is less than PRMT(3) and absolute error less than PRMT(4)/50, the increment gets doubled. The user may change PRMT(4) in his output subroutine.

- PRMT(5) No input parameter. Subroutine RKGS initializes PRMT(5)=0. If the user wants to terminate subroutine RKGS at any output point, he must change PRMT(5) to nonzero in subroutine OUTP. Further components of vector PRMT can be made available if its dimension is defined greater than 5. However subroutine RKGS does not require this. Nevertheless, they may be useful for handling result values to the main program (calling RKGS) which are obtained by special manipulations with output data in subroutine OUTP.
- Y Input vector of initial values (destroyed). On return, Y is the resultant vector of dependent variables computed at intermediate points X.
- DERY Input vector of error weights (destroyed). The sum of its components must equal 1. On return, DERY is the vector of derivatives of function values Y at points X.
- NDIM An input value which specifies the number of equations in the system.

IHLF - An output value which specifies the number of bisections of the initial increment. When IHLF is greater than 10, subroutine RKGS exits to the main program with error message IHLF=11. Other error messages are:

> IHLF=12; PRMT(3)=0 or PRMT(1)=PRMT(2) IHLF=13; SIGN(PRMT(3)) is not equal to SIGN(PRMT(2)-PRMT (1)).

- FCT The name of the external subroutine used. This subroutine computes the right-hand side, DERY, of the system for given values X and Y. Its parameter list must be X, Y, DERY. Subroutine FCT should not destroy X and Y.
- OUTP The name of the external output subroutine used. Its parameter list must be X, Y, DERY, IHLF, NDIM, PRMT. None of these parameters (except, if necessary, PRMT(4), PRMT(5),...) should be changed by subroutine OUTP. If PRMT(5) is changed to nonzero, subroutine RKGS is terminated.
- AUX An auxiliary storage array with 8 rows and NDIM columns.

Remarks:

The procedure terminates and returns to the calling program, if

- 1. More than 10 bisections of the initial increment are necessary to get satisfactory accuracy (error message IHLF=11).
- 2. The initial increment is equal to 0 or has the wrong sign (error messages IHLF=12 or IHLF=13).

ł

- 3. The integration interval is exhausted.
- 4. Subroutine OUTP has changed PRMT(5) to nonzero.
- Subroutines and function subprograms required: The external subroutines FCT(X, Y, DERY) and OUTP(X, Y, DERY, IHLF, NDIM, PRMT) must be furnished by the user.

Method:

c

c

c

Evaluation is done by means of fourth-order Runge-Kutta formulae using the modification due to Gill. Accuracy is tested comparing the results of the procedure with the increment.

Subroutine RKGS automatically adjusts the increment during the whole computation by halving or doubling. If more than 10 bisections of the increment are necessary to get satisfactory accuracy, the subroutine returns with error message IHLF=11 to the main program.

> RKGS 1 RKGS 3 RKGS 3 RKGS 4 RKGS 5 RKGS 6 RKGS 6 RKGS 7 RKGS 7 RKGS 7 RKGS 10 RKGS 11

RKGS RKGS RKGS RKGS

RKGS RKGS RKGS RKGS RKGS RKGS

RKG5 RKG5 RKG5 RKG5 To get full flexibility in output, an output subroutine must be furnished by the user.

SUBROUTINE RKGSIPRMTsYDERY+NDIM+IHLF.FCT.OUIP+AUX) DIMEMSION TI1:0ERT(1)+AUX(8:1)+A(4)-8(4)+C(4)+PRMT(5) DO 1 = 1=NOIM 1 AUX(8:1)+*O6666667*DERY(1) X=PAMT(1) M=PAMT(1) PRMT(1)

		R1=H+DERY(I)	RKGS	51
		R2=AJ*(R1-BJ*AUX(6+1))	RKGS	52
		Y(1)=Y(1)+R2	RKGS	53
			RKGS	54
		R2=R2+R2+R2	RKGS	55
	11	AUX(6+1)=AUX(6+1)+R2-CJ#R1		
		IF(J-4)12.15.15	RKGS	56
	12	1+1 = J	RKGS	57
		IF(J-3)13,14,13	RKGS	58
	13	X=X+.5+H	RKGS	59
	14	CALL FCT(X+Y+DERY)	RKGS	60
		6010 10	RKG5	61
c		END OF INNERMOST RUNGE-KUTTA LOOP	RKGS	62
c		TEST OF ACCURACY	RKGS	63
	15	IF(ITFST)16+16+20	RKGS	64
с		IN CASE ITEST=0 THERE IS NO POSSIBILITY FOR TESTING OF ACCURACY	RKGS	65
-	16	DO 17 I=1.NDIM	RKG5	66
	17	AUX(4,1)=Y(1)	RKGS	67
		ITEST=1	RKGS	68
		ISTEP=ISTEP+ISTEP=2	RKGS	69
			RKGS	70
	τa	IHLF=IHLF+1 X=X+H	RKGS	71
		X=X=H	RKGS	72
		H¤ • 5*H	RKGS	73
		DO 19 I=1+NDIM		
		Y(1)=AUX(1+1)	RKGS	74
		DERY(1)=AUX(2+1)	RKGS	75
	19	AUX(6:I)=AUX(3:I)	RKGS	76
		GOTO 9	RKGS	77
с		IN CASE ITEST=1 TESTING OF ACCURACY IS POSSIBLE	RKGS	78
-	20	IMOD=1STEP/2	RKGS	79
	20	1F(15TEP-1MOD-1MOD)21+73+21	RKGS	80
	21	CALL FCT(X+Y+DERY)	RKGS	81
	21	CALL PCILATIOERTI	RKGS	82
		DO 22 I=1:NDIM	RKGS	83
		AUX(5.1)=Y(1)	RKGS	84
	22	AUX(7:1)=DERY(1)	RKGS	65
		GOTO 9		
c		COMPUTATION OF TEST VALUE DELT	RKGS	86
	23	DELT=0.	RKGS	87
		00 24 I=1+NDIM	RKGS	88
	24	DELT=DELT+AUX(8+1)*ABS(AUX(4+1)-Y(1))	RKGS	89
		IF (DELT-PRMT(4))28+28+25	RKGS	90
c		ERROR IS TOO GREAT	RKGS	91
·	25	IF(IHLF-10)26.36.36	RKGS	92
		DO 27 I=1.NDIM	RKGS	93
	27	AUX (4+1)=AUX (9+1)	RKGS	94
	<u>د</u> ا	ISTEP#ISTEP+ISTEP=4	RKGS	95
			RKGS	96
		X=X-H	RKGS	97
		IEND=0	RKGS	98
		GOTO 18		99
c		RESULT VALUES ARE GOOD	RKGS	
	28	CALL FCT(X+Y+DERY)	RKGS	100
		00 29 I=1+NDIM	RKGS	101
		AUX(1+1)=Y(1)	RKGS	102
		AUX(2+1)=DERY(1)	RKGS	103
		AUX (3 + 1/) = AUX (6 + 1)	RKGS	104
		Y([)=AUX(5+])	RKGS	105
		DERY(1)=AUX(7+1)	RKGS	106
	24	UERILIAMUNITII	RKGS	107
		CALL OUTP (X-H+Y+DERY+IHLF+NDIM+PRMT)	RKGS	108
		IF(PRMT(5))40+30+40	RKGS	109
	30	DO 31 I=1.NDIM		
		Y(I)=AUX(1,I)	RKGS	110
	31	DERY(1)=AUX(2+1)	RKGS	111
		IRECAINLE	RKGS	112
		IF(IEND)32+32+39	RKGS	113
с		INCREMENT GETS DOUBLED	RKGS	114
-	32	IHLF=1HLF-1	RKGS	115
		ISTEP=ISTEP/2	RKGS	116
		H=H+H	RKGS	117
		IF(IHLF)4.33.33	RKGS	118
	33	1P(1HLF)4+33+33 1MOD=1STEP/2	RKGS	119
		INOD=ISTEP/2 IF(ISTEP=IMOD=IMOD)4+34+4	RKGS	120
		IF (13) EF=1=00-1=00/403404	RKGS	121
	34	IF(DELT=,02+PRMT(4))35+35+4	RKGS	122
	35	IHLF=IHLF=1	RKGS	123
		ISTEP=ISTEP/2	RKGS	124
		Halt+H	RKG5	125
		GOTO 4	RKGS	125
c		RETURNS TO CALLING PROGRAM		
	36	IHLF=11	RKGS	127
		CALL FCT(X+Y+DERY)	RKGS	128
		GOTO 39	RKGS	129
	37	1HLF=12	RKGS	130
		GOTO 39	RKG5	131
	38	THLF=13	RKGS	132
		CALL OUTP(X+Y+DERY+IHLF+NDIM+PRMT)	RKGS	133
		RETURN		134
		END	RKGS	135

Mathematics - Fourier Analysis

FORIF

This subroutine produces the Fourier coefficients for a given periodic function.

- Given: 1. A function f(x) for values of x between 0 and 2 π
 - 2. N the spacing desired such that the interval is $2\pi/(2N+1)$
 - 3. M the desired order of the Fourier coefficients, $0 \le M \le N$.

The coefficients of the Fourier series that approximate the given function are calculated as follows:

$$C_1 = \cos\left(\frac{2\pi}{2N+1}\right) \tag{1}$$

$$S_{1} = \sin\left(\frac{2\pi}{2N+1}\right)$$

$$U_{2} = 0$$

$$U_{1} = 0$$

$$C = 1$$

$$S = 0$$

$$J = 1$$

$$(2)$$

The following recursive sequence is used to compute U_0 , U_1 , and U_2 :

$$U_{0} = f\left(\frac{2m\pi}{2N+1}\right) + 2 C U_{1} - U_{2}$$
(3)
$$U_{2} = U_{1}$$
$$U_{1} = U_{0}$$

for values of $m = 2N, 2N-1, \ldots, 1$

The coefficients are then:

$$A_{J} = \frac{2}{2N+1} \left(f(0) + C U_{1} - U_{2} \right)$$
(4)

$$B_{J} = \frac{2}{2N+1} S U_{1}$$
 (5)

The values of C and S are updated to:

$$Q = C_1 C - S_1 S$$
$$S = C_1 S + S_1 C$$
$$C = Q$$

J is stepped by 1 and the sequence starting at equation (3) is now repeated until M+1 pairs of coefficients have been computed.

Subroutine FORIF

Purpose:

Fourier analysis of a given periodic function in the range $0-2\pi$.

Computes the coefficients of the desired number of terms in the Fourier series F(X) = A(0) + SUM(A(K)COS KX+B(K)SIN KX) where K=1, 2, ..., M to approximate the computed values of a given function subprogram.

Usage:

CALL FORIF (FUN, N, M, A, B, IER)

Description of parameters:

- FUN Name of function subprogram to be used for computing data points.
- N Defines the interval such that 2N+1points are taken over the interval $(0, 2\pi)$. The spacing is thus $2\pi/(2N+1)$.
- M The maximum order of the harmonics to be fitted.
- A Resultant vector of Fourier cosine coefficients of length M+1; i.e., A₀, ..., A_M.
- B Resultant vector of Fourier sine coefficients of length M+1; i.e., B₀, ..., B_M.
- IER Resultant error code where:

IER=0	No error.
IER=1	N not greater than or
	equal to M.
$\mathbf{IER}=2$	M less than 0.

Remarks:

M must be greater than or equal to zero. N must be greater than or equal to M. The first element in vector B is zero in all cases.

Subroutines and function subprograms required:

FUN - Name of user function subprogram used for computing data points.

Calling program must have FORTRAN EXTER-NAL statement containing names of function subprograms listed in call to FORIF.

Method:

Uses recursive technique described in A. Ralston, H. Wilf, 'Mathematical Methods for Digital Computers', John Wiley and Sons, New York, 1960, Chapter 24. The method of indexing through the procedure has been modified to simplify the computation.

		SUBROUTINE FORIF(FUN, N, M, A, B, IER)	FORIF	1
		DIMENSION ALLI,BLIJ	FORLE	2
C		CHECK FOR PARAMETER ERRORS	FORTF	
		IER=0	FORIF	4
	20	[F(H) 30,40,40	FORIF	- 5
	30	IFR=2	FORTF	6
		RETURN	FORIF	7
	40	[F(M-N) 60.60.50	FORIF	
		IER=1	FORIF	9
		RETURN	FORIF	
с		COMPUTE AND PRESET CONSTANTS	FORIF	
•	60	AN=N	FORIF	15
		CBEF=2.0/(2.0*AN+1.0)	FORIF	13
		CONST=3-141593*CDEF	FORTF	14
		SI=SIN(CONST)	FORIF	15
		C1=COS(CONST)	FORIF	16
		C=1.0	FORIF	17
		S=0.0	FORIF	18
		J=0.00	FORIF	19
		5-1 FUNZ=FUN(0.0)	FORIE	20
	70	U2=0.0	FORIF	21
	10	U1=0.0	FORTE	22
		A1=24N	FORIF	23
c		FORM FOURIER COEFFICIENTS RECURSIVELY	FORIF	
c		1=AI=CONST	FORIF	25
	12	uo=Fun(x)+2.0+C+JP-U2	FORIF	
		U2=U1	FORTF	
			FORIF	
		U1=U0	FORIF	
		A[=A[-1.0	FORIE	
		IFEAIL 80,80,75	FORIF	
	80	A(J)=COEF+(FUNZ+C+U1-U2)	FURIT	

	8(J)=COEF#S	PU1
	[F[J-(H+1)]	
90	Q=C1+C-51+5	
	S=C1+S+S1+C	
	C=Q	
	J=J+1	
	GO TO 70	
00	A(1)=A(1)+0.	. 5
	RETURN	
	END	

FORIF 32 FORIF 33 FORIF 34 FORIF 35 FORIF 36 FORIF 37 FORIF 38 FORIF 38 FORIF 40 FORIF 40

FORIT

This subroutine produces the Fourier coefficients of a tabulated function.

- Given: 1. Tabulated values of a function f(x) for x between 0 and 2π in steps of $2\pi/(2N+1)$
 - 2. N such that there are 2N+1 tabulated data points: $2K\pi/2N+1$, $K = 0, 1, 2, \dots, 2N$
 - 3. M the desired order of the Fourier coefficients where $0 \le M \le N$

The coefficients of the Fourier series which approximate the given function are calculated as follows:

$$C_1 = \cos\left(\frac{2\pi}{2N+1}\right) \tag{1}$$

$$S_1 = \sin\left(\frac{2\pi}{2N+1}\right) \tag{2}$$

$$U_2 = 0$$
$$U_1 = 0$$
$$C = 1$$
$$S = 0$$
$$J = 1$$

The following recursive sequence is used to compute U_0 , U_1 , and U_2 :

$$U_{0} = f\left(\frac{2m\pi}{2N+1}\right) + 2CU_{1} - U_{2}$$
(3)
$$U_{2} = U_{1}$$

$$U_{1} = U_{0}$$

for values of $m = 2N, 2N-1, \ldots, 1$

The coefficients are then:

$$A_{J} = \frac{2}{2N+1} \left(f(0) + C U_{1} - U_{2} \right)$$
(4)

$$B_{J} = \frac{2}{2N+1} S U_{1}$$
 (5)

The values of C and S are updated to:

$$Q = C_1 C - S_1 S$$
$$S = C_1 S + S_1 C$$
$$C = Q$$

J is stepped by 1 and the sequence starting at equation (3) is now repeated until M+1 pairs of coefficients have been computed.

Subroutine FORIT

Purpose:

Fourier analysis of a periodically tabulated function.

Computes the coefficients of the desired number of terms in the Fourier series F(X) = A(0)+SUM(A(K)COS KX+B(K)SIN KX) where K=1, 2, ..., M to approximate a given set of periodically tabulated values of a function.

Usage:

CALL FORIT (FNT, N, M, A, B, IER)

Description of parameters:

- FNT Vector of tabulated function values of length 2N+1.
- N Defines the interval such that 2N+1points are taken over the interval $(0, 2\pi)$. The spacing is thus $2\pi/(2N+1)$.
- M Maximum order of harmonics to be fitted.
- A Resultant vector of Fourier cosine coefficients of length M+1; i.e., A_0, \ldots, A_M .

B - Resultant vector of Fourier sine coefficients of length M+1; i.e., B₀, ..., B_M.

IER - Resultant error code where:

IER=0 No error.

IER=1 N not greater or equal to M.

IER=2 M less than 0.

Remarks:

M must be greater than or equal to zero.

N must be greater than or equal to M.

The first element of vector B is zero in all cases.

Subroutines and function subprograms required: None.

Method:

Uses recursive technique described in A. Ralston, H. Wilf, 'Mathematical Methods for Digital Computers', John Wiley and Sons, New York, 1960, Chapter 24. The method of indexing through the procedure has been modified to simplify the computation.

	SUBROUTINE FORIT(FNT,N,M,A,B,IER)	FORIT 1
	DIMENSION A(1), B(1), FNT(1)	FORIT 2
С	CHECK FOR PARAMETER ERRORS	FORIT 3
	IER=0	FORIT 4
2	20 IF(M) 30,40,40	FORIT 5
3	30 LER=2	FORIT 6
	RETURN	FORTT 7
4	40 IF(M-N) 60,60,50	FORIT 8
5	50 JER=1	FORIT 9
	RETURN	FORIT 10
C	COMPUTE AND PRESET CONSTANTS	FORIT 11
6	SO AN=N	FORIT 12
	COEF=2.0/(2.0*AN+1.0)	FORIT 13
	CONST=3+141593#C3FF	FORIT 14
	S1=SIN(CONST)	FORIT 15
	C1=COS(CONST)	FORIT 16
	C=1.0	FORIT 17
	S=0.0	FORIT 18
]=L	FORIT 19
	FNTZ=FNT(1)	FORIT 20
7	70 U2=0.0	FORIT 21
	U1=0.0	FORIT 22
	[=2+N+1	FORIT 23
6	FORM FOURIER CHEFFICIENTS RECURSIVELY	FORIT 24
1	75 UC=FNT(I)+2.0*C*JI-U2	FORIT 25
	U2=U1	FORIT 26
	U1=00	FORIT 27
	[=[-]	FORIT 28
	IF(1-1) 80,80,75	FORIT 29
8	BO A(J)=COEF*(FNT2+C+U1-U2)	FORIT 30
	B(J)=COEF+S+U1	FORIT 31
	[F(J-(M+1)) 90+130,100	FORIT 32
9	0 Q=C1+C-S1+S	FORIT 33
	S=C1+S+S1+C	FORIT 34
	c=b	FORTT 35
	<u>i</u> +t=L	FORIT 36
	GO TO 70	FORIT 37
10	0 4(1)=4(1)*0.5	FORIT 30
	RETURN	FORIT 39
	END	FORIT 40

Mathematics - Special Operations and Functions

GAMMA

This subroutine computes the value of the gamma function for a given argument x.

Calculation of the Gamma Function. Γ (x) is defined for x > 0 by:

$$\Gamma (\mathbf{x}) = \int_0^\infty t^{\mathbf{x}-1} \cdot e^{-t} dt$$
 (1)

This function satisfies the recurrence relation:

$$\Gamma(\mathbf{x}) = (\mathbf{x}-1) \cdot \Gamma(\mathbf{x}-1) \tag{2}$$

which defines $\Gamma(x)$ for any x not a negative integer.

Note that when x is a positive integer $\Gamma(x) = (x-1)!$

To compute $\Gamma(x)$ for x > 1, apply the recurrence (2), r times until $1 < x - r = y \le 2$. Thus, for x > 1

$$\Gamma$$
 (x) = (x-1) (x-2) ... (x-r) Γ (y) (3)

 $\Gamma(y)$ is computed from the following formula:

$$\Gamma$$
 (y) $\approx 1 - 0.57710166(y-1) + 0.98585399(y-1)^2$
- 0.87642182(y-1)³ + 0.83282120(y-1)⁴

Mathematics - Fourier Analysis 97

$$- 0.56847290(y-1)^{5} + 0.25482049(y-1)^{6}$$
$$- 0.05149930(y-1)^{7}$$
(4)

For x < 1, the recurrence (2) is taken in the direction of decreasing n, giving

$$\Gamma(x) = \frac{\Gamma(y)}{x(x+1) (x+2) \dots (x+r-1)}$$
(5)

where $1 < x + r = y \le 2$.

As before, Γ (y) is computed using equation (4).

Subroutine GAMMA

Purpose:

Computes the gamma function for a given argument.

Usage:

CALL GAMMA(XX, GX, IER)

Description of parameters:

- XX The argument for the gamma function.
- GX The resultant gamma function value.
- IER Resultant error code where:

IER = 0	No error.
IER=1	XX is within.000001 of be-
	ing a negative integer.
IER= 2	XX is greater than 34.5
	GX is set to 1.0E38

Remarks:

None.

Subroutines and function subprograms required: None.

Method:

The recursion relation and polynomial approximation by C. Hastings, Jr., 'Approximations for Digital Computers', Princeton University Press, 1955.

4 IEN-3-3-3)00000 4 IEN-328 GX-1,638 GX-1,638 GRETURM G ERR=1.0E=-6 IER=0 GX-1,0 GX-1,0 GX-1,0 GX-2,0110,010,010 GI IF(X-2,0110,010,015 IS X=X-1.0 GX-2,00110,010,010 GI IF(X-2,0110,010,015 IS X=X-1.0 GX-2,00110,010,010 GI IF(X-2,0110,010,010 GI IF(X-1,0010,010,010 GI IF(X-1,0010,010,00 GI IF(X-1,0010,010,00 GI IF(X-1,0010,010,00 GI IF(X-1,0010,00 GI IF(X-1,000,00 GI IF(X-1,0	AMMA	1	L
4 iER=2 G G X=1:E38 RETURM 6 Y=XX G ERR=1:0E=6 IER=0 G X=1:0 IF(X=2:0)150:50:15 G IF(X=2:0)150:10:15 G IF(X=2:0)150:10:15 G IF(X=2:0)150:10:15 G IF(X=2:0)150:10:15 G IF(X=2:0)150:10:15 G IF(X=2:0)150:10 G IF(X=2:0)150:10 G IF(X=2:0)150:10 G IF(X=2:0)150:10 G IF(X=2:0)150:10 G IF(X=2:0)150:10 G IF(X=2:0)150:10 G IF(X=1:0)150:130:15 G IF(X=1:0)150:130:15 G IF(X=1:0)150:130:15 G IF(X=1:0)150:130:15 G IF(X=1:0)150:130:15 G IF(X=1:0)150:130:15 G IF(X=1:0)150:15 G IF(X=1:0)150:15	AMMAR	401	1
GX=1.638 RETURM GX=1.62=6 ERR=0 GX=1.0 IER=0 GX=1.0 IF(X=2.0)150.50.15 IO IF(X=2.0)150.50.15 IO IF(X=2.0)10.110.15 GX=6X#X GG TO 10 SO IF(X=2.0)10.10 SO IF(X=RR)62.62.62 GG TO 10 GX=6X#X GG TO 10 GX=6X#X GG TO 10 GX=6X#X GG TO 10 GX=6X#X GG TO 10 GX=6X#X Y=FLOAT(X)-X IF(AB5(Y)=ERR)130.130.64 GG TO 10 GG CX=6X/X X=X Y=FLOAT(X)-X GG TO 10 GG CX=6X/X X=X Y=1.0 GG TO 70 GG Y=1.0 GG TO 70 GG Y=1.0 GG Y=1.0 GG Y=1.0 GG TO 70 GG	AMMAN	402	2
RETURN G 6 X=XX G ERR=1+0E=6 G IER=0 G 0 IF(X=2,0)150+50+15 G 10 IF(X=2,0)100+110+15 G 15 X=X=1.60 G G0 T5(X=2,0)100+110+15 G 15 X=X=1.60 G G0 T5(X=1,0)100+120+110 G 50 IF(X=1,0)160+120+110 G 60 IF(X=1-RR)162+62+80 G 62 X=X G Y=FLOAT(X)-X G Y=FLOAT(X)-X G Y=FLOAT(X)-X G Y=FLOAT(X)-X G Y=X=100 G G0 T5(Y-1-61)130+130+130+14 G G0 T5(Y-1-61)130+130+130+10 G G0 T5(Y-1-61)130+130+10 G G0 T5(Y-1-10)130+10 G G0 G0 T0 70 G G10 T=X-1+0 G G10 GY=1+0+Y=(-0.5771017+Y=(+0.9858540+Y=(-0.8764218+Y=(+0.8328212+ G10 GY=1+0+Y=(+0.05771017+Y=(+0.95858540+Y=(-0.051499301)1)1))) G	AMMA	403	1
6 x = x x ERR=10E=6 IER=0 GX = 1.0 IF(X=2.0150.50.515 10 IF(X=2.0110.110.15 10 IF(X=2.0110.110.15 10 IF(X=2.0110.10.15 10 IF(X=2.0110.10.15 10 IF(X=2.0110.10.15 10 IF(X=RR)62.62.62 00 IF(X=1.00.62.64.62.64.62.64.62.64.62.64.62.64.62.64.62.64.62.62.62.62.62.62 00 IF(X=1.00.65.64.72.74.64.06.55.64.72.44.60.65.64.62.16.47.64.62.65.64.22.64.62.65.64.62.64.64.64.64.64.64.64.64.64.64.64.64.64.	AMMAN	404	•
ERR+1+0E=6 G IER=0 G GX=1+0 G 15 (X=2,0)10+110+15 G 15 (X=2,0)10+110+15 G 15 (X=2,0)10+110+15 G 15 (X=2,0)10+110+15 G 16 (X=2,0)10+10+10 G 17 (X=2,0)10+10 G 18 (X=1,0) G 19 (X=1,0) G 10 (Y=2,R) 10 10 (Y=2,R) 10+130+14 10 (Y=2,R) G 11 (X=2,R) 130+130+14 11 (X=2,R) G 12 (X=2,R) 130+130+14 14 (X=1,0) G 15 (X=1,0) 130+130+14 16 (X=1,0) G 10 (Y=2,R) 130+130+10 10 (Y=2,R) G 10 (Y=2,R) 130+130+10 10 (Y=2,R) G 10 (Y=2,R) 110	AMMAN	405	;
IEP=0 G GX=1-0 G GY=1-0 G IF(X=2,0)130,50,15 G IO IF(X=2,0)110,110,15 G IS = X=X=1-0 G GX=0X+X G GO TO 10 G 50 IF(X=2,0)120,110 G C SEE IF X IS NEAR NEGATIVE INTEGER OR ZERO 60 IF(X=RR)62,42,42 G 70 IF(X=RR)62,42,42 G 64 IF(1)=0-Y=RR)130,130,54 G 64 IF(1)=0-Y=RR)130,130,54 G 64 IF(1)=0-Y=RR)130,130,54 G 65 IF(X=1,60)40,80,0110 G 70 IF(X=1,60,90,0110,110,110,110,110,110,110,110,11	AMMA	3	1
12	AMMA	Ā	
if(x-2,0)130,50,15 G 10 if(x-2,0)110,110,15 G 10 if(x-2,0)110,110,15 G 10 if(x-2,0)110,110,15 G 10 if(x-2,0)10,10,15 G 50 if(x-1,0)60,120,110 G c SEE IF X IS NEAR NEGATIVE INTEGER OR ZERO 60 if(x-ERR)62,62,62 G 62 k=x Y=FLOAT(k)-X 1f(AB5(Y)-ERR)130,130,64 G 64 if(1,0-Y=ERR)130,130,70 G 70 if(x-1,60)80,80,110 G 80 (G x=6X/X G x=x+1,0 G G G TO 70 G 110 'x=1-0,5584729/47(-0.57710)17+Y*(+0.9858540+Y*(-0.8764218+Y*(+0.8328212+ G G'x=1.0+Y*(-0.57710)17+Y*(+0.9858540+Y*(-0.6564218+Y*(+0.8328212+ 110 'x=0,5584729/47(-0.257410)7+(-0.05149930)1)1)1))	AMMA	5	i.
10 iF(X-2:0)110:110:15 13 (X-2:0)110:10:15 13 (X-2:0)110:10:15 13 (X-2:0)10 15 (X-2:0)10 15 (F(X-1:0)60:120:10 C SEE 1F X 15 NEAR NEGATIVE INTEGER OR ZERO 60 IF(Y-2:RR)12:0:130:45 60 IF(Y-2:RR)130:130:45 64 IF(1:0-Y-ERR)130:130:70 C X NOT NEAR A NEGATIVE INTEGER OR ZERO 70 IF(X-1:0)180:100 80 GX=GX/X X=X:10 G GY=1:0:Y=(-0.5771017+Y=(+0.9858540+Y=(-0.8764218+Y=(+0.8328212+ 19(-0.5584729+Y=(-0.2548205+Y=(-0.05149930)))))))	AMMA	6	
10 i=x=1.0 15 i=x=1.0 16 i=x=1.0 16 i=x=x=x 17 i=x=x=x=x 16 i=x=x=x 17 i=x=x=x=x=x=x=x=x=x=x=x=x=x=x=x=x=x=x=x	AMMA	7	
23 Gx=Gx+W G G0 00 G 50 IF(x-1.0)60.120.110 G C SEE IF X IS NEAR NEGATIVE INTEGER OR ZERO G 60 IF(x-1.0).160.120.110 G 7 FFLOAT(K)-X G 7 IF(ABS(Y)-ERR)130.130.43 G 64 IF(1.0-Y-ERR)130.130.70 G 64 IF(1.0-Y-ERR)130.100 G 70 IF(X-1.00).80.800.110 G 80 Gx=Gx/X G G 10 Gx=1.00 G G 10 Gx=2.00.5771017+Y*(+0.9858540+Y*(-0.05764218+Y*(+0.082828212+ G 110 Gx=2.05484729494(G G	AMMA	B	
GG TO 10 50 IF(X=1,0106)120:110 C SEE IF X IS MEAR NEGATIVE INTEGER OR ZERO 60 IF(X=TERR)62:462:86 62 K=X 74 FLOAT(K)-X 1F(AB5(Y)-ERR)130:130:64 64 IF(1:0-Y=ERR)130:130:64 64 IF(1:0-Y=ERR)130:130:64 64 IF(1:0-Y=ERR)130:130:64 65 IF(X=X) 70 IF(X=1,00)20:000 60 GX=6X/X X=X+1:0 60 GX=6X/X X=X+1:0 60 GY=1:0+Y*(=0.57710)7+Y*(=0.9858540+Y*(=0.87642)8+Y*(=0.83282)22 10 Y*(=0.5584729Y*(=0.2548205+Y*(=0.05)49930)))))))	AMMA	ğ	
50 IF(x-10)860-120-110 C SEE IF X IS NEAR NEGATIVE INTEGER OR ZERO 60 IF(x)=RR)62-82-80 62 K=X Y=FLOAT(K)-X IF(ABS(Y)=CRR)130-130-64 64 IF(1-0-Y=CRR)130-130-70 C X NOT NEAR A NEGATIVE INTEGER OR ZERO 70 IF(X-1-0)88-80-110 80 GX=GX/X X=X-1-0 G GV=1-0+Y=(-0.5771017+Y=(+0.9858540+Y=(-0.8764218+Y=(+0.8328212+ GY=1-0+Y=(-0.5771017+Y=(+0.9858540+Y=(-0.8764218+Y=(+0.8328212+ 1Y=(-0.5584729+Y=(+0.2548205+Y=(-0.05149930)))))))	AMMA	10	•
C J 1 SEE IF X IS NEAR NEGATIVE INTEGER OR ZERO G 60 IF(V=ERR)62+62+80 G Y=FLOAT(K)-X G Y=FLOAT(K)-X G 1F(AB5(Y)=ERR)130+130+64 G 64 IF(1:0-Y=ERR)130+130+10 G 70 IF(X=1+0)20+100 G 70 IF(X=1+0)20+10 G 80 GX=GX/X G X=X+1+0 G G G T0 70 G 10 Y=1+0 G G GY=1+0+Y=(+0+87858540+Y*(-0+8764218+Y*(+0+8328212+ G GY=1+0+Y*(+0+858540+Y*(-0+05149930)))))))		ĩĩ	
C 01 F(X=ER) 62.52.80 62 K=X Y=FLOAT(K)-X F(ABS(Y)=ER) 130.130.64 64 F(1.0-Y=ER) 130.130.64 65 F(1.0-Y=ER) 130.130.70 C X NOT NEAR A NEGATIVE INTEGER OR ZERO 70 F(X=1.60) 66 OF TO 10 80 GX=GX/X X=X-1.60 G 07 TO 10 10 Y=X-1.60 G 07 TO 10 10 Y=X-1.60 G 0Y=1.60+Y (-0.5771017+Y*(+0.9858540+Y*(-0.8764218+Y*(+0.8328212+ G Y=1.6744(-0.5584729+Y*(+0.2548205+Y*(-0.05149950)))))))		12	
G Y=FLOAT(K)=X Y=FLOAT(K)=X IF(ABS(Y)=ERR)130+130+64 G X=X G	AMMA		
" " " " " " " " " " " " " " " " " " "	SAMMA		
IF (ABG(Y)=ERR)130+130+64 64 IF (1+0Y=ERR)130+130+50+70 C X NOT NEAR A NEGATIVE INTEGER OR ZERO G C I (X-1+0)80+80+110 80 GX=GX/X G G T O 70 G G T O 70 G Y=1+0+Y*(+0+975855540+Y*(-0+8764218+Y*(+0+8328212+ G GY=1+0+Y*(+0+8585540+Y*(-0+8764218+Y*(+0+8328212+ G Y=1+0+Y*(+0+2548205+Y*(+0+05149930)))))))	SAMMA		
64 IF(1)ERR)130-130-70 C X NOT NEAR A NEGATIVE INTEGER OR ZERO 70 IF(X-1+0)80-80-110 80 GX=GX/X GG T0 70 10 97+-1-0 GG T0 70 GY=1-0+FF(-0.5771017+Y*(+0.9858540+Y*(-0.8764218+Y*(+0.8328212+ GY=1-0+FF(-0.5764729+Y*(+0.2548205+Y*(-0.05149950)))))))	SAMMA		
C X NOT NEAR A NEGATIVE INTEGER OR ZERO G 70 IF(X-1.0)80.80.110 G 80 GX=GX/X G G0 T0 70 G 110 Y=X-1.0 Gy=1.0+Y*(-0.5771017+Y*(+0.9858540+Y*(-0.8764218+Y*(+0.8328212+ Gy=1.0+Y*(-0.55854729+Y*(+0.2548205+Y*(-0.05149930))))))) G	JAMMA		
70 [F(X-1+0)80+80+110 80 GX=GX/X C = 4-10 G 0 T0 70 10 9*X-10 G Y=1+0+**(-0.5771017+Y*(+0.9858540+Y*(-0.8764218+Y*(+0.8328212+ G Y=1+0+**(-0.5771017+Y*(+0.9858540+Y*(-0.6754218+Y*(+0.8328212+ G Y=1-0,55864729+Y*(+0.2548205+Y*(-0.05149930)))))))	BAMMA		
10 [r+c+10] 80 [3+20X/X G x=x+1.0 G0 T0 70 G 110 Y=x=1.0 Gy=1.0+y+(=0.5771017+y+(+0.9858540+y+(=0.8764218+y+(+0.8328212+ Gy=1.0_55864729+Y*(+0.2548205+y+(=0.05149930)))))))			
G X=X+1.0 G0 T0 70 G10 Y=X=10 GY=1=0+Y*(=0.5771017+Y*(=0.9858540+Y*(=0.8764218+Y*(+0.8328212+ GY=1=0+Y*(=0.55854729+Y*(+0.2588205+Y*(=0.05149930)))))))	3AMMA		
G0 T0 70 G0 T0 70 G110 Y=X=1=0 Gy=1=0+Y*(=0=5771017*Y*(+0=9858540+Y*(=0=8764218+Y*(+0=8328212+ [Y*(=0=5584729+Y*(+0=2548205*Y*(=0=05149930)))))))	JAMMA JAMMA		
110 Y=x-1.0 Gy=1.0+Y=(-0.5771017+Y=(+0.9858540+Y=(-0.8764218+Y=(+0.8328212+ Gy=1.0_55864729+Y=(+0.2548205+Y=(-0.05149930)))))))	GAMMA		
GY=1.00Y#(-0.5771017+Y#(+0.9858540+Y#(-0.8764218+Y#(+0.8328212+ 1Y#(-0.\$684729+Y#(+0.2548205+Y#(-0.05149930)))))))			
1Y#(-0.5684729+Y*(+0.2548205+Y*(-0.05149930))))))) G	SAMMA		
	3 AMMA		
	SAMMA		
	AMMA		
120 RETURN G	SAMMA	27	1

RETURN END

 $\underline{\text{LEP}}$

This subroutine computes the values of the Legendre polynomials for a given argument x and orders zero up to N. The Legendre polynomial $P_n(x)$ satisfies the recurrence equation

$$P_{n+1}(x) = ((2n+1) \cdot x \cdot P_n(x) - n \cdot P_{n-1}(x))/(n+1)$$

with starting values $P_0(x) = 1$, $P_1(x) = x$.

For reasons of economy and numerical stability the recurrence equation is used in the form:

$$P_{n+1}(x) = x \cdot P_n(x) - P_{n-1}(x) + x \cdot P_n(x)$$

- $(x \cdot P_n(x) - P_{n-1}(x))/(n+1)$

For large values of n the last term is negligible, giving the approximation:

$$P_{n+1}(x) = 2 \cdot x \cdot P_n(x) - P_{n-1}(x)$$

This form shows that roundoff errors grow at worst linearly, assuming that the argument x is absolutely less than one.

If e_{n+r} is the error in $P_{n+r}(x)$ due to a single rounding error e in $P_n(x)$, the approximation is

$$\mathbf{e}_{\mathbf{n}+\mathbf{r}+\mathbf{1}} = 2 \mathbf{x} \cdot \mathbf{e}_{\mathbf{n}+\mathbf{r}} - \mathbf{e}_{\mathbf{n}+\mathbf{r}-\mathbf{1}}$$

with initial conditions $e_n = e$, $e_{n-1} = 0$. The solution of this difference equation has its maximum for $|\mathbf{x}| = 1$:

$$e_{n-1} = 0, e_n = e, |e_{n+1}| = 2 e, ..., |e_{n+r}|$$

= (r + 1)e

The order is assumed to be zero for negative values of N.

Subroutine LEP

Purpose:

Compute the values of the Legendre polynomials P(N, X) for argument value X and orders 0 to N.

Usage:

CALL LEP(Y, X, N)

Description of parameters:

- Y Result vector of dimension N+1 containing the values of Legendre polynomials of order 0 to N for given argument X. Values are ordered from low to high order.
- X Argument of Legendre polynomial.
- N Order of Legendre polynomial.

GAMMA 28 GAMMA 29 GAMMA 30 Remarks:

N less than 0 is treated as if N were 0.

Subroutines and function subprograms required: None.

Method:

Evaluation is based on the recurrence equation for Legendre polynomials P(N, X);

P(N+1, X)=2*X*P(N, X)-P(N-1, X)-(X*P(N, X)-P(N-1, X))/(N+1), where the first term in brackets is the order, and the second is the argument.

Starting values are P(0, X)=1, P(1, X)=X.

SUBROUTINE LEP(Y+X+N) DIMENSION Y(1) TEST OF ORDER L1=1 L2=2 Y(L1)=1=0 IF(N)1+1=0 IF(N)1+1=0 IF(N+1)1=1=0 Y(L2)=X IF(N+1)1=1=3 3 D0 4 1=2+N G=X=Y(1) Y(1=1)1/FLOAT(1)+G RETURN END

BESJ

This subroutine computes the J Bessel function for a given argument and integer order by using the recurrence relationship:

$$F_{n+1}(x) + F_{n-1}(x) = \left(\frac{2n}{x}\right) F_n(x)$$
 (1)

The desired Bessel function is:

$$J_{n}(x) = \frac{F_{n}(x)}{\alpha}$$
(2)

where

$$\alpha = F_0(x) + 2 \sum_{m=1}^{M-2} F_{2m}(x)$$
 (3)

M is initialized at Mo.

 \mathbf{M}_{0} is the greater of \mathbf{M}_{A} and \mathbf{M}_{B} where:

$$M_{A} = [x+6] \text{ if } x < 5 \text{ and } M_{A} = [1.4x+60/x] \text{ if}$$
$$x \ge 5.$$
$$M_{B} = [n+x/4+2]$$

 F_{M-2} , F_{M-3} , ..., F_2 , F_1 , F_0 is evaluated using equation (1) with $F_M = 0$ and $F_{M-1} = 10^{-30}$.

 α and $J_n(x)$ are then computed using equations (3) and (2) respectively.

The computation is repeated for M+3.

The values of $J_n(x)$ for M and M+3 are compared:

If
$$\left| J_{n}(x)_{M} - J_{n}(x)_{M+3} \right| \leq \delta \left| J_{n}(x)_{M+3} \right|$$

this value is accepted as $J_n(x)$; if not, the computation is repeated by adding 3 to M and using this as a new value for M. If M reaches M_{MAX} before the desired accuracy is obtained, execution is terminated. M_{MAX} is defined as:

$$M_{MAX} = \begin{cases} \left[20 + 10x - \frac{x^2}{3} \right] \text{ for } x \le 15 \\ \left[90 + x/2 \right] & \text{ for } x > 15 \end{cases}$$
(4)

Purpose:

Compute the J Bessel function for a given argument and order.

Usage:

CALL BESJ(X, N, BJ, D, IER)

Description of parameters:

- X The argument of the J Bessel function desired.
- N The order of the J Bessel function desired.
- BJ The resultant J Bessel function.
- D Required accuracy.
- IER Resultant error code where:
 - IER=0 No error.
 - IER=1 N is negative.
 - IER=2 X is negative or zero.
 - IER=3 Required accuracy not
 - obtained. IER=4 Range of N compared to X
 - not correct. (See Remarks.)

Remarks:

N must be greater than or equal to zero, but it must be less than

20+10*X-X** 2/3 for X less than or equal to 15; 90+X/2 for X greater than 15.

Subroutines and function subprograms required: None.

Method:

Recurrence relation technique described by H. Goldstein and R.M. Thaler, 'Recurrence Techniques for the Calculation of Bessel Functions', M.T.A.C., V.13, pp.102-108 and I.A. Stegun and M. Abramowitz, 'Generation of Bessel Functions on High Speed Computers', M.T.A.C., V.11, 1957, pp.255-257.

	SUBROUTINE BESJIX .N.BJ.D. [ER]	BESJ	1
		BESJ	ż
	6J=.0		
	[F(N)10,20,20	BESJ	3
10	IER=1	RESJ	4
	RETURN	BESJ	5
20	IF(X)30,30,31	BESJ	6
30	IER=2	BESJ	7
	RETURN	RESJ	Ą
31	[F(X-15.)32,32,34	BESJ	9
32	NTEST=20.+10.*X-X** 2/3	8ES J	10
	GO TO 36	BESJ	11
34	NTEST=90.+X/2.	BESJ	12
36	IF(N-NTEST)40,38,38	BESJ	13
38	IFR=4	BESJ	14
	RETURN	BESJ	15
40	IER=0	BESJ	16
	N1=N+1	BESJ	17
	BPREV=.0	BESJ	18
	COMPUTE STARTING VALUE OF M	BESJ	19
	1F(X-5.)50,60,60	BESJ	20
50	MA=X+6.	BESJ	21
	G0 T0 70	BESJ	22
60	MA=1.4*X+60./X	RESJ	23
70	MB=N+1F[X(X)/4+2	RESJ	24
	MZERO=MA	8ESJ	25
	[F[MA-M8]80,90,90	8ESJ	26
80	MZERO=MB	AESJ	27

C		SET UPP'R LIMIT OF M
	90	MMAX=NTEST
	100	DO 190 M=42ERO, M4AX, 3
C		SET F(4),F(N-1)
		FM1=1.0E-28
		FM=.0
		ALPHA=.0
		IF[M-[M/2]+2]120,110,120
	110	JT=-1
		GO TO 130
	120	JT=1
	130	M2=4-2
		UO 160 K≈1,M2
		MK = M-K
		BMK=2.*FLOAT(MK)*FM]/X-FM
		FM=FM1
		FM1=BMK
		IF(MK-N-1)150,140,150
		B J=BMK
	150	JT==TL
		S≃1+JT
	160	ALPHA=ALPHA+8MK*S
		BMK=2.*FM1/X-FM
		IF(N)180,170,180
		BJ≃BMK
	180	ALPHA=ALPHA+BMK
		BJ=BJ/ALPHA
		IF(ABS(BJ-BPREV)-ABS(D*BJ))200,200,190
	190	BPREV=BJ
		IER=3
	200	RETURN
		END

 AFESJ
 28

 DESJ
 29

 BESJ
 30

 RESJ
 31

 BESJ
 37

 BESJ
 34

 BESJ
 34

 BESJ
 34

 BESJ
 36

 BESJ
 36

 BESJ
 36

 BESJ
 36

 BESJ
 47

 BESJ
 44

 BESJ
 44

 BESJ
 46

 BESJ
 43

 BESJ
 43

 BESJ
 44

 BESJ
 46

 BESJ
 50

 BESJ
 50

 BESJ
 50

 BESJ
 54

 BESJ
 55

 BESJ
 57

 BESJ

c

BESY

This subroutine computes the Y Bessel function for a given argument x and order n. The recurrence relation:

$$Y_{n+1}(x) = \left(\frac{2n}{x}\right) \cdot Y_n(x) - Y_{n-1}(x)$$
 (1)

is used for this evaluation.

For x > 4

$$Y_{0}(x) = \sqrt{\frac{2}{\pi x}} \left(P_{0}(x) \sin\left(x - \frac{\pi}{4}\right) + Q_{0}(x) \cos\left(x - \frac{\pi}{4}\right) \right)$$
$$Y_{1}(x) = \sqrt{\frac{2}{\pi x}} \left(-P_{1}(x) \cos\left(x - \frac{\pi}{4}\right) + Q_{1}(x) \sin\left(x - \frac{\pi}{4}\right) \right)$$

 $P_0(x), Q_0(x), P_1(x), and Q_1(x) are:$

$$\frac{1}{\sqrt{2\pi}} P_0\left(\frac{4}{t}\right) = 0.3989422793 - 0.0017530620t^2 + 0.0001734300t^4 - 0.0000487613t^6 + 0.0000173565t^8 - 0.0000037043t^{10}$$
(4)

$$\frac{1}{t\sqrt{2\pi}}Q_0\left(\frac{4}{t}\right) = -0.124669441 + 0.0004564324t^2$$
$$-0.0000869791t^4 + 0.0000342468t^6$$
$$-0.0000142078t^8 + 0.000032312t^{10}$$
(5)

$$\frac{1}{\sqrt{2\pi}} P_1\left(\frac{4}{t}\right) = 0.3989422819 + 0.0029218256t^2 -0.0002232030t^4 + 0.0000580759t^6 -0.0000200920t^8 + 0.0000042414t^{10}$$
(6)

$$\frac{1}{t\sqrt{2\pi}}Q_{1}\left(\frac{4}{t}\right) = 0.0374008364 - 0.0006390400t^{2} + 0.0001064741t^{4} - 0.0000398708t^{6} + 0.0000162200t^{8} - 0.0000036594t^{10}$$
(7)

where $t = \frac{4}{x}$

For $x \le 4$

$$Y_{0}(x) = \frac{2}{\pi} \sum_{m=0}^{15} (-1)^{m} \left(\frac{x}{2}\right)^{2m} \frac{1}{(m!)^{2}} \left[\log \frac{x}{2} + \gamma - H_{m}\right]$$
(8)

where

(2)

(3)

$$H_{m} = \sum_{r=1}^{m} \frac{1}{r} \text{ if } m \ge 1 = 0 \quad \text{if } m = 0 \quad (9)$$

and
$$\gamma$$
 = Euler's constant = 0.5772156649

$$Y_{1}(x) = -\frac{2}{\pi x} + \frac{2}{\pi} \sum_{m=1}^{16} (-1)^{m+1} \left(\frac{x}{2}\right)^{2m-1}$$
$$\frac{1}{m! (m-1)!} \cdot \left[\log \frac{x}{2} + \gamma - H_{m} + \frac{1}{2m}\right]$$
(10)

Subroutine BESY

Purpose:

Compute the Y Bessel function for a given argument and order.

Usage:

CALL BESY(X, N, BY, IER)

Description of parameters:

- X The argument of the Y Bessel function desired.
- N The order of the Y Bessel function desired.

- BY The resultant Y Bessel function.
- IER Resultant error code where:

IER = 0	No error.
IER = 1	N is negative.
IER = 2	X is negative or zero.
IER=3	BY is greater than 10**36.

Remarks:

Very small values of X may cause the range of the library function ALOG to be exceeded. For N > 30 and $X \le 5$, this condition may occur. X must be greater than zero.

N must be greater than or equal to zero.

Subroutines and function subprograms required: None.

Method:

Recurrence relation and polynomial approximation technique as described by A.J.M. Hitchcock, 'Polynomial Approximations to Bessel Functions of Order Zero and One and to Related Functions', M.T.A.C., V.11, 1957, pp.86-88, and G.N. Watson, 'A Treatise on the Theory of Bessel Functions', Cambridge University Press, 1958 p. 62.

	SUBROUTINE BESY(X+N+BY+IER)	BESY 1
с	CHECK FOR ERRORS IN N AND X	BESY 2
	IF(N)180+10+10	BESY 3
	10 IER=0	BESY '4
	IF(X)190+190+20	BESY 5
c	BRANCH IF X LESS THAN OR EQUAL 4	BESY 7
-	20 IF(X-4.0140.40.30	BESY MOS
c	COMPUTE YO AND Y1 FOR X GREATER THAN 4	BESY 9
	30 T1=4+0/X	BESY MOG
	T7=T1+T1	BESY MOT
	P0=((((-,0000037043*T2+,0000173565)*T2-,0000487613)*T2	BESY MOR
	1 ++00017343/#72-+001753062/#72++3989423	BESY MOS
	Q9=(f((,0000032312*T2-,0000142078)*T2+,0000342469)*T2	BESY MIC
	10000869791)*T2+.0004564324)*T201246694	BESY M11
	P1=((((,0000042414*T2=,0000200920)*T2+,0000580759)*T2	BESY M12
	1000223203)*T2+.002921826)*T2+.3989423	BESY M13
	Q1=((((=.0000036594*T2+.00001622)*T20000398708)*T2	BESY M14
	1 +.0001064741)+T20006390490)+T2+.03740084	BESY M15
	A=2.0/SQRT(X)	BESY M16
	8=4+11	BESY M17
	C=X=,7853982	8ESY M18
	Y0=A*P0*5IN(C)+B*Q0*C05(C)	BESY M19
	Y1=-A*P1*COS(C)+B*O1*S1N(C)	BESY M20
	50 TO 90	BESY 51
с	COMPUTE YO AND Y1 FOR X LESS THAN OR EQUAL TO 4	BESY 52
	40 XX=X/2+	BESY 53
	x2=xx*xx	BESY 54
	T=ALOG(XX)++5772157	BESY M21
	SUM=0.	BESY 56
	TERMAT	BESY 57
	YO=T	BESY 58
	00 70 L=1+15	BESY 59
	IF(L-1)50.60.50	BESY 60
	50 SUM=SUM+1./FLOAT(L-1)	BESY 61
	60 FL=L	BESY 62
	TS#T-SUM	BESY 63
	TERM=(TERM=(-X2)/FL==2)*(1==1=/(FL=TS))	BESY 64
	70 YO=YO+TERM	BESY 65
	TERM = XX+(T-+5)	BESY 66
	SUM=0.	BESY 67
	Y1 = TERM	BESY 68
	DO 80 L=2+16	BESY 69
	SUM=SUM+1+/FLOAT(L-1)	BESY 70
	FLat	BESY 71
	FL1=FL-1.	BESY 72
	TS=T-SUM	BESY 73
	TERM=(TERM=(=X2)/(FL1+FL))*((TS=.5/FL)/(TS+.5/FL1))	BESY 74
	80 Y1=Y1+TERM	BESY 75
	P12=+6366198	BESY M22
	Y0=P12=Y0	BESY 77
	Y1=-P12/X+P12*Y1	BESY 79

c	CHECK IF ONLY YO OR Y1 IS DESIRED
	90 IF(N-1)100+100+130
с	RETURN EITHER YO OR YI AS REQUIRED
1	00 IF(N)110+120+110
1	L0 BY⇒Y1
	GO TO 170
1	20 BY=Y0
	GO TO 170
с	PERFORM RECURRENCE OPERATIONS TO FIND YN(X)
1	30 YA=Y0
	A8=A1
	K=1
1	0 T=FLOAT(2+K)/X
	YC=T*YB-YA
	[F(ABS(YC)=1+0F36)145+145+141
1.	LIER=3
	RETURN
14	5 K=K+1
-	IF(K-N)150+160+150
1	O YA=YB
	YB=YC
	GO TO 140
10	O BY=YC
- ī	O RETURN
11	0 IER=1
	RETURN
19	0 IER=2
-	RETURN
	END

BESY 79 BESY 80 BESY 80 BESY 82 BESY 82 BESY 82 BESY 82 BESY 84 BESY 84 BESY 84 BESY 84 BESY 84 BESY 84 BESY 92 BESY 101 BESY 103 BESY 103 BESY 103 BESI

This subroutine computes the I Bessel function for a given argument x and order n.

For $x \le 12$ or $\le n$

$$I_{n}(x) = \left(\frac{x}{2}\right)^{n} \frac{1}{n!} \sum_{s=0}^{30} \left(\frac{x}{2}\right)^{2s} \frac{n!}{s!(n+s)!}$$
(1)

For x > 12 and > n

$$I_{n}(x) = \frac{e^{x}}{\sqrt{2\pi x}} \sum_{m=0}^{30} (8x)^{-m} \cdot \frac{1}{m!}$$
$$\prod_{K=1}^{m} ((2K-1)^{2} - 4n^{2})$$

(2)

Subroutine BESI

Purpose:

Compute the I Bessel function for a given argument and order.

Usage:

CALL BESI(X, N, BI, IER)

Description of parameters:

- X The argument of the I Bessel function desired.
- N The order of the I Bessel function desired.
- BI The resultant I Bessel function.

IER - Resultant error code where:

- IER=0 No error.
- IER=1 N is negative.
- IER=2 X is negative.
- IER=3 BI is less than 1.0E-36, and is set to zero.

