File No. 1130-36
GC26-3750-3

Systéms Reference Library

. '
IBM 1130 Disk Maonitor System
Reference Manual

g
g
i '
;
il

L 7 PRI v TP TP TR T VIO P TS PR 1 R SRR F § T oain el Ll yier

PREFACE

The 1BM 1130 Digk Monitor System, a collective name

for five distinct but interdependent programs - Supervisor.

Disk Utility, assembler, FORTRAN, and subroutine
library - 1s a powerful, combined operating and pro-
gramming system.

This system should be distinguished from IBM 1130
Disk Monitor System, Version 2, which ls a separate
system. All references to the Monitor System made in this
manual concern Version 1. Readers desiring Information
on Version 2 are referred to its pertinent manuals.

The programs that make up the Monitor System use
advanced programming techniques, including relucatable
subroutines, highly compressed formats for data and
programs, and flexible input and output command
structures which facilitate data conversion operations. A
. unique feature of the 1130 Monitor System is the
“floating™ boundary between the user program/data file
area and the disk Working Storage area. As information 1s
added to disk storage in the User area, the Working
Storage area is decreased in size. Conversely, if « program
or data file is deleted from disk storage User area, the
remaining programs are packed, and the disk Working
Storage area is increased in size.

Fourth Edition (May 1972)

The following publications may aseist the user in util-
izing the system;

® IBM 1130 Functional Characteristics, Form A26-5881
© [BM 1130 FORTRAN Language. Form C26-5933

© IBM 1130 Assembler Language, Fosm C26-5927

® IBM 1130 Subroutine Library, Form C26-5929

Throughout this publication all references to locations
in storage are in hexadecimal unless otherwise noted;
therefore, the subscript 16 has been omitted.

Mashine Requiroments

The minimum machine features and units required for
operation of the Monitor Syatem are:

© IBM 1131 Central Processing Unit. Model 2, with a
minimum of 4096 words of core storage

@ IBM 1134 Paper Tape Reader and an IBM 1055 Paper
Tape Punch, or an IBM 1442 Card Read Punch.

If both the 1442 Card Read Punch and 1134/1055 paper
tape units are included, the 1442 Card Read Punch will be
the principal 1/0 device. If an 1132 Printer is included, it
will be the principal print device; otherwise the console
printer will be the principal print device.

This is a reprint of GC26-3650-2 incorporating changes relezsed in Technical Newsletter
GN33-8047, This edition applies to version 1, modification 8, of the IBM 1130 Disk Monitor
Syatem. Information in this publication is subject to change. Before uging this publication, be

gure you have the latest edition and any Technical Newsletters,

Requests for copies of IBM publications should be made to your IBM representative or the IBM

branch office serving your locality.

©Copyright Internationat Business Machines Corporation 1968,1972

-

v

&

e adi ey o

. &

IBM 1130 DISK MONITOR SYSTEM

DISK STORAGE LAYOUT .. . - .+

IBM Systems Area « « ¢ ¢ ¢«
User Storage Area . e« oo
Working Storage Area ...
File Protection .. .e«.

SUPERVISOR PROCRAM . ..
Skeleton Supervisor . .

Monitor Control Record Analyzer
Monitor Control Records
Supervisor Control Records . . .
Stacked Input Arrangement . .

The Loader

DISK UTILITY PROGRAM (DUP)

DUP Control Records
DUP Messages « .+ oo o
DUP Operating Notes ...

ASSEMBLER. . ¢ . v v v e v
Assembler Control Records

.

Origin of Source Program . .
Assembler Paper Tape Format
Assembler Messages and Error Codes
Assembler Operating Procedures . .

.

- INTRODUCTION:. « » - »

.o

)

.o

.

.

.

FORTRAN COMPILER . e .. cveevnnn
FORTRAN Control Records . « « ¢ ¢ « &

FORTRAN Printouts ¢ s c co s s scecoscssncssnnsas
/M Records at FORTRAN Execution Time cccsvceoee

KeyboaldlnputofDataReCordl soessssasnsssesss s
Object Program Paper Tape Data Record Formate s e e oo
FORTRANIJOEDIOfS v cvaceciesanssenensscsnsse

FORTRAN Programming Notes

SUBROUTINE LIBRARY

es s e

Pre-Operative EfTors . v .. vvvvvecaan v
Card Subroutine (CARDO and CARD1) Emrors . . .
Console Printer Subroutine (T YPEO and WRTYV).

Erors

Ke yboard Subroutine (TYPEQ) Functions
Paper Tape Subroutines (PAPT).ccv0 e
Adding and Removing Subroutines

SYSTEM GENERATION OPERATING PROCEDURES

(CARD SYSTEM) . .

User-Supplied Cards

e e v e s e

Disk Pack Initialization Routine (DPIR)

s e s s a s e e s s

Procedure for Initializing Disk Monitor System

from Cards ,...... tecs et eseacs e
Cold Start Operating Procedure ,,....00...

N Www

N NN~

10
12

17
17
24
25

.
. e g pa

&8 8

38
38
39
39

288

43

iy

"PAPER TAPE MONITOR SYSTEM + ¢ v v vvvu.s s
DPIR Paper Tape Load Operating Procedures . .
Procedure for Initializing Disk Monitor System
fromPaperTape. e cvvvevrecninnranss
Cold Start Operating Procedure
Paper Tape Control Records . oo vevovvss

APPENDIX A. ERROR MESSAGES ¢ +0covc00un

APPENDIX B, DATAFORMATS
Disk System Format (DSF). e v e et vnvee
Disk Core Image Format (DCl). e v s v v 0 v &
Disk Data Format (DDF) . . o e e s v v 000 o s
Card System Format (CDS) . e e v cvvuvns
Card Data Format (CDD) . ..eeveveees
Print Data Format (PRD). . ¢ e v v v vt e n v v e
Paper Tape System (PTS) and Paper Tape Data
(PTD)Formats . . csevveveonenseneenn

APPENDIX C. DISK STORAGE UNIT CONVERSION

FACTORS ¢ ¢ e ceevcosocasson

APPENDIX D. SUPERVISOR AND DUP INPUT/OUTPUT
CHARACTER CODES ..c.veaceenns

APPENDIX E.

APPENDIX F. IN-CORE COMMUNICATIONS AREA

1130 SUBROUTINE LIBRARY LISTING

(COMMA)« « v e ocvecnnnnnncans

APPENDIX G. LAYOUT OF LET/FLET ENTRIES
Three-Word Entries «ce.ccoveococssnossne
Six-Word Entries .. cceccovessoncsccssces

APPENDIX H. IBMOO (1130 DISK MONITOR SYSTEM
MAINTENANCE PROGRAM) . .

System Program Maintenance «
IBM Subroutine Library Maintenance . .
Operating Procedures . . « ¢ ot eav e
ErrorMessages . « cocveevvarocnn

APPENDIX I. UTILITY ROUTINES
Console Printer Core Dump

.

.

1132 Printer Core Dump + « v e e v e s a0
Disk Dump Routines « s cocssssosscoccsnoscns

Paper Tape Reproducing Routine

.

.

CONTENTS

eeo 45
ee. 45
eoe 45
eees 46
‘ev. 46
co. 47
eeo 57
ees 57
e.. 59
ees 59
ves 59
+e. 61
.e. 61
«e. 61
veo 63

Paper Tape Utility ¢ s e s ev et esoeacssccenocns

ees 70
cee 74
cee 74
cee 74
cee T8
ee. 75
ee. 76
.. 77
N 44
e.s 78
ce0 78
ees 78
cee 79
«ses 80

81

APPENDIX J. SAMPLE PROGRAM OUTPUT e cocseccsss 84
APPENDIX K. GLOSSARY ¢ cosvscoosscaccacssncss 89

APPENDIX L. DECIMAL AND HEXADECIMAL DISK

ADDRESSES «cescessscosescacsncas 93

INDEX

L N RN R N N I I I A A A RN S I NN B O] 94

TR

FENYRIN ¥ IDRUSETIAROIR! T

ILLUST ON

I"igures
1. 1130 Disk Monitor System s s s e e e v ecenoscessonse
2. DiskStorageLayout . o ccecccescecascnssnnnsne
3. Processing Input Data Under Supervisor Control, . c0ewvo
4. Example of Stacked Input (One Job)ccaeeene
5. Example of Stacked Input (Three Jobs) « ¢ cvecoeeese
6. Layout of Object-Tie Transfer VeCtor Area +.eveso
7. Output Format from a DUMPLET Operation (LET) ., ...
8. Output Format from a DUMPLET Operation (FLET)
9, ListDeckFormat «cseccceccosccccosscscsccsas
10, System Loader Card Sequence s ccsoccceccoscvscs
Tables
1. DiskStorageAlIOCadon""""""""""'
2, Summary of Monitor Control Records s+ cecceccvee
3. Movement of Information Using DUP Control Records «
4. Summary of DUP Contrel Records =ce-ssveocses
5. Restrictions on DUP Functions in Temporary Mode
(JOBT)oa--a--uo..o.o-.-_-nc-o-ooocoo-c
6. Summary of Assembler Control Records ¢ e s v eeeceo
7. Assembler Error Detection Codes s s e cececrsconnee
8. 1/0 Logical Unit Designations ..ccvesesssssese
9. SummaryoiFORTRANCcnuvl Rccomnnountcoaa
10, DPIRHalt Addresses . « s o o co oo veacoccescnnns
11, Load Mode Control Card Format s e soccosececnns
12, REQCard Format, . s e e o s oo cesosenresassensae

W W o

33
4
4
42

i1, Disk System FOrmat , o s escveeesoasansoeonnsen
12, CardData FOrMat ¢ s eesseesevocccsonsnncans
13, PrintData Format ... ceveeeecovcnnenncensas
i4. Control Records and Data Organization (in

Cagd Form) for Monitor Program and Subroutine

Library MaintenanCe ..eoeoocecsnveocecsscanss
15. Typeouts for 1130 Monitor System Maintenance

PrOGram ..cesesscsvesssvevesasoscsnossscs

16. PTUTL Sense SwitchOptions s s s cocceevevervven

13, Cold Start Halt Addresses s socsesescrccccanne
A-1, System Loader Ertor Codes secececvvcrccrces,
A-2, System Loader Wait Locations (Part 1) ececcececs,
A-3, System Loader Wait Locations (Part2) eoccccsecss
A4, Monitor Supervisor Error Messages <ccccccccaces
A-S, Monitor Supervisor Wait Locations «ecoocesssves
A-6. LoaduMesugu/EmrMusages ceesesssssscnas
A-7. Assembler Error Messages «secsscsesocssssess
A-8, FORTRANEmor Codes .,ccoecocosnecssscnns
A<9. DUPEOrMessages ., ...cosc0000000s0s000es
A-10, DUPWalBudLOOpI R I NIRRT I N)
A-11, NRTRANIIOEHOICodes 2000 s s 0ssrseenss
H-1. IBMOO Monitor System Maintenance Error Messages . . .

57

62

44
47
48
48
48
49

'S0

52
53

S6
56
77

¢ - B

The 1130 Monitor is a disk-oriented system that
allows the user to assemble, compile, and/or
execute individual programs or a group of programs
with a minimum of operator intervention. Jobs to
be performed are stacked and separated by control
records that identify the operation to be performed.
The Monitor System consists of five distinct
but interdependent programs (see Figure 1):

e Supervisor program
e Disk Utility Program
e Assembler program
e FORTRAN compiler
e Subroutine library
The Supervisor program provides the necessary
control for the stacked-job concept. It reads and

analyzes the monitor control records, and transfers
control to the proper program.

———— 1130 DISK MONITOR SYSTEM—-—-————]
I |
! |
i |
|
: 1130 |
Supervisor

; |

| Program
| |
| |
[|
I l
i |
| |
| 1130 1130 1130 1130 |
[| FORTRAN Assembler Disk Urility Subroutine | |
| Comgiler Program Library |
| |
| |
i |
| |
|
-t

Figure 1. 1130 Disk Monitor System

1BM 1130 DiSK MONITOR SYSTEM - INTRODUCTION

The Disk Utility Program is a group of routines
designed to assist the user in storing information
(data and programs) on the disk, and retrieving
and using the information stored,

The assembler program converts user-written
symbolic-language source programs into machine-
language object programs.

The FORTRAN compiler converts user-written
FORTRAN-language source programs into machine-
language object programs.

The subroutine library contains subroutines for
data input/output, data conversion, and arithmetic
functions.

The Monitor System coordinates program
operations by establishing a communications area
in memory which is used by the various programs
that make up the Monitor System. It also guides
the transfer of control between the various
monitor programs and the user's programs.
Operation is continuous and setup time is reduced
to a minimum, thereby effecting a substantial
time saving and allowing greater programming
flexibility, The complete Monitor System resides
on disk storage. Only those routines or programs
required at any one time are transferred to core
storage for execution. This feature minimizes
the core storage requirements and permits
segmenting of long programs.

In addition to decreasing the amount of
operating time, the 1130 Disk Monitor System
significantly reduces the amount of programming
to be done by the user. This is made possible
through the sharing of common subroutines by
unrelated programs, For example, input/output
or conversion operations are required by most
user programs, regardless of whether the programs
are written in the assembler language or in
FORTRAN. 1BM provides a library of subroutines
as an integral part of the Monitor System.

The assembler and FORTRAN compiler
facilitate development of a library of user
programs. The object programs can be stored
on cards or paper tape, as is customary in
installations without disk storage., However, with
disk storage, programs can be stored directly
on disk without the necessity of designating actual
storage locations, remembering or documenting
the storage assignments, or uptating the
storage assignments and documentation as
conditions change. The disk-stored programs

IBM 1130 Monitor System - Introduction 1

Lo AL LI R RUIRITE LT T B L

and data are referred to by name when called
for use. The Monitor System, through the use
of a table known as the Location Equivalence
Table (LET), can locate any user program,
subroutine, or file by a table search for the
name. Stored with the name is the amount of
disk storage (in disk blocks)* required by the

*There are 16 disk blocks per sector; each disk
block contains 20 data words (refer to Appendix
C).

program or data,

Any program that is added to the user's digk-
stored programs i8 usually placed at the end of
the other programs. If a program is deleted, the
remaining programs are usually packed for
effective utilization of disk storage. This packing
facility is described later in this publication.

Disk Storage is divided into three logical areas:
IBM Systems area, User Storage area, and
Working Storage area. The contents of these
three areas, described in detail in subsequent
paragraphs, are shown in Figure 2. The sectors
and cylinders that these areas occupy are shown
in Table 1. Appendix C shows disk storage unit
conversion factors,

IBM SYSTEMS AREA

This area contains the integral parts of the 1130
Disk Monitor System: the Supervisor program,
Disk Utility Program (DUP), FORTRAN
compiler, and the assembler. The FORTRAN
compiler and/or the assembler can be deleted
at the user's option.

Supervisor Program

This program supervises all monitor operations
and performs the control and loading functions
for the user programs and monitor programs
(FORTRAN, Assembler, and DUP). The
Supervisor is directed by monitor control records

in the stacked input. Included within the Supervisor

is the Skeleton Supervisor, which resides in core

during monitor operation and provides the communica-

tions link between the monitor programs and the
user’'s programs.

DISK STORAGE LAYOUT

Table 1. Disk Storage Allocation

Use Total Sec'o"s Cylinders Total
Sectors | Ovcu:'vd | Occupied | Cylinders
ldentification) 0 0 1/8
Cold Stort } 1 0 /8
DCOM] 8 0 /8
Supervisor 53 2-7, 9-55 0-6 65/8
pup 72 56-127 7-15 9
FORTRAN 104 |2§-23\ 16-28 13
Assembler 40 232-271 2-33 5
Cig 24 272-295 34-36
LET 8 296-303 37 1
Remainder of 1296 304-1599 38-199 162
User Areo ond
Working Storage
1600 20

Disk Utility Program (DUP)

DUP is a group of routines provided by 1 BM that
aid the user in the day-to-day operation of his
installation. By means of these routines, certain
frequently required operations, such as storing,
deleting, and dumping data and/or programs from
disk storage, can be performed with minimum
programming effort by the user.

Supervisor Control
Record Area

Sector ‘ User Area
0 A —
Supervisor FLET
(includes (if Fined Fixed User
identification, | DUP | FORTRAN [Assembler | * T*%d § aceq it | ci8 LET 1BM Programs
Area iy . Subroutines | and Data
coud start, dofined) defined) il
DCOM) oft iles
N A
Y Y A Y /
18M User Storage Areo Working Storage

Systems Area

Figure 2. Disk Storage Layout

Area

Disk Storage Layout 3

VPRI L 0L YUY SO SR U0 U RN B IMUIRID Vo 0 L (1100 NN 1))

FORTRAN Compiler

The compiler translates programs written in the
FORTRAN language into machine language, and
provides for calling the necessary arithmetic,
functional, conversion, and input/output
subroutines at execution time,

Assembler

The assembler converts source programs written
in the assembler language into machine language
object programs. The conversion is one-for-one,
that is, the assembler normally produces one
machine language instruction for each instruction
of the source program.

USER STORAGE AREA

This area consists of the following:

e A Fixed area (optional) for storing core image
programs and data. If a Fixed area is
defined, there will als: he a Fixed Location
Equivalence Table (FLET),

e The Core Image Buffer (CIB)

e The Supervisor Control Record Area

e ‘fhe Location Equivalence Table (1.ET)

e A User area for storing IBM-supplied

subroutines, user-written programs, and
data files

Core Image Buffer (CIB)

Those parts of a core load (main program and
associated subprograms) that fall below core
location 1096y are put in the Core fmage Buffer
(C1B) as they are prepared for execution or for
storing in core image format by the l.oader (refer
t DUP Control Records, *STORECI). When all
pitrls of program have been processed, cither the
contents of the CIB are read back into core
storage by the l.oader, which overlays itself in
the process, or DUP is recalled from disk to core
to complete the *STORECI operation, using the
CIB as source of any parts of the core load which
are to reside below core location 4096, 5.

The CIB is also used by the Supervisor to
save core locations 2561(-4095]10 on every CALL ’”"’%3
LINK. Before each link is executed, the Loader
restores any part of this area which has been
included in the COMMON defined by the called
link.

Supervisor Control Record Area

This area is used by the system to store
information for use by the Loader (refer to
Supervisor Control Records).

Location Equivalence Table (1.T) <

The Location Equivalence Table (LET) serves
functionally as a "map" for the 1BM subroutines,
user’'s programs, and data files. Each subroutine,
user's program, or data file that is stored on

disk has at least one entry in the table. The table
entry contains the name and disk block length of

the subroutine, program, or data file. Each

entry point in a subroutine requires a separate
entry in LET, The user may print the contents

of LET by using the DUP control record DUMPLET
(refer to DUP Control Records). ' /mm

User Area

As each user-written program or data file is
added to the User area, the space available for
the Working Storage area decrcases. Conversely,
if a program is deleted, the Working Storage arca
increases by the amount of space the program
formerly vccupied in the User area. For
cxample, uscer-written programs A, B, and C

are stored on disk as follows:

CiB | LIT | 1BM<upplicd | Progiam | P | Prospam | Working Sterags
whicutines A 8 < Aica

If a program, D, is created, it would be stored on
disk causing the Working Storage area to contract:

Cib | LET | I8M—upplied | Program | Program | Program | Program | Working
whroutines A 8 C D Storaye
Areo

If Program A is now deleted, Programs B, C, and /»aw)
D would be movad up, maintaining a packed)

)

condition in the User area while expanding the
Working Storage area:

Ci8 | LET | 1BM-supplied { Progrom | Program | Program Working Storage
whroutines 8 C 2] Area

NOTE 1: Core Image programs and data files are
always put on disk at the beginning of a sector, and
remain at the beginning of a sector even after
packing. Disk System format programs start at
the beginning of a disk block.

NOTE 2: The Working Storage area always starts
at the beginning of a sector; therefore, it might
not expand or contract by the exact size of the
program stored or dele‘ad

IBM-Supplied Subroutine Lisjrary

The 1BM~-supplied subroutine library contains
input/output, data conversion, arithmetic and
functional, and selective dump subroutines.
These subroutines are generally available for
use with both the assembler and the FORTRAN
compiler. Operating procedures are described
in a subsequent section of this manual. Appendix
E contains a complete list of all IBM-supplied
subroutines.

Flipper Routine

The subroutine library includes a Flipper routine,
which is a part of the core load for those user's
programs that use LOCAL (Load-on-Call)
routines (refer to Supervisor Control Records).
When a LOCAL routine i8 called, control is
passed to the Flipper routine, which reads the
LOCAL into core storage if it is not already in
core and transfers control to it. All LOCALs
in a given core load are executed from the same
core storage locations; each LOCAL overlays
the previous one. All LOCALS required by a
program are relocated and stored by the Loader
in Working Storage immediately following the
last defined file, if any.

Fixed Area

The Fixed area is an optional area that the user can
define to enable him to store programs and data files
at fixed disk locations. The user can define the

size of the Fixed area to be a whole number of

cylinders, with a minimum of two, and he can
increment (but not decrease) the size of the Fixed
area by a whole number of cylinders at any time.
Unlike in the User area, when a program or data file
is deleted from the Fixed area no packing occurs.
Thus, programs or data files in this area can be
referenced by absolute sector addresses, since
they will not be moved. The Fixed area, if any
has been defined, requires a LET of its own,

i.e., a Fixed Location Equivalence Table (FLET).
The contents of FLET may also be printed by
using the DUP control record DUMPLET. The
Fixed area is used only for the storage of core
image programs and data, and not for Disk
System format programs cr for working

storage. '

WORKING STORAGE AREA

The Working Storage area is used for temporary
storage. Most of the area is available to the
user during execution of his programs. The
Loader stores LOCALs (Load-on-Call routines)
and SOCALs (system overlays) in this area,

and it is also used extensively by the monitor
programs (see Working Storage Indicator Word).
For example, the assembler uses this area for
temporary storage of a program during the
assembly process; at the conelusion of an
assembly or compilation, the object program is
in the Working Storage area,

The assembler requires 32 sectors of Working
Storage for possible symbol table overflow
during an assembly, plus whatever additional
Working Storage is required for disk output
(compressed source statements in Pass 1,
object program in Pass 2). Since an assembly
requires at least one sector for disk output, the
assembler checks for the availability of 33
sectors of Working Storage before beginning to
assemble the source program, If at least 33
sectors are not available, an assembler error
message is printed (refer to Appendix A), the
assembly is terminated, and control is returned
to the Supervisor.

During a FORTRAN compilation, FORTRAN
requires the amount of Working Storage
necessary to contain the compiled program.

FILE PROTECTION

The 1130 Disk Monitor System controls file
protection. All Disk 1/0 subroutines furnished by

Disk Storage Layout S

G iR G

Yy e i " T T

IBM check the address of the sector on which they
have been instructed to write to ensure that it is
greater than the file protection address in COMMA
(refer to Appendix F), with the exception of the
Write Immediate function (described in IBM 1130
Subroutine Library, Form C26-5929). The file
protection address, which is equal to the starting
address of Working Storage, is updated by DUP

whenever a program is added to the User area,.
Only data files which have been created in or
moved into Working Storage can be written into
by assembly-language programs (unless the
Write Immediate function is used). FORTRAN
programs may write directly into User and
Fixed areas (refer to *FILES under Supervisor

Control Records).

1@

The Supervisor program performs the control and
loading functions for the Monitor System. Monitor
control records, which are used to direct the
sequence of jobs without operator intervention, are
included in a stacked input arrangement and are
processed by the Supervisor program. The
Supervisor program decodes the monitor control
record and calls the proper monitor program to
peiform the desired operation. A typical sequence
of operations is listed below. The programs in
parentheses would be called by the Supervisor to
perform the particular operation:

1. Compilation of a FORTRAN program (FORTRAN
compiler)

2. Storage of the compiled program on disk (Disk
Utility Program)

3. Assembly ol a symbolic program (Assembler)

4. Storage of the assembled program on disk

(Disk Utility Program)

Execution of a disk-stored program (Loader)

6. Punching of a disk-stored program into cards
(Disk Utility Program)

(2]

The Supervisor itself is a group of several
distinct but closely related routines:

e Skeleton Supervisor
e Monitor Control Record Analyzer
e Loader

e Cold Start Routine

SKELETON SUPERVISOR

The Skeleton Supervisor provides the communica-
tions link between the monitor programs and the
user's programs, i.e., it contains the necessary
logic to conduct the transition from one job to
another. The Skeleton Supervisor is read into
core storage when the operation of the monitor is
initially started by means of the Cold Start Routine
(refer to Cold Start Operating Procedure), which
occupies sector 1. The Disk Communications Area

SUPERVISOR PROGRAM

(DCOM), which contains addresses and indicators
necessary for the operation of the monitor, is
read into core initially with the Skeleton Supervisor.
The in-core communications area (referred to as
COMMA) is restored from DCOM whenever a Cold
Start procedure is initiated or a JOB record is
encountered (refer to Monitor Control Records).
When COMMA is restored there will be no usable
program in Working Storage. Appendix F lists

all the core locations and information contained in
COMMA.

MONITOR CONTROL RECORD ANALYZER

This routine analyzes the monitor control records,
prints out the information contained in the control
record, and calls the appropriate program: Disk
Utility Program, Assembler, FORTRAN compiler,
or Loader.

The following three formats are used by the
Monitor System to store information on disk
(refer to Appendix B):

e Disk Core Image Format (DCI)
e Disk System Format (DSF)

o Disk Data Format (DDF)

MONITOR CONTROL RECORDS

Input to the Supervisor consists of one or more
job decks, each preceded by a JOB monitor
control record (see Figure 3). The character
codes recognized by the Supervisor are listed in
Appendix D. Although the monitor control records
are described in terms of cards, these records
can be entered in card image form from paper tape
or the keyboard/console printer.