IER=4 X is greater than 60 and and greater than N.

Remarks:

X and N must be greater than zero.

Subroutines and function subprograms required: None.

Method:

Computes the I^{th} Bessel function using series or asymptotic approximations depending on the range of the arguments.

		SUBROUTINE BESI(X+N+ BI+IER)	BESI	1
с		CHECK FOR ERRORS IN N AND X AND EXIT IF ANY ARE PRESENT	BESI	2
		IER=0	BESI	3
		BI=1+0	BESI	4
		IF(N)150+15+10	BESI	5
	10	IF(X)160+20+20	8ES I	6
	15	1F(X)160.17.20	BESI	7
		RETURN	BESI	8
c	•	DEFINE TOLERANCE	BESI	9
-	20	TOL=1.E=6	BESI	10
e		IF ARGUMENT GT 12 AND GT N. USE ASYMPTOTIC FORM	BESI	11
•		IF(X-12.)40.40.30	BESI	12
	30	IF(X-FLOAT(N))40,40,110	BESI	13
c		COMPUTE FIRST TERM OF SERIES AND SET INITIAL VALUE OF THE SUM	BESI	14
-	40	XX=X/2.	BEST	15
		TERM=1+0	BESI	MO1
		IF(N) 70+70+55	BESI	
	65	D0 60 I=1+N	BESI	
		F1=1	BESI	
		IF (ABS(TERM)-1.E-36)56.60.60	BESI	
	**	1ER=3	BESI	
	0	81=0+0	BESI	
		RETURN	BESI	
			BESI	
		TERM=TERM=XX/FI	8E51	
	/0	BI=TERM	BESI	23
ĉ		COMPUTE TERMS, STOPPING WHEN ABS(TERM) LE ABS(SUM OF TERMS)	BESI BESI	
c		TIMES TOLERANCE	BESI	
		DO 90 K=1,1000	BESI	
	~~	IF(ABS(TERM)-ABS(BI*TOL))100+100+80	BESI	27 28
	-	FK=K*(N+K)	BESI	29
		TERM=TERM+(XX/FK)		30
-	90	BI=BI+TERM	BESI BESI	31
¢		RETURN BI AS ANSWER	BESI	32
-	100	RETURN		33
¢		X GT 12 AND X GT N. SO USE ASYMPTOTIC APPROXIMATION	BESI	34
	110	FN=4+N=N	BESI BESI	
		IF(X- 60.0)115.111.111	BESI	
	111	IER=4	BESI	
		RETURN	BESI	
	115	XX=1./(R.*X)		36
		TERM=1.	BESI	
		BI*1.	BESI	37
		NO 130 K=1+30	BESI	38
		IF(ABS(TERM)-ABS(TOL+BI))140+140+120	BESI	39
	120	FK=(2*K=1)**2	BESI	40
		TERM=TERM+XX+(FK-FN)/FLOAT(K)	BESI	41
-	130	BI+BI+TERM	BESI	42
c		SIGNIFICANCE LOST AFTER 30 TERMS, TRY SERIES	BESI	
	• • • •	GO TO 40	BESI	
	140	PI=3.141592653	BESI	43
		BI=BI*EXP(X)/SORT(2.*PI*X)	BESI	44
		GO TO 100	BESI	45
	150	1ER=1	BESI	46
		GO TO 100	BESI	47
	160	IER=2	BESI	48
		GO TO 100	BESI	49
		END	8ES I	50

BESK

This subroutine computes the K Bessel function for a given argument x and order n.

The recurrence relation:

$$K_{n+1}(x) = \frac{2n}{x} K_n(x) + K_{n-1}(x)$$
 (1)

is used for this evaluation.

The initial values K_0 and K_1 are found as follows:

For x > 1

$$K_0(x) = e^{-x} \sqrt{\frac{\pi}{2x}} G_0(x)$$
 (2)

$$K_{1}(x) = e^{-x} \sqrt{\frac{\pi}{2x}} G_{1}(x)$$
 (3)

where x = 1/t for t < 1

$$G_{0}\left(\frac{1}{t}\right)\cdot\sqrt{\frac{\pi}{2}} = 1.2533141373 - 0.1566641816t + 0.0881112782t^{2} - 0.0913909546t^{3} + 0.1344596228t^{4} - 0.2299850328t^{5} + 0.3792409730t^{6} - 0.5247277331t^{7} + 0.5575368367t^{8} - 0.4262632912t^{9} + 0.2184518096t^{10} - 0.0668097672t^{11} + 0.0091893830t^{12}$$

$$(4)$$

$$G_{1}(\frac{1}{t})\cdot\sqrt{\frac{\pi}{2}} = 1.2533141373 + 0.4699927013t$$

-0.1468582957t² + 0.1280426636t³
-0.1736431637t⁴ + 0.2847618149t⁵
-0.4594342117t⁶ + 0.6283380681t⁷
-0.6632295430t⁸ + 0.5050238576t⁹
-0.2581303765t¹⁰ + 0.0788000118t¹¹
-0.0108241775t¹²

For $x \leq 1$

$$\gamma$$
 = Euler's constant = 0.5772156649

$$K_{0}(\mathbf{x}) = -\left(\gamma + \log\frac{\mathbf{x}}{2}\right) + \sum_{s=1}^{6} \left(\frac{\mathbf{x}}{2}\right)^{2s} \frac{1}{\left(s!\right)^{2}}$$

$$\left[H_{s} - \left(\gamma + \log\frac{\mathbf{x}}{2}\right)\right]$$
(7)

where

$$H_{s} = \sum_{r=1}^{s} \frac{1}{r}$$
 (8)

$$K_1(x) = \frac{1}{x} + \sum_{s=1}^{8} \left(\frac{x}{2}\right)^{2s-1} \frac{1}{(s!)^2}$$

$$\left[\frac{1}{2} + s \cdot \left(\gamma + \log \frac{x}{2} - H_s\right)\right]$$
(9)

Subroutine BESK

Purpose: Compute the K Bessel function for a given argument and order.

Usage:

CALL BESK(X, N, BK, IER)

Description of parameters:

- X The argument of the K Bessel function desired.
- N The order of the K Bessel function desired.
- BK The resultant K Bessel function.

IER - Resultant error code where:

IER = 0	No error.
IER = 1	N is negative.
IER=2	X is zero or negative.
IER=3	X is greater than 60.
	Machine range exceeded.
IER=4	BK is greater than
	1.E36.

Remarks:

N must be greater than or equal to zero.

Method:

(5)

(6)

Computes zero-order and first-order Bessel functions using series approximations and then computes N^{th} order function using recurrence relation.

Subroutines and function subprograms required: None.

Recurrence relation and polynomial approximation technique as described by A.J.M. Hitchcock, 'Polynomial Approximations to Bessel Functions of Order Zero and One and to Related Functions', M.T.A.C., V.11, 1957, pp.86-88, and G.N. Watson, 'A Treatise on the Theory of Bessel Functions', Cambridge University Press, 1958, p. 62.

BESK 1 BESK 4 BE SUBROUTINE BESK(X+N+BK+IER) DIMENSION T(12) X2J=1. FACT=1. HJ=-0 D0 40 J=1.6 RJ=1./FLOAT(J) X2J=X2J=C FACT=FACT=RJ=RJ HJ=HJ=HJ 40 G0=G0+X2J=FACT=(HJ=A) IF(N)=3+2.4-3 2 BK=G0 RETURM COMPUTE X1 USING SERIES EXPANSION 43 X2J=8 COMPUTE X1 USING SERIES EXPANSION 43 X2J=8 FACT=1. HJ=1. G1=1./X+X2J=(.5+A=HJ) D0 50 J=2.6 X2J=X2J=C RJ=1.6/FLOAT(J) FACT=FACT=RJ=RJ HJ=HJ=RJ 50 G1=G1+X2J=FACT=(.5+(A=HJ)=FLOAT(J)) IF(N=1)=31.92:31 52 BK=G1 RETURM X2J=1. FACT=1. 52 BK=G1 RETURN END

c

c

с

CEL1

This subroutine computes the complete elliptic integral of the first kind. This is defined as:

$$K(k) = \int_{0}^{\pi/2} \frac{dt}{\sqrt{1-k^{2} \sin^{2} t}} \cdot 0 \le k < 1$$

An equivalent definition is:

$$K(k) = \int_{0}^{\infty} \sqrt{\frac{dx}{(1+x^{2})(1+k_{c}^{2}x^{2})}}$$

where k_{c} is the complementary modulus:

$$k_{c}^{2} + k^{2} = 1, \ 0 < k_{c}^{2} \le 1$$

The subroutine CELI1 calculates K (k) for given modulus k.

The calculation of RES = K(k) is based on the process of the Arithmetic-Geometric Mean. Starting with the pair of numbers:

$$a_0 = 1, g_0 = k_c$$

the sequences of numbers (a_n) , (g_n) are generated using the definition:

$$a_n = \frac{1}{2} (a_{n-1} + g_{n-1}), g_n = \sqrt{a_{n-1} g_{n-1}}$$

This iterative process is stopped at the Nth step, when $a_N = g_N$.

If D is the number of decimal digits in the mantissa of floating-point numbers, then the equality $a_N = g_N \text{ must be interpreted as } |a_N - g_N|$ is less than $a_N \cdot 10^{-D}$.

Since the sequences (a_n) , (g_n) converge quadratically to the same limit (Arithmetico-Geometrical mean) the test for the end of iteration may be replaced by comparing $|a_{N-1} - g_{N-1}|$ against $a_{N-1} \cdot 10^{-D/2}$, thus saving one calculation of the geometrical mean.

The value of K (k) =
$$\frac{\pi}{2 a_{\rm N}}$$
.

Subroutine CEL1

Purpose:

Calculate complete elliptic integral of first kind.

Usage:

CALL CEL1 (RES, AK, IER)

Mathematics - Special Operations and Functions 105

Description of parameters:

RES - Result value.

AK - Modulus (input).

IER - Resultant error code where: IER=0 No error. IER=1 AK not in range -1 to +1.

Remarks:

For AK=+1, -1 the result is set to 1. E38. For modulus AK and complementary modulus CK, equation AK*AK+CK*CK=1.0 is used. AK must be in the range -1 to +1.

Subroutines and function subprograms required: None.

Method:

Landen's transformation is used for calculation. Reference:

R. Bulirsch, 'Numerical Calculation of Elliptic Integrals and Elliptic Functions', Handbook Series Special Functions, Numerische Mathematik Vol. 7, 1965, pp. 78-90.

	SUBROUTINE CELLI(RES+AK+IER)	CELI	1
	IER=0	CEL 1	2
c	TEST MODULUS	CEL1	3
	GEO=1AK+AK	CEL1	4
	IF (GEO)1+2+3	CEL1	5
	1 /ER=1	CEL1	6
	RETURN	CEL1	7
c	SET RESULT VALUE =OFLOW	CEL1	8
-	2 RES=1+E38	CELI	9
	RETURN	CELI	10
	3 GEO+SORT(GEO)	CEL1	11
	ARI=1.	CEL1	12
	4 AARI#ARI	CELI	13
	TEST=AARI=1.E=4	CEL1	14
	ARI=GEO+ARI	CELI	15
с	TEST OF ACCURACY	CEL1	16
-	IF (AARI-GEO-TEST) 6+6+5	CEL1	17
	5 GEO=SQRT(AAR1*GEO)	CEL1	18
	ARI=0.5*ARI	CEL1	19
	GD TO 4	CELI	20
	6 RES=3.141593 /ARI	CEL1	21
	RETURN	CEL1	22
	END	CEL1	23

CEL2

This subroutine computes the generalized complete elliptic integral of the second kind. This is defined as

cel 2 (k; A, B) =
$$\int_{0}^{\pi/2} \frac{A + (B-A)\sin^{2}t}{\sqrt{1 - k^{2}\sin^{2}t}} dt.$$

Equivalent is the definition:

cel 2 (k; A, B) =
$$\int_{0}^{\infty} \frac{A + Bx^{2}}{(1+x^{2})\sqrt{(1+x^{2})(1+k^{2}cx^{2})}} dx,$$

where $\boldsymbol{k}_{\mathbf{C}}$ is the complementary modulus:

$$k_{c}^{2} + k^{2} = 1, \ 0 < k_{c}^{2} \le 1$$

The subroutine CELI2 calculates cel 2 (k; A, B) for given modulus k, and constants A, B.

The calculation of RES = cel 2 (k, A, B) is based on the process of the Arithmetic-Geometric Mean.

Starting with the pair of numbers:

$$a_0 = 1, g_0 = k_c$$

the sequences of numbers (a_n) , (g_n) are generated using for definition:

$$a_n = (a_{n-1} + g_{n-1}), g_n = 2\sqrt{a_{n-1}g_{n-1}}$$

This iteration process is stopped at the Nth step, when $a_N = g_N$.

Further needed are the sequences

$$(A_{i}), (B_{i})$$
 defined by means of:
 $A_{0} = A, B_{0} = B$
 $A_{n} = B_{n-1}/a_{n-1} + A_{n-1}$
 $B_{n} = 2 (B_{n-1} + g_{n-1} \cdot A_{n-1})$

If D is the number of decimal digits in the mantissa of floating-point numbers, the iteration process is stopped as soon as $(a_{N-1} - g_{N-1})$ is less than $a_{N-1} \cdot 10^{-D/2}$.

Since (a_n) , (g_n) converge quadratically to the same limit (Arithmetico-Geometrical mean) this implies that $(a_N - g_N)$ is less than $a_N \cdot 10^{-D}$.

The value of cel 2 (k; A, B) = $\frac{\pi}{4} \cdot \frac{A_{N+1}}{a}$

Subroutine CEL2

Purpose:

Computes the generalized complete elliptic integral of second kind.

Usage:

CALL CEL2(RES, AK, A, B, IER)

Description of parameters:

- RES Result value.
- AK Modulus (input).
- A Constant term in numerator.
- B Factor of quadratic term in numerator.
- IER Resultant error code where:

IER=0 No error.

IER=1 AK not in range -1 to +1.

Remarks:

For AK = +1, -1, the result value is set to 1. E38 if B is positive, to -1. E38 if B is negative. Special cases are: K(K) obtained with A = 1, B = 1. E(K) obtained with A = 1, B = CK*CK where CK is complementary modulus. B(K) obtained with A = 1, B = 0. D(K) obtained with A = 0, B = 1 where K, E, B, D define special cases of the generalized complete elliptic integral of second kind in the usual notation, and the argument K of these functions means the modulus.

Subroutines and function subprograms required: None.

Method:

c

c

Definition:

RES= integral((A+B*T*T)/(SQRT((1+T*T)* (1+(CK*T)**2))*(1+T*T)) summed over T from 0 to infinity).

Evaluation:

Landen's transformation is used for calculation. Reference:

R. Bulirsch, 'Numerical Calculation of Elliptic Integrals and Elliptic Functions', Handbook Series Special Functions, Numerische Mathematik Vol. 7, 1965, pp. 78-90.

	1
CEL2	2
CEL2	3
CELZ	4
CEL2	5
CEL2	6
CEL2	1
CEL2	8
CEL2	ģ
CEL2	10
CEL2	11
CEL2	12
	CEL2 CEL2 CEL2 CEL2 CEL2 CEL2 CEL2 CEL2

CEL2 13 CEL2 14 CEL2 15 CEL2 15 CEL2 16 CEL2 17 CEL2 19 CEL2 21 CEL2 22 CEL2 23 CEL2 23 CEL2 24 CEL2 24 CEL2 24 CEL2 24 CEL2 24 CEL2 24 CEL2 30 CEL2 33 CEL2 34 CEL2 35 This subroutine computes the exponential integral in the range from -4 to infinity.

For positive x, the exponential integral is defined as:

$$E_{1}(x) = \int_{-\infty}^{\infty} \underline{e^{-t}}_{t} dt, x > 0$$

This function, $E_1(x)$, may be analytically continued throughout the complex plane, and defines a multivalued complex function. However, for any given real argument, this extended multivalued function has a unique real part. The subroutine EXPI computes this unique real number for $x \ge -4$, $x \ne 0$.

For negative x, the real part of the extended exponential integral function is equal to $-E_i$ (-x),

where

$$E_{i}(y) = - \int_{-y}^{\infty} \frac{e^{-t}}{t} dt, y > 0$$

 $(\int \text{denotes Cauchy principal value.})$

For x = 0, a singularity of the function, the program returns 1.0×10^{38} .

No action is taken in case of an argument less than -4.

Polynomial approximations which are close to Chebyshev approximations over their respective ranges are used for calculation.

1. Approximation in the range $x \ge 4$.

A polynomial approximation is obtained by means of truncation of the Expansion of $E_1(x)$ in terms of shifted Chebyshev Polynomials T_n^*

$$E_1(x) = \frac{e^{-x}}{x} \sum_{n=0}^{\infty} A_n T_n^*\left(\frac{4}{x}\right) \text{, for } 4 \leq x < \infty$$

The coefficients ${\rm A}_{\rm n}$ are given in the article by Luke/Wimp. *

Using only nine terms of the above infinite series results in a truncation error ϵ (x) with:

$$\left| \epsilon (\mathbf{x}) \right| < \frac{\mathrm{e}^{-\mathbf{x}}}{\mathbf{x}} \sum_{\mathbf{y}=9}^{\infty} \left| A_{\mathbf{y}} \right| < \frac{\mathrm{e}^{-\mathbf{x}}}{\mathbf{x}} \cdot 0.82 \cdot 10^{-8}$$

Transformation of the shifted Chebyshev polynominals to ordinary polynomials finally leads to the approximation:

8

EXPI(x) =
$$e^{-x} \left(\frac{4}{x}\right) \sum_{v=0}^{\infty} a_v \left(\frac{4}{x}\right)^v$$
 for $x \ge 4$

The coefficients of this approximation given to eight signification digits are:

$$a_0 = 0.24999 999$$

$$a_1 = -0.06249 8588$$

$$a_2 = 0.03120 8561$$

$$a_3 = -0.02295 1979$$

$$a_4 = 0.02041 2099$$

$$a_5 = -0.01755 5779$$

$$a_6 = 0.01172 3273$$

$$a_7 = -0.00493 62007$$

$$a_8 = 0.00094 42761 4$$

2. Approximation in the range $|x| \le 4$.

A polynomial approximation is obtained by means of telescoping of the Taylor series of the function: x

$$\int_{0} \frac{(e^{-t} - 1)}{t} dt = -\ln x - C - E_{1}(x),$$

where
$$C = 0.57721$$
 56649 is Euler's constant.
This results in the approximation:

EXPI(x) =
$$-\ln |x| + \sum_{v=0}^{14} b_v x^v$$

^{*}Luke/Wimp, "Jacobi Polynomial expansion of a generalized hypergeometric function over a semiinfinite ray", Math. Comp., Vol. 17, 1963, Iss. 84, p. 400.

with a truncation error E absolutely less than 3×10^{-8} .

The coefficients of this approximation given to eight significant digits are:

Ъ ₀	=	-0.57721	566		
^b 1	=	1.00000	00		
b_2	=	-0,25000	000		
^b 3	=	0.05555	5520		
b ₄	8	-0.01041	6662		
		0.00166			
b ₆	=	-0.00023	14839	2	
b ₇	=	0.00002	83375	90	
b ₈	Ξ	-0.00000	30996	040	
b ₉	=	0.00000	03072	6221	
^b 10	=	-0.00000	00276	35830	
^b 11	=	0.00000	00021	91569	9
b_{12}	"	-0.00000	00001	68265	92
^b 13	=	0.00000	00000	15798	675
^b 14	=	-0.00000	00000	01031	7602

Subroutine EXPI

Purpose:

Computes the exponential integral in the range -4 to infinity.

Usage:

CALL EXPI(RES, X, IER)

Description of parameters:

RES - Result value.

- X Argument of exponential integral.
- IER Resultant error code where:
 - IER=0 No error. IER=1 X less than -4.

Remarks:

For X = 0 the result value is set to 1. E38. For X less than -4 calculation is bypassed. The argument remains unchanged. Subroutines and function subprograms required: None.

Method:

Definition: RES= integral(EXP(-T)/T, summed over T from X to infinity). Evaluation: Two different polynomial approximations are

used for X greater than 4 and for ABS(X) equal or less than 4.

Reference:

Luke and Wimp, 'Jacobi Polynomial Expansions of a Generalized Hypergeometric Function over a Semi-Infinite Range', Mathematical Tables and Other Aids to Computation, Vol. 17, 1963, Issue 84, pp. 395-404.

	SUBROUTINE EXPICES.X. [ER]	EXPI	1
С	TEST OF BANGE	EXPI	2
-	IER=0	EXPI	3
	[F(X-4.) 10.10.20	FXPI	4
	10 IF(X+4+) 55,30,33	EXPL	5
С	ARGUMENT IS GREATER THAN 4	EXPI	6
-	20 ARG=4./X	EXPI	7
	RES=EXP(-X)*{((({((,00094427614*ARG0049362007)*ARG+.011723273)	EXPI	8
	1 *ARG017555779) *ARG+.020412099)*ARG0229519791*ARG+.0312085611	EXPI	ć
	2 *ARG0624985881 *ARG+.249999991 *ARG	EXPL	11
	RETURN	EXPI	1.
С	ARGUMENT IS ASSOLUTELY LESS OR EQUAL 4	EXPI	12
	30 IF(X) 40,50,40	EXPI	13
	400RES=-ALOG(ABS(X))-((((((((((((((()	EXPI	14
	1.16826592E-91*X21915699E-81*X+.27635830E-71*X30726221E-61*X+	EXPI	15
	2.30996040E-51*X-,28337590E-41*X+,23148392E-31*X001666669061*X+	EXPI	16
	3.010416662!*X055555520!*X+.25!*X-1.0!*X57721566	EXPI	17
	RETURN	EXPL	18
	50 RES=1.E3B	EXPI	19
	RETURN	EXPL	20
C	ARGUMENT IS LESS THAN -4.	EXPI	21
	55 IER=1	EXP1	22
	RETURN	EXPT	23
	END	EXPI	24

we get the expansions:

This subroutine computes the sine and cosine integrals. These integrals are defined as:

$$Si(x) = \int_{\infty}^{x} \frac{\sin(t)}{t} dt, x \ge 0$$

and

$$\operatorname{Ci}(x) = \int_{\infty}^{x} \frac{\cos(t)}{t} dt, x > 0$$

The subroutine SICI calculates both Si (x) and Ci (x) for a given argument x. Two different approximations are used for the ranges $|x| \le 4$ and $4 < |x| < \infty$. Negative values of the argument x are handled by means of the following symmetries:

Si (-x) = $-\pi$ - Si (x)

Real part of

$$Ci(-x) = Ci(x), x > 0$$
 (see discussion of EXPI).

For x = 0, a singularity of Ci (x), the routine returns -1.0×10^{38} .

Polynomial approximations that are close to Chebyshev approximations over their respective ranges are used for calculation.

1. Approximation in the range |x| > 4.

The sine and cosine integrals are closely related to the confluent hypergeometric function:

$$Y(x) = -ix \Psi(1, 1; -ix).$$

We have:

Si(x) + i Ci(x) =
$$\frac{\pi}{2}$$
 + ie^{ix} Ψ (1, 1; -ix).

Setting:

ix
$$\Psi$$
 (1, 1; ix) = $\sum_{n=0}^{\infty}$ (A_n + i B_n) T^{*}_n ($\frac{4}{x}$)

Si (x) =
$$\sum_{n=0}^{\infty} \left(\frac{A_n \cdot \cos x}{x} + \frac{B_n \cdot \sin x}{x} \right) T_n^* \left(\frac{4}{x} \right)$$

Ci (x) =
$$\sum_{n=0}^{\infty} \left(\frac{B_n \cdot \cos x}{x} - \frac{A_n \cdot \sin x}{x} \right) T_n \left(\frac{4}{x} \right)$$

in terms of shifted Chebyshev polynomials T_n^* . The coefficients A_n and B_n are given in the article by Luke/Wimp.*

Using only ten terms of the above infinite series results in a truncation error E(x) with:

$$\left| E(x) \right| < \frac{1}{x} \cdot 2.3 \cdot 10^{-8}$$

Transformation of the shifted Chebyshev polynomials to ordinary polynomials finally leads to the approximations:

Si (x) =
$$-\left(\frac{4}{x}\right) \cdot (\cos x \cdot V(x) + \sin x \cdot U(x))$$

Ci (x) = $\left(\frac{4}{x}\right) \cdot (\sin x \cdot V(x) - \cos x \cdot U(x)),$

where

$$V(x) = \sum_{n=0}^{10} a_n \cdot \left(\frac{4}{x}\right)^n$$
$$U(x) = \sum_{n=0}^{9} b_n \cdot \left(\frac{4}{x}\right)^n$$

The coefficients of these expansions given to eight significant digits are:

$$a_0 = 0.25000 \ 000$$

$$b_0 = 0.00000 \ 00002 \ 58398 \ 86$$

$$a_1 = -0.00000 \ 06646 \ 4406$$

$$b_1 = 0.06250 \ 0111$$

$$a_2 = -0.03122 \ 4178$$

$$b_2 = -0.00001 \ 13495 \ 79$$

^{*}Luke/Wimp, "Jacobi Polynomial expansion of a generalized hypergeometric function over a semiinfinite ray", Math. Comp. Vol. 17, 1963, Iss. 84, p. 402.

a ₃	=	-0.00037	64000	3
^b 3	=	-0.02314	6168	
a_4	=	0.02601	2930	
^b 4	=	-0.00333	25186	
a_{5}	=	-0.00794	55563	
ь ₅	=	0.04987	7159	
a_{6}	=	-0.04400	4155	
^b 6	=	-0.07261	6418	
a_7	н	0.07902	0335	
b ₇	=	0.05515	0700	
a ₈	=	-0.06537	2834	
b ₈	=	-0.02279	1426	
a ₉	=	0.02819	1786	
b ₉	=	0.00404	80690	
a 10	=	-0.00510	86993	

2. Approximation in the range $|x| \le 4$.

A polynomial approximation for Si (x) is obtained by means of telescoping of the Taylor series:

Si (x) =
$$-\frac{\pi}{2} + \int_{0}^{x} \frac{\sin t}{t} dt$$

= $-\frac{\pi}{2} + x \cdot \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n}}{(2n+1) \cdot (2n+1)!}$

This results in the approximation:

Si(x) =
$$-\frac{\pi}{2} + x \cdot \sum_{n=0}^{6} a_v(x^2)^{v}$$
,

with a truncation error E absolutely less than $|X| \cdot 1.4 \cdot 10^{-9}$.

Similarly an approximation for Ci (x) is obtained by means of telescoping of the Taylor series:

Ci (x) - C - In (x) =
$$\sum_{n=1}^{\infty} \frac{(-1)^n x^{2n}}{2N \cdot (2n)!}$$

This results in the approximation:

Ci (x) = C + In |x|
$$-x^2 \cdot \sum_{n=0}^{5} b_n (x^2)^n$$
,

with a truncation error E absolutely less than $x^2 \cdot 5.6 \cdot 10^{-9}$.

The coefficients of these approximations given to eight significant decimal digits are:

С	=	0.57721	566		
^a 0	=	1.00000	00		
^b 0	=	0.24999	999		
^a 1	=	-0.05555	5547		
^b 1	=	-0.01041	6642		
^a 2	=	0.00166	66582		
b_2	=	0.00023	14630	3	
a ₃	=	-0.00002	83414	60	
b ₃	=	-0.00000	30952	207	
a ₄	=	0.00000	03056	1233	
b_4	=	0,00000	00269	45842	
a ₅	=	-0.00000	00022	23263	3
^b 5	=	-0.00000	00001	38698	51
a ₆	=	-0.00000	00000	09794	2154

Subroutine SICI

Purpose:

Computes the sine and cosine integral.

Usage:

CALL SICI(SI, CI, X)

Description of parameters:

- SI The resultant value SI(X).
- CI The resultant value CI(X).
- X The argument of SI(X) and CI(X).

Remarks:

The argument value remains unchanged.

Mathematics - Special Operations and Functions 111

Subroutines and function subprograms required: None.

Method:

Definition:

- SI(X)=integral (SIN(T)/T, summed over T from infinity to X).
- CI(X)=integral (COS(T)/T, summed over T from infinity to X).

Evaluation:

- Reduction of range using symmetry.
- Different approximations are used for ABS(X) greater than 4 and for ABS(X) less than 4. Reference:

Luke and Wimp, 'Polynomial Approximations to Integral Transforms', Mathematical Tables and Other Aids to Computation, Vol. 15, 1961, Issue 74, pp. 174-178.

	SUBROUTINE SICI(SI+CI+X)	1012	1
С	TEST ARGUMENT RANGE	1012	ş
	Z=AB5(X).	\$101	3
	1 F (2-4.) 10,10,53	5101	4
с	Z IS NOT GREATER THAN 4	\$101	5
	10 Y=Z#Z	SICE	6
	S1=-1.5707963+X*([(((.97942154E-11*Y22232633E-8)*Y+.30561233E-6	1012	7
	1)*Y28341460E-4)*Y+.16666582E-2)*Y55555547E-1)*Y+1.}	1012	8
с	TEST FOR LOGARITHMIC SINGULARITY	SICI	9
	1F(2) 30,20,30	S1C1	10
	20 CI=-1.E38	STOL	11
	RETURN	SICI	12
	300CI=0.57721566+ALJG(Z)-Y*((((13869851F-9*Y+.26945842E-7)*Y-	\$101	13
	1.30952207E-5)*Y+.23146303E-3)*Y10416642E-1)*Y+.24999999}	1012	14
	40 RETURN	1212	15
с	Z IS GREATER THAN 4.	1212	16
	50 SI=SIN(2)	5101	17
	Y=COS(Z)	S1C1	18
	2=4./2	5101	19
	0U±[[[[[((((+404B0590E-2+2-+022791426)+2++055150700)+2-+072616418)+	1215	20
	l+.049877159}*Z33325186E-2}*Z→.023146168J*Z1l349579E-4)*Z	SICI	21
	2+.062500111)*2+.25839886E-9	5101	22
	0y=({{{{{{{{{{{{}}}}{{{{1}}}}}}}}		23
	120440041551*200794555631*2+_0260129301*237640003E-31*2	S I C I	24
	20312241781*2564644966-61*2+.25000000	5101	25
	CI=Z+{SI+V-Y+U}	\$101	56
	SI=-Z*{SI*U+Y*V}	\$101	27
C	TEST FOR NEGATIVE ARGUMENT	STCT	28
	IF(X) 60,40,40	S1C1	29
c	X IS LESS THAN -4.	1012	30
	60 SI=-3.1415927-SI	5101	31
	RETURN	SIC1	32
	END	2121	33

 \underline{CS}

This subroutine computes the Fresnel integrals for a given value of the argument x. The Fresnel integrals are defined as:

$$C(x) = \sqrt{\frac{1}{2\pi}} \int_{0}^{x} \sqrt{\frac{\cos(t)}{t}} dt$$

and

$$S(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{x} \sqrt{\frac{\sin(t)}{t}} dt.$$

The subroutine CS calculates both C(x) and S(x) for a given argument x.

In case of a negative argument x the absolute value of x is taken as argument for C and for S.

Polynomial approximations that are close to Chebyshev approximations over their respective ranges are used for calculation.

1. Approximation in the range |x| > 4.

The Fresnel integrals C(x) and S(x) are closely related to the confluent hypergeometric function:

$$Y(x) = \sqrt{xi \psi} (\frac{1}{2}, \frac{1}{2}; xi) = xi \psi (1, \frac{3}{2}; xi).$$

We have:

$$C(x) = \frac{1}{2} + \frac{1}{\sqrt{8\pi}} \sqrt{\frac{4}{x}} (\sin(x) \operatorname{Re}(Y) - \cos(x) \operatorname{Im}(Y))$$

$$S(x) = \frac{1}{2} - \frac{1}{\sqrt{8\pi}} \sqrt{\frac{4}{x}} (\cos(x) \operatorname{Re}(Y) + \sin(x) \operatorname{Im}(Y))$$

The expansions of real part Re (Y) and complex part Im (Y) in terms of shifted Chebyshev polynomials T_n^* over the range $4 \le x \le \infty$ are easily obtained using the method of computation described by Luke/Wimp.*

By means of truncation of the infinite series:

Re (Y (x)) =
$$\sum_{v=0}^{\infty} A_v T_v^* \left(\frac{4}{x}\right)$$

Im (Y (x)) =
$$\sum_{v=0}^{\infty} B_v T_v^* \left(\frac{4}{x}\right)$$

^{*}Luke/Wimp, "Jacobi Polynomial expansion of a generalized hypergeometric function over a semiinfinite ray", Math. Comp., Vol. 17, 1963, Iss. 84, pp. 395-404.

beyond the eighth and ninth term respectively we get approximations with errors $E_{c}(x)$ and $E_{s}(x)$ where both errors are absolutely less than:

$$\epsilon = \sqrt{\frac{4}{x}} \cdot 1.3 \cdot 10^{-8}$$

Transformation of the shifted Chebyshev polynomials to ordinary polynomials finally leads to the approximations:

$$C(x) = \frac{1}{2} - \sqrt{\frac{4}{x}} (\sin (x) \cdot P(x) + \cos (x) \cdot Q(x))$$

$$S(x) = \frac{1}{2} + \sqrt{\frac{4}{x}} (-\cos(x) \cdot P(x) + \sin(x) \cdot Q(x))$$

where

$$P(x) = \sum_{0}^{7} a_{v}\left(\frac{4}{x}\right)^{v}$$
$$Q(x) = \sum_{0}^{8} b_{v}\left(\frac{4}{x}\right)^{v}.$$

The coefficients a_v and b_v are given to eight significant decimal digits:

$$a_0 = 0.19947 115$$

$$b_0 = -0.00000 00044 44090 9$$

$$a_1 = -0.00000 12079 984$$

$$b_1 = -0.02493 3215$$

$$a_2 = -0.00931 49105$$

$$b_2 = -0.00001 60642 81$$

$$a_3 = -0.00040 27145 0$$

$$b_3 = 0.00597 21508$$

$$a_4 = 0.00742 82459$$

$$b_4 = -0.00030 95341 2$$

$$a_5 = -0.00727 16901$$

$$b_5 = -0.00679 28011$$

$$a_{6} = 0.00340 14090$$

$$b_{6} = 0.00797 09430$$

$$a_{7} = -0.00066 33925 6$$

$$b_{7} = -0.00416 92894$$

$$b_{8} = 0.00087 68258$$

2. Approximation in the range $0 \leq x \leq 4$.

Approximations for C(x) and S(x) in the range $0 \le x \le 4$ were obtained by means of telescoping of the respective Taylor series expansions:

$$C(x) = \sqrt{\frac{2}{\pi}} \cdot \sqrt{x} \cdot \sum_{v=0}^{\infty} \frac{(-1)^{v} x^{2v}}{(4v+1) (2v)!}$$
$$S(x) = \sqrt{\frac{2}{\pi}} \cdot \sqrt{x^{3}} \cdot \sum_{v=0}^{\infty} \frac{(-1)^{v} x^{2v}}{(4v+3) (2v+1)!}$$

This leads finally to the following approximations:

$$C(x) = \sqrt{x} \sum_{v=0}^{6} c_{v} \cdot (x^{2})^{v}$$
$$S(x) = x \sqrt{x} \sum_{v=0}^{5} d_{v} (x^{2})^{v},$$

v=0

with respective errors $E_{c}(x)$ and $E_{s}(x)$, where

$$\left| \begin{array}{c} \mathbf{E}_{c} (\mathbf{x}) \right| < \sqrt{\mathbf{x}} \cdot 2.6 \cdot 10^{-8} \\ \left| \begin{array}{c} \mathbf{E}_{s} (\mathbf{x}) \right| < \mathbf{x} \sqrt{\mathbf{x}} \cdot 3.5 \cdot 10^{-8} \end{array} \right|$$

The coefficients c_v and d_v are given below to eight significant decimal digits:

$$c_0 = 0.79788 455$$

$$d_0 = 0.26596 149$$

$$c_1 = -0.07978 8405$$

$$d_1 = -0.01899 7110$$

Mathematics - Special Operations and Functions 113

0.00369 38586 c_2 d₂ = 0.00060 43537 1 c₃ = -0.00008 52246 22 d, = -0.00001 05258 53 0.00000 11605 284 °₄ d₄ = 0.00000 01122 5331 $c_5 = -0.00000 \ 00101 \ 40729$ -0.00000 00006 67774 47 d₅ = с_б 0.00000 00000 50998 348 =

 SUBROUTINE CS(C,S,X)
 CS
 1

 2=ABS(X)
 CS
 2

 2 IF(Z-4, J, J,3,4)
 CS
 3

 C
 X IS: NOT GREATER THAN 4
 CS
 3

 S=260
 CS
 5
 2

 Z=262
 CS
 6
 2

 C=Cef(II(II-50998348E-10*Z-01040729E-7)*Z+.11605284E-5)*Z
 CS
 6

 Z=262
 CS
 7
 CS

 C=Cef(II(II-50998348E-10*Z-019788405)*Z+C79788455)
 CS
 7

 S=326022E-4192.a05986E-21*Z-079788405122.55838E-41*Z
 CS
 10

 L =.45224622E-4192.a1275331E-01*Z-10525838E-41*Z
 CS
 10

 L +.60435371E-31*Z--18997110E-11*Z*.265961491
 CS
 11

 RETURN
 CS
 13
 CS
 12

 C
 X IS GREATER THAN 4
 CS
 13
 CS
 12

 A = 04C05121
 CS
 CS
 12
 CS
 14

 S=SINIZ2
 CS
 CS
 14
 CS
 13

 Z = 0763121
 CS
 CS
 15
 14
 14
 14
 14
 14
 14
 14
 14
 14

Subroutine CS

Purpose:

Computes the Fresnel integrals.

Usage:

CALL CS (C, S, X)

Description of parameters:

- C The resultant value C(X).
- S The resultant value S(X).
- X The argument of Fresnel integrals.
 If X is negative, the absolute value is used.

Remarks:

The argument value X remains unchanged.

Subroutines and function subprograms required: None.

Method:

Definition:

C(X)=integral (COS(T)/SQRT(2*PI*T) summed over T from 0 to X).

S(X)=integral (SIN(T)/SQRT(2*PI*T) summed over T from 0 to X).

Evaluation:

Using different approximations for X less than 4 and X greater than 4.

Reference:

'Computation of Fresnel Integrals' by Boersma, Mathematical Tables and Other Aids to Computation, Vol. 14, 1960, No. 72, p. 380.

Mathematics - Linear Equations

SIMQ

Purpose:

Obtain solution of a set of simultaneous linear equations, AX=B.

Usage:

CALL SIMQ(A, B, N, KS)

Description of parameters:

- A Matrix of coefficients stored columnwise. These are destroyed in the computation. The size of matrix A is N by N.
- B Vector of original constants (length N). These are replaced by final solution values, vector X.
- N Number of equations and variables. N must be greater than 1.
- KS Output digit:
 - 0 For a normal solution.
 - 1 For a singular set of equations.

Remarks:

Matrix A must be general.

If matrix is singular, solution values are meaningless.

An alternative solution may be obtained by using matrix inversion (MINV) and matrix product (GMPRD).

Subroutines and function subprograms required: None.

Method:

Method of solution is by elimination using largest pivotal divisor. Each stage of elimination consists of interchanging rows when necessary to avoid division by zero or small elements. The forward solution to obtain variable N is done in N stages. The back solution for the other variables is calculated by successive substitutions. Final solution values are developed in vector B, with variable 1 in B(1), variable 2 in B(2),...., variable N in B(N). If no pivot can be found exceeding a tolerance of 0.0, the matrix is considered singular and KS is set to 1. This tolerance can be modified by replacing the first statement.

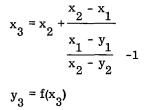
SUBROUTINE SIMO(A, B, N, KS)	SINQ	1
DIMENSION ALLI,8(1)	SIMO	2
FORWARD SOLUTION	SING	3
TOL=0.0	SEMQ	- 4
KS=0	5140	5
JJ=-N	5140	6
DO 65 J=1.N	STMQ	7
JY=J+1	5180	8
JJ=JJ+N+1	SIMQ	9
BIGA=0	STMQ	10
I-LL=T	9HIZ	11
00 30 I=J+N	SIMQ	12

÷C		SEARCH FOR MAXIMUM COEFFICIENT IN COLUMN
		IJ=IT+I
		IF(ABS(BIGA)-ABS(A(IJ))) 20,30,30
	20	BIGA=A(IJ)
		[MAX=]
	30	CONTINUE
c		TEST FOR PIVOT LESS THAN TOLERANCE (SINGULAR MATRIX
		IF(ABS(BIGA)-TOL) 35,35,40
	35	KS=1
		RETURN
C		INTERCHANGE RIWS IF NECESSARY
	40	[]=J+N+(J-2)
		[T=[MAX-J
		DO 50 K=J,N
		[]=[]+N
		12=[1+[T
		SAVE=A(11)
		A(11)=A(12)
		A(12)=SAVE
С		"DIVIDE EQUATION BY LEADING COEFFICIENT
	50	A(11)=A(11)/BIGA
		SAVE=B([MAX]
		B(14AX)=B(J)
		BIJI=SAVE/BIGA
C		ELIMINATE NEXT VARIABLE
-		IF(J-N) 55,70,55
	55	10S=N+(J-1)
		00 65 [X=JY.N
		IXJ=IQS+IX
		IT=J-IX
		DO 60 JX=JY.N
		IXJX=N+(JX-1)+IX
		JJX=IXJX+IT
	60	A(TXJX)=A(TXJX)-{A(TXJ)+A(JJX))
	65	B(1x)=B(1x)-(B(J)*A(1xJ))
C		BACK SOLUTION
	70	NY=N-1
		IT=N+N
		D0 80 J=1.NY
		14=17-3
		IB=N- +
		ic='
		DO 80 K=1.J
		8(18)=8(18)-A(1A)+8(1C)
		IA=IA-N
	5.	RETURN
		END

Mathematics - Roots of Nonlinear Equations

RTWI

This subroutine refines the initial guess x_0 of a root of the general nonlinear equation x = f(x). Wegstein's iteration scheme is used in order to get accelerated convergence in case of a function f (x), which has at least continuous first derivative in the range in which iteration moves.


Following Figure 8, set $x_1 = y_0 = f(x_0)$ and $y_1 = f(x_1)$.

Refinement of x_1 is done by determination of the intersection of the linear function y = x and the secant through the points (x_0, y_0) and (x_1, y_1) , thus getting:

$$x_{2} = x_{1} + \frac{x_{1} - x_{0}}{x_{0} - y_{0}} - \frac{x_{0} - y_{0}}{x_{1} - y_{1}} - 1$$

and
$$y_2 = f(x_2)$$

The next step is done by starting at (x_2, y_2) and setting:

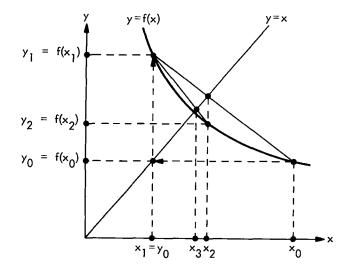


Figure 8. Wegstein's iterative method

It can be seen that this determines the intersection between y = x and the secant through the points (x_1, y_1) and (x_2, y_2) . Therefore Wegstein's iteration scheme is often called the secant modification of the normal iteration scheme $x_{i+1} = f(x_i)$.

Repeating these steps, the result is the iteration scheme:

$$\begin{array}{c} x_{i+1} = x_i + \frac{x_i - x_{i-1}}{x_i - y_{i-1}} \\ y_{i+1} = f(x_{i+1}) \end{array} \right) (i = 1, 2, ...) \quad (1)$$

١

Each step requires one evaluation of f(x).

This iterative procedure is terminated if the following two conditions are satisfied:

$$\begin{split} \delta_{1} &\leq \text{and } \delta_{2} \leq 10 \cdot \varepsilon \\ \text{with} \quad \delta_{1} = \begin{cases} \left| \frac{x_{i+1} - x_{i}}{x_{i+1}} \right| & \text{if } |x_{i+1}| > 1 \\ \left| x_{i+1} - x_{i} \right| & \text{if } |x_{i+1}| \leq 1, \\ \left| x_{i+1} - x_{i} \right| & \text{if } |x_{i+1}| \leq 1, \\ \left| x_{i+1} - x_{i+1} \right| & \text{if } |x_{i+1}| > 1 \\ \left| x_{i+1} - x_{i+1} \right| & \text{if } |x_{i+1}| > 1 \\ \left| x_{i+1} - x_{i+1} \right| & \text{if } |x_{i+1}| \leq 1 \end{cases} \end{split}$$

and tolerance ε given by input.

The procedure described above may not converge within a specified number of iteration steps. Reasons for this behavior, which is indicated by an error message may be:

1. Too few iteration steps are specified.

2. The initial guess \mathbf{x}_0 is too far away from any root.

3. The tolerance $\boldsymbol{\varepsilon}$ is too small with respect to roundoff errors.

4. The root to be determined is of multiplicity greater than one.

Furthermore, the procedure fails if at any iteration step the denominator of equation (1) becomes zero. This is also indicated by an error message. This failure may have two reasons:

1. The secant has the slope 1, either exactly or due to roundoff errors. In both cases it is probable that there is at least one point ξ in the range in which iteration moves with $f'(\xi) = 1$.

2. $x_i = x_{i-1}$ and $x_i \neq y_i = f(x_i)$. This case is possible due to roundoff errors or to a very steep slope of the secant.

Subroutine RTWI

Purpose:

To solve general nonlinear equations of the form X=FCT(X) by means of Wegstein's iteration method.

Usage:

CALL RTWI (X, VAL, FCT, XST, EPS, IEND, IER) Parameter FCT requires an EXTERNAL statement.

Description of parameters:

х	-	Resultant root of equation $X = FCT(X)$.
VAL	-	Resultant value of X -FCT(X) at root X.
FCT	-	Name of the external function sub-

program used. - Input value which specifies the initial

XST - Input value which specifies the initia guess of the root X.

- EPS Input value which specifies the upper bound of the error of result X.
- IEND Maximum number of iteration steps specified.
- IER Resultant error parameter coded as follows:
 - IER=0 no error
 - IER=1 no convergence after IEND iteration steps
 - IER=2 at some iteration step the denominator of iteration formula was equal to zero

Remarks:

The procedure is bypassed and gives the error message IER=2 if at any iteration steps the denominator of the iteration formula is equal to zero. That means that there is at least one point in the range in which iteration moves with the derivative of FCT(X) equal to 1.

Subroutines and function subprograms required: The external function subprogram FCT(X) must be furnished by the user.

Method:

Solution of equation X=FCT(X) is done by means of Wegstein's iteration method, which starts at the initial guess XST of a root X. One iteration step requires one evaluation of FCT(X). For test on satisfactory accuracy see formula (2) of mathematical description.

For reference, see:

- 1. G. N. Lance, <u>Numerical Methods for High</u> <u>Speed Computers</u>, Iliffe, London, 1960, <u>pp. 134-138</u>.
- J. Wegstein, "Algorithm 2," <u>CACM</u>, Vol. 3, Iss. 2 (1960), pp. 74.
- H.C. Thacher, "Algorithm 15," <u>CACM</u>, Vol.
 3, Iss. 8 (1960), pp. 475.

4. J.G. Herriot, "Algorithm 26," <u>CACM</u>, Vol. 3, Iss. 11 (1960), pp. 603.

	SUBROUTINE RTWI(X+VAL+FCT+XST+EPS+IEND+IER)	RTWI	1
с	PREPARE ITERATION	RTWI 2	2
•	IER=0	RTWI 3	3
	TOLEXST	RTWI 4	4
	X=FCT(TOL)	RTWI	5
	A=x=xST	RTWI	5
	B=-A	RTWI	7
	TOLex	RTWI	a
	VAL=X-FCT(TOL)	RTWI	
с	START ITERATION LOOP	RTWI 10	
·	DO 6 I=1+IEND	RTWI 1	
	IF(VAL)1+7+1	RTWI 12	
c	EQUATION IS NOT SATISFIED BY X	RTWI 11	3
•	1 B=B/VAL=1.	RTWI 14	4
	IF(B)2+8+2	RTWI 1	5
c	ITERATION IS POSSIBLE	RTWI 10	Å
·	2 A=A/B	STWI 1	
	X=X+A	RTWI 1	
	B=VAL	RTWI 19	
	TOL=X	RTWI 20	ò
	VAL=X-FCT(TOL)	RTW1 2	
c	TEST ON SATISFACTORY ACCURACY	RTW1 2	
۰.	TOL=EPS	RTWI 2	
	D=ABS(X)	RTWI 24	
	IF(D-1.)4.4.3	RTWI 2	
	3 TOL=TOL+D	RTWI 2	
	4 IF(ABS(A)-TOL)5+5+6	BTW1 2	
	5 IF(ABS(VAL)-10.*TOL)7+7+6	RTWI 2	
	6 CONTINUE	RTWI 2	
~	END OF ITERATION LOOP	RTWI 3	
č	ND CONVERGENCE AFTER IEND ITERATION STEPS. ERROR RETU		
۰.	IER=1	RTWI 3	
	7 RETURN	RTWI 3	
~		RTWI 3	
c	ERROR RETURN IN CASE OF ZERO DIVISOR	RTWI 3	
	8 IER=2 Return	RTWI 3	
		RTWI 3	
	END	K(#1. 2	1

<u>RTMI</u>

This subroutine determines a root of the general nonlinear equation f(x) = 0 in the range of x from xli up to xri (xli, xri given by input) by means of Mueller's iteration scheme of successive bisection and inverse parabolic interpolation. The procedure assumes $f(x_{1i}) \cdot f(x_{ri}) \leq 0$.

Starting with $x_1 = x_{1i}$ and $x_r = x_{ri}$ and following Fig. 9, one iteration step is described.

First, the middle of the interval $x_1 \dots x_r$ is computed:

$$x_{m} = \frac{1}{2} (x_{1} + x_{r}).$$

In case $f(x_m)$. $f(x_r) < 0$, x_1 and x_r are interchanged to ensure that $f(x_m) \cdot f(x_r) > 0$.

In case

 $2 f(x_m) [f(x_m)-f(x_1)] - f(x_r) [f(x_r) - f(x_1)] \ge 0$ (1) x_r is replaced by x_m and the bisection step is repeated. If, after a specified number of successive bisections, inequality (1) is still satisfied, the procedure is bypassed and an error message is given.

In Fig. 9, the second bisection step leads to a configuration which does not satisfy inequality (1). Thus by inverse parabolic interpolation:

$$\Delta x = f(x_1) \frac{x_m^{-x_1}}{f(x_m)^{-f(x_1)}} \left\{ 1 + f(x_m) \frac{f(x_r) - 2 f(x_m)^{+f(x_1)}}{[f(x_r)^{-f(x_m)}] [f(x_r)^{-f(x_1)}]} \right\}$$
(2)
and $x = x_1 - \Delta x$

and \boldsymbol{x} is sure to be situated between \boldsymbol{x}_l and \boldsymbol{x}_m

Mathematics - Special Operations and Functions 117

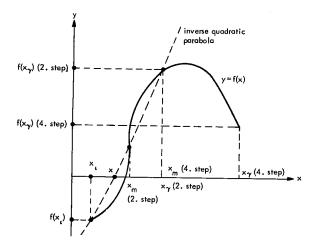


Figure 9. Mueller's iterative method

Now, for the next iteration step, x becomes x_1 and x_m becomes x_r if $f(x) \cdot f(x_1) > 0$, or x becomes x_r if $f(x) \cdot f(x_1) < 0$.

Convergence is either quadratic or linear if the multiplicity of the root to be determined is equal to one or greater than one respectively, and if f(x) can be differentiated continuously at least twice in the range $x_{1i} \\ \cdots \\ x_{ri}$. Each iteration step requires two evaluations of f(x).

This iterative procedure is terminated if either the two conditions (checked in bisection loop)

and

$$\begin{aligned} |\mathbf{x}_{\mathbf{r}} - \mathbf{x}_{\mathbf{l}}| &\leq \varepsilon \cdot \max\left(1, |\mathbf{x}_{\mathbf{r}}|\right) \\ |f(\mathbf{x}_{\mathbf{r}}) - f(\mathbf{x}_{\mathbf{l}})| &\leq 100 \cdot \varepsilon \end{aligned}$$
(3)

. . 1

or the two conditions (checked after inverse parabolic interpolation)

and

$$|\Delta \mathbf{x}| \leq \varepsilon \cdot \max(1, |\mathbf{x}|) |$$

$$|\mathbf{f}(\mathbf{x})| \leq 100 \cdot \varepsilon \qquad (4)$$

are satisfied, where tolerance ε is given by input.

The procedure described above may not converge within a specified number of iteration steps followed by the same number of successive bisections. Reasons for this behaviour, which is indicated by an error message, may be:

1. Too few iteration steps are specified.

2. The initial interval $x_{1i} \cdots x_{ri}$ is too long.

3. The tolerance ϵ is too small with respect to roundoff errors.

Furthermore, the procedure is bypassed, also giving an error message, if the basic assumption $f(x_{1i}) \cdot f(x_{ri}) \leq 0$ is not satisfied.

For reference see G. K. Kristiansen, "Zero of Arbitrary Function", BIT, vol. 3 (1963), pp. 205-206.

Subroutine RTMI

Purpose:

To solve general nonlinear equations of the form FCT(X)=0 by means of Mueller's iteration method.

Usage:

х

CALL RTMI(X, F, FCT, XLI, XRI, EPS, IEND, IER) Parameter FCT requires an EXTERNAL statement.

Description of parameters:

- Resultant root of equation FCT(X)=0.
- F Resultant function value at root X.
- FCT Name of the external function subprogram used.
- XLI Input value which specifies the initial left bound of the root X.
- Input value which specifies the initial right bound of the root X.
- EPS Input value which specifies the upper bound of the error of result X.
- IEND Maximum number of iteration steps specified.

IER=0 - no error

- IER=1 no convergence after IEND iteration steps followed by IEND successive steps of bisection
- IER=2 basic assumption FCT(XLI) *FCT(XRI) less than or equal to zero is not satisfied

Remarks:

The procedure assumes that function values at initial bounds XLI and XRI have not the same sign. If this basic assumption is not satisfied by input values XLI and XRI, the procedure is bypassed and gives the error message IER=2.

Subroutines and function subprograms required: The external function subprogram FCT(X) must be furnished by the user.

Method:

Solution of equation FCT(X)=0 is done by means of Mueller's iteration method of successive bisections and inverse parabolic interpolation, which starts at the initial bounds XLI and XRI. Convergence is quadratic if the derivative of FCT(X) at root X is not equal to zero. One iteration step requires two evaluations of FCT(X). For test on satisfactory accuracy see formulae (3, 4) of mathematical description.

		SUBROUTINE RTMI(X+F+FCT+XL1+XR1+EPS+1END+1ER)	RTMI	1
с		PREPARE ITERATION	RTMI	2
		IER=O	RTMI	3
		XL=XLI	RTMI	4
		XR=XRI	RTMI	5
		X=XL	RTM1	6 7
		TOL=X	RTMI	
		F=FCT(TOL)	RTMI	8
		IF(F)1+16+1	RTMI	.9
	1		RTMI	10
		X=XR	RTMI	11
		TOL=X	RTMI	12
		F=FCT(TOL)	RTMI	13
		IF(F)2+16+2	RTMI	
	2		RTMI	15
		IF(SIGN(1FL)+SIGN(1FR))25,3,25	RTMI	16
с		BASIC ASSUMPTION FL#FR LESS THAN O IS SATISFIED.	RTMI	17
с		GENERATE TOLERANCE FOR FUNCTION VALUES.	RTMI	18
	3			19
-		TOLF=100.*EPS	RTMI	20
c		START ITERATION LOOP	RTMI	21
-	4	1=1+1	RTMI	22
c		START BISECTION LOOP	RTMI	23
		DO 13 K=1+IEND	RTMI	24
		X#=5={XL+XR}	RTMI	25
		TOL=X	RTMI	26 27
		F=FCT(TOL)		
	-	IF(F)5+16+5	RTMI	28
-	5	IF(SIGN(1+F)+SIGN(1+FR))7+6+7	RTMI	29
c		INTERCHANGE XL AND XR IN ORDER TO GET THE SAME SIGN IN F AND FR	RTMI	30
	6	TOL=XL	RTMI	31
		XL=XR	RTMI	32
		XR=TOL	RTMI	33
		TOL=FL	RTMI	34
		FL=FR	RTMI	35
		FR#TOL	RTMI	36
	7	TOL=F-FL	RTMI	37
		A=F+TOL	RTMI	38
		A=A+A	RTMI	39
		IF(A-FR+(FR-FL))8,9,9	RTMI	40
	8	IF(I-IEND)17+17+9	RTMI	41
	9	XR=X	RTMI	42
		FR=F	RTMI	43
с		TEST ON SATISFACTORY ACCURACY IN BISECTION LOOP	RTMI	44
		TOL=FPS	RTMI	45
		A=ABS(XR)	RTMI	46
		IF(A-1.)11.11.10	RTMI	47
	10	TOL=TOL=A	RTMI	48
	11	IF(ABS(XR-XL)-TOL)12+12+13	RTMI	49
		IF (ABS(FR-FL)-TOLF)14+14+13	RTMI	50
	12			
c	13	CONTINUE END OF BISECTION LOOP	RTMI	51 52
			RTMI	53
č		NO CONVERGENCE AFTER IEND ITERATION STEPS FOLLOWED BY IEND		
		SUCCESSIVE STEPS OF BISECTION OR STEADILY INCREASING FUNCTION	RTMI	54
c		VALUES AT RIGHT BOUNDS. ERROR RETURN.	RTMI	55
		IER=1	RTMI	56
	14	[F(ABS(FR)-ABS(FL))16+16+15	RTMI	57
	15	X=XL	RTMI	58
		F=FL	RTMI	59
	16	RETURN	RTMI	60
c		COMPUTATION OF ITERATED X-VALUE BY INVERSE PARABOLIC INTERPOLATION		61
	17	A=FR-F	RTMI	62
		DX=(X-XL)+FL+(1+F+(A+TOL)/(A+(FR-FL)))/TOL	RTMI	63
		XM=X	RTMI	64
		FM=F	RTMI	65
		X=XL-DX	RTMI	66
		TOL=X	RTMI	67
		F=FCT(TOL)	RTMI	68
		IF(F)18+16+18	RTMI	69
c		TEST ON SATISFACTORY ACCURACY IN ITERATION LOOP	RTMI	70
	18	TOL=EPS	RTMI	71
		A=A85(X)	RTMI	72
		IF(A=1.)20.20.19	RTMI	73
	19	TOL=TOL=A	RTMI	74
	20	IF(ABS(DX)-TOL)21+21+22	RTMI	75
	21	IF(ABS(F)-TOLF)16+16+22 PREPARATION OF NEXT BISECTION LOOP	RTMI	76
С		PREPARATION OF NEXT BISECTION LOOP	RTMI	77
-	22	IF(SIGN(1F)+SIGN(1FL))24+23+24	RTMI	78
	23	XR=X	RTMI	79
		FR=F	RTMI	80
		GO TO 4	RTMI	81
	24	XL=X	RTMI	82
		FLef	RTMI	83
		XR=XM	RTMI	84
		FR=FM	RTMI	85
		GO TO 4	RTMI	86
с		END OF ITERATION LOOP		87
č		EDDAD DETUDA IN CARE OF WORNE INDUE AND	RTMI	
•	25	ERROR RETURN IN CASE OF WRONG INPUT DATA	RTMI	88
	27	IER=2 RETURN	RTMI	89
		END	RTMI	90
		ENV	RTMI	91

RTNI

This subroutine refines the initial guess x_0 of a root of the general nonlinear equation f(x) = 0. Newton's iteration scheme is used in the following form:

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$
 (i = 0, 1, 2, ...) (1)

Convergence is quadratic or linear if the multiplicity of the root to be determined is equal to one or greater than one respectively, and if f(x) can be differentiated continuously at least twice in the range in which iteration moves. Each iteration step requires one evaluation of f(x) and one evaluation of f'(x). This iterative procedure is terminated if the following two conditions are satisfied:

$$\delta \leq \varepsilon \text{ and } |f(x_{i+1})| \leq 100 \cdot \varepsilon$$

with
$$\delta = \left\{ \begin{vmatrix} |x_{i+1} - x_i| \\ |x_{i+1} - x_i| \end{vmatrix} \text{ in case of } |x_{i+1}| > 1 \\ |x_{i+1} - x_i| \\ |x_{i+1} - x_i| \end{vmatrix} \text{ (2)}$$

and tolerance ε given by input.

The procedure described above may not converge within a specified number of iteration steps. Reasons for this behaviour, which is indicated by an error message, may be:

1. Too few iteration steps are specified.

2. The initial guess \boldsymbol{x}_0 is too far away from any root.

3. The tolerance ε is too small with respect to roundoff errors.

4. The root to be determined is of multiplicity greater than one.

Furthermore, the procedure fails and is bypassed if at any iteration step the derivative $f(x_i)$ becomes zero. This is also indicated by an error message.

For reference see:

- F. B. Hildebrand, <u>Introduction to Numerical</u> <u>Analysis</u>, McGraw-Hill, New York/Toronto/ London, 1956, pp. 447 - 450.
- (2) R. Zurmühl, <u>Praktische Mathematik für</u> <u>Ingenieure und Physiker</u>, Springer, Berlin/ Göttingen/Heidelberg, 1963, pp. 12 - 17.

Subroutine RTNI

Purpose:

To solve general nonlinear equations of the form F(X)=0 by means of Newton's iteration method.

Usage:

F

CALL RTNI (X, F, DERF, FCT, XST, EPS, IEND, IER) Parameter FCT requires an EXTERNAL statement

Description of parameters:

- X Resultant root of equation F(X)=0.
 - Resultant function value at root X.
- DERF Resultant value of derivative at root X.
- FCT Name of the external subroutine used. It computes for given argument X the function value F and derivative DERF. Its parameter list must be X, F, DERF.
- XST Input value which specifies the initial guess of the root X.
- EPS Input value which specifies the upper bound of the error of result X.

- IEND Maximum number of iteration steps specified.
- IER Resultant error parameter coded as follows:
 - IER=0 no error
 - IER=1 no convergence after IEND iteration steps
 - IER=2 at some iteration step derivative DERF was equal to zero

Remarks:

The procedure is bypassed and gives the error message IER=2 if at any iteration step the derivative of F(X) is equal to 0. Possibly the procedure would be successful if it were started again with another initial guess XST.

Subroutines and function subprograms required: The external subroutine FCT(X, F, DERF) must be furnished by the user.

Method:

Solution of the equation F(X)=0 is obtained by means of Newton's iteration method, which starts at the initial guess XST of a root X. Convergence is quadratic if the derivative of F(X) at root X is not equal to zero. One iteration step requires one evaluation of F(X) and one evaluation of the derivative of F(X). For tests on satisfactory accuracy see formula (2) of the mathematical description.

	SUBROUTINE RTNI(X+F+DERF+FCT+XST+EPS+IEND+IER)	RTNI	1
с	PREPARE ITERATION	RTNI	2
	IER=0	RTNI	3
	X=X5T	RTNI	4
	TOL=X	RTNI	- 5
	CALL FCT(TOL+F+DERF)	RTNI	6
	TOLF=100.*EPS	RTNI	7
c	START ITERATION LOOP	RTNI	6
•	DO 6 I=1, IEND	RTNI	9
	IF(F)1.7.1	RTNI	10
c	EQUATION IS NOT SATISFIED BY X	RTNI	11
•	1 IF(DERF)2.8.2	RTNI	12
c	ITERATION IS POSSIBLE	RTNI	13
· ·	2 DX=F/DERF	RTNI	14
	X=X=DX	RTNI	15
	TOL=X	RTNÍ	16
	CALL FCT(TOL +F+DERF)	RTNI	17
-	TEST ON SATISFACTORY ACCURACY	RTN1	18
c		RTNI	19
	TOL=EPS	RTNI	20
	A=ABS(X)	RTNI	21
	1F(A=1+)4+4+3	RTNI	22
	3 TOL=TOL*A	RTNI	23
	4 IF(ABS(DX)-TOL)5,5,6	RTNI	24
	5 IF(ABS(F)-TOLF)7+7+6	RTNI	2
	6 CONTINUE	RTNI	26
ĉ	END OF ITERATION LOOP	RTNI	27
с	NO CONVERGENCE AFTER IEND ITERATION STEPS. ERROR RETURN.	RTNI	26
	IER=1	RTNI	29
	7 RETURN	RTNI	30
с	ERROR RETURN IN CASE OF ZERO DIVISOR	RTNI	31
	8 IER=2	RTNI	32
	RETURN	RTNI	33
	END	RINI	

Mathematics - Roots of Polynomial

POLRT

This subroutine computes the real and complex roots of a real polynomial.

Given a polynomial

$$\mathbf{f}(\mathbf{z}) = \sum_{n=0}^{N} \mathbf{a}_{n} \mathbf{z}^{n}$$

(1)

6)

let

Z = X + iY be a starting value for a root of f(z). Then:

$$Z^{n} = (X + iY)^{n}.$$
⁽²⁾

Define X_n as real terms of expanded equation (2). Define Y_n as imaginary terms of expanded equation (2).

Then for:

$$n = 0$$

 $X_0 = 1.0$
 $Y_0 = 0.0$
 $n > 0$
 $X = X + X = -X + 1$

$$\mathbf{X}_{\mathbf{n}} = \mathbf{X} \cdot \mathbf{X}_{\mathbf{n}-1} - \mathbf{Y} \cdot \mathbf{Y}_{\mathbf{n}-1}$$
(3)

$$Y_{n} = X \cdot Y_{n-1} + Y \cdot X_{n-1}$$
(4)

Let U be the real terms of (1). V be the imaginary terms of (1).

אד

$$U = \sum_{\substack{n=0\\N}}^{N} a_n X_n$$
(5)

$$\mathbf{V} = \sum_{\mathbf{n}=0}^{\mathbf{N}} \mathbf{a}_{\mathbf{n}} \mathbf{Y}_{\mathbf{n}}$$

or

$$U = a_0 + \sum_{n=1}^{N} a_n X_n$$
 (7)

$$V = \sum_{n=1}^{N} a_n Y_n$$
 (8)

$$\frac{\partial U}{\partial X} = \sum_{n=1}^{N} n \cdot X_{n-1} \cdot a_n$$
(9)

$$\frac{\partial U}{\partial Y} = -\sum_{n=1}^{N} n Y_{n-1} a_n$$
(10)

Note that equations (3), (4), (7), (8), (9), and (10) can be performed iteratively for n = 1 to N by saving X_{n-1} and Y_{n-1} .

Using the Newton-Raphson method for computing ΔX , ΔY , we have:

$$\Delta X = \left(V \frac{\partial U}{\partial Y} - U \frac{\partial U}{\partial X} \right) / \left[\left(\frac{\partial U}{\partial X} \right)^2 + \left(\frac{\partial U}{\partial Y} \right)^2 \right]$$
(11)

$$\Delta Y = -\left(U\frac{\partial U}{\partial Y} + V\frac{\partial U}{\partial X}\right) / \left[\left(\frac{\partial U}{\partial X}\right)^2 + \left(\frac{\partial U}{\partial Y}\right)^2\right] (12)$$

after applying the Cauchy-Riemann equations. Thus, for the next iteration:

$$\mathbf{X}' = \mathbf{X} + \mathbf{\Delta}\mathbf{X}$$

$$Y' = Y + \Delta Y$$

Subroutine POLRT

Purpose:

Computes the real and complex roots of a real polynomial.

Usage:

CALL POLRT(XCOF, COF, M, ROOTR, ROOTI, IER)

Description of parameters:

XCOF	-	Vector of M	1+1 coefficients of the			
		polynomial	ordered from smallest			
		to largest p	oower.			
COF	-	Working ve	ctor of length M+1.			
м	-	Order of po	olynomial.			
ROOTR	-	Resultant v	ector of length M contain-			
		ing real ro	ots of the polynomial.			
ROOTI	-	Resultant v	ector of length M contain-			
		ing the cor:	responding imaginary			
		roots of the polynomial.				
IER	-	Error code	where:			
		IER=0	No error.			
		IER=1	M less than one.			
		IER=2	M greater than 36.			
		IER=3	Unable to determine			
			root with 500 iterations			
			on 5 starting values.			
		IER=4	High order coefficient is			
			zero.			

Remarks:

Limited to 36th order polynomial or less. Floating-point overflow may occur for high order polynomials but will not affect the accuracy of the results.

Subroutines and function subprograms required: None.

Method:

Newton-Raphson iterative technique. The final iterations on each root are performed using the original polynomial rather than the reduced polynomial to avoid accumulated errors in the reduced polynomial.

		reduced polynomial.	
	į	SUBROUTINE POLRT(XCOF,COF,M,ROOTR,ROOTI,IER) DIMENSION XCOF(1),COF(1),ROOTR(1),ROOTI(1)	POLRT 1 POLRT 2
		IFIT=0	POLRT 3 POLRT 4
		N=M IER=0	POLRT 5
_	10	[F(XCOF(N+1)) 10+25+10 [F(N) 15+15+32	POLRT 7
c		SET ERROR CODE TO 1 IER=1	POLRT 8 POLRT 9
c	20	RETURN SET ERROR CODE TO 4	POLRT 10 POLRT 11
		IER=4 30 TO 20	POLRT 12 POLRT 13
¢		SET ERROR CODE TO 2	POLRT 14 POLRT 15
	-	IF(N-36) 35+35+30	POLRT 16 POLRT 17
	35	NX=N	POLRT 18 POLRT 19
		NXX=N+1 N2=1	POLRT 20
		KJ1 = N+1 DO 40 L=1⊕KJ1	POLRT 21 POLRT 22
	40	MT=KJl=L+1 COF(MT)=XCOF(L)	POLRT 23 Polrt 24
c	45	SET INITIAL VALUES X0*.00500101	POLRT 25 POLRT 26
c		YO=0.01000101 ZERO INITIAL VALUE COUNTER	POLRT 27 POLRT 28
-		IN=0 X=X0	POLRT 29 POLRT 30
c		INCREMENT INITIAL VALUES AND COUNTER X0=-10+0+Y0	POLRT 31 POLRT 32
		Y0=-10.0+X	POLRT 33
c		SET X AND Y TO CURRENT VALUE X=X0	POLRT 34 POLRT 35
		Y=Y0 IN=IN+1	POLRT 36 POLRT 37
	55	GO TO 59 IFIT=1	POLRT 38 POLRT 39
		XPR=X YPR=Y	POLRT 40 POLRT 41
c	59	EVALUATE POLYNOMIAL AND DERIVATIVES ICT=0	POLRT 42 POLRT A3
	60	UX=0+0 UY=0+0	POLRT 44 POLRT 45
		V =0+0 YT=0+0	POLRT 46 POLRT 47
		XT#1+0	POLRT 48 POLRT 49
		U=COF(N+1) IF(U) 65+130+65	POLRT 50
	63	DO 70 I=1+N L =N=I+1	POLRT 51 POLRT 52
		XT2=x*xTYeYT YT2=x*YT+YexT	POLRT 53 POLRT 54
		U=U+COF1L J=XT2 V=V+COF1L J=YT2	POLRT 55 Polrt 56
		FI=1 UX=UX+FI=XT+COF(L_)	POLRT 57 Polrt 54
		UY=UY-FI#YT#COF(L) XT=XT2	POLRT 59 Polrt 60
	70	YT=YT2 SUMSQ=UX=UX+UY=UY	POLRT 61 POLRT 62
	75	IF(SUMSQ) 75110,75 Dx=(v=uy-u=ux)/SUMSQ	POLRT 63 POLRT 64
		X=X+DX DY=~(U+UY+V+UX)/SUMSQ	POLRT 65
	79	A=A+DA	POLRT 66 POLRT 67
c	80	IF(ABS(DY)+ ABS(DX)-1+0E-05) 100+80+80 -STEP ITERATION COUNTER	POLRT 68 POLRT 69
		IF(ICT=500) 60+85+85	POLRT 70 POLRT 71
	90	IF(IFIT) 100,90,100 IF(1N=5) 50,95,95	POLRT 72 Polrt 73
c	95	SET ERROR CODE TO 3 IER=3	POLRT 74 POLRT 75
	100	GO TO 20 DC 105 L=1.NXX	POLRT 76 Polrt 77
		MT=KJ1=L+1 TEMP=XCOF(MT)	POLRT 78 POLRT 79
	105	XCOF(MT)=COF(L) COF(L)=TEMP	POLRT 80 POLRT 81
		ITEMP=N N=Nx	POLRT 82 POLRT 83
		NX=ITEMP IF(IFIT) 120+55+120	POLRT 84 POLRT 85
		IF(1FIT) 115,50,115 X=XPR	POLRT 86 POLRT 87 POLRT 88
		Y=YPR IFIT=0	POLRT 88
		IF1x1122+125+122 IF1AB5(Y)-AB5(X)+1+0E=04/135+125+125	POLRT 89 POLRTMO1
	125	ALPHA=X+X	POLRTMOZ POLRT 91
		SUMSQ=x*x+Y+Y N=N-2	POLRT 92 POLRT 93
	130	GO TO 140 X=0+0	POLRT 94 POLRT 95
		NX=NX-1 NXX=NXX-1	POLRT 96 Polrt 97 Polrt 98
	135	Y=0+0 SUMSG=0+0	POLRT 98 POLRT 99
		ALPMA=X N=N-1	POLRT100 POLRT101
	140	L1=1 L2=2	POLRTM03 POLRTM04
	145	COF(L2)=COF(L2)+ALPHA+COF(L1) D0 150 L=2+N	POLRTMOS
	150	COF(L=1)=COF(L=1)+ALPHA*COF(L)=SUMSQ*COF(L=1) ROOTI(N2)=Y	POLRT103 POLRT104 POLRT105
		ROOTR(N2)=X N2=N2+1	POLRT105 POLRT106
	160	TF(SUMSQ) 160+165+160 ∀=-Y	POLRT107 POLRT108
		SUMSQ=0.0	POLRT109 POLRT113
	165	GO TO 155 IF(N) 20+20+45	POLRT111 POLRT112
		END	PULRT113

PADD

Purpose:

Add two polynomials.

Usage:

 \mathbf{Z}

CALL PADD(Z, IDIMZ, X, IDIMX, Y, IDIMY)

Description of parameters:

- Vector of resultant coefficients, ordered from smallest to largest power.
- IDIMZ Dimension of Z (calculated).
- X Vector of coefficients for first polynomial, ordered from smallest to largest power.
- IDIMX Dimension of X (degree is IDIMX-1).
- Y Vector of coefficients for second polynomial, ordered from smallest to largest power.
- IDIMY Dimension of Y (degree is IDIMY-1).

Remarks:

Vector Z may be in same location as either vector X or vector Y only if the dimension of that vector is not less than the other input vector. The resultant polynomial may have trailing zero coefficients.

Subroutines and function subprograms required: None.

Method:

Dimension of resultant vector IDIMZ is calculated as the larger of the two input vector dimensions. Corresponding coefficients are then added to form Z.

	SUBROUTINE PADD(2, IDIM2, X, ID(MX, Y, IDIMY)	PADD	1	
	DIMENSION 2(1).x(1).Y(1)	PADD	2	
c	TEST DIMENSIONS OF SUMMANDS	PADD	3	
	NDIN=IDIMX	PADD	4	
	IF (IDIMX-IDIMY) 10,20,20	PADO	Ś	
10	NDIM=IDIMY	PADO	6	
20	1F(ND[N] 90.90.30	PADD	7	
30	00 80 [=1.ND[H	PADD	8	
	1F(1-101HX) 40.40.60	PADD	ä	
40	IF(1-101MY) 50.50.70	PADD	10	
50	Z([]=X([]+Y(])	PADD	ii	
	GQ TQ 80	PADD	12	
60	2(1)=Y(1)	PA80	13	
	GD TO 80	PADD	14	
70	2([)=x([)	PADD	is	
	CONTINUE	PADD	16	
	IDINZ-NDIM	PADD	17	
	RETURN	PADO	18	
	END	PADO	19	

PADDM

Purpose:

Add coefficients of one polynomial to the product of a factor by coefficients of another polynomial. Usage:

CALL PADDM(Z, IDIMZ, X, IDIMX, FACT, Y, IDIMY)

Description of parameters:

- Z Vector of resultant coefficients, ordered from smallest to largest power.
- IDIMZ Dimension of Z (calculated).
- Vector of coefficients for first polynomial, ordered from smallest to largest power.
- IDIMX Dimension of X (degree is IDIMX-1).
- FACT Factor to be multiplied by vector Y.
- Y Vector of coefficients for second polynomial, ordered from smallest to largest power.

IDIMY - Dimension of Y (degree is IDIMY-1). Remarks:

Vector Z may be in same location as either vector X or vector Y only if the dimension of that vector is not less than the other input vector. The resultant polynomial may have trailing zero coefficients.

Subroutines and function subprograms required: None.

Method:

Dimension of resultant vector IDIMZ is calculated as the larger of the two input vector dimensions. Coefficient in vector X is then added to coefficient in vector Y multiplied by factor to form Z.

		SUBROUTINE PADDMIZ, IDIMZ, X, IDIMX, FACT, Y, IDIMY)	PADDM	1
		DIMENSION 2(1)+X(1)+Y(1)	PADON	2
С		TEST DIMENSIONS OF SUMMANDS	PADDH	3
•		NDEM= IDIMX	PADDH	4
		[F[[D]HX-]D]HY} 10.20.20	PADDH	- 5
	10	ND[H=IDIMY	PADDH	6
		[F(NDIM] 90,90,30	PADDA	
		DO 80 1=1-NDIM	PADDH	8
	30	[F[]-[D]HX} 40.40.60	PADDM	
	40	IF(I-IDIMY) 50,50,70	PADON	
		Z(1) = FACT + Y(1) + X(1)	PADDN	
	20		PADDH	
			PADDN	
	80	2(1)=FACT+Y(1)		
		GO TO 80	PADDM	
		Z(1)=X(1)	PADON	
	80	CONTINUE	PADDN	
	90	IDIMZ=NDIM	PADDM	
		RETURN	PADDH	
		END	PADON	19

PCLA

Purpose:

Move polynomial X to Y.

Usage:

CALL PCLA(Y, IDIMY, X, IDIMX)

Description of parameters:

- Y Vector of resultant coefficients, ordered from smallest to largest power.
- IDIMY Dimension of Y.

- Vector of coefficients for polynomial, ordered from smallest to largest power.
- IDIMX Dimension of X.

Remarks:

None.

Subroutines and function subprograms required: None.

Method:

IDIMY is replaced by IDIMX and vector X is moved to Y.

	SUBROUTINE POLA (Y, IDIMY, X, IDIMX)	PCLA	1
	DIMENSION X(1),Y(1)	PCLA	2
	IDIMY=IDIMX	PCLA	3
	(F(10)MX) 30,30,10	PCLA	4
10	DO 20 1=1, IDIHX	PCLA	5
	Y([)=X(])	PCLA	6
	RETURN	PCLA	7
	ENO	PCLA	8

PSUB

Purpose:

Subtract one polynomial from another.

Usage:

CALL PSUB(Z, IDIMZ, X, IDIMX, Y, IDIMY)

Description of parameters:

\mathbf{Z}	-	Vector of resultant coefficients,
		ordered from smallest to largest
		power.

- IDIMZ Dimension of Z (calculated).
- X Vector of coefficients for first polynomial, ordered from smallest to largest power.
- IDIMX Dimension of X (degree is IDIMX-1).
- Y Vector of coefficients for second polynomial, ordered from smallest to largest power.
- IDIMY Dimension of Y (degree is IDIMY-1).

Remarks:

Vector Z may be in same location as either vector X or vector Y only if the dimension of that vector is not less than the other input vector. The resultant polynomial may have trailing zero coefficients.

Subroutines and function subprograms required: None.

Method:

Dimension of resultant vector IDIMZ is calculated as the larger of the two input vector dimensions. Coefficients in vector Y are then subtracted from corresponding coefficients in vector X.

	SUBROUTINE PSUB(2,10142,X,1014X,Y,1014Y)	PSUB	1
	DIMENSION Z(1),X(1),Y(1)	PSUB	ż
c	TEST DIMENSIONS OF SUMMANOS	PSUB	3
	NDIMEIDIMX	PSUB	4
	IF (IDIMX-IDIMY) 10,20,20	PSUB	5
10	NDIM-IDIMY	PSUB	6
20	IF (NDIM) 90.90.30	PSUB	7
30	DO 80 [=1.ND[H	PSUB	8
	IF (1-IDIMX) 40,40,60	PSUB	9
40	1F (1-101MY) 50,50,70	PSUB	10
50	Z(1) = X(1) - Y(1)	PSUB	11
	GO TO 80	PSUB	١ź
60	2([]=-Y([]	PSUB	13
	GO TO 80	PSUB	14
70	Z{[}*X{])	PSUB	15
80	CONTINUE	PSUB	16
90	IDIMZ=NDIM	PSUB	17
	RETURN	PSUB	18
	END	PSUB	19

PMPY

Purpose:

Multiply two polynomials.

Usage:

 \mathbf{Z}

CALL PMPY(Z, IDIMZ, X, IDIMX, Y, IDIMY)

Description of parameters:

- Vector of resultant coefficients, ordered from smallest to largest power.
- IDIMZ Dimension of Z (calculated).
- X Vector of coefficients for first polynomial, ordered from smallest to largest power.
- IDIMX Dimension of X (degree is IDIMX-1).
- Y Vector of coefficients for second polynomial, ordered from smallest to largest power.
- IDIMY Dimension of Y (degree is IDIMY-1).

Remarks:

Z cannot be in the same location as X.

Z cannot be in the same location as Y.

Subroutines and function subprograms required: None.

Method:

Dimension of Z is calculated as IDIMX+IDIMY-1. The coefficients of Z are calculated as sum of products of coefficients of X and Y, whose exponents add up to the corresponding exponent of Z.

	SUBROUTINE PMPY12, IDIMZ, X, IDIMX, Y, IDIMY)	PNPY	1
	DIMENSION 2(1),X(1),Y(1)	PMPY	2
	IF(IDIMX*IDIM*)10,10,20	PMPY	3
10	IDIMZ=0	PMPY	4
	GO TO 50	PNPY	5
20	IDIM2=IDIMX+IDIMY-1	PMPY	6
	DO 30 1=1,101H2	PHPY	7
30	2(1)=0.	PMPY	, A
	00 40 1=1, IDIMX	PMPY	9
	DO 40 J=1.IDIMY	PMPY	10
	K=[+J-1	PNPY	11
60	Z(K)=X(1)+Y(J)+Z(K)	PNPY	12
50	RETURN	PMPY	13
	END	PMPY	14

PDIV

Purpose: Divide one polynomial by another.

Usage:

CALL PDIV(P, IDIMP, X, IDIMX, Y, IDIMY, TOL, IER)

Description of parameters:

Р	-	Resultant	vector	of	integral	part.
---	---	-----------	--------	----	----------	-------

- IDIMP Dimension of P.
- X Vector of coefficients for dividend polynomial, ordered from smallest to largest power. It is replaced by remainder after division.

IDIMX - Dimension of X.

- Y Vector of coefficients for divisor polynomial, ordered from smallest to largest power.
- IDIMY Dimension of Y.
- TOL Tolerance value below which coefficients are eliminated during normalization.
- IER Error code. 0 is normal, 1 is for zero divisor.

Remarks:

The remainder R replaces X.

The divisor Y remains unchanged.

If dimension of Y exceeds dimension of X,

IDIMP is set to zero and calculation is bypassed.

Subroutines and function subprograms required: PNORM

Method:

Polynomial X is divided by polynomial Y giving integer part P and remainder R such that $X = P^*Y + R$.

Divisor Y and remainder vector get normalized.

		SUBROUTINE POIV(P, IDIMP, X, IDIMX, Y, IDIMY, TOL, IER)	PDIV	1
		DIMENSION P(1),X(1),Y(1)	PDIV	2
		CALL PNORM LY, IDIMY, TOLI	PDIV	3
		IF([D]MY) 50,50,10	PDIV	- 4
	10	IDIMP=IDIMX-IDIMY+I	PDIV	- 5
		IF([DIMP] 20,30,50	PDIV	6
С		DEGREE OF DIVISOR WAS GREATER THAN DEGREF OF DIVIDEND	PDÍV	7
	20	IDIMP=0	PDIV	8
	30	IER=0	PDIV	9
	40	RETURN	PDIV	10
c		Y IS ZERO POLYNOMIAL	POIV	11
	50	1ER=1	PDIV	12
		GU TO 40		13
С		START REDUCTION		14
	60	IDIMX=IDIMY-1		15
		I=IDINP		16
	70	II=I+IDIMX		17
		P(1)=X{II)/Y(IDIMY)	POIV	18
с		SUBTRACT MULTIPLE OF DIVISOR	PDIV	19
		DO NO K=1,IDIMX	PDIV	20
		J=K-1+1	PDIV	21
		x(J)=x(J)-P(E)=Y(K)	PDIV	22
	80	CONTINUE	PDIV	23
		1=1-1	PDIV	24
		IF(1) 90,90,70	PDIV	25
С		NORMALIZE REMAINDER POLYNOMIAL	PD1 V	26
	90	CALL PNORM(X, IDIMX, TOL)	PDIV	27
		GO TO 30	PDIV	28
		END	POIV	29

PQSD

Purpose:

Perform quadratic synthetic division.

Usage:

CALL PQSD(A, B, P, Q, X, IDIMX)

Description of parameters:

- A Coefficient of Z in remainder (calculated).
- B Constant term in remainder (calculated).
- P Coefficient of Z in quadratic polynomial.
- Q Constant term in quadratic polynomial.

3

- Coefficient vector for given polynomial, ordered from smallest to largest power.
- IDIMX Dimension of X.

Remarks:

х

None.

Subroutines and function subprograms required: None.

Method:

The linear remainder A*Z+B.

	SUBROUTINE POSDIA,8,P,0,X,IDIMX)	POSD	t
	DIMENSION X(1)	PQSD	ż
	A=0.	PQSD	3
	B=0.	PQSO	4
	J=[D]MX	POSD	5
1	1F(J)3,3,2	POSD	6
2	Z=P*A+B	POSD	7
	B=Q#A+X[J]	POSD	8
	A=2	PQ50	9
	1-L≈L	POSD	10
	GO TO 1	POSD	11
3	RETURN	PQ\$0	12
	END	PQSD	13

PVAL

Purpose:

Evaluate a polynomial for a given value of the variable.

Usage:

CALL PVAL(RES, ARG, X, IDIMX)

Description of parameters:

RES - Resultant value of polynomial.

- ARG Given value of the variable.
 - Vector of coefficients, ordered from smallest to largest power.

IDIMX - Dimension of X.

Remarks:

х

None.

Subroutines and function subprograms required: None.

Method:

Evaluation is done by means of nested multiplication.

	SUBROUTINE PVALIRES, ARG, X, IDIMXI	PVAL	ı	
		PVAL	2	
	DIMENSION X(1)	PVAL	3	
	RES=0.	PVAL	4	
	J=ID1MX	PVAL	5	
1	1F[J]3,3,2			
2	RES=RES#ARG+X(J)	PVAL	6	
	j=j−1	PVAL	7	
	GO TO 1	PVAL	9	
2	RETURN	PVAL	9	
	END	PVAL	10	
	ENU			

PVSUB

Purpose:

Substitute variable of a polynomial by another polynomial.

Usage:

CALL PVSUB(Z, IDIMZ, X, IDIMX, Y, IDIMY, WORK1, WORK2)

Description of parameters:

Depeription	~ r	a anoto z.
Z	-	Vector of coefficients for resultant polynomial, ordered from smallest to largest power.
IDIMZ	-	Dimension of Z.
X	-	Vector of coefficients for original polynomial, ordered from smallest to largest power.
IDIMX	-	Dimension of X.
Y	-	Vector of coefficients for polynomial which is substituted for variable, ordered from smallest to largest power.
IDIMY	-	Dimension of Y.
WORK1	-	Working storage array (same dimension as Z).
WORK2	-	Working storage array (same dimension as Z).
Remarks: None.		
Subroutines a	and	function subprograms required:

PMPY PADDM

PCLA

Method:

Variable of polynomial X is mubstituted by polynomial Y to form polynomial Z. Dimension of new polynomial is (IDIMX-1)*(IDIMY-1)+1. Subroutine requires two work areas.

	SUBROUTINE PVSUB(Z, IDINZ, X, IDINX, Y, IDINY, WORK1, WORK2)	PVSUA	1
	DIMENSION 2(1),X(1),Y(1),WORK1(1),WORK2(1)	PVSUB	2
	TEST OF DIMENSIONS	PVSUB	3
	IF (IDIMX-1) 1.3.3	PVSUB	4
1	ID1 17 = 0	PVSUB	5
	RETURN	PVSUB	6
	IDIMZ=1	PVSUB	7
	Z(1)=X(1)	PVSUB	A
	IF (IDIMY*IDIMX-IDIMY) 2.2.4	PVSUB	9
4	Wi=1	PVSUB	10
	WORK1(1)=1.	PVSUA	-ii
	00 5 [=2.10] MX	PVSUB	12
	CALL PHPYINORK2, IN2, Y, IDIMY, WORK1, IW1)	PVSUR	13
	CALL PCLA(WORK1. [W1.WORK2. [W2]	PVSU9	14
		PVSUB	15
	CALL PADDM(Z+IDINZ+Z+IDIMZ+FACT+WORK1+TW1)	PVSUB	16
5	CONTINUE	PVS1/B	17
	GO TO 2	PVSUB	19
	END	PVSUB	

PCLD

Purpose:

Shift of origin (complete linear synthetic division).

Usage:

CALL PCLD(X, IDIMX, U)

Description of parameters:

Х	-	Vector of coefficients, ordered from
		smallest to largest power. It is re-
		placed by vector of transformed co-
		efficients.
IDIMX	_	Dimension of X.

Dimension of X.

U - Shift parameter.

Remarks:

None.

Subroutines and function subprograms required: None.

Method:

Coefficient vector X(I) of polynomial P(Z) is transformed so that Q(Z)=P(Z-U) where Q(Z)denotes the polynomial with transformed coefficient vector.

SUBROUTINE PCLD (X, IDIMX, U)	PCLO	
		1
DIMENSION X[1]	PCLD	2
K=1	PCLD	3
1 J=IDIMX	PCLD	- 4
2 IF (J-K) 4+4+3	PCLO	5
3 X(J-1)=X[J-1)+U+X(J)	PCLD	6
1=J-1	PCLD	7
GO TO 2	PCLD	8
4 K=K+1	PCLO	9
IF (IDIMX-K) 5,5,1	PCLD	10
5 RETURN	PCLD	11
END	PCLO	12

PILD

Purpose:

Evaluate polynomial and its first derivative for a given argument.

Usage:

CALL PILD(POLY, DVAL, ARGUM, X, IDIMX)

Description of parameters:

POLY	-	Value of polynomial.
DVAL	-	Derivative.
ARGUM	-	Argument.
Х	-	Vector of coefficients for poly-
		nomial, ordered from smallest
		largest power.
IDIMX	-	Dimension of X.

Remarks:

None.

Subroutines and function subprograms required: PQSD

Method:

Evaluation is done by means of subroutine PQSD (quadratic synthetic division).

SUBROUTINE PILD (POLY, DVAL, ARGUM, X, IDIMX)	PIID	1
DIMENSION X(1)	PILD	ż
P=ARGUM+ARGUM		
D=-ARGUN+ARGIIM	PILD	3
	PILD	- 4
CALL POSD (DVAL, POLY, P.Q.X, IDIMX)	PILD	5
POLY=ARGUM#OVAL+POLY	PILD	6
RETURN	PILD	- 7
END	PILD	ġ

PDER

Purpose:

Find derivative of a polynomial.

Usage:

CALL PDER(Y, IDIMY, X, IDIMX)

Description of parameters:

Y	-	Vector of coefficients for derivative,
		ordered from smallest to largest
		power.

IDIMY - Dimension of Y (equal to IDIMX-1).

- Vector of coefficients for original polynomial, ordered from smallest to largest power.
- IDIMX Dimension of X.

Remarks:

None.

Subroutines and function subprograms required: None.

Method:

Dimension of Y is set at dimension of X less one. Derivative is then calculated by multiplying coefficients by their respective exponents.

	SUBROUTINE PDER(Y, LDIMY, X, LDIMX)
	DIMENSION X(1),Y(1)
	TEST OF DIMENSION
	IF ([DIMX-1] 3,3,1
l	IDIMY-IDIMX-1
	EXPT=0.
	DO 2 [=1.IDINY
	EXPT=EXPT+1.
,	Y(1)=x(1+1)*ExPT
	60 TO 4

RETURN

PINT

to

Purpose:

Find integral of a polynomial with constant of integration equal to zero.

Usage:

CALL PINT(Y, IDIMY, X, IDIMX)

Description of parameters:

Y	-	Vector of coefficients for integral, ordered from smallest to largest power.
IDIMY	-	Dimension of Y (equal to IDIMX+1).
X	-	Vector of coefficients for original polynomial, ordered from smallest to largest power.
IDIMX	-	Dimension of X.

Remarks:

None.

Subroutines and function subprograms required: None.

Method:

Dimension of Y is set at dimension of X plus one, and the constant term is set to zero. Integral is then calculated by dividing coefficients by their respective exponents.

	PINT	ı
SUBROUTINE PINITY I UIMTEATIDIAA	PINT	2
		3
IDIMA=IDIWX+I		4
Y(1)=0.		
		5
	PINT	- 6
	PINT	7
EXPT=1.	DINT	5
00 3 1=2,101NY		ē
V(1)=V(1=1)/FXPT		
	PINT	10
	PINT	11
GO TO 1	PINT	12
END		•••
	Y(I)=X(I-1)/EXPT EXPT=EXPT+1. GO TO 1	SUBROUTINE PINITY, LOINT, A. JUINA, PINT DIRENSION X(1), Y(1) PINT IDIANY PINT IDIANY PINT IF(IDIANY), L1.2 PINT RETURN PINT EXPT=1. PINT D0 3 1=2.101WY PINT EXPT=2 PINT EXPT=2 PINT C0 T0 1 PINT

PGCD

Purpose:

Determine greatest common divisor of two polynomials.

1 .

Usage:

CALL PGCD(X, IDIMX, Y, IDIMY, WORK, EPS, IER)

Description of parameters:

- Vector of coefficients for first polynomial, ordered from smallest to largest power.
- IDIMX Dimension of X.
- Y Vector of coefficients for second polynomial, ordered from smallest to largest power. This is replaced by greatest common divisor.
- IDIMY Dimension of Y.
- WORK Working storage array.
- EPS Tolerance value below which coefficient is eliminated during normalization.
 IER Resultant error code where:
 - Resultant error code where: IER=0 No error. IER=1 X or Y is zero polyno
 - mial.

Remarks:

IDIMX must be greater than IDIMY.

IDIMY=1 on return means X and Y are prime, the GCD is a constant.

Subroutines and function subprograms required: PDIV

PNORM

Method:

Greatest common divisor of two polynomials X and Y is determined by means of Euclidean algorithm. Coefficient vectors X and Y are destroyed and greatest common divisor is generated in Y.

		SUBROUTINE PGCD(X, IDIMX, Y, IDIMY, WORK, EPS, IER)	PGCD		
		DIMENSION X(1), Y(1), WORK(1)	PGCD	ż	
c		DIMENSION REQUIRED FOR VECTOR NAMED WORK IS IDIMX-IDIMY+1	PGCD	3	
	ł	CALL POIVINORK.NOIM.X.IDIMX.Y.IDIMY.EPS.IERI	PGCD	- ÷	
		(F(IER) 5.2.5	PGCO	Ś	
		IF(1014x) 5,5,3	PGCD	6	
с		INTERCHANGE X AND Y	PGED	ž	
-	3	00 4 J=1.IDINY	POCD	8	
		WORK(1)=X(J)	PGCO	ä	
		X(L)=Y(L)	FGCD	20	
		Y(J)=WORK(1)	PGCD	ü	
		NDIN=IDIMX	PGCO	iż	
		IDIMX-IDIMY	PGCD	13	
		IDINY=NDIM	PGCD	14	
		GO TO 1	PGCD	15	
		RETURN	PGCD	16	
		END	PGCD	17	
			FULD	.,	

PNORM

Purpose:

Normalize coefficient vector of a polynomial.

Usage:

CALL PNORM(X, IDIMX, EPS)

Description of parameters:

- X
- Vector of original coefficients, ordered from smallest to largest power. It remains unchanged.

- IDIMX Dimension of X. It is replaced by final dimension.
- EPS Tolerance below which coefficient is eliminated.

Remarks:

If all coefficients are less than EPS, result is a zero polynomial with IDIMX=0 but vector X remains intact.

Subroutines and function subprograms required: None.

Method:

Dimension of vector X is reduced by one for each trailing coefficient with an absolute value less than or equal to EPS.

SUBROUTINE PNORALX, IDINX, EPSI	PNORM	Ł
DIMENSION X(1)	PNORM	2
1 [F[]DINX] 4.4.2	PNORM	3
2 IF(ABS(X(ID)MX))-EPS) 3,3,4	PNDRM	4
3 IDIMX=IDIMX-4	PNORM	5
GO TO 1	PNORM	6
6 RETURN	PNORM	7
END	PNORM	8

APPENDIX A: ALPHABETIC GUIDE TO SUBROUTINES AND SAMPLE PROGRAMS, WITH STORAGE REQUIREMENTS

The following alphabetic index lists the number of characters of storage required by each of the subroutines in the Scientific Subroutine Package. The figures given were obtained by using 1130 Monitor FORTRAN, Version 2, Modification Level 1. Storage requirements are not given for the sample subroutines.

	Storage Required	
<u>Name</u>	(Words)	Page
ABSNT	94	16
ADSAM		179
ANOVA		164
ARRAY	198	86
AUTO	180	46
AVCAL	268	35
AVDAT	326	34
BESI	414	03
BESJ	448	99
BESK	844	104
BESY	704	101
BOOL		145
BOUND	206	14
CADD	92	72
CANOR	1132	30
ССРУ	78	82
CCUT	162	79
CEL1	126	105
CEL2	200	106
CHISQ	490	50
CINT	96	74

	Storage Required	
Name	(Words)	Page
CORRE	1164	23
CROSS	248	47
CS	310	112
CRST	306	78
CSUM	98	75
CTAB	198	76
CTIE	166	80
DASCR		144
DATA		151
		$\begin{array}{c} 160 \\ 173 \end{array}$
DCLA	50	84
DCPY	58	83
DISCR	980	39 ,
DMATX	422	38
EIGEN	1058	62
EXPI	262	108
EXPON		175
EXSMO	274	49
FACTO		. 172
FORIF	292	95
FORIT	284	96
FUN		184
GAMMA	260	97
GAUSS	68	60
GDATA	668	28

Name	Storage Required (Words)	Page	Name	Storage Required (Words)	Page
GMADD	52	64	MULTR	518	26
GMPRD	156	65	NROOT	752	32
GMSUB	52	64	ORDER	206	25
GMTRA	88	65	PADD	110	122
GTPRD	152	66	PADDM	118	122
HIST		145	PCLA	48	122
KRANK	524	56	PCLD	74	125
LEP	132	98	PDER	88	126
LOAD	98	42	PDIV	198	124
LOC	108	86	PILD	56	125
MADD	226	66	PINT	88	126
MATA	194	69	PGCD	108	126
MATIN		145	PLOT		156
		179 190	PMPY	142	123
MCANO		159	PNORM	48	127
MCPY	52	81	POLRG		155
MDISC		168	POLRT	820	120
MEANQ	560	36	PSUB	112	123
MFUN	66	85	PQSD	78	124
MINV	784	61	PVAL	54	124
MOMEN	404	20	PVSUB	132	125
MPRD	230	67	QATR	386	88
MSTR	116	84	QDINT		182
MSUB	226	67	QSF	806	87
MTRA		68	QTEST	232	54
MXOUT		80 91	RADD	90	71
		•			

ł

~

٠

	Storage Required			Storage Required	
<u>Name</u>	(Words)	Page	Name	(Words)	Page
RANDU	52	60	SIMQ	540	115
RANK	216	59	SMO	166	48
RCPY	78	82	SMPRT		186
RCUT	162	79	SMPY	56	70
RECP	44	85	SOLN		190
REGRE		150	SRANK	378	55
RINT	94	73	SRMA	108	72
RKGS	1174	92	SSUB	56	70
RKINT		184	SUBMX	134	20
RK1	468	90	SUBST	224	15
RK2	210	91	TAB1	612	16
RSUM	98	74	TAB2	1140	18
RSRT	308	77	TALLY	356	13
RTAB	198	75	TIE	196	59
RTIE	178	80	TPRD	230	68
RTMI	536	117	TRACE	160	41
RTNI	172	119	TTSTT	538	21
RTWI	208	116	TWOAV	324	53
SADD	56	69	UTEST	242	52
SCLA	52	83	VARMX	1186	43
SCMA	110	73	WTEST	498	58
SDIV	66	71	XCPY	128	81
SICI	366	110			

..

·

TO SE

• . • .

.

-ŧ. ۴ .

8

i

APPENDIX B: ACCURACY OF SUBROUTINES

The subroutines in SSP can be broken down into three major categories from the standpoint of accuracy. They are: subroutines having little or no affect on accuracy; subroutines whose accuracy is dependent on the characteristics of the input data; and subroutines in which definite statements on accuracy can be made.

SUBROUTINES HAVING LITTLE OR NO EFFECT ON ACCURACY

The following subroutines do not materially affect the accuracy of the results, either because of the simple nature of the computation or because they do not modify the data:

TALLY	totals, means, standard deviations,	SMPY
	minimums, and maximums	SDIV
BOUND	selection of observations within bounds	RADD
SUBST	subset selection from observation matrix	CADD
ABSNT	detection of missing data	SRMA
TAB1	tabulation of data (1 variable)	
TAB2	tabulation of data (2 variables)	SCMA
SUBMX	build subset matrix	RINT
MOMEN	first four moments	CINT
TTSTT	tests on population means	RSUM
ORDER	rearrangement of intercorrelations	CSUM
AVDAT	data storage allocation	RTAB
TRACE	cumulative percentage of eigenvalues	CTAB
CHISQ	χ^2 test for a contingency table	RSRT
UTEST	Mann-Whitney U-test	CSRT
TWOAV		RCUT
	Friedman two-way analysis of variance	CCUT
QTEST	Cochran Q-test	RTIE
SRANK	Spearman rank correlation	CTIE
KRANK	Kendall rank correlation	MCPY
WTEST	Kendall coefficient of concordance	XCPY
RANK	rank observations	RCPY
		CCPY
TIE	calculation of ties in ranked observations	DCPY
RANDU	uniform random numbers	SCLA
GAUSS	normal random numbers	DCLA

GMADD	add two general matrices
GMSUB	subtract two general matrices
GMPRD	product of two general matrices
GMTRA	transpose of a general matrix
GTPRD	transpose product of two general matrices
MADD	add two matrices
MSUB	subtract two matrices
MPRD	matrix product (row into column)
MTRA	transpose a matrix
TPRD	transpose a product
MATA	transpose product of matrix by itself
SADD	add scalar to matrix
SSUB	subtract scalar from a matrix
SMPY	matrix multiplied by a scalar
SDIV	matrix divided by a scalar
RADD	add row of one matrix to row of an- other matrix
CADD	add column of one matrix to column of another matrix
SRMA	scalar multiply row and add to another row
SCMA	scalar multiply column and add to an- other column
RINT	interchange two rows
CINT	interchange two columns
RSUM	sum the rows of a matrix
CSUM	sum the columns of a matrix
RTAB	tabulate the rows of a matrix
CTAB	tabulate the columns of a matrix
RSRT	sort matrix rows
CSRT	sort matrix columns
RCUT	partition row-wise
CCUT	partition column-wise
RTIE	adjoin two matrices row-wise
CTIE	adjoin two matrices column-wise
MCPY	matrix copy
XCPY	copy submatrix from given matrix
RCPY	copy row of matrix into vector
CCPY	copy column of matrix into vector
DCPY	copy diagonal of matrix into vector
SCLA	matrix clear and add scalar
DCLA	replace diagonal with scalar

MSTR	storage conversion
MFUN	matrix transformation by a function
RECP	reciprocal function for MFUN
LOC	location in compressed-stored matrix
CONVT	single precision, double precision conversion
ARRAY	vector storagedouble dimensioned conversion
PADD	add two polynomials
PADDM	multiply polynomial by constant and add to another polynomial
PCLA	replace one polynomial by another
PSUB	subtract one polynomial from another
PMPY	multiply two polynomials
PDIV	divide one polynomial by another
PQSD	quadratic synthetic division of a polynomial
PVAL	value of a polynomial
PVSUB	substitute variable of polynomial by another polynomial
PCLD	complete linear division
PILD	evaluate polynomial and its first derivative
PDER	derivative of a polynomial
PINT	integral of a polynomial
PGCD	greatest common divisor of two polynomials
PNORM	normalize coefficient vector of polynomial

SUBROUTINES WHOSE ACCURACY IS DATA DEPENDENT

The accuracy of the following subroutines cannot be predicted because it is dependent on the characteristics of the input data and on the size of the problem. The programmer using these subroutines must be aware of the limitations dictated by numerical analyses considerations. It cannot be assumed that the results are accurate simply because subroutine execution is completed. Subroutines in this category are:

CORRE	means, standard deviations, and correlations
MULTR	multiple regression and correlation
GDATA	data generation
CANOR	canonical correlation
NROOT	eigenvalues and eigenvectors of a special nonsymmetric matrix

Σ and Δ operation
mean square operation
means and dispersion matrix
discriminant functions
factor loading
varimax rotation
autocovariances
crosscovariances
application of filter coefficients (weights)
triple exponential smoothing
matrix inversion
eigenvalues and eigenvectors of a real, symmetric matrix
solution of simultaneous linear, alge- braic equations
integral of tabulated function by Simpson's Rule
integral of given function by trapezoidal rule
integral of first-order differential equation by Runge-Kutta method
tabulated integral of first-order differ- ential equation by Runge-Kutta method
solution of a system of first-order differential equations by Runge-Kutta method
Fourier analysis of a given function
Fourier analysis of a tabulated function
refine estimate of root by Wegstein's iteration
determine root within a range by Mueller's iteration
refine estimate of root by Newton's iteration
real and complex roots of polynomial

ā

3

SUBROUTINES WITH DEFINITE ACCURACY CHARACTERISTICS

This table was developed by comparing floating-point results from the subroutines with the tables given in Abramowitz and Stegun*. In certain cases the reference table gave results in fixed-point form. In these cases the maximum differences below are given in terms of number of decimal places (d.p.) which agreed, rather than number of significant digits (s.d.) which agree. In compiling maximum differences, the maximum was taken over the set of points indicated in the table. The average difference was normally much smaller.

The notation x = a (b) c implies that a, a + b, a + 2b, ..., c were the arguments (x) used.

Name	Functions	Remarks	Allowable Parameter Range	Range Checked with references*	Maximum Difference s.d.=significant digits d.p.=decimal places	
GAMMA	Γ(x) (gamma)		$x \leq 34.5$, and x not within 10^{-6} of zero or a negative integer	x = .1 (.1) 3 x = 1 (1) 34	2 in 6th s.d. 1 in 6th s.d.	
LEP	P _n (x) (Legendre)		$\begin{array}{c} -1 \leq x \leq 1 \\ n \geq 0 \end{array}$		3 in 6th s.d. 1 in 5th s.d.	
BESJ	Jn(x) (Bessel)	(The accuracy Factor, D, used	x>0; n>0		8 in 6th s.d.	
		in the program was 10 ⁻⁵ .)	when $x \leq 15$; $n < 20 + 10x^{-x^2/3}$	n = 3 (1) 9 x = 1 (1) n-2	1 in 5th s.d.	
			when $x > 15$, n < 90 + x/2	when x >15, n<90 + x/2	n = 3 (1) 9 x = n - 1 (1) 20	1 in 5th d.p.
				x = 1, 2, 5, 10, 50 n = 10 (10) 50 **	3 in 6th s.d.	
BESY	Yn(x) (Bessel)		$n \ge 0$ x > 0	x = 1 (1) 17 n = 0, 1, 2	9 in 6th s.d.	
				n = 3 (1) 9 x = 1 (1) n-2	1 in 5th s.d.	
				n = 3 (1) 9 x = n-1 (1) 20	1 in 5th d.p.	
				x = 1, 2, 5, 10, 50 n = 10 (10) 50**	3 in 5th s.d.	
BESI	I _n (x) (Bessel)	(Table values are e ^{-xI} n(x). maximum	$\begin{array}{c} x > 0 \\ 0 \leq n \leq 30 \end{array}$	x = 1 (1) 20 n = 0, 1	8 in 7th s.d.	
		difference is for these values)		x = 5 (1) 20 n = 2	6 in 7th s.d.	
				x = 1 (1) 20 n = 3 (1) 9	1 in 5th s.d.	
		(Table values are I _n (x))		x = 1, 2, 5, 10 n = 10, 20, 30**	8 in 7th s.d.	