The JOB control record defines the starting and
ending points of the job; however, the total job can
consist of many subjobs. The assembler,
FORTRAN compiler, Disk Utility Program, and
user's programs can be called for operation by
the ASM, FOR, DUP, and XEQ control records,

Supervisor Program 7

b

Subjob Decas

Cold Stort Cord
(see Cold Stort
Operoting Procedure)

Figure 3. Processing Input Data Under Supervisor Contrel

respectively. These are each considered
individual subjobs. The successful completion of
the total job depends on the successful completion
of each individual subjob within the job. Some
subjobs are not attempted if the preceding subjobs
have not been successfully completed.

When a monitor control record is read, the
system program required to do the subjob is
read into core storage from disk storage. The
program then processes input until the end of the
subjob deck is reached, a new monitor control
rccord is encountered, or an error occurs,
Monitor error messages are described in
Appendix A,

Every job is assumed to begin with no
programs in Working Storage (see Working
Storage Indicator Word).

Control can be returned to the Supervisor by
manually branching to core location 0038, The

Working Steroge
promiemmsest= \isar Storage
=== Assembler
" FORTRAN

Supsrvisor then passes records until it
encounters o monitor controi record.

Al monitor control records have the following
format:

Columns 1-2: - // (slashes, to identify monitor
control record)
3: b (blank)
4-7: Pseudo-operation code (left-
justified)

The following paragraphs contain a list of the codes
and their operations. The monitor control records
are summarized in Table 2,

NOTE: Comments are permitted in unspecified
columns in all monitor control records, A ''b"
appoaring in a column means that the column must
be blank.

(=]

©

Table 2. Summary of Monitor Countrol Records

CCI23456789|0|I|2|3|4]5

b * comments

b J OB T —— Disk Storage Labele—

NOONN NN N
NN NN NN
o
>
> 0 w
= z

o
-
<
-

/ / b X E Q ——Program Name

16

~Count — Dk

17 18 19

Initialize a job sequence

Reod ossembler into core for execution

Read FORTRAN into core for execution

Halt until START is pressed

Change control record input from principal input unit
to keyboard/console printer for succeeding monitor
control records

Change input mode from keyboard/console printer
back to the principal unit for succeeding monitor
control records

Read DUP into core for execution

Read and transfer control to mainline program
0,1,N

JOB

This record causes initialization and termination
of a job sequence and restores COMMA from
DCOM. The format is

cc 6 8 2 10 11 12 13 14 15 16
B T

3 45 7
b J OBb I D E NT b

12
//

The letter T in column 8 indicates temporary
mode. In this mode, programs or data files stored
in the User area by DUP are automatically deleted
at the end of the current job. DUP operations
which are permitted in temporary mode are
described in Table 5.

If columns 11-15 contain a disk storage identifica-
tion, this identification is compared with that which
is written on the first sector of the disk cartridge
to determine that the desired cartridge is mounted.

If the identification is not the same, the Supervisor
waits for operator intervention (see Appendix A,

The assembler control records and source
statements for the program to be assembled must
follow the ASM control record.

FOR

This record causes the FORTRAN compiler to be
read into core storage for execution. The format
is

ce 1 2 3 4 5 &
/ / b F OR

The FORTRAN control records and source state-

ments for the program to be compiled must
follow the FOR control record.

PAUS

This record causes a wait to allow the operator to

. trablg {\-5, Monitor Supervisor Wait Locations). The make setup changes (see Appendix A, Table A-5,
identifier must be left-justified in its field. Monitor Supervisor Wait Locations). The format is
This record also causes a skip to channel 1
before it is printed on an 1132 Printer. cc 1234567
. / /b P AUS
ASM
o The monitor operation proceeds as goon as
This record causes the assembler to be read into PROGRAM START is pregsed.
core storage for execution. The format is
TYP
fm*\ cc 1 2 3 45 ¢ This record changes the control record input from
. / /b ASM the principal input unit to the keyboard/console
Supervisor Program 9
T T T Lol b T T E T Lz ! L - LULL UL VL XD N TR

printer for succeeding monitor (only) control
records. The format is

cc 1 2 3 45 6
/ / b T Y P

TEND

This record changes the input mode from the
keyboard/console printer back to the principal
input unit for succeeding monitor control records.
The format is

cc

-
m
Z o
£

o~

DUP

This record causes the Disk Utility Program to be
read into core storage for execution. The format is

[

o O

Control records for the Disk Utility Program must
follow the DU P control record.

XEQ
This record causes the Loader to load a specified
mainline program into core storage and to transfer

control to it. The format is

8§91

67 01
Qb XX X

cc 1

2345
b XE

1 14151617 18 19 20
/ /b X L b

11213
X X b Yy Z

The mainline program XXXXX must be left-
justified in columns 8-12. If XXXXX is in Disk
System format, the Loader converts it to Core
Image format, If columns 8-12 are blank, the
mainline program presently stored in Working
Storage (by FORTRAN, DUP, or the assembler)
is converted and read into core and executed.

A core map is printed during conversion if
column 14 contains an L. and the program is in
Disk System format. This map includes the core
loading address of the mainline program, the

10

names and execution addresses of all subroutines
and subprograms included in the load, file
allocations, if any, giving file number, sector
address, and number of sectors in the file. Also
if L is specified, a core map is printed for any '
DSF program linked to under this execution.

Columns 16-17 must contain the count of
LOCAL, NOCAL, and FILES records which follow,
if any (refer to Supervisor Control Records). This
count is decimal, right-justified.

DISK 0, 1, or N wilkbe loaded with the program

if column 19 contains 0, 1, or N, respectively. Any

other character (including blanks) causes a special,
shorter disk routine (DISKZ) to be loaded. This
special version is intended for all FORTRAN pro-
grams; it is also intended for assembly-language
programs which do not use the disk.

Comments

This record provides comments in the listing, It
may not immediately follow an XEQ, DUP, ASM,
or FOR record. The format is

1 2 3 4 5-8
/ / b * comments

SUPERVISOR CONTROL RECORDS

LOCAL

LOCAL is an acronym denoting routines specified
by the user to be loaded into a LOCAL overlay area
as they are called. All subroutines desired by the
user to be loaded on call at execution time must

be designated by LOCAL records following the

XEQ monitor control record. The format is

as follows:

cc |
*LOCALMLIY,SUBI,SUB2

where ML1 = name of a mainline program to be
executed, and SUB1 and SUB2 are subroutines in
the mainline program.

Each mainline program (in the same XEQ subjob)
that calls a subroutine to be loaded on call must

have its own LOCAL record. The same mainline
program may have more than one LOCAL record.

TP A 0N, 90 D0 T A g 1 L N R Y. R CECTUATE QI U LU LR U I L R AL L L AT AR UL IR LT LU LT, R LEL

For example:

*LOCALML],5UB1,5UB2 *LOCALMLI, SUBY, SUB2, SUBS
*LOCALML2,SUB3,SUB4 of o 5ca M12,5U83,5UB4
*LOCALML1,SUB5

If the record ends with a comma, the next
record is treated as a continuation, The mainline
name is not repeated in a continuation, e.g.,

*LOCALMLI,SUB1,SUB2,
*LOCALSUBS

If the mainline program is executed from Working
Storage, the mainline name must be omitted by
putting a comma in column 7, e.g.,

*LOCAL,SUBI, SUB2

No embedded blanks are allowed in a LOCAL record.

NOCAL

NOCAL is an acronym denoting routines which,
although not called anywhere in the core load, are to
be included in the load. Most NOCALs would
probably fall into one of the following categories:

(1) debugging aids such as dump and trace routines
which the operator branches to manually, and (2)
interrupt service routines.

All subroutines which are to be loaded but are not
called at execution time must be designated by
NOCAL records following the XEQ monitor control
record. The format is as follows:

cc 1

*NOCALMLI, SUBY, SUB2

NOCAL records are governed by the same rules and
restrictions as LOCAL. records.

NOTE: The user must observe the following rules
in LOCAL and NOCAL records:

1. No routine can appear in a LOCAL record if it
causes any of the other routines appearing
in LOCAL records (for the same mainline pro-
gram) to be called before the first LOCAL has
returred control to the calling routine. Thus,
a LOC AL cannot call another LOCAL, nor
can it call a routine which causes a second
LOCAL to be read into ccre zud ex2zuted,
T7i wxoomple, f ooczlls 3 and B calls C,

and A is a LOCAL, ven nui;hezj B nor C can

appear on a LOCAL record for the same

) nmainline program,

2. If a given routine is designated a LOCAL,

" and the System Overlay scheme is employed,
then this routine will be a LOCAL even though
it might have been included in one of the
System Overlays (SOCALs).

3. No program which uses LOCALs or NOCALs
can be stored in Disk Core Image Format
(DC1).

4, If a subroutine is designated a LOCAL, it will
be loaded as & LOCAL even if it is not
referenced anywhere in the core load.

5.. The LOCAL information pertaining to any
given XEQ record cannot exceed 640 words,
counting all LOCAL names on the LOCAL
records as two words and mainline program
names as three words. The same rule
applies to NOCAL information,

6. Only types 3, 4, 5, and 6 subroutines can appear
on LOCAL and on NOCAL records (see Disk
System Format, Program Types, in Appendix B),

7. All conversion tables, e.g., EBPA, HOLTB,
may not be used as LOCALSs,

FILES

File numbers specified in FORTRAN DEFINE FILE
statements can he equated to:

1. names of data files in the User area or Fixed
area at execution time by means of a FILES
record entercd after an XEQ monitor control
record or

2. names of data files in the Fixed area by means
of a FILES record entered after a DUP control
record STORECI.

The format is as follows:

cc |
*FILES(FILEN, NAMEN), (FILEM, NAMEM)

where FILEN and FILEM are the file numbers
specificd in FORTRAN DEFINE FILE statements,
and NAMEN and NAMEM are names of disk storage
data files which have been previously defined in a
DUP control record.

No embedded blanks are allowed. If the record
ends with a comma, the next record is treated as
a continuation, ¢.g.,

“TILLS(FILEN, NAMEN),
*FILES(FILEM, NAwIM)

NOTE: Tha FILES informaution fur a given XEQ
record caiwiol excecd 530 words, counting the
{ilc numbers as one word and the file names as
two words.

Supervisor Program 11

Any number of LCCAL, NOCAL, and FILES
records can follow the XEQ monitor control
record, but each type must be grouped
together, e.g.,

*LOCAL
*LOCAL
*LCCAL
*NOCAL
*NOCAL
*FILES

*FILES
The following is not permitted:

*LOCAL
*NOCAL
*LOCAL
*FILES

*NOCAL

STACKED INPUT ARRANGEMENT

Input to the Monitor System consists of control
records, source programs, object programs, and
data arranged logically by job.

The following points must be considered when
arranging the input for any job.

1. Any number of comments records can be
inserted in front of (but not immediately
following) DUP, ASM, FOR, or XEQ
monitor control records.

2. Any records other than monitor control
records which remain after the execution of
an ASM, FOR, or XEQ subjob are passed
until the next monitor control record is
read. After a DUP operation, records are
passed until either a monitor control record
or another DUP control record is read.

3. If an error is detected in an assembly,
FORTRAN compilation, or during loading
from Disk System format, the resulting
object program or any programs that follow
within the job cannot be executed. Also, if
an error is detected in an assembly,
FORTRAN compilation, or during a loading
from Disk System format during a
STORECI function, all DUP fuactions are
bypassed until the next valid ASM, FOR, or
JOB record is read.

12

4. If the FORTRAN compiler or the assembler
encounters a monitor control record, control
will be transferred to the Supervisor, i.e.,
the monitor control record will be trapped.
The Supervisor will correctly analyze the
record after the compilation or assembly has
been abandoned. DUP will not trap a monitor
control record during a DUP operation (refer
to DUP Control Records).

The stacked input arrangement shown in Figure 4
will compile, store, and execute both Programs A
and B, providing there are no source program
errors, and there is sufficient room in the Working
Storage area (refer to Working Storage Area). A
source program error causes the DUP STORE
operation (refer to DUP Control Records) to be
bypassed for that program, and all following XEQ
requests preceding the next JOB record are
disregarded. Thus, if the successful execution of
vne program depends upon the successful completion
of the previous program, both programs should be
considered as one job and the XEQ control records
should not be separated by 2 JOB record.

Figure 5 shows the stacked input arrangement for
three jobs which are not dependent upon each other.

Job A assembles, stores, and executes source
program A, This job includes comments cards
and a PAUS monitor control card to allow the
operator to intervene.

Job B calls in the Disk Utility Program, and
stores object program B on disk.

Job C cumpiles, stores, and executes FORTRAN
source program C,

THE LOADFER
The Loader has two basic functions:

1. To prepare entire core loads (Disk System
format loading).

2. To bring core loads into cure storage
immediately before execution (Core Image
format loading). This includes the restora-
tion of COMMON, if any, between linked core
loads. -

These two loading processes are described after

a discussion of the origin which the Loader gives

a particular core load, the object-time transfer
vector, and system overlays (SOCALs). Disk
System format and Core Image format are described
in Appendix B.

0

ﬂ/ b JO8

| // b XEQ b NAME 8
(m (// b XEQ b NAME A
{
{ // b DUP
L * STORE bbbbbbW SbbUALLINAME B
/L /
[Source Progrom B
® (/7bFOR @ FORTRAN Control Records

(7/b FOR

(//b JOB

Cold Start Cord
(see Cold Start
Operating Procedure)

Figure 4. Example of Stacked Input (One job)

Origins for Core Loads

The Loader origins relocatable mainlines (main
programs) after the Disk 1/0 subroutine requested
by the .user on the XEQ control record. One of
these disk routines is always in lower core, and
no disk routine is included in any disk-stored core
load. DISKZ is always used unless otherwise

= specified. The origins used by the Loader are
shown below:

Source Program A

* STORE bbbbbbW SbbUABLNAME A

FORTRAN Control Records

Main Program Origin

Disk /O Version (hexadecimal) (decimal)

DISKZ 01C2 450
DISKO0 0260 608
DISK1 0370 880
DISKN 0438 1080

The origins for absolute mainlines are not con-
trolled by the Loader; however, such muinlines
must be originated above the end of the Disk [/0
version used. All references in a core load to a
Disgk I/0 subroutine must be to the same one.

Supervisor Program 13

. " 1 TNTIRNRUAL UL —
m " ™ it | e |00 P 1 AT UMY Y O PV 1 1 I—
s ’ — " TR S STROAN 11 |)0 1 | 1R 11 AR
U0BN D P O AV RO L T Y R O Y

{// JOB

{// XEQ C ™
fswas c Y |
{ // bUP [|
Swrc@?mgmmcmm{ /| -
4

FORTRAN Centrol Records —f”

{
p/ FOR

f// PAUS 4 L josc
L// ® commants * : y ¢
(7775) U '
Object Program B mm==<7/ J
;("l
f *STORE 8

(/700 ' y
(77ems Y
g/ % commants) ' JOB B
// 408 1§ J /
f){ XEQ A , « / A
{ *STORE A \I ‘
Y | |
Source Program A —[
(

Assemblar Control Racords————a/
(// ASM

{ // PAUS
(// ¢commaents

[// JOB

Cold Start Cord
(saa Cold Start
Operating Procadure)

§

Figure 5. Example of Stacked Input (Three Jobs)

14

Object-time Transfer Vector

In order to transfer to and from subroutines at
execution time, the Loader builds two separate
object-time transfer vectors: the CALL TV and
the LIBF TV (see Figure 6).

Each CALL TV entry is a single word containing
the absolute address of a subprogram entry point;
however, in the case of a LOCAL subprogram
referenced by a CALL statement, the absolute
address is the address of the corresponding
Flipper Table entry instead of the subprogram
entry point.

Each LIBF TV entry consists of three words.
Word one is the link word. Words two and three
contain a branch instruction to the subprogram
entry point; however, in the case of a LOCAL
subprogram referenced by an LIBF statement,
words two and three contain a branch instruction
to the corresponding Flipper Table entry instead
of the subprogram entry point.

The first two LIBF TV entries are special
entries, each three words long, The first entry is
the Floating Accumulator (FAC). The address of
the first word of FAC must be odd; therefore, if
necessary, a dummy entry is made in the CALL
TV to make FAC begin at an odd address. The
second special entry is used by certain sub-
routines to indicate overflow, underflow, and
divide check. .

If SOCALSs are used, the LIBF TV contains
special entries for SOCAL subprograms referenced
by LIBF statements. These entries transfer
indirectly either to the referenced subprogram if
the overlay containing the subprogram is
presently loaded, or to the SOCAL Flipper in
order to load the required overlay and transfer
to the referenced subprogram (refer to System
Overlays).

The CALL TV does not contain entries for
SOCAL subprograms referenced by CALL
statements if SOCALS are used.

System Overlays (SOCALs)

System Overlays (SOCALSs) are created for any
core load with a FORTRAN mainline program

if the core load will not fit into core. The

Loader selects certain subroutines used in the
core load and writes them into Working Storage:

in either two or three groups (overlays), An area
in core as large as the largest overlay is rescrved
for these subroutines. Whenever a subroutine in
one of these overlays is required during program
execution, the corresponding overlay is read
from the disk into the overlay area in core (if it
is not already in core).

Overlays are constructed from the IBM sub-
routine library according to type and subtype
(described in Appendix B). The user can alter
this design by changing the subtypes of the
library subroutines, or by specifying a subtype
for his own subroutines (refer to DUP Control
Records-STORE). Note that ne SOCAL overlav may
be greater than 8 sectors in length because of the
limitations of DISKZ. The two levels of SOCALs
are described in the following paragraphs.

SOCAL Level 1 uses the following two overlays:

1. Type 3, subtype 2 (arithmetics, e.g., FADD),
and Type 4, subtype 8 (functionals, e.g., SIN).

NOTE: If the FORTRAN program contains a write
statement to the plotter, the arithmetic and functional
subroutines EADD, FADD, EMPY, FMPY, FARC,
XMD, and XMDS cannot be included in the arithmetic
and functional SOCAL. Instead, these routines must
be in core. Due to plotter and disk interactions
concerning overlap of 1/0, print speeds may be

less than previously achieved,

e

Type 3, subtype 3 (the non-disk FORTRAN
Format subroutine SF10, and the FORTRAN
1/0 subroutines, ¢.g., CARDZ).

Lol Dummy one - word entry in CALL TV
(if necessary) to ensure odd oddress
for FAC
o Last First Disk Indicators FAC Last Second First
LIBF LIBF /0 CALL CALL CALL
C i [| 4 i 1 l i L7 .l ! i {C J
J] 77 1] T 1 ¥ 1 1 vV J /71] T s J L
End of Core
Low Core High Core
v I\ -~ -\ ~— —
. LIBF TV CALL TV COMMON
(» Object - time TV
Figure 6, Layout of Object-Time Transfer Vector Area
Supervisor Program 15
IR NI —) Im— LT T S0 Y S 1 R 9 1 R — o OO 1 O OO, WD N D)1 WO IR | | (- TP 0000 g N 11 D o— v Wy

Level 1 reduces the core requirements by an
amount equal to the total size of the smaller of
these overlays. Approximately 15 words of extra
linkage, however, are required.

if core loads do not fit with Level 1, then
Level 2, employing the following three overlays,
is used:

1. Same as (1) above.
. Same as (2) above.
3. Type 3, subtype 1 (disk FORTRAN 1/0
subroutines SDFND and SDFI0). In addition,
this overlay includes a 320-word buffer.

Level 2 reduces the core requirements by an amount
equal to the sum of the two smallest overlays, with
approximately 15 words of extra linkage added,

The overlays will not contain all available sub-
routines of the specificd types, but only those
required by the core load.

Since LOCALSs take priority over SOCALs, if a
subroutine which would otherwise be in a SOCAL
overlay is designated a LOCAL, it will appear as
a LOCAL and not as part of a SOCAL.

If a core load dues not fit with Level 2 over-
lays, core requirement - may be reduced by
additionally designating ihe following as
LOCALs:

1. Subroutines not contained in any overlay.
Subroutines contained in the largest overlay.
This reduces the SOCAL overlay area re-
quired in core.

If the core load does not fit into core even with
SOCALs, an error condition is indicated, An
error condition is also indicated for core loads
which do not fit and which have mainline pro-
grams written in assembler language.

Programs requiring system overlays cannot be
stored in Core Image format (refer to Qendlx B,
Disk Core Image Format).

NOTE: DISKZ and the SOCAL Flipper routine uge
Index Register 2 without saving or reatoring it. It
is, therefore, the programmer's responsibility to
preserve the contents of Index Register 2 whenever
a program uses subroutines that cause DISKZ to be
used or subroutines that would be included in a
SOCAL.

16

Disk System Format Loading

A core load is built from programs stored in Disk
System format in either of two cases:

1. To execute the core load immediately (called
as a result of an XEQ control record or a
CALL LINK). In this case control must be
passed to the Core Image format loading
process at the termination of the Disk
System format loading process.

2. To store the core load in Disk Core Image
format for future execution (called as a
result of a DUP *STORECI control record -~
reier to DUP Control Records). In this
case, control is returned to DUP, which
initiaied the process.

In this type of loading, a mainline program (with
its required subroutines) is converted from Disk
System format to Core Image format. This
includes the construction of the core image
header record and the object-time transfer
vector. Parts of the core load which are to
reside below location 4096,, are stored in the
CIB; parts of the core load which are to reside
above location 4095jg (if any) are placed directly
into core storage. LOCALs and SOCALs which
are a part of the core load are also processed and
written out on Working Storage (following the last
data file, if any).

Core Image Format Loading

In this loading process, the core load is read into
core, except for the first sector. When loading a
program immediately following its conversion from
Disk System format, only the contents of the CIB
are read into core (other parts of the core load are
already in core). When loading a program which
has previously been stored in Core Image format,
both the sections above location 4085, if any,

and below 4098, are réad into core. The Skeleton
Supervisor is given the information necessary to
enable it to read in the first sector of the core

load and to move the object-time transfer vector
into its location. Control is then passed to the
Skeleton Supervisor, and t‘inally to the object
program.

©

The Disk Utility Program (DUP) is a group of
routines designed to accomplish the following:

o Allocate disk storage as required by each
program or data file to be stored

e Make these programs available in card or
paper tape format

e Provide printed status of the User area,
Fixed area, and Working Storage area.

o Perform various disk ma utenance opé'ratlona.

The Disk Utility Program ie called into operation
by a DUP monitor cortrol record. This record
may be followed by any number of DUP control
records to select the routines desired. The DUP
control records are described in subsequent
paragraphs. The character codes recognized

by DUP are listed in Appendix D.

Working Storage (WS) Indicator Word

A WS Indicator Word in COMMA (0069) contains the
disk block count of the program to indicate that a
valid program is in Working Storage. (There are 16
disk blocks in a sector.)

Upon completion of an assembly or compilation,
the WS Indicator Word is set to the disk block count
of the program left in Working Storage in Disk System
format. If the user's program has put data in
Working Storage, then the user must put the data disk
block count into location 0069, DUP can then be
called upon to store or dump this program.

When a DUP function is used to dump from the
User area or the Fixed area, the WS Indicator
Word is set to the disk block count of the program
being moved. If the DUP function does not destroy
any part of the program in Working Storage, the
WS Indicator Word is not changed. It is set to
zero by a store to the User area, a Cold Start, or
a JOB monitor control record.

If a DUP function which involves programs-
is requested from Working Storage while the WS
Indicator Word is zero, a FROM field error
message is given and the requested function is
bypassed. -

DISK UTILITY PROGRAM (DUP)

DUP CONTROL RECORDS

DUP control records generally have the following
format:

€c

1234567891011 121314151817 18192021 2223 24 25 26 27 28 29 30
| S — | - LN e e —

.

Asterisk DUP Func~ “FROM" ‘10" Program Nome Count
inece 1 tion Naome Davice Device {ec 21 - 25) Field
(cc2-12 Symbol Symbol
{ec 13 - {cc 17 -
14) 18}

All fields except Count Field are left-justified.
Each DUP control record contains an asterisk
(*) in cc 1. The DUP Function Name is in cc 2 -
12. The "FROM" and "TO" symbols (cc 13 -

14 and 17 - 18, respectively) specify the 1/0
devices and/or disk areas from and to which
data is to be transferred. The following
abbreviations must be used in the FROM and TO
fields:

Symbol \ Meaning
PR Principal Print Device
cb Card Reader (if the Disk Monitor

System has been loaded from
paper tape, CD is equivalent to

PT)
PT Paper Tape
ws Working Storage, Disk
UA User area, Disk
FX Fixed area, Disk

Program Name is one to five alphameric characters
specifying the name of a mainline program or the
first entry point in a subroutine.

The Count Field is in decimal, right-justified.
For data files, if the source is disk, this field
specifies the number of sectors; if the source is
cards, this field specifies the number of cards;
if the source i8 paper tape, this field specifies
the number of records. Unspecified portions of
DUP control records can be used for comments.
A '"b" appearing in a column indicates that the
column must be blank.

Disk Utility Program (DUP) 17

T Y Y R Y AR R T .Y " ! Ll TR R L IR oY P

VDA - ' v

In the following paragraphs, each DUP function
name is accompanied by a table showing the
symbol combinations that may be specified in the
FROM and TO fields. The tables also show the
various formats that data can be in before the
operation, and the corresponding formats to
which this data is converted by DUP after the
operation. These formats appear in parentheses
after the FROM and TO symbols, and have the
following meanings:

DSF Disk System Format

DC1 Disk Core Image Format
DDF Disk Data Format

CDs Card System Fdrmat

CDD " Card Data Format

PTS Paper Tape System Format
PTD Paper Tape Data Format
PRD Print Data Format

These formats are shown in Appendix B, Table 8
summarizes the DUP functions that move
information from one area to another; Table 4
summarizes all DUP control records; and

Table 5 gives the restrictions on DUP functions
when in temporary mode (JOB T).