Subroutines with Definite Accuracy Characteristics (continued)

Name	Functions	Remarks	Allowable Parameter Range	Range Checked with references*	Maximum Difference s.d.=significant digits d.p.=decimal places
BESK	K _n (x) (Bessel)	(Table values are e ^x K _n (x). These were	$\begin{array}{c} x > 0 \\ n \ge 0 \end{array}$	x = 1 (1) 20 n = 0, 1	8 in 7th s.d.
		used for maxi- mum differ- ences)		x = 5 (1) 20 n = 2	9 in 7th s.d.
				x = 1 (1) 20 n = 3 (1) 9	1 in 5th s.d.
		(Tabled values are K _n (x)		x = 1,2,5,10,50 n = 10 (10) 50**	1 in 6th s.d.
CEL1	K (k) (elliptic 1st integral)	(Tabled values are $K(m)$; $m = k^2$	-1 ∠ k ∠ 1	m = 0 (.1) .9	1 in 7th s.d.
CEL2	Generalized Integral of 2nd	$\begin{array}{c}$	-1∠k∠1	m = 0 (.1).9	1 in 7th s.d.
	kind)	A = B = 1 E(m) when A = 1, $B = ck^{2}$ where m = k^{2}		m = 0 (.1).9	1 in 7th s.d.
EXPI	Exponential Integral	-Ei (-x) when X<0	x ≥ -4	x =5(5)-2	0 in 7th s.d.
	-	E ₁ (x) when		x = -2.5 (5) -4	1 in 7th s.d.***
		x>0		x = .5 (.5) 2	2 in 7th s.d.
				x = 2.5 (.5) 4	6 in 5th s.d.***
				x = 4.5 (.5) 8	3 in 7th s.d.***
SICI	s _i (x) (sine integral)		none		3 in 7th s.d. 0 in 7th s.d.
SICI	C i (x) (cosine integral)		none	x = 1 (1) 10 $x = 10 \pi$	3 in 7th s.d. 0 in 5th s.d.
CS CS	$C_2(u)$		none	x = .1, .3, .6, .8	1 in 6th s.d.
	(Fresnel) $\mu = \frac{1}{2}\pi x^2$			x = 1 (1) 5	2 in 7th s.d.
Cs	S(u) (Fresnel)		none	x = .1, .3, .6, .8	1 in 4th s.d.
	$\mu = \frac{1}{2}\pi x^2$	·		x = 1 (1) 5	3 in 7th s.d.

*Handbook of Mathematical Functions, Abramowitz and Stegun, National Bureau of Standards publication. **Results outside the range of the 1130 are set to zero or machine infinity. Results are subject to com-

patability of x and n. ***Tabled results, used for maximum difference, were given for $xe^{x}E_{i}$ (-x) and $xe^{x}E_{1}(x)$

APPENDIX C: TIMING

1. Sample program SOLN was chosen to exemplify the overall timing of a problem. In all cases the 1442 Card Reader, Model 7, is used for input and all necessary subroutines are already on disk. (Core speed: $3.6 \mu s.$)

- a. Compile time, using a LIST ALL card (gives a program listing of its 56 cards and a memory map which includes variable allocations, statement allocations, features supported, called subprograms, integer constants, and core requirements), requires 1 minute 32 seconds on the 1132 Printer. (Compile time, minus the LIST ALL card, requires 36 seconds.)
- b. To store the program on disk takes 10 seconds.
- c. After the XEQ control card is read, the computer uses 17 seconds to locate the necessary subprograms and the main program, and to load them in core.
- d. Execution time is four seconds. Output printing time is 53 seconds on an 1132 Printer and 3 minutes 32 seconds on the console typewriter.

2. To illustrate the computational time used by an IBM 1130 computer, the following program was selected:

```
DIMENSION A(1600), L(40), M(40)
  IX=3
2 PAUSE 1
  DO 1 I=1.1600
  CALL RANDU (IX, IY, Y)
  IX≔IY
1 A(I) = Y
  PAUSE 2
  CALL MINV (A,10,D,L,M)
  PAUSE 3
  CALL MINV (A,15,D,L,M)
  PAUSE 4
  CALL MINV (A,20,D,L,M)
  PAUSE 5
  CALL MINV (A,30,D,L,M)
  PAUSE 6
  CALL MINV (A,40,D,L,M)
  PAUSE 7
  GO TO 2
  END
```

a. RANDU - random number generator subroutine. To generate 1600 numbers, using subroutine RANDU, execution time is 5 seconds.

- MINV matrix inversion subroutine. Matrix inversion, using subroutine MINV, is performed on five different sized matrices, with the following results in execution time:
 - (1) The 10 x 10 matrix uses 4 seconds.
 - (2) The $15 \ge 15$ matrix uses 12 seconds.
 - (3) The 20 x 20 matrix uses 27 seconds.
 - (4) The 30 x 30 matrix uses 1 minute 28 seconds.
 - (5) The 40 x 40 matrix uses 3 minutes 27 seconds.

SAMPLE PROBLEM TIMING

The table below gives sample problem times from the reading of the XEQ card to the printing, on the 1132 Printer, of the last output line:

<u>Problem</u>			Time	
DASCR	2 min.	20 sec.	(5 min. 30 sec. using the console typewriter)	
ADSAM	1 min.	25 sec.		
ANOVA		55 sec.		
EXPON	1 min.	5 sec.		
FACTO	1 min.	55 sec.		
MCANO	1 min.	55 sec.		
MDISC	2 min.	12 sec.		
POLRG	2 min.	53 sec.		
QDINT		30 sec.		
REGRE	2 min.	25 sec.		
RKINT		55 sec.		
SMPRT		30 sec.		

SOLN 1 min. 15 sec.

APPENDIX D: SAMPLE PROGRAMS

This appendix describes a set of sample programs designed to illustrate typical applications of the scientific subroutines. The sample programs also make use of certain user-written special sample subroutines. Such subroutines are, of course, to be taken only as typical solutions to the problem under consideration, each user being urged to tailor such subroutines to his own specific requirements.

A "Guide to the Sample Programs" immediately follows this introduction. The guide indicates the location of the sample program (if any) calling a particular subroutine of the SSP or referencing a special sample subroutine. The SSP listings are <u>not</u> repeated in this appendix; to locate such listings refer to "Guide to Subroutines" in the introduction.

Listings of the special sample subroutines (HIST, MATIN, PLOT, MXOUT, BOOL, DATA, and FUN) are provided immediately following each sample program. The subroutines DATA, MATIN, and MXOUT are used with several sample programs, and for purposes of clarity the listings of these special user-written routines are repeated with each sample program.

GUIDE TO THE SAMPLE PROGRAMS

Data Screening		
DASCRSample Main Program		
Illustrates use of:		
SUBSTsubset selection from observation matrix		
TAB1tabulation of data (1 variable)		
LOClocation in compressed-stored matrix		
Special sample subroutines are:		
BOOLBoolean expression		
HISThistogram printing		
MATINmatrix input		
Multiple Regression		
REGRESample Main Program		
Illustrates use of:		
CORREmeans, standard deviations, and correlations		
ORDERrearrangement of intercorrelations	5	

MINVmatrix inversion	
MULTRmultiple regression	
Special sample subroutine is:	
DATAsample data read	151
Polynomial Regression	
POLRGSample Main Program	155
Illustrates use of:	
GDATAdata generation	
ORDERrearrangement of intercorrelations	3
MINVmatrix inversion	
MULTRmultiple regression	
Special sample subroutine is:	
PLOToutput plot	156
Canonical Correlation	
MCANOSample Main Program	159
Illustrates use of:	
CORREmeans, standard deviations, and correlations	
CANORcanonical correlation	
MINVmatrix inversion	
NROOTeigenvalues and eigenvectors of a special, nonsymmetric matrix	
EIGENeigenvalues and eigenvectors of a symmetric matrix	
Special sample subroutine is:	
DATAsample data read	160
Analysis of Variance	
ANOVASample Main Program	164
Illustrates use of:	
AVDATdata storage allocation	
AVCAL Σ and Δ operation	
MEANQmean square operation	

Page

	Page		Page
Discriminant Analysis		Illustrates use of:	
MDISCSample Main Program		QSFnumerical integration by Simpson's rule	
Illustrates use of:		Runge-Kutta Integration	
DMATXmeans and dispersion matrix		RKINTSample Main Program	184
MINVmatrix inversion			101
DISCRdiscriminant functions		Illustrates use of: RK2Runge-Kutta integration	
Factor Analysis		Special sample function is:	
FACTOSample Main Program	172	FUNdefinition of differential equation	184
Illustrates use of:			101
CORREmeans, standard deviations, and		Real and Complex Roots of Polynomial	100
correlations		SMPRTSample Main Program	186
EIGENeigenvalues and eigenvectors of a real, symmetric matrix		Illustrates use of:	
TRACEcumulative percentage of eigenvalues		POLRTreal and complex roots of polynomial	
LOADfactor loading		Solution of Simultaneous Equations	
VARMXvarimax rotation		SOLNSample Main Program	190
Special sample subroutine is:		Illustrates use of:	
DATAsample data read	173	SIMQsolution of simultaneous equations	
Triple Exponential Smoothing		LOClocation in compressed-stored matrix	
EXPONSample Main Program	175	Special sample subroutines are:	
Illustrates use of:		MATINmatrix input	190
EXSMOtriple exponential smoothing		MXOUTmatrix output	191
Matrix Addition		SAMPLE PROGRAM DESCRIPTION	
ADSAMSample Main Program	179	The specific requirements for each sample p	
Illustrates use of:		including problem description, subroutines, capacity, input, output, operating instruction	
MADDmatrix add		messages, program modifications, and timin	
LOClocation in compressed-stored matrix		well as listings of data inputs and program r are given in the documentations of the individ sample programs.	lual
Special sample subroutines are:		There are, however, several significant f which apply to all these sample programs.	acts,
MATINmatrix input		1. Data input to programs produced by 11	
MXOUTmatrix output		FORTRAN is required to be right justified wi field, even if the data includes decimal points	
Numerical Quadrature Integration	180	leading blanks are permitted. 2. All sample programs as distributed with	
QDINTSample Main Program	182	on an 8K Model IIB with 1132 Printer and 144 Read Punch, Model 6 or 7. If the user has d	2 Card

ī

Ż

card I/O devices, he must change the *IOCS card and the first READ instruction of each sample program to conform to his configuration.

3. All of the output format statements in the sample main programs and the sample subroutines specify the console typewriter as the output device. However, the logical unit numbers for input and output are optional. The first card of the sample problem data deck defines the input/output units for a specific run, and is read from the principal card reader by the sample main program. Format for this card is as follows:

Column 2 contains the logical unit number for output

Column 4 contains the logical unit number for input

4. The IOCS card, included with each sample main program, specifies three devices (CARD, TYPEWRITER, 1132 PRINTER). The user should include only those I/O devices employed by the program, thus eliminating any unnecessary Monitor subroutines.

5. Since core storage for the IBM 1130 Model II B computer is 8K, only a limited number of the sample programs have ample storage area for increases in dimension statements. The majority of the programs are now dimensioned so near maximum storage size that any increases in the dimension would create system overlays (SOCAL's) or would necessitate the use of a LOCAL overlay area.

6. For each sample program given below, there is a schematic diagram showing deck setup. This schematic gives a general description of deck requirements. Specific details pertaining to three different situations should be understood. To follow the discussion of the three cases for all sample programs, consider Figure 10.

- a. Initial run of a sample program under the disk monitor system: All required monitor control cards are distributed with decks. If the deck setup given in Figure 10 is used, the final card of the routine DASCR, the //XEQ card (which is a monitor control card), should be taken out of the routine DASCR and placed after the *STORE card which has stored the routine LOC on the disk. With this change, DASCR will be compiled, stored on disk (with all of its required routines), and then will execute. After this initial run is complete, the second case can be considered (b, below).
- b. After the initial run of a sample program under the disk monitor system, following runs can be made by using only the //XEQ card and any required *LOCAL cards, followed by data. This case assumes that all routines are on the disk.

c. Running sample programs under Card FORTRAN (1130-FO-001) (non-disk system): All monitor control cards (see the Application Directory) must now be removed from decks. Using Figure 10, consider that the labeled decks refer to object programs which were previously compiled using Card FORTRAN (C26-3629). With this consideration, noting the binary loaders and library required as stated under "Object Deck Loading Procedures" in the 1130 Card/Paper Tape Programming System Operator's Guide, and with decks in Figure 10 order, DASCR will run.

NOTE: Remarks in (a) above about changes in placement of //XEQ cards pertain also to any required *LOCAL cards, which must succeed the //XEQ cards.

A fourth situation may also be considered. If the user has all subroutines stored on the disk, and none of the sample problems are on the disk, then any individual sample problem will run as it was distributed in card form.

A LOCAL card, following the XEQ Monitor control card, allows the user to designate all subroutines to be loaded into a LOCAL overlay area on call at execution time. For the function of SOCAL and the use of LOCAL, the reader is referred to <u>IBM 1130</u> <u>Disk Monitor System, Version 2, Programming and</u> <u>Operator's Guide (C26-3717). The sample programs</u> employ the LOCAL facility.

DATA SCREENING

Problem Description

A set of observations is read along with information on propositions to be satisfied and limits on a selected variable. From this input a subset is obtained and a histogram of frequency over given class intervals is plotted for the selected variable. Total, average, standard deviation, minimum, and maximum are calculated for the selected variable. This procedure is repeated until all sets of input data have been processed.

Program

Description

The data screening sample program consists of a main routine, DASCR, and six subroutines:

SUBST	
TAB1	are from the Scientific Subroutine Package
LOC	

MATIN IS a sample input routing	MATIN	is a sample input rou	tine
---------------------------------	-------	-----------------------	------

HIST is a sample program for plotting a histogram

BOOL refer to subroutine SUBST

Capacity

The maximum size of matrix of observations has been set at 1000 elements, the number of observations at 200, and the number of conditions at 21. Therefore, if a problem satisfies the above conditions, no modification to the sample program is necessary. However, if the maximum sizes must be increased, the dimension statements in the sample main program must be modified to handle this particular problem. The general rules for program modification are described later.

Input

One I/O Specification card defines input/output units (see "Sample Program Descriptions".)

A parameter card with the following format must precede each matrix of observations:

<u>Columns</u>	Contents	For Sample <u>Problem</u>
1 - 2	Blank	
3 - 6	Up to four digit identification code (numeric only)	0001
7 - 10	Number of observations	0100
11 - 14	Number of variables	0004

Matrix of Observations

Each matrix of observations must be followed by a card with a 9 punch in column 1.

The condition matrix and bounds data are preceded by a parameter card containing the number of conditions and the variable to be selected for analysis:

<u>Columns</u>	Contents	For Sample Problem
1 - 2	Number of conditions	02
3 - 4	Variable to be selected	03

UBO Vector

A card with an asterisk in column 1 must follow the UBO vector. A blank card after the last set of input data terminates the run.

Data Cards

1. The observation matrix: Data cards have seven fields of ten columns each, starting in column one. The decimal point may appear anywhere in a field or may be omitted, if the number is an integer. However, all numbers must be right justified even if the decimal point is punched. The number in each field may be preceded by blanks. All values for an observation are punched consecutively and may continue from card to card. However, a new observation must start in the first field of the next card.

2. The condition matrix (see description in the subroutine SUBST): Each ten-column field contains a condition to be satisfied. The first two columns contain the variable number (right justified), the third column the relational code, and the last seven columns of each field a floating-point number. There may be as many as seven conditions per card and a total of three cards or 21 conditions.

3. The UBO vector (see description in the subroutine TAB1): The UBO vector is punched in three fields of ten columns each as a floating-point number.

Deck Setup

The deck setup is shown in Figure 10.

Sample

A listing of input cards for the sample problem is presented at the end of the sample main program. Output

Description

The output consists of the subset vector showing which observations are rejected (zero) and accepted (nonzero), summary statistics for the selected variable, and a histogram of frequencies versus intervals for that variable.

Sample

The output listing for the sample problem is shown in Figure 11.

Program Modification

Noting that storage problems may result, as previously discussed in "Sample Program Description", program capacity can be increased or decreased by making changes to the DIMENSION statement. In order to familiarize the user with the program modification, the following general rules are supplied in terms of the sample problem:

1. Changes in the dimension statement of the main program, DASCR.

a. The dimension of array A must be greater than or equal to the number of elements in the observation matrix. For the sample problems the value is 400.

- b. The dimension of array C must be greater than or equal to the number of conditions, c times 3. For the sample problem this product is $6 = 2 \times 3$.
- c. The dimension of array S must be greater than or equal to the number of observations, m. Since there are 100 observations in the sample problem the value of m is 100.
- d. The dimension of array R must be greater than or equal to the number of conditions,c. For the sample problem the value of c is 2.
- e. The dimensions of array FREQ and PCT must be greater than or equal to the number of intervals for the selected variable. For the sample problem this value is 20.

2. Insert the dimension size for A in the third argument of the CALL MATIN statement (following statement 24).

3. Subroutine BOOL can be replaced if the user wishes to use a different boolean expression (see description in subroutine SUBST). The boolean expression provided in the sample program is for both conditions to be satisfied:

T = R(1) * R(2)

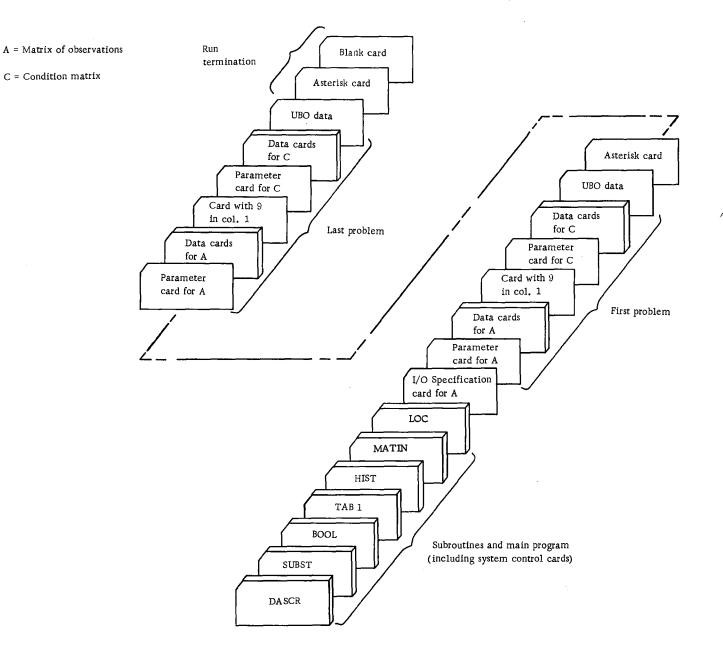


Figure 10. Deck setup (data screening)

***************************************	STANDARD DEVIATION = 19,329 MINIMUM = 114.000 MÁXIMUM = 225.000	HISTOGRAM 1 4 10 23 14 8 4 3 2 1 2 1 1 1 3		7 8 9 10 11 12 13 14 15 16 17 18 19 20
7	FOR VARIABLE 3 Average = 161.022 Standa	2 1 3 4	• • • • • • • •	19 19
DATA SCREENING PROBLEM Subset vectors subset vectors v	SUMMARY STATISTICS Total = 14492.000 /	FREQUENCY 1 2	22222 22122 22122 22122 22122 22122 2222 22 2	INTERVAL 1 2 Class End of case

}

-

ï

Appendix D - Sample Programs 143

Figure 11. Output listing

р

¥

Operating Instructions

The sample program for data screening is a standard FORTRAN program. Special operating instructions are not required. Logical unit 2 is used for input, and logical unit 1 is used for output.

Error Messages

The following error conditions will result in messages:

1. Reserved storage area is too small for matrix: DIMENSIONED AREA TOO SMALL FOR INPUT MATRIX. GO ON TO NEXT CASE.

2. Number of data cards does not correspond to that required by parameter card: INCORRECT NUM-BER OF DATA CARDS FOR MATRIX. EXECUTION TERMINATED.

Error condition 1 allows the computer run to continue. Error condition 2, however, terminates execution and requires another run to process succeeding cases.

Sample Main Program for Data Screening - DASCR

Purpose:

Perform data screening calculations on a set of observations.

Remarks:

I/O specifications transmitted to subroutines by COMMON.

Input Card:

Column 2 MX - Logical unit number for output.

Column 4 MY - Logical unit number for input.

Subroutines and function subprograms required:

20 221
TAB1
LOC
BOOL
HIST
MATIN

Method:

Derive a subset of observations satisfying certain conditions on the variables. For this subset, the frequency of a selected variable over given class intervals is obtained. This is plotted in the form of a histogram. Total, average, standard deviation, minimum, and maximum are also calculated.

// FOR *10CS(CARD,TYPEWRITER,1132 PRINTER)		
ONE WORD INTEGERS		
C SAMPLE MAIN PROGRAM FOR DATA SCREENING - DASCR External bool		1 2
C THE FOLLOWING DIMENSION MUST BE GREATER THAN OR EQUAL TO THE		3
C MAXIMUM NUMBER OF ELEMENTS OF THE OBSERVATION MATRIX.		4 5
DIMENSION A(1000) C THE FOLLOWING DIMENSION MUST BE GREATER THAN OR EQUAL TO THE		6
C NUMBER OF CONDITIONS TIMES 3.	DASCR	7
DIMENSION CIG3)		8
C THE FOLLOWING DIMENSION MUST BE GREATER THAN OR EQUAL TO 3. DIMENSION UBD(3)	DASCR DASCR 1	
C THE FULLOWING DIMENSION MUST BE GREATER THAN OR EQUAL TO THE	DASCR 1	
C NUMBER OF OBSERVATIONS.	DASCR 1	
DIMENSION SI200) C THE FOLLOWING DIMENSION MUST BE GREATER THAN OR EQUAL TO THE	DASCR 1 DASCK 1	
C NUMBER OF CONDITIONS.	DASCR 1	
DIMENSION R(21)	DASCR 1	
C THE FOLLOWING DIMENSIONS MUST BE GREATER THAN OR EQUAL TO THE C NUMBER OF INTERVALS FOR THE SELECTED VARIABLE.	DASCR 1 DASCR 1	
DIMENSION FREQ(20), PCT(20)	DASCR 1	
C THE FOLLOWING DIMENSION MUST BE GREATER THAN OR EQUAL TO 5.	DASLR 2	
DIMENSION STATS(5)	DASCR 2 DASCR 2	
COMMON MX,MY 10 Format(////23H data screening problem,13)	DASCR 2	
11 FORMAT(//45H DIMENSIGNED AREA TOO SMALL FOR [NPUT MATRIX ,14)	DASCK 2	4
12 FORMAT(//21H EXECUTION TERMINATED) 13 Format(//43h incurrect number of data cards for matrix ,14)	DASCR 2	
13 FURMAT(7/13H INCURRELT NUMBER OF DATA CARDS FUR MATRIX ,147 14 FORMAT(7/19H GD ON TO NEXT CASE)	DASCR 2 DASCR 2	
15 FORMAT(//12H END OF CASE)	DASCK 2	8
16 FORMATI 7(F2.0,F1.0,F7.0))	DASCR 2	
17 FORMAT(3F10.0) 18 Format(//14h Subset Vector,///)	DASCK 3 DASCR 3	
19 FORMAT(16,F5.0)	DASCK 3	
20 FORMAT(////33H SUMMARY STATISTICS FUR VARIABLE .13)	DASCR 3	
21 FORMATI//BH TUTAL =,F10.3,2X,9HAVERAGE =,F10.3,2X,2OHSTANDARD UEV 1ATION =,F10.3,2X,9HMINIMUM =,F10.3,2X,9HMAXIMUM =,F10.3)	DASCR 3	14
22 FORMAT(212)	DASCR 3	
KC≖0	DASCR 3	
C READ I/O UNIT NUMBERS READ(2,22)MX.MY	DASCR 3 DASCR 3	
24 KC=KC+1	DASCR 4	
CALL MATINE COD, A, 1000, NO, NV, MS, IEK)	UASCR 4	1
IF(NU) 25,50,25	DASCR 4 DASCR 4	
25 IF(IER-1) 40,30,35 30 WRITE(NX,11) ICUD	DASCR 4	
WRITE(MX,14)	DASCR 4	5
GD TO 24 35 WRITE(MX,13)	DASCR 4	
WRITE(NX,12)	DASCR 4	
GD TO 60	DASCR 4	9
40 READ(MY+22)NC+NDVAR JC=NC≠3	DASCR 5 DASCR 5	
READ(MY,16)(C((),I=1,JC)	DASCR 5	
READ(MY,17)(UBO(1),1=1,3)	DASCR 5	
CALL SUBST (A, C, R, BOOL, S, NO, NV, NC)	DASCR 5	
WRITE(MX,10)KC	DASCR 5	5
WRITE(MX,18) D0 50 [=1,n0	DASCR 5 DASCR 5	3 7
50 WRITE(MA, 19)1, S(I)	DASCR 5	6
CALL TABI(A, S, NOVAR, UBG, FREQ, PCT, STATS, NO, NV)	DASLR 5	
WRITE(MX,20) NUVAR WRITE(MX,21)(STATS(1),1=1,5)	DASCR 6	
JZ=UBU(2)	DASCR 6	
CALL HIST(KC, FREQ, JZ)	UASER D	
WR118(MX,15)	DASER 6 DASER 0	
GU TO 24 60 STOP	UASUN 0	
END	DASLR D	
// DUP *STURE WS UA DASCR		
♦STÜRE NS UA DASCR // XEQ DASCR		
-		

_			
2 00101000004			
46	64	173	12
24	72	170	8
32	71	154	16
41	68	129	10
50	65	192	9
63	75	203	12
29	70	122	14
28	64	136	13
52	77	147	11 18
36	67	153 165	19
31	68 70	178	10
72 53	71	205	14
21	65	219	12
49	63	150	
28	62	160	16
53	72	161	13
47	73	142	15
37	67	193	18
64	68	156	14
65	60	114	10
62	64	153	12
19	68	225	9
46	67	158	11
33	72	121	4
37	65	132	13
41	76	148	16
52	71	123	16
29	68	128	14 17
32	65	155	17
24	72 73	172	10
56	65	158	ii
63 67	69	146	2
58	66	171	,
41	65	153	12
49	66	165	14
52	72	172	16
23	78	183	15
56	71	195	16
52	68	118	• 7
40	66	165	14
39	68	215	16
23	71	154	12
56	69	149	10
25	65	162	16
37	68	152	16
46	70	159	15
41	69	137	14

1

1234567890123456789012345678901234567890123456789012345678901

1 1					MATTN 4 MATTN 12 MATTN 12 MATTN 12 MATTN 12 MATTN 15 MATTN 22 MATTN 22 MATTN 22 MATTN 22 MATTN 22 MATTN 22 MATTN 22 MATTN 25 MATTN 26 MATTN 27 MATTN 27
<pre>c FIND LARGEST FAEOUENCY BAREACO DD 20 1=1/N DD 20 1=1/N DD 20 1=1/N DD 20 1=1/N DD 20 1=1/N DD 20 1=1/N DD 20 20 CONTINUES DD 20 20 140,40,30 DD 20 40,40,30 DD 20 40,40,30 DD 20 40,40,30 DD 20 40,40,30 DD 20 40,40,30 DD 20 40,40,30 DD 20 40,40,40 DD 20 40</pre>	SUBROUTINE MATIN PURPOSE READS CONTROL CAND AND MATRIX DATA ELENENTS FROM LOGICAL WIT 5 USAGE U	15-1 SYNETRIC MITTIX 15-1 SYNETRIC MITTIX 15-1 STANDAL MITTIX 15-1 STANDAL MITTIX 15-1 STANDAL MITTIX 15-1 STANDAL MITTIX 15-2 DIAGOMAL MITTIX 15-2 DIAGOMAL MITTIX 15-2 DIAGOMAL MITTIX 15-2 DIAGOMAL DATIA CARDS 15-2 DIAGOMAL DATIA CARDS 15-2 DIAGOMAL DATIA CARDS REMAKS REMAKS REMAKS REMAKS MONE 15-2 DIAGOMAL MITTIX 15-1 DIAGOMAL 15-2 DIAGOMAL MITTIX 15-1 DIAGOMAL 15-1 DIAG	CC.11-1-14 NUMBER FOR CCUUNNS IN MATRIX CC.11-14 NUMBER FOR CCUUNNS IN MATRIX CC.11-14-16 STORAGE NODE CF MATRIX WHERE 0 = 5 EFFEAL MATRIX 1 = 5 YANGTRIC MATRIX 2 = DIAGONAL MATRIX DATA CARS ARE ASSUMED TO HAVE SEVEN FIELDS ITAT THE EACH CARS ARE ASSUMED TO HAVE SEVEN FIELDS ITAT THE EFECTION DATA CARS ARE ASSUMED TO HAVE SEVEN FIELDS ITAT THE EFECTION DECIMAL POINT 15 NULLOBE. IT 13 ASSUMED THAT THE DECIMAL POINT 15 AN LUDGE. IT 13 ASSUMED THAT THE DECIMAL POINT 15 AN LUDGE TO HAVE SEVEN FIELDS NUMBER IN AGCH FIELD MAY BE PRECEDED BY BLANKSL, DATA EFENTS IN ST BE PARCHED BY BOULS ARE AND MAY CONTINUE FROM CARD TO CARD. PORCHEN ELFERT FOR AN MAY CONTINUE FROM CARD TO CARD. THE DIAGONAL ELFERT FOR AN MAY ATTH SYMFETIC OR DIAGONAL STORGE MODE. CCLUMNST X ATTH SYMFETIC OR DIAGONAL STORGE MODE. CCLUMNST X MITH SYMFETIC OR DIAGONAL STORGE MODE. CCLUMNST X WITH SYMFETIC OR DIAGONAL STORGE MODE. CULUMNST X WITH SYMFETIC OR DIAGONAL STORGE MODE. CULUMNST X WITH SYMFETIC OR DIAGONAL STORGE WODE. CULUMNST X WITH SYMFETIC OR DIAGONAL STORGE	COL, 15, 1ER)	<pre>rect transfer wroticons.trans.tcol.is transfer urv.oicing.trans.tcol.is trisite=tcatio.i, transtrans.tcol.is trisite=tcatio.i, transtrans.tcol.is trisite=tcatio.i, transtrans.tcol.is trisite=tcatio.is trisite=tcatio.is trisite=tcatio.is trisite=tcatio.is trisite=tcatio.is trisite=tcatio.is trisite=tcatio.is trisite=tcatio.is trisite=tcatio.is trisite=tcatio.is trisite=tcatio.is trisite=tcatio.is trisite=tcatio.is trisite=tcatio.is trisite=tcatio.is trisite=tcatio.is trisite=tcatio.is trisite=tcatio.to tris</pre>
うち きち うち ひ ひ ひ ひ ひ ひ ひ ひ ひ ひ て て て て て て て 日 田 田 田 田 田 田 田 田 田 田 田 田	89 99 99 99 99 100 100 100 100 100 100 10	2 2 3 5 5 F	.]	1	
		555555	s 20) Lef Taan	useo	
23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 24 134 141 141 141 23 23 23 23 144 23 23 23 23 144 23 23 23 144 141 23 23 23 23 144 24 144 144 144 144 23 23 23 144 144 23 23 23 144 144 25 144 146 146 146 24 144 146 146 146 25 146 146 146 146 26 146 146 146 146 25 146 1	46 66 66 72 72 131 66 153 66 153 66 153 66 153 74 156 153 74 156 153 74 156 74 156 85 155 74 157 72 158 86 157 72 158 86 157 72 158 86 157 74 72 158 86 157 74 72 158 86 157 74 74 158 86 157 74 74 158 86 157 158 86 157 158 86 157 158 86 157 158 86 157 158 86 157 158 86 157 158 86 157 158 86 157 158 86 157 158 159 158 159 159 159 159 158 159 158 158 158 158 158 158 158 158	USER-SUPPLIED SPECIAL SUBROUTINE - BOOL THIS SPECIAL SUBROUTINE LLUSTRATES AN EXTERNAL SUBROUTINE CALLED BY SUBROUTINE ILLUSTRATES AN EXTERNAL SUBROUTINE THE SAME RUNG OTTERENT MODELEN THA PROPOSITIATE RODOSITI THE SAME RUNG OTTERENT MARES. IF SQL THERE THE SAME RUNG OTTERENT MARES. IF SQL THERE SUBROUTINE RAME MUST BOFFMED WITH A PROTEXT RODOSIT AND AND AND AND AND AND AND AND AND AND		FREGURICIES MUST DE POSITIVE NUMBERS Subbourines and function Subprograms Required None Nethod The Langest Frequency is determined and scaling is u the required	SUBROUTINE HISTINU, FREQ.IN) DIMENSION JOUT(27), FREQ.IN) DIMENSION JOUT(27), FREQ.IN) ECOMMATCH FECH 41, 9H EQUALS .12, 7H PULNTS, /) ECOMMATCH ALL, 9H EQUALS .12, 7H, 12) ECOMMATCH ALL, ALL, 19H ECOMMA .13) ECOMMATCH ALL, ALL, 19H ECOMMA .13) ECOMMATCH ALL, ALL, 12, 12, 13, 12) ECOMMATCH ALL, 11, 12, 12, 13, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 12, 12, 13, 12, 13, 12, 13, 12, 13, 11, 12, 14, 15, 14, 14, 14, 15, 14, 14, 14, 15, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14

) -

-

Þ

Appendix D - Sample Programs 145

Þ

,

	15-16-100 1	
	JE=JS+IDC-1	MATIN 29
	IF(IS-1)19,19,17	MATEN 30
	JF=JS	MATIN 31
2	SET UP LOOP FOR DATA ELEMENTS WITHIN CARD	MATIN 32
19	DD 30 J=JS,JE	MATIN 33
	IF(J-ICOL)20,20,31	MATIN 34
20	CALL LOCIIROCR , J, IJ, IROW, ICOL, ISI	MATIN 35
	L=L+I	MATIN 36
30	A(IJ)=CARD(L)	441 IN 35
	CONTINUE	MATIN 38
	IROCR=IROCR+1	
	IF(IROW-IROCR) 39,35,35	MATIN 39
36	IF([S-1]37.36.36	MATIN 40
	ICOLT=ICOLT-1	MATIN 41
		MATIN 42
	GO TO 11	MATIN 43
38	READ(MY, 3) ICARD	MATIN 44
	IF(ICARD-9)39,40,39	MATIN 45
39	IER=2	MATIN 46
40	RETURN	MATIN 47
	END	MATIN 48

MULTIPLE LINEAR REGRESSION

Problem Description

Multiple linear regression analysis is performed for a set of independent variables and a dependent variable. Selection of different sets of independent variables and designation of a dependent variable can be made as many times as desired.

The sample problem for multiple linear regression consists of 30 observations with six variables as presented in Table 2. The first five variables are independent variables, and the last variable is the dependent variable. All five independent variables are used to predict the dependent variable in the first analysis, and only second, third, and fifth variables are used to predict the dependent variable in the second analysis.

Table 2. Sample Data for Multiple Linear Regression

Mandal La

ł			:/ariable	e5		
Observation	X1	X2	X3	X4	Xs	X ₆
1	29	289	216	85	14	1
1 2 3 4 5 6 7 8 9	30	391	244	92	16	1 2 2 0 2 2 3 2 3 0
3	30	424	246	90	18	2
4	30	313	239	91	10	0
5	35	243	275	95	30	2
6	35	365	219	95	21	2
7	43	396	267	100	39	3
8	43	356	274	79	19	2
9.	44	346	255	126	56	3
10	44	156	258	95	28	0
11	44	278	249	110	42	4 1 1 3 2 3 4
12	44	349	252	88	21	1
13	44	141	236	129	56	1
14	44	245	236	97	24	1
15	45	297	256	111	45	3
16	45	310	262	94	20	2
17	45	151	339	96	35	3
18	45	370	357	88	15	4
19	45	379	198	147	64	4
20	45	463	206	105	31	4 3 4
21	45	316	245	132	60	4
22	45	280	225	108	36	4 1
23	44	395	215	101	27	1
24	49	139	220	136	59	0
25	49	245	205	113	37	4
26	49	373	215	88	25	1
27	51	224	215	118	54	1 3 4
28	51	677	210	116	33	4
29	51	424	210	140	59	4
30	51	150	210	105	30	0
!						

Program

Description

The multiple linear regression sample program consists of a main routine, REGRE, and five subroutines:

CORRE	are from the Scientific
ORDER	Subroutine Package
MINV	
MULTR	
DATA	is a special input subroutine

Capacity

The capacity of the sample program and the format required for data input have been set up as follows:

1. Up to 21 variables, including both independent and dependent variables.

2. Up to 99,999 observations, if observations are read into the computer one at a time by the special input subroutine named DATA. If all data are to be stored in core prior to the calculation of correlation coefficients, the limitation on the number of observations depends on the size of core storage available for input data.

3. (12F6.0) format for input data cards.

Therefore, if a problem satisfies the above conditions it is not necessary to modify the sample program. However, if there are more than 22 variables, dimension statements in the sample main program must be modified to handle this particular problem. Similarly, if input data cards are prepared using a different format, the input format in the input subroutine, DATA, must be modified. The general rules for program modification are described later.

Input

One I/O Specification card defines input/output units (see "Sample Program Descriptions").

One control card is required for each problem and is read by the main program, REGRE. This card is prepared as follows:

<u>Columns</u>	Contents	For Sample <u>Problem</u>
1 - 6	Problem number (may be alphameric)	SAMPLE

Columns	Contents	For Sample Problem
7 - 11	Number of observations	00030
12 - 13	Number of variables	06
14 - 15	Number of selection cards (see below)	02

Leading zeros are not required to be keypunched, but all numbers must be right-justified, even if a decimal point is included.

Data Cards

Since input data are read into the computer one observation at a time, each row of data in Table 2 is keypunched on a separate card using the format (12F6.0). This format assumes twelve 6-column fields per card.

If there are more than twelve variables in a problem, each row of data is continued on the second and third cards until the last data point is keypunched. However, each row of data must begin on a new card.

Selection Card

The selection card is used to specify a dependent variable and a set of independent variables in a multiple linear regression analysis. Any variable in the set of original variables can be designated as a dependent variable, and any number of variables can be specified as independent variables. Selection of a dependent variable and a set of independent variables can be performed over and over again using the same set of original variables.

The selection card is prepared as follows:

		For S	ample
		Prob	olem
		Selec-	Selec-
Columns	Contents	tion 1	tion 2
1 - 2	Option code for table of residuals	01	01
	00 if it is not desired		
	01 if it is desired		
3 - 4	Dependent variable desig- nated for the forthcoming regression	06	06
5 - 6	Number of independent variables included in the forthcoming regression	05	03

	~	Prol Selec-	
Columns	Contents	tion 1	tion 2
5 - 6 (cont)	(the subscript numbers of individual variables are specified below)		
7 - 8	lst independent variable included	01	02
9 - 10	2nd independent variable included	02	03
11 - 12	3rd independent variable included	03	05
13 - 14	4th independent variable included	04	
	5th independent variable included	05	
etc.	put format of (3612) is used	for the	1

The input format of (36I2) is used for the selection card.

Deck Setup

Deck setup is shown in Figure 12.

The repetition of the data cards following a selection card is dependent upon the option code for the table of residuals. If the table is required (option 01), the data must be repeated; if the table is not required (option 00), card G immediately follows card E.

Sample

The listing of input cards for the sample problem is presented at the end of the sample main program.

Output

Description

The output of the sample program for multiple linear regression includes:

- 1. Means
- 2. Standard deviations

3. Correlation coefficients between the independent variables and the dependent variable

- 4. Regression coefficients
- 5. Standard errors of regression coefficients
- 6. Computed t-values
- 7. Intercept
- 8. Multiple correlation coefficients

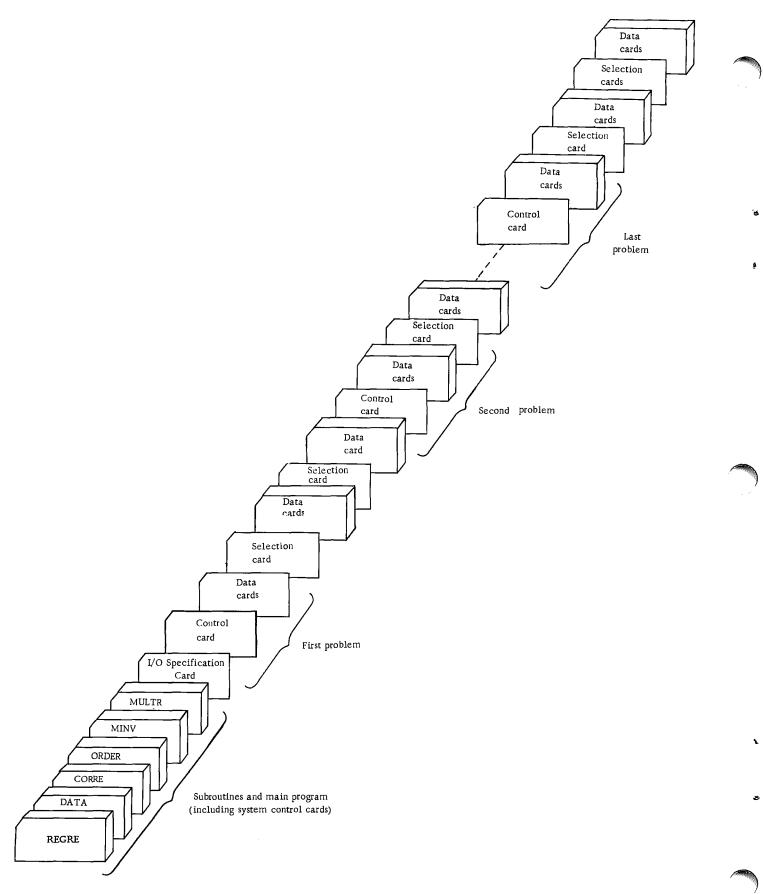


Figure 12. Deck setup (multiple linear regression)

9. Standard error of estimate

10. Analysis of variance for the multiple regression

11. Table of residuals (optional)

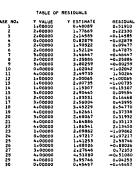
Sample

The output listing for the sample problem is shown in Figure 13.

Program Modification

Noting that storage problems may result, as previously discussed in "Sample Program Description", program capacity can be increased or decreased by making changes in dimension statements. Input data in a different format can also be handled by providing a specific format statement. In order to familiarize the user with the program modification, the following general rules are supplied in terms of the sample problem:

1. Changes in the dimension statements of the main program, REGRE:


- a. The dimension of arrays XBAR, STD, D, RY, ISAVE, B, SB, T, and W must be greater than or equal to the number of variables, m. Since there are six variables in the sample problem the value of m is 6.
- b. The dimension of array RX must be greater than or equal to the product of $m \times m$. For the sample problem this product is $36 = 6 \times 6$.
- c. The dimension of array R must be greater than or equal to (m + 1) m/2. For the sample problem this number is 21 = (6 + 1) 6/2.

RULTIPL	E REGRESSION	*****SARPLE				
şe	LECTION	1				
VARTABL NO+	E KEAN	STANDARD DEVIATION	CORRELATION X VS Y	REGRESSION	STD+ ERROR OF REG+COEF+	COMPUTED T VALUE
1	43.13333	6.52175	0.28422	0.01242	0.03634	0+34172
2	316.16668	114.42994	0.42189	0+00738	0.00186	3.96545
3	241.80001	36.43074	0.11900	0+01504	0.00634	2+36882
	105.66667	17.65638	0.37822	0.00150	0.03678	0.04101
,	94.13933	15.97569	0.39412	0.04918	0+04141	1.18782
DEPENDE	нт					
6	2.26666	1.41258				
		-4-07035				

IULT 1 PLE	CORRELATION	0.7357
TD. ERRO	OR OF ESTIMATE	1.0516

ANALYSI	5 OF VARIANCE	FOR THE REGRES	STON	
SOURCE OF VARIATION	DEGREES OF FREEDOM	SUM OF SQUARES	MEAN	F VALUE
ATTRIBUTABLE TO REGRESSION DEVIATION FROM REGRESSION	5 24	31.32517 26.54149	5+26503 1+20589	5.86512
TOTAL	29	57.86666		

MULTIPLE REGRESSION.....SAMPLE SELECTION..... 1

MULTIPLE REGRESSION SAMPLE

SELECTION 2

NO.	E REAN	STANDARD	CORRELATION X VS Y	REGRESSION	STD. ERROR OF REG.COEF.	COMPUTED
2	316.16668	114.42994	0.42189	0+00743	0.00172	4.31764
3	241.80001	36.43074	0.11900	0.01497	0.00551	2.71693
\$	34.13333	15.97569	0.39412	0+05362	0.01258	4.20263

6	2.26666	1.41258
NTERCI	PT	-5.53530
ULTIPL	F CORRELATION	0.73423

• ERROR OF ESTIMATE 1.01281

ANALYSI	S OF VARIANCE	FOR THE REGRES	5510N	
SOURCE OF VARIATION	DEGREES OF FREEDOM	SUN OF SQUARES	MEAN SQUARES	F VALUE
ATTRIBUTABLE TO REGRESSION DEVIATION FROM REGRESSION	3 26	31.19601 26.67065	10.39867 1.02579	10+13718
TOTAL	29	57.86666		

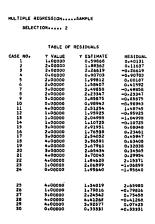


Figure 13. Output listing

2. Changes in the input format statement of the special input subroutine, DATA:

Only the format statement for input data may be changed. Since sample data are either one-, two-, or three-digit numbers, rather than using six-column fields as in the sample problem, each row of data may be keypunched in six 3column fields, and, if so, the format is changed to (6F3.0).

The special input subroutine, DATA, is normally written by the user to handle different formats for different problems. The user may modify this subroutine to perform testing of input data, transformation of data, and so on.

Operating Instructions

The sample program for multiple linear regression is a standard FORTRAN program. Special operating instructions are not required. Logical unit 2 is used for input, and logical unit 1 is used for output.

Error Messages

The following error conditions will result in messages:

1. The number of selection cards is not specified on the control card: NUMBER OF SELECTIONS NOT SPECIFIED. JOB TERMINATED.

2. The matrix of correlation coefficients is singular: THE MATRIX IS SINGULAR. THIS SE-LECTION IS SKIPPED.

Error condition 2 allows the computer run to continue; however, error condition 1 terminates execution of the job.

Sample Main Program for Multiple Regression - REGRE

Purpose:

 Read the problem parameter card for a multiple regression, (2) Read subset selection cards, (3) Call the subroutines to calculate means, standard deviations, simple and multiple correlation coefficients, regression coefficients. T-values, and analysis of variance for multiple regression, and (4) Print the results.

Remarks:

The number of observations, N, must be greater than M+1, where M is the number of variables. If subset selection cards are not present, the program can not perform multiple after returning from subroutine MINV, the value of determinant (DET) is tested to check whether the correlation matrix is singular. If DET is compared against a small constant, this test may also be used to check near-singularity. I/O specifications transmitted to subroutines by COMMON.

Input card:

Column 2 MX - Logical unit number for output. Column 4 MY - Logical unit number for

input.

Subroutines and function subprograms required:

CORRE (which, in turn, calls the subroutine named DATA) ORDER

MINV
MULTR

Method:

Refer to B. Ostle, 'Statistics in Research', The Iowa State College Press', 1954, Chapter 8.

/ FOR		
	CARD+TYPEWRITER+1132 PRINTER) ORD INTEGERS	
	SAMPLE MAIN PROGRAM FOR MULTIPLE REGRESSION - REGRE	REGRE
2	THE FOLLOWING DIMENSIONS MUST BE GREATER THAN OR EQUAL TO THE	REGRE
Ē	NUMBER OF VARIABLES.M.	REGRE
-	DIMENSION XBAR(21)+STD(21)+D(21)+RY(21)+ISAVE(21)+B(21)+	REGREMO
	SB(21),T(21),W(21)	REGREMO
	THE FOLLOWING DIMENSION MUST BE GREATER THAN OR EQUAL TO THE	REGRE
	PRODUCT OF M+M.	REGRE
•	DIMENSION RX(441)	REGREMO
:	THE FOLLOWING DIMENSION MUST BE GREATER THAN OR EQUAL TO	REGRE
	(M+1)*M/2.	REGRE 1
	DIMENSION R(231)	REGREMO
	THE FOLLOWING DIMENSION MUST BE GREATER THAN OR EQUAL TO 10.	REGRE 1
	DIMENSION ANS(10)	REGRE 1
	COMMON MX . MY	REGRE 1
	READ(2+15)MX+MY	REGRE 1
	FORMAT (212)	REGRE 1
	FORMAT(A4+A2+15+212)	REGRE 1
2	FORMAT (////25H MULTIPLE REGRESSION A4 .A2//6X .14HSELECTION	REGRE 1
	12//1	REGRE 1
3	FORMATI//9H VARIABLE+5X+4HMEAN+6X+8HSTANDARD+6X+11HCORRELATION+4X+	REGRE 2
1	10HREGRESSION+4X+10HSTD. ERROR;5X+8HCOMPUTED/6H NO++18X+9HDEVIA	FREGRE 2
2	ION+7X+6HX VS Y+7X+11HCOEFFICIENT+3X+12HOF REG.COEF++3X+7HT VALUE	
4	FORMAT(/+14+6F14+5)	REGRE 2
5	FORMAT(//+10H DEPENDENT)	REGRE 2
		REGRE
1	5//23H STD. ERROR OF ESTIMATE.F13.5//)	REGRE
7	FORMAT(//.21X.39HANALYSIS OF VARIANCE FOR THE REGRESSION//5X.19HS	DREGRE 2
	URCE OF VARIATION . 7X . THDEGREES . 7X . 6HSUM OF . 10X . 4HMEAN . 13X . THF VAL	IREGRE
â	E/30X+10HOF FREEDOM+4X+7HSQUARES+9X+7HSQUARES	REGRE 2
	FORMATI/30H ATTRIBUTABLE TO REGRESSION +16+3F16+5/30H DEVIATION	
	FROM REGRESSION +16+2F16.5)	REGRE 3
	FORMAT(/5X.5HTOTAL+19X.16.F16.5)	REGRE 3
10	FORMAT(3612)	REGRE 3
11	FORMATI / +15X+18HTABLE OF RESIDUALS//9H CASE NO.+5X+7HY VALUE+5X+1	REGRE 1
	HY ESTIMATE.6X.BHRESIDUAL	
12	FORMAT(16+F15+5+2F14+5)	REGRE 1
	FORMAT(////53H NUMBER OF SELECTIONS NOT SPECIFIED. JOB TERMINATE	REGRE 3
1	•]	REGRE 3
14	FORMATI//52H THE MATHIX IS SINGULAR. THIS SELECTION IS SKIPPED.)	REGRE 4
	READ PROBLEM PARAMETER CARD	REGRE 4
100	READ (MY+1) PR+PR1+N+M+NS	REGRE 4
	PRPROBLEM NUMBER (MAY BE ALPHAMERIC)	REGRE
	PRIPROBLEM NUMBER (CONTINUED)	REGRE
	NNUMBER OF OBSERVATIONS MNUMBER OF VARIABLES	REGRE 4
	NSNUMBER OF SELECTIONS	REGRE 4
		REGRE
	10=0 x=0+0	REGRE
	CALL CORRE (N+M+IO+X+XBAR+STD+RX+R+D+B+T)	REGRE
	TEST NUMBER OF SELECTIONS	REGRE
	IF(NS) 108+ 108+ 109	REGRE
109		REGRE
100	WRITE (MX+13) GO TO 300	REGRE
109	DO 200 [=1+NS	REGRE
107	WRITE (MX+2) PR+PR1+I	REGRE
	READ SUBSET SELECTION CARD	REGRE
	READ (MY+10)NRESI+NDEP+K+(ISAVE(J)+J=1+K)	REGRE
	NRESI OPTION CODE FOR TABLE OF RESIDUALS	REGRE
	O IF IT IS NOT DESIRED.	REGRE
	0 IF IT IS NUT DESIRED. 1 IF IT IS DESIRED.	REGRE
	NDEP DEPENDENT VARIABLE	REGHE
	NDEPDEPENDENT VARIABLE KNUMBER OF INDEPENDENT VARIABLES INCLUDED	REGRE (
	ISAVE VECTOR CONTAINING THE INDEPENDENT VARIABLES	REGRE I
	INCLUDED	REGRE (
	CALL ORDER (M&R+NDEP+K+15AVE+RX+RY)	REGRE (
	CALL MINV (RX+K+DET+B+T)	REGRE (
	TEST SINGULARITY OF THE MATRIX INVERTED	REGRE (
	IF(DET) 112+ 110+ 112	REGRE (
110	WRITE (MX+14)	REGRE
	GO TO 200	REGRE
112	CALL MULTE (N+K+XBAR+STD+D+RX+RY+ISAVE+B+SB+T+ANS)	REGRE
	PRINT MEANS, STANDARD DEVIATIONS, INTERCORRELATIONS BETWEEN	REGRE
	X AND Y. REGRESSION COEFFICIENTS, STANDARD DEVIATIONS OF	REGRE
	REGRESSION COEFFICIENTS, AND COMPUTED T.VALUES	REGRE
	MM=K+1	REGRE
	WRITE (MX.3)	REGRE
	DO 115 J=1+K	REGRE
	L=15AVE(J)	REGRE
115	WRITE (MX+4) L+XBAR(L)+STD(L)+RY(J)+B(J)+SB(J)+T(J)	REGRE
	WRITE (MX+5)	REGRE
	L=ISAVE(MM)	REGRE
	WRITE (MX+4) L+XBAR(L)+STD(L)	REGRE
	PRINT INTERCEPTS MULTIPLE CORRELATION COEFFICIENTS AND	REGRE
		REGRE
c	PRINT INTERCEPT. MULTIPLE CORRELATION COEFFICIENT. AND STANDARD ERROR OF ESTIMATE WRITE (MX+6) ANS(1)+ANS(2)+ANS(3)	REGR

c	PRINT ANALYSIS OF VARIANCE FOR THE REGRÉSSION	REGRE 86
•	WRITE (MX+7)	REGRE 87
	L=ANS(8)	REGRE 88
	WRITE (MX+B) K+ANS(4)+ANS(6)+ANS(10)+L+ANS(7)+ANS(9)	REGRE 89
	Lenel	REGRE 90
	SUM=ANS(4)+ANS(7)	REGHE 91
	WRITE (MX+9) L+SUM	REGRE 92
	1F(NRES1) 2C0+ 2C0+ 12C	REGRE 93
c	PRINT TABLE OF RESIDUALS	RÉGRE 94
	WRITE(MX+2)PR+PR1+I	RECRE 95
120	WRITE (MK+11)	REGRE 96
	MM=15AVE(K+1)	REGRE 97
	DO 140 11=1+N	REGRE 98
	CALL DATA(M+#)	REGRE 99
	SUM=ANS(1)	REGRE100
	50 130 J=1+K	REGR.101
	L=15AVE(J)	REGRE102
		REGREID3
130	SUM=SUM+W(L)*B(J)	REGRE104
	RESI=W(MM)-SUM	REGRE105
	WRITE (MX+12) 11++(MM)+50M+RE51	REGREIDS
200	CONTINUE	HEGHE100
	GO TO 100	REGREIJS
300	STOP	
	END	REGRE109

SAMPLE INPUT SUBROUTINE - DATA PURPOSE READ AM UBSERVATION (N DATA VALUES) FROM INPUT DEVICE. THIS SUBROUTINE IS CALLED BY THE SUBROUTINE CORRE AND MUST BE PROVIDED BY THE USER. IF SIZE AND LOCATION OF DATA FIELDS ARE DIFFERENT FROM PROBLEM TO PROBLEM, THIS SUB-ROUTINE MUST BE RECOMPILED WITH A PROPER FORMAT STATEMENT. USAGE CALL DATA (N,D) DESCRIPTION OF PARAMETERS M - THE NUMBER OF VARIABLES IN AN OBSERVATION. D - OUTPUT VECTOR OF LEMGTH M CONTAINING THE OBSERVATION DATA. REMARKS THE TYPE OF CONVERSION SPECIFIED IN THE FORMAT MUST BE EITHER F DR E. SUBBODITINES AND FUNCTION SUBPROGRAMS REQUIRED NONE

DATA	1
ĐATA	7
DATA	3
DATA	4
DATA	5
DATA	6
DATA	7
0474	A
	9474 DATA DATA DATA DATA DATA

POLYNOMIAL REGRESSION

Problem Description

c

Powers of an independent variable are generated to calculate polynomials of successively increasing degrees. If there is no reduction in the residual sum of squares between two successive degrees of polynomials, the program terminates the problem before completing the analysis for the highest degree polynomial specified.