DUMP (Dump Program)

The DUMP routine dumps (unloads) information
from the User area, Fixed area, or Working
Storage area to cards, paper tape, or printer,
or from the User or Fixed area to the Working
Storage area. The decimal number of disk
blocks dumped is specified in the corresponding
LET entry or in the WS Indicator Word.

@ D co PT PR ws
(CDS) (COD) (PTS) (PTD) (PRD) (DSF) (DOF)
X X

NOTE 1: If the DUMP is from WS, and the WS
Indicator is zero, a FROM field error message
is given (refer to Appendix A).

NOTE 2: When the DUMP is to cards, each card
is checked to see that it is bhlank before it is
punched (refer to Appendix A).

NOTE 3: At the end of DUMP operations, all
subsequent blank cards are selected into
Stacker 2.

DUMPDATA (Dump Data)

The DUMPDATA routine dumps data from the User
area, Fixed area, or Working Storage area to
cards, paper tape, or printer, or from the User
or Fixed area to the Working Storage area. The
number of sectors to dump must be specified by
the count field, This number of sectors will be
dumped regardless of the length of the specified
data file or program.

[«4] PT PR ws
@ D (coD) @) GRD) (0OR)

OSF) X X X
WS oon X X X
s X X X x
UA go?) X x X X
(oc) X X X X
o) x x x x
X oof) X X X X

The control record format is as follows:

=]

WS (DSF) X ce
1234562891011121314151617 18 19 20 21 22 23 24 25 26 27 28 29 30
(DSF) X X X X [u——] gt - — s\ —
UA (DDF) X X X X *DUMPDATAL “FROM* “TO" Progrom Name Sector Count
(o) X X b3 X Symbol Symbol (required ex- (when dump=
cept for WS te ing from W5,
X (]e)) X X X X) the-sector
(DOF) X X X X count overrides
the WS Indica-
for)
The control record format is as follows:
NOTE 1: When the dump is to cards, each card
ce is checked to see that it is blank before it is
123456789101112131415 161718192021 2223 24
Sete BUTBHW punched (refer to Appendix A).
v DUMP b "FROM‘ " Ton P M.
Symbol Symbol : - .
" i i NOTE 2: At the end of DUMPDATA operations, all

PR) subsequent blank cards are selected into Stacker 2.

18

=]

oo 9 . M

Table 3, Movement of Inform ation Using DUP Control Records

L o ol D i

@ UA FX ws c P PR
(DSF) (ODF) {ocn (0SF) (0DF) (DCH) (DSF) (DDF) (COD) (COS) P10) 15 D)
_(DSF) DUMP** DUMPDATA** | DUMPDATA®* | DUMP** DUMPDATA®* | DUMP** DUMP**
3 DUMPDATA®
i (OOF) DuMPe* DUMP** DUMPe* DUMP**
A
; v DUMPDATA** | DUMPDATA®* DUMPDATA®* DUMPDATA®*
(ocn DUMP** DUMP ** puMmPes DUMP**
DUMPDATA®* | DUMPDATA®* DUMPDATA®* DUMPDATA®*
(0Ci) DuMP** DUMP*~ DUMP** DUMPe*
DUMPDATA®* | DUMPDATA* DUMPDATA®*| - DUMPDATA"|
FX
3 (ODF) DUMP** DUMP** DUMP** DUMP**+
3 DUMPDATA®* | DUMPDATA®* DUMPDATA** DUMPDATA**
OsF) |sromee STORECI® STOREQ! DUMPDATA | DumP DUMPDATA | DUMP DumP
f‘ STOREMOD DUMPDATA
E ws
(DDF) STOREDATA® STOREDATA
STOREMOD STOREMOD DUMPDATA DUMPDATA DUMPDATA
(CDOY STOREDATA® STOREDATA®® STOREDATA®*,
co
(CDS) |sTORe* STORECH STORECI** |STORE**
PID) STOREDATA® STOREDATA®® STOREDATA®®
1 PT
z @15) [sromee STORECH STORECI®® |STORE*"
*Elimi stored informotion from Working Storoge
**Reploces current contents of Working Storage

61 (dna) wesBosg Ayfrpn ¥91Q

Table 4. Summary of DUP Control Racords

€CC 1 2 3 4 5 6 7 8 9 10 W 12 13 4 15 16 17 18 19 20 21,22 2B 24 25 26 27 ¥ ¥ N
* D UMP b —Pom—- -— o -~ . Name
* D UMPDAT A b - Prome— e L e Name ——Sector Count—
¢ 5§ 1T OR E —Pom— —To =— Namo
¢+ § T OR E C - Pom— —— To Name — Count of 'Files' —
Rocords
* §$ T ORE D AT A —Prom— —To — Name —Sactor, Card, or—
Record Caunt
* § T OREMODH -Ws— UA or FX Name
* DUM P L E (Print of LET ch p 1 printing unit)
* DWA D R (Writo sector sddresses In Working Storsge area)
* D E L E T E Name
* D E F | N E F 1 X E O b A R E A — Cylinder —
Count
«* DE F I NE b V O O b A S S E M B8 L E R
* DE F I NE b V O | D b F O R T R A N

Table 5. Restrictions on DUP Functions in Temporary Mode {JOB T)

Functions Restrictions (if any)
DuMP None
DUMPDATA None
STORE None
STOREC!H To UA only
STOREDATA To UA and WS only
STOREMOD Not ollowed
DUMPLET None
DWADR Not allowed
DELETE Not ollowed
DEFINE FIXED AREA Not allowed
DEFINE VOID ASSEMBLER Not allowed
DEFINE VOID FORTRAN Not allowed

STORE

The STORE routine stores programs from cards,
paper tape, or the Working Storage area to either
the User area or Working Storage area on disk,

@ D UA ws
(113} (DSF)

CO (CDS) X X

WS (OSF) X

PT (PTS) X X

The control record format is as follows:

[

1234567891011 1213141518171819202122232425

*STORE

Specifies subtype (left~

[o aad

“FROM"
l Symbol

justified) of type 3 & 4

sibprograms (see Appen-

dix 8).

This field is

blank unless special

SOCAL
desired.

handling is

[N —
Progrom Name
(required ox-
cept for storing
o WS)

NOTE: If the STORE is from WS, and the WS
Indicator is zero, a FROM field error message

is given (refer to Appendix A).

STORECI (Store Core Image)

The STORECI routine stores programs from cards,
paper tape, or the Working Storage area to either
the User area or Fixed area on disk. The
programs are converted to Disk Core Image
format (see Appendix B), hence they are loaded
into core storage faster than programas stored

otherwise.

The STORECI function uses the

Loader to convert the Disk System format pro-
gram to core image. After control is returned to

'8

1 oY 1 YR Y TR A TV T I PN Y RO Y e TR T

DUP, the core image header and that portion of the
program (excluding Disk 1/0) that resides below
core location 4096} are stored from the CIB, and
that portion of the program above core location
409519, if any, is stored from core. No
COMMON area is stored, but the transfer vector
is included. STORECI always requests a map
from the Loader since it will not be available when
the program is loaded from Core Image format.

T VA X
@ ° ocn ©CI)

CD (CDS) X X
WS (DSF) X X
PT (PTS) X X

The control record for:nat is as follows:

cc

123456789101112131415161718192021222324252627 282930

*STORECI
s See “FROM" 10" Progrom Nome See Note 2
Note | Symbol Symbol (olways re~
quired)

NOTE 1: Column 9 is used to specify the Disk 1/0
routine required by this program,

0 - DISKO
1 = DISK1
N = DISKN

Others - DISKZ
(including blank)

NOTE 2: Count Field (cc 27-30) contains decimal
count of *FILES records that are required for
program being stored. This number of records
will be read before the normal STORECI function
is performed. ’

NOTE 3: Data files named in the *FILES record
must be in the Fixed area.

NOTE 4: If the STORECI! is from WS, and the WS
Indicator is zero, an error message is given
(refer to Appendix A).

STOREDATA (Store Data)
The STOREDATA routine stores data from cards,

Working Storage area, or paper tape to the User
area, Fixed area, or Working Storage area. Each

data file starts at the beginning of the next available
sector and the length is defined in whole numbers
of sectors,

B UA FX ws
(DDF) (DDF) (0DF)

ws (DOF) X X
€D (COD) X X X
PT (PID) X X X

The contro! record format is as foliows:

cc

1234567891011 121314151617 18 19 20 2) 22 23 24 25 26 27 28 29 30

*STOREDATA S~ ST e

“FROM" “10" Dota File Nome see NOTE
Symbol Symbol {not required tor

CD 10 M8 o PI

tn WS,

NOTE: Count Field (cc 27-30) must contain one of
the following in decimal;

Sector count if source is WS (overrides the WS
Indicator), card count if source is CD, record
count if source is PT.

STOREMOD (Store Modify)

The STOREMOD routine moves data from Working
Storage to the User area or Fixed area, overlaying
an item specified by name in the User area or Fixed
area. This permits the user to modify an item in
the User or Fixed area without changing its name or
relative position. If the user's program has put
data in Working Storage, the user must put the data
disk block count into location 0069. The length of
the item in Working Storage (in disk blocks) cannot
be greater than the length of the item it overlays., If
the name is not found in LET/FLET, the message
"D 16 DCTL, NAME FLD" is printed. If an attempt
is made to STOREMOD data longer than the item
already in the User or Fixed area, the function is
aborted and the message "WS TOO LONG" is printed.

= -
ws X

The control record format is as follows:

cc

123456789101112131415161718192021 22232425

*STOREMOD b

ws UAor
FX

Data Fite Nome

Disk Utility Program (DUP) 21

T

iy " vime PRI YU 1R 1L . —

DUMPLET (Dump Location Equivalence Table)

The DUMPLET routine dumps the contents of the
Location Equivalence Table (LET) to the principal
printing unit (see Figure 7). If a Fixed area has
been defined, the Fixed Location Equivalence
Table (FLET) is printed as a separate table
following LET (see Figurc B).

The control record has the following format:

(214

DWADR (Disk Write Address)

The DWADR routine writes sector addresses on
every sector in the Working Storage area. It
restores correct disk sector addresses in the
Working Storage area if they have been modified
during execution of a user's program. Previous
contents of the area are overlaid. Following the
address word, the first two words of each sector
contain D120 2663 (in hexadecimal). The next

12345678 238 words have the format Annn, where nnn is the
*DUMP LET hexadecimal address of the sector; the last 80
Line 1: . LET
Line 2 XXXX XXXX XXXX XXXX XXXX XXXX
) » - v 4 ~ v ol ;—P—d
(Entries in COMMA-
bose ond odjusted Work Storage starting Disk block oddress Number of words used
oddresses — see sector address available for next User by LET
Appendix) area program or dato file
Line 3: XXXX XXXX XXXX XX XX XX XX
(LET sector header — — — b —
words) Relative sector 0 if lost sector Reserved Words avoilable Sector oddress of
number (0-7) of LET; other- in this sector next sactor
wise non-zero . - for more entries (0 if last sector)
Line 4 XX XXX KXXX, KXXX,
" For DSF
. Program néme Program size Storting eddress progroms
Line n (disk blocks) (disk blocks)
i) AXXX XXXX
Line 4 XXXXX XX XX XXXX XX XX , , .
or
Program name Program size Starting oddress Execute core Progrem lood Actual word count \| ;- a;:u
(disk blocks) in User areo oddress oddress in of core image pro- programs
(disk blocks) (cbsolute) core gram (includes o
Line n 60-word heoder)
Line 4 XXXXX, XXXX XXXX 0000 0000
: v v — Y - For dato
Dota filename Data file size Starting oddress Reserved Data file size files
. (disk blocks) in User area (disk blocks)
Line n (disk biocks)

NOTE 1: The header words of the first sector are printed on line 3. Additional header words are printed for each foliowing sector as required.

NOTE 2: For multi-entry subroutines, the Program Size and Starting Address fields for entry points subsequent to the first one will be blank.

NOTE 3: Program size is the disk block count of the program. This corresponds to word 3 of the actual LET entry (see Appendix G).

NOTE 4: Words 4, 5, and & of the printout reflect the actual LET entry words 4, 5, and 6.

NOTE 5: Ail numbers are in hexadecimal,

Figure 7, Output Format from @ DUMPLET Operation (LET)

22

words are zeros. The control record has the DEFINE (Define)
following format:

cc The DEFINE routine defines variable parameters
J234ss required by the Monitor System. The following
* DWADR options are available:

o Define or increase the size of the Fixed area
DELETE (Delete Program or Data) e Delete the assembler [rom the system

The DELETE routine deletes a specjfied program ¢ Delete FORTRAN from the system
or data-file from the User or Fixed area. The
LET or FLET entry is deleted and if the program
was in the User area the User area is repacked.
A 1DUMY entry is created to replace deleted
FLET entries. Although no packing of the

Fixed area occurs, dummy entries in FLET are
packed so that two are not adjacent but are
consolidated. The control record has the
following format:

If the user wishes to delete the assembley or
FORTRAN, he must do 8o before he defines a
Fixed area. '

Within the Fixed area, programs can be stored at
fixed disk locations. This area is initially defined as
a whole number of cylinders, with a minimum of two,
one of which is used for FLET, and it may be in-
creased (but not decreased) by a whole number of
cylinders at any time up to the length of Working
Storage minus four cylinders. All of the specified
increment is added to the Fixed Area after the

ce initial definition. Defining or increasing the size of
Lﬁiﬁl“ 7101112131415 16171819 mw the Fixed area 'reduces disk storage available for
“DELETE Nome User and Working Storage areas by the same amount.
Line 1: FLET
Line 2: XXXX XXXX XXX XXXX XXXX XXXX
: . , . ’ Nadadolaliiakolalali
(Entries in M
COMMA) Sector address of CIB Sector oddress of FLET Number of words used by FLET
. X X XX X XXX
(L;C;T:isec'or XX XX XX XX X X X X
heoder words) Relative sector 0 if lost sector of Reserved Words available in this Sector address of next
number (first FLET; otherwise sector for more entries sector (0 if last sector)
sector is nON-z6ro
numbered 16)
Line 4| FLET entries are the same as for LET except that DSF programs do
M not appear in the Fixed areo; therefore, no three~word entries
Line n | appeor in FLET,

NOTE 1: All refarences are in disk blocks unless otherwise indicated.

NOTE 2. The header words of the first sector are printed on line 3. Additional header words are printed for each following sector as required;
there is o header for each 52 FLET entries.

NOTE 3: Progrom size is the disk block count of the program, This corresponds 10 word 3 of the actuol FLET entry (see Appendix G).
NOTE 4: Words 4, 5, and 6 of the printout raflect the actual FLET entry words 4, S, and 4.

NOTE 5: All numbers ore in hexadecimal.
Figure 8, Output Format from a DUMPLET Operation (FLET)

Disk Utility Program (DUP) 23

il ol b U VT T g L T

) " " ! Lo i o
T T Y N Y A e AT [iadl. ol [}

Deleting the assembler and/or FORTRAN packs
the remaining information on the disk, thus
increasing disk storage available for User and
Working Storage areas by the amount occupied by
the deleted programs (see Figure 2).

The control record formats are as follows:

To Define the Fixed area -

cc

123456789101112131415161718192021222324252627 2829 30
[SESRB——

*DEFINELF I X ED b ARE A NNNN

where NNNN = positive cylinder count in
decimal, right-justified,
specifying the initial size of
Fixed area (minimum of 2
cylinders) or an increment
to the Fixed area.

NOTE: The first cylinder of the first DEFINE
FIXED AREA is used for FLET.

To Delete the Assembler -

cc
123456789101112131415161718192021 22

“DEFINELVO! Db ASSEMBLER

To Delete FORTRAN -

cc
1234567891011121314151617181920

*DEFINELVO I Db FORTITRAN

EDIT (to recall system loader)

The *EDIT control record is used only by DUP to
recall the System Loader, which initially loads
the system into disk storage. The control
record has the following format:

(14

12345
*EDIT

NOTE: This record must not be used by the user.

DUP MESSAGES

Each DUP control record is printed at the time it
is read, thus signaling that DUP has control and

will remain in control until the next monitor
control record is properly read. When a
requested DUP function has been successfully
completed, the following two-word exit message
is printed in hexadecimal:

Word 1: Disk block address of program or disk
area that has been processed.
Word 2: Number of disk blocks involved.

For the DUP functions listed below, these words
contain the following information (ail addresses
and lengths are given in disk blocks):

DUP Function Information Printed

DUMP, STORE, Program address* and
STORECI, STOREMOD, program length**
DELETE

DUMPDATA,
STOREDATA

Program address and
decimal sectors or
records specified con-
verted to disk blocks
DUMPLET - (LET) User area address and
User area length
DUMPLET - (FLET) Fixed area address and
Fixed area length

DWADR Working Storage address
and Working Storage
length

DEFINE FIXED AREA Fixed area address
and size

DEFINE VOID Former address and

ASSEMBLER size of assembler

Former address ﬁnd
size of FORTRAN

DEFINE VOID
FORTRAN

If the above words are not printed, the DUP function
was not successfully completed. If the DUP opera-
tion cannot be performed, an appropriate error
message is printed at the time the DUP control
record causing the error is read (see Appendix A).

* If storing or dumping from Working Storage, the
address of Working Storage is printed.

**Length is the third word of LET/FLET entry
(see Appendix G).

DUP OPERATING NOTES

The use of the PROGRAM STOP key, when perform-
ing DUP operations with the 1130 Disk Monitor
System, can causge the system to stop while there is
disparity between LET/FLET, DCOM, and the actual
disk contents. If the job is aborted at this time, the
disk pack will no longer contain an operating monitor

system.
DUP operations must be allowed to execute to

completion. If the PROGRAM STOP key is used

ol i R TR YRR PR B TR T T) R O L0 U)| UL AR MUY | AN Y NI R PR N —) 0V, ———r " . | —

(WAIT at 0005), the operation must

from the point at which the system a:,:p;::fm(‘;z?'e
storage must not be altered. To continue, press
PROGRAM START (see DUP Waits and Loops in
Appendix A).

Some DELETE functions may take several minutes
since they may have to pack much of disk storage.
These long DELETE and DEFINE functions must be
allowed to complete their respective operations.

Control can be returned to the DUP section that
reads DUP and monitor control records by manually
branching to core location 0276.

Disk Utility Program (DUP) 25

LLIE TRTIRTIT

ASSEMBLER

The language for the monitor assembler is de-
scribed in the publication IBM 1130 Assembler
Language (Form C26-5927). Therefore, only a
general description of the operation and the control
records for the monitor assembler are described
in this section,

The monitor assembler cannot be operated in-
dependently of the Monitor System; however, the
assembler can be deleted from the Monitor System
if desired,.

A monitor control record with the pseudo~op
ASM is used ta call the assembler into operation.
The assembler reads the source program, in-
cluding control records, from cards or paper tape.
After assembly, the object program resides in the
disk Working Storage area, and can be called for
execution with a monitor XEQ control record, or
it can be stored in the User or Fixed area with a

- DUP STORE or STORECI operation or punched
as a binary deck or tape with a DUP DUMP opera-
tion,

ASSEMBLER CONTROL RECORDS

Assembler control records are used to specify
assembly options and to provide input to the

assembly process for certain types of source
decks. Assembler control records can be either

card or paper tape.

Table 6. Summary of Assembler Couatrol Records

All assembler control records have the following
format:

Column 1: *
2-71: Option

If an assembler control record contains an aster-
isk in column 1, but the option does not agree,
character for character, with its valid format,
as described below, the erroneous control record
is ignored in the assembly. The option is not
performed; however, no error results,

Assembler control records can be written in-
free form, but at least one blank must separate
the last character in the operation and the first ’
character of any comments or numeric field. '

Assembler control records and their meanings
are listed below. A summary is contained in
Table 6.

*TWO PASS MODE

The source deck (or tape) must be read twice,
TWO PASS MODE must be specified when:

1. The user desires a list deck to be punched (see
LIST DECK and LIST DECK E).

2. One pass operation cannot be performed be-
cause intermediate output (source records)
fill the Working Storage area of disk.

*TWO PASS MODE

*LIST

*LIST DECK

*LIST DECK E

*PRINT SYMBOL TABLE
*PUNCH SYMBOL TASBLE
*SAVE SYMBOL TABLE
*SYSTEM SYMBOL TABLE
*LEVEL n

°FILE n

*COMMON n

Read source deck twice; must bo specified when UST DECK or LIST DECK E is specified, or when intermediate
output fills Working Storage

Print a listing on the principal printing device

Punch o list deck on the principal I/O device (requires TWO PASS MODE)

Punch only error codes (cc 18-19) into source progrom list deck (requires TWO PASS MODE)
Print o listing of the symbol table on th.e principal printing device

Punch o list deck of the symbol table on the principal I/O device

Save symbol table on disk as o System Symbol Table

Use System Symbol Tabla %o initialize symbol mble for this assembly

n = interrupt lovel number. Roquired for ISS subroutines

n = number (dacimal) of sactors of Working Storage reguired at object time by the progrom being bled

n = longth of COMMON in words {decimel)

&

*LIST

A printed listing is provided on the principal
printing device (console printer or 1132 Printer).
The format of the printed listing corresponds to
that of the list deck (see Figure 9),

*LIST DECK

A list deck is punched on the principal 1/0 device
(card or paper tape). This option requires two
passes (TWO PASS MODE). The list deck format
ia shown in Figure 9. In cards, object information
is punched into columns 1-19 of the source deck

in pass 2 to make the list deck. In paper tape, the
list tape punched is similar to the input tape, but

with 20 frames added to the beginning of each record
corresponding to card columns 1-20,

*LIST DECK E

Same as LIST DECK except no object information
other than errors (positions 18-19) are punched.,

*PRINT SYMBOL TABLE

A printed listing of the symbol table is provided on
the principal printing device (console printer or

~ 1132 Printer). Symbols are grouped five per line.

Muitiply-defined symbols are preceded by the
letter M; symbols with absolute values in a relo-
catable program are preceded by the letter A. The
M and A flags, however, are not counted as
assembly errors.

4
T T T«s]e[7}8]o] T [r2[i3] [[elizisfojaof2i] | T Tasjaef2r] T Too[ar[szfasfasfas] T T T [| :’
N "
Tl | Tt
Blonk Blank "Blank 8lank Blank Blonk Blonk
F
Address of the First Word of Error Flogs, Label Op Code ormot
Instruction; the Assembled if any Tog
Address Code *
Assigned to

the Label, if any

Relocation Indicators; Second Word of
Col. 7 is Blank for One- the Assembled
Word Instructions or DC Code

or
Exponent for an
XFLC Stotement .

AENEREENEEEEEEEEEE

23] [J 1 [T Jeo

[TIIIIITIII1F]

/"
Operands

* For EBC Statements, Coi. 9-12 Contains the Number of EBC Characters

For 8SS and BES Statements, Col. 9~12 Contains the Numbar of Words

Reserved for the Block,

Figure 9. List Deck Format

bl ki g " VRN VUL AL

—

N
10 ond Sequence
Blank Number, if any

Assembler 27

L T I R beealbe VLR UL U] 1

*PUNCH SYMBOL TABLE

A list deck of the symbol table is punched on the
principal 1/0 device (card or paper tape). The
record format is the same as for PRINT SYMBOL
TABLE. This option may be advantageous if offline
card-to-printer or paper tape-to-printer facilities
are available,

*SAVE SYMBOL TABLE

The symbol table generated in this assembly is
saved on the disk as a System Symbol Table, The
System Symbol Table is saved until the next SAVE
SYMBOL TABLE control record canses a new
assembly-generated symbol table to replace it.
This control record is also used with the SYSTEM
SYMBOL TABLE control record to add symbols to
the System Symbol Table., The SAVE SYMBOL
TABLE option requires this assembly to be absolute.
If any assembler errors are detected, or if the
symbol table exceeds the allowable size of the
System Symbol Table - 100 symbols - the symbol
table will not be saved as a System Symbol Table,
and an assembler error message will be printed
(refer to Appendix A, Assembler Error Messages).

*SYSTEM SYMBOL TABLE

Before assembly begins, the System Symbol Table
(previously built by a SAVE SYMBOL TABLE
assembly) is copied into the symbol table generated
in this assembly. This control record is used when
it is desired to refer to symbols in the System
Symbol Table without definition of those symbols in
the source program, or together with the SAVE
SYMBOL TABLE control record when it is desired
to add symbols to the System Symbol Table. All
symbols in the symbol table taken from the System
Symbol Table will have absolute values,

*LEVELbn

This contro!l record is required for the assembly
of an ISS routine. n = A decimal interrupt level
number (0-5). If the device operates on two levels
of interrupts (1442 Card Read Punch), two LEVEL
control records are required. At least one blank
must separate the word LEVEL and the interrupt
level number,

28

*FILEbn

n = Number of sectors (decimal) of the disk Working
Storage area required at object time by the pro-
gram being assembled. These sectors will be
reserved at the beginning of Working Storage before
any LOCALSs or SOCALs are siored. This control
record is used only when assembling a relocatable
mainline program. At least one blank must separate
the word FILE and the number of sectors.

*COMMONbDbn

n = Length of COMMON in words (decimal). This
allows a8 COMMON area to be saved in linking from
a FORTRAN mainline program to an assembly
mainline and linking back to a FORTRAN mainline.
At least one blank must separate the word COMMON
and the decimal number.

ORIGIN OF SOURCE PROGRAM

The origin of a relocatable source program will
always be at relative zero unless otherwise specified
in the source program.

The origin of an absolute source program, if
not otherwise specified, will be at the end of the
disk routine DISKN (location 0438)., If the program
will use another disk routine, the origin may be set
lower to correspond to the proper disk routine. If
no disk routine is used, the origin may be set to the
end of the disk routine DISKZ (refer to Origins for

Core l.oads).

ASSEMBLER PAPER TAPE FORMAT

The paper tape input to the assembler is punched on
PTTC/8 tape, one frame per character. The format
of the tape control records is the same as the card
format. The format of the symbolic program tape
records is the same as the card format except for
the following:

1, The tape does not contain preceding blanks
corresponding to card columns 1-20.

2, The tape does not contain blanks or data
corresponding to card columns 72-80,

3. Trailing blanks need not be punched. Therefore,
up to 51 characters (corresponding to card
columns 21-71) can appear in the tape record.

T PR 1318 PR T R s T

Tape records are separated by NL (new line)
characters (code DD). The delete character (code
7F) is ignored whenever it is read, but the reader
stop character (RS, code 0D) causes the program

Table 7. Assembler Emor Detection Codes

reading the tape to wait and start reading again Flog Couse Assembler A
. * i
when PROGRAM START is pressed, The case shift tisinabaitih
. A i
characters (codes OE, 6E), when required, are not :?.:’.:; Ev:::i'e to specify dis- Displacement set to zero
considered to occupy a space in the format. placement field, directly or
indirectly, outside range of
-128 10 +127.
C Condition Code Estor Di
ASSEMBLER MESSAGES AND ERROR CODES Chasacter other then +, =, Z, Hplocemen et 1o xero
. or O detected in first
operand of short branch or
Appendix A contains the assembler error messages resocy operond of long BSC,
! . : BOSC, o1 BSI stutement ,
printed during operation of the 1130 Monitor. If .
- . Format Code Erion i .
LIST DECK or LIST DECK E is specified, the error Character other than L, X, :;:::f';:'.‘ep::z::;e:dmu:ll
detection codes shown in Table 7 are punched in or blank detected in col. 32, that instroction is volid only ;
‘ . or L or | format specified for short torm, 1n which case 'ly'm
columns 18 and 19. For the first error detected in :::;ucﬁ"" volid only in short processed o if the X formet
each statement the asseriole-~ stores and then punches) were specified
the code in column 18; the cole for a second error L lbel Ervor Lobel ignored
: Invalid symbol detected in label s
is stored, overlayed by any subsequent errors, and field.
unched in column 19. Thus, if more . .
p ’ re than two M I Multiply Defined Lobel Error First occurrence of symbol in
errors are detected in the same statement, only Duplicate symbol encountered | label field defines it value;
the first and last are indicated. i operand. :‘y‘:ﬁlu f: 'l olfeclu ?f’?d"‘ o
al e -
At the end of the assembly, a message is printed multiply defined indicator 1o be
indicating the total number of assembly errors de- (Bir gedr first oy
i ' o Op Code Error of first word).
tected in the source program, Since no more than Unrecognized op code Stotement ignored ond address
two errors are flagged per statement, the error 1SS, ILS, ENT. LIRR . SPR Sounter incremented by 2.
count may exceed the actual number of flags. EPR, or ABS incarrectly placed. Stotement ighred
If symbol table overflow exceeds 32 sectors in R | Relocation Error
Working Storage, an assembler error message is Enlpreuion does not have valid Expression set to zero
i R relocation.
printed (refer to Appendix A). The maximum size Non-absolute displacement Displacement set to zero
of the symbol table (including overflow) and, hence, Kool origin specified
rigin s i igin &
the maximum number of symbols that can be de- relocatcble :'°9"::-I o Origin fgnored
fined in a program is determined by the size of :o;s-;t:ola%!se operond specified | Operand assumed to be zero
core storage as indicated below: Non-relocotable operand in Cord columns 9-12 left biank;
:":;?,l;:‘:':'::;' of relocotable entry assumed to be relative ’
. ram . zero
Ty o of A bl Size (())f Core Storage (WOl‘dS) ENT operand non-relocatable.. Statemen? ignored
pe of Assembly 4096 8192
S Syntax Error
Involid expression (e.g., involid | Expression set t
With Listing 3502 4867 hegal comonn o1 o
L . illegol constont
One Pass’ No LlStlﬂg 3574 4940 Iitegal chavooc'er in record. if illegal character appeors in
Two Pass. No Listin * expression, lobel code
, g 3609 4974 f "tag field, oddiri
ormal, or tag field, odditional
.) erron may be coused. e
::mcril‘?er:g'vag:‘romy pom:’ not Cord columns 9-12 lefr blank.
ecified in opetand . entr d to be relari
ASSEMBLER OPERATING PROCEDURES Incorrect syntax in EBC stote- | Card columms 9-12 not ponched;
':e':; (eig., no delimiter in acdress counter incremented
an 'c)o umn 35, zero character | by 17.
count).
Card mput ‘l:;:t::?d{obol in ENT or 1SS Stotement ignored
T Tog Error
The source deck (including assembler control Gora column 33 contains Tag of zero ossumed
cards) can be assembled as part of a job, or it 1,2, 00 3in i:“":“ﬂ‘:nk' >
can be assembled as a separate job. In either Hatement.
case, the source deck must be preceded by a U [Undefined Symbol
ASM monitor control record. Undefined symbol in expression Expression set to absolute zero
Assembler 29
TV T R " blolv bbby cndnid i bl bl LU LU AU LU Lol 9

In most cases, the source deck is passed
through the 1442 Card Read Punch only once. If
the assembly is part of a stacked job, the
assembly proceeds without operator intervention.
If the END card is the last card in the stack,
when the reader goes not ready, press reader
START to process the last card.

In some casos it may be necessary to
assemble in the two-pass mode, that is, pass
the source deck through the 1442 Card Read
Punch twice. If a copy of the source deck is
placed behind the original, the source deck will
be read twice, and a stacked job is again
possible even when in the two-pass mode.

It is important to note that when a deck is
being assembled in two-pass mode, the
assembler is ready to read another card as soon

as Pass | processing of the END card is completed.

Therefore, « monitor control record must not
follow the END card the first time (or the first
END card if the deck has been copied), or the
assembier will trap this record, terminating
the assembly and returning control to the
Supervisor.

If the deck is not copied, the END card should
be the last card. Press reader START to
process the last card and complete Pass 1. The
assembler will then try to begin reading cards
for Pass 2, therefore the source deck (with its
control cards) should be removed from the stacker
and placed in the hopper. Pressing reader START
will continue Pass 2 of the assembly. The card
reader will go not ready when all cards but the
END card have been read., Press reader START
to process the END card and complete the
assembly. Operation is continuous from Pass 1
to Pass 2 if the source deck is replaced behind the
END card from the stacker during Pass 1.

If the *PUNZH SYMBOL TABLE assembler
control card is used, sufficient blank cards must
be placed after the END card and before the next
monitor control record in the stacked job. In
estimating the number of blank cards required,
allow one card for each five symbols used in
the source deck. Unnecessary blank cards will
be passed to the next monitor control record.

Paper Tape Input

Most of the procedures for card input are also
applicable to paper tape input.

If the assembly is performed in the one-pass
mode, operation is continuous, and control is
returned to the Supervisor which will then pass
any delete codes between the assembler and the
pext monitor control record. The assembler
will also pass any delete codes that may occur
between records of the source program.

When it is necessary to assemble in the two-
pass mode, one of the following techniques may
be used:

1. Have the stacked job tape contain two copies
of the source program. The assembler will
simply begin reading the copy after the
original has been read in Pass 1.

2. Assemble outside of the stacked job tape.
The job tape, or a separate strip containing
an ASM monitor control record serves to
bring the assembler into core. A separate
source program tape (including assembler
control records) should then be readied on
the paper tape reader, and the assembler
will read this tape and complete Pass 1.
Ready the source tape again and the
assembler will complete Pass 2. A stacked
job tape can now be readied again on the
paper tape reader, and the Supervisor will
continue with the stack.

3. The assembly of a program may start in one-
pass mode and then be changed to two-pass
mode (see Assembler Error Messages,
Appendix A). The assembler will wait, and
pressing PROGRAM START continues the
assembly in Pass 1 of two-pass mode. If this
assembly is part of a stacked job, operator
intervention is necessary to prevent the
assembler from reading the monitor control
record which follows the END record
(applicable to card input also). When Pass 1
intermediate output may fill Working Storage,
it is recommended that sufficient length of all
delete codes be punched into the tape after the
END statement and before the next monitor
control. When the assembler is reading the
delete codes following the END record, the
operator should press PROGRAM STOP, and
manually reposition the tape at the beginning
of the source program. When the tape is
positioned, press PROGRAM START to con-
tinue Pass 2 of the assembly.

'When punching a list tape (*LIST DECK or
*LIST DECK E), first create a leader in the
punched tape by holding down FEED and DELETE on
the punch (press DELETE before FEED and release
FEED before releasing DELETE), The same
procedure should be used to create a trailer

following the last record punched by the assembler.
_ When the paper tape reader or punch is not

ready, the assembler will wait at location 0041

with 3000, displayed in the accumulator. Ready

the punch or reader, and press PROGRAM START
to continue.

Auem!%u 31
Ry

ETTYR NPT YRS T oy "

N o= 18 AR) AR mem TR R 911 1T R L Y1

FORTRAN COMPILER

The language for the Monitor FORTRAN compiler
is described in the publication IBM 1130 FORTRAN
Language (Form C26-5933). Therefore, only a '
general description of the Monitor FORTRAN
compiler operation is contained here.

The FORTRAN compiler cannot be operated
independent of the Monitor System; but, if
desired, the compiler can be deleted from the
system.

A monitor control record having the pseudo-op
FOR is used to call the FORTRAN compller into
operation. The compiler reads the source program
from cards or paper tape. After compilation, the
object program resides in the disk Working Storage
area, and can be called for execution with a monitor
XEQ control record, loaded to the User or Fixed
area with a DUP STORE or STORECI operation,
or punched as a binary deck or tape with a DUP
DUMP operation. All FORTRAN programs are
compiled in relocatable format.

For 1130 FORTRAN 1/0 logical unit
definitions, the I/0 unit numbers are permanently
set as described in Table 8,

FORTRAN CONTROL RECORDS

Before a FORTRAN program is compiled, the user
can specify certain options by means of control
records which must precede the source program
and can be in any order. The IOCS and NAME
control records can be used only in mainline
programs; the others can be used in both mainline
programs and subroutines.

Table 8. 1/0 Log‘cal Unit Designations

Logicol
Unit Kind of Record Size
Number Device Transmission Allowed
1 Comole printer Output only 120
2 1442 Cord Reod Input/output 80
Punch
3 1132 Printer Output only | carviage
control + 120
4 11341055 Input/output 89, plus mox. of
Poper Tope 80 cane shifts for
Reader/Punch PTTC/8 code,
plus NL code.
[Keyboard Input only 80
7 1627 Plotter Output only 120
32

e

All FORTRAN control records have the following
format:

Column 1: * (asterisk)
2-72: Option

FORTRAN control records can be written in
free form, no comments allowed. Any
unrecognizable control records are considered
a8 comments control records.

FORTRAN control records and their meanings
are listed below. A summary is contained in
Table 9,

*I0CS (CARD, 'TYPEWRITER, KEYBOARD, 1132
PRINTER, PAPER TAPE, DISK, PLOTTER)

This record is required to specify any I/0 device
that is to be used during execution of the program;
however, only the devices required should be
included. Because the *IOCS record can appear
only in the mainline program, it must include all
the 1/0 devices used by all FORTRAN subprograms
that will be called. The device names must be in
parentheses with a comma between each name.

FORTRAN subprograms written in assembly
language can use any 1/0 subroutines for any
device that is not mentioned in *IOCS and that is
not on the same interrupt level as a device in
*[OCS. Otherwise, the subprograms must use
FORTRAN I/O routines (CARDZ, PAPTZ, PRNTZ,
WRTYZ, TYPEZ, DISKZ, PLOTX).

*LIST SOURCE PROGRAM

The source program is listed as it 8 read in.

*LIST SUBPROGRAM NAMES
The names of all subprograms (including

EXTERNAL subprograms) called directly by the
compiled program are listed.

*LIST SYMBOL TABLE
The following items are listed:
@ Variable names and their relative addresses

¢ Statement numbers and their relative addresses

Table 9. Summuary of FORTRAN Control Records

* NAME XXXXX

DISK, PLOTTER)

*sheader information to be printed on each compiler output page
« ONE WORD INTEGERS

.

EXTENDED PRECISION

ARITHMETIC TRACE

» TRANSFER TRACE

« LIST SOURCE PROGRAM

« LIST SUBPROGRAM NAMES
» LIST SYMBOL TABLE

« LIST ALL

* 1OCS (CARD, TYPEWRITER, KEYBOARD, 1132 PRINTER, PAPER TAPE,

(XXXXX = program nome to be printed on listing)

Delete any not used

(Store integer variables in one word)

(Store floating point variables and constants in 3 words instead of 2)
(Switch 15 ON to print result of each assignment statement)

{Switch 15 ON to print value of IF or Computed GOTO)

(List source program os it is read in)

{List subprograms called directly by compiled program)

(List symbols, statement numbers, constants)

(List source program, subprogram names, symbol table)

e Statement function names and their relative
addresses

e Constants and their relative addresses

*LIST ALL

The source program, subprogram names, and
symbol table are listed. 1f this control record is
used, the other LIST control records are not
required.

*EXTENDED PRECISION

Variables and real constants are stored in three
words instead of two, and the compiler generates
linkage to extended precision routines.

*ONE WORD INTEGERS

Integer variables are allocated one word of storage
rather than the same allocation used for real
variables. Whether this control record is used or

not, integer constants are always contained in one
word. When this control record is used, the
program does not conform to the ASA Basic
FORTRAN standard for data storage, and it may
require modification in order to be used with
other FORTRAN systems.

*NAME XXXXX

The program name represented by XXXXX is printed

on the listing, XXXXX is five consecutive
characters (including blanks) starting at the first
non-blank column. This control record is used
only on mainline programs, since subprogram
names are automatically taken from the
FUNCTION or SUBROUTINE statement,

**Header Information

The information between columns 3-72 is printed
at the top of each page of compilation printout when
an 1132 Printer is the principal system printer.

*ARITHMETIC TRACE

The compiler generates linkage to trace routines
which are executed whenever a value is assigned to
a variable on the left of an equal sign. If Console
Entry Switch 15 is turned on at execution time and

FORTRAN Compiler 33

A T O SO O O R e R - _— a s —

I BN 8 Y A R

11—y]

program logir (see Optional Tracing) does not
prevent tracing, the value of the assigned variable

is printed as it is calculated.

*TRANSFER TRACE

The compiler generates linkage to trace routines
which are executed whenever an IF statement or
Computed GOTO statement is encountered. If
Console Entry Switch 15 is turned on at execution
time and program logic (see Optional Tracing) does
not prevent tracing, the value of the IF expression
or the value of the Computed GOTO index is printed.

If tracing is requested, an *10CS control record
must also be present to indicate that either type-
writer or printer is needed. If both typewriter
and printer are indicated in the *IOCS record, the
printer is used for tracing. .

The traced value for the assignment of a
variable on the left of an equal sign of an arithmetic
statement is printed with one leading asterisk.

For the expression of an IF statement, the traced
value is printed with two leading asterisks. The
traced value for the index of a Computed GOTO
statement is printed with three leading asterisks.

Optional Tracing

The user can elect to trace only selected parts of
the program by placing statements in the source
program logic flow to start and stop tracing. This
is done by executing a CALL to either subroutine:

CALL TSTOP (to stop tracing)
CALL TSTRT (to start tracing)

Thus, tracing occurs only if:

e The trace control records were compiled with
the source program.

e Console Entry Switch 15 is on (can be turned
off at any time).

@ A CALL TSTOP has not been executed, or a
CALL TSTRT has been executed since the last
CALL TSTOP.

OErating Notes - *LIST Control Cards

A constant in a STOP or PAUSE statement is
treated as a hexadecimal number. This hexadecimal
number and its decimal equivalent appear in the list
of constants.

Variables and constants that require more than
one word of storage have the address of the word
nearest the zero address of the machine. In the
case of arrays, the given address refers to the
addressed word of the first element. In the case of
a two- or three-word integer, the integer value is
contained in the addressed word. The first variable
listed might not be addressed at 0000 because room
may be required for generated temporary storage
locations,

The relative address for variables not in
COMMON would be the actual address if the pro'gram
started at storage location zero. The relative ad-
dress for variables in COMMON would be the actual
address if the machine had 32K storage. The Loader
makes any necessary adjustments. Variables in
COMMON are adjusted to reside in the high-order
core location of the machine being used (e.g., first
COMMON variable will be loaded to 8191 on an 8K
machine).

Loading begins at core location 01C2 (450 deci-
mal). The DISKZ routine is used regardless of
what disk routine is requested on the XEQ control
record (refer to Origins for Core Loads).

FORTRAN PRINTOUTS

Compilation Messages

Near the end of the compilation, core usage
information and the features supported (control
records used) are printed out as follows:

FEATURES SUPPORTED
EXTENDED PRECISION
ONE WORD INTEGERS
TRANSFER TRACE
ARITHMETIC TRACE
10CS
CORE REQUIREMENTS FOR XXXXX
COMMON YYYYY VARIABLES YYYYY PROGRAM YYYYY

where XXXXX is the name of the program
designated in the *NAME control record or in the
SUBROUTINE or FUNCTION statement, and
YYYYY is the number of words allocated for the
specified parts of the program. In addition, all
unreferenced statement numbers are listed un-

conditionally.

Compilation Error Messages

During compilation a check is made to determine
if certain errors have occurred. If one or more
of these errors have been detected the error
indications are printed at the conclusion of
compilation, and no object program is stored on
the disk. Only one error is detected for each
statement. In addition, due to the interaction of
error conditions, the occurrence of some errors
may prevent the detection of others until those
which have buen detected are corrected. With the
exception of type 00 messages listed below, the
error message appears in the following format:

C NN ERROR IN STATEMENT NUMBER XXXXX + YYY

NN is the error number described in Appendix A.
With the exception of specification statement errors,
XXXXX is the last valid statement number preceding
the erroneous statement and YYY is the count of
statements from XXXXX to the statement that is in
error. If the erroneous statement has a valid state-
ment number, XXXXX will be the statement in error
and YYY will not be printed.

For example:

105 FORMAT (15,F8.4)
110 1F (A-B) 10, 30,30
A =A+1,0
ABC B =B-2.0 (error CO1)
135 GO TO 105 (error C43)

This example will cause the following error messages
to be printed.

CO1 ERROR IN STATEMENT NUMBER 110 + 002
C43 ERROR IN STATEMENT NUMBER 135

For specification statements, XXXXX is always 00000
and YYY is the count of the number of specification
statements in error. YYY is never 000, i.e., for the
first error YYY is 001, Specification statements are
not counted unless they contain an error. Statement
numbers on specification statements and statement
functions are ignored. NN is the error code.

S I 1

IS I VY S TR T i LU

LT A e B L LT L L A L T L o y o ry

For example:

1 DIMENSION C (10,10)

2 DIMENSION D (5,5)

3 DIMENSION E (6,6,,6) (eror CO8)
4 DIMENSION F (4,4)

5 DIMENSION G (2,2)) (error C16)

This example will cause the following error messages
to be printed.

CO8 ERROR AT STATEMENT 00000 + 0Ot
C16 ERROR AT STATEMENT QUOOO + 002

Error indications are printed at the conclusion
of compilation, If a compilation error has occur-
red, the message

OUTPUT HAS BEEN SUPPRESSED

is printed and no object program is punched,

During compilation of sub-programs a subroutine
initialize statement (CALIL SUBIN) is generated.

The CALL SUBIN statement initializes all refer-
ences to "dummy" variables contained within the
sub-program to the appropriate core location in the
calling program. :

The nature of the FORTRAN compiler limits the
size of any statement in internal compiler format
to 511 words. In the case of CALIL SUBIN, the
size is calculated hy the following [ormula:

S=35+ARG +N

where ARG is the number of arguments in the suh-
routine parameter list and N is the total number of
times the dummy arguments are used within the
sub-program. S is the total size of the CALL SUBIN
statement; if S ever exceeds 511, an error occurs
and the message

SUBROUTINE INITIALIZE TOO LLARGE
is printed.

If at any time during the compilation the state-
ment string overlaps the symbol table, or vice-
versa, the remainder of the compilation is by-
passed and the message

PROGRAM LENGTH EXCEEDS CAPACITY

is printed,

FORTRAN Compiler 35

11—

Type 00 Error Messages

Code and
Message Meaning

A Monitor call was executed
(via operator intervention)
during the compilation; the
compilation is termjnated
and control is returned to
the monitor.

C 00 MON CALL

C 00 OVER 50 The FORTRAN disk 1/0
DISK ERRORS AT routine encountered an
SECTOR nnnn unrecoverable disk error

during compilation;

nnnn is the hexadecimal
address of the bad sector.
The working storage area

on disk is too small to
accommodate the string area
and symbol table for the
program being compiled;

the compilation is
terminated.

C 00 WORKING
STORAGE
EXCEEDED

The following message is printed for a normal
end of compilation (with or without errors):

END OF COMPILATION

//b RECORDS AT FORTRAN EXECUTION TIME

During FORTRAN execution time, any //b record
encountered by CARDZ or PAPTZ causes a WAIT to
occur; when PROGRAM START is pressed, control
is returned to the monitor supervisor. The super-
visor searches for the next valid monitor control
record entered from the reader. Only the //h
characters on the record trapped by CARDZ or
PAPTZ are recognized. Any other data entered in
this record is not available to other routines in the
monitor svstem. The record is not listed. For
off-line listing purposes, however, this record can
contain comments (e.g. // END OF DATA).

KEYBOARD INPUT OF DATA RECORDS

Data records of up to 80 characters can be read from
the keyhoard by a FORTRAN READ statement. Data
values must be right-justified in their respective
fields.

Keyhoard Operation

If it i1s desirable to key in less than 80 characters,
the EOF key can be pressed to stop transmittal,

Also, the ERASE FIELD or BACKSPACE key can be
pressed to restart the record transmittal if an error
is detected while entering data. If the keyboard
appears to be locked up, press REST KB to restore
the keyboard. The correct case shift must be se-
lected before data is entered.

Buffer Status After Keyboard Input

When the END FLD key is pressed prior to com-
pleting a full buffer load of 80 characters, blanks
are inserted in the remainder of the buffer. If more
data is necessary to satisfy the list items, the re-
maining numeric fields (I, E, or F) are stored in
core as zeros and remaining alphameric fields

(A or H) are stored as blanks. Processing is con-
tinuous and no errors result from the above condi-
tion,

OBJECT PROGRAM PAPER
TAPE DATA RECORD FORMAT

Data records of up to 80 EBCDIC characters in
PTTC/K code can be read or written by the FOR -
TRAN object programs. The delete and new-line
codes are recognized. Dclete codes and case shifts
are not included in the count of characters. If a
new-line code is encountered hefore the 80th char-
acter is read, the record is terminated. If the 80th
character is not a new-line code, the 8lst character
is read and assumed to he a new-line code. A new-
line code is punched at the end of each output record.

FORTRAN I/O ERRORS

If input/output errors are detected during exe-
cution, the program stops with an error code dis-
played in the accumulator, The error displays and
ameanings are listed in Appendix A, Table A-11,
If an input error is detected, zero values will be
transmitted for each corresponding list element
when the START key is pushed, Output errors
will transmit nothing for the corresponding list
elements. An exception to these general rules is
the F009 error. When this error is detected, the
conversion will continue as requested after the
START key is depressed.

When the output field is too small to contain
the number, the field is filled with asterisks and
execution is continued.

The input/output routines used by FORTRAN
{PAPTZ, CARDZ, PRNTZ, WRTYZ, TYPEZ) wait
on any 1/0 device error or device not in a ready
condition. When the devices are ready, press
PROGRAM START to exccute the 1/0 operation.

Error detection in functional and arithmetic

subroutines is possible by the use of source program
statements. Refer to "FORTRAN Machine and Pro- °

gram Indicator Tests" in the manual, IBM 1130
FORTRAN Language (Form C26-5933).

FORTRAN PROGRAMMING NOTES

1. When performing synchronous transmit-
receive (STR) operations in a FORTRAN program,
the STR operations must be stopped before any
disk 1/0O can be executed in the FORTRAN program,
This includes FORTRAN disk READ and WRITE

statements (DISKZ) and LOCAL or SOCAL condi-
tions requiring the use of DISKZ,

2. Any time an overlapped I/O operation (such
as FIND) is performed, a subsequent interrupt
will occur and remove the CPU from a WAIT
status if it happens to be in such a status,

3. Do not push PROGRAM STOP or IMMEDIATE
S8TOP to try to stop FORTRAN program execution,
This may result in destroying the monitor system
cartridge. The recommended procedure to stop
the execution during 1/0 operations is to cause the
1/0 device being used to become not ready.

FORTRAN Compaler 35.2

Y e S T TR T P T ” Wy amp ¥ |

il 4 bl bl JUELTL AL LT IUURL TR]

8 ou BRARY

The 1130 Subroutine Library consists of a group
of subroutines that aid the programmer in making
efficient use of the IBM 1130 Computing System.
Descriptions of the subroutines and methods for
programming them are contained in the publication,
IBM 1130 Subroutine Library (Form C26-5929).
The following paragraphs describe the use of
the IBM-supplied subroutines and discuss pre-
operative errors and I/0O error restarts where
special handling is required.

PREOPERATIVE ERRORS

A preoperative error is an error condition
detected before an 1/0 operation is started. It
denotes either an illegal LIBF parameter, an
illegal specification in 1/0 area, or a device
not-ready condition. This error causes a branch
to location 0029 and the following conditions:

The Instruction Address Register displays the
address 002A.

o The Accumulator displays an error code
represented by four hexadecimal digits.

Digit 1 identifies the ISS called:
1 - CARDO or CARD1

2 - TYPEO or WRTYO

3 - PAPT! or PAPTN

5 - DISKO, DISK1, or DISKN

6 - PRNT1

7 - PLOT1

Digits 2 and 3 are not used.