The sample problem for polynomial regression consists of 15 observations, as presented in Table 3. The highest degree polynomial specified for this problem is 4.

Table 3. Sample Data for Polynomial Regression

_X	Y
1	10
2	16
2 3	20
4	23
4 5	25
6	26
7	30
8	36
9	48
10	62
11	78
12	94
13	107
14	118
15	127

Program

Description

The polynomial regression sample program consists of a main routine, POLRG, and five subroutines:

GDATA	
ORDER	are from the Scientific Subroutine
MINV	Package
MULTR	
PLOT	is a special plot subroutine

Capacity

The capacity of the sample program and the format required for data input have been set up as follows:

- 1. Up to 50 observations
- 2. Up to 6th degree polynomials
- 3. (2F 6.0) format for input data cards

Therefore, if a problem satisfies the above conditions it is not necessary to modify the sample program. However, if there are more than 60 observations or if greater than 7th degree polynomial is desired, dimension statements in the sample main program must be modified to handle this particular problem. Similarly, if input data cards are prepared using a different format, the input format in the sample main program must be modified. The general rules for program modification are described later.

Input

I/O Specification Card

One control card is required for each problem and is read by the main program, POLRG. This card is prepared as follows:

Columns	Contents	For Sample Problem
1 - 6	Problem number (may be alphameric)	SAMPLE
7 - 11	Number of observations	00015
12 - 13	Highest degree polynomial to be fitted	04

	Columns	Contents	For Sample Problem
nsists s:	14	Option code for plotting Y values and Y estimates:	1
		0 if it is not desired	
itine		1 if it is desired	
	-	zeros are not required to be s must be right-justified in f	
	Data Cards		
	servation at Table 3 is k	data are read into the compu- te time, each pair of X and teypunched in that order on a the format (2F 6.0).	Y data in
mat Sws:	Plot Option	Card	
con- ob- mial	bers 1 throu after each s	aining b129 (blank followed ugh 9) in columns 1 to 10 is re- set of data if plotting is requi- ing is not required (option 0), itted.	necessary red (option
)	Deck Setup		
are	Deck setup	is shown in Figure 14.	
mat The	Sample		
		of input cards for the sample t the end of the sample main	
	Output		
	Description		
and ard	regression 1. Regr	of the sample program for po includes: ession coefficients for succe	
mple lem	degree poly 3. Table	e of residuals for the final de	
PLE		luded with plot) of Y values and Y estimates	(optional)
i	Sample		
	The output I in Figure 1	listing for the sample proble 5.	m is shown

з

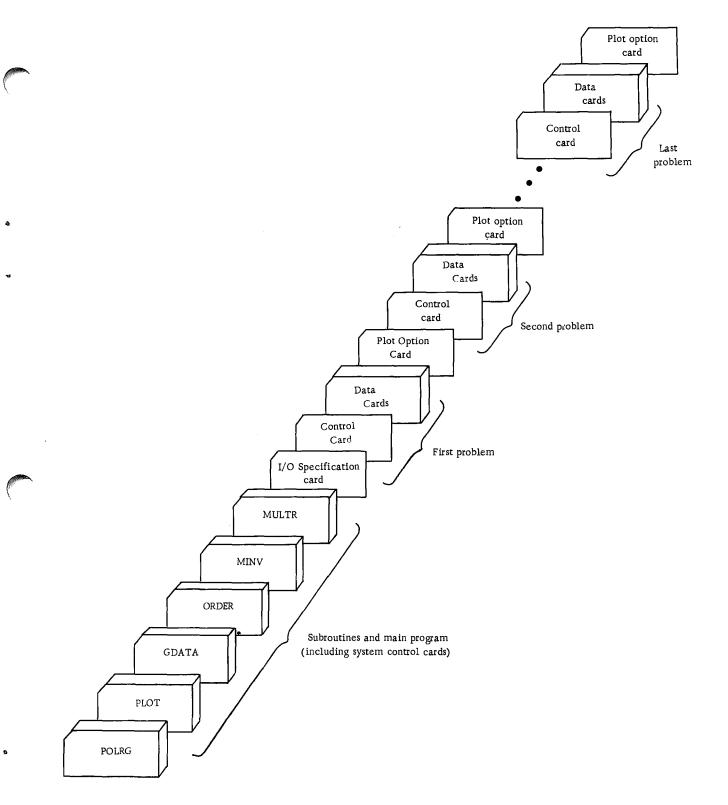


Figure 14. Deck setup (polynomial regression)

Program Modification

Noting that storage problems may result, as previously discussed in "Sample Program Description", program capacity can be increased or decreased by making changes in dimension statements. Input data in a different format can also be handled by providing a specific format statement. In order to familiarize the user with the program modification, the following general rules are supplied in terms of the sample problem:

1. Changes in the dimension statements of the main program, POLRG:

- a. The dimension of array X must be greater than or equal to the product of n (m + 1), where n is the number of observations and m is the highest degree polynomial to be fitted. Since there are 15 observations and the highest degree polynomial specified is 4, the product is 75 = 15 (4 + 1).
- b. The dimension of array DI must be greater than or equal to the product of m x m. For the sample problem this product is $16 = 4 \times 4$.
- c. The dimension of array D must be greater than or equal to (m + 2) (m + 1)/2. For the sample problem this number is 15 = (4 + 2) (4 + 1)/2.
- d. The dimension of arrays B, E, SB, and T must be greater than or equal to the highest degree polynomial to be fitted, m. For the sample problem the value of m is 4.
- e. The dimension of arrays XBAR, STD, COE, SUMSQ and ISAVE must be greater than or equal to (m + 1). For the sample problem this value is 5 = (4 + 1).
- f. The dimension of array P must be greater than or equal to 3n. For the sample problem this value is 45 = 3(15). The array P is used when a plot of Y values and Y estimates is desired.

2. Changes in the input format statement of the main program, POLRG:

Only the format statement for input data may be changed. Since sample data are either one-, two-, or three-digit numbers, rather than using six-column fields as in the sample problem, each row of data may be keypunched in two 3-column fields, and if so the format is changed to (2F 3.0).

POLYNOWIAL REG	4855104	art				
NUMBER OF ORSE	EVATION: 15					
POLYNONIAL REGI INTERCEPT	-13.87414	HEE 1				
REGRESSION CC 8.36783	CFF1C1ENTS					
	AMALTS	IS OF VARIAN	CE FOR 1 DE	REE POLYNOMIAI		
SOURCE OF N	ARIATION	PESREE OF	SUM OF SOUARES	MEAN SOULUE	YALUE	INPROVEMENT IN TERMS OF SUM OF SURARES
OUT TO REGRESS DEVIATION ADD TOTAL	tone	1.	20534.28520 1071.03930 22525.32427	205528520	135+349991	20554,28520
TOTAL		ii	22525.32427			
POLYNOMIAL REGI	ESSION OF DEGN	LE 2				
INTERCEPT	15-07234					
*[[=E55104 ([-1,64922	0+43836					
	44+L+8	IS OF VARIAN	CE POR 2 DEC	REE POLYKOMIAL		
Source of a	ANTION	PRECOM	SUR OF	HEAN Souake	VALUE	INPROVENENT IN TERMS OF SUR OF SUBJECTS
DUT TO REGRESS DEVIATION AND TOTAL	NON+ OUT PEGRESSION	i	22234.37847 288.92584 22525.32427	11110-17724	*61.77356	1442-11352
POLYNOWIAL RESA	155304 OF DEGR	«)				
INTERCENT	14.52303					
4264255104 CO -3.44201	0.47641 -0	.01458				
	144LY5	IS OF VARIAN	CE FOH 3 DEG	REE POLYNOMIAL		
SOURCE OF Y		DESTEE DE	SOURCES	MÉAN SULARE	VALUE	INPROVENENT IN TEAMS OF SUR OF SOURKES
					VALUE 291.20314	07 SUR OF SUMAES
DUE TO REGRESS DEVIATION AND TOTAL	NT REGRESSION	11	22245.30083 260.02349 22525.32427	1415-09962 25-95667		
POLYNOWIAL REGR	-5+55542					
	-9-18033 0		-01#2W			
14111014						
source of y		DEGREE OF FREEDOM	SUM OF	NE ÁN SOUAKE	VALUE	IMPROVEMENT IN TEXNS OF SUM OF SUGLARES
Situact of v DUE TO REGRESS DEVIATION AND TOTAL					VALUE 417-89600	IMPROVEMENT IS, TERRS OF SUM OF SQUARES 160-62893
		DEGREE OF FREEDOM	SUM OF	NE ÁN SOUAKE		
	1044 NUT 4864255104	DEGANT OF FREEDOW 10 14	SUM OF	NE ÁN SOUAKE		
DUE TO REGRESS DEVIATION ARD TOTAL	12041 NJT 4864555104 1555104	DEGARE OF FREEDOW 10 14 PLE	SUM OF	NE ÁN SOUAKE		
DUE TO REGRESS DEVIATION ABO TOTAL	13044 WIT #EG#ZSSTON 1855104	DEGANE OF FREEDOW 10 14	Sum of Sources 12301-82836 12322-82836 22525-32427	NE ÁN SOUAKE		
DUE TO REGRESS DEVIATION ARD TOTAL	130%; 120%; 125510%	DEGARE OF FREEDOW 10 14 PLE	500 07 50048E5 72394.02478 131.42478 22525-32427	ng 431 500,442 3397,48243 33,33945	419,69600	
DUE TO REGRESS DEVIATION AND TOTAL POLYNOVIAL REGR POLYNOVIAL REGR	1044 NUT BEGRESSION 1855104	DEGREE OF FREEDOW 10 14 PLE CT 4	500 07 50048E5 72394.02478 131.42478 22525-32427	ng 44 504440 33477148243 333945	419,63600 WAL	
DUT TO RECOLDS DEFINITION TOTAL POLYNOWIAL RECO POLYNOWIAL RECO ONSERVATION NO.	1304. NUT #EG#ESSION 1855104	DEGARE OF FREEDOW 1 14 PLE EF V TE OF RESIDU V VALUE	500 OF 5004855 2230445976 133-5056 225525-32427 22525-32427	ng 44 Sauket 3597-7682-3 1)-33945 1)-33945	419,69600 UAL 80	
DUE TO REGRESS SEVIATION AND TOTAL POLYNOWIAL REGR POLYNOWIAL REGR ONSERVATION NO. 1 2 3	1004 4564555104 1855104344 1855104340 1855104.07 050 1444 1400000 240000 240000 240000 3330000	DEGRE OF FREDO 10 10 14 94E 10 14 10 10 10 10 10 10 10 10 10 10 10 10 10	400 07 300.4826 22391,4976 133,1996 23653-38-27 26553-38-27 46.5 13,1996 13,1996 13,1996 20,0900	цен јацик зултивал ујујјују ч ч се се се се се се се се се се се се се	417,69600 ULL 80 39 79	
DUE TO REGRESS SEVILITION NO ROLTHOVIAL REGR POLITIONIAL REGR CALERVATION NO. 1 2 3	100 112 125510 125510 125510 125510 125510 120 120 120 120 120 120 120 120 120 1	DESAUX OF PREEDOF 10 10 11 11 12 12 12 12 12 12 12 12 12 12 12	4,40 07 30,4745 133,47974 133,47974 133,47974 133,4774 133,4774 133,4774 133,4774 133,4774 134,4774 134,4774 134,4774 134,4774 144,4774144,4774 144,4774 144,4774144,4774 144,4774 144,4774144,4774 144,4774 144,4774144,4774 144,4774 144,4774144,47744144,47744 144,4774144,4774144,4774144,4774144,4774	тела Болике зэлтунария 13,233965 11,233965 11,233965 11,233965 11,233965 11,233965 11,233965 11,233965 11,23596 11,23566 11,23566 11,2356	417,69600 UAL 80 39 39	
DUE TO REGRESS SEVIATION AND TOTAL POLYNOWIAL REGR POLYNOWIAL REGR ONSERVATION NO. 1 2 3	1004 4564555104 1855104344 1855104340 1855104.07 050 1444 1400000 240000 240000 240000 3330000	DEGRE OF FREDO 10 10 14 94E 10 14 10 10 10 10 10 10 10 10 10 10 10 10 10	400 07 300.4826 22391,4976 133,1996 23653-38-27 26553-38-27 46.5 13,1996 13,1996 13,1996 20,0900	терба Болисе 2997, 492, 5 13, 5339 5 13, 5339 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	417,69400 ULL 50 39 39 39 39	
DUE TO REGRESS SEVILITION NO ROLTHOVIAL REGR POLITIONIAL REGR CALERVATION NO. 1 2 3	1000 WT 4568555100 1555100 07 6054 TAR 1 VALUE 1.00000 2.0000 4.07001 3.00000 4.07001 3.00000	DESAUS OF PREEDOF 10 10 10 10 10 10 10 10 10 10	440 07 300/465 23391,-0275 2155-575-57 2155-575-57 465 465 465 465 465 465 465 465 465 465	ицан Баллос 1997-18243 1997-18243 1997-18243 1997-18243 1997-18243 1997-18243 1997-1824 1997-1997 1997	419,69400 UUL 50 39 35 44 43	
015 TO 456433 NEVISTO 466 NOLTO-146 NOLTO-146 NOLTO-146 COLEENTIS 10 1 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1000 1255100	0050ABE OF TREEDOF 10 10 11 10 10 10 10 10 10 10	100 0000 100 00000000	те иста запасни и иста запасни и иста и и иста и иста и и иста и иста и и иста и иста и иста и иста и иста и и и и и и и и и и и и и и и и и и	419,65400 ULL 80 39 35 55 55 55 57 77	
DUE TO REPORT INTERNA NOLIMONIAL VERA NOLIMONIAL VERA NOLIMONIAL VERA DUBRINTISN NOL 1 2 3 4 3 4 3 4 3 4 3 4 4 3 4 4 4 4 4 4 4	1000 1555100 1555100 1555100 1555100 1400000000 14000000 14000000 14000000 14000000 1400000 1400000 1400000 1400000 1400000 140000000000	0050AFE 07 FREEDOW 10 10 11 11 11 11 11 11 11 11	100 STATES 110 ST	1000000 100000000	419.6560 ULL 60 53 53 54 54 55 54 57 78 78 78	
out to escenario antitic test not morial, test not morial, test not morial, test not morial, test not morial, test not not develop to the not not not not not not not not not not not not not not	1000 1255100	0050ABE OF TREEDOF 10 10 11 10 10 10 10 10 10 10	100 0000 100 00000000	1000000 100000000	419.6560 ULL 60 53 53 54 54 55 54 57 78 78 78	
DUT TO ELECTRONIC TO ELECTRONIC TO ELECTRONIC TO ELECTRONIC TO ELECTRONIC TO ELECTRONICO TO ELECTRONIC TO ELECTRONICO T	1000 1255100 1255100 1255100 1265100 12600 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000	0055411 00 10 11 11 11 11 11 11 11 11	100 STATES 110 ST	1997, 1998, 1997 1997, 1	417,85409 00 17 17 17 17 17 17 17 17 17 17 19 19 19 19 19 19 19 19 19 19 19 19 19	
by the statestate set the statestate Reprovide statestatestatestatestatestatestatesta	1000 1251 00	001441 07 12 12 12 12 12 12 12 12 12 12	**************************************	Image: Second	417.03.00 0 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	
201 TO 450423 2011 TEL 40 Rg morial 116 Cultouting 10 1 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1000 1255100 1255100 1255100 1255100 1400000 140000 140000 140000 14000000 1400000 1400000 1400000 14000000 1400000 1400000 1400000 1400000 1400000 1400000 1400000 1400000 1400000 1400000 1400000 1400000 1400000 1400000 1400000 14000000 14000000 14000000000 140000000000	004443 or 142000 12 12 12 12 12 12 12 12 12 12	**************************************	4611 46111 4611 4611 4611 4611 4611 4611 4611 4611	4 17 4 5 4 4 0 0 4 17 4 5 4 5 4 5 5 7 4 7 7 8 7 8 7 8 7 8 7 8 7 9 7 4 7 9 7 4 7 9 7 4 7 7 7 4 7 7 7 4 7 7 7 4 7 7 7 4 7 7 7 4 7 7 7 7	
by the statestate set the statestate Reprovide statestatestatestatestatestatestatesta	1000 1251 00	001441 07 12 12 12 12 12 12 12 12 12 12	**************************************	117 4E11 9 0.44 10 0.4	4 17 4 5 4 4 0 0 4 17 4 5 4 5 4 5 5 7 4 7 4 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7	
by the statestart services and regimeeria. High constraints with constraints wit	1000 1255100 1255100 1255100 1255100 1400000 140000 140000 140000 14000000 1400000 1400000 1400000 14000000 1400000 1400000 1400000 1400000 1400000 1400000 1400000 1400000 1400000 1400000 1400000 1400000 1400000 1400000 1400000 14000000 14000000 14000000000 140000000000	004443 or 142000 12 12 12 12 12 12 12 12 12 12	**************************************	4611 46111 4611 4611 4611 4611 4611 4611 4611 4611	4 17 4 5 4 4 0 0 4 17 4 5 4 5 4 5 5 7 4 7 4 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7	
2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1000 1255100 1255100 1255100 1255100 1400000 140000 140000 140000 14000000 1400000 1400000 1400000 14000000 1400000 1400000 1400000 1400000 1400000 1400000 1400000 1400000 1400000 1400000 1400000 1400000 1400000 1400000 1400000 14000000 14000000 14000000000 140000000000	004443 or 142000 12 12 12 12 12 12 12 12 12 12	**************************************	117 4E11 9 0.44 10 0.4	4 17 4 5 4 4 0 0 4 17 4 5 4 5 4 5 5 7 4 7 4 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7	
Section 446442 Section 4444 Reg moving, 1464 Reg moving, 1464 1 2 3 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1	1255 (0)	004443 or 142000 12 12 12 12 12 12 12 12 12 12	**************************************	117 4E11 9 0.44 10 0.4	4 17 4 5 4 4 0 0 4 17 4 5 4 5 4 5 5 7 4 7 4 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7	
NULTRATIONAL VERSION	1300 1255100,, 34X 1255100, 07 2064 14000000 140000000 14000000 14000000 14000000 14000000 140000000000	004443 or 142000 12 12 12 12 12 12 12 12 12 12	**************************************	117 4E11 9 0.44 10 0.4	4 17 4 5 4 4 0 0 4 17 4 5 4 5 4 5 5 7 4 7 4 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7	
50, 10, 4564, 4754 10, 10, 11, 11, 11, 11, 11, 11, 11, 11,	2000 - 2000 - 2000 - 2000 -	00000000000000000000000000000000000000	**************************************	117 4E11 9 0.44 10 0.4	4 17 4 5 4 4 0 0 4 17 4 5 4 5 4 5 5 7 4 7 4 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7	
50, 10, 4564, 4754 10, 10, 11, 11, 11, 11, 11, 11, 11, 11,	1200 120 12	00000000000000000000000000000000000000	**************************************	117 4E11 9 0.44 10 0.4	4 17 4 5 4 4 0 0 4 17 4 5 4 5 4 5 5 7 4 7 4 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7	

۱۹۹۶ ۲ ۱۹۹۶ ۲ ۱۹۹۶ ۲ ۱۹۹۶ ۲ ۱۹۹۶ ۹

Figure 15. Output listing

*-1+24

Operating Instructions

The sample program for polynomial regression is a standard FORTRAN program. Special operating instructions are not required. Logical unit 2 is used for input, and logical unit 1 is used for output.

Sample Main Program for Polynomial Regression -POLRG

Purpose:

(1) Read the problem parameter card for a polynomial regression, (2) Call subroutines to perform the analysis, (3) Print the regression coefficients and analysis of variance table for polynomials of successively increasing degrees, and (4) Optionally print the table of residuals and a plot of Y values and Y estimates.

Remarks:

I/O specifications transmitted to subroutines by COMMON.

Input card:

- Column 2 MX Logical unit number for output.
- Column 4 MY Logical unit number for input.

The number of observations, N, must be greater than M+1, where M is the highest degree polynomial specified. If there is no reduction in the residual sum of squares between two successive degrees of the polynomials, the program terminates the problem before completing the analysis for the highest degree polynomial specified.

Subroutines and function subprograms required:

GDATA ORDER MINV MULTR

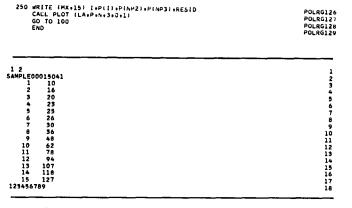
- PLOT (A special PLOT subroutine provided for the sample program.)
- Method:

Refer to B. Ostle, 'Statistics in Research', The Iowa State College Press, 1954, chapter 6. // FOR *JUCSICARD.TYPEWHITER.1132 PRINTER! *ONE WORD INTEGERS C SAMPLE MAIN PROGRAM FOR POLYNOMIAL REGRESSION - POLKG C THE FOLLOWING DIMENSION MUST BE GREATER THAN OR EQUAL TO THE C PRODUCT OF N=1M+1: WHERE N IS THE NUMBER OF OBSERVATIONS AND C M IS THE HIGHEST DEGREE POLYNOMIAL SPECIFIED. DIMENSION X13501 C THE FOLLOWING DIMENSION MUST BE GREATER THAN OR EQUAL TO THE POLRG 1 POLRG 2 POLRG 4 POLRG 4 POLRG 4 POLRG 6 POLRG 7 POLRGM02 POLRG 9 POLRG 12 PRODUCT OF N=(M=1); WHERE N IS THE NUMBER OF OBSERVATIONS AND POLRG 3 M IS THE HIGHSID DEGREE POLYNOMIAL SPECIFIED POLRO 4 POLRO 4 POLRO 4 POLRO 6 PRODUCT OF MMM. DIMENSION X13901 THE FOLLOWING DIMENSION MUST BE GREATER THAN OR EQUAL TO THE POLRO 7 THE FOLLOWING DIMENSION MUST BE GREATER THAN OR EQUAL TO POLRO 10 c c c c c ç c 7 FORMATL//26H HEGHESSION COLFFICIENTS/10FIZ-3); 8 FORMATL///24x,24HAMALYSIS UF VARIANCE FOR-14-19H DEGREE POLYNOHI/ 1L/) 9 FORMATL///25x,19FSOURCE OF VARIATLON-TX.99HDEGREE JF.7X.6HSUM OF, 19F.4HMEAN.10X.1HF.9X.20HIMPROVEMENT IN TERMS/33X.7HFREEDOM:8X. 27HSOURES.7X.6HSOURCE 7X.5HVALUE 8X.117HOF SUM OF SOURRES] 10 FORMATL//20H DUE TU HEGRESSION:12X.16+F17.5F14.55+F14.55+F14.55 11 FORMATL//20H DUE TU HEGRESSION:12X.16+F17.5F14.55+F14.55+F14.55 12 FORMATL//27X.19HTABUE JF HESIOLALS//15H OBSERVATION NO.+5X.7HX T 14 FORMATL//27X.19HTABUE JF HESIOLALS//15H OBSERVATION NO.+5X.7HX T 14 FORMATL//17X VALUE.7X.10HY ESIIMATE.7X.8HHESIDUAL/) 15 FORMATL//17X.16HF18.5F14.5+F17.5F155 16 FORMATL//15H VALUE.7X.10HY ESIIMATE.7X.8HHESIDUAL/) 17 FORMATL//15H VALUE.7X.10HY ESIIMATE.7X.8HHESIDUAL/) 18 FORMATL//15H VALUE.7X.10HY ESIIMATE.7X.8HHESIDUAL/) 19 FORMATL//15H F18.5F14.5+F17.5F155 10 FRADERUE MUMBER CARD 10 FRAD FNORLEM NUMBER CARD 10 FRADERUE NUMBER CONTINUEDI N....FIGHEST DEGREE POLYNOMIAL SPECIFIED MEDT-0FTION CODE FOR PLOTIING 0 IF PLOT IS DESIRED. 1 IF PLOT IS DESIRED. 2 P PULRG 42 POLRG 42 POLRG 43 POLRG 45 POLRG 45 POLRG 45 POLRG 45 POLRG 48 PULRG 50 PULRG 50 POLRG 51 POLRG 52 POLRG 53 POLRG 54 POLRG 55 POLRG 55 POLRG 56 POLRG 57 POLRG 58 POLRG 59
 POLRG 60

 POLRG 70

 POLRG 80

 POLRG 90


 POLRG 91

 POLRG 923

 POLRG 93

 POLRG 93

 POLRG 93
 L=N=M DO 110 [=1+N J=L+I X[1] IS THE INDEPENDENT VARIABLE+ AND X(J) IS THE DEPENDENT VARIABLE+ VARIABLE: READ'(MY+2) XII)+X(J) CALL GDATA (N+M+X+XBAR+STD+D+SUMSQ) MN=M+1 110 READ (M 110 ACA LOGATA (AMMAXAXBARASTD+D+SUMSQ) MH=M+1 SUM=GLO ND 200 I=1+M D0 200 I=1+M ISAVE(II=I ISAVE(II=I CALL MODER (AM-D)-MM-1-ISAVE-DI-E) CALL MODER (AM-D)-SUMSG-DI-E-ISAVE+8+SB+T+AM-S) PRIAT IME RESULT OF CALCULATION WRITE (AM-SI) ISAVE-ANS(I)-SUM IF(SUMIP) 100, 140, 150 100 WRITE (AM-10) IAM-SI(1)-SUMIP NI-TE (AM-10) IAM-SI(1)-AM-SI(2)-AM-SI(2)-SUMIP NI-TE (AM-10) IAM-SI(1)-AM-SI(2)-AM-SI(2)-AM-SI(2)-SUMIP NI-TE (AM-10) IAM-SI(1)-AM-SI(2)-AM-SI(2)-AM-SI(2)-SUMIP NI-TE (AM-10) IAM-SI(2)-A с с с LA-I 200 CONTINUE TEST WHETHER PLOT IS DESIRED 210 [F(HPLOT) 100, 120, 220 CALCULATE ESTIMATES 220 N93-N+N D0 230 [=1,N POLRG 96 POLRG 97 ¢ POLRG 98 POLRG 99 POLRG100 c PULRG101 POLRG102 NP3=NP3+1 P(NP3)=COE(1) POLRG102 POLRG103 POLRG104 POLRG105 POLRG106 POLRG107 POLRG109 POLRG110 POLRG111 DO 230 J=1+LA P(NP3)=P(NP3)+X1L)*C0E(J+1) 230 L=L+N C COPY OBSERVED DATA N2=N N2=N L=N+M DO 240 I=1+N P([]=X(I) N2=N2+1 PULRGII N2=N2+1 LeL+1 240 PIN21=XIL1 PRINT TABLE OF RESIDUALS WRITE (MX+3) PR+PR1 WRITE (MX+3) PR+PR1 NP1=N NP2=N+N NP2=NP2+1 NP2=NP2+1 NP2=NP2+1 NP3=NP3+1 RESID=P(NP2)-P(NP3)

SUBROUTINE PLOT

PURPOSE

PLOT SEVERAL CROSS-VARIABLES VERSUS A BASE VARIABLE

USAGE CALL PLOT (NO,A,N,M,NL,NS)

- CALL FLOT INNERFREMENTS DESCRIPTION OF PARAMETERS NO CHATT MURBER (3 DIGITS MAXIMUM) A MATRIX OF DATA TO BE PLOTTED. FIRST COLUMN REPRESENTS BASE VARIABLE AND SUCCESSIVE COLUMNS ARE THE CROSS-VARIABLES (MAXIMUM IS 9). N NUMBER OF COUSIN MATRIX A A MURBER OF COUSIN ATRIX A (EQUAL TO THE TOTAL MURBER OF COLUMNS IN MATRIX A (EQUAL TO THE TOTAL MURBER OF CANIBALES). MAXIMUM IS 20. NL MURBER OF LINES IN THE PLOT. IF O IS SPECIFIED, SO LINES ARE USED. NS CODE FOR SURTING THE BASE VARIABLE DATA IN ASCENDING GROEPR. O SORTING IS NOT NECESSARY (ALREADY IN ASCENDING

 - SORTING IS NOT NECESSARY (ALREADY IN ASCENDING
 - 1 SORTING IS NECESSARY.

REMARKS

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED

-			_
	SUBROUTINE PLOT(NU+A+N+M+NL+NS)	PLOT	1
	DIMENSION OUT(101), YPR(11), ANG(9), A(1)	PLOT	2
		PLOT	5
	CDMMON MX+MY		
	1 FURMAT (///,60X,7H CHART ,13,//)	PLOT	4
	2 FORMAT (1X+F11-4,5X+101A1)	PLOT	5
	3 FURMAT (2x)	PLOT	6
	5 FORMAT(10A1)	PLOT	7
	7 FORMATE 16X,101H.	PLOT	8
		PLOT	q
	8. FORMAT (//.9X.11F10.4)	PLOT	10
	NLL=NL	PLOT	11
	IF(NS) 16, 16, 10	PLOT	12
с	SORT BASE VARIABLE DATA IN ASCENDING ORDER	PLOT	13
ç		PLOT	14
	10 0D 15 I=1.N	PLOT	15
	DO 14 J=I,N		
	IF(A{I}-A{J}) 14, 14, 11	PLOT	16
	11 L=I-N	PLOT	17
	LL = J+N	PLOT	18
	DD 12 K≖1,M	PLOT	19
	L=L+N	PLOT	20
		PLOT	21
	LL=LL+N		
	F=A(L)	PLOT	25
	A[L]=A[LL]	PLOT	23
	12 A(LL)=F	PLOT	24
	14 CONTINUE	PLOT	75
	15 CONTINUE	PLOT	26
с		PLOT	27
ι	TEST NLL	PLOT	28
	16 [F(NLL] 20, 18, 20		
	18 NLL=50	PLOT	29
с	PRINT TITLE	PLOT	30
	20 WRITE(4X.1)NO	PLOT	31
C	READ BLANK AND DIGITS FOR PRINTING	PLOT	32
•	READ(444,5) BLANK, (ANG(1), [=1,9)	PLOT	33
С		PLOT	34
Ļ	FIND SCALE FUR BASE VARIABLE		
	XSCAL=(A(N)-A(1))/(FLOAT(NLL-1))	PLOT	35
С	FIND SCALE FOR CROSS-VARIABLES	PLOT	36
	M1=N+1	PLOT	37
	M2=4*N	PLOT	38
	YMIN=A(ML)	PLOT	39
	YHAK=YHIN	PLOT	40
		PLOT	41
	DO 40 J≈41,H2		
	1F(A(J)-Y4IN) 28+26+26	PLOT	42
	26 [F(A(J)-YMAX) 40,40,30	PLOT	- 43
	28 YM[N=4(J)	PLOT	44
	GO TO 40	PLOT	45
	30 YMAX=A(J)	PLOT	46
	40 CONTINUE	PLOT	47
		PLOT	48
	YSCAL=(YMAX-YMIN)/100.0		
c	FIND BASE VARIABLE PRINT POSITION	PLOT	49
	XB=A(1)	PLOT	50
	L≖1	PLOT	51
	MYX = M-1	PLOT	52
	I=1	PLOT	53
	45 F=1-1	PLOT	54
	XPR=XB+F*XSCAL	PLOT	55
	IF(A(L)-XPR) 50,50,70	PLOT	56
C	FIND CROSS-VARIABLES	PLOT	57
	50 DA 55 IX=1+101	PLOT	58
	55 OUT([X]=BLANK	PLOT	59
	00 60 J=1, MYX	PLOT	60
	LL=L+J=N	PLOT	61
	JP=({A(LL)-YMIN}/YSCAL)+1.0	PLOT	67
		PLOT	63
	NUT(JP)=ANG(J)		
-	60 CONTINUE	PLOT	64
С	PRINT LINE AND CLEAR, OR SKIP	PLOT	65
	WRITE(MX+2)XPR+[]UT[[]]+12]+10])	PLOT	66
	L=L+1	PLOT	67
	00 01 00	PLOT	68
	70 WRITE(MX+3)	PLOT	69

80 I=I+1 If (I-NLL)45,84,86 84 XPK=4(N) GO TO 50 PRINT CROSS-VARIABLES NUMBERS 86 WRITE(MX,7) VPK(I)=VRIN DO 90 KN=1,9 90 VPR(KN+1)=VPK(N)+VSCAL*10.0 VPR(I)=VRAX WD ITF(N-R)VP0/ID..D.1.11

WRITE(MX,8)(YPR([P],[P=1,1]) RETURN END

CANONICAL CORRELATION

Problem Description

An analysis of the interrelations between two sets of variables measured on the same subjects is performed by this program. These variables are predictors in one set and criteria in the other set, but it is irrelevant whether the variables in the first set or in the second set are considered as the prediction variables. The canonical correlation, which gives the maximum correlation between linear functions of the two sets of variables, is calculated. χ^2 is also computed to test the significance of canonical correlation.

ۇ

The sample problem for canonical correlation consists of four variables in the first set (left-hand side) and three variables in the second set (righthand side) as presented in Table 4. These two sets of measurements have been made on 23 subjects.

Table 4. Sample Data for Canonical Correlation

First set					Se	cond set	
Observation	Xi	X2	X3_	X_4	<u>Y1</u>	Y2	Y₃
1	191	155	65	19	179	145	70
2	195	149	70	20	201	152	69
3	181	148	71	19	185	149	75
1 2 3 4	183	153	82	18	188	149	86
5	176	144	67	18	171	142	71
6	208	157	81	22	192	152	77
6 7	189	150	75	21	190	149	72
8	197	159	90	20	189	152	82
8 9	188	152	76	19	197	159	84
10	192	150	78	20	187	151	72
11	179	158	99	18	186	148	89
12	183	147	65	18	174	147	70
13	174	150	71	19	185	152	65
14	190	159	91	19	195	157	99
15	188	151	98	20	187	158	87
16	163	137	59	18	161	130	63
17	195	155	85	20	183	158	81
18	196	153	80	21	173	148	74
19	181	145	77	20	182	146	70
20	175	140	70	19	165	137	81
21	192	154	69	20	185	152	63
22	174	143	79	20	178	147	73
23	176	139	70	20	176	143	69

Program

Description

The canonical correlation sample program consists of a main routine, MCANO, and six subroutines:

CORRE CANOR MINV NROOT EIGEN DATA is a special input subroutine

Capacity

The capacity of the sample program and the format required for data input have been set up as follows:

1. Up to 9 variables, including both the first set of variables (that is, left-hand variables) and the second set of variables (that is, right-hand variables). The number of variables in the first set must be greater than or equal to the number of variables in the second set.

- 2. Up to 99,999 observations.
- 3. (12F 6.0) format for input data cards.

Therefore, if a problem satisfies the above conditions it is not necessary to modify the sample program. However, if there are more than 9 variables, dimension statements in the sample main program must be modified to handle the particular problem. Similarly, if input data cards are prepared using a different format, the input format in the input subroutine, DATA, must be modified. The general rules for program modification are described later.

Input

I/O Specification Card

One control card is required for each problem and is read by the main program, MCANO. This card is prepared as follows:

Columns	Contents	For Sample Problem
1 - 6	Problem number (may be alphameric)	SAMPLE

Columns	Contents	For Sample Problem
7 - 11	Number of observations	00023
12 - 13	Number of variables in the first set (that is, left-hand variables)*	04
14 - 15	Number of variables in the second set (that is, right- hand variables)	03

*The number of variables in the first set must be greater than or equal to the number of variables in the second set.

Leading zeros are not required to be keypunched; but must be right-justified within fields.

Data Cards

Since input data are read into the computer one observation at a time, each row of data in Table 4 is keypunched on a separate card using the format (12F 6.0). This format assumes twelve 6-column fields per card.

Deck Setup

Deck setup is shown in Figure 16.

Sample

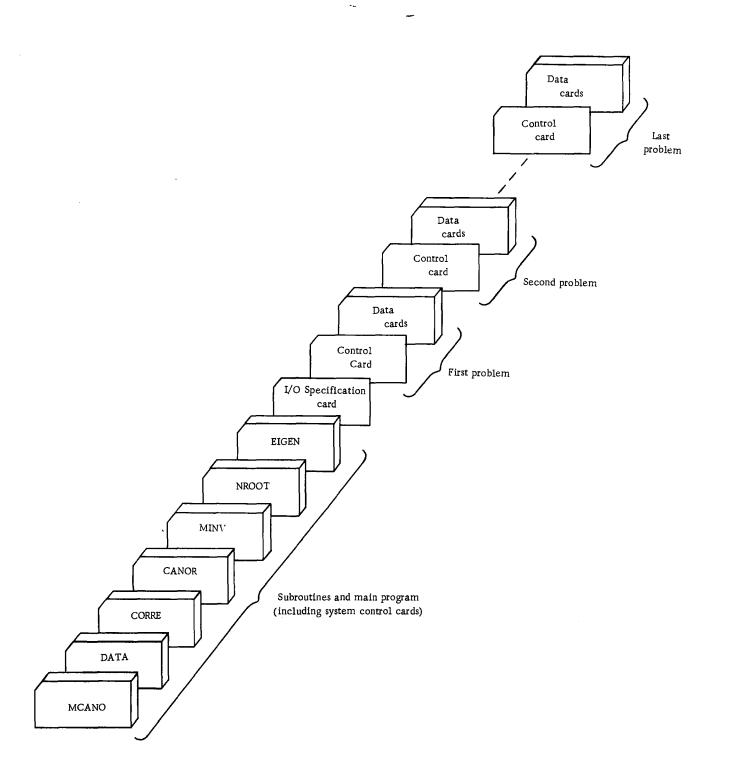
The listing of input cards for the sample problem is presented at the end of the sample main program.

Output

Description

The output of the sample program for canonical correlation includes:

- 1. Means
- 2. Standard deviations
- 3. Correlation coefficients


4. Eigenvalues and corresponding canonical correlation

- 5. Lambda
- 6. Chi-square and degrees of freedom

7. Coefficients for left- and right-hand variables

Sample

The output listing for the sample problem is shown in Figure 17 of this sample program.

ъ

ą

Figure 16. Deck setup (canonical correlation)

Program Modification

Noting that storage problems may result, as previously described in "Sample Program Descriptions", program capacity can be increased or decreased by making changes in dimension statements. Input data in a different format can also be handled by providing a specific format statement. In order to familiarize

	NATIONS HAND VARIANLES HAND VARIABLE					
"EANS 145.67827	149.4130	•	76.86956	19.47826	183.00003	148.82413
STANDARD DEVIA L0.10341	11045 A.3167	,	10.46337	1-08364	9.44423	6.73965
CORRELATION CON	******					
ROW 1 1.00000	0.74851	e.37082	0.0000	0.82240	0.46079	0.24682
90× 2 0.74851	1+00000	0.63292	0.22996	0.46811	0.72779	0+53193
90w 3 0.37382	0+65252	1+00000	0,20657	9.47394	0.60168	0.79684
90¥ 4 0.66+40	0.22390	0.20457	1,00000	9.32070	0.34843	-0.10732
2.62240	0.46413	0.47394	0.32870	1.00000	0.42555	0.39257
RGH 6 0.66079	0.72779	J.40168	0.34983	0.82939	1.00000	0.47657
7.24602	0.53193		-7.10792	0.39257	0+47657	1-00000
NUMBER OF EIGENVALUES RENOVED	LANGEST EIGENVALUE REMA (NJNG	CORRI CAL CORI	SPONDING NONICAL NELATION	LAMEDA	CHI-SQUARE	DEGHEES UF FREEDOM
•	0.79880		*175	0+11997	40.93276	12
1	0.41910		18760	0.57644 0.99232	0.14637	• 2
	LATION 0.	****				
COEFF1C1ENTS	FOR LEFT HAND -0+1805	VARIAĞLI 7	1.09023	-0.36630		
COEFFICIENTS -0.02113	FCR FIGHT HAN 0.4405	VARLAD	£5 0.69730			
CANONICAL CORRE	LATION 0.0	4738				
COEFFICIENTS 0.09453	FOR LEFT HAND -0.83921	VARJABLE	5 0+66307	-0.64891		
COEFFICIENTS -0.+3640	PCR R[GHT HAN -0.1950]	O VARTABL	85 0•70692			
CANDIICAL CORRE	LATION Dec	8760				
	FOR LEFT HAND	VARIABLE	5	-0.32497		
0.02667	0.38043	-				

Figure 17. Output listing

the user with the program modification, the following general rules are supplied in terms of the sample problem:

75.73943

1. Changes in the dimension statements of the main program, MCANO:

- a. The dimension of arrays XBAR, STD, CANR, CHISQ, and NDF must be greater than or equal to the total number of variables m (m = p + q, where p is the number of left-hand variables and q is the number of right-hand variables). Since there are seven variables, four on left and three on right, the value of m is 7.
- b. The dimension of array RX must be greater than or equal to the product of m x m. For the sample problem this product is $49 = 7 \times 7$.
- c. The dimension of array R must be greater than or equal to (m + 1)m/2. For the sample problem this number is 28 = (7 + 1)7/2.
- d. The dimension of array COEFL must be greater than or equal to the product of p x q. For the sample problem this product is $12 = 4 \times 3$.
- e. The dimension of array COEFR must be greater than or equal to the product of $q \ge q$. For the sample problem this product is $9 = 3 \ge 3$.

2. Changes in the input format statement of the special input subroutine, DATA:

Only the format statement for input data may be changed. For example, since sample data are either two- or three-digit numbers, rather than using six-column fields as in the sample problem, each row of data may be keypunched in seven 3-column fields, and if so, the format would be changed to (7F 3.0). Note that the current input format statement will allow a maximum of twelve variables per card. The special input subroutine, DATA, is normally written by the user to handle different formats for different problems. The user may modify this subroutine to perform testing of input data, transformation of data, and so on.

Operating Instructions

The sample program for canonical correlation is a standard FORTRAN program. Special operating instructions are not required. Logical unit 2 is used for input, and logical unit 1 is used for output.

Sample Main Program for Canonical Correlation - MCANO

Purpose:

(1) Read the problem parameter card for a canonical correlation, (2) Call two subroutines to calculate simple correlations, canonical correlations, chi-squares, degrees of freedom for chi-squares, and coefficients for left and right hand variables, namely canonical variates, and (3) Print the results.

Remarks:

I/O specifications transmitted to subroutines by COMMON.

Input card:

Column 2 MX - Logical unit number for output.

Column 4 MY - Logical unit number for input.

The number of left-hand variables must be greater than or equal to the number of righthand variables.

Subroutines and function subprograms required:

CORRE	(which, in turn, calls the input
	subroutine named DATA.)
CANOR	(which, in turn, calls the subrou-

tines MINV and NROOT. NROOT, in turn, calls the subroutine EIGEN.)

Method:

Refer to W. W. Cooley and P. R. Lohnes, 'Multivariate Procedures for the Behavioral Sciences', John Wiley and Sons, 1962, chapter 3.

1 2 AMPLE 191 195 181	5 149 70 20 201 152 69		1224
STORE			
/ DUA	END	MCANO MCANJ	9
200	CONTINUE	MCANO MCANO	8
190	N2=N2+1 XBAR(J)=COEFR(NZ)	MCANO MCANO	8
		MCAND MCAND	8
180	XBAR(J)=COEFL(N1)	MCANO	8
	DO 180 J=1,MP	MCANO	8
	D0 200 I=1,MM	MCANO	7
175	N1=0	MCANO	7
	MM=MQ	MCAND	7
170	WRITE (MX,8)N1,XBAR(I),CANR(I),STD(I),CHISQ(I),NDF(I)	MCANO MCANO	7
165	MM=N1	MCANO MCANO	7
	TEST WHETHER EIGENVALUE IS GREATER THAN ZERO	MCANO	1
	DO 170 I=1,NQ	MCANO	6
	DEGREES OF FREEDOMS	MCAND MCANO	6
	PRINT EIGENVALUES, CANONICAL CORRELATIONS, LAMBDA, CHI-SQUARES		ŧ
	WRITE (MX,6)1,(CANR(J),J=1,M)	MCAND	6
140	CANR(J)≏R(L)	MCANO	6
	GO TO 140	MCANG	1
120	IF(1-J) 120, 130, 130	MCAND	1
	DD 160 I=1,M	MCANG MCAND	1
	WRITE (MX,5)	MCANU MCANU	1
	WRITE (MX,3)(XBAR(I),I=1,M)	NCANO	ŝ
	PRINT MEANS, STANDARD DEVIATIONS, AND CORRELATION	MCANU	5
	X=0.0 CALL CORRE (N.M.1G.X.XBAR.STO.RX.R.CANR.CHISQ.COFF!)	MCANO	4
	10=0	MCANU MCANU	4
	WRITE (MX,2)PR,PR1,N,MP,MQ	MCANO	4
	MPNUMBER OF LEFT HAND VARIABLES	NCANÚ	4
	PR1PROBLEM NUMBER (CONTINUED)	MCAND	4
100	REAU (MY+1)PR+PR1+N+MP+MQ	NCAND MCANU	1
	REAU PROBLEM PARAMETER CARD	HCANÚ HCANÚ	2
	FORMAT(212)	MCANU	ŝ
10	FORMAT(//39H COEFFICIENTS FOR LEFT HAND VARIABLES/(8F15.5))	MCANU	3
8	FORMAT(/17,F19.5,F16.5,2F14.5,5X,15)	MCANO MCANO	3
i	20A,5X,10HCHI-SQUARE,7X,2HOF/4X,7HREMOVED,7X,9HREMAINING,7X,11HCURR	MCAND MCAND	4
1	FORMATL////12H NUMBER OF,7X,7HLARGEST,7X,13HCORRESPONDING,31X,7H LDEGREES/13H EIGENVALUES,5X,10HEIGENVALUE,7X,9HCANUNICAL,7X,6HLAMB	MCANU	ź
6	FORMAT(//4H ROW,13/(10F12.5))	MCANO	2
4	FURMAT(//20H STANDARD DEVIATIONS/(8F15.5))	MCANU	ź
2	2GHT HAND VARIABLES, 14/)	MCAND	i
2	FORMATI////27H CANONICAL CORRELATION,A4,A2//22H NO. OF OBSE RVATIONS,8X,14/29H NO. OF LEFT HAND VARIABLES,15/30H NG. OF RI	MCAND	è
1	FORMAT(A+,A2,15,212)	MCAND MCANU	
	DIMENSIEN COEFR(25)	MCAND MCANO	1
	THE FOLLOWING DIMENSION MUST BE GREATER THAN OR EQUAL TO THE	MCAND	1
	PRODUCT OF MP#MQ.	MCAND	1
		MCANO MCANG	
	THE FULLOWING DIMENSION MUST BE GREATER THAN OR EQUAL TO [M+1]*M/2.	MCANO MCANO	1
	DIMENSION RX(01)	MCANU MCANU	
	THE FOLLOWING DIMENSION MUST BE GREATER THAN OR EQUAL TO THE	MCANO	
	VAKIABLES).	MCANU	
	TOTAL NUMBER OF VARIABLES & IN=NP+MQ, WHERE MP IS THE NUMBER	MCAND MCANJ MCANU	

							FROM INPUT DEVICE. Scoutine corre and Mu	IST	
	SAM	PLE IN	PUT S	UBROUT	INE - D	АТА			
	137		20	170	143	67		25	
174	143 139	79 70	20 20	178 176	147 143	73 69		24 25	
92	154	69	20	185	152	63		23	1
75	140	70	19	165	137	81		22	
181	145	77	20	182	146	70		21	
96	153	80	21	173	148	74		20	
195	155	85	20	183	158	81		19	
163	137	59	18	161	130	63		18	

à

Ł

BE PROVIDED BY THE USER. IF SIZE AND LOCATION OF DATA FIELDS ARE DIFFERENT FROM PROBLEM TO PROBLEM, THIS SUB-Routine must be recompled with a proper format statement.

USAGE CALL DATA (N,D)

DESCRIPTION OF PARAMETERS M — THE NUMBER OF VARIABLES IN AN OBSERVATION D — Output Vector of Length M containing the Data. THE OBSERVATION

THE TYPE OF CONVERSION SPECIFIED IN THE FORMAT MUST BE Either F or E.

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED

END	0474	ą
RETURN	DATA	7
REAU (MY,1) (D(1),1=1,M)	DATA	6
READ AN OBSERVATION FROM INPUT DEVICE.	ATAC	5
1 FORMAT(12F6.0)	DATA	4
COMMON MX, MY	DATA	3
DIMENSION D(1)	- TAC	,
SUBROUTINE DATA (M, D)	DATA	1

ANALYSIS OF VARIANCE

Problem Description

C

An analysis of variance is performed for a factorial design by use of three special operators suggested by H.O. Hartley.* The analysis of many other designs can be derived by reducing them first to factorial designs, and then pooling certain components of the analysis-of-variance table.

Consider a three-factor factorial experiment in a randomized complete block design as present in Table 5. In this experiment factor A has four levels, factors B and C have three levels, and the entire experiment is replicated twice. The replicates are completely unrelated and do not constitute a factor.

Table 5. Sample Data for Analysis of Variance

Replicate			b.	1			b	2			b ₃		
(Block)		aı	az	a3	a4	a ₁	a ₂	a3	a ₄	a ₁	a2	a,	a4
	(°1	3	10	9	8	24	8	9	3	2	8	9	8
r ₁	2 c2	4	12	3	9	22	7	16	2	2	2	7	2
	(c3	5	10	5	8	23	9	17	3	2	8	6	3
	(°1	2	14	9	13	29	16	11	3	2	7	5	3
r ₂	{ c ₂	7	11	5	8	28	18	10	6	6	6	5	9
	(c3	9	10	27	8	28	16	11	7	8	9	8	15

*H.O. Hartley, "Analysis of Variance" in Mathematical Methods for Digital Computers, edited by A. Ralston and H. Wilf, John Wiley and Sons, 1962, Chapter 20.

150 159 152 150 158 147 150 75 90 76 99 65 71 91 21 20 19 20 18 18 19 190 189 197 187 186 174 185 Nevertheless, for the purpose of this program, a four-factor experiment (with factors A, B, C, and R) is assumed. Thus, each element of the data in Table 5 may be represented in the form:

x abcr where
$$a = 1, 2, 3, 4$$

 $b = 1, 2, 3$
 $c = 1, 2, 3$
 $r = 1, 2$

The general principle of the analysis-of-variance procedure used in the program is to perform first a formal factorial analysis and then pool certain components in accordance with summary instructions that specifically apply to the particular design. The summary instructions for four different designs are presented in the output section.

Program

۱

Description

The analysis-of-variance sample program consists of a main routine, ANOVA, and three subroutines:

AVDAT	
AVCAL	are from the Scientific Subroutine Package
MEANQ	

Capacity

The capacity of the sample program and the format required for data input have been set up as follows:

1. Up to six-factor factorial experiment

2. Up to a total of 1600 data points. The total number of core locations for data points in a problem is calculated as follows:

$$T = \frac{k}{n} (LEVEL_{i} + 1)$$

where LEVEL_i = number of levels of i^{th} factor k = number of factors Π = notation for repeated products

3. (12F6.0) format for input data cards Therefore, if a problem satisfies the above conditions it is not necessary to modify the sample program. However, if there are more than six factors or if the total number of data points is more than 1800, dimension statements in the sample main program must be modified. Similarly, if input data cards are prepared using a different format, the input format statement in the sample main program must be modified. The general rules for program modifications are described later.