Digit 4 identifies the error:

0 - Device not ready

1 - Nllegal LIBF parameter or illegal
specification in I/O area

e Location 0028 contains the address of the LIBF
in question.

The ISS is set up to attempt initiation of the
operation a second time if the LIBF is reexecuted.
Therefore, since the Loader stores a wait in-
struction in location 0029 and an indirect branch
to location 0028 in locations 002A and 002B, the

36

LIBF can be executed again by pressing PROGRAM
START.

When a pre-operative error is encountered the
operator can;

¢ Correct the error condition if possible and
press PROGRAM START, or

e Note the contents of the Accumulator and
location 0028, dump core storage, and proceed
with the next job.

CARD SUBROUTINE (CARDO AND CARD1) ERRORS

Error Parameters

CARDO. There is no error parameter. If an error
is detected during processing of an operation-
complete interrupt, the subroutine loops

internally, with interrupt level 4 on until the 1442
become s ready, and then retries the operation.

CARD1. There is an error parameter. If an
error is detected during processing of an
operation-complete interrupt, the user program
can elect to terminate (clear ''routine busy'' and
the interrupt level) or to retry. A retry consists
of looping internally, with interrupt level 4 on
until the 1442 becomes ready, and then
reinitiating the function.

1442 Errors and Operator Procedures

1f a 1442 error occurs, the 1442 becomes not ready
until the operator has intervened. Unless the stop
is caused by a stacker full (no indicator) or Chip
Box indication, the 1442 card path must be

cleared before proceeding. The 1442 error
indicators and the position of the cards in the feed
path should be used to determine which cards must
be placed back in the hopper.

For the card subroutines, a retry consists of
positioning the cards as indicated in the following
paragraphs and reinitiating the function whenever
the card reader becomes ready, The card sub-
routines will skip the first card, if necessary,
on a read or feed operation,

Hopper Misfeed. Indicates that card 2 failed to
pass properly from the hopper to the read station
during the card 1 feed cycle.

Card positions after error:

Read Station

{

Punch Shﬁonl

Corner —-—1 m

Stacker ——amf E la—— Hopper

Error indicator: HOPR

Operator procedure: When program halts,
press NPRO to eject
card 1, place card 1 in
hopper before card 2,
and ready the 1442,

Feed Check (punch station). Indicates that card 1
is improperly positioned in the punch station at the
completion of its feed cycle.

Card positions after error:

Read Station

$
Corner ——a} m E

Stacker ——m rt— Hopper

Punch Stc:l’lc:on1

Error indicator: PUNCH STA
Operator procedure: When program halts,
empty hopper, clear 1442
. card path, place cards]
and 2 in hopper before
card 3, and ready the 1442.

Transport. Indicates that card 1 has jammed in
the stacker during the feed cycle for card 2.

Card positions after error:

Punch Shtlcn} Read Station

Comcr-—.& 2]

R
Stacker——» m [®—— Hopper

Error indicator: TRANS

Operator procedure: When program halts,
empty hopper, clear
1442 card path, place
cards 2 and 3 in
hopper bhefore card ¢4,
and ready the 1442.

Feed Cycle. Iidicates that the 1442 took an
unrequested feed cycle and, therefore, cards 1,
2, and 3 are each one station farther ahead in
the 1442 card path than they should be.

Card positions after error:

Punch Station —L Read Station

Corner ——a» m [z]
Stacker——am{ D] [B les—— Hopper

Error jndicator:
Operator procedure:

FEED CLU

When program halts,
empty hopper, press
NPRO to eject cards

2 and 3, place cards 1,
2, and 3 in hopper
before card 4, and
ready the 1442.

Feed Check (read station). Indicates that card 1

failed to eject from the read station during its

feed cycle.

- TR TR T P TN Y e

Subroutine Library 37

i b Lol o sttt L LR L

Card positions after error:

Punch S«:tlm1 Read Station
o o
Stacker g

Error indicator:
Operator procedure:

[5] | torre

READ STA

When program halts,
empty hopper, clear
1442 card path, place
cards 1 and 2 in
hopper before card 3,
and ready the 1442.

Read Registration. Indicates incorrect card
registration or a difference between the first and
second reading of a column,

Card positions after error:

Punch Stuﬁcm-l

Read Station

Corner ——a; [E

2]

Stacker ——o

Error indicator:
Operator procedure:

[E t@——Hopper

READ REG

See Feed check (punch
station). Repeated
failures of this type
might indicate a machine
malfunction.

Punch Check. Indicates an error in output punch-

ing.

Card positions after error:

Punch Sm’iorl—l

Read Station

{

Corner ——o] m

Stacker ———e=f

38

(=]
R

b——— Hopper

Error indicator: PUNCH
Operator procedure: When program halts,

emply hopper, check
card position and press
NPRO to clear 1442 card
path. 1If necessary,
correct card 1 to pre-
punched state. Place

. (corrected) card 1 and
card 2 in hopper before

card 3 and ready the 1442,

CONSOLE PRINTER SUBROUTINE (TYPEO AND
WRTY0) ERRORS

If the carrier attempts to print beyond the manually
positioned margins, a carrier restore (independent
of the program) occurs.)

Subroutine printing begins wherever the carrier
is positioned as a result of the previous print
operation. There is no automatic carrier return
as a result of an LIBF,

If the console printer indicates a not-ready
condition after printing has begun, the sub-
routines loop internally, with interrupt level
4 on, waiting for the console printer to become
ready. Operator procedures are as follows:

1. Press IMM STOP on the console.
2. Ready the console printer,
3. Press PROGRAM START on the console.

KEYBOARD SUBROUTINE (TYPEO) FUNCTIONS

Re-entry

When the Erase Field key is pressed, a character
interrupt signals the interrupt response routine
that the previously-entered kevboard messaue is
in error and will be reentered. The routine
prints two slashes on the console printer,
restores the carrier to a new line, and prepares
to replace the old message in the I/0 area with
the new message. The operator then enters the
new message. The old message in the /0O area
is not cleared. The new message overlays the
previous message, character by character. if
the previous message was longer than the new
message, characters from the previous message
remain (following the NL. character which
terminated the new messuge).

(4

Hopper Misfeed. Indicates that card 2 falled to
pass properly from the hopper to the read station
during the card 1 feed cycle.

Card positions after error:

Read Station

{

Punch Stcﬁonl

Comer —on [D

Stacker ——af E] ha—— Hopper

Error indicator: HOPR

Operator procedure: When program halts,
press NPRO to eject
card 1, place card 1 in
hopper before card 2,
and ready the 1442,

Feed Check (punch station). Indicates that card 1
is improperly positioned in the punch station at the
completion of its feed cycle.

Card positions after error:

Punch Stationl Read Station

Corner — [D E
Stacker ——um F—— Hopper

Error indicator: PUNCH STA

Operator procedure: When program halts,
empty hopper, clear 1442
card path, place cards 1
and 2 in hopper before
card 3, and ready the 1442,

Transport. Indicates that card 1 has jammed in
the stacker during the feed cycle for card 2.

il

{alas Lzl i oRd R cmb PO I

T ————— e T TINT REE ST

Card positions after error:

Punch Smﬂon-l Read Station

comer —of > [2] =
Stacker ——om L‘———Hopper

Error indicator: =~ TRANS

Operator procedure: When program halts,
empty hopper, clear
1442 card path, place
cards 2 and 3 in
hopper before card 4,
and ready the 1442,

Feed Cycle. Indicates that the 1442 took an
unrequested feed cycle and, therefore, cards 1,
2, and 3 are each one station farther ahead in
the 1442 card path than they should be.

Card positions after error:

Punch Station 1 Read Station

Corner —a»f [Z] E
Stacker——an! m [I] fa——— Hopper

Error indicator: FEED CLU

Operator procedure: When program halts,
empty hopper, press
NPRO to ejeci cards
2 and 3, place cards 1,
2, and 3 in hopper
before card 4, and
ready the 1442.

Feed Check (read station). Indicates that card }
failed to eject from the read station during its
feed cycle.

Subrowtine Library 37

LI L " i b

Card positions after error:

Punch Stoﬂonl Read Station
o — 7
Stacker g E jas—— Hopper

Error indicator: READ STA

Operator procedure: When program halts,
empty hopper, clear
1442 card path, place
cards 1 and 2 in
hopper before card 3,
and ready the 1442,

Read Registration. Indicates incorrect card
registration or a difference between the first and
second reading of a column,

Card positions after error:

Punch Smtion-l Read Station

Corner —a} m E

Stacker ———a E ta——Hopper

Error indicator: READ REG

Operator procedure: See Feed check (punch
station). Repeated
failures of this type
might indicate a machine
malfunction.

Punch Check. Indicates an error in output punch-
ing.

Card positions after error:

Reod Station

;
e — (1] @
N

Punch Smﬁcﬂ_l

Stacker ———o]

38

Error indicator: PUNCH

Operator procedure: When program halts,
emply hopper, check
card position and press
NPRO to clear 1442 card
path. If necessary,
correct card 1 to pre-
punched state. Place
(corrected) card 1 and
card 2 in hopper before
card 3 and ready the 1442,

CONSOLE PRINTER SUBROUTINE (TYPEO AND
WRTY0) ERRORS

If the carrier attempts to print beyond the manually
positioned margins, a carricr restore (independent
of the program) occurs. :

Subroutine printing begins wherever the carrier
is positioned as a result of the previous print
operation. There is no automatic carrier return
as a result of an LIBF,

If the console printer indicates a not-ready
condition after printing has begun, the sub-
routines loop internally, with interrupt level
4 on, waiting for the console printer to become
ready. Operator procedures are as follows:

1. Press IMM STOP on the console.
2. Ready the console printer,
3. Press PROGRAM START on the console.

KEYBOARD SUBROUTINE (TYPEO) FUNCTIONS

Re-entry

When the Erase Field key is pressed, a character
interrupt signals the interrupt response routine
that the previously-entered kevboard message is
in error and will be reentered. The routine
prints two slashes on the console printer,
restores the carrier to a new line, and prepares
to replace the old message in the I/O area with
the new message., The operator then enters the
new message. The old message in the [/O area
is not cleared. The new message overlays the
previous message, character by character. If
the previous message was longer than the new
message, characters from the previous message
remain (following the NL. character which
terminated the new message).

Backspace

When the backspace key is pressed, the last graphic
character entered is slashed and the address of the
next character to be read is decremented by +1.

If the backspace key is pressed twice consecutively,
the character address is decremented by +2, but
only the last graphic character is slashed. For
example, assume that ABCDE has been entered

and the backspace key pressed three times, The
next graphic character replaces the C, but only

the E is slashed. If the character F had been

used for replacement the paper would show
ABCDEFFF but ABFFF would be stored in the
buffer.

PAPER TAPE SUBROUTINLS (PAPT)

If the reader or punch beccmes not ready during
an 1/0 operation, the stbroutines exit to the user
via the error parameter. The user can request
the subroutine to terminate (clear device busy
and interrupt level) or to loop on not-ready
waiting for operator intervention (interrupt
level 4 on).

The following procedure should be used to
clear a paper tape not-ready condition:

1. Press IMM STOP on the console.
2. Ready the paper tape unit.
3. Press PROGRAM START on the console.
To load the paper tape reader, place the tape
so that the delete characters punched in the
leader are under the read starwheels. To
begin reading at any point in the tape other than
the leader, place the tape so that the frame
(character position) preceding the character
to be read is under the read starwhecls. The
first start reader control after tape is loaded or
repositioned causes the reader to skip the
character under the read starwheels and load the
next character into the buffer,

ADDING AND REMOVING SUBROUTINES

Subroutines can be added to or removed from the
subroutine library as desired by the user. The
DUP control record STORE adds a subroutine, and
the DUP control record DELETE removes a
subroutine. Each subroutine in the IBM-~
supplied System Deck is preceded by a DUP
STORE record.

The user should not remove subroutines that
are called by other subroutines left in the
library (refer to Appendix E for a list of
subroutines called by other subroutines).

Subroutine Library 39

SYSTEM GENERATION OPERATING PROCEDURES (CARD SYSTEM)

Before the Disk Monitor System can begin
operation, the user must perform the following

functions:

1. Load and execute the IBM-supplied Disk
Pack Initialization Routine (DPIR) to
initialize the disk pack.

2. Prepare a Load Mode Control Card and
System Configuration Cards, and insert
these cards into the IBM-supplied System
Deck.

3. Load the above deck into the disk.

4. Using the IBM-supplied Cold Start Card,
load the Supervisor program into core
storage from disk storage.

Each of the above procedures is described in
detail in subsequent sections of this manual,

DISK PACK INITIALIZATION ROUTINE (DPIR)

The DPIR (Disk Pack Initialization Routine)
performs the following functions:

1. Clears the disk and writes disk sector
addresses on all cylinders,

2. Determines which, if any, sectors are
defective and writes the addresses of the
cylinders containing the defective sectors
on sector 0000. 1f sector 0000 is defective,
DPIR does not write any defective cylinder
table.

3. Puts an ID on the disk pack.

The 1130 Disk Routines operate effectively with up
to three cylinders containing defective sectors.
An attempt to read or write a defective sector
that is not identified in sector 0000 results in a
read or write error after the operation has been
attempted 10 times.

At the completion of DPIR, an eight-word table
is written on sector 0000. The first word (word 0)
of the table contains the sector address 0000,
Words one, two, and three contain the first sector
address of any defective cylinders found (maximum
of three). When there is no defective cylinder,
these words contain 0658;5. Word 4 is reserved.
Words five, six, and seven contain a five character
ID name in packed EBCDIC. Words five and six
contain two characters per word, and word seven

containg an EBCDIC character in the left half of the
word and an EBCDIC blank in the right half of the
word.

To determine which sectors are defective, the
uger can dump core upon completion of execution;
the defective sector table starts at location 0771,
The user can also use the disk dump utility program
to dump sector 0, Word 1, 2 and 3 will contain ei-
ther the sector addresses of defective cylinders il

three or less defective cvlinders are found, or 0638

if no defective cvlinders arc found,
Table 10 lists the DPIR hait addresses.

DPIR Card Load Operating Procedures

The procedure for loading and executing the Disk
Pack Initialization Routine is as follows:

1. Load the disk pack in the console cabinet, tur

the File Switch on, and wait for the FILE READY

light to come on.
Put the six-card loader, followed by the DPIR
deck, in the card hopper.

SV

3. Set the console mode switch on RUN,

4. Press IMM STOP, then RESET on the console.
5. Press START on the card reader.

6. Press PROGRAM LOAD on the console; when

all cards have been read from the hopper, press

START on the card reader.

After DPIR is loaded, the routine waits at 02EF
and the keyboard is selected. (The keyboard Select
light comes on.) Wait {or the File Ready light to
come on and then press PROGRAM START to con-
tinue. The KB SELECT light comes on,

1. Enter a five-character ID (of your choice) to be
written on the disk pack. If the ID is less than
five characters, left-justify by following the ID
with spaces. Only those characters recognized
by the Supervisor should be used (see Appendix

D). When the fifth character is entered, the pro-

gram branches to execute. The disk surface is

now cleared and the sector addresses are written.

The routine waits at 03C2.

2. Set all the Console Entry switches off.

3. Press PROGRAM START. The defective
sector and file protect address data is written
on sector 0000, A scan of the disk is now
performed to check for seek faflures. U a
seek or read failure occurs, the routine waits
at 03EA. Other DPIR halt addresses are
described in Table 10.

YR — T

Table 10. DPIR Halt Addresses

Holt Meani Action Required
Address (hex)* " .
002E The keyboard is not restored ond on attempt is mode to lood DPIR.
The routine loods and comes to o holt with interrupt 4 on.
02EE The routine is in WAIT.
039F Sector 0000 is defective; the sector addrasses have been written
onc'ho: disk, lt‘»ut the toble hes not been written on sector 0000,
(70FF loop)
ineisi Turn the console entry switches off; then press ‘
03C2 The routine is in WAIT. Turm e corsole yriry switches of
03F2 The routine has run successfully, but more than tiwee defective
sectors were found. (70FF loop)
03F6 The routine has run successfully and no defective sectors were
found. (70FF loop)
0400 The routine hos run successiully and one 1o three defective
sactors were found. (70FF loop) .
O40A (1) The disk is not ready (70FF loop) (1) Mcke the disk ready ond restert the progrom
H il f the Single Disk Storege, ollowing the
2) A Write Selact error has occurred (70FF loop). The file (2) Turn off o D \ ¢
@ uod'; i’\dic:mf is turned off by a Write Select emor. cariridge unlock indicator 'o‘?:ghv; tum on the
Single ':ﬂt Storage until the dasll: reodyh indicotor
i i f th lights, then resume operation. If the error per-
s :n:ll. .'k(%'r"?o:;)"d failurs occurred during o scan of the sists, 'CE intervention is required.

“ Displayed in Storogs Address Register
USER-SUPPLIED CARDS

Before loading the Disk Monitor System programs
onto the disk, the user must prepare the following
cards: ’
1. Load Mode Control Card
2. System Configuration Deck:

a. SCON Cuard

b. REQ Card(s)

c. TERM Card

The System Loader will give error messages for

Table 11. Load Mode Control Curd tormat

missing or invalid user-supplied cards (see
Appendix A). . ‘

Load Mode Control Card

The Load Mode Control Card is used to specify an
initial load or a reload. It also permits the user

to specify whether the assembler and/or FORTRAN
is to be loaded. At least one of these must be loaded
on an initial load; then, if desired, it can be re-
moved by using the DEFINE function of DUP, The
format is shown in Table 11 (only columns 1 through

Column Punch Meaning
12 Punch Initial load. Monitor System programs, ILS and 1SS subroutines required by the system, and functional subroutines
are loaded. However, the assembler will not be looded if column 2 contains a 0 punch, and FORTRAN will not be
loaded if column 2 contains @ | punch.
1
No 12 Punch Reload. Monitor System programs are reloaded, ond the contents of the User and Fixed areas (including LET/FLET)
ore not chonged. Only programs presently on the disk can be reloaded; if the assembler or FORTRAN were not
loaded during on initial loed, or have since been deleted, they cannot be relooded.
0 Punch Bypass (do not load) assembler,
No 0 Punch Lood assembier.
2 1 Punch Bypass (do not load) FORTRAN,
No 1 Punch Lood FORTRAN,
3 9 Punch Required in oll cases to identify Load Mode Control Card.
System Ceneration Operation Procedures 41
— —— — o 1 TPV p— bl L e) T~ !

3 are used). For example, to initially load the
monitor (including the assembler and FORTRAN),
the Load Mode Control Card is punched with a 12
punch in column 1 anda 9 punch in column 3,

System Configuration Deck

SCON Card

The SCON Card is the deck header card. The
format is as follows:

Columns Contents
1-4 SCON
REQ Cards

REQ Cards identify devices present in system. Onme
card should be prépared for each I/O device on the
system. The System Loader uses this information
for selective generation and loading of ILS sub-
routines and selective loading of ISS subroutines.
The format is shown in Table 12. '

TERM Card

The TERM Card is the last card of the System
Configuration Deck. The format is as follows:

Columns Contents
1-4 TERM

42

NOTE: The reload procedure will not affect the
version and modification level word of DCOM
{sector 8, word 1). Therefore, if more than one
modification level deck is to be run in, dummy up-
dates from modification level 1 to the first modifi-
cation level deck must be performed using the
maintenance program IBM00 (see Note 2 page 77):

Table 12. REQ Card Format

Columns

Device 1-3 10 15-16 { 21-22-

(Primary | (Second
Interrupt | Interrupt
(I‘SS No.) B&ranch | Branch
Address | Address

1442 Cord Reod Punch : 1 08 12
Input keyboard ond console 2 12 Blank
printer)

1134 paper tape reoder or | > REQ 3 12 Blank
1055 paper tape punch

Disk ' 4 10 8lank
1132 Printer [09 Blank
Plotter J 7 1} Blank

NOTE: |f both the console printer and the 1132 Printer are included,
the 1132 Printer will be the principal printing device; if
both the 1442 Card Reod Punch ond the 1134/1055 poper tape
units are included, the 1442 Cord Read Punch will be the
principal 1/0 device.

PROCEDURE FOR INITIALIZING DISK MONITOR ¢. IBM-supplied System Loader Deck, Part 2.

SYSTEM FROM CARDS ' Columns 73-74 contain the ID: E2.
d. User-supplied System Configuration Deck
1. Execute the following: (S8CON Card, REQ Cards, TERM Card).
a. Press IMM STOP on console. e. Remainder of IBM-gupplied System Deck.
b. Press RESET on console, f. Modification level updates decks. if there
c. Press NPRO on the 1442 card reader. are any,

3. Execute the following:
a. Ready the 1132 Printer (if the 1132 Printer

is the prin 1 pri i
2. Load the following decks into hopper of the principel print device)

b. Turn the File Switch on, and wait for the
1442 card reader (see Figure 10). File Ready light on the console to go on.
a. Monitor System Bootstrap, followed by IBM- c. Press START on the 1442 card reader.
.gupplied System Loader Deck, Part 1. d. Press RESET on console.
Columns 73-74 contain the ID: E1, e. Press PROGRAM LOAD on console.
b. User-supplied Load Mode Card, f. The system waits at 0029.

Two Blank Cords

Remainder of System Deck
(1BM Supplied)

{ TERM Ceard

(REQ Cord(s)

‘ SCON C. ard
/
f

‘ Load Mode Card

System Configuration Deck
(User Supglied)

——

/

System Looder Deck - Part 2
(1BM Supplied)

Col 73-74 contain iD: E2

System Loader Deck - Part |
© (IBM Supplied)
Columns 73-74 contain 1D: E1

Monitor System Bootstrap
(18M-supplied) - 6 Cards

Figure 10, System Loader Card Sequence

System Generation Operation Procedures 43

Libdoas g il T SR T K IR oy

RS YRV VNI 8] 9 11 m——— ,, - YR

COLD START OPERATING PROCEDURE NOTE: A cold start cannot be used to resume an

operation that has been previously terminated, /Wm\
The uger must load the Supervigor Program into After the Supervisor has been loaded into core, the
ocore storage from disk storage by using the following procedure may be used:

IBM-gupplied Cold Start Card (last card of sub-

routine deck) or Cold Start paper tape record: Press NPRO on the card reader.

1.

2. Place program deck in the card hopper.
1. to begin operation of the Disk Monitor System 3. Press START on the card reader.
4

after it has been loaded to the disk; . Press PROGRAM START on the console.
2, to return control to the Supervisor;

r a disk cartridge has been changed,
3. aftera 8 Table 13, Cold Start Halt Addresses

The procedure for executing the Cold Start Card

s
is as follows: Wcl: h'A:)d;m Meaning
1. Insert the monitor disk pack in the console 0024 The disk wos not reedy and the first XIO wos o
cabinet. treated o3 o NOP
2. Turn the File Switch on, and wait for the File 0026 The disk wos not ready and the second XIO
Ready light on the console to go on. wos treated as o NOP
3. Put the Cold Start Card into the card hopper 0034 There was o Disk Data Error
followed by a //JOB record and another monitor ok rot rood
control record to processed, 0803 || Disk not ready
4. Press IMM STOP, then RESET on the console. 080A Disk not ready
5. Press START on the card reader., 080F Sector 000A was not read correctly
6. Press PROGRAM LOAD on the console.
o8t Disk not ready
The Cold Start record reads the Cold Start w16 Sector 0009 was not reod correctly
sector (0001) from disk into core location 0802, 081E Disk not reody
The Mo'mtor.Superw.?*or Program is then read into 0823 Sector 0008 was not read correctly /’W\
core. The first monitor control record is read !
under control of the Supervisor Program by the 0839 There was o Disk Dato Error
Monnto;.Control f?ecord Apalyzer rqutme. *Displayed in Storage Addrass Register
Possible stopping locations are given in Table 13.
&
>4

-

-

Y TR RAY P N O) TS DO S 1 A "~ — R T

All of the paper tape records needed to load the
Paper Tape Monitor System to disk storage are
supplied to the user by IBM. These records have
the same functions as the corresponding IBM~
supplied and user-written card decks. These
functions are described under System Generation
Operating Procedures (Card System).

The Load Mode Control record and System
Configuration records are supplied by IBM to the
user of the Paper Tape System. These tapes are
supplied with all the possible configurations, and
the user need only select the configuration for his
particular use. If these tapes are not read
correctly, the System Loader will give error
messages (sec Appendix A).

The tapes constituting the Paper Tape Monitor
System are described below. The procedure for
loading these tapes onto disk is described under
Procedure for Initializing Disk Monitor System
from Paper Tape.

T ape Description
1 System Loader, Part1
2 Load Mode Control Record (same
function as Load Mode Control
Card)
3 System Loader, Part 2
4 System Configuration Records

(same function as System
Configuration Deck)
5 Supervisor Tape (includes the
Loader)
Disk Utility Program
FORTRAN Compiler
Assembler
10 ILS Control Records and Library
Subroutines (2 parts)

W o 2 O

-

11 DPIR Tape (includes core image
loader)
16 Cold Start Paper Tape Record

If FORTRAN and/or the assembler are not to
be loaded during an initial load, the corresponding
tapes (7 and/or 8) need not be read.

PAPER TAPE MONITOR SYSTEM

During a reload of system programs, tapes 1
through 5 must be read. If DUP, FORTRAN,
and/or the assembler are nnt to he reloaded, the
corresponding tapes (6, 7, and/or 8) need nol be
read. The procedures for reloading DUP,
FORTRAN, and the assembler are the same as
the card system procedures. Tupes 9 aud 10 necd
not be read during a reload operation,

DPIR PAPER TAPE LOAD OPERATING
PROCEDURES

The procedure for loading and executing the DPIR
(Disk Pack Initialization Routine) is as follows:

1. Insert the disk pack in the console cabinet.
2. Put the DPIR tape in the reader; position one
of the delete codes that appear after the

program name in the leader under the
read starwheels.
3. Press IMM STOP, RESET, and PROGRAM
LOAD on the console.
4. When the loader reads in and waits, position
the DPIR tape.
Press PROGRAM START on the console.

@

From this point on, the operation is identical
to the card load.

PROCEDURE FOR INITIALIZING DISK MONITOR
SYSTEM FROM PAPER TAPE

To load the paper tape system onto disk, the
operator must perform the following steps:

1. Ready the 1132 printer (if the 1132 printer is the
principal printing device).

2. Place the System Loader, Part 1, (Tape 1) in the
Paper Tape RReader. When loading tapes 1 through
10, and 16, position anv one of the delete codes
following the program name in the tape leader
under the read starwheels.

3. Press RESET on the console.

Paper Tape Monitor System 45

muvmpy LA

s do Lal D R U b U L w N —T

4. Press PROGRAM LOAD on the console. Tape 1 1. Insert the monitor disk pack into the console

is read into core starting at location 0. cabinet.
5. When a WAIT occurs (at 05BC), place the 2. Turn the File Switch on, and wait for the File
Load Mode Control tape (Tape 2) in the Ready light on the console to go on.
Paper Tape Reader. 3. Put the Cold Start paper tape record into the
6. Press PROGRAM START on the console. reader; position any one of the delete codes
7. When a WAIT occurs, place the next system following the program name in the tape
tape in the Paper Tape Reader. leader under the read starwheels.
8. Press PROGRAM START on the console. 4. Press IMM STOP, then RESET on the console.
9. Repeat steps 7 and 8 until the last system 5. Press PROGRAM LOAD on the console,

tape is read.

The System Loader determines if the complete
system has been loaded. If the system has not
been loaded, the System Loader WAITSs for
another tape to be readied by the operator until
the complete system is loaded,

A WAIT at OEAS is a checksum error,

PAPER TAPE CONTROL RECORDS

Paper tape control records mﬁst be punched in
PTTC/8 (perforated tape transmission code).
The formats are the same as the previously-

indicating faulty tape. described card formats. Paper tape control
records must be separated by one NL (new

COLD START OPERATING PROCEDURE line) control character. A control record which
immediately follows paper tape data not followed

The procedure for executing the Cold Start by an NL code must be preceded by one NL code.

paper tape record is as follows: Delete codes may precede or follow this NL code.

46

Table A-1. System Loader Error Codes

APPENDIX A. ERROR MESSAGES

Error
Code Type of Error Corrective Action
3] Check~sum error. Follow Procodure A or relood and restart,
=2 €2 Hlegal card type or blank card. Follow Procedure A or reload and restort.
E3 Card out of sequence. Follow Procedure A or relcod and restart,
& E4 . ORG backword to on address lower than that estoblished Inspect deck for card(s) missing or out of sequence. Correct deck
i by last sector break cord, and reload edit program,
£5 Error in Load Mode card. Maka necessary card correction and reload edit program.
£é Disk error. Press PROGRAM START on console to retry,
\
E7 t Disk pock not initialized or Sector 0 dota damaged. Use DPIR program to initialize Sector 0. Initiol load should follow
since DPIR clears the disk,
E8* | Configuration deck missing or one of the following errors Make corrections and reload edit program,

detected:

o) SCON card not followed by REQ cards.

b) less than 2 REQ cards present .

c) more than 6 REQ cords present .

d) Secondory interrupt Branch Address (18A) not included
in 155 11 card.

ﬂ ' e) Secondary IBA not equal to 12,

\ f) Primary IBA not in range 8 through 12,

g) 1SS number missing or negative.

h) 1SS number 5 detected (illegal) .

i) ISS number greater than 7.

k) TERM card missing

E9** File protect address (in COMMA) prohibits loading System
Loader, Part 2.
Eto** During reload, old FORT or ASM address in COMMA is

different from new FORT or ASM socter address.

ENi* Fixed areo or Core Image Buffer area, as defined by

COMMA, is about 10 be overlayed.

No recovery unless file protect addrass can be lowered by deleting
part of moteriol on disk. System Loader requires temporary use of
Cylinders 198 and 199.

If COMMA hos been damaged, an initial load is required; otherwise
system program deck is foulty.

Same a1 E10.

* Applies to initiol load only.

** Applies to reload only.

Q
Procedure A:
Lift remaining cords from hopper and depress NPRO on 1442,
s Place the two ejectad cards (after corrections) in card hopper,

Pross START on 1442,

1.
2,
3. Replace remaining cards in card hopper.
4.
5. Press PROGRAM START on console.

Appendix A. Error Messages

47

P OO A Y 5 0 O Y O YL R P T T TR L — I

] P — —

L

Table A-2. System Loader (Part 1) Wait Locations

Table A-4. Monitor Supervisor Error Messages

Error Melsoge

Cause of Error

Address * Explanation

orcz Wait ofter disploying E6 error

0530 Wait after displaying E1 error

0680 Wait after displaying €3 error

0806 Wait ofter disploying €2 error

0808 Wait ofter displaying E8 error

0821 Wait ofter disploying E5 error

0835 Wait ofter displaying E9 error

0839 Wait after displaying E8 error

083D Wait after displaying €4 error

08A4 Wait after displaying €7 error

0962 Wait after displaying E4 error

OEES Wait during loading of the System Looder due to
incorrect check sum, e.g., o missing card or
card out of sequence.

Table A-3. System Loader (Part 2) Wait Locations

Address” * Explanation

0220 Wait after displaying € 10 error
022F Wait after displaying £ 10 error
0245 Wait ofter displaying E 11 error
025F Wait after displaying E } error
027D Wait after disploying E 3 error
05C5 Wait ofter displaying € 2 error -
0750 Wait ofter displaying £ 5 error
0816 Wait after displaying € 3 error -
0886 Waoit after displaying € 4 error
0991 Wait ofter displaying £ 2 error
0AD7 Woit after displaying E 6 error
OFFF Watit after displaying END reload

M 01 PHASE NONX

M 02 INVALID

M 03 NON XEQ

M 04.CHARACTER

M 05 OFLO DISK

M 06 NO PROGRAM

M 07 NON DUP

M 09 RECORD TRAP

[IRY

M 11 NOT IDENT

M 12 SEQ ERROR

M 13 T ERROR

Exacution is not permitted for this job.

The above listed record is on iavalid
Supervisor record,

The currently called execution is not
permitted .

A character in the nome listed above
is not permitted,

The records tisted above were 100 man,
for the disk storage allocated.

The mainline program nome listed above,
or o progrom called by a LINK statement
is not in the LET or FLET table or is not
a mainline program.

DUP is not allowed for the subjob .

A system program detected a Supervisor
record and returned control to the
Supervisor.

The cartridge identifier on the cortridge
is not identical to the one on the input
record. The Supervisor woits to allow
the operator to rectify the difference if
desired.

LOCAL, NOCAL, and/or FILES recurds
ore intermixed (they must be grouped).
This message will olso be given when o
comma is missing in the record preceding
a continuation record.

Column B in the JOB record does not
contain a blank or 6 T. An ampersand
is printed in ploce of the illegal char-
acter. The Supervisor waits so that the
operator can (1) correct the JOB record,
reload it in the reader, and press
PROGRAM START on the console; or

(2) press ROGRAM START on the
console, In either case the JOB record
is processed completely before any other
processing. The job is considered non-
temporary if column 8 contains a blank
or a character other thona T.

*Disployed in Storoge Address Ragister

48

TR

Table A-S. Monitor Supervisor Wait Locations

Address*® Explanation Operator Action

0005 Operator pressed PROGRAM STOP on the console. Press PROGRAM START to continve,

0029 1/O error or device not-ready condition. Refer to Subroutine Librory - Preoperative Errors.

0000 Disk error, Press PROGRAM START to retry.

07€6 1. Pause due to PAUS control record, }. Press ROGRAM START to continue.
2. \dentifior error in JOB control record. 2. Corvect the record, roenter it, and press PROGRAM START; or press

PROGRAM START,

0398 Paper tape reader not ready, Ready poper tope reader and press PROGRAM START,

0704 Column 8 in the JOB record does not contoin piblank or Correct the record, reenter it, and press PROGRAM START; or press
al. PROGRAM START, In either case, the current job is processed first .

*Disployed in Storage Address Register

b iy

Appendix A. Error Messages

49

Rl o

IR ey "

Table A-6, Loader Messages/Error Messages (Part 1)

Code and Message

Explanation and Recovery Procedures

RO1 ORIGIN BELOW 1ST WORD OF MAINLINE

*R 03 LOAD REQUIRES SYSTEM LOCALS, LEVEL }

*R 04 LOAD REQUIRES SYSTEM LOCALS, LEVEL 2

R 06 FILE(S) TRUNCATED (SEE FILE MAP)

R08 CORE LOAD EXCEEDS 32K

R 10 LIBF TV REQUIRES 82 OR MORE ENTRIES

R11 TOO MANY ENTRIES IN LOAD-TIME TV

R12 LOCALS/SOCALS EXCEED WKNG, STORAGE

R 13 DEFINED FILE(S) EXCEED WKNG. STORAGE

PR 16 XXXXX 1S NOT IN LET OR FLET

SR 17 XXXXX CANNOT BE DESIGNATED A LOCAL

**R 18 XXXXX CANNOT BE DESIGNATED A NOCAL

"R 19 XXXXX IS NOT ON A SECTOR BOUNDARY

R 20 XXXXX COMMON EXCEEDS THAT OF ML

**R 21 XXXXX PRECISION DIFFERENT ROM ML

**R 22 XXXXX AND ANOTHER VERSION REFERENCED

**R 23 XXXXX IS A USER AREA FILE REFERENCE

The Loader has been Instructed to load a word Into an address lower than that of the
first word of the mainline program. The ORG statement which caused this situation
must be ramoved, or the mainline program must start at o Jower address.

No error. The load was too long to fit Into core. The Loader has made two overlays,
and the program will be exacuted with those wo groups of routines overloying each

other (refer to Systam Ovarlays).

No error. The load vz 16 long to fit inta core. Ths Looder has made three ovarlays,
and the program will be uxecuted with these thres groups of routines overlaying one
another (rafer ro Systars Overlays).

At least one definod file has been truncated either bacause the previously defined
storage area in the User or Fixed orea was inadequate or because there is inadequate
Working Storags availoble to store the file, See Message R 12 for o possibie remedy.

The oader has baen instructed to load a word infto an address exceeding 32, 767, which
is a negative number. The loading process is immediately terminated, because the
Loader cannot process negative addreasas, This error wos probably coused by bad dote,
i.e., the progrom being loudad from the ditk has heen destroyed,

Thera ore at leust G2 different entry points referenced in the load by LIBF statements.
A possible remcdy would be to subdivide the load into two or more links,

There are more than 135 references to different entry points with CALL and/or LIBF
statements in the load. A possible remedy 1vauld be to subdivide the load inta two or
more links.

Yhere is insufficient Working Storage remaining to accommodote the LOCAL and/or
SOCAL overlays required in the load. A possible remedy would be to create more
Working Starage by deleting subroutines, subprograms, and/or dota no longer required
by the installation.

There is insufficient Working Storage remaining to accommodate even one record of
the defined fila(s). See Message R 12 for a possible remedy .

The program or data file dusignutad in the message cannot be found in LET or FLET,
A possible remady is o :tore the program or data file. |f the name connot be exploined
otherwise, the program beiny loaded has probably been destroyed.,

The routine named ir this measuge i1 sither u type which cannot appear on a LOCAL
record, or this routine, which is a LOCAL, hos been referenced, directly or indirectly,
by another LOCAL, the nume of which cannot be supplied by the Looder.

The routine nomed in the message is cither a mainline, an ILS, or it has on invalid
type code. |n any case, it may nol appea on a *NOCAL record.

The areo nomed in this messuge does not begin at a sector boundary, which implies
that it is not o sloroge area but a ralocotable program, and thus o possible error.
Choose another urea for the storage of this file.

The length of COMMON for the toutine named in this messoge is longer than that of
the mainline program. A pousilile remedy is to define more COMMON for the mainline

program .

The precision for the rautine named in this message is incompatible with that of the
mainline progrom. Make ine precisions compatible.

Al least rwo different versions of the same | /O routine have bean referenced, e.g.,
bath CARD?Z and CARDD (FORTRAN utilizes the™ Z* version), If a disk routine is
nomed in the message, it is possible that the XEQ record specifies one version, e.g.,
DISKO, whereas the program references another, e.g., DISK1 (a blank in col. 19 of
the XEQ record couses DISKZ to be chosen).

The oreo nomed in this message is in the User area; reforances in DEFINE FILE and DSA
statements for *STORECI functions must ba to the Fixed oreo.

*FORTRAN mainline programs only
SEXXXXX = the namae of the program or ditk file conrerned

f’m Table A-6. Loader Messages/Esror Messages (Part 2)

Code and Message Explanation and Recovery Procedures

TH A LIBF AND A CALL The routine named in this messoge has been either referenced improperly, i.e., CALL
'R 24 XXXXXIS 8O instead of LIBF or vice versa, or has been referenced in both CALL and l:lBF sn‘nmmn.
The only remedy is to reference the routine properly. NOTE: NOCALs must be CALL-
type routines,”i.e., type 4 or 6 routines (refer to Appendix B),

R 25 XXXXX HAS MORE THAN 14 ENTRY POINTS This message usually indicates that the routine has been destroyed since no routine is
stored with more than 14 entry points.

° "R 24 XXXXX HAS AN INVALID TYPE CODE The routine nomed in this message has either been designated on an XEQ record ond is
not a mainline program, indicoting o mistake has probably been made in preparing the

XEQ record, or contains a type code other than 3 (subroutine), 4 (functional), 5 (155),

or 6 (ILS), in which cose the routine has probably been destroyed. This error could

also be coused by a DSA statement referencing o program which is in Disk System format,

@ or @ CALL or LIBF referencing a program in Core Image or Disk Data format,

*R 27 XXXXX LOADING HAS BEEN TERMINATED The loading of the mainline prog d in this ge has been terminated as a
rasult of the detection of the error(s) listed in the messages preceding this one.

eeg 32 XXXXX CANNOT REF'CE THE LOCAL XXXXX The routine named first in this message has referenced the routine named second, which
is @ LOCAL. Either the first named routine is a LOCAL or it is entered (directly or
indirectly) from o LOCAL. Neither case can be ollowed for it could cause a LOCAL

to be overlaid by another LOCAL before the first LOCAL has been complately executed.

R40 XXXX (HEX) = ADDITIONAL CORE REQUIRED If the load was executed, XXXX)g is the number of words by which it exceedad core
storage before the Loader made it fit by creating special overlays (SOCALs); if the

load wos not executed, the first occurrence of the message is os described and the
record indicates the number of words by which it exceeds core storage even after
creating the deepest level of speciol overlays. A possible solution to the latter problem
is to create two or more links or LOCALs.

(VW suep 41 XXXX (HEX) TOO MANY WDS IN COMMON The length of COMMON specified in the mainline program plus the length of the core
y . lood exceeds core storage by XXXX 14 words.

R 42 XXXX (HEX) 1S THE EXECUTION ADDR No error. This message follows every successful conversion from Disk System format
to Core Image format provided o core mop is requested.

R 43 XXXX (HEX) = ARITH/FUNC OVERLAY SIZE No error. It has been necessary to employ the special overlays (SOCALs), ond
XXXX14 is the length of the orithmetic/functional overlay (refer to System Overlays).

R 44 XXXX (HEX) = FI/O + /O OVERLAY SIZE No error, It has been necessary to employ the special overlays (SOCALs), and
XXXX14 18 the length of the FORTRAN 1/O, 1/O, and conversion routine overlay

(refer to System Overlazs).

R 45 XXXX (HEX) = DISK FI/O OVERLAY SIZE No error. It has been necessary to employ the special overlays (SOCALs), and
XXXXjg is the length of the Disk FORTRAN |/O overlay, including the 320-word
buffer,

R 46 XXXX (HEX) = AN ILLEGAL ML LOAD ADDR XXXX]4 is the address at which the loader has been requested to start loading the

mainline program, but this address is lower than the highest address occupied by the
version of Disk /0O requested for this lood, Either make the mainline origin higher
or request o shorter version of Disk.

@

R 47 XXXX (HEX) WORDS AVAILABLE No error. XXXX)4 is the number of words of core storage not occupied by this core
load. It is possible to get both this message and R41 in the some core lood. See
footnote to R41 for explanation.

o

#XXXXX = the name of the program or disk file concerned (Concluded)

*EXXXXX = the name of the program concerned
**+«COMMON may not occupy any storage location lower than 896, 1216,q, 121610, or 15360,
if DISKZ, DISKO, DISK1, or DISKN, respectively, is used.

Appendix A. Error Messages Sl

nm—

T PO S I Y B

el ol B b BRI R) L AURLELLAL TR LU g

Tible A-7. Amsmbler Ezror Memsages

Ervor Code ond Error Message

Couse of ﬁvnv

Corrective Action

ASSEMBLY TERMINATED

A 03 DISK OUTPUT EXCEEDS W.S.

A 04 SAVE SYMBOL TABLE INHIBITED

A0l MINIMUM W, S, NOT AVAILAME--~

A02 SYMBOL TABLE OVERFLOW EXCEEDS 4 CYLINDERS

Less than 33 sectors of Working Storage are
avallabje ot the beginning of the amembly,

Symbol table overflow exceeds 3392
symbols (refer to AnM-q%

r to compute number of symbols
allowed in'a program).

Disk output is greater than Working
Storage,

With SAVE SYMBOL TABLE option, symbol
table exceeds the ollowable System
Symbol Table size of 100 symbols, or at
least one assembly error was detected,

Perform o DUP DELETE to expand Working
Storage 1o a minimum of 33 seciors before
attempting further assemblies,

Y. Reduce number of symbois and
reassemble,

2. Divide progrem into segments and R
assemble each separately.

1. If error occured during pams 1, the
assembler will wait ot 0ADS . When
PROGRAM START is pressed, the
assembly will continue in the two~pass
mode. Thersfore, the operator should
first insure that the source statements
can be reod a second time without
encountering the next monitor control
record.

2. If error occurred during pass 2, object
output exceeds Working Storage.
Perform a DUP DELETE to enlarge
Working Storage.

Reduce number of symbols and/or correct
the erroneous statements and reastemble,

W

IV gy

Table A-8. FORTRAN Error Codes (Part 1)

Error

Number ® Cause of Error

col Non=numeric character in statement number.

c o2 More than five continuation cards, or continuation card
out of sequence,

co3 Syntax error in CALL LINK or CALL EXIT statement,

C 04 Undeterminable, misspelled, or incorrectly formed
stotement ,

C 05 . Starement out of sequence.

C 06 Statement following transfer statement or o STOP stotement
does not havae startement number .

co7’ Nome longer than five characters, or name not starting
with an olphabetic character,

C 08 Incorrect or missing subscript within dimension information
(DIMENSION, COMMON, or type).

c o9 Duplicote statement number.

c1i0 Syntax error in COMMON statement.

cn Duplicate name in COMMON statement.

c1n Syntax error in FUNCTION or SUBROUTINE statement,

c1l Parameter (dummy argument! appears in COMMON
statement .

Cl4 Name appeans twice os a parameter in SUBROUTINE or
FUNCTION statement ,

c15 *10CS control record in @ subprogrem,

Clé Syntox error in DIMENSION statement,

c Subprogram name in DIMENSION statement .

c8 Nome dimensioned more than once, or not dimensioned an
first appearonce of name.

ci1? Syntox error in REAL, INTEGER, or EXTERNAL stotement,

Cc20 Subprogram name in REAL or INTEGER statement,

c2 Name in EXTERNAL which is oiso in @ COMMON or
DIMENSION statement .

c22 IFIX or FLOAT in EXTERNAL statement.

ca invalid reol constant.

Ccu invalid integer constant,

c2s More than 15 dummy arguments, or duplicate dummy
argument in statement function argument list.

C2 Right parenthesis missing from a subscript expression.

c27 Syntax error in FORMAT statement,

ca» FORMAT withou! ste t ber,

c» Field width spacification > 145,

(ol i} In @ FORMAT statement specifying € or F conversion,

w> 127,453, ord>w, where w Is on unsigned

Table A-8, FORTRAN Eror Codes (Part 2)

Ercor

Number® Couse of Error

C 30 integer constant specifying the totol field length of the

Cont. data, ond d is an umigned integer constant spacifying
the number of decimal places to the right of the decimal
point,

c3 Subscript error in EQUIV \LENCE statement .

ca Subscripted variable in a statement function,

c33 Incorrectly formed subscript expression.

cu Undefined variable in subscript expression,

¥ Number of subscripts in a subscript expression does not
agree with the dimension information,

C36 Invalid arithmetic statement or variable; or, in a
FUNCTION subprogram the left side of an arithmetic
statement is a dummy argument {or in COMMON),

c37 Syntax error in IF storement.

Cc38 Invalid expression in {F statement,

C¥ Syntax error or involid simple argument in CALL stare-
ment,

C40 Invalid expression in CALL statement,

Cc4l Invalid expression to the left of an equal sign in o state-
ment function.

C 42 Involid expression to the right of an equal sign inu state-
ment function,

C43 inan If, GO TO, or LD srateraent a statement number is
missing, invalid, incorrectly placed, or is the number
of o FORMAT statement .

C4 Syntax error in READ or "WRITE statement .

Cc4 *1OCS record missing with a READ or WRITE statement
{mainline program only).

C 46 FORMAT stotement number missing or incorrect in o
READ or WRITE statement.

C47 Syntax error in input/output list; or an invalid list
elemant; or, in a FUNCTION subprogram, the input list
element is a dummy argument or in COMMON .

C 48 Syntax error in GO TO statement .

C 49 index of a computed GO TO is missing, invalid, or not
preceded by o comma.

cs0 *TRANSFER TRACE or *ARITHMETIC TRACE control
racord present, with no *1OCS «ontrol record in © main-
line progrom.

cs Incorrect nesting of DO ts; or the terminol stote-
ment of the associated DO statement is a GO YO, IF,
RETURN, FORMAT, STOP, PAUSE, or DO statoment,

Cs2 More thon 25 nested DO stotements,

€53 Syntax error in DO statement,

C 54 Initial value in DO statement is zero.

*Printed at the conclusion of Compilation. Refer to "Compilation Error Messages” under

FORTRAN Printouts; also see “Type 00 Error Metsages” in the same section.

Appendix A. Emor Messages

" b YA I " R 1]

T R LA A i i

s3

Table A-8.

FORTRAN Error Codes (Part 3)

Error
Number

Cause of Ercor

CSs5

C59

C 60

(o]

C 62

ce63

C 64

C 65*

C 46"

c 67"

C 68

C 69

c70

cn

c72

c73

In a FUNCTION subprogrom the index of DO is a
dummy argument or in COMMON,

Syntax error in STOP statement.
Syntax error in PAUSE statement .
Integer constant in STOP or PAUSE statement is > 9999,

Last executable statement before END statement is not
a STOP, GO TO, IF, CALL LINK, CALL EXIT, or
RETURN statement,

Statement contains more than 15 different subscript
expressions .

Statement too long to be scanned, because of compiler
expansion of subscript expressions or compiler addition
of generated temporary storage locotions,

All variables are undefined in an EQUIVALENCE list.

Variable made equivalent to an element of on array, in
such @ manner as to cause the array to extend beyond
the origin of the COMMON area.

Two variables or array elements in COMMON are
equaled, or the relative locations of two variables or
array elements are assigned more than once (directly or
indirectly).

Syntax error in an EQUIVALENCE statement; or an
itlegal variable name in an EQUIVALENCE list,

Subprogrom does not contain @ RETURN statement, or
a mainline program contoins @ RETURN statement.

No DEFINE FILE in a mainline program which has disk

READ, WRITE, or FIND statements,

Syntax error in DEFINE FILE,

Duplicate DEFINE FILE, more than 75 DEFINE FILES,
or DEFINE FILE in subprogrom.

Syntax error in record number of READ, WRITE, or
FIND statement.

*The detection of o code 45, 66, or 67 error prevents any subsequent
detection of any of these three errors.

Table A-9. DUP Error Messages (Part 1)

Code and Printed Message*

Description

WS TO0 LONG

D 01 NOT PRIME ENTRY

D 02 INVALID TYPE

D 03 INVALID HEADER LENGTH

D 05 SECONDARY ENTRY POINT NAME ALREADY IN LET IS....

D 13 DCTL, FUNCTION
D 14 OCTL, FROM FLD

D 150CTL, TO FIELD
D 16 DCTL, NAME FLD

D 17 DCTL, COUNT

D 18 DCTL, TMP MODE
D 41 FIXED AREA PRESENT

D 42 ASSEMBLER NOT IN SYSTEM
D 43 FORTRAN NOT IN SYSTEM
D 44 INCREASE VALUE IN COUNT FIELD

D 45 EXCEEDS WORK STORAGE

D 61 DUPCO, EXCEEDS WORK STORAGE
D 62 EXCEEDS WORK STORAGE

D 44 EXCEEDS FIXED AREA

D 71 SEQUENCE OR CKSUM

D 72 LOAD BLANK CARDS

D 82 NON FILES RECORD

D83 INVALID CHARACTER

D 84 EXCEEDS SECTOR ALLOCATION

An attempt is made with *STOREMOD to move on item from Working Storage
thet is longer than the item to be overloid in the User or Fixed Area.

The primary name of the program in Working Storage does not match the
name on the DUP control record.

One of the following is detected: non-DSF program, misposiiioned headar,
foreign data, or erroneous subtype.

Word six of the DSF header is outside the renge of 3-45.
similar to D 02, except for subtype.

The cautes ore

The specified nate is alreody in LET. The name must be dclered bafore this
subprogram can be stored.

An involid DUP function specified in columns 1-12 of the DUP control record.