Input

I/O Specification Card

One control card is required for each problem and is read by the main program, ANOVA. This card is prepared as follows:

Columns	Contents	For Sample Problem
1 - 6	Problem number (may be alphameric)	SAMPLE
7 - 8	Number of factors	04
9 - 15	Blank	
∫ ¹⁶	Label for the first factor	Α
(17 - 20	Number of levels of the first factor	0004
∫ ²¹	Label for the second factor	В
22 - 25	Number of levels of the second factor	0003
§ ²⁶	Label for the third factor	С
27 - 30	Number of levels of the third factor	0003
§ ³¹	Label for the fourth factor	R
32 - 35	Number of levels of the fourth factor	0002
66	Label for the eleventh factor (if present)	
(67 - 70	Number of levels of the eleventh factor	

If there are more than eleven factors, continue to the second card in the same manner.

	Columns	Contents	X_{4332} . In other words, the innermost subscript is changed first; namely, the first factor, and then
Į	1	Label for the twelfth factor	second, third, and fourth subscripts. In the sample problem, the first subscript corresponds to factor A
l	2 - 5	Number of levels for the twelfth factor	and the second, third, and fourth subscripts to fac- tors B, C, and R. Since the number of data fields per cards is twelve, implied by the format (12F6.0), each row in Table 5 is keypunched on a separate card.
	etc.		Deck Setup
	Leading z	eros are not required to be keypunched.	Deck setup is shown in Figure 18.
Γ	ata Cards		Sample

Data are keypunched in the following order: X_{1111} , X_{2111} , X_{3111} , X_{4111} , X_{1211} , X_{2211} , X_{3211} , ...,

The listing of input cards for the sample problem is presented at the end of the sample main program. è

å,

2

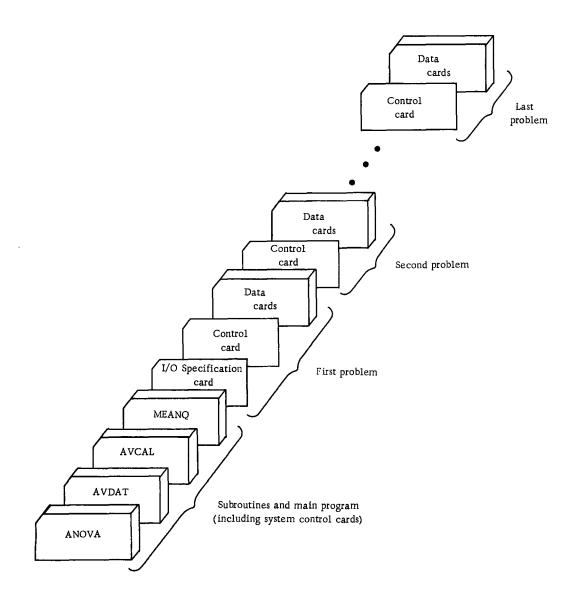


Figure 18. Deck setup (analysis of variance)

Output

Description

The output of the sample analysis-of-variance program includes the numbers of levels of factors as input, the mean of all data, and the table of analysis of variance. In order to complete the analysis of variance properly, however, certain components in the table may need to be pooled. This is accomplished by means of summary instructions that specifically apply to the particular experiment as presented in Table 6.

Table 6.	Instructions to Summarize Components
	of Analysis of Variance

	Single Classification with Replicates	Two-way Classification with Cell Replicates	Randomized Complete Block with Two Factors	Split Plot
(Input) Factor No. 1 2 3	Groups = A Replicates = R	Rows = A Columns = B Replicates = R	Factor 1 = A Factor 2 = B Blocks = R	Main treatment = A Subtreatment = B Blocks = R
(Output) Sums of squares	A R AR	A B AB R AR BR ABR	A B AB R AR BR ABR	A B AB R AR BR ABR
Summary instruction	Error ≈ R + (AR)	Error = R + (AR) +(BR)+(ABR)	Error = (AR)+(BR) +(ABR)	Error = (BR)+(ABR) (b)
Analysis of variance	Groups A Error	Rows A Columns B Interaction AB Error	Factor 1 A Factor 2 B Interaction AB Blocks R Error	Main treatment A Blocks R Error (a) AR Subtreatment B Interaction AB Error (b)

As mentioned earlier, the sample problem is a randomized complete block design with three factors replicated twice. Therefore, it is necessary to pool certain components in the table of analysis of variance shown in Figure 19. Specifically, the components AR, BR, ABR, CR, ACR, BCR, and ABCR are combined into one value called the error term. The result is indicated in Figure 19. Since these data are purely hypothetical, interpretations of the various effects are not made.

Sample

The output listing for the sample problem is shown in Figure 19.

ANALYSIS OF VARIANCE.....SAMPLE

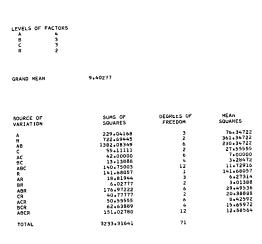


Figure 19. Output listing

Program Modification

Noting that storage problems may result, as previously described in "Sample Program Description", program capacity can be increased or decreased by making changes in dimension statements. Input data in a different format can also be handled by providing a specific format statement. In order to familiarize the user with the program modification the following general rules are supplied in terms of the sample problem:

1. Changes in the dimension statements of the main program, ANOVA:

- a. The dimension of array X must be greater than or equal to the total number of data points as calculated by the formula in the program capacity section above. For the sample problem the total number of data points is 240 = (4+1)(3+1)(3+1)(2+1).
- b. The dimension of arrays HEAD, LEVEL, ISTEP, KOUNT, and LASTS must be greater than or equal to the number of factors, k. Since there are four factors in the sample problem (4 = 3 original factors + 1 pseudo factor) the value of k is 4.
- c. The dimension of arrays SUMSQ, NDF, and SMEAN must be greater than or equal to $n = 2^{k}-1$, where k is the number of factors. For the sample problem the value of n is $15 = 2^{4}-1$.

2. Change in the input format statement of the main program, ANOVA:

Only the format statement for input data may be changed. Since sample data are either one- or two-digit numbers, rather than using six-column fields as in the sample problem, each data may be keypunched in a two-column field, and, if so, the format is changed to (12F2.0). This format assumes twelve 2column fields per card, beginning in column 1.

Operating Instructions

The sample analysis-of-variance program is a standard FORTRAN program. Special operating instructions are not required. Logical unit 2 is used for input, and logical unit 1 is used for output.

Sample Main Program for Analysis of Variance - ANOVA

Purpose:

(1) Read the problem parameter card for analysis of variance, (2) Call the subroutines for the calculation of sums of squares, degrees of freedom and mean square, and (3) Print factor levels, grand mean, and analysis of variance table.

Remarks:

The program handles only complete factorial designs. Therefore, other experimental design must be reduced to this form prior to the use of the program.

I/O logical units determined by MX and MY, respectively.

Subroutines and function subprograms required:

AVDAT
AVCAL
MEANQ

Method:

The method is based on the technique discussed by H.O. Hartley in "Mathematical Methods for Digital Computers", edited by A. Ralston and H. Wilf, John Wiley and Sons, 1962, Chapter 20.

// FOR *IOCS(CARD+TYPEWRITER+1132 PRINTER)	
*ONE WORD INTEGERS	
C SAMPLE MAIN PROGRAM FOR ANALYSIS OF VARIANCE - ANOVA	ANOVA 1
C THE FOLLOWING DIMENSION MUST BE GREATER THAN OR EQUAL TO T	HE ANOVA 2
C CUMULATIVE PRODUCT OF EACH FACTOR LEVEL PLUS ONE (LEVEL(I)	
C CUMULATIVE PRODUCT OF EACH FACTOR LEVEL PLUS ONE (LEVEL(I) C FOR I=1 TO K, WHERE K IS THE NUMBER OF FACTORS	ANOVA 4
DIMENSION X(1600)	ANDVAMD2
C THE FOLLOWING DIMENSIONS MUST BE GREATER THAN OR EQUAL TO	
C NUMBER OF FACTORS	ANOVA 7
DIMENSION HEAD(6) +LEVEL(6) +ISTEP(6) +KOUNT(6) +LASTS(6)	ANOVA B
C THE FOLLOWING DIMENSIONS MUST BE GREATER THAN OR EQUAL TO	
C THE K-TH POWER MINUS 1. (12**K1-11	ANOVA 10
DIMENSION SUMSQ(63) NDF(63) SMEAN(63)	ANOV AMG 1
C THE FOLLOWING DIMENSION IS USED TO PRINT FACTOR LABELS IN	
C ANALYSIS OF VARIANCE TABLE AND IS FIXED	ANOVA 13
DIMENSION FHTL15)	ANOVA 14
1 FORMAT(A4, A2, 12, A4, 3X, 11(A1, 14)/(A1, 14, A1, A1, A1, A1, A1, A1, A1, A1, A1, A1	
2 FORMAT(///26H ANALYSIS OF VARIANCE	ANUVA 16
3 FORMAT(//18H LEVELS OF FACTORS/(3X, A1, 7X, [4))	ANOVA 17
4 FORMAT(////11H GRAND MEAN,F20.5////)	ANOVA 18
5 FORMAT(//ICH SOURCE OF, 18x, 7HSUMS OF, 10x, 10HDEGREES OF, 9x, 4HM	
110H VARIATION, 18X, 7HSQUARES, 11X, 7HFREEDOM, 10X, 7HSQUARES/)	ANUVA 20
6 FORMAT(2X, 15A1, F20, 5, 10X, 16, F20, 5)	ANOVA 21
7 FORMAT(/7H TOTAL, 10X, F2G.5, 10X, 16)	ANOVA 22
8 FORMAT(12F6.0)	ANGVA 23
9 FORMAT(212) C	
• • • • • • • • • • • • • • • • • • • •	**************************************

1 2 SAMPL	E04 A000480003C0009R0002 3 10 9 8 24 8 9 3 2 8 9 4 12 3 9 22 7 16 2 2 2 7	8 2 3	2345
	E AS UA ANDVA JANUVA		
/ DUI	GO TÚ 1CO ÉNU	ANLVA (ANLVA (
	WRITE IMX,7)SUA,N	ANGVA	
170	N=N-1	ANGVA	
160	CONTINUE	ANUVA	
	GO TO 120	ANGVA	
150	ISTEP(1)=1	ANGVA ANGVA	
141	ISTEP(I)=0 GO TO 160	ANOVA	
147	IF(ISTEP(1)) 147, 150, 147	ANUVA	
145	JO 160 1=1,K	ANGVA	70
	IFINN-LL) 145, 170, 170	ANGVA	
	SUM=SUM+SUMSQ(NN)	ANOVA	
	WRITE (MX, 6)(FMT(1),1=1,15), SUMSW(NN), NUF(NN), SMEAN(NN)	ANLVA	
140	CONTINUE	ANUVA	
100	E=E+1 FNT(L)=HEAD([)	ANÚV.	
140	IF(ISTEP(1)) 130, 140, 130	ANOVA	
	FMT(I)=BLANK	ANUVA	
	DO 146 [=1,K	ANŪVA	-1
	L=0	ANUVA	
120	NN=NN+1	ANUVA	
	SUM=0.0	ANUVA	
	NN=0	ANUVA	
110	FMT(1)=BLANK	ΑΝΟΥ Α ΑΝύν Α	22 6 -
10.9	00 110 I=1,15	ANUVA	
105	ISTEP(1)=0	ANDVA	
	DO 105 I=2,K	ANOVA	
	LL=(2**K)-1 [STEP(1)=1	ANOVA	
	WRITE (MX,5) LL=(2**K)-1	ANOVA	
	PRINT ANALYSIS OF VARIANCE TABLE	ANOVA	49
	WRITE (MX,4)GMEAN	ANOVA	48
	PRINT GRAND MEAN	ANDVA	
	CALL HEANQ (K, LEVEL, X, GMEAN, SUMSQ, NDF, SMEAN, ISTEP, KOUNT, LASTS)	ANDVA	
	CALL AVCAL (K,LEVEL,X,L,ISTEP,LASTS)	ANOVA	
	CALL AVDAT (K, LEVEL, N, X, L, ISTEP, KOUNT)	ANOVA	
	READ (MY,8)[X[],1=1,N]	ANOVA ANOVA	
:	READ ALL INPUT DATA	ANOVA	
102	N=N*LEVEL(1)	ANOVA	
	DO 102 J=2,K	ANOVA	
•	CALCULATE TOTAL NUMBER OF DATA ELEMENTS N=level(1)	ANDVA	
5	WRITE (MX,3)(HEAD(1),LEVEL(1),1=1,K)	ANOVA	37
	WRITE {MX,2}PR,PR1	ANOVA	
5	PRINT PROBLEM NUMBER AND LEVELS OF FACTORS	ANOVA	
	LEVEL.LEVELS OF FACTORS	ANDVA	
	HEAD FACTOR LABELS	ANDVA ANDVA	
:	BLANKBLANK FIELD	ANOVA	
:	KNUMBER OF FACTORS	ANOVA	
5	PRPROBLEM NUMBER (MAY BE ALPHAMERIC) PR1PROBLEM NUMBER (CONTINUED)	ANDVA	
100	READ (HY, 1)PR, PR1, K, BLANK, (HEAD(1), LEVEL(1), I=1, K)	ANOVA	28
	TRODELN FARMETER CARD	ANOVA	- 27
	READ PROBLEM PARAMETER CARD	ANOVA	

DISCRIMINANT ANALYSIS

Problem Description

14

A set of linear functions is calculated from data on many groups for the purpose of classifying new individuals into one of several groups. The classification of an individual into a group is performed by evaluating each of the calculated linear functions, then finding the group for which the value is the largest.

16 11 18 10 16 11 2 7 6 6 8 9

The sample problem for discriminant analysis consists of four groups of observations as presented in Table 7. The number of observations in the first group is eight; the second group, seven; the third group, seven; and the fourth group eight. The number of variables is six in all groups.

Program

Description

The discriminant analysis sample program consists of a main routine, MDISC, and three subroutines:

DMATX	
MINV	
DISCR	

are from the Scientific Subroutine Package

Table 7. Sample Data for Discriminant Analysis

	Observation	X,	X ₂	X ₃	X ₄	X _s	X ₆
Group 1	1 2 3 4 5 6 7 8	3 4 9 16 5 17 2 7	10 12 3 2 10 3 10 10	9 3 2 5 2 9 5	8 8 2 8 8 8 8 8 8	24 22 9 7 23 6 29 28	8 7 8 2 9 3 16 18
Group 2	1 2 3 4 5 6 7	9 11 8 1 7 7 7	10 7 10 6 8 9 10	27 8 9 8 5	8 9 8 14 6 2 8	28 8 27 14 18 19 27	16 15 16 13 2 9 17
Group 3	1 2 3 4 5 6 7	3 9 4 8 6 8 17	11 4 13 5 9 10 3	9 10 10 16 10 5 2	15 7 7 16 5 8 7	20 9 21 16 23 27 6	10 9 15 7 11 16 3
Group 4-	1 2 3 4 5 6 7 8	3 4 9 15 9 8 7 7	10 12 3 2 10 9 8 10	8 3 2 2 6 5	8 8 8 8 9 8	23 23 21 7 27 26 18 26	8 7 2 16 16 2 16

Capacity

The capacity of the sample program and the format required for data input have been set up as follows:

1. Up to four groups

 Up to ten variables
 Up to a total number of 100 observations in all groups combined.

4. (12F6.0) format for input data cards

Therefore, if a problem satisfies the above conditions it is not necessary to modify the sample program. However, if there are more than four groups, more than ten variables, or more than 100 observations, dimension statements in the sample main program must be modified to handle this particular problem. Similarly, if input data cards are prepared using a different format, the input format statement in the sample main program must be modified. The general rules for program modification are described later.

Input

I/O Specification Card

One control card is required for each problem and is read by the main program, MDISC. This card is prepared as follows:

Columns	Contents	For Sample Problem
1 - 6	Problem number (may be alphameric)	SAMPLE
7 - 8	Number of groups	04
9 - 10	Number of variables	06
11 - 15	Number of observations in first group	00008
16 - 20	Number of observations in second group	00007
21 - 25	Number of observations in third group	00007
26 - 30	Number of observations in fourth group	00008
•		
•		
65 - 70	Number of observations	

5 - 70 Number of observations in twelfth group (if present)

If there are more than twelve groups in the problem, continue to the second card in the same manner.

Columns	Contents
1 - 5	Number of observations in thirteenth group
6 - 10	Number of observations in fourteenth group

Leading zeros are not required to be keypunched, but numbers must be right-justified in fields.

Data Cards

Since input data are read into the computer one observation at a time, each row of data in Table 7 is keypunched on a separate card using the format (12F6.0). This format assumes twelve 6-column fields per card.

Deck Setup

Deck setup is shown in Figure 20.

Sample

The listing of input cards for the sample problem is presented at the end of the sample main program.

Output

Description

The output of the sample program for discriminant analysis includes:

- 1. Means of variables in each group
- 2. Pooled dispersion matrix
- 3. Common means
- 4. Generalized Mahalanobis D-square

5. Constant and coefficients of each discriminant function

3

۵

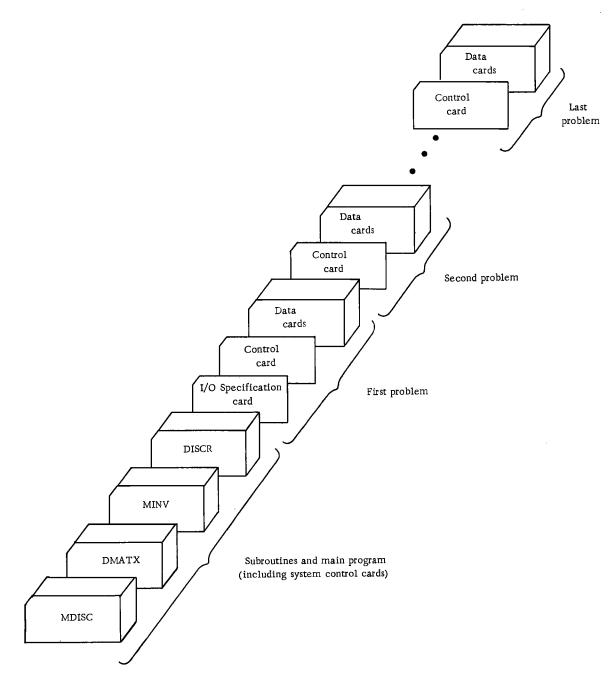


Figure 20. Deck setup (discriminant analysis)

6. Probability associated with the largest discriminant function evaluated for each observation.

Sample

The output listing for the sample problem is shown in Figure 21.

Program Modification

Noting that storage problems may result, as previously discussed in "Sample Program Description", program capacity can be increased or decreased by making changes in dimension statements. Input data in a different format can also be handled by providing a specific format statement. In order to familiarize the user with the program modification, the following general rules are supplied in terms of the sample problem:

1. Changes in the dimension statements of the main program, MDISC:

- a. The dimension of array N must be greater than or equal to the number of groups, k. Since there are four groups in the sample problem the value of k is 4.
- b. The dimension of array CMEAN must be greater than or equal to the number of variables, m. Since there are six variables in the sample problem the value of m is 6.
- c. The dimension of array XBAR must be greater than or equal to the product of m times k. For the sample problem this product is $24 = 6 \times 4$.
- d. The dimension of array C must be greater than or equal to the product of (m+1)k. For the sample problem this product is 28 = (6+1)4.
- e. The dimension of array D must be greater than or equal to the product of m times m. For the sample problem this product is $36 = 6 \ge 6$.
- f. The dimension of arrays P and LG must be greater than or equal to the total number of observations in all groups combined, t. For the sample problem this total is 30 = 8 + 7 + 7 + 8.
- g. The dimension of array X must be greater than or equal to the total number of data points that is equal to the product of t

NUMB NUMB SAMP	ER OF GROUP ER OF VARIA LE SIZES GROUP 1 2	5 6 BLES 6 7 7					
	3	é					
GROUP	1 MEAN! 7.87500	7.50000	4.62500	7+25000	18+50000	8.87500	
GROUP	2 MEANS 7.14285	8+57243	9.57143	7.85714	20+14286	12.57143	
GROUP	3 MEAN5 7.85714	7.85714	8.85714	9.28571	17.42857	10+14285	
GROUP	4 MEANS 7.75000	8.00000	6.75000	7.37500	21.37500	9.25000	
POOLEC	DISPERSION	MATRIX					
RCW 1	19.61880	-11-16208	-5=21496	-6+09889	-22.74861	-9.54051	
ROW 2	2 -11.16208	11+94504	5+61812	1.91758	22+60987	10.66757	
ROW	3 -5.21496	5+61812	39.45945	3.93681	16+23487	9.34546	
ROW 4	-6+09889	1+91758	3.93681	9+83309	4+62156	3.63790	
ROW	5						
	-22.74861	22+60987	16.23487	4+62156	62.78635	30.18268	
ROW (6 -9,54051	10.66757	9.34546	3+83790	30.18268	29.57484	
сакної	N MEANS 7+66666	7.96666	7+33333	7.89999	19.39999	10.13333	
GENER	ALIZED MAHAL	LANOBIS D-SQUARE	12,7806?				
DISCR	IMINANT FUR	CTION 1					
		COEFFICIENTS					
-:	28+49425	2.63868	2.12202	-0.17167	1.91198	0.58476	-0.40475
		CT10N 2					
	CONSTANT						
			2+25227	-0.04816	1.66316	0.43732	-0.21783
-; DISCR	CONSTANT 29.21008 Iminant fun	• 2.61928 CTION 3	2.25227	-0+04816	1.66316	0.43732	-0.21783
-; DISCR	CONSTANT 4 29+21008 IM[NANT FUN CONSTANT	• 2.61928 CTION 3 • COEFFICIENTS					
-; DISCR	CONSTANT 4 29+21008 IM[NANT FUN CONSTANT	• 2.61928 CTION 3	2.25227	-0.04816	1.88318 2.13259	0.43732 0.42619	-0.21783 -0.32718
-; DISCR	CONSTANT 4 29+21008 IM[NANT FUN CONSTANT	2.61928 CTION 3 COEFFICIENTS 2.74448					
DISCR	CONSTANT 4 29+21008 IMINANT FUN CONSTANT 4 31+86424	2.61928 COEFFICIENTS 2.74448 CTION 4					

EVALUATION OF CLASSIFICATION FUNCTIONS FOR EACH OBSERVATION

DISCRIMINANT ANALYSIS.....SAMPLE

GROUP I		
OBSERVATION	PROBABILITY ASSOCIATED WITH LARGEST DISCRIMINANT FUNCTION	LARGEST FUNCTION NO
1	0+38065	4
ž	0.37043	i
3	0.36260	ī

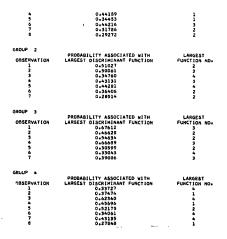


Figure 21. Output listing

times m. For the sample this product is $180 = 30 \times 6$.

2. Changes in the input format statement of the main program, MDISC:

> Only the format statement for input data may be changed. Since sample data are either one- or two-digit numbers, rather than using six-column fields as in the sample problem, each row of data may be keypunched in twocolumn fields, and, if so, the format is changed to (6F2.0). This format assumes six 2-column fields per card, beginning in column 1.

Operating Instructions

The sample program for discriminant analysis is a standard FORTRAN program. Special operating instructions are not required. Logical unit 2 is used for input, and logical unit 1 is used for output.

Sample Main Program for Discriminant Analysis - MDISC

Purpose:

(1) Read the problem parameter card and data for discriminant analysis, (2) Call three subroutines to calculate variable means in each group, pooled dispersion matrix, common means of variables, generalized Mahalanobis D square, coefficients of discriminant functions, and probability associated with largest discriminant function of each case in each group, and (3) Print the results.

Remarks:

The number of variables must be greater than or equal to the number of groups. I/O logical units determined by MX and MY,

respectively.

Subroutines and function subprograms required:

DMATX
MINV

DISCR

Method:

Refer to "BMD Computer Programs Manual", edited by W.J. Dixon, UCLA, 1964, and T.W. Anderson, "Introduction to Multivariate Statistical Analysis", John Wiley and Sons, 1958, section 6.6-6.8.

// F	DR Sicard, Typewriter, 1132 Printer)		
	WORD INTEGERS		
+unc	SAMPLE MAIN PROGRAM FOR DISCRIMINANT ANALYSIS - MDISC	MOISC	1
č	THE FOLLOWING DIMENSION MUST BE GREATER THAN OR EQUAL TO THE	MOISC	ž
č	NUMBER OF GROUPS, K	MDISC	
	DIMENSION N(4)	MDISC	
c	THE FOLLOWING DIMENSION MUST BE GREATER THAN OR EQUAL TO THE	MDISC	
č	NUMBER OF VARIABLES, M	MDISC	6

168

c c	DIMENSION CNEAN(10) The Following Dimension must be greater than or equal to the Product of Nex	MDISC 7 MDISC 8	
¢	DIMENSION XBAR(40) The Fullowing dimension must be greater than DK equal to the	MDISC 9 NDISC 10 MDISC 11	
с с	PRODUCT OF (N+1)*K Dimension C(44) The Following Dimension Must be greater than or equal to the	MDISC 12 MDISC 13 MDISC 14	2
с с	PRODUCT OF MAN. Dimension Diloo) The fullowing dimensions must be greater than or equal to the	NDISC 14 MDISC 15 MDISC 16 MDISC 17	
č	TOTAL OF SAMPLE SIZES OF K GROUPS COMBINED, T (T = N(1)+N(2)+, +N(K))	MOISC 18 MOISC 19	
C C	DIMENSION P(100),LG(100) The following diaension must be greater than or equal to the Total data points which is equal to the product of tem	MDISC 20 MDISC 21 MDISC 22	
c	DIMENSION X(1000) 1 FORMAT(A4,A2,222,1215/(1415))	MDISC 23	
	2 FORMAT[////27H DISCRIMINANT ANALYSIS44,A2//19H NUMBER OF (10095,7X,13/22H NUMBER OF VARIABLES,17/17H SAMPLE SIZES/12X, 25HGROUP)	RMDISC 26 MDISC 27	
	3 FORMAT(12x,13,8x,14) 4 Format(//2x)	MDISC 28 MDISC 29 MDISC 30	
	5 FORMAT[1266.0) 6 FORMAT[//6H GROUP,I3,7H MEANS/[8f15.5}) 7 FORMAT[///25H PUDLED DISPERSION MATRIX]	MDISC 31 MDISC 32 MDISC 33	
	8 FORMAT(//H ROA,13/(8F15.5)) 9 FORMAT(////13H CUMMON MEANS/(8F15.5)) 10 FORMAT(////3H GENERALIZEO MAMALANOBIS D-SQUARE,F15.5//)	MDISC 34 MDISC 35 MDISC 36	
	11 FORMAT(//22H DISCRIMINANT FUNCTION, 13//6X, 27HCONSTANT + COEFF	IMDISC 37	
	LCIENTS//FL-5,7H * ,7FL4.5/122X,7FL4.53) 12 Formati////och evaluation of classification functions for each de Lervation) 13 Formati//och Group,13/19X,27HPROBABILITY ASSOCIATED WITH,11X,7HLAR		
	LEST/I3H UBSERVATION, 5X, 29HLARGEST DISCRIMINANT FUNCTIJN, 0X, 12HFL 2CTION NG.) 14 FORMAT(17, 20X, FB. 5, 20X, 16)	NMDISC 42 MDISC 43 MDISC 44	
c	15 FORMAT(212)	MDISC 45 MDISC 46	
C	READ(2,15)HX,HY READ PRUBLEM PARAMETER CARD 100 READ(MY,1)PR,PR1,K,H,[N([],1=1,K]	NDISC 47 MDISC 48 NDISC 49	
с с с	PRPRUBLEM NUMBER (MAY 8E ALPHAMERIC) PrlPrjblem Number (continued) KNumber (f groups	MDISC 50 MDISC 51 MDISC 52	
č.	MNUMBER OF VARIABLES NVECTOR OF LENGTH K CUNTAINING SAMPLE SIZES	NDISC 53 NUISC 54	
	MRITE (MX-2) PR,PRI,K,M DD 110 [=1,K 110 write (MX-33],N(1)	NDISC 55 NDISC 56 NDISC 57	
¢	WRITE (MX,4) Read data L=0	MDISC 58 MDISC 59 MDISC 60	
	DO 130 [=1,K N]=N(I) DO 120 J=1,N1	NDISC 61 NDISC 62	
	READ [MY,5} [CNEAN(IJ},IJ≃1,M) L=L+1	MDISC 63 NDISC 64 NDISC 65	
	N2=L-N1 D0 120 [j=l,m N2=N2+N1	MDISC 66 MDISC 67 MDISC 68	
	120 X(N2)=CMEAN(IJ) 130 L=N2 CALL DMATX (K,H,N,X,XBAR,D,CMEAN)	MDISC 69 MDISC 70 MDISC 71	
¢	PRINT MEANS AND POOLED DISPERSION MATRIX L=0 D0 150 l=1+K	NDISC 72 MDISC 73	
	00 140 J=1,M L=L+1	MDISC 74 MDISC 75 MDISC 76	
	140 CMEAN(J)=XBAR(L) 150 WRITE (MX,6) I,{CMEAN(J),J=1,H} WRITE (MX,7)	NDISC 77 MDISC 78 MDISC 79	
	DO 170 I=1,M L≈I-M DO 160 J=1,M	MDISC 80 MDISC 81 MDISC 82	
	L=L+H 160 CMEAN(J)=D(L)	MDISC 83 MDISC 84	
	170 WRITE (MX,48) I,(CMEAN(J),J=1M) Call Minv (0,H,det,CMean,C) Call Discr (X,H,M,X,XBar,D,CMEAN,V,C,P,LG)	MOISC 85 MOISC 86 MOISC 87	
с с	PRINT COMMON MEANS Write(Mx,9) (chéan(i),i=1,M) Print Generalizéd Nahalanubis d−square	MDISC 88 MDISC 89 MDISC 90	
c	WRITE (MX,10) V PRINT CONSTANTS AND COEFFICIENTS OF DISCRIMINANT FUNCTIONS N1=1	MDISC 91 MDISC 92	
	N2=M+1 D0 180]∞1,K	MDISC 93 MDISC 94 MDISC 95	
1	HRITE (MX,11) [,(C(J),J=N1,N2) N1=N1+(M+1) 18G N2=M2+(M+1)	MDISC 96 MDISC 97 MDISC 98	
C C	PRINT EVALUATION OF CLASSIFICATION FUNCTIONS FO EACH Observation Write (Nx,12)	NDISC 99 NDISC100 NDISC101	
	N1=1 N2≃N(1)	MDISCIO2 MDISCIO3	
	DO 210 J=1,K Write (MX,13) I L=0	MDISC104 MDISC105 MDISC106	
J	DD 190 J=N1,N2 L¤L+1 190 WRITE (MX,14) L,P(J),LG(J)	MDISC107 MDISC108 MDISC109	
	IF(1~K) 20C, 1CC, 1CO 20C N1=N1+N(1)	MDISCIIO MDISCIII	
2	N2=N2+N(I+1) 210 Continue Stop	MDISCI12 MDISCI13 MDISCI14	
	END DUP TORE WS UA MDISC	MDISCIIS	
11	XEQ MDISC 01 DCALMDISC, DMATX, MINV, DISCR		
	2 MPLE04060008000070000700008	<u>1</u>	
4	3 10 9 8 24 8 4 12 3 8 22 7	2 3 4 5	
	16 2 2 2 7 2 5 10 5 8 23 9	67	
	17 3 2 8 6 3 2 10 9 8 29 16 7 10 5 8 28 18	8 9 10	
	9 10 27 8 28 16 11 7 8 9 8 15 8 10 2 8 27 16	11 12 13	,
	1 6 8 14 14 13 7 8 9 6 18 2	14 15	

в

7 9 8 2 19 9 16 7 10 5 8 27 17 17 3 11 9 15 20 10 18 9 4 10 7 9 9 19 4 13 10 7 21 15 20 8 5 16 16 7 21 15 20 8 5 16 16 7 21 15 20 8 5 16 16 7 21 15 20 8 5 16 16 7 21 15 20 16 9 10 5 8 27 16 23 3 10 8 8 23 8 25 7 26 9 3 2 8 21 7 27 28 9 10 26 8 27 16 29 39 9

FACTOR ANALYSIS

Problem Description

A principal component solution and the varimax rotation of the factor matrix are performed. Principal component analysis is used to determine the minimum number of independent dimensions needed to account for most of the variance in the original set of variables. The varimax rotation is used to simplify columns (factors) rather than rows (variables) of the factor matrix.

The sample problem for factor analysis consists of 23 observations with nine variables as presented in Table 8. In order to keep the number of independent dimensions as small as possible, only those eigenvalues (of correlation coefficients) greater than or equal to 1.0 are retained in the analysis.

·····				_					
Observation	Χι	X2	X ₃	X4	X ₅	X ₆	X ₇	X ₈	X,
1	7	7	9	7	15	36	60	15	24
2	13	18	25	15	13	35	61	18	30
3	- 9	18	24	23	12	43	62	14	31
i á	9 7	13	25	36	ii	12	63	26	32
1 2 3 4 5 6 7 8 9	6	8	20	7	15	46	18	28	15
i i	10	12	30	11	10	42	27	12	17
ž	7	6	ĩĩ	7	15	35	60	20	25
Ŕ	16	19	25	16	13	30	64	20	30
ğ		22	26	24	13	40	66	15	32
10	β	15	26	30	13	10	66	25	34
ii	9 8 8 9 11	10	20	8	17	4 0	20	30	18
12	ă	12	28	11	-8	45	30	15	19
13	l ní	17	21	30	10	45	60	17	30
14	9	16	26	27	14	31	59	19	17
15	10	15	24	18	12	29	48	18	26
16	īĭ	11	30	19 19	19	26	57	20	30
17	16	9	16	20	18	31	60	21	17
18		8	19	14	16	33	67	-9	19
19	9 7	18	22	- 9	1š	37	62	ıí	20
20	8	11	23	18	-9	36	61	22	24
21	6	6	27	23	ź	40	55	24	31
22	10	9	26	26	10	37	57	27	29
23	8	10	26	15	11	42	59	20	28
	I					_			

Program

Description

The factor analysis sample program consists of a main routine, FACTO, and six subroutines:

CORRE	
EIGEN	are from the Scientific Subroutine
TRACE >	Package
LOAD	
varmx /	
DATA	is a special input subroutine

Capacity

The capacity of the sample program and the format required for data input have been set up as follows:

- 1. Up to 29 variables
- 2. Up to 99,999 observations
- 3. (12F6.0) format for input data cards

Therefore, if a problem satisfies the above conditions it is not necessary to modify the sample program. However, if there are more than 30 variables, dimension statements in the sample main program must be modified to handle this particular problem. Similarly, if input data cards are prepared using a different format, the input format statement in the input subroutine, DATA, must be modified. The general rules for program modification are described later.

Input

I/O Specification Card

One control card is required for each problem and is read by the main program, FACTO. This card is prepared as follows:

Columns	Contents	For Sample Problem
1 - 6	Problem number (may be alphameric)	SAMPLE
7 - 11	Number of observations	00023
12 - 13	Number of variables	09
14 - 19	Value used to limit the number of eigenvalues of	0001.0

Columns	Contents	For Sample Problem
14 - 19 (cont)	correlation coefficients. Only those eigenvalues greater than or equal to this value are retained in the analysis. (A decimal point must be specified.)	

Leading zeros are not required to be keypunched, but numbers must be right-justified in fields.

Data Cards

Since input data are read into the computer one observation at a time, each row of data in Table 8 is keypunched on a separate card using the format (12F6.0). This format assumes twelve 6-column fields per card.

If there are more than twelve variables in a problem, each row of data is continued on the second and third cards until the last data point is keypunched. However, each row of data must begin on a new card.

à

ð

9,

Deck Setup

Deck setup is shown in Figure 22.

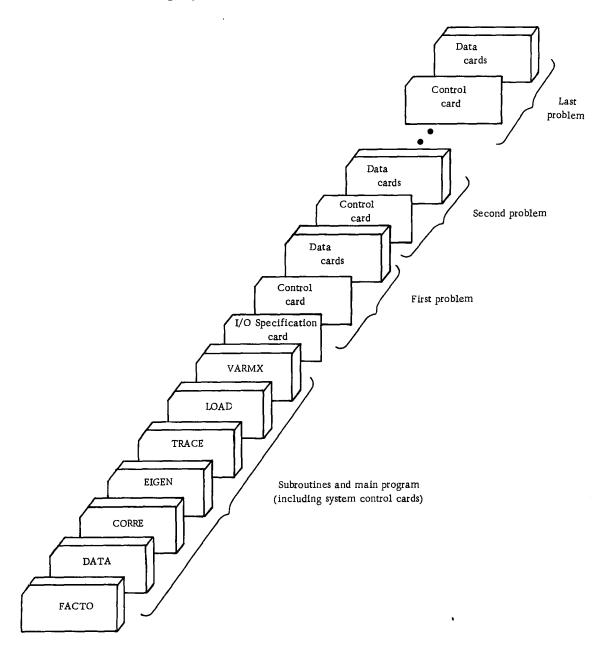


Figure 22. Deck setup (factor analysis)

Sample

The listing of input cards for the sample problem is presented at the end of the sample main program.

Output

Description

The output of the sample program for factor analysis includes:

- 1. Means
- 2. Standard deviations
- 3. Correlation coefficients
- 4. Eigenvalues
- 5. Cumulative percentage of eigenvalues
- 6. Eigenvectors
- 7. Factor matrix
- 8. Variance of the factor matrix for each iteration cycle
 - 9. Rotated factor matrix
 - 10. Check on communalities

Sample

The output listing for the sample problem is shown in Figure 23.

Program Modification

Noting that storage problems may result, as previously described in "Sample Program Description", program capacity can be increased or decreased by making changes in dimension statements. Input data in a different format can also be handled by providing a specific format statement. In order to familiarize the user with the program modification, the following general rules are supplied in terms of the sample problem:

1. Changes in the dimension statements of the main program, FACTO:

- a. The dimension of arrays B, D, S, T, and XBAR must be greater than or equal to the number of variables, m. Since there are nine variables in the sample problem the value of m is 9.
- b. The dimension of array V must be greater than or equal to the product of m times m. For the sample problem this product is $81 = 9 \times 9$.
- c. The dimension of array R must be greater than $\frac{(m+1)m}{2}$

HEANS 9.30434 25.13043	12-60	869	23.00000	18-00000	12-86956	34.0	2608	54+00000	19+39
STANDARD DEVIA 2.70411 6.09249		979	5.33427	8.33393	3.13780	9+2	9149	14.87828	3.36
CORRELATION CO									
ROW 1 1.00000	0.34986	0,11974	0.12101	0+21917	-0-89548	0+20901	-0.12908		
ROM 2 0+34986	1.00000	0.41311	0.35572	-0.08242	-0.09100	0+29622	-0.32044	0.35387	
RON 3 0.11974	0+41311	1.00000	0.41512	-0-43178	-0.08345	-0.10251	0,03215	0.27832	
ROW 4 0.12101	0.35572	0.41512	1,00000	-0.31287	-0.50364	0.49855	0.22539	0.34840	
ROW 5 0.21917	-0.08242	-0.43178	-0.31257	1.00000	-0+22999	0.03310	-0.00475	-0,30341	
RON 6 -0.09348	+0.09160	-0.08345	-0.50364	-0.22999	1.00000	-0.44520	-0.25440	-0.37456	
ROW 7 0.20901	0.29622	-0-10251	0.49855	0+03310	-0.44520	1.00000	-0.28049	0.50123	
ROW 8 -0+12908	-0.32044	0+03215	0.22539	-0.00475	-0.25440	-0+28949	1.00000	0.13515	
ROW 9 0+05817	0.35387	0.27832	0.59890	-0.30341	-0,37456	0+60123	0.13515	1.00000	
EIGENVALUES	1+64370	1+55516							
CUMULATIVE PER 0.32776	0.51039	0.68319	0.60161						
EIGENVECTORS									
	0.34835	0.28797	0++9660	-0+16806	-0.32921	0+39935	0+01281	0.47516	
VECTOR 2 0.34636	0.00551	-0.44646	-0.11893	0+61209	-0.26427	0,38859	-0.2+3+4	-0.00013	
VECTOR 3 -0+29899	-0+46825	-0.23533	0,17377	0.14467	-0.43545	0.01860	0.61587	0.12470	
VECTOR 4 0.34440	0.15909	0.38258	0.0+162	0.30536	-0+16163	-0.43410	0+40283	-0.23768	
FACTOR MATRIX	t 4 FACTOR:	5)							
VARIABLE 1 0.25231	0+44663	-0.37286	0.56203						
VARIABLE 2 0,59830	0+08399	+0.58393	0.17455						
VARIABLE 3 D.49459	-0.57240	-0.29347	0.39526						
VARIABLE 4 0.85293	-0,15248	0.21670	0.04297						
VARIABLE 5 -0.28865	0.78475	0.18042	D+31925						
VARIABLE 6 -0+56543	-0.33852	-0.54303	-0.16685						
VARIABLE 7 0+68589	0+49821	0.02344	-0.44816						
VARIABLE 6 0+02211	-0.31852	0+76602							
VARIABLE 9 0.61613	-0.07710								
		0.15550	-0.24559						
CYCLE 0 1	VARIANCES 0.211288 0.336136								
123	0.211268 0.336136 0.397020 0.403003 0.403527 0.403527 0.403527 0.403587 0.403587 0.405587 0.405587 0.405587								
6 7 8	0+405580 0+405587 0+405587								
10 11 12	0.405587 0.405587 0.405587								
ROTATED FACTOR		FACTURSI							
VARIARLE 1 0.05497	0.07183	-0.05578	0.05017						
VARIABLE 2	-0.39652	-0.35580	0.60549						
VAR1ABLE 3 0.05113	-0.82493	0.15060	0.32984						
-	-0.41401	0.24579	0.13971						
VARIABLE 5									
	0.60662	0+13524	0.39228						
-0.63285	-0.21579	-0.44983	-0.20502						
VARIABLE B	0.15299	-0.34918							
0.03602		0.91375							
0.60531		0.00993	-0.02379						
CHECK ON COMPUN VARIABLE	ORIGINAL	."	18AL	DIFFERENCE					
1 23 4 5 6 7 8 9	0.73409 0.73648 0.81464 0.79954 0.83109 0.75725 0.92006 0.8676	0. 0.	INAL 73409 73647 81463 79933 83108 75724 92005 86476	DIFFERENCE 0.00000 0.00000 0.00000 0.00000					
2	0.03109	÷.	1108 75724	0+00001 0+00000 0+00001					

Figure 23. Output listing

For the sample problem, this number is $45 = \frac{(9+1)9}{2}$

2. Changes in the input format statement of the special input subroutine, DATA:

- a. Only the format statement for input data may be changed. Since sample data are either one- or two-digit numbers, rather than using six-column fields as in the sample problem, each row of data may be keypunched in two-column fields, and, if so, the format is changed to (9F2.0). This format assumes nine 2column fields per card, beginning in column 1.
- b. The special input subroutine, DATA, is normally written by the user to handle different formats for different problems. The user may modify this subroutine to perform testing of input data, transformation of data, and so on.

Operating Instructions

The sample program for factor analysis is a standard FORTRAN program. Special operating instructions are not required. Logical unit 2 is used for input, and logical unit 1 is used for output.

Error Messages

If the number of factors to be rotated is one or zero, the following message will be printed:

ONLY____FACTOR RETAINED, NO ROTATION. The program skips rotation and goes to the next problem if it is present.

Sample Main Program for Factor Analysis - FACTO

Purpose:

(1) Read the problem parameter card, (2) Call five subroutines to perform a principal component solution and the varimax rotation of a factor matrix, and (3) Print the results.

Remarks:

I/O specifications transmitted to subroutines by COMMON.

Input card:

- Column 2 MX Logical unit number for output.
- Column 4 MY Logical unit number for input.

Subroutines and function subprograms required: (which, in turn, calls the subroutine named DATA.)

CORRE EIGEN TRACE LOAD VARMX

Method:

Refer to "BMD Computer Programs Manual", edited by W. J. Dixon, UCLA, 1964.

۵

з

// FOR #10CSICARD,TYPEWRITER,1132 PRINTER) // FOR *10CSICARD,TYPEWRITER,1132 PRINTER) *DOME WORD INTEGENS C SAMPLE MAIN PROGRAM FOR FACTOR ANALYSIS - FACTO FACTO C THE FOLLOWING DIMENSIONS WUST BE GREATER THAN OR EQUAL TO THE FACTO DIMENSION B1291-D1291.S1291.T1291.KBAR1291 FACTO C NUMBER OF VARIABLES' M. DIMENSION B1291-D1291.S1291.T1291.KBAR1291 FACTO C PRODUCT OF MEM. OIMENSION VIBA1 OIMENSION VIBA1 C PRODUCT OF MEM. DIMENSION VIBA1 C THE FOLLOWING DIMENSION MUST BE GREATER THAN OR EQUAL TO THE FACTO DIMENSION VIBA1 C THE FOLLOWING DIMENSION MUST BE GREATER THAN OR EQUAL TO FACTO C THE FOLLOWING DIMENSION MUST BE GREATER THAN OR EQUAL TO FACTO DIMENSION VIBA1 C THE FOLLOWING DIMENSION MUST BE GREATER THAN OR EQUAL TO S1. FACTO DIMENSION VIS11 C THE FOLLOWING DIMENSION MUST BE GREATER THAN OR EQUAL TO S1. FACTO D INENSION VIS11 FACTO C THE FOLLOWING DIMENSION MUST BE GREATER THAN OR EQUAL TO S1. FACTO D INENSION VIS11 FACTO FORMATI///20H STANDARD DEVIATIONS/(BF15.51) FACTO FORMATI///20H EIGENVALUES/(10F12.51) FACTO FACTO FACTO FORMATI///10H VECTOR11/(10F12.51) FACTO FAC č FACTONO
 FACTO
 6

 FACTOMO2
 FACTOMO2

 FACTO
 8

 FACTO
 9

 FACTOMO3
 7

 FACTO
 11

 FACTO
 12

 FACTO
 12

 FACTO
 14

 FACTO
 15

 FACTO
 16

 FACTO
 16

 FACTO
 18

 FACTO
 18

 FACTO
 18

 FACTO
 19

 FACTO
 21
 FACTO 21 FACTO 22 i FORMAT(///13H ELGENVECTORS) FORMAT(//TH VECTOR 1;/(10F12,5)) FORMAT(//TH VECTOR MATRIX (,13,9H FACTORS)) FORMAT(//19H VARIABLE,13/(10F12,5)] FORMAT(I//9H VARIABLE,13/(10F12,5)] FORMAT(I//2H ROTATED FACTOR MATRIX (,13,9H FACTORS)) FORMAT(//2H ROTATED FACTOR COMMUNALITIES//9H VARIABLE,7X,8HORIGINAL, 112X,5HF ROALTOS,100/FFERENCE) FURMAT(16,3F18,5) FORMAT(/5H ROALTS,12,F0.0) FORMAT(/5H ROALY,12,30H FACTOR RETAINED. NO ROTATION) FORMAT(212) FACTO 23 FACTO 24 FACTO 24 FACTO 25 FACTO 26 FACTO 27 FACTO 28 FACTO 28 FACTO 30 FACTO 30 FACTO 31 FACTO 32 FACTO 33 FACTO 34 FACTO 39 FACTO 36 FACTO 37 FACTO 39 FACTO 40 FACTO 41 FACTO 42 FACTO 44 FACTO 45 FACTO 45 FACTO 45 FACTO 45 FACTO 47 FACTO 47 FACTO 48 FACTO 48 FACTO 51 FACTO 51 FACTO 53 c 0000000 с с с FACTO 54 FACTO 55 FACTO 55 FACTO 55 FACTO 57 FACTO 57 FACTO 59 FACTO 50 FACTO 60 FACTO 60 FACTO 62 FACTO 65 FACTO 75 FACTO 75 FACTO 75 FACTO 75 FACTO 75 FACTO 75 NV=0 (IAN) (c С С wRTTE (MX,80) L=0 D0 150 J=1,K D0 140 J=1,M L=1,M L=1,M L=1,M CALL L0A0 (M,K,R,V) PRINT FACTOR MATRIX WRITE (MX,10)K D0 100 J=1,M D0 170 J=1,K L=M4[J=1]+1 I70 D(J)=V(L) I80 WRITE (MX,10)L,J=1,K) IF(K-L) 185, 185, 188 I85 WRITE (MX,10)K G0 TO 100 I38 CALL VARMX (M,K,V,NC,TV,8,T,D) FACTO 76 FACTO 77 FACTO 78 FACTU 79 FACTU 80 FACTU 80 FACTU 81 FACTU 83 FACTU 84 FACTU 85 FACTU 85 FACTU 85 C FACTO 87 FACTO 88 FACTU 89 Facto 90 FACTO 91 Facto 92

NC 190 WK 00 00 12 210 S(220 WR 00 230 WR	LITE (P 220 1 210 J M*(J-) JJ=V{L LITE(N) PRINT RITE (P 10 10 D	X,12) =1+NV X,13]N RDTAT =1,M =1,K]+1 ,16] (,15]1, [CJMMu X,16] [=1,M X,16] =1,7] 0	ED FAC (S(J), INALITI	TUR MA J≖L₁K} £5					FACTO 93 FACTO 94 FACTO 95 FACTO 95 FACTO 97 FACTU 99 FACTU 99 FACTU 99 FACTU 99 FACTU102 FACTO102 FACTO104 FACTO104 FACTO104 FACTO104 FACTO104 FACTO104 FACTO104 FACTO104 FACTO104 FACTO104 FACTO104
1 2	ACTO.	01 DRRE,cl	GEN , T R	ACE,LO	AD, VAR	MX			1
AMPLE00	7	9	7	15	36	60	15	24	23
13	18 18	25 24	15 23	13 12	35 43	61 62	18 14	30 31	4
7	13	25	36	11 15	12 46	63 18	26 28	32 15	67
10	12	30	11	10	42	27	12	17 25	8
7 16	6 19	11 25	16	13	30	60 64	20	30	10
9 8	22 15	26 26	24 30	13 13	40 10	66 66	15 25	32 34	11 12
8	10	20	8	17	40 45	20	30	18 19	13 14
11	12 17	28 21	30	10	45	60	17	30	15
9 10	16 15	26 24	27 18	14 12	31 29	59 48	19 18	17 26	16 17
11	ii	30	19	19	26	57	20	30	18 19
16 9	8	16 19	20 14	18 16	31 33	60 67	21 9	17 19	20
7	18 11	22 23	9 18	15 9	37 36	62 61	11 22	20 24	21 22
6	6	27	23	7	40	55	24	31 29	23
8	10	26	15	11	42	59	20	28	25
SAMPLE	10 INPUT AN US SUBRO ROVIDE DS ARE	SUBROU SERVAT UTINE D BY T DIFFE	ION (N IS CAL INE USE RENT F	DATA LED BY R. IF REM PS	VALUES THE S SIZE	S) FROM SUSROUT AND LO TO PRO	20 INPUT FINE CO DCATION DELEN,		23
THIS BE P FIEL ROUT USAGE CALL DESCRIP M - D -	TION O THE NU	F PARA	F VART	23 184	IN AN M CONT	OBSER	ATION	BASERVATIO	
THIS BE P FIEL ROUT USAGE CALL DESCRIP M D REMARKS	TION O THE NU OUTPUT DATA.	IF PARA IMBER O Vecto	IF VARI Ir of L	ABLES Ength	n cont	AININ	G THE (BASERVATION T MUST BE	ı
THIS BE P FIEL ROUT USAGE CALL DESCRIP M D REMARKS	DATA TION O THE NU OUTPUT DATA. Type o Er f o Ines A	F PARA Mber o Vecto F conv R e.	IF VARI IR OF L VERSION	ABLES Ength Speci	M CONT	AININ	FORMA	B8SERVATIO	

TRIPLE EXPONENTIAL SMOOTHING

Problem Description

Given a time series X, a smoothing constant, and three coefficients of the prediction equation, this sample program finds the triple exponentially smoothed series S of the time series X.

Program

с

Description

The sample program for triple exponential smoothing consists of a main routine, EXPON, and one subroutine, EXSMO, from the Scientific Subroutine Package.

Capacity

The capacity of the sample program and the format required for data input have been set up as follows:

- 1. Up to 1000 data points in a given time series
- 2. (12F6.0) format for input data cards

Therefore, if a problem satisfies the above conditions it is not necessary to modify the sample program. However, if there are more than 1000 data points, the dimension statement in the sample main program must be modified to handle this particular problem. Similarly, if input data cards are prepared using a different format, the input format in the sample main program must be modified. The general rules for program modification are described later.

Input

I/O Specification Card

One control card is required for each problem and is read by the main program, EXPON. This card is prepared as follows:

		For
		Sample
Columns	Contents	Problem
1 - 6	Problem number (may be alphameric)	SAMPLE
7 - 10	Number of data points in a given time series	0038
11 - 15	Smoothing constant, (0.0 < α < 1.0)	0.1
16 - 25	First coefficient (A) of the prediction equation	0.0
26 - 35	Second coefficient (B) of the prediction equation	0.0
36-45	Third coefficient (C) of the prediction equation	0.0

Leading zeros are not required to be keypunched, but numbers must be right-justified in fields.

Data Cards

Time series data are keypunched using the format (12F6.0). This format assumes that each data point is keypunched in a six-column field and twelve fields per card.

Deck Setup

Deck setup is shown in Figure 24.

Sample

The listing of input cards for the sample problem is presented at the end of the sample main program.

Output

Description

The output of the sample program for triple exponential smoothing includes:

1. Original and updated coefficients

2. Time series as input and triple exponentially smoothed time series.

Sample

The output listing for the sample problem is shown in Figure 25.