Unacceptable characters are in columns 13 and 14 of the DUP control racord .
If Working Storoge is specified in columnms 13 and 14, then there is no valid
program in Working Storoge, i.a., the Working Storage Indicotor has been
sot to zero, thus inhibiting the movement of progroms from Working Storoge .

u bia ch
P

s are in columns 17 and 18 of the DUP control record.

If this is @ *STORE control record, then the name is alreody in LET/FLET.

If this is o *DUMP control record, then ths name is not found in LET or FLET.
If this is o *DUMP control record of Working Storoge to the principal 1/0,
then o name is required in columns 21 through 25 of the DUP control record.
If this is o *DELETE control record, then the nome is not found in LET or FLET.
If this is o *STOREMOD control racord, then the nome is not found in LET

or FLET.

Columns 27 through 30 are blank or include alphabetic characters.
The count fisld requires o decimal number.

This function is not ollowed during the JOB 7 mode.

The FORTRAN compiler and/or assembler cannot be eliminoted if o Fixed
areo hos been previously defined.

The assembler has previously been elimincted from the system.

The FORTRAN compiler has previously been eliminated from the tystem .
The count field was read as a value of zero or one. The first DEF INE
requires one cylinder for FLET plus one cylinder of Fixed orea.

Therecfter, o little as one cylinder of additionol Fixed area can be defined.

The initiotion or expansion of the Fixed orea is limited to the Working
Storage available.

This function requires more Working Storage thon is available.

The Working Storage area is nol large enough to contain the program specified.
There is insufficient room in the Fixed orea for the program.

The cards are out of sequence, or there was an arroneous checksum.

More blank cards ore required to complete the dump. The operator performs
an NPRO and places blank cards between the two cards ejected, removas the
first cord, ploces the first card in the output stacker, places the remainder
in front of the cards stil! in the reader hopper, and presses the raoder START
button.

The first six choracters of records following *STORECI are not *FILES. The
number of *FILES records is determined by the count fleld of DUP control
record STORECH.

The *FILES record foliowing the *STORECI DUP control record hos on invalid
character.

Yoo many Files have boen defined. More than two szctors are required to
contain the information from the *FILES record.

*Printed upon detection of an arroneous DUP contvel record.

Appendix A. Error Messages

S5

" e ” il e ! " e

Table A-9. DUP Eror Messages (Part 2)

Code and Printed Message

Description

D 92 INVALID CI CONVERT

D 94 LET/FLET OVERFLOW

The Loader has inhibited the continuation of *STORECI. The specific
reason has been printed by the Looder,

A ninth sector of LET/FLET is required for the LET/FLET entry. A deletion
of o progrom with a LET/FLET entry of similar size is required before this
program can be stored.

NOTE: DCTL means the error was detected in the DUP control record. DUPCO means the error was detected In the DUP common section.

Table A-10. DUP Waits and Loops

Address* Explonation Operator Action
Loops: System check. Perform an initic! lood
70FF 20287 LET/FLET, COMMA, of entire Monitor System

and DCOM do nat (mjum’ﬁmlv
ogree. Operating Procedures).
Wait ot 092C Poper tape reader not Ready paper tope reader
ready ond press PROGRAM
START.
Wait ot 0005 Operator pressed Do not alter core
PROGRAM STOP storoge. To continue,
on console. press PROGRAM START.

*Displayed in Storage Address Register

Table A-11, FORTRAN 1/0 Error Codes

Error Code* Couse of Error

F000 No *10CS control card appeared with the mainline
program and |/O was ottempted in a subroutine.

FOO! V. Logical unit defined incomectly.

2. Ne *1OCS control record for specified 1/0
device.

F002 Requasted record exceeds ol located buffer size.

F003 1tlegal chorocter encountered in input record.

FO04 Exponent too large or too small in input field.

F005 More than one E encountered in input field.

F008 More than one sign encountered in input fleld.

F007 ‘| More thon one decimal point tored in
input fiold.

F008 1. Read of output-only device.

2. Write of input-only device.

FOO0% Real varigble transmitted with an ! format specifico~
tion or integer varichle transmitted with on E or F
formot specification.

F100 File not defined by DEFINE FILE statement.

E100 File roceﬂl number too large, equal to zero,
or negative.

F103 Disk FIO (SDFIO) has not been initialized.

DISKZ Errors:

F102 Read error.

F104 Write error.

F106 Reod back check error.

F108 Seek error.

F10A Forced read emor (seek or find).

*Displayed in Accumulator

APPENDIX B. DATA FORMATS

DISK SYSTEM FORMAT (DSF) Word Contents
Unless otherwise instructed, DUP automatically 1 Zero
converts programs in Card System format (CDS) to 2 Checksum if source was cards;
Disk System Yormat (DSF) when storing programs to otherwise zero
disk storage. Likewise, programs in DSF are con- 3 Type, subtype, precision
verted to CDS when dumping from disk storage. 4 Effective length of program, i.e.,
® Disk System format is shown in Figure 11; Card the terminal address in the program
System format is described elsewhere in this 5 Length of COMMON (words)
appendix. 6 Length of program header record
L minus 9
T Zero
Program Header Format 8 Length of program, including
) program header record in disk
The contents of the program header record (see blocks
Figure 11) vary with the type of routine with which 9 Number of files defined
it is associated. The first 12 words of the program 10-11 Name of entry point 1 (see
header record for the seven types of programs are Appendix G)
identical except for word 6, which is 9 less than 12 Address of entry point 1 (absolute
the number of words in the program header record. for type 1, relative to zero
The format of these 12 words is as follows: otherwise)
W Dota Block
p A
— m:_JL ~ . — J
rogram Header .
P(C"g-ﬁs': words) Group HD.:':., m::::;o.::afd
See description below. (1-8 words) end-of - program
Indicator Word Indicator words and dote Md;:‘d_ f d
Data Heoder (2 words): dato groups until he od:r.&':g:::‘): ata
Word 1 - Relative core starting data break
oddress of where data Word | - Relotive oddress of
is 10 be loaded Dato Breck - next availeble core location
o Word 2 t:‘::‘:’: 'd::ow'::;::";:‘l":umb.r C?”" Ab!:r.cck in sequence of program Word 2 - Word count (0)
of words in next data heoder address, e.g., ORG, BSS, DSA
2. A new data record
° 3. The end of the program

Figure 11, Disk System Format

Appendix B, Data Formats S7

g B ULl Gl Lo LRl T

) §3 183 ey Y w— DI TR) —n JUPBL O 0 3 e Y

After the first 12 words, the program header

record format depends on the type of program. The

header record for types 1 and 2 (absolute and
relocatable mainline, respectively) conaisats of
the first 12 words. The program types and their
header record formats are shown below.

Program Types

Type
Code

[\-]

Type of Program

Mainline (absolute)

.Mainline (relocatable)

Subroutine, not an ISS, referenced
by LIBF

Subroutine, not an ISS, referenced
by CALL

Interrupt service subroutine (ISS)
referenced by LIBF

Interrupt service subroutine (ISS)
referenced by CALL

Interrupt level subroutine (ILS)

Program Formats

Name of entry point 2 (30 bits,
right-justified)
Address of entry point 2 (relative

Name of entry point 3 (30 bits,
right-justified) .
Address of entry point 3 (relative

Type 3, 4:
Words Contents
13-14
15
to zero)
17-18
19
to zero) .
20-54

Three words per entry point as
above, to a maximum of 14 entry
points. The header record ends
at the last defined entry point;
thus, it is of variable length

Type 5, 6:

Words Contents

13 51 + ISS number

14 ISS number

15 Number of interrupt levels required

17 Interrupt level number associated
with primary interrupt*

18 Interrupt level number associated

with secondary interrupt

Type 7:

Words Contents

13 Interrupt level number

*The 1442 Card Read Punch is the only device re-
quiring more than one interrupt level.

Program Subtypes

Subtypes are defined only for type 3 and 4 sub-
routines. When undefined, the field contains a zero.

For type 3 subroutines, subtypes are defined as
follows:

Subtype Deascription

0 In-core subroutines, Of the IBM
subroutine library, this group in-
cludes the trace, fix, float, dump,
subscript, normalize, flipper,
initialization, and certain conversion
subroutines

1 Disk FORTRAN 1/0 subroutines,
SDFIO and SDFND

2 Arithmetic subroutines, e.g., FADD

3 FORTRAN Format subroutine SFIO,
and FORTRAN 1/0 subroutines, e. g.,
CARDZ

TR 1R O T N O g O N YR T TR YT T o

For type 4 subroutines, subtypes are defined as
follows:)

Subtype Description
0 All type 4 subroutines which are not
subtype 8, e.g., DMTDO
8 Functional subroutines, e.g., SIN

Appendix E lists all IBM-supplied subroutines and
their subtypes.

DISK CORE IMAGE FORMAT (DCI)

A program in Digk Core Image format (DCI) is one
that the Loader has converted from Disk System
format (DSF). A DCI program is an entire core
load, i.e., it consists of a mainline program, all
subroutines referenced in the core load (except the
Disk I/0 routine), the object-time transfer vector,
and the core image header record. The mainline
program and subroutines appear as they will at
execution time; however, the Loader must prepare
the program for execution before it is read into
core storage.

Although programs are loaded faster from DCI
than from DSF, DCI programs usually occupy more
disk storage because they constitute an entire core
load. In addition, unlike DSF programs, the areas
reserved by BSS and BES statements are a part of
DCI programs unless the first statement in the
:nainline is a BSS or BES,

A typical DCI pregram is stored on disk in the
User/Fixed area as follows:

Core Image
Heoder
Record

Mainline Subroutines
Progrom (if any)

Object~time
Transfer Vector

The object-time transfer vector is described in
the section titled The Loader. Information contained
in the 60-word core image header record is used to
load the DCI program into core before execution.
The format is as follows:

Words Description
1-6 Interrupt transfer vector (words
8-13 at execution time)
7 Setting for index register 3 at
execution time
8 Core address (at execution time) of
the subroutine I11.502
9 Number of files defined
10 Length of COMMON (in words)
11 Code for requested version of the

Disk 1/0 subroutine (-1 = DISKZ,

0 = DISKO, 1 - DISK1, 2 -- DISKN)
12 Core address (at execution time) of

the entry in the LIBF TV which is

associated with the Disk I/0O sub-

routine

13 Length of the object-time transfer
vector (in words)

14 Core address (at execution time) of

the first word of the mainline pro-
gram, exclusive of initial BSS and/or
BES statements
15 Total length of mainline program,
subroutines, and object-time transfer
vector (in words)
16-60 Reserved

DISK DATA FORMAT (DDF)

Disk Data format (DDF) describes information
placed in the User area, Fixed area, or Working
Storage area as a result of the DUP control record
STOREDATA, Disk Data format consists of 320
binary words per sector; there are no headers,
trailers, or indicator words.

CARD SYSTEM FORMAT (CDS)

Card System format is in terms of words on binary
cards (see Card Data Format). This is used for
relocatable programs. The card ID and sequence
numbers (columns 73-80) are in IBM card code.

Mainline Header Card

A mainline header card specifies the size of the
common area and the size of the work area. It is

Appendix B. Data Formats 59

WO PSR | N O 1 ooy PR

- " VR RN N O Y O ¢ il Wl DU EE AR

the first card of the mainline program. The
format is as follows:

Word Contents
1 Reserved
2 Checksum®*
3 Type code (first 8 bits):

0000 0001 - absolute
0000 0010 - relocatable
Precision code (last 8 bits):
0000 0001 - standard
0000 0010 - extended
0000 0000 - undefined

4 Reserved

5 Length of COMMON storage area
(FORTRAN mainline program
only)

6 0000 0000 0000 0011

7 Work area required (FORTRAN
only)

8-54 Reserved

*The checksum is the two's complement of the
logical sum of the record count (position of the
record within the deck) and the data word(s). -
The logical sum is obtained by summing the
data word(s) and the record count arithmetically

with the addition of a one each time a carry occurs

out of the high-order position of the accumulator,

Data Cards

Data cards contain the instructions and data that
constitute the assembled program. The format is
as follows:

Word Contents
1 Location (The relative load address
of the first data word of the card or
record, Succeeding words go into
higher numbered core locations.
The relocation factor must be added
to this address to obtain the actual
load address. For an absolute
program the relocation factor is
zero.)
2 Checksum
3 Type code (first 8 bits):
0000 1010
Data word count (last 8 bits)
4-9 Relocation indicators (2 bits per
data word):

10

11-54

EOP Card

00 - nonrelocatable or absolute
01 - relocatable
10 - LIBF (one word call)
11 - CALL (two word call)
Data word 1
Data words 2 through 45

An EOP (end of program) card is the last card
of each program and subroutine. The format is

a8 follows:

Word

5-54

Contents

Starting location of next routine
(this number is always even and
is assigned by the assembler)
Checksum
Type code (first 8 bits):

0000 1111
Last 8 bits:

0000 0000
XEQ address, if mainline program
Reserved

Subroutine Header Card

A maximum of 14 entry points can be defined for
each subroutine, The format of the subroutine
header card is as follows:

Word

1
2
3

Contents

Reserved
Checksum
Type code (first 8 bits);
0000 0011 - to be called by a
one-word call only (LIBF)
0000 0100 ~ to be called by a
two-word call only (CALL)
Precision code (last 8 bits):
0000 0000 - undefined
0000 0001 - standard
0000 0010 - extended
Reserved
Number of entry points times three
Reserved
Name of entry point 1
Relative address of entry point 1
Names and relative addresses of
entry points 2 through 14
Reserved

@

™

ISS Header Card

An ISS (interrupt service subroutine) header card
for each interrupt service subroutine identifies
the entry point defined by an ISS statement. Only
one entry point can be defined for each
subroutine. The format of the ISS header card
is as follows:

!ﬂ Contents
1 Reserved
2 Checksum
3 Type code (first 8 bits):

0000 0101 - to be called by a
one-word call only (LIBF)
0000 0110 - to be called by a
two-word call only (CALL)
Precision code (last 8 bits):

0000 0000 - undefined
0000 0001 - standard

0000 0010 - extended

4-5 Reserved
6 Six plus number of interrupt levels
required
7-9 Reserved
10-11 Subroutine name
12 Relative entry address
13 Address of ISTV (interrupt service

transfer vector) is equal to 519
plus the ISS number, *

14 1SS number (displacement in ISTV)
= 1-81

15 Number of interrupt levels required

16 ID number for the primary interrupt
level required (0-5)

17-29 1D numbers for remaining interrupt
levels required (0-5)

30 Edit word (contains a 1)

31-54 Reserved

*The ISTV table is initialized by the Loader. This
table starts at location 0034. Each TV entry in
this table contains the starting addresses for the
corresponding ISS routine (maximum of 8 TV
entries).

ILS Header Card

An ILS (interrupt level subroutine) header card
identifies the ILS routine. The format of the
ILS header card is as follows:

Word Contents
1 Reserved
2 Checksum
3 Type code (first 8 bits):
0000 0111
Reserved (last 8 bits)
4-5 Reserved
6 0000 0000 0000 0100
7-9 Reserved
10-12 Reserved
13 Interrupt level number
14-54 Reserved

CARD DATA FORMAT (CDD)

Card Data format (CDD) is shown in Figure 12.
Fifty four words can be placed on a card (1-1/3
columns per word, 4 columns for 3 words). The
word numbers appear in every third column across
the top of the card.

PRINT DATA FORMAT (PRy)

Print Data format is shown in Figure 13. There are
16 four-character words per line, with a space
after each word, and an additional space after each
fourth word.

PAPER TAPE SYSTEM (PTS) AND PAPER TAPE
DATA (PTD) FORMATS

Paper Tape System format (PTS) is analogous to
Card System format (CDS), and Paper Tape Data
format (PTD) is analogous to Card Data format
(CDD).

In Paper Tape format, two frames contain one
binary word, which is equivalent to 16 bits per

Appendix B. Data Formats 61

TP I S L} VY PITER BEL 11| —

bl VU L) N |V — L " Y Ly o

binary word in Card Data format, In addftion, a
one-frame word count precedes a paper tape record.
A paper tape data record contains a maximum of 54
binary words, i.e., 108 frames plus a word-count-
frame,

Information that would appear in columns 73-80
of a card must not appear on paper tape.

Word |

Word 54

!! 00000000
iﬂ “ANRRAN

H||l|1§

e 2222222
I-s:sssss ;
'Znhoacno g
.-sssssss 3
pepssecsss §
T 2231
b chssaess
H' ;!:r 3220393

I - -[_.-"-1—

- - .
A N S N S

Figure 12, Card Data Format

4 4 4 4

Space
Space
Spoce
Spoce

characters

characters characters charocters
A A A

©
g :

4

v -r v A /

Word | Word 2 Word 3 Word 4

(72
—
—
T Words § - 16

Space after
each 4th word

Figure 13, Print Data Format

62

(=4

(m\ APPENDIX C. DISK STORAGE UNIT CONVERSION FACTORS

Word | Disk Block | Sector | Track | Cylinder | Disk
Bits

16 320 5,112 120,480 | 40,960 18,192,000
Dota Words 20 320° | 1,280 { 2,560 512,000
Disk Block 146 64 128 25,600

2
Sectors 4 8 1,600
Tracks 2 400

@
Cylinders 200

*Thesa follow the first actual word of each sectar, which is used for the address.

Appendix C. Disk Starage Unit Conversion Factorm 63

R U PR ORI 01 " O DO e [PIVAVRV R LSIY R—— AN Ty | TR | W (1 | W— l“m”l'“'MU"ﬂ"“ml"lﬂw"‘!"lx_““'i‘f“‘ll‘!‘!l"”l'l"ll Ll

APPENDIX D. SUPERVISOR AND DUP INPUT/OUTPUT CHARACTER CODES

PTTC/B
Hex
) {U = Upper Case)
Keyboord Graphic 1132 Graphic I1BM Card Code (L = Lower Case)
Numeric Charocters
0 0 0 1A (L)
1 1 1 01 (L)
2 2 2 02 (L)
3 3 3 13{L)
4 4 4 04 (L)
5 5 5 15 (L)
6 6 6 16 (L)
7 7 7 07 (L)
8 8 8 08 (L)
9 9 9 19()
Alphabetic Characters
A A 12-1 61 (V)
8 8 12-2 62 (V)
C C 12-3 73 (J)
D D 12-4 64 (V)
E E 12-5 75 (U)
F F 12-6 76 (V)
G G 12-7 &7 (U)
H H 12-8 68 (V)
] 1 12-9 79 (U)
* J J 1n-1 51 (V)
K K 1-2 52 {U)
L L n-3 43 (V)
M M 11-4 54 (U)
N N n-5 45 (V)
o) o] 11-6 46 (V)
4 P n-7 57 (V)
Q Q 1-8 58 (U)
R R 1-9 49 (U)
S S 0-2 32 (U)
T T 0-3 23 (V)
7] U 0-4 H (L)
\Y v 0-5 % (V)
w w 0-6 26 (V)
X X 0-7 37 (L)
Y Y 0-8 38 (V)
2 z 0-9 2 (L)

PTTC/8
Hex

{U = Upper Cose)

Keyboard Graphic 1132 Graphic 1BM Cord Code (L = Lower Case)

="~3V4*]~"——0-§‘" -@.*-\|v.*h,,\‘_
o
L]

S&iol Characters

I R

Blank
Blenk

Blank
Blank
Blank
Blank
Blank
Blonk
Blank
Blank
Blank
Blank
Blank
8lank

6B (L)
02 (U)
19)
70 (V)
70 (L)
5B (L)*
08 (U)*
1A (U)
40 (L)
3 (L)
38 (L)
15 (U)
0B (L)*
20 (U*
16 {U)
01 {U)
10()*
A0 (U)
8B (U)
DB (U)
98 (U)
€8 (U
95 (L) .
co (U)
8F (U)
Bl (U)
84 (U)
88 (U)

NOTES:

I

DUP recognizes only those special characters flagged

with an asterisk .

Any speciol characters not recognized by SUP and
DUP will be corrected to an ampariand (&).

@

AN

APPENDIX E, 1130 SUBROUTINE LIBRARY LISTING

Subroutines Names Subtype® Other Subroutines Required

Utility Calls

Selective Dump on Console Printer DMTDO, DMTX0 0 WRTYO

Selective Dump on 1132 Printer DMPD1, DMPX] 0 PRNT)

Dump 80 Routine DMPBO 0 None

Common FORTRAN Calls

Test Data Entry Switches DATSW 8 None

Divide Check Test DVCHK 8 None

Functional Error Test FCTSY 8 None

Overflow Test OVERF 8 None

Sense Light Control and Test SLITE, SLITT 0 None

FORTRAN Troce Stop 'TSTOP 8 TSET

FORTRAN Trace Start TSTRT 8 TSET

Integer Transfer of Sign iSIGN 8 Novic

Extended Arith/Funct Colls

Extended Precision Hyperbolic Tangent ETANH, ETNH 8 EEXP, ELD/ESTO, EADD, EDIV, E‘GETP

Extended Precision A**B Function EAXB, EAXBX 8 EEXP, ELi\, E

Extended Precision Natural Logarithm ELN, EALOG 8 XMD, EADD, EMPY, EDIV, NORM, EGETP

Extended Precision Exponential EEXP, EXPN 8 XMD, FARC, EGETP .

Extended Precision Square Root ESQR, ESQRT 8 ELD/ESTO, EADD, EMPY, EDIV, EGETP

Extended Precision Sine-Cosine ESIN, ESINE, ECOS, ECOSN 8 EADD, EMPY, NORM, XMD, EGETP

Extended Precision Arctangent EATN, EATAN 8 EADD, EMPY, EDIV, XMD, EGETP, NORM

Extended Precision Absolute Value Function EABS, EAVL 8 EGETP

FORTRAN Sign Transfer Calls

Extended Precision Transfer of Sign ESIGN 8 ESuB, ELD

Standard Precision Tronsfer of Sign FSIGN 8 FSUB, FLD

Standard Arith/Funct Calls

Stondard Precision Hyperbolic Tangent FTANH, FTNH 8 FEXP, FLD/FSTO, FADD, FDIV, FGETP

Standard Precision A"*B Function FAXB, FAXBX 8 FEXP, FLN, FMPY

Standard Precision Naturol Logerithm FLN, FALOG 8 FSTO, XMDS, FADD, FMPY, DIV, NORM,
FGETP

Standard Precision Exponential FEXP, FXPN 8 XMDS, FARC, FGETP

Standard Precision Square Root FSQR, FSQRT 8 FLD/FSTO, FADD, FMPY, FDIV, FGETP

Standard Precision Sine-Cosine FSIN, FSINE, FCOS, FCOSN 8 FADD, FMPY, NORM, XMDS, FSTO, FGETP

*See Disk System Format, Program Subtypes, in Appendix 8.