Program Modification

Noting that storage problems may result, as previously discussed in "Sample Program Description", program capacity can be increased or decreased by making changes in the dimension statement. Input data in a different format can also be handled by providing a specific format statement. In order to familiarize the user with the program modification, the following general rules are supplied in terms of the sample problem:

1. Changes in the dimension statement of the main program, EXPON:

The dimension of arrays X and S must be greater than or equal to the number of data points in time series, NX. Since there are 38 data points in the sample problem, the value of NX is 38.

2. Changes in the input format statement of the main program, EXPON:

Only the format statement for input data may be changed. Since sample data are three-digit numbers, rather than using six-column fields as in the sample program, each data point may be keypunched in a three-column field and 24 fields per card. If so, the format is changed to (24F3.0).

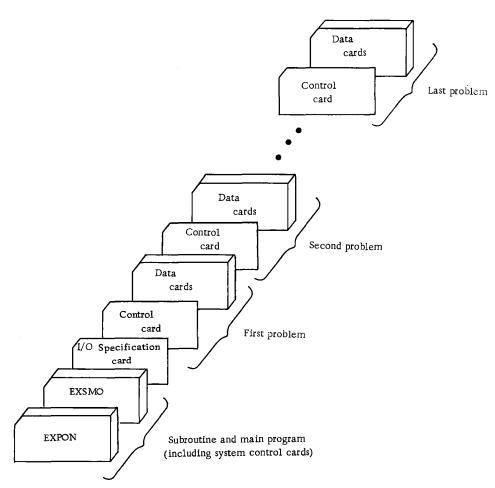


Figure 24. Deck setup (triple exponential smoothing)

TRIPLE EXPONENTIAL SMOOTHING.....SAMPLE

NUMBER OF DATA POINTS 38 SMOOTHING CONSTANT 0.100

COEFFICIENTS	A	В	c
ORIGINAL	0+00000	0.00000	0.00000
UPDATED	484.80169	1.71278	0.04165
INPUT DATA 430.0006 426.00006 422.00006 419.0006 419.0006 413.00006 413.00006 417.00006 417.00006 430.0006 441.00006 441.0006 441.0006 441.0006 455.00006 455.00006 455.00006 455.00006 455.00006 455.00006 475.0006 475.0006 475.0006 475.0006 475.0006 475.0006 475.0006 475.0006 477.0006 475.00		0THED DATA +30.0006 422.00006 418.0006 414.29998 410.23993 404.68399 402.22406 401.25134 402.64642 402.64642 402.64642 402.64642 402.64642 403.418355 439.43420 454.10571 455.80731 455.80731 455.80731 455.80731 455.80731 455.80731 455.80731 455.80732 463.90532 463.90532 501.6692 502.4427 501.16723	
479.00006		498•92730	
476.00006		496.84124	
472.00006 470.00006		494.00787 490.30413	

Figure 25. Output listing

Operating Instructions

The sample program for triple exponential smoothing is a standard FORTRAN program. Special operating instructions are not required. Logical unit 2 is used for input, and logical unit 1 is used for output.

Sample Main Program for Triple Exponential Smoothing - EXPON

Purpose:

(1) Read the problem parameter card and a time series, (2) Call the subroutine EXSMO to smooth the time series, and (3) Print the result.

Remarks:

A smoothing constant specified in the problem parameter card must be greater than zero but less than one in order to obtain reasonable results.

I/O logical units determined by MX and MY, respectively.

Subroutines and function subprograms required: EXSMO.

Method:

Refer to R. G. Brown, "Smoothing, Forecasting and Prediction of Discrete Time Series", Prentice-Hall, N. J., 1963, pp. 140 to 144.

// FDR #IDCS(CARD, TYPEWRITER, 1132 PRINTER)

4 FORMAT(//)I3H COEFFICIENTS,9X,1HA.14X,1HB,14X,1HC) EXPO 5 FORMAT(//)ISH COEFFICIENTS,9X,1HA.14X,1HB,14X,1HC) EXPO 6 FORMAT(//)ISH COEFFICIENTS,9X,1HA.14X,1OHINPUT DATA,12X,1OH(FORECAST) EXPO 7 FORMAT(//)ISHSQOTHED DATA/TX,1OHINPUT DATA,12X,1OH(FORECAST) EXPO 8 FORMAT(//)ISHSQOTHED DATA/TX,1OHINPUT DATA,12X,1OH(FORECAST) EXPO 9 FORMAT(//)ISHSQOTHED DATA/TX,1OHINPUT DATA,12X,1OH(FORECAST) EXPO 9 FORMAT(/)ISH EXPO EXPO 9 FORMAT(/)ISH EXPO EXPO 9 FORMAT(/)ISH EXPO EXPO 9 FORMAT(/)ISH EXPO EXPO 0 READ(2,9)MX,MY EXPO EXPO 0 READ (PADBLEM PARAMETER CARD EXPO EXPO 0 O READ (MY.1) PK, PR1,MX,AL,AL,AL,AB.C EXPO EXPO 0 PR1PROBLEM NUMBER (MA BE ALPHAMERIC) EXPO EXPO 0 PR1PROBLEM NUMBER (MA BE ALPHAMERIC) EXPO EXPO 0 PR1PROBLEM NUMBER (MA BE ALPHAMERIC) EXPO EXPO 0 PR1PROBLEM NUMBER (FOR BE ALPHAMERIC)	i 34 i 35
5 FORMAT(//9) DRIGINAL,F19.5,2F15.5) EXPO 6 FORMAT(//2) DPATED,F20.5,2F15.5) EXPO 7 FORMAT(//2) DPATED,F20.5,2F15.5) EXPO 8 FORMAT(//2) EXPO EXPO 9 FORMAT(//2) EXPO EXPO 9 FORMAT(F17.5,8X,F15.5) EXPO EXPO 0 READ PROBLEM PARAMETER CARD EXPO EXPO 100 READ (MY,1) FAL.4,47.65 EXPO 0 PRPRUBLEM NUMBER (CONTATINED) EXPO EXPO 0 PRNUMBER OF DATA POINTS IN TIME SERIES EXPO EXPO 0 ALSODITHING CONTATINT IN TIME SERIES EXPO EXPO 0 ALSODITHING CONTATINT IN TIME SERIES EXPO EXPO 0 ALSODITHING CONTATINT IN TIME SERIES EXPO EXPO <	i 34 i 35
5 FORMAT(//9) DRIGINAL,F19.5,2F15.5) EXPO 6 FORMAT(//2) DPATED,F20.5,2F15.5) EXPO 7 FORMAT(//2) DPATED,F20.5,2F15.5) EXPO 9 FORMAT(/2) EXPO EXPO 9 FORMAT(/2) EXPO EXPO 9 FORMAT(F17.5,8X,F15.5) EXPO EXPO 00 READ (2,9)MX,MY EXPO EXPO C READ (MY,1)P,MI,MA,LA,48.5C EXPO EXPO C NXNUMBER OF DATA POINTS IN TIME SERIES EXPO C NXNUMBER OF DATA POINTS IN TIME SERIES EXPO C A.H.CCOEFFICIENTS OF THE PREDICTION EQUATION EXPO C A.H.CCOEFFICIENTS OF THE PREDICTION EQUATION EXPO MRITE (MX,5) A.B.G EXPO EXPO <td>i 34 i 35</td>	i 34 i 35
5 FORMAT(//9H URIGINAL,F19,5,2F15.5) Exp0 6 FORMAT(//2H UPDATED,F20,5,2F15.5) Exp0 7 FORMAT(//2TX,13HSMODTHED DATA/TX,10HINPUT DATA,12X,10H(FORECAST)) Exp0 8 FORMAT(F17,5,50,F215.5) Exp0 9 FORMATE(2) Exp0 0 READ (2,91MX, MY Exp0 10.00 READ (MY1.1) PK, PR1,NX, AL, A,86.C Exp0 0 PRIMIDELEM NUMBER (MAY BE ALPHAMERIC) Exp0 0 PRIPRUBLEM NUMBER (CONTINUED) Exp0 0 NXNUMBER OF DATA POINTS IN TIME SERIES Exp0 0 A	3
5 FORMAT(//9H URIGINAL,F19,5,2F15.5) Exp0 6 FORMAT(//9H UDATED,F20,5,2F15.5) Exp0 7 FORMAT(//2TX,13HSMODTHED DATA/TX,10HINPUT DATA,12X,10H(FORECAST)) Exp0 8 FORMAT(F17,5,50,7575.5) Exp0 9 FORMATE(2) Exp0 0 READ PROBLEM PARAMETER CARD Exp0 100 READ (MV,1) PA, PAL, AL, LA, 63.6 Exp0 0 PRPOUBLEM NUMBER (MAY BE ALPHAMERIC) Exp0 0 PR1PRUBLEM NUMBER (CANTINUED) Exp0 0 NAITE (MX,5) AL, PAL, PAL, AL, AL, AL, AL, AL, AL, AL, AL, AL,	
5 FORMAT(//9H URIGINAL,F19,5,2F15.5) EXPO 6 FORMAT(/2H URIGINAL,F19,5,2F15.5) EXPO 7 FORMAT(/2TX,13HSHODTHED DATA/TX,10HINPUT DATA,12X,10H(FORECAST)) EXPO 7 FORMAT(/2TX,13HSHODTHED DATA/TX,10HINPUT DATA,12X,10H(FORECAST)) EXPO 9 FORMAT(F17,5,50,5715.5) EXPO 9 FORMAT(F17,5,50,75715.5) EXPO 9 FORMAT(F17,5,50,75715.5) EXPO 9 FORMAT(F17,5,50,75715.5) EXPO 9 FORMAT(F17,5,74,771 EXPO 100 READ (MY,11) EXPO EXPO 100 READ (MY,11) HX, MX, ALL, A+85.C EXPO C READ FROBLEM NUMBER (MAY BE ALPMANERIC) EXPO C NXNUMBER OF DATA POINTS IN TIME SERIES EXPO C NXNUMBER OF DATA POINTS IN TIME SERIES EXPO C A+5(CCOEFFICIENTS OF THE PREDICTION EQUATION EXPO KAITE (MX,4) NGINAL COEFFICIENTS EXPO KAITE (MX,4) NGINAL COEFFICIENTS EXPO KAITE (MX,4) SAB,6 EXPO C <td></td>	
5 FORMAT(//9H URIGINAL,F19.5,2F15.5) EXPO 0 FORMAT(//9H URIGINAL,F19.5,2F15.5) EXPO 7 FORMAT(/2TX,13HSK00THED DATA/TX,10HINPUT DATA,12X,10H(FORECAST)) EXPO 8 FORMAT(F17.5,54x,F15.5) EXPO 9 FORMAT(F17.5,54x,F15.5) EXPO 9 FORMAT(F17.5,54x,F15.5) EXPO 9 FORMAT(F17.5,54x,F15.5) EXPO 0 READ(2,91MX,HY EXPO 100 READ (MY.1) PX 100 READ (MY.1), PX, PR1.4X,AL,4.6.5 EXPO C PRPRUBLEM NUMBER (MAY BE ALPHAMERIC) EXPO C PRPRUBLEM NUMBER (CONTINUED) EXPO C NXNUMBER OF DATA POINTS IN TIME SERIES EXPO C A.9.CCOEFFICIENTS OF THE PREDICTION EQUATION EXPO NAITE (MX.5) A.9.C PRINT URIGINAL COEFFICIENTS EXPO NRITE (MX.5) A.9.C EXPO EXPO GALE EXPO (X(1),1=1,NX) EXPO EXPO GALE EXPO, VARIES (MX.4L,4,6,6,CS) EXPO EXPO C PRINT URDATED COEFFICIENTS EXPO READ IME SERI	
5 FORMAT(//9H GRIGINAL,F19.5,2F15.5) Exp0 6 FORMAT(/9H GRIGINAL,F19.5,2F15.5) Exp0 7 FORMAT(/2TX,13HSHODTHED DATA/TX,10HINPUT DATA,12X,10H(FORECAST)) Exp0 7 FORMAT(/2TX,13HSHODTHED DATA/TX,10HINPUT DATA,12X,10H(FORECAST)) Exp0 9 FORMAT(F17.5,5K3,F15.5) Exp0 9 FORMAT(F17.5,5K3,F15.5) Exp0 9 FORMAT(F17.5,5K3,F15.5) Exp0 9 FORMAT(F17.5,5K3,F15.5) Exp0 0 READ PROBLEM PARAMETER CARD Exp0 100 READ PROBLEM NUMBER (MAY BE ALPHAMERIC) Exp0 100 READ PRUBLEM NUMBER (MAY BE ALPHAMERIC) Exp0 C PR1PRUBLEM NUMBER (CATI POUNTS IN TIME SERIES Exp0 C NA1NUMBER OF DATA POUNTS IN TIME SERIES Exp0 C A.4SMDUTHING CONSTANT Exp0 C A.4SMDUTHING CONSTANT Exp0 C PRITUURGINAL COEFFICIENTS Exp0 RRITE (MX,51) R.PR,PR1,NX,AL Exp0 C READ TIME SERIES DATA Exp0 READ TIME SERIES DATA<	
5 FORMAT(//9H GRIGINAL,F19,5,2F15.5) EXPO 0 FORMAT(//3H UDATEG,F20.5,2F15.5/) EXPO 7 FORMAT(//2TX,I3HSK00THED DATA/TX,IDHINPUT DATA,12X,IOH(FORECAST)) EXPO 8 FORMAT(F17.5,84x,F15.5) EXPO 9 FORMAT(F17.5,84x,F15.5) EXPO 9 FORMAT(212) EXPO 0 READ(2,91MX,HY EXPO 10.0 READ (MY.1) PR 10.0 READ (MY.1) PR 0 READ ENDLEM NUMBER (MAY BE ALPHAMERIC) EXPO C PRPRUBLEM NUMBER (CONTINUED) EXPO C NXNUMBER OF DATA POINTS IN TIME SERIES EXPO C A.H.COEFFICIENTS OF THE PREDICTION EQUATION EXPO RAITE (MX,4) EXPO EXPO RAITE (MX,5) A.B.C EXPO MRITE (MX,5) A.B.C C PAINT URIGINAL COEFFICIENTS EXPO RAITE (MX,5) A.B.C EXPO C PAINT URIGINAL COEFFICIENTS EXPO RAITE (MX,5) A.B.C EXPO READ TIME SERIES DATA EXPO	
5 FORMAT(//9H URIGINAL,F19.5,2F15.5) EXPO 0 FORMAT(//9H URIGINAL,F19.5,2F15.5) EXPO 7 FORMAT(//2TX,13HSK00THED DATA/TX,10HINPUT DATA,12X,10H(FORECAST)) EXPO 8 FORMAT(F17.5,84x,F15.5) EXPO 9 FORMAT(F17.5,84x,F15.5) EXPO 9 FORMAT(F17.5,84x,F15.5) EXPO 9 FORMAT(F17.5,84x,F15.5) EXPO 0 READ(2,91MX,MY EXPO 100 READ (MYN1) PX.0.1.2,84x,AL,4,85.C EXPO C PRPRUBLEM NUMBER (MAY BE ALPMAMERIC) EXPO C PRPRUBLEM NUMBER (CONTINUED) EXPO C NXNUMBER OF DATA POINTS IN TIME SERIES EXPO C A.H.CCOEFFICIENTS OF THE PREDICTION EQUATION EXPO RAITE (MX,4) EXPO EXPO RAITE (MX,4) EXPO EXPO RAITE (MX,5) A,6 EXPO RAITE (MX,5)	
5 FORMAT(//9H ORIGINAL,F19.5,2F15.5) Expo 6 FORMAT(//3H ODATEO,F20.5,2F15.5) Expo 7 FORMAT(//2TX,I3HSMOOTHED OATA/TX,IOHINPUT DATA.12X,IOH(FORECAST)) Expo 8 FORMAT(F17.5,8KxF15.5) Expo 9 FORMAT(F17.5,8KxF15.5) Expo 9 FORMAT(212) Expo 0 READ(2,9H KX,HY Expo 100 READ (MY,I) P, MRI, MX, AL, A, B, C EXPO C READ (MY,I) P, MINBER (MAY BE ALPHAMERIC) EXPO C PRPRUBLEM NUMBER (MAY BE ALPHAMERIC) EXPO C PRPRUBLEM NUMBER (CONTINUED) EXPO C NXNUMBER OF DATA POINTS IN TIME SERIES EXPO C ASMODTHING CONSTANT EXPO	
5 FORMAT(//9H GRIGINAL,F19.5,2F15.5) EXPO 6 FORMAT(//9H GRIGINAL,F19.5,2F15.5) EXPO 7 FORMAT(//2TX,I3H5MOOTHED DATA/TX,IOHINPUT DATA,12X,IOH(FORECAST)) EXPO 7 FORMAT(/2TX,I3H5MOOTHED DATA/TX,IOHINPUT DATA,12X,IOH(FORECAST)) EXPO 8 FORMAT(2TX,I3H5MOOTHED DATA/TX,IOHINPUT DATA,12X,IOH(FORECAST)) EXPO 9 FORMAT(2I2) EXPO 0 READ(2, 9H MX, HY EXPO 100 READ (MY,I) P, R2I, NX, AL, A, B, C EXPO C PRPRUBLEM NUMBER (MAY BE ALPHAMERIC) EXPO C PRPRUBLEM NUMBER (MAY BE ALPHAMERIC) EXPO C PRPRUBLEM NUMBER (CONTINUED) EXPO C NXNUMBER OF DATA POINTS IN TIME SERIES EXPO C A.+b.CCOEFFICIENTS OF THE PREDICTION EQUATION EXPO MATTE (MX,S) PRINT URIGINAL COEFFICIENTS EXPO MARITE (MX,S) PRONT EXPO	
5 FORMAT(//9H URIGINAL,F19.5,2F15.5) EXPO 6 FORMAT(//9H URIGINAL,F19.5,2F15.5) EXPO 7 FORMAT(//27X,13HSMOOTHED DATA/7X,10HINPUT DATA,12X,10H(FORECAST)) EXPO 8 FORMAT(/27X,13HSMOOTHED DATA/7X,10HINPUT DATA,12X,10H(FORECAST)) EXPO 9 FORMAT(212) EXPO 0 READ(2,91MX,MY EXPO 100 READ (49,11) EXPO 0 FORD (MY,1) PROBLEM PARAMETER CARD 100 READ (MY,1) EXPO 0 READ (MY,1) PROBLEM NUMBER (MAY BE ALPHANERIC) C PRPRUBLEM NUMBER (AGAT BE ALPHANERIC) C PRPRUBLEM NUMBER (AGAT BE ALPHANERIC) C NXNUMBER (DF DATA POINTS IN TIME SERIES C ANUMBER (DF DATA POINTS IN TIME SERIES C ANUMBER OF DATA POINTS IN TIME SERIES C ANUMBER OF DATA POINTS MERLIN EVAL C ANUMBER OF DATA POINTS OF THE PREDICTION EQUATION C ANUMBER OF ANTA POINTS OF THE PREDICTION EQUATION C A	
5 FORMAT(//9H GRIGINAL;F19.5;2F15.5) Exp0 6 FORMAT(//9H GRIGINAL;F19.5;2F15.5) Exp0 7 FORMAT(//2TX,I3HSMODTHED DATA/TX,IOHINPUT DATA,12X,IOH(FORECAST)) EXP0 8 FORMAT(F17.5;K3,K4;F15.5) EXP0 9 FORMAT(F17.5;K4;F15.5) EXP0 9 FORMAT(F17.5;K4;F15.5) EXP0 9 FORMAT(F17.5;K4;F15.5) EXP0 9 FORMAT(212) EXP0 0 READ(2;9) MX, HY EXP0 100 READ (HY, I) P, PR1, X, 4, LA; 8;C EXP0 C PRPRUBLEM NUMBER (MAY BE ALPHAMERIC) EXP0 C PR1PR0BLEM NUMBER (MAY BE ALPHAMERIC) EXP0 C PR1PR0BLEM NUMBER (MAY BE ALPHAMERIC) EXP0 C PA1PR0BLEM SUBJER (DATA POINTS IN THE SERIES EXP0 C ALSMODTHING CONSTANT EXP0 C ALSMODTHING CONSTANT EXP0 C ALSMODTHING CONSTANT EXP0	
5 FORMAT(//9H GRIGINAL;F19.5;2F15.5) Exp0 6 FORMAT(//3H UDATED,F20.5;2F15.5) EXP0 7 FORMAT(//2TX,I3HSKNOOTHED DATA/TX,IOHINPUT DATA,12X,IOH(FORECAST)) EXP0 8 FORMAT(F17.5;8X;F15.5) EXP0 9 FORMAT(F17.5;8X;F15.5) EXP0 9 FORMAT(F17.5;8X;F15.5) EXP0 0 READL(2;91MX;MY EXP0 0 READ PROBLEM PARAMETER CARD EXP0 0 READ L(MY,I) PK;PR1;NX;AL;A;6;8;C EXP0 0 PK1PROBLEM NUMBER (MAY BE ALPHANERIC) EXP0 0 PX1PROBLEM NUMBER (IAT BE ALPHANERIC) EXP0 0 NXNUMBER OF DATA POINTS IN TIME SERIES EXP0 0 ALL SHOUTING CONSTANT EXP0	
5 FORMAT(//9H URIGINAL,F19.5,2F15.5) EXPO 6 FORMAT(//9H UDATED,F20.5,2F15.5/) EXPO 7 FORMAT(//2TX,13HSMOOTHED DATA/7X,10HINPUT DATA,12X,10H(FORECAST)) EXPO 8 FORMAT(F17.5,48x,F15.5) EXPO 9 FORMAT(F17.5,48x,F15.5) EXPO 9 FORMAT(F17.5,48x,F15.5) EXPO 8 EXPO 7 READ(2,9H MX,HY C READ PROBLEM PARAMETER CARD EXPO 100 READ (MYX1) PARSINX,AL,A,B,C EXPO	
5 FORMAT(//9H GRIGINAL,F19.5,2F15.5) EXPO 6 FORMAT(//9H GRIGINAL,F19.5,2F15.5) EXPO 7 FORMAT(//2TX.13HSMOOTHED DATA/TX.10HINPUT DATA.12X.10H(FORECAST)) EXPO 8 FORMAT(/2TX.13HSMOOTHED DATA/TX.10HINPUT DATA.12X.10H(FORECAST)) EXPO 9 FORMAT(212) EXPO 0 FORMAT(212) EXPO 0 READ(2,91MX,HY EXPO 100 READ (MY.1) EXPO 100 READ (MY.1) EXPO	
5 FORMAT(//9H GRIGINAL,F19.5,2F15.5) Exp0 6 FORMAT(//9H GRIGINAL,F19.5,2F15.5) Exp0 7 FORMAT(//8L UPDATED,F20.5,2F15.5) Exp0 7 FORMAT(//2Tx.13HSMOOTHED DATA/Tx.10HINPUT DATA.12X.10H(FORECAST)) Exp0 8 FORMAT(212) Exp0 9 FORMAT(212) Exp0 0 READ(2,9) MX, HY Exp0 C READ(2,9) MX, HY Exp0 100 READ (MY.1) PH, PR1, NX, AL, A, B, C Exp0	
5 FORMAT(//9H GRIGINAL;F19.5;215.5) Exp0 6 FORMAT(//9H GRIGINAL;F19.5;215.5) EXP0 7 FORMAT(//2TX,13HSMODTHED DATA/TX,10HINPUT DATA,12X,10H(FORECAST)) EXP0 8 FORMAT(F17.5;8x,F15.5) EXP0 9 FORD(F10.5;8x,F15.5) E	
5 FORMAT(//9H URIGINAL,F19.5,2F15.5) EXPO 6 FORMAT(//9H UPDATED,F20.5,2F15.5/) EXPO 7 FORMAT(//2H,13HSMODTHED DATA/12x,10H(FORECAST)) EXPO 8 FORMAT(F17.5,8X,F15.5) EXPO 9 FORMAT(212) EXPO READ(2,9)HX,HY EXPO	
5 FORMAT(//9H URIGINAL,F19.5,2F15.5) EXPO 6 FORMAT(//9H UDATED,F20.5,2F15.5/) EXPO 7 FORMAT(//27X,13H5NDDTHED DATA/7X,10HINPUT DATA,12X,10H(FORECAST)) EXPO 8 FORMAT(F17.5,8K,F15.5) EXPO 9 FORMAT(212) EXPO	
5 FORMAT(//9H GRIGINAL,F19,5,2F15.5) 6 FORMAT(//9H UDATEO,F20,5,2F15.5/) 7 FORMAT(//2TX,13HSMOOTHED DATA/TX,10HINPUT DATA,12X,10H(FORECAST)) EXPO 8 FORMAT(F1,75,40X,F15.5) EXPO	N 1
5 FORMAT(//9H URIGINAL,F19.5,2F15.5) EXPO 6 FORMAT(//8H UPDATED,F20.5,2F15 .5/) EXPO	
5 FORMAT(//9H ORIGINAL,F19.5,2F15.5) EXPO	4 L N 1
1 OF DATA POINTS, 16/19H SMOOTHING CONSTANT, F9, 3/1 FXPD	
3 FORMAT(////34H TRIPLE EXPONENTIAL SMOOTHING, A4, A2//22H NUMBEREXPO	Ň
1 FORMAT(44,A2,14,F5.0,3F10.0) EXPO 2 FORMAT(12F6.0) EXPO	
DIMENSION X(1000),S(1000) EXPO 1 FORMAT(A4,A2,I4,F5.0,3F10.0) EXPO	
C NUMBER OF DATA POINTS IN A GIVEN TIME SERIES. EXPO	N
C SAMPLE MAIN PROGRAM FOR TRIPLE EXPONENTIAL SMOOTHING - EXPON EXPO C THE FOLLOWING DIMENSION MUST BE GREATER THAN OR EQUAL TO THE EXPO	N

MATRIX ADDITION

Problem Description

An input matrix is added to another input matrix to form a resultant matrix. Each set of input matrices and the corresponding output matrix is printed. The procedure is repeated until all sets of input matrices have been processed.

Program

Description

The matrix addition sample program consists of a main routine, ADSAM, and four subroutines:

MADD	}	are from the Scientific
LOC)	Subroutine Package
MATIN	1	are sample subroutines for matrix input and
MXOUT	\$	output

Capacity

Matrix size has arbitrarily been set at 650 data elements. Therefore, if a problem satisfies the above condition, no modification in the sample program is necessary. However, if there are more than 650 elements, the dimension statement in the sample main program must be modified to handle this particular problem. The general rules for program modification are described later.

Input

I/O Specification Card

<u>Each</u> input matrix must be preceded by a control card with the following format:

Columns	Contents	For Sample Problem
1 - 2	Blank	
3 - 6	Up to four-digit identifi- cation code	0001
7 - 10	Number of rows in matrix	0008
11 - 14	Number of columns in matrix	0011
15 - 16	Storage mode of matrix 0 for general matrix 1 for symmetric matrix 2 for diagonal matrix	0

Each input matrix must be followed by a card with a 9-punch in column 1.

Data Cards

Data cards are assumed to have seven fields of ten columns each. The decimal point may appear anywhere in a field, or may be omitted; however, all numbers must be right-justified. The number in each field may be preceded by blanks. Data elements must be punched by row. A row may continue from card to card. However, each new row must start in the first field of the next card. Only the upper triangular portion of a symmetric or the diagonal elements of a diagonal matrix are contained on data cards. The first element of each new row will be the diagonal element for a matrix with symmetric or diagonal storage mode. Columns 71-80 of data cards may be used for identification, sequence numbering, etc.

A blank card after the last pair of input matrices terminates the run.

Deck Setup

The deck setup is shown in Figure 26.

Sample

A listing of input cards for the sample problem is presented at the end of the sample main program.

Output

Description

Both sets of input matrices and the output matrix are printed. The resultant matrix is printed for any sized array as a general matrix regardless of the storage mode. Each seven-column grouping is headed with the matrix code number, dimensions, and storage mode. Columns and rows are headed with their respective number. The code number for the output matrix is derived by adding the code numbers for the input matrices.

Sample

The output listing for the sample problem is shown in Figure 27.

Program Modification

Noting that storage problems may result, as previously described in "Sample Program Description", the maximum matrix size acceptable to the sample

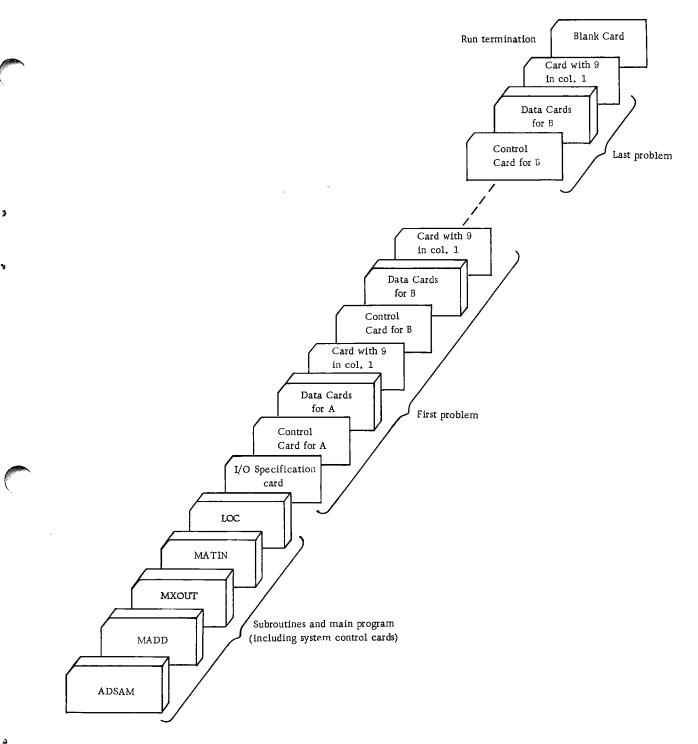


Figure 26. Deck setup (matrix addition)

program may be increased or decreased by making the following changes in ADSAM:

1. Modify the DIMENSION statement to reflect the number of elements for A, B, and R.

2. Insert the same number in the third parameter of the two CALL MATIN statements (20 and 45).

The output listing is set for 120 print positions across the page and double spacing. This can be

changed by means of the last two arguments in the three CALL MXOUT statements in ADSAM (statements 40, 80, 90).

Operating Instructions

The matrix addition sample program is a standard FORTRAN program. Special operating instructions

are not required. Logical unit 2 is used for input, and logical unit 1 is used for output.

Error Messages

The following error conditions will result in messages:

1. Reserved storage area is too small for matrix: DIMENSIONED AREA TOO SMALL FOR INPUT MATRIX (matrix code no.). GO ON TO NEXT CASE.

2. Input matrices do not have the same dimensions: MATRIX DIMENSIONS NOT CONSISTENT. GO ON TO NEXT CASE.

3. Number of data cards does not correspond to that required by parameter card: INCORRECT NUMBER OF DATA CARDS FOR MATRIX (matrix code no.). EXECUTION TERMINATED.

Error conditions 1 and 2 allow the computer run to continue. Error condition 3, however, terminates execution and requires another run to process succeeding cases.

ATR JX		1 B ROWS	11 COLUMNS		HODE O		
	COLU		2 0.6271805 00	3 0.100000E 01	4 0.708684E 00	5 0-0055516 00	6
ROW	-	0.760100E D0 0.664408E 00	0.62718CE 00 0.100000£ 01			0.405551E 00 0.354757E 00	0.3142602
	*			0.6271805 00			0.274700E
		0.100000E 01	0.664408E 00		0.750750E 00		0+332910E-
ROW		0.6963266 00			D+649224E 00		0.28789CE-
ROW	•	0.744684E 00	0.614459E 00	0.702958€ 00			0.307890L-
ROW	6	0.675176E 00	0.5571066 00	0.637344E 00	0.629504E 00	0.360507E 00	0.279150E-
ROW	7	0+332910E-02	0.274700E-02	0+314260E-02	0-3103905-02	0.177502-02	0.1000005
ROW	8	0.4299475 00	0.354757F 00	0.4058518 00	0.400559E CO	0.100000E 01	0.177760E
ATRIX		a Rows	11 COLUMNS	STORAGE			
			8	9	10	11	
ROW	1	0.657560E 00	0.675176E 00	0.8635918 00	0.744684E 00	0.696326E 00	
ROW	2	0+601087E 00	0.557106E 00	0.712572E 00	0+614459E 00	0.5745586 00	
ROW	3	0.728478E 00	0-637344E 00	0.815202E DD	0.7029588 00	0.657310E CO	
		0+629964E 00			D+694310E 00	0+649224E 00	
ROW		0.473713E 00	0.3605078 00	0.4611095 00	9+397620E 00	0.3718005 00	
	6	0.610829E 00	0+279150E-02	0.3570508-02	0-307890E-02	0.2878905-02	
ROV	,	0+301190E-02	0.6108296 00	0.781287E 00	0+673713E 00	0+6297646 00	
		0.388967E 00	0.1000006 01	0.72+121E UO		0.563070E 00	
NOW 1	•	0.3884615 00	0.1000002 01	0.724121E 00	0.624418£ 00	0.503870E 00	
TRIX	2	B ROWS	11 COLUMNS	STORAGE	HODE 0		
	COLUM	M 1	2	3	•	•	6
ROW			0.619465E 00		0.100000E 01	0.409859E 00	0.3103901-
ROW		0.744684E 00			0+69+310E 00	0.397620E 00	0.307890E-
RDW		0.8635912 00		0.815202E 00	0.805174E 00	0.461109E 00	0.3570506-
ROW		0.6963265 00	0.574558E 00	0.6573102 00	0.6492248 00	0.371000E DD	0.2078406-
ROW		0.675176E 00		0+637344E 00	0.6295048 00	0.3605072 00	0-2791506-
ROW		0.7440848 00		0.7029586 00	0.6743106 60	0.3976205 00	0.3078901-
ROW	7	0.863591E 00		0.6152026 00	0+8051748 00	0.4451109E 00	0.3570501-
ROW		0.760100E 00			D.708684E 00		0.357050E-
ROW	•	0.760100E CO	0+627180E 00	0.1000CUE 01	D.708684£ 00	0.405051E 00	0.314260E-
TRIX	2	a ROWS	11 COLUMNS	STORAGE	MODE 0		
	COLUM		8	9	10	11	
ROW	1	0.679201E 00	0.724121E 00	0.100000E U1	0.798666E 00	0.746805E DD	
ROW		0.673713E 00	0.624418E 00	0.798668E 00	0.1000006 01	0.643975E CO	
ROW	3	0.781287E 00	D.583870E 00	0.746805E 00	0.643978E 00	0.1000COE 01	
ROW	•	0.629964E 00		0.664405E 00	0,760100E 00	0.750750E 00	
ROw		9.6108295 00	0.728478E 00	0.601087E 00	0.687660E 00	0.6792012 00	
					0.4038518 00		
		0.7812876 00			0.100000E 01		
ROW		0.687660E 00			0.657310E CD	0.649224E 00	
NU.	0						
TR LX	3		11 COLUMNS	STORAGE	NODE 0		
	COLUK		2	3	٠	\$	6
		0.1510858 01		0,1708688 01	0.170868£ 01	0.8067116 00	0.624650E~
ROW	2	0.140909E 01		0.133013E 01	0.131377E 01	0.752377E 00	0.5825906-
ROW	,	0.186359E 01	0+197698E 01	0.157530E 01	0-1555928 01	0.891952E 00	0.689959E-
ROW	•	0.1392658 01	0-1149118 01	0.131462E 01	0.129844E 01	0.743600E 00	0.575780E-
RDW				0.1340305 01	0.1323016 01	0.758127E 00	0.587040E-
	6	0.141986E 01	0.117156E 01	0.134050E 01	0.132301E 01	0.758127E CO	0.587040E-
ROW							
ROW							
RDW	7	0.866920E 00		0.8183446 00	0+808277E 00	0.4628572 00	
RDW	7	0.866920E 00 0.119004E 01		0.818344E 00 0.140585E 01	0.808277E 00 0.110954E 01	0.4628872 00 0.1405852 01	
RDW RDW		0.119004E 01			0.110954E 01		
RDW ROW TRIX	8 3 COLUX	0+119004E 01 s ROWS N 7	0.981937E 00 11 COLUMNS 8	D.140585E D1 Storage 9	0.110954E 01 MODE 0 10	0.1 00585E 01 11	
RDW ROW TR IX	8 3 COLUX	0+1]9004E 01 5 ROMS N 7 0+196686E 01	0.981937E 00 11 COLUMNS 8 0.139927E 01	0.140585E 01 Storage 9 0.186359E 01	0.110954E 01 MODE 0 10 0.154335E 01	D.140585E 01 11 0.144313E 01	
RDW ROW ITR JX ROW ROW	8 3 COLUX 1 2	0.1]9004E 01 5 ROWS N 7 0.136686E 01 0.127480E 01	0.981937E 00 11 COLUXHS 8 0.139929E 01 0.118152E 01	0.140585E 01 STORAGE 9 0.186559E 01 0.191124E 01	0.110954E 01 MODE 0 10 0.154335E 01 0.161445E 01	D.140585E 01 11 0.144313E 01 0.121853E 01	
ROW TR IX ROW	8 3 COLUX 1 2	0+1]9004E 01 5 ROMS N 7 0+196686E 01	0.981937E 00 11 COLUMNS 0 0.139929E 01 0.118152E 01 0.122121E 01	0.140585E 01 STORAGE 9 0.186559E 01 0.191124E 01	0.110954E 01 MODE 0 10 0.154335E 01	0.140585£ 01 11 0.144313£ 01 0.121853£ 01 0.163731£ 01	
RDW ROW ITR JX ROW ROW	8 3 COLUX 1 2 3	0.1]9004E 01 5 ROWS N 7 0.136686E 01 0.127480E 01	0.981937E 00 11 COLUMNS 8 0.139929E 01 0.118152E 01 0.122121E 01	0.140585E 01 STORAGE 9 0.186559E 01 0.191124E 01	0.110954E 01 MODE 0 10 0.154335E 01 0.161445E 01	D.140585E 01 11 0.144313E 01 0.121853E 01	
RDW ROW TR JX ROW ROW ROW	8 COLUX 1 2 3 4	0.1]90046 01 5 ROWS N 7 0.1366866 01 0.1274806 01 0.1509766 01	0.981937E 00 11 COLUMMS 8 0.139929E 01 0.139322E 01 0.122121E 01 0.182959E 01	0.140585E 01 STORAGE 9 0.136359E 01 0.151124E 01 0.156200E 01	0.110954E 01 HODE 0 0.154355E 01 0.154455E 01 0.1546935E 01	0.140585£ 01 11 0.144313£ 01 0.121853£ 01 0.163731£ 01	
ROW ROW TR JX ROW ROW ROW ROW	8 COLUX 1 2 3 4 5	0.1]90046 01 5 ROWS N 7 0.1366866 01 0.1274302 01 0.1509766 01 0.1259926 01	0.981937E 00 11 COLUMMS 0 0.139929E 01 0.13922E 01 0.122121E 01 0.108398E 01 0.108398E 01	0.140505E 01 STORAGE 9 0.186359E 01 0.151124E 01 0.156200E 01 0.146958E 01	0.110954E 01 HODE 0 10 0.154335E 01 0.154455E 01 0.134693E 01 0.134694E 01	11 0.140585E 01 0.144313E 01 0.121853E 01 0.165731E 01 0.139997E 01	
RDW ROW TR JX ROW ROW ROW ROW ROW	8 COLUX 1 2 3 4 5 6	0.119004E 01 5 ROMS N 7 0.1386886E 01 0.1274806E 01 0.159976E 01 0.125992E 01 0.128434E 01	0++981937E 00 11 COLUMMS 8 0+139929E 01 0+123121E 01 0+122121E 01 0+12230E 01 0+02393E 01 0+432734E 00	0.1405855 01 STORAGE 9 0.18055958 01 0.1511245 01 0.1502005 01 0.1002195 01 0.3589275 00	0.110954E 01 10 0.154335E 01 0.154455E 01 0.134695E 01 0.104538E 01 0.104538E 01 0.104538E 01 0.406930E 00	11 0.1405556 01 11 0.1445135 01 0.1218536 01 0.1399976 01 0.1399976 01 0.1399976 01	
RDW ROW TR IX ROW ROW ROW ROW ROW	8 COLUX 1 2 3 4 5 6	0.1199004E 01 3 ROWS N 7 0.1354646E 01 0.127456E 01 0.127495E 01 0.128454E 01 0.128454E 01	0.981937E 00 11 COLUMNS 0 0.1139929E 01 0.12322E 01 0.123235E 01 0.1083998E 01 0.452735E 00 0.453793E 00	0.1405855 01 STORAGE 9 0.1265595 01 0.1562005 01 0.1562955 01 0.1062195 01	0.110954E 01 HODE 0 0.154355E 01 0.1544555 01 0.154455E 01 0.1554655E 01 0.145441E 01 0.10528E 01	11 0.140555£ 01 0.1445335E 01 0.121853E 01 0.139997E 01 0.139997E 01 0.139100E 01 0.403730E 00	0.100357E

ð

Figure 27. Output listing

Sample Main Program for Matrix Addition - ADSAM

Purpose:

Matrix addition sample program.

Remarks:

I/O specifications transmitted to subroutines by COMMON.

Input card:

Column 2 MX - Logical unit number for output.

Column 4 MY - Logical unit number for input.

Subroutines and function subprograms required:

MADD	
MATIN	

MXOUT

LOC

Method:

Two input matrices are read from the standard input device. They are added and the resultant matrix is listed on the standard output device. This can be repeated for any number of pairs of matrices until a blank card is encountered.

// FOR

// FOR
+10CS(CARD+TYPEWRITER+1132 PRINTER)
*0AE WORD INTEGERS
C SAMPLE MAIN PROGRAM FUK MATKIX ADDITIUN - ADSAM
C MATRICES ARE DIMENSIONED FUR 1000 LEMENTS. THEREFORE. PRUDUCT
C OF NUMBER OF ROWS BUY NUMBER OF COLUMNS CANNUT EXCEED 1000.
DIMENSION A(650)+8(650)+8(650)
COMMON MX.MY
10 FORMAT(///16H MATRIX ADDITION)
11 FUNMAT(//21H EXECUTION TENMINATED)
12 FORMAT(//21H EXECUTION TENMINATED)
13 FORMAT(//21H MATRIX ADDITION)
14 FORMAT(//21H MATRIX ADDITION)
15 FORMAT(//21H MATRIX ADDITION)
16 FORMAT(//21H MATRIX ADDITION)
17 FORMAT(//21H MATRIX ADDITION)
16 FORMAT(//21H EXECUTION TENMINATED)
17 FORMAT(//21H MATRIX DIMENSIONS ONG CONSISTENT)
14 FORMAT(//21H EXECUTION TENMINATED)
16 FORMAT(//21H EXECUTION TENMINATED)
17 FORMAT(//21H EXECUTION TENMINATED)
16 FORMAT(//21H INCORKECT NUMBER UF DAIA CARDS FCM PATRIX +14)
16 FORMAT(//21H EXECUTION TENMINATED)
17 FORMAT(//21H EXECUTION TENMINATED)
18 FORMAT(//21H INCORKECT NUMBER UF DAIA CARDS FCM PATRIX +14)
19 FORMAT(//21H EXECUTION TENMINATED)
19 FORMAT(//21H EXECUTION TENMINATED)
10 FORMAT(//21H EXECUTION TENMINATED)
10 FORMAT(//21H EXECUTION TENMINATED)
13 FORMAT(//21H EXECUTION TENMINATED)
14 FORMAT(//21H EXECUTION TENMINATED)
15 FORMAT(//21H EXECUTION TENMINATED)
16 FORMAT(//21H EXECUTION TENMINATED)
17 FORMAT(//21H EXECUTION TENMINATED)
16 FORMAT(//21H EXECUTION TENMINATED)
20 CALL MATINI (CODA: 100+NA+MA+MSA+IER)
17 FIT (MX.11) ICODA
00 TO 45
35 WRITE(MX.12) ICODA
37 WRITE(MX.12) ICODB
37 WRITE(MX.12) ICODA
37 WRITE(MX.12) ICODB
37 WRITE(MX.1 ADSAM 1 ADSAM 2 ADSAM 4 ADSAM 5 ADSAM 4 ADSAM 5 ADSAM 5 ADSAM 5 ADSAM 6 ADSAM 1 ADSAM 3 ADSAM 3 ADSAM 3 ADSAM 4 ADSAM GO TO 20 55 WRITE(WA,14) ICODB 60 GPT(DA,346) T5,70,75 70 IF(MA,-M6) 75,80,75 75 WRITE(WA,15) GO TO 20 80 CALL MXDUT(ICODB,5,NB,MB,MSB,60,120,2) ICODR-ICODA+ICODB CALL MADD(A,9,K,NA,MA,MSA,MSB) MSR=MSD IF(MSA-MSB) 90,90,85 85 MSR=MSB 90 CALL MXOUT(ICOUR,R,NA,MA,MSR,60,120,2) MRITE(MX,16) GO TO 20 95 STOP END DUPC dS UA ADSAM END // DUP *STORE WS UA ADSAM // XEQ ADSAM 1 2 00010008001100 0.7601008 0.6271802 1.0000000 0.7086843 0.4058519 0.0031426 0.6876602

	000212002				0000004400		
	0.8635910						
0+6644085	1.0000000	0.6271802	0.6194650	0.3547574	0.0027470	0.6010878	
	0.7125728						
1.0000000	0.6644085	0.7601008	0.7507505	0+4299425	0.0033291	0+7284786	
0.6373449	0,8152021	0.7029582	0.6573101				
0.6963269	0.5745585	0.6573101	0+6492243	0.3718001	0.0028789	0 • 6 2 9 9 6 4 2	
0.6295047	0.8051740	0.6943108	0.6492243				
0.7446845	0.6144597	0.7029582	0.6943108	0.3976204	0.0030789	0.6737132	
0.3605070	0.4611099	0.3976204	0.3718001				
0.6751766	0.5571068	0.6373449	0+6295047	0.3605070	0.0027915	0+6108296	
	0.0035705						

0.0033291	0+0027470	0+0031426	0+0031039	0+001///5	1.0000000	0+0030114	
0.6108296	0.7812874	0.6737132	0.6299642				
0.4299425	0.3547574	0.4058519	0+4008593	1.0000000	0.0017776	0+3889673	
1.0000000	0.7241215	0.6244183	0.5838704				
9							
000200080	001100						
0.7507505	0.6194650	0.7086843	1.0000000	0.4008593	0.0031039	0+6792011	
	1.0000000						
0.7446845	0+6144597	0+7029582	0+6943108	0+3976204	0+0030789	0+6737132	
0.6244183	0.7986682	1.0000000	0.6439786				
0+8635910	0.7125728	0.8152021	0.8051740	0.4611099	0.0035705	0.7812874	
0.5838704	0.7468050	0.6439786	1.0000000				
0+6963269	0+5745585	0.6573101	0+6492243	0.3718001	0+0028789	0+6299642	
1.0000000	0+6644085	0.7601008	0.7507505	0+4299425	0.0033291	0 • 7284786	
0.6751766	0.5571068	0.6373449	0.6295047	0.3605070	0.0027915	0.6108296	
0.7284786	0.6010878	0.6876602	0.6792011	0.3889673	0.0030119	1.0000000	
0.7446845	0.6144597	0.7029582	0.6943108	0.3976204	0+0030789	0+6737132	
0+4299425	0.3547574.	0+4058519	0+4008593	1.0000000	0.0017776	0.3889673	
0.8635910	0.7125728	0.8152021	0+8051740	0.4611099	0.0035705	0.7812874	
0.7601008	0.6271802	1.0000000	0.7086843	0.4058519	0.0031426	0.6876502	
0.7601008	0.6271802	1.0000000	0.7086843	0.4058519	0.0031426	0+6876602	
0+6963269	0+5745585	0.6573101	0+6492243	0.3718001	0.0028789	0.6299642	
0							

- -----

15678901223456789012345678

SUBROUTINE NATIN
PURPOSE READS CONTROL CARD AND NATRIX DATA ELEMENTS FROM LDGICAL UNIT 5
USAGE
CALL MATIN(ICODE,A,ISIZE, IRON,ICOL,IS,IER)
DESCRIPTION OF PARAMETERS
ICODE-UPON RETURN, ICODE WILL CONTAIN FOUR DIGIT
IDENTIFICATION CODE FROM MATRIX PARAMETER CARD
A -DATA AREA FOR INPUT MATRIX
ISIZE-NUMBER OF ELEMENTS DIMENSIONED BY USER FOR AREA A
IROW -UPON RETURN, IROW WILL CONTAIN ROW DIMENSION FROM
MATRIX PARAMETER CARD
ICOL -UPON RETURN, ICOL WILL CONTAIN COLUMN DIMENSION FROM Matrix parameter card
IS -UPON RETURN, IS WILL CONTAIN STORAGE MODE CODE FROM
MATRIX PARAMETER CARD WHERE
IS=0 GENERAL MATRIX
IS#1 SYMMETRIC MATRIX
IS=2 DIAGONAL MATRIX
IER -UPON RETURN, IER WILL CONTAIN AN ERROR CODE WHERE
IER*O NO ERROR
IER=1 ISIZE IS LESS THAN NUMBER OF ELEMENTS IN INPUT MATRIX
IER=2 INCORRECT NUMBER OF DATA CARDS
REMARKS NONE
SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
KETKOD
SUBROUTINE ASSUMES THAT INPUT MATRIX CONSISTS OF PARAMETER
CARD FOLLOWED BY DATA CARDS
PARAMETER CARD HAS THE FOLLOWING FORMAT
COL. 1- 2 BLANK
COL. 3- 6 UP TO FOUR DIGIT IDENTIFICATION CODE
COL. 7-10 NUMBER OF ROWS IN MATRIX Col.11-14 Number of Columns in Matrix
COL.15-16 STORAGE MODE OF NATRIX WHERE
0 - GENERAL MATRIX
1 - SYNNETRIC MATRIX
2 - DIAGONAL MATRIX
DATA CARDS ARE ASSUMED TO HAVE SEVEN FIELDS OF TEN COLUMNS
EACH. DECIMAL POINT MAY APPEAR ANYWHERE IN A FIELD. IF NO
DECIMAL POINT IS INCLUDED, IT IS ASSUMED THAT THE DECIMAL Point is at the end of the 10 column field. Number in each
POINT IS AT THE END OF THE 10 COLUMN FIELD. NUMBER IN EACH
FIELD MAY BE PRECEDED BY BLANKS. DATA ELEMENTS MUST BE Punched by Row. A row may continue from Card to Card.
HONEVER EACH NEW ROW MUST START IN THE FIRST FIELD OF THE
NEXT CARD. ONLY THE UPPER TRIANGULAR PORTION OF A SYMMETRIC
OR THE DIAGONAL ELEMENTS OF A DIAGONAL NATRIX ARE CONTAINED
ON DATA CARDS. THE FIRST ELEMENT OF EACH NEW ROW WILL BE
THE DIAGONAL ELEMENT FOR A MATRIX WITH SYMMETRIC OR
DIAGONAL STORAGE MODE. COLUKNS 71-80 OF DATA CARDS MAY BE
USED FOR IDENTIFICATION, SEQUENCE NUMBERING, ETC
THE LAST DATA CARD FOR ANY MATRIX MUST BE FOLLOWED BY A CARD with a 9 punch in column 1.
WIND A 7 FUNCT IN CULUMN Is

		SUBROUTINE MATINIICODE, A, ISIZE, IROW, ICOL, IS, IER)	MATIN	1
		DIMENSION A(1)	MATIN	2
		DIMENSION CARD(8)	MATIN	3
		COMMON MX. MY	MATIN	4
		FORMAT(7F10.0)	MATIN	5
		FURMAT(16,214,12)	MATIN	6
		FORMAT(11)	MATIN	
	,	10C=7	MATIN	
		LER=0	MATIN	
			MATIN	
		READI MY, 21 ICODE, IROW, ICOL, IS	MATIN	
		CALL LOC(IROW,IC)L,ICNT,IROW,ICOL,IS)		
		1F(1S12E-ICNT)6,7,7	MATIN	
		IER=1	MATIN	
		IF (ICNT)38,38,8	MATIN	
	8	ICOL T= ICOL	MATIN	
		I ROC R = L	MATIN	
- 1		COMPUTE NUMBER OF CARDS FOR THIS ROW	MATIN	17
	11	IRCDS=(ICOLT-1)/IDC+1	MATIN	19
		IF([S-1)15,15,12	MATIN	19
	12	IRC()S=L	MATIN	z٩
	•••	SET UP LOOP FOR NUMBER OF CARDS IN ROW	MATIN	21
-	15	DO 31 K=1+ [RCDS	MATIN	22
	• •	READ(MY.1)(CARD(1).1=1.1DC)	MATEN	23
с		SKIP THROUGH DATA CARDS IF INPUT AREA TOO SMALL	MATIN	24
		IF(IER)16.16.31	HATIN	
			MATIN	
с	••	COMPUTE COLUMN NUMBER FOR FIRST FIELD IN CURRENT CARD	MATIN	
۲,		JS={K-1}*IDC+ICGL-ICOLT+1	MATIN	
		33+(K+1)+10(+10)L=10(L)+1		

SUBROUTINE MXOUT

PURPOSE NPUSE PRODUCES AN DUTPUT LISTING OF ANY SIZED ARRAY ON LOGICAL UNIT 1 USAGE CALL MXOUT(ICODE,A,N,M,MS,LINS,IPOS,ISP)

DESCRIPTION OF PARAMETERS ICODE- IMPUT CODE NUMBER TO BE PRINTED ON EACH OUTPUT PAGE A-NAME OF OUTPUT NATRIX N-NUMBER OF ROWS IN A M-NUMBER OF ROWINNS IN A MS-STORAGE WODE OF A WHERE MS= 1-SYMMETRIC 2-DIAGOMAL LINS-NUMBER OF PRINT LINES ON THE PAGE (USUALLY 60) IPOS-NUMBER OF PRINT POSITIONS ACROSS THE PAGE (USUALLY 132) ISP-LINE SPACEME CODE, 1 FOR SINGLE SPACE, 2 FOR DOUBLE SPACE

REMARKS NONE

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED

NETHOD

THDD THIS SUBROUTINE CREATES A STANDARD DUTPUT LISTING OF ANY Sized Array with any storage rode. Each page is headed with The code Number, Jinensions and Storage Mode of the Array. Each Colunn and Row is also headed with its respective Number.

	SUBROUTINE MXOUT (ICODE,A,N,H,MS,LINS, [POS, ISP)	HXOUT
	DIMENSION A(1), B(B)	MXOUT
	COMMON MX+MY	MXOUT
	1 FORMAT(////5x, 74MATRIX ,15,6x,13,5H ROWS,6X,13,8H COLUMNS,	4XOUT
	18X,13HSTORAGE MODE ,11,/)	MXOUT
	2 FORMAT(12X,8HCOLJMN ,7(3X,13,10X)//)	MXOUT
	4 FORMAT(7X,4HROW,13,7(E16.6))	чхлит
	5 FORMAT(/+7X+4HRD# +13+7(E16+6))	MXOUT
	1=L	4XOUT
	WRITE HEADING	MXDUT
	NEND=1POS/16-1	MXOUT
	LEND = (LINS/ISP)-10	MXOUT
	10 LSTRT=1	MXOUT
	20 WRITE(MX, 1) ICODE, N, M, MS	4X007
	JNT=J+NEND-1	чхонт
	IF (JNT-H) 33, 32	MXOUT
	32 JNT=M	4X007
	33 CONTINUE	4X007
	WRITE(MX+2)(JCUR+JCUR=J+JNT)	MXOUT
	LTEND = LSTRT+LEVD-1	HXOUT
		MXOUT
	DO 80 L=LSTRT,LTEND	4X001
	FORM OUTPUT ROW LINE	
	DO 55 K=1,NFND	MXOUT
	KK≈K	MXDUT
	JT = J+K-1	MXOUT
	CALL LOC(L, JT, IJNT, N, M, MS)	MXOUT
	B(K)=0.0	ЧХПИТ
	IF([JNT)50,50,45	MXOUT
	45 B(K)=A(IJNT)	MXOUT
	50 CONTINUE	4X0UT
	CHECK IF LAST COLUMN. IF YES GO TO 60	MXOUT
	IF(JT-4) 55,60,60	HXOUT
1	55 CONTINUE	4XOUT
	END OF LINE, NOW WRITE	MXDUT
	60 IFIISP-1165,65,73	MXOUT
	65 WRITE(MX+4)L+(B(JW)+JW≈1+KK)	MXOUT
	GO TO 75	MXCUT
	70 WRITE(MX,5)L,(8(JW),JW=1,KK)	MXOUT
	IF END OF ROWS GO CHECK COLUMNS	HX0UT
1	75 1F(N-L185,85,80	NXDUT 4
1	80 CONTINUE	MXDUT 4
	WRITE NEW HEADING	MXCUT
	LSTRT=LSTRT+LEND	MXOUT
	GU TO 20	MXDUT
	END OF COLUMNS. THEN RETURN	NXOUT
1	85 [F(JT-4)90,95,95	MXOUT
	90 J=JT+1	MXOUT
	G0 T0 10	4XOUT
	95 RETURN	MXOUT

NUMERICAL QUADRATURE INTEGRATION

Problem Description

The tabulated values of a function for a given spacing are integrated. Multiple sets of tabulated values may be processed.

Program

Description

The numerical quadrature integration program consists of a main routine QDINT, and one subroutine, QSF, from the Scientific Subroutine Package.

Capacity

The capacity of the sample program and the format for data input have been set up as follows:

- 1. Up to 500 tabulated values of a function
- 2. (7F10.0) format for input data cards

Therefore, if the problem satisfies the above conditions, no modification to the sample program is necessary. However, if there are more than 500 values to be integrated the dimension statement in the sample main program must be modified to handle this particular problem. Similarly, if input data cards are prepared using a different format, the input format statement in the sample main program must be modified. The general rules for program modification are described later.

æ

ð

Input

I/O Specification Card

Each integration requires a parameter card with the following format:

Columns	Contents	For Sample Problem
1 - 5	Up to 5-digit numeric identification code	12345
6 - 10	Number of tabulated values for this function	0020
11 - 20	Interval between tabu- lated values	1.0

The first two parameters consist of up to five digits with no decimal point (FORMAT (215)). Note that the second parameter may not exceed 500. The third parameter consists of up to ten digits (FORMAT) (F10.0).

Data Cards

Data cards are assumed to be seven fields of ten columns each. The decimal point may appear anywhere in the field, or be omitted, but the number must be right-justified. The number in each field may be preceded by blanks. Columns 71 through 80 of the data cards may be used for identification, sequence numbering, etc. If there are more than seven tabulated values, the values should continue from card to card with seven values per card, until the number of values specified in the parameter card has been reached. A blank card following the last set of data terminates the run.

Deck Setup

The deck setup is shown in Figure 28.

Sample

A listing of input cards for the sample problem is presented at the end of the sample main program.

Output

Description

The identification code number, number of tabulated input values, the interval for the tabulated values, and the resultant integral values at each step are printed.

Sample

The output listing for the sample problem is shown in Figure 29.

Program Modification

Noting that storage problems may result, as previously discussed in "Sample Program Description", the maximum number of tabulated values acceptable to the sample program may be increased. Input data in a different format can also be handled by providing a specific format statement.

1. Modify the DIMENSION statement in QDINT so that the size of array Z is equal to the maximum number of tabulated values.

2. Changes to the format of the parameter cards and data cards may be made by modifying FORMAT statements 10 and 32, respectively, in QDINT.

INTEGRATION OF TABULATED VALUES FOR DY/DX USING SUBROUTINE QSF

FUNCTION 12345 20 TABULATED VALUES INTERVAL = 0.10000002E 01

INTEGRATION OF TABULATED VALUES FOR DY/DX USING SUBROUTINE QSF

FUNCTION 543 10 TABULATED VALUES INTERVAL = 0.10000002E 01

RESULTANT VALUE OF INTEGRAL AT EACH STEP IS 0+000000000 0+14999959E 01 0+399999959E 01 0+74999952E 01 0+11999998E 02 0+17499996E 02 0+239999965 02 0+31499992E 02 0+39999902E 02 0+49499984E 02

Figure 29. Output listing

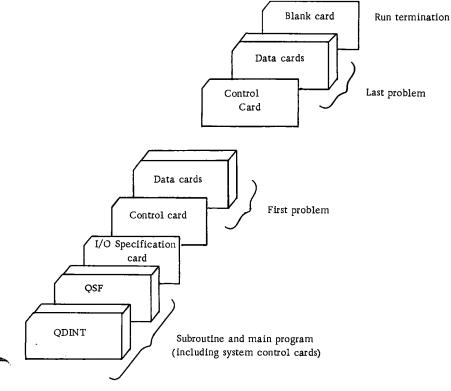


Figure 28. Deck setup (numerical quadrature integration)

Operating Instructions

The numerical quadrature integration sample program is a standard FORTRAN program. Special operating instructions are not required. Logical unit 2 is used for input, and logical unit 1 is used for output.

Error Messages

The following conditions will result in error messages:

1. The number of tabulated values specified in the parameter card is less than or equal to two: ILLEGAL CONDITION. NUMBER OF TABULATED VALUES IS LESS THAN THREE.

The program will continue to read data cards until the next problem is reached.

2. The interval specified in the parameter card is zero: ILLEGAL CONDITION. SPECIFIED IN-TERVAL IS ZERO.

The program will continue to read data cards until the next problem is reached.

Sample Program for Integration of a Tabulated Function by Numerical Quadrature - QDINT

Purpose:

Integrates a set of tabulated values for F(X) given the number of values and their spacing.

Remarks:

The number of values must be more than two and the spacing greater than zero.

I/O logical units determined by MX and MY, respectively.

Subroutines and function subprograms required: QSF

Method:

Reads control card containing the code number, number of values, and the spacing of the function values contained on the following data cards. Data cards are then read and integration is performed. More than one control card and corresponding data can be integrated in one run. Execution is terminated by a blank control card.

<pre>*IDCS(CARU,TYPEWRITER,1132 PRINTER) *ONE WORD INTEGERS</pre>	
C SAMPLE PROGRAM FOR INTEGRATION OF A TABULATED FUNCTION	IBY UDI
C NUMERICAL QUADRATURE - ODINT	QD1
C NUMERICAL QUADRATURE - QDINT C THE FOLLOWING DIMENSION MUST BE AS LARGE AS THE MAXIMU	IM NUMBER OD
C OF TABULATED VALUES TO BE INTEGRATED	QÜ 1
JIMENSIGN Z(500)	QUI
10 FORMAT (215, F10.0)	661
20 FORMAT(///// INTEGRATION OF TABULATED VALUES FOR DY/UK	USING SUBQDI
LROUTINE QSF ///11H FUNCTION , 15, 34, 15, 17H TABULATED VAL	UES, QDI
25X,10HINTERVAL =,615.8/)	991
22 FORMAT(/18H ILLEJAL CGNDITION/)	QD 1
23 FORMAT(746H NUMBER OF TABULATED VALUES IS LESS THAN THREE	
24 FURMAT(/27H SPECIFIED INTERVAL IS ZERD)	901
30 FORMAT(/7%, "RESULTANT VALUE OF INTEGRAL AT EACH STEP I	
1(1H ,6E15.8))	901
31 FORMAT(212)	QD 1
32 FORMAT(7F10.C)	QD 1
READ(2,31)MX.MY	ຊມ
35 REAU(MY,10)ICUD,NUMBR,SPACE	201
IF(1CD)+NUMBR)70,70,38	201

	STOP						0.1	INT 19
	3 STOP 3 WRITE(MX+20)ICOD+NUMBR+SPACE							INT 20
	IF(NUM8		INTHO7					
	READINY		INT 22					
			INTHOB					
		F {SPACE+Z 6160.200.6						INTMOS
			I=1,NUMBR	,				INTHIO
	GOTOJ							INT 26
	WRITELM							INT 27
	WRITEIM							INT 28
			1= L, NUMBR)					INTHIL
	GUTUJ							INT 29
	#RITE{M							INT 30
	WRITELM							INT 31
GD TU 35								
		5						INT 32
	END	5						INT 33
// DUP	END							
// DUP	END		NT					
// DUP *STORE	END W		NΓ					
// DUP *STJRE // XEQ 1 2	END QDINT	S UA QDI	NT					INT 33
// DUP *STJRÉ // XEQ	20	S UA QDI					QU.	INT 33
// DUP *STORE // XEQ 1 2	20 2.0	S UA QDI	2.0	2.0	2.0	2.0	QU: 2.0	1 III IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
// DUP *STORE // XEQ 1 2	20	S UA QDI		2.0	2.0	2.0	QU.	1 NT 33
// DUP *STORE // XEQ 1 2	20 2.0	S UA QDI 1.0 2.0 2.0	2.0				QU: 2.0	1NT 33
// DUP *STJRE // XEQ 1 2	20 2.0 2.0 2.0 2.0 2.0	S UA QDI 1.0 2.0 2.0	2.0	2.0	2.0	2.0	QU: 2.0	1NT 33
// DUP *STJRE // XEQ 1 2 12345	20 20 20 20 20 20 20 20 20 20 20 20 20 2	1.0 2.0 2.0 2.0 1.0	2.0 2.0 2.0	2.0	2.0	2.0 2.0	QU: 2.0	INT 33
// DUP *STJRE // XEQ 1 2 12345	20 2.0 2.0 2.0 2.0 2.0	S UA QDI 1.0 2.0 2.0 2.0 2.0	2.0	2.0	2.0	2.0	2.0 2.0 2.0	1NT 33

ų,

RUNGE-KUTTA INTEGRATION

Problem Description

A differential equation of the form:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x, y)$$

is integrated with initial conditions as specified in a parameter card. The differential equation is defined in the form of a function subprogram that is provided by the user.

Program

Description

The Runge-Kutta integration program consists of a main routine, RKINT, one subroutine, RK2, from the Scientific Subroutine Package, and one user-supplied function subprogram, FUN, which defines the differential equation to be integrated.

Capacity

Up to 500 values of the integral may be tabulated.

Input

I/O Specification Card

Each integration requires a control card with the following format:

Columns	Contents	For Sample Problem
1 - 10	Initial value of $X = X_0$	1.0
11 - 20	Initial value of $Y = Y(X_0)$	0.0

Columns	Contents	For Sample Problem
21 - 30	Step size	0.01
31 - 35	Number of steps required between tabulated values	10
36 - 40	Total number of tabulated values required	30
		- 4 -

The first three parameters consist of up to ten digits.

(FORMAT (F10.0))

The last two parameters consist of up to four digits plus a blank.

(FORMAT (15))

Multiple parameter cards may be used.

A blank card terminates the run.

Data Cards

None.

¥

Blank Card

Run termination.

Deck Setup

The deck setup is shown in Figure 30.

Sample

A listing of the input cards for the sample problem is presented at the end of the sample main program.

Output

Description

The values for the initial conditions and the tabulated values of the integral are printed.

Sample

The output listing for the sample problem is shown in Figure 31.

Program Modification

Noting that storage problems may result, as previously described in "Sample Program Description", the maximum number of tabulated values acceptable to the sample program may be increased. Input data in a different format can also be handled by providing a specific format statement.

1. Modify the DIMENSION statement in RKINT so that array A is as large as the number of tabulated values.

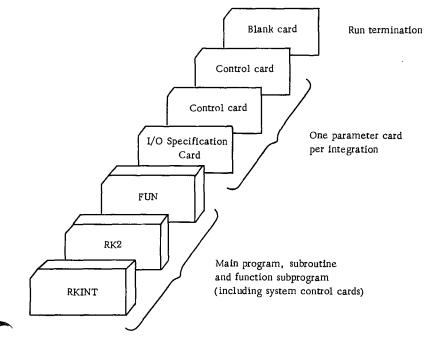


Figure 30. Deck setup (Runge-Kutta integration)

SOLUTION OF DY/DX=FUN(X+Y) BY RK2 SUBROUTINE

Ha 0.010 YO- 1.000 YO- 0.000

H¤	0.010	×0=	1.000	¥0≈	0.000
×			۲	(x)	
1.	10		0.9531	0136E	-01
1.	20		0.1823	2139E	00
1.	30		0.2623	5397E	00
1.	40		0.3364	7167E	00
1.	50		0+40546	5423E	00
1.	60		0+47000	0247E	00
1.	70		0.53062	2677E	00
1.	80		0.58778	9464E	00
1.	90		0.64185	5142E	00
2.0	00		0.69314	432E	00
2.	10		0.74193	394E	00
2.	20		0.78845	346E	00
2.	30		0+83290	457E	00
2 .	40		0.87546	372E	00
2.5	50		0.91628	539E	00
2.0	50		0.95550	584E	00
2.	70		0.99324	584E	00
2.5	30		0.10296	125E	01
2.9	90		0.10647	029E	01
3.0	00		0+10986	037E	01
3.)	10		0.11313	924E	01
3.2	20		0.11631	403E	01
3.3	80		0+11939	110E	01
3.4	•0		0.12237	627E	01
3.5	0		0•12527	496E	01
3.6	0		0.12809	195E	01
3.7	0		0.13083	176E	01
3.8	0		0.13349	850E	01
3.9	0		0.13609	600E	01
4.0	0		0•13862	772E	01

Figure 31. Output listing

2. Changes to the format of the parameter card may be made by modifying FORMAT statement 1.

The user-supplied function subprogram FUN may be replaced by any function subprogram having the same name and parameter list. In this way, the user may define any desired first-order differential equation.

Operating Instructions

The sample program for Runge-Kutta integration is a standard FORTRAN program. Special operating instructions are not required. Logical unit 2 is used for input, and logical unit 1 is used for output.

Error Messages

None.

Sample Program for Runge-Kutta Integration of a Given Function with Tabulated Output - RKINT

Purpose:

Integrates the function subprogram FUN using the initial conditions contained in control cards. Produces tabulated output.

Remarks:

I/O logical units determined by MX and MY, respectively.

ŝ

)

ð

Subroutines and function subprograms required: RK2

FUN - User-supplied function subprogram giving DY/DX=FUN(X, Y)

Method:

Reads control card containing initial values of X and Y, step size, number of steps desired between tabulated values, and number of tabulated values required. Program then enters RK2 to perform integration. Multiple control cards can be used on the same function.

// FOR *IOCS(CARD, TYPEWRITER, 1132 PRINTER)

1 2 1.0 0.0 .01 10 50		1 2 3
// DUP STORE WS UA RKINT // XEQ RKINT		
ÊND	RKINT	٥0
40 STUP	RKINT	
GU TO LO	REINT	
30 WRITE(AX,3)X,A(I) C GO BACK AND CHECK FUR AUDITIONAL CONTROL CARD.	RAINT	
X = X + STEP + 16 - 05	RKINT	
DD 30 1=1, IENT	AKINT	
x=x0	KKINT	
STEP=FLOAT(JNT)+H	REINT	
C WRITE JUTPUT	RKINT	
CALL RK2(FUN,H,XU,YU,JNT,[ENT,A)	RKINT	
C PERFORM INTEGRATION	RKINT	14
20 WRITE(MX,2)H,X0,Y0	REINT	
C WRITE HEADING INFORMATION.	KNINT	
IF(IENT)20,40,20	RKINT	
C CHECK IF CARD IS BLANK. IF SU, RETURN.	RKINT	
10 READINY,11X0,YU,H,JNT,IENT	RKINT	
READ(2,4)MX;MY C READ CUNTROL CARD CONTAINING ITEMS LISTED UNDER METHOD.	REINT	
4 FORMAT(212)	RKINT	
3 FORMAT(/10x,F3.2,10x,E15.8)	REINT	
110X,2HH=,77.3,2X,3HXD=,F7.3,2X,3HYO=,F7.3///12X.1HX,18X,4HY(X)//)		
2 FORMAT(////7X,44HSOLUTION OF DY/UX=FUN(X,Y) BY RK2 SUBROUTINE///,		
1 FORMAT (3F10.0,215)	RKINT	
GIMENSION ALSOOF	RKINT	
C NUMBER OF TABULATED VALUES DESIRED	REINT	
C THE FOLLOWING DIMENSION MUST BE AS LARGE AS THE MAXIMUM	RKINT	
C WITH TABULATED DUTPUT - RKINT External fun	RKINT	
C SAMPLE PROGRAM FOR RUNGE-KUTTA INTEGRATION OF A GIVEN FUNCTION C WITH TABULATED DUTPUT - RKINT	RKINT	2
*ONE WORD INTEGERS	0	

FUNCTION FUN(X.Y) FUN=1./X RETURN

FUN 1 FUN 2 FUN 3 FUN 4

POLYNOMIAL ROOTS

Problem Description

The real and complex roots are computed for a real polynomial with given coefficients. Multiple sets of coefficients may be processed.

Program

Description

The polynomial roots sample program consists of a main routine, SMPRT, and one subroutine, POLRT, from the Scientific Subroutine Package.

Capacity

Roots for polynomials of order 36 or less may be computed.

Input

3

3

I/O Specification Card

Each set of data requires a control card with the following format:

Columns	Contents	For Sample Problem
1	Blank	
2 - 5	Up to four-digit identifi- cation code	360
6 - 8	Blank	
9 - 10	Order of polynomial	9

The first parameter consists of up to four digits without decimal point (I4).

The second parameter consists of up to two digits with no decimal point (I2). The order of the polynomial must be less than or equal to 36.

Data Cards

Data cards are assumed to have seven fields of ten columns each. The decimal point may appear anywhere in the field, or be omitted, but the number must be right-justified. The number in each field may be preceded by blanks. Columns 71 to 80 of the data cards may be used for identification, sequence numbering, etc. If there are more than seven coefficients, the values should continue from card to card with seven values per card until the number of values has been reached that is one greater than the order of the polynomial. The first coefficient is for the constant term of the polynomial and the last coefficient for the highest order term. Fields with zero coefficients may be left blank.

Blank Card

Run termination.

Deck Setup

The deck setup is shown in Figure 32.

Sample

A listing of the input cards for the sample problem is presented at the end of the sample main program.

Output

Description

The identification code, the polynomial order, the input coefficients, and the real and complex roots are printed.

Sample

The output listing of the sample problem is shown in Figure 33.

Program Modification

The maximum order of the polynomial acceptable to the sample program is fixed by the subroutine POLRT. However, input data in a different format can be handled by providing a specific format statement.

1. The sample program can accept polynomials up to the maximum 36th order, which is allowed by the subroutine.

2. Changes to the format of the parameter card and data cards can be made by modifying FORMAT statements 10 and 40, respectively, in main sample program SMPRT.

Operating Instructions

The polynomial roots sample program is a standard FORTRAN program. Special operating instructions are not required. Logical unit 2 is used for input, and logical unit 1 is used for output.

Error Messages

The following conditions will result in error messages:

1. The order of the polynomial specified in the control card is less than one: ORDER OF POLY-NOMIAL LESS THAN ONE.

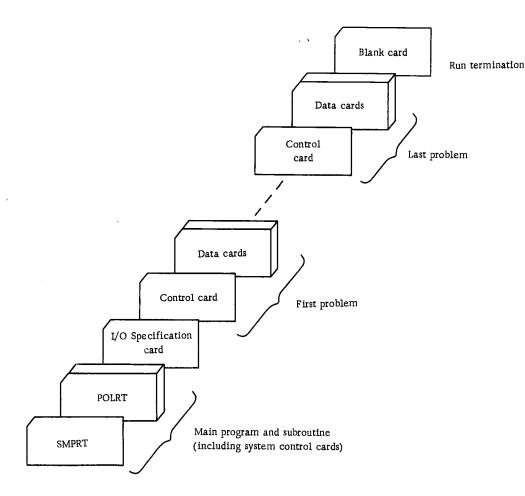


Figure 32. Deck setup (polynomial roots)

The program will go on to the next set of data. 2. The order of the polynomial specified in the control card is greater than 36: ORDER OF POLY-NOMIAL GREATER THAN 36.

The program will go on to the next set of data.

REAL AND COMPLEX ROOTS OF A POLYNOWIAL USING SUBROUTINE POLRT								
FOR POLYNOMIAL	360 OF ORDER	9						
THE INPUT COEFFI	CIENTS ARE							
-0.1000000E 01 0.1000000E 01	0.0000000E 00 0.0000000E 00	0.0000000E 00 0.0000000E 00			00 0+00C0000E 00			
REAL ROOT	COMPLEX ROOT							
0.2986480E 00								
0.2986480E 00 -0.1019270E 01	-0.1004528E 01 0.2436272E 00							
-0.1019270E 01								
0.9105258E 00	0.0000000E 00							
0.7206227E 00								
0.7206227E 00 -0.4552629E 00								
-0.4552629E 00								
-5645520252 00	0010000000							
Figure 33.	Output list	ing						

3. The subroutine POLRT is unable to determine a root after 500 iterations on eight different starting values: UNABLE TO DETERMINE ROOT. THOSE ALREADY FOUND ARE ...

The program will print all the roots that were computed and then go to the next set of data.

Sample Program for Real and Complex Roots of a Real Polynomial - SMPRT

Purpose:

Computes the real and complex roots of a real polynomial whose coefficients are input.

Remarks:

The order of the polynomial must be greater than one and less than thirty-seven. I/O logical units determined by MX and MY, respectively.

Subroutines and function subprograms required: POLRT

Method:

Reads a control card containing the identification code and the order of the polynomial whose coefficients are contained on the following data cards. The coefficients are then read and the roots are computed.

More than one control card and corresponding data can be processed. Execution is terminated by a blank control card.

-1.0 1.0 1.0		45
1 2 360 9 -1.0 1.0		1 2 3
#STORE NS UA SMPRT // Xeq Smprt		
// DUP		
END	SMPRT	39
LOO STOP	SHPRT	
GO TO 5	SMPKT	
96 WRITE(MX,97)ROOTR(1),ROOTI(1)	SMPRT	36
DO 96 I=1-IORD	SMPKT	35
90 WRITE(MX+95)	SMPRT	
8C WRITE(MX+85)	SMPRT	
GO TO 5	SMPRT	
GO TU 5 78 WRITE(MX,79)	SMPRT	
75 WRITE(4X,77)	SMPRT	
76 IF(IER-3) 75,80,78	SMPRT	
G0_T0_5	SMPRT	
60 WRITE(4X,65)	SMPRT	
IF(IER-1)90,60,70	SMPRT	
CALL POLRTIA, W, IORU, RUOTR, RUUTI, IER)	SMPRT	24
HRITE(MX.50)(A(1),1=1,J)	SMPRT	23
READ(MY+4C)(A(I)+I=I+J)	SMPRT	22
J=[URD+1	SMPRT	
20 #RITE(HX, 30)10,10RD	SHPRT	
5 READ(NY,10)10,10R0 1F(10+10R0)10C,100,20	SMPRT	
READIZ, SUIMX, MY	SMPRT	
98 FORMAT(212)	SMPRT	
97 FORMAT(2E16.7)	SMPRT	
95 FURMAT(////5X,9HREAL ROOT,6X,12HCOMPLEX ROOT//)	SMPRT	
85 FORMAT(////SOH UNABLE TO DETERMINE ROOT. THOSE ALREADY FOUND ARE)	SMPRT	13
79 FORMAT[////31H HIGH ORDER COEFFICIENT IS ZERO]	SMPRT	
77 FORMATL////36H ORDER OF POLYNOMIAL GREATER THAN 361	SMPRT	
65 FORMAT(////34H GROER OF POLYNOMIAL LESS THAN ONE)	SMPRT	10
50 FORMAT(6E16.7)	SMPRT	
40 FURMAT(7/10.C)	SMPRT	
ITINE POLKT///17H FOR POLYNJMIAL ,14,2X,10HOF ORDER ,12//27H THE 2INPUT CUEFFICIENTS ARE//)	SMPRT	7
30 FORMATI ////62H REAL AND COMPLEX RUGTS OF A PULYNOMIAL USING SUBRU	CMODI	
10 FORMAT(1X,14,3X,12)	SMPRT	
01MENSIUN #1371+#1371+R00TR1371+R0JT1(37)	SMPRI	
C NOMIAL – SMPRT	SMPRT	
C SAMPLE PRUGRAM FOR REAL AND COMPLEX RUDTS OF A REAL POLY-	SMPRI	1
DAE WORD INTEGERS		
// FOR #IOCS{CARD,TYPE#KIIER,1132 PRINTER)		

SOLUTION OF SIMULTANEOUS EQUATIONS

Problem Description

A solution is obtained for a set of simultaneous equations by the method of elimination using largest pivotal divisor. Both the input data and the solution values are printed. This procedure is repeated until all sets of input data have been processed.

Program

2

Description

The solution of simultaneous equations sample program consists of a main routine, SOLN, and four subroutines:

SIMQ	are from the Scientific Subroutine
LOC	Package

MATIN MXOUT

are sample subroutines for matrix input and output

Capacity

The sample program will solve for 40 equations. The general rules for program modifications are described later.

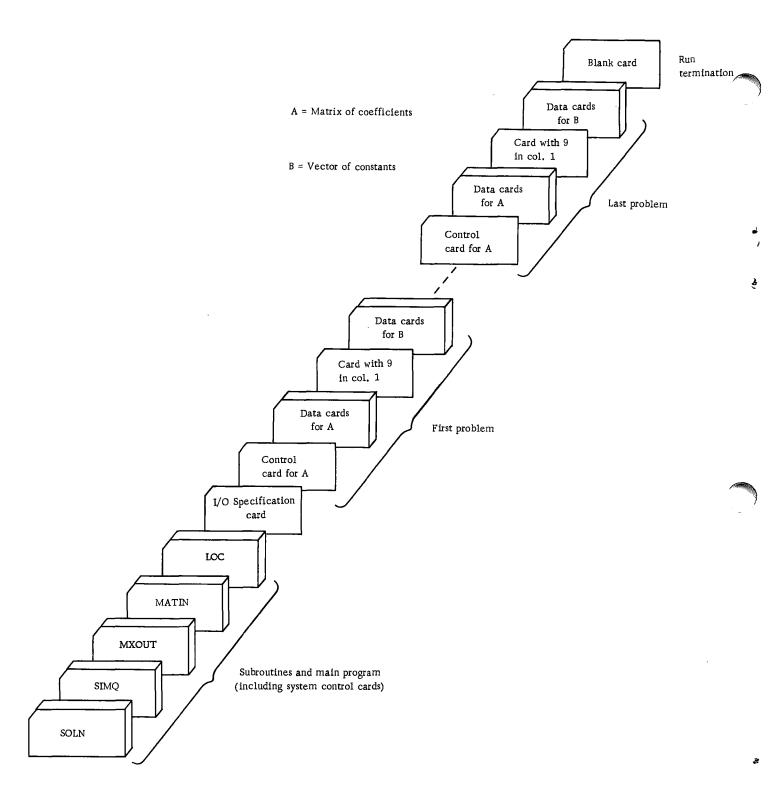
Input

I/O Specification Card

A control card with the following format must precede each matrix of coefficients:

Columns	Contents	For Sample Problem
1 - 2	Blank	
3 - 6	Up to four-digit identifi- cation code (numeric only)	1
7 - 10	Number of rows in matrix	10
11 - 14	Number of columns in matrix (same as number of rows)	10

Each matrix must be followed by a card with a 9punch in column 1. This, in turn, is followed by the constant vector.


Data Cards

Data cards are assumed to have seven fields of ten columns each. The decimal point may appear anywhere in a field, or be omitted, but the number must be right-justified. The number in each field may be preceded by blanks. Equation coefficients must be punched by row. A row may continue from card to card. However, each new row must start in the first field of the next card. The vector of constants is punched in continuous data fields following the 9 card. Columns 71 to 80 of data cards may be used for identification, sequence numbering, etc.

A blank card after the last set of input data terminates the run.

Deck Setup

The deck setup is shown in Figure 34.

Figure 34. Deck setup (solution of simultaneous equations)

Sample

A listing of input cards for the sample problem is presented at the end of the sample main program.

Output

Description

The original matrix is printed for any sized array. Each six-column grouping is headed with the matrix code number, dimensions, and storage mode (always 0 in this sample program). Columns and rows are headed with their respective number. The original vector of constants is also printed. The solution values are then listed. This output is given for each case to be processed.

Sample

ъ

The output listing for the sample problem is shown in Figure 35.

Program Modifications

Noting that storage problems may result, as previously discussed in "Sample Program Description", the size of the maximum problem acceptable to the sample program can be increased. Output of the solution values in a different format can be handled by providing a specific format statement.

1. Changes to the DIMENSION statement of the main program, SOLN. The dimension of array A must be greater than or equal to the maximum number of elements in the matrix (N x N). The dimension of array B must be greater than or equal to N.

2. Insert the same number N in the third argument of the CALL MATIN statement (statement 25) in SOLN.

3. Changes to the format of the solution values may be made by modifying FORMAT statement 21 in SOLN.

WATRIX		1 10 ROWS	10 COLUMNS	STORAGE	HODE O			
	COLU		2	,	•	•	۰	
ROW	1	0.100000E 01	0.6644U8E 00	0.760105E 00	0.750750E 00	0.+29942E 00	0.3329106-02	
ROW	s	0.664408E OD	0.100000E 01	0.627180E 00	0.619465E 00	0.354757E 00	0.274700E-02	
ROW	3	0.760100E 00	0.627180E QU	0.100000E 01	0.708684E 00	0.4058518 00	0+314260E-02	
ROW	٠	0.750750E 00	0.619465E 00	0.7086848 00	0.100000E 01	C.400459E 00	0.3103908-02	
ROW	,	0.429942E CO	0.354757E 00	0.405851E 00	0.400859E 00	0.10000CE 01	0.1777606-02	
ROW	6	0.332910E-02	0.2747006-02	0.314250E-02	0.310390E-02	0.177760E-02	0.100000E 01	
ROW	7	0.728478E 00	0+601087E QG	0.687660E 00	0.679201E 00	0.3889676 00	0-3011935-02	
ROW	8	0.675176E GO	0.557166E UU	0.637344E VO	0.629504E GC	0.360507E 00	0+279150E-02	
ROW	9	0.863591E 00	U.712572E UU	0.815202E UD	U+805174E 00	0.461109E 00	0.357050E-02	
ROW	10	0.744684£ 00	0.614459E 00	0.7029586 00	0.694310E CO	0.397620E 00	0.3078906-02	
MATRIX		1 10 ROWS	10 COLUMNS	STORAGE	MODE 0			
	COLU	MN 7		,	10			
ROw	1	0.728475E 00	0+675176E 00	0.863591E 00	0.744684E 00			
ROW	2	0.6010875 00	9.557106E 00	9.712572E 00	0.0144598 00			
ROW	3	0.687660E 00	0.637344E 00	9+815202E 00	0.7029585 00			
ROW	•	0.679201E-00	0.629504E 00	0.805174E 00	0.694310E 00			
RCH	,	0.3889678 00	0.3605078 00	0.461109E 00	0.397620E CO			
ROW	6	0-3011906-02	0.2791506-02	0.357050E-02	0-3078908-02			
ROW	7	0.100000E 01	0.6108296 00	0.781287E GD	0.6737138 00			
ROW	a	0.6104296 00	0.1000008 01	0+724121E 00	0.6244186 00			
904	9	0.781267E 00	0.724121E 00	0.100000E 01	0.798668E 00			
ROW	10	0.673713E 00	0.624418E 00	0,798668E 00	0,100000£ 01			
OPEGINAL B	VECT	CR .						
1 2		0.110000E 03 -0.120000E 03						
1234567		0.100000E 02 0.145000E 03						
5		-0.500000E 02 0.442000E 02						
7 8		-0.140000E 02 0.355000E 02						
10		0.220000E 02 0.165000E 04						
SOLUTION V	LUES							
1		-0.2531238 03						
1 2 3		-0.567240E 03						
÷.		-0.299155E 02 -0.179352E 03						
5		0.435176E 02 -0.479274E 03						
6		-0.230431E 03 -0.210172E 04						
10		0.4809748 04						
END OF CASE	E C							

Figure 35. Output listing

SOLUTION OF SIMULTANEOUS EQUATIONS

The matrix listing is set for 120 print positions across the page, and double spacing. This can be changed by means of the last two arguments in the CALL MXOUT statement in SOLN (statement 65).

Operating Instructions

The sample program for the solution of simultaneous equations is a standard FORTRAN program. Special operating instructions are not required. Logical unit 2 is used for input, and logical unit 1 is used for output.

Error Messages

The following error conditions will result in messages:

1. Reserved storage area is too small for matrix: DIMENSIONED AREA TOO SMALL FOR INPUT MATRIX (matrix code no.). GO ON TO NEXT CASE.

2. Matrix of coefficients is not square: ROW AND COLUMN DIMENSIONS NOT EQUAL FOR MATRIX (matrix code no.). GO ON TO NEXT CASE.

3. Number of data cards does not correspond to that required by parameter card: INCORRECT NUMBER OF DATA CARDS FOR MATRIX (matrix code no.). EXECUTION TERMINATED.

4. Singular input matrix: MATRIX IS SINGULAR. GO ON TO NEXT CASE.

Error conditions 1, 2, and 4 allow the computer run to continue. Error condition 3, however, terminates execution and requires another run to process succeeding cases.

- Sample Main Program - SOLN

Purpose:

Solution of a set of simultaneous equations.

Remarks:

I/O specifications transmitted to subroutines by COMMON.

Input card:

- Column 2 MX Logical unit number for output.
- Column 4 MY Logical unit number for input.

Subroutines and function subprograms required:

SIMQ MATIN MXOUT

LOC

Method:

A matrix of simultaneous equations coefficients and a vector of constants are read from the standard input device. The solution is obtained and listed on the standard output device. This procedure is repeated for other sets of equations until a blank card is encountered.

// FOR #IOCSICARD, TYPEWRITER, 1132 PRINTER;

-1003	WARDITTERRITERILISE FRINCES		
*ONE I	WORD INTEGERS		
c	SAMPLÉ MAIN PROGRAM - SOLN	SULN	1
C	MATRIX IS JIMENSIONED FOR 1600 ELEMENTS, THEREFORE, NUMBER OF	SCLN	2
C	EQUATIONS TO BE SOLVED CANNOT EXCEED 40 UNLESS DIMENSION	SOLN	3
C	STATEMENT IS CHANGED	SULN	4
		SULN	5
		SOLN	67
		SULN	7
		SOLN	8
		SULN	9
		SOLN	10
		SOLN	11
		SOLN	12
		SULN	13
		SOLN	14
18	FORMAT(////16H SULJTION VALUES,////)	SELN	15
		SOLN	10
		SULN	17
		SOLN	18
		SOLN	19
23		SGLN	20
		SULN	21
		SULN	22
25		SULN	23
		SOLN	24
30	IF(IER-1) 45,35,40	SULN	25
	*ONE 1 C C C C C C C C C C C C C C C C C C C	C MATRIX IS JIMEDSIONED FON LOJO ELEMENTS, THEREFORE, NUMBER UF C EQUATIONS TO JE SQLVED CANNOT EXCEED 40 UNLESS DIMENSION C STATEMENT IS CHANGED OIDMENSION AILGO()4140) COMMON MX,MM IO FORMATI///35H SOLUTION OF SIMULTANEOUS EQUATIONS) 11 FORMATI///35H SOLUTION OF SIMULTANEOUS EQUATIONS) 12 FURMATI//25H DIMENSIONED AREA TOO SMALL FOR INPUT MATRIX,14) 12 FURMATI//25H XECUTION TEANINATED)	<pre>#ONE UNRD INTEGERS SULN C SAMPLE ANIN PROGRAM - SULN SULN C SAMPLE ANIN PROGRAM - SULN SULN C MATRIX IS JIMENSIONED FOR LOJD ELEMENTS, THEREFORE, NUMBER OF SCLN C EQUATIONS TO AE SOLVED CONNUT EXCLED 40 UNLESS DIMENSION SULN COMMON MA,MY IO FORMATI///35H SOLUTION OF SIMULTANEOUS EQUATIONS) SULN 10 FORMATI///35H SOLUTION OF SIMULTANEOUS EQUATIONS) SULN 12 FORMATI///35H SOLUTION OF SIMULTANEOUS EQUATIONS) SULN 13 FORMATI///35H SOLUTION OF SIMULTANEOUS EQUATIONS) SULN 14 FORMATI///35H SOLUTION OF SIMULTANEOUS EQUATIONS) SULN 15 FORMATI///35H SOLUTION OF SIMULTANEOUS EQUATIONS) SULN 16 FORMATI///35H SOLUTION OF SIMULTANEOUS EQUATIONS) SULN 17 FORMATI///35H SOLUTION OF SIMULTANEOUS EQUATIONS) SULN 18 FORMATI///35H SOLUTION OF SIMULTANEOUS EQUATIONS SOL EQUAL FOR MATRIX, 14) SOLN 19 FORMATI///35H STAJCTURE CODE IS NOT CERCO FOR MATRIX, 14) SOLN 15 FORMATI///15H UNGINAL BY VECTURE/////) SOLN 16 FORMATI///15H UNGINAL BY VECTURE/////) SOLN 17 FORMATI///15H UNGINAL BY VECTURE/////) SOLN 18 FORMATI///15H UNGINAL BY VECTURE/////) SOLN 18 FORMATI///15H UNGINAL BY VECTURE/////) SOLN 18 FORMATI///15H UNGINAL BY VECTURE///// SOLN 18 FORMATI//12H END OF CASE) SOLN 20 FORMATI//12H END OF CASE) 23 FORMATI//12H END OF CASE) 23 FORMATI//12H END OF CASE) 24 CALL MATIN (LCOP,A, 1600,N,M,MS, IEK) 25 CALL M</pre>

GO TO 90 40 WRIFZIMX,14)ICOD GO TO 95 45 IF(N-M1 50,55,50	SULN	26
GO TO 95		21
	SULN	
45 IF(N-A) 50,55,50	SULN	29
	SULN	٥٤
50 WRITEIMX, 13) ICUD	SOLN	- 31
GO TO 90	SGLN	32
55 [F(MS) 60,65,60	SULN	33
60 #RITELAX, 16)1000	SGEN	34
GO TO 90	SULN	35
65 CALL MXUUT(ICOD, A, N, H, MS, 60, 120, 2)	SULN	
READ(MY,20)(6(1),1=1,N) WRITE(MX,17)	SOLN	37
DO 70 1=1.N	SULN	
70 WRITE(MX+21)I,8(I)	SOLN	39
	SULN	
CALL SIMQIA,8,N,KS) 1Fiks-1) 30,75,80	SULN	
75 WRITE(MX, 19)	SULN	
WRITE(MX, 15)	SOLN	
GO TU 25	SULN	
80 WRITE(MX.18)	SULN	
DO 35 I=1.N	SULN	
85 WRITE(MA,21)1,8(1)	SULN	
WRITE(AX, 22)	SULN	
GO TO 25	SOLN	
90 READIMY,20)(B(1),1=1.N)	SOLN	50
WRITE(MX,15)	SOLN	51
GO TO 25	SOLN	52
95 WRITE(MX.12)	SULN	د خ
STOP	SOLN	54
END	SOLN	55
	SOLN	56
DRE WS UA SOLN Xeq Soln		

12						
00010010	0010					
1.0000000	0.6644085	0.7601008	0.7507505	0.4299425	0.0033291	0+7284786
0.6751766	0.8635910	0.7446845				
0.6644085	1.0000000	0.6271802	0.6194650	0.3547574	0.0027470	0.6010878
	0.7125728					
	0.6271802		0.7086843	0+4058519	0.0031426	0+6876602
0+6373449	0.8152021	0.7029582				
	0.6194650			0+4008593	0.0031039	0+6792011
	0.8051740					
			0-4008593	1.0000000	0.0017776	0.3889673
	0.4611099					
				0.0017776	1.0000000	0.0030119
0.0027914	0.0035705	0.0030789				
	0.6010878			0.3889673	0.0010119	1.0000000
	0.7812874					
	0.5571068		0.6295047	0.3605070	0.0027916	0-6108296
	0.7241215		000275041			
	0.7125728		0.8051740	0.4411099	0.0035705	0.7912974
	1.0000000		0000001140		0000000000	007012014
	0+6144597		0.4043100	A. 1074204	0.0030700	0.4797192
	0.7986682		0.0343100	013910204	0.0030103	0+0131132
0.0244103	V\$770002	11000000				
110.0	-120.0	10.	145.	÷50.	44.20	-14.
	-120.0	1650.	1.020		44020	-140
38.5	22.	16504				

SUBROUTINE MATIN

PURPOSE Reads control card and matrix data elements from logical unit 5

USAGE CALL MATIN(ICODE,A,ISIZE,IRON,ICOL,IS,IER)

- CALL MATINITCODE, A, ISIZE, IRON, ICOL, IS, IER) DESCRIPTION OF PARAMETERS ICODE-UPON RETURN, ICODE WILL CONTAIN FOUR DIGIT IDENTIFICATION CODE FROM MATRIX PARAMETER CARD A -DATA AREA FOR INPUT MATRIX ISIZE-NUMBER OF ELEMENTS DIMENSIONED BY USER FOR AREA A IROW -UPON RETURN, IROW MILL CONTAIN ROW DIMENSION FROM MATRIX PARAMETER CARD ICOL -UPON RETURN, IS WILL CONTAIN STORAGE MODE CODE FROM MATRIX PARAMETER CARD IS -UPON RETURN, IS WILL CONTAIN STORAGE MODE CODE FROM MATRIX PARAMETER CARD NHERE IS-0 GEMERAL MATRIX IS-1 SYMMETRIC MATRIX IER -UPON RETURN, IE WILL CONTAIN AN ERROR CODE WHERE IEN-0 NO ERROR IER-1 ISIZE IS LESS THAN MUMBER OF ELEMENTS IN IMPUT MATRIX IER-2 INCORRECT MUMBER OF DATA CARDS

REMARKS

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED

LDC METHOD SUBROUTINE ASSUMES THAT INPUT MATRIX CONSISTS OF PARAMETER CARD FOLLOWED BY DATA CARDS PARAMETER CARD HAS THE FOLLOWING FORMAT COL. 1 - 2 BLANK COL. 3 - 5 UP TO FOUR DIGIT IDENTIFICATION CODE COL. 7-10 NUMBER OF ROUS IN MATRIX COL. 15-16 SUBRO OF COLUMNS IN MATRIX COL. 15-16 SUBRO FO COLUMNS IN MATRIX COL. 15-16 SUBRE OF COLUMNS IN MATRIX DATA CARDS ARE ASSUMED TO HAVE SEVEN FIELDS OF TEN COLUMNS DATA CARDS ARE ASSUMED TO HAVE SEVEN FIELDS OF TEN COLUMNS DATA CARDS ARE ASSUMED TO HAVE SEVEN FIELDS OF TEN COLUMNS DATA CARDS ARE ASSUMED TO HAVE SEVEN FIELDS OF TEN COLUMNS DECIMAL POINT IS INCLUDED. IT IS ASSUMED INATINUSER IN BACH POINT IS AT THE END OF THE INCLUDED. IT IS ASSUMED INATING ARE IN BACH POINT IS AT THE HEAD OF THE INCLUDED. THE SEVEN FIELD OF THE HOMEVER EACH NEW HOW NUST STATE IN THE FIRST FIELD OF THE HOMEVER EACH NEW HOW NUST STATE IN ATHEIX ARE CONTAINED ON DATA CARDS. THE FIRST FIELMENT OF A ANTRIX MET ARE THE OF THE HOMEVER EACH NEW HOW NUST STATE IN ATHEIX ARE CONTAINED ON DATA CARDS. THE FIRST FIELMENT OF ANATRIX ANE SWERTHIC OR THE DIAGONAL ELEMENT FOR A ANATRIX MITH SYMETRIC DATION DIAGONAL STORAGE MODE. COLUMNS TI-80 OF DATA CARDS MAY BE USED FOR IDENTIFICATION. SCOULCENCE HUMBERNE, C... THE LAST DATA CARD FOR ANY MATRIX MUST BE FOLLOWED BY A CARD, WITH A 9 PUNCH IN COLUMN 1.

		SUBROUTINE MATING CODE, A, ISIZE, IROW, ICOL, IS, TER)	MATIN	- 1
		DIMENSION A(1)	MATIN	2
		DIMENSION CARD(8)	MATIN	3
		COMMON MX. MY	MATIN	4
		FURMAT(7F10.0)	MATIN	5
		FURMAT(16,214,12)	NATIN	5
		FGR4AT(11)	MATIN	7
	,	IDC=7	MATIN	ę
		10C=7 1FR=0	MATIN	9
		IER=0 READ(MY+2)ICODE, TROW, ICOL, IS	MATIN	
		CALL LOCITROW, ICIL, ICNT, IROW, ICOL, IS)	MATTY	
			MATIN	
		1F(1512E-1CNT)6.7.7	MATIN	
		[FR=1	MATIN	
		IF (ICNT) 38, 38, 9	HATIN	
	8	ICOL T=ICOL	MATIN	
		IROCR=1	MATEN	
С		COMPUTE NUMBER OF CARDS FOR THIS ROW	MATIN	
	11	1RCDS=(1COLT-1)/1DC+1	HATIN	
		1F([S-1)15,15,17	MATIN	
	12	1PCI)S=L		
С		SET UP LOOP FOR NUMBER OF CARDS IN ROW	HATIN	
	15	DO 31 K=1,19C0S	MATIN	
		READ[MY+1](CARD([),[=1,[DC)	MATIN	
C		SKIP THROUGH DATA CAPOS IF INPUT AREA TOO SMALL	MATEN	
		IF(IFR)16,16,31	44 T î N	
	16	L≃0	MATIN	
С	-	COMPUTE COLUMN NUMBER FOR FIRST FIELD IN CURRENT CARD	MATIN	
5		JS=1K-11+IDC+ICOL-ICOLT+1	MATIN	29
		-		

USAGE CALL MXOUT(ICGDE,A,N,M,MS,LINS,IPOS,ISP)

REMARKS NONE SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED

Ĵ,

9

2

RETHOD THIS SUBROUTINE CREATES A STANDARD OUTPUT LISTING OF ANY SIZED ARRAY WITH ANY STORAGE HODE. EACH PAGE IS HEADED WITH THE CODE HUNBER,DIMENSIONS AND STORAGE HODE OF THE ARRAY. EACH COLUMN AND ROW IS ALSO HEADED WITH ITS RESPECTIVE HUNBER.

SUBROUTINE MXDUT

PURPOSE PRODUCES AN OUTPUT LISTING OF ANY SIZED ARRAY ON LOGICAL UNIT 1

		sussential apple theory and the the tool tool	HXOUT	
		SUBROUTINE MXOUT (ICODE.A.N.M.MS.LINS.IPOS.ISP)		1
		DIMENSION A(1),B(8)	MXOUT	
		COMMON MX.MY	MXOUT	3
	1	FORMAT(////5x, 7+NATRIX +15+6X+13+5H ROWS+6X+13+8H COLUMNS+	4X0UT	4
		L8X.13HSTORAGE MODE .[1./)	4XOUT	5
		FOR4AT(12X, 8HCOLJMN ,7(3X,13,10X)//)	MXOUT	6
		FDRMAT(7X,4HROW,13,7(E16.6))	чхпит	ź
		FORMAT(/,7X,4HRDW ,13,7(E16.6))	MXOUT	ġ
	2		4XOUT	
		J=1		
C		WRITE HEADING	MXOUT	
		NEND=IPOS/16-1	MXOUT	
		LEND = (LINS/ISP) - 10	MXOUT	
	10	LSTRT=1	MXOUT	
	20	WRITE(MX,1)ICODE, N, M, MS	MXOUT	14
		JNT=J+NEND-L	4XOUT	15
		IF(JNT-M)33-33-32	MXOUT	16
	32	JNT=M	MXOUT	17
		CONTINUE	MXDUT	18
	.,	WRITE(MX, 2)(JCUR, JCUR=J, JNT)	MXOUT	
		LTEND = LSTRT+LEND-1	MXDUT	
			MXOUT	
-		DO 80 L=LSTRT,LTEND		
С		FORM DUTPUT ROW LINE	4XOUT	
		DO 55 K=l,NFND	MXOUT	
		KK=K	MXDUT	
		1→+K-1 = TL	MXOUT	25
		CALL LOC(L+JT+IJNT+N+M+MS)	MXOUT	26
		R(K)=0.0	9XOUT	27
		LF(IJNT)50.50.45	MXOUT	28
	45	B(K)=A(IJNT)	HXOUT	
		CONTINUE	NXOUT	
с		CHECK IF LAST COLUMN. IF YES GO TO 60	MXOUT	
Ċ.		IF(JT-4) 55.60.60	4X001	
-	22	CONTINUE	MXOUT	
С		END OF LINE, NOW WRITE	MXOUT	
		lF(ISP-1)65,65,70	MXOUT	
	65	WRITE(MX,4)L,(B{JW},JW=1,KK)	MXOUT	36
		GO TO 75	HXOUT	37
	70	WRITE(MX+5)L+(B{JW)+JW=1+KK}	MXOUT	3A
С		IF END OF ROWS+GO CHECK COLUMNS	MXOUT	39
	75	IF(N-L185,85,80	MXOUT	40
		CONTINUE	MXDUT	
с		WRITE NEW HEADING	MXCUT	
-		LSTRT=LSTRT+LEND	MXOUT	
		GU TO 20	MXOUT	
c		END OF COLUMNS. THEN RETURN	MXOUT	
	0 F	IF(JT-4)90,95,95		
			4X001	
	40	J=JT+1	MXOUT	
		GO TO LO	4XOUT	
	95	RETURN	MXOUT	49
		END	MXBUT	50

÷

International Business Machines Corporation Data Processing Division 112 East Post Road, White Plains, N. Y. 10601 (USA Only)

IBM World Trade Corporation 821 United Nations Plaza, New York, New York 10017 (International) ğ

1130

SSP

ΡM

Printed in U.S.A.

ar. ≯ GH20-0252-4

READER'S COMMENT FORM

1130 Scientific Subroutine Package Programmer's Manual Program Number 1130-CM-02X

Please comment on the usefulness and readability of this publication, suggest additions and

deletions, and list specific errors and omissions (give page numbers). All comments and suggestions become the property of IBM. If you wish a reply, be sure to include your name and address.

COMMENTS

GH20-0252-4

fold

2

fold

fold

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A. FOLD ON TWO LINES, STAPLE AND MAIL.

YOUR COMMENTS PLEASE

Your comments on the other side of this form will help us improve future editions of this publication. Each reply will be carefully reviewed by the persons responsible for writing and publishing this material.

Please note that requests for copies of publications and for assistance in utilizing your IBM system should be directed to your IBM representative or the IBM branch office serving your locality.

fold		fold	
		FIRST CLASS PERMIT NO. 1359	-
		WHITE PLAINS, N.Y.	
	BUSINESS REPLY MAIL NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES		/
	POSTAGE WILL BE PAID BY		
	IBM Corporation		
	112 East Post Road		
	White Plains, N. Y. 10601		1130
Attention: Technical Publicatio	ns		SSP PM
	•••••••••••••••••••••••••••••••••••••••	fold	Printe
fold			Printed in U.S.A.
			GH20-0252-4
IBM			
Thiernational Business J Data Processing Division 112 East Post Road, Whit (USA Only)	R		^
IBM World Trade Corpor 821 United Nations Plaz {International}	ation a, New York, New York 10017		-

Ì.

5

۲

÷

READER'S COMMENT FORM

1130 Scientific Subroutine Package

Programmer's Manual

Program Number 1130-CM-02X

Please comment on the usefulness and readability of this publication, suggest additions and deletions, and list specific errors and omissions (give page numbers). All comments and suggestions become the property of IBM. If you wish a reply, be sure to include your name and address.

COMMENTS

fold

fold

:

fold

fold

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A. FOLD ON TWO LINES, STAPLE AND MAIL.

.

YOUR COMMENTS PLEASE

Your comments on the other side of this form will help us improve future editions of this publication. Each reply will be carefully reviewed by the persons responsible for writing and publishing this material.

Please note that requests for copies of publications' and for assistance in utilizing your IBM system should be directed to your IBM representative or the IBM branch office serving your locality.

fold		fold
		FIRST CLASS PERMIT NO. 1359 WHITE PLAINS, N. Y.
	BUSINESS REPLY MAIL NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES	
	POSTAGE WILL BE PAID BY	
	IBM Corporation 112 East Post Road White Plains, N. Y. 10601	
Attention: Technical Publications		
fold		fold
	•	
][]B]W[
International Business Mac Data Processing Division 112 East Post Road, White Pl [USA Only]		
IBM World Trade Corporatio 821 United Nations Plaza, N [International]	n ew York, New York 10017	

ŵ