T ol

Appendix E. 1130 Subroutine Library Listing 65

YPTRA) | 11 Y1 1' 10 1110 OO)

TR v L TRV ER T

Nares

Subroutines Subtype Other Subroutines Required
Standord Precision Arclangent FATN, FATAN 8 FADD, FMPY, FDIV, XMDS, FSTO, FGETP
Standord Precision Absolute Value Function FABS, FAVL 8 FGETP
Common Arith/Funct Calls
Fined Point (Fractional) Square Root XSQR 8 None
Integer Absolute Function 1ABS 8 None
Flooting Binary/EBC Decimal Conversions FBTD (BIN. TO DEC.) 0 None
FOTB (DEC. TO BIN.)
Overlay Routines for LOCAL Subprograms
long Form FLIPO 0 DISKZ or DISKO
Short Form FuIP} 0 DISK1 or DISKN
FORTRAN Trace Routines
Extended Flooting Varicble Trace SEAR, SEARX 0 ESTO, TTEST, SWRT, SIOF, SCOMP
Fixed Varicble Troce SIAR, SIARX 0 TTEST, SWRT, SIO1, SCOMP
Standord Floating IF Trace SHF 0 FSTO, TTEST, SWRT, SIOF, SCOMP
Extended Floating {F Trace SEIF 0 FSTO, TIRST, SWRT, SIOF, SCOMP
Fixed IF Troce SIF 0 TYEST, SWRT, SIOf, SCOMP
Standard Floating Variable Trace SFAR, SFARX 0 FSTO, TTEST, SWRT, SIOF, SCOMP
GOTO Trace SGOTO 0 TIEST, SWRT, SIOt, SCOMP
Non-Disk FORTRAN Format 1/O
FORTRAN Format Routine SAO, SIOl, SIOAI, SIOF, SIOAF, 3 FLOAT, ELD/ESTO or FLD/FSTO, IFIX
SIOFX, SCOMP, SWRT, SRED, S1OIX
FORTRAN Find Routine SDFND 1 DISK2
Disk FORTRAN I/0O SDFIO, SDRED, SDWRT, SDCOM, ' DISKZ
- SDAF, SDF, SDI, SDiX, SDFX,
SDAIL
FORTRAN Common LI8Fs
FORTRAN Pause PAUSE 2 None
FORTRAN Stop STOP 2 None
FORTRAN Subscript Displacement SuBssC 0 None
Calculation
FORTRAN Subroutine Initiolizotion SUBIN 0 Nonse
FORTRAN Trace Test ond Set TTEST, TSEY 0 None
" FORTRAN 1/0 and Conversion Routines
FORTRAN Card Routine CARDZ 3 HOLEZ
Disk 1/0O Routine DISKZ 0 None
FORTRAN Paper Tape Routine PAPTZ 3 None

TR 1Y 10 YRR T AT [S e oo o AN Iy O A

Subroutines Nasves Subtype Other Subroutines Required
FORTRAN 1132 Printer Routine PRNTZ 3 None
FORTRAN Keyboard-Typewriter Routine TYPEZ 3 GETAD, EBCTB, HOLEZ
FORTRAN Typewriter Routine WRTYZ 3 GETAD, EBCTB
FORTRAN Hollerith to EBCDIC Conversion HOLEZ 3 GETAD, EBCTB, HOLTB
FORTRAN Get Address Routine GETAD 3 None
FORTRAN EBCDIC Table EBCTB 3 None
FORTRAN Hollerith Table HOLTB 3 None
Extended Arith/Funct LIBFs
Extended Precision Get Paramater Subroutine EGETP 2 ELD
Extended Precision A**l Function EAXI, EAXIX 2 ELD/ESTO, EMPY, EDWVR
Extended Precision Divide Reverse EDVR, EDVRX 2 ELD/ESTO, EDIV
Extended Precision Float Divide EDIV, EDIVX 2 XDD, FARC
Extended Precision Float Multiply EMPY, EMPYX 2 XMD, FARC
Extended Precision Subtract Reverse ESBR, ESBRX 2 EADD
Extended Add-Subtract EADD, ESUB, EADDX, ESUBX 2 FAI;C, NORM
Extended Load-Store ELD, ELDX, ESTO, ESTOX 0 None
Standard Arith/Funct LIBFs
Standard Precision Get Parameter Subroutines FGETP 2 FLO
Standord Precision A**| Function FAXI, FAXIX 2 FLD/FSTO, FMPY, FDVR
Standard Precision Divide Reverse FOVR, FOVRX 2 FLD/FSTO, FDIV
Standard Precision Float Divide IV, PIVX 2 FARC
. ar.ard Precision Float Multiply FMPY, FMPYX 2 XMDS, FARC
Standard Precision Subtract Reverse FSBR, FSBRX 2 FADD
Standard Add-Subtract FADD, FSU8, FADDX, FSUBX 2 NORM, FARC
Standard Load-Store FLD, FLDX, FSTO, FSTOX 0 None
Standard Precision Fractional Multiply XMDS 2 None
Common Arith/Funct LIBFs
Fixed Point (Fractional) Double Divide XDD 2 XMD
Fixed Point (fractional) Double Multiply XMD 2 None
Sign Reversal Function SNR 2 None
Integer to Floating Point Function FLOAT 0 NORM
Floating Point to Integer Function 1AX 0 None
1**J Integer Function AXt, AXIX 2 None

i v

R L TR T TRy

Appendix E. 1130 Subroutine Library Listing

67

N oL DL

TN L T

Subroutinas Subtype Other Subroutines Required
Normalize Subroutine NORM 0 None
Flooting Accumulater Range Check FARC 2 None
Subroutine
interrupt Service Subroutines
Card Input/Output (No Error Parameter) CARDO 0 1LS00, 1LSO4
Card Input/Output (Error Parameter) CARD!1 0 1LS00, 1LSO4
One Sector Disk Input/Output DISKO 0 1LS02
Multiple Sector Disk Input/Output DISK1 0 11502
High-Speed Multiple Sector Disk Input/Output DISKN 0 1LS02
Poper-Tape lnput/Output PAPTI 0 ILS04
Simultaneous Poper Tape Input/Output PAPTN 0 LS04
Plotter Output Routine pPLOT 0 1LS03
1132 Printer Output Routine PRNTI 0 1Ls0)
Keyboard/Console Printer input/Output TYPEO 0 HOLL, PRTY, ILSO4
Console Printer Output Routine WRTYO 0 1504
Conversion Routines
Binory Word to 6 Decimal Charocters (Card BINDC 0 None
Code)
Binory Word to 4 Hexcdecimal Characters BINHX 0 None
(Card Code)
6 Decimal Characters (Card Code) to DCBIN 0 None
Binory Word
EBCOIC to Console Printer Output Code EBPRT 0 EBPA, PRTY
Card Code to EBCDIC-EBCDIC to Cord Code HOLEB 0 EBPA, HOLL
Card Code to Console Printer Qutput Code HOI.P.R 0 HOLL, RTY
4 Hexadecimal Charactars (Card Code) to HXBIN 0 None
Binary Word
PTTC/8 to EBCDIC-EBCDIC to PTTC/B PAPEB 0 EBPA
PTTC/8 to Cord Code~Card Code to PTTC/B PAPHL] EBPA, HOLL
PYTC/8 to Comole Printer Output Code PAPPR 0 EBPA, PRTY
Card Code to EBCDIC-EBCDIC to Card Code SPEED 0 None
EBCDIC and PTTC/B Table EBPA 0 None
Cord Coda Table HOLL 0 None
Console Printar Output Code Table RTY 0 None
Interrupt Level Subroutines
interrupt Level Zero Routine 1LS00 None

P

(4

o~ Subroutines Names Subtype Other Subrautines Required

Interrupt Level One Routine 1Lson None
Intarrupt Level Two Routine - 1Ls02 None
Interrupt Level Three Routine ILS03 None
interrupt Level Four Routine 11504 . None

Appendix E. 1130 Subroutine Library Listing 69

T o bt e T Y P TR

YRR 111 B R R Y B A

APPENDIX F.

IN-CORE COMMUNICATIONS AREA (COMMA)

The Disk Communications Area (DCOM), sector 8
on the disk, is read into core starting in address

0028 (decimal

Area (COMMA), therefore, is an image of DCOM,

(0028) is initialized to contain the version and
modification level of the Disk Monitor System,

40). The In-Core Communications and will be overlaid by a return address If an

but offset by 40 words., The first 10 words
(0028-0031) include the I0CS error and interrupt

error traps.

The IOCS error trap entry word

IOCS8 error occurs.

The core locations and contents of COMMA

are shown on the following three pages.

»

Comments

Core location
Dec. Hex,
1. 50 32 1OCS counter, incremented by 1 upon entry to every IOCS subroutine (provided an XIO is to be executed), decremented by
1 after an operation complete interrupt.
2. St 33 Reserved,
3. 52 k) Core address (in user program) of interrupt Level 2 subroutine (1LS02).
4. 53 35 Numbaer of files defined,
5. 54-69 36-45 CALL LINK/CALL EXIT linkage to Skeleton Supervisor,
6. 70 46 Length of COMMON (in words).
7. N 47 Type of Disk 1/O required, @.g.,
-1 = DISKZ (speciol disk routine)
0 = DISKO
1 = DISKI
2 = DISXN
8. 72 48 Reserved.
System Addresses
9. 73 49 Resorved.
10. 74 4A Sector address of FORTRAN, zero if FORIRAN deleted.
1. 7 48 Sector address of Assembly Program, zero if deleted,
12. 76 4C 32010 (length of 1 sector),
13, 77 4D Sector oddress of first (numerically lowest) sector of Core Image Buffer (CIB). Word 1 of FLET header printed by DUMPLET.
14, 78 4E 000A (address in fower core, i.e., in the interrupt transfer vector, to which oll disk interrupts branch indirectly).
15. 79 4F Sector address of first (numerically lowest) sector of Fixed Location Equivalence Table (FLET), Word 2 of FLET header
printed by DUMPLET. i
16. 80 50 Sertor address of first (numerically lowest) sector of Location Equivalence Table (LET).
17. 81 51 Sector address of first (numerically lowest) sector of User area.
18. 82 52 File protect sector address, otherwise used as sector address of Working Storage (base). Word 1 of LET header printed by
DUMPLET, See Note 1.
19. 83 53 Same as cbove (adjusted), Word 2 of LET header printed by DUMPLET. See Note 1,
LET/FLET Entries-
20. 84 54 Total number of words used on disk by FLET. Word 3 of FLET header printed by DUMPLET,
21, 85 55 Reserved.
22, 86 56 Total number of words used on disk by LET (base). Word 5 of LET header printed by DUMPLET, See Note 1.
23, 87 57 Same as above (adjusted). Word 6 of LET header printed by DUMPLET, See Note V.
24, 88 58 Next available disk block address in User area (base). Word 3 of LET header printed by DUMPLET, See Note 1.
25. 89 59 Same as above (odjusted). Word 4 of LET header printed by DUMPLET, See Note 1.
26. 90-91 5A-58 Name of program (LET/FLET entry words 1 ond 2).
27. 92 5C Disk blocks used by program (LET entry word 3). Second word printed out ot end of DUP function,

Appendix F. In-Core Communications Area 71

ey m ! — N ! oy 1 TRURY Py | 0 1Y 3 v LRI ey

Core Location Comments
Dec. Hax. - LET/FLET Entries (Continued)
28, 93 50 Core execution address of program (relative for relocatable programs, absolute otherwise) for word 12 of the program header
record., Not used as word 4 of LET/FLET entry.
29. 94 SE Core loading address of program, also used os first word on mainline program, or first word of define file table (LET/FLET
entry word 5 for core image program).
3. 95 5F Word count/disk block count of program, i.e., word count for core image programs, disk block count for data files, ond
address of next ovailabla core location following the program in Disk System format that is in Working Storage on the disk
(LET/FLET entry word 6 for core image program dato flle).
31, 9 &0 Principal print device (odd = console printer/keyboard, even = 1132), See Note 2.
2. 97 61 Principal 1/O device (odd = 1442, even = 1134/1055}. See Note 2.
33. 98 62 Temporary moda if non-zero, normal if zero,
99 63 Non-XEQ (disable XEQ until next // JOB record if non-zero, snable XEQ if zor0). See Note 3.
100 64 Non-DUP (disoble DUP functions untit next // JOB record is detected if non-zero, encble DUP functions i'f zero).,
36. 101 &5 System Overlays and/or LOCALs are used in pragrom if non-zero, ‘
37. 102 66 Disable Supervisor reading of monitor control record if non-zaro, enable if zore (positive indicates monitor control record
has been read under invalid conditions, negative under valid conditions).
38. 103 67 Loader return to Supervisor if zero, to address in switch itself if non-zero (after rastoring DUP).
39. 104 68 Core map requested if non-zero, no map if zero,
40, 105 69 WS Indicator Word (disk block count of program in Working Storage).
Parameters for Disk 10CS
41. 106 A Disk Arm Position
107-108 68-46C Resarved
42, 109 6D Disk File Protect Address
H10-111 6E-6F Reserved
43, 112-114 70-72 Table of Defective Cylinders
15-120 73-78 Reserved
Miscelloneous
4. 121 79 Disk block address of program, First word printed out ot end of DUP function.
45, 122-125 7A-7D Reserved
46, 126 7€ Size of care (1000),. 2000}4)
47. 127 7F Absolute execution address of core load (for word 4 of LET/FLET entry).
48, 128-137 80-89 Reserved
49, 138 8A Contents of index register 3 (points to middle of a 255~-word transfer vector),
50. 139-144 88-90 System Work Area

@

T O 0 O 0 T 1 N IR 7 N oo L il S L L

NOTE 1: When requested following a //JOB T control record, DUP wili
store information to disk and update LET on @ temporary basis (only the
odjusted volue is cltered), When the next //JOB or //JOB T contral
record is encountered, the adjusted value will be replaced by the bose

NOTE 2; The interrupt levels associated with the |/O devices will be
specified in COMMA, Since four bits are sufficient to specify any ILS
number, three I/O levels may be included in each of the two words in
COMMA which identify the principal 1/O device and the principal print

valve. Thus, oll information which has been stored in the User areo since
the first //3OB Y record will be deleted. The //JOB T function raquires
that both base ond adjusted values be available jn COMMA. The bose
ond adjusted values will be equal except during //JOB T operation.

device (items 31 and 32, respectively). The rightmost four bits in each of
these words identify the devices themselves. The layouts of these two
words are as follows:

-] 7

8 9 10 n

12 13 14 s

Interrupt level of
secondary print device

Interrupt level of
column interrupt for
1442 if principal 10
device is 1134/1055;
interrupt level of end-
of-card interrupt for
1442 otherwise,

Reserved for future use

Interrupt level of
end-of-card interrupt
for 1442 if principal
1/O device is 1134/
1055; interrup? level
of 1134/1055 other-

wise,

Principo! print device
indicator (0=1132,
I=console printer/
keyboard)

Principal /O device
indicator (0=1134/1055,
1=1442, 2=console
printer/keyboard)

Supervisor only

0] 2 3| 4 5
96‘ 0 Interrupt level of
principal print device
Interrupt level of
principal /O device
9710
Example
Word 96: 1132 + Console Printer 1400)4
Console Printer 40014

NOTE 3: Set to something other than zero or one by any part of the sys-
tem that finds a non-XEQ type error, reset to one by Supervisor after

Word 97: 1442 04014
1442 + 11341055 04414
1134/1055 4000y

printing out @ message, reset to zero by Supervisor upon sensing o //JOB

record.

Appendix F, In-Core Communications Area 73

AT I DTG) W

T Ve N Y P YR ST R

APPENDIX G. LAYOUT OF LET/FLET ENTRIES

THREE WORD ENTRIES (DISK SYSTEM FORMAT)

SIX~-WORD ENTRIES (DISK CORE IMAGE FORMAT)

7%

Words

1-2

Words

1-2

Description

Name of the program, consisting
of five 6-bit characters, right-
justified in the 32 bits of words

1 and 2. Names of less than five
characters are padded with
terminal blanks, A 6-bit

.character is formed by truncating

the leftmost two bits of the
EBCDIC representation of that

character. Bits 0 and 1 are zeros.

Disk block count of the program,

Description

Same as for three-word entries,
except that for core-image pro-
grams, bit 0 is one and bit 1 is
zero; and for data files, both bits
0 and 1 are ones.

Disk block count of the program,
including padding. Padding is the

Words Description

number of disk blocks between the
end of the last program or file
stored and the beginning of this
program, which is a sector
boundary.

4 Execution address of the program,
i.e., the core location to which
control is passed for execution

of the program (zero for data files).

5 Loading address of the program,
i.e., the core location at which
the core image program is to 1
be loaded.

6 ~ Word count of the program, i.e.,

the number of words to be read
from the disk when reading the
information from disk to core
storage.

NOTE 1: Eight sectors each are allocated for
LET and FLET,

NOTE 2: The order of the entries in LET is the
order in which the named items are stored in
the User area.

=N

APPENDIX H. IBMO00 (1130 DISK MONITOR SYSTEM MAINTENANCE
PROGRAM)

[

IBMOO, the 1130 Disk Monitor System maintenance
program, is the means by which a user updates his
disk as modifications are released. The program
automatically updates the monitor programs
(Supervisor, Disk Utility, FORTRAN, and
Assembler), provides a method of changing the
IBM subroutine library, and also updates the
version and modification level in the first word
in DCOM. The leftmost 4 bits represent the
version, and the rightmost 12 bits represent the
modification level.

A card deck or paper tape containing correc-
tions to maintain the momtor will be supplied
by IBM. This includes all necessary control
records. Every modification must be run to
update the version and modification level even
though the program affected is not on the disk.

IBMOO is stored on the disk as part of the
IBM subroutine library. It is called from disk
by the following control record:

cc

12345678910111213141516171819

// XEQ IBM O O 0

A zero must appear in position 19 of the XEQ
record to specify DISKO.

Input to the program can be stacked with
other jobs. However, when stacking modifica-
tions to the Monitor System, each patch that
increases the modification levei must begin with
the above control record (see Figure 14).

Input to the program can be cards or paper
tape. IBMOO determines the input device
automatically by interrogating COMMA for the
principal [/O device.

SYSTEM PROGRAM MAINTENANCE

Typical input for a system program update is as
follows:

TR

Lo B s L gl DL RU U T LT IERUT IR T WL U T2 T O T T T

(-1
12345678910111213141516171819
// XEQ 1BM 0 0 0

Patch header record
Patch data record

.

One to eight dota records

Patch ;iota record
Patch header record
Patch data record

One to eight data records

Patch ;iatu record
Patch header record

Naext manitor control record

Y
Ugdate doto records L
(new version of subroutine XXXXX) y 4 /

[* STORE XXXXX

(- DECETE XXXXX
{// bup

System mai program 7
call 7/’ XEQ 18MDO

Ugdote function control records

Subroutine library update heoder

1[;
(Nent monitar control recond
// XEQ 10M00 *———— Updore dofo recceds

Systen program heoder reccrd

System mointenonce progron
call

Figure 14, Control Recards and Data Organization (in Card Form)

for Moaitor Program and Subsoutine Library Maintenance

Appendix H. TBMOO (1130 Disk Monitor System Maintenance Program) 75

Patch Header Record

Each sector to be changed requires a patch
header record. Thus, if a patch crosses a
sector, two header records are required. If
FORTRAN or the assembler is being modified,
a check is made to determine if that system
program has been voided from the disk. If so,
the modification is not made.

The format of a patch header record (in
terms of card input) is as follows:

Columns Contents
1-3 Program ID (FOR, ASM, DUP,
© SUP)
10-11 Monitor System Version (01-15).

The patch is not made if the
version number does not agree
with the version number in DCOM.
15-17 Modification Level (000-999).
This must be the same in every
header within a patch deck. The
patch is made only if the modifica-
tion level number is equal to or
one greater than the modification
level in DCOM. Changes to the
modification level must be in
ascending order, increasing by
one level at a time.

The user may rerun the
modifications to his system by
starting with modification level
001. 1If this is lower than the
modification level in DCOM, a
message is typed, followed by a
wait. This notifies the user that
he is processing his modifications
from the beginning; upon continuing,
the patch is made and the
modification level is changed to
001.

The modification level in DCOM
is updated after the last record of
the entire change is processed.

21-23 Sector Address (absolute,
decimal, sector to be modified,
except for the assembler, in

Columns Contents
which case it is relative to the
sector address of the first
: sector of the assembler),

27-29 Relative word number of first
patch word (000-319).

33-35 Word count of patch (001-320).

40-41 Total records in modification
(02-99). This should appear only
on the first patch header record.
The count is the total record
count of the modification,
including data records and patch
header records.

78-80 Sequence number (always 001).

Data Record

A data record (in terms of card input) is a binary
data card (see Appendix B, Card System Format).
One to eight data records can follow each patch
header record, depending on the size of the
patch. These must be numbered from 002 to

009, and must contain the proper checksum for
this sequence.

The data record format is as follows:

Words Contents
1 Location
2 Checksum
3 Type code (first 8 bits):
00001010,
Word count (last 8 bits)
4-9 Relocation indicators
10-54 Data words 1 through 45
55-60 1D and sequence number

IBM SUBROUTINE LIBRARY MAINTENANCE

Changes to the subroutine library require reloading
the new subroutine. IBMO00 updates the version
and modification level word; the actual reload is
performed by a DUP DELETE function, followed
by a DUP STORE function.

p>

(4

Typical input for a subroutine update is as
follows:

cc

1234567891011121314151617181920 21
// XEQ IBM 00 0

{Subroutine header record)

// DuP
*DELETE nome
*STORE cCD U A nome

or

PT

(New version of the subroutine)

Subroutine Hearler Record

The subroutine header record must go through
IBMOO even if the subroutine being modified is
not on the user's disk. This is necessary to
update the version and mudification level word
in DCOM so that the next seyuential modification
level can be made.

The format of a subroutine header record
(in terms of card input) is as follows:

Columns Contents
1-3 SUB (to signify a subroutine update)
10-11 Monitor System Version (01-15)
15-17 Modification Level (000-999)

OPERATING PROCEDURES

The card deck or paper tape supplied-by IBM is to
be run as a monitor job. When the control record
//XEQ IBMO0O is read, the version and modification
level of the monitor is typed (see Figure 15, lines
1, 2, and 3). When the correct input is read,

lines 1 through 6 of Figure 15 are typed.

ERROR MESSAGES

IBMOO error messages are listed in Table H-1.

Table H-1. 1BMOO Monitor System Maintenance Error Messages

Code oand Message Meaning

UO1 INVALID HEADER

Program cannot recognize header
record.

Data record checksum error. A record
might be out of sequence or there
might be an invalid data record.

U02 CHECKSUM ERROR

Monitor control record was encoun-
tered before the updating process
was completed.,

U03 MCR BEFORE EOJ

U04 VERSION ERROR The version on disk does not agree

with the version in header record.

The modification fevel in the header
record is not equal to or one greater
than the modification level on disk.

U0s MOD. LEVEL ERROR

NOTE 1: All of the above errors require a retry of the execution ofter
corrective action has been taken. Following on error typeout, the
progrom waits; pressing PROGRAM START couses on exit to the
Supervisor,

NOTE 2: A user can start at modification No. | and add all modifi-
cations to dote. A meisage is typed when this condition is encountered,
followed by a wait. PROGRAM START must be pushed to continue.

The following message will be typed: ‘THE MONITOR SYSTEM IS
BEING UPDATED WITH MOD. LEVEL NO. I, PUSH PROGRAM
START TO CONTINUE."

(Line 1) IBMOO MONITOR SYSTEM MAINTENANCE
(Line 2) VERSION NO. IS XX
({Line 3) PRESENT MODIFICATION LEVEL IS XXX
(Line 4) MONITOR SYSTEM UPDATE COMPLETED
(Line 5) VERSION NO. IS XX

. (Line 6) NEW MODIFICATION LEVEL IS XXX

Figure 15. Typeouts for 1130 Monitor System Maintenance Program

Appendix H. IBMOO (1130 Disk Monitor System Maintenance Program) 77

TR OO 0 P I s M A 0 G PRYTYY 1 ASEI FPVA) _—

YA R PR

me

APPENDIX I. UTILITY ROUTINES

In addition to the IBM subroutine library, the follow-
ing utility programs, each complete with subroutines
and loaders, are supplied to the user to enable him
to perform operations external to the 1130 disk moni-
tor system. The individual program writeups indicate
whether the program is available for the card system
only, the paper tape system only, or both. Where the
program is applicable to both systems, operating
procedures are included for card and paper tape.

The paper tape utility routine is loaded as part of
the paper tape disk monitor system,

e Disk Pack Initialization Routine (DPIR). This rou-
tine is described under System Generation Opera-
ting Procedures -- Card System. The DPIR card
and paper tape loading procedures are listed under
the appropriate system generation procedure.

e Console Printer Core Dump

o 1132 Printer Core Dump

e Console Printer Disk Dump

e 1132 Printer Disk Dump

e Paper Tape Reproducing Routine

e Paper Tape Utility Routine (PTUTL)

CONSOLE PRINTER CORE DUMP (CARD SYSTEM
ONLY)

This routine aids the user in the debugging of pro-
grams, The programmer can dump portions of core
by loading a single-card console routine which occu-
pies the first 80 words of core. The output device is
the console printer.

Format

This routine dumps core in hexadecimal form, start-
ing with the word specified in the console entry
switches. Dumping continues until PROGRAM STOP
is pressed.

78

Words are dumped in four-digit hexadecimal form,
with a space between each word. The first word
typed is the starting address of the dump. The num-
ber of characters per line depends upon the margin
settings of the console printer.

Operating Procedures

1. With the console Mode switch set to RUN, press
IMM STOP and RESET on the console.

2. Set the console entry switches to the hexadecimal
address at which dumping is to start.

3. Place the program card in the reader.

Press START on the 1442,

5. Press PROGRAM LOAD on the console,

-
.

Dumping continues until PROGRAM STOP is
pressed. Press PROGRAM START to resume the
dump.

1132 PRINTER CORE DUMP

This is a self-loading, four-card routine that dumps
the contents of core storage in hexadecimal format
on the 1132 Printer (the fourth card is blank). The
routine is available in card and paper tape.

Dumping begins at hexadecimal address 00A0 and
continues to the end of core, Sixteen words per line
are printed, preceded by the four-digit hexadecimal
address of the first word of each line,

Card Operating Procedure

1. Ready the 1132 printer.

2. With the console Mode switch set to RUN, press
IMM STOP and RESET on the console.

3. Place the dump routine deck in the 1442 card
read punch hopper.

4. Press START on the 1442,

5. Press PROGRAM LOAD on the console.

Dumping continues until the last 16 words of core
are addressed and printed,

B G LI B LU LI T

The program does not skip to the top of a new page
to start, nor is page numbering or page overflow pro-

vided.

Paper Tape Operating Procedure

1. Ready the 1132 printer.
Place the dump from 00AO tape in the paper tape
reader so that one of the delete codes beyond the
program ID in the leader is beneath the read

starwheels.
3. Press IMM STOP, RESET, and PROGRAM LOAD

on the console.

The output format is the same as described for the
card routine.

DISK DUMP ROUTINES

Two routines are provided which allow the user to
print out the contents of any disk sector or sectors.

e Console Printer Disk Dump
e 1132 Printer Disk Dump

These routines are available in card and paper
tape.

Format

Each sector printout (320 words) consists of 20 lines
with 16 four-digit words per line, each word in hexa-
decimal form. Two sectors are printed on each page,
each sector preceded by a two-word header. The
leftmost digit of the first header word is the number
of sectors remaining to be dumped; the remaining
three digits show the sector address of the sector
being dumped. The second header word contains the
contents of the first word of the sector which is also
the address of the sector.

Operating Procedures

Card

1. With the console Mode switch set to RUN, press
IMM STOP and RESET on the console,

P BY AN

2. Place the desired dump routine (console printer
or 1132 printer) in the reader hopper.

3. Preas START on the 1442,

4, Press PROGRAM LOAD on the console.

The program is loaded and on 8K systems
WAITs at location 1C51 (consoie printer routine),
or 1D29 (1132 printer routine). For 4K systems,
the WAIT addresses will be 0C51 and 0D29.

5. Bet the console entry switches as indicated below.

a. Enter the number of sectors to be dumped
(in hexadecimal) in console entry switches
0-3, The maximum number of sectors that
can be dumped at one time is 15 (switches
0-3 on); the minimum number is one
(switches 0-3 off or switch 3 on).

b. Enter the hexadecimal address of the first
sector to be dumped in console entry
switches 4-15 (000 - 657}, If an illegal
sector address is entered, the program
WAITs at location 0029. Press IMM STOP,
RESET, and PROGRAM START to return
the program to location 1C51 or 1D29, The
correct sector address can then be entered
in the console entry switches.

Note that the sector address entered in
console entry switches 4-15 is a physical
address, not a logical address. It is there-
fore possible for the data being dumpeqd to
be moved up 8, 16, or 24 sectors depending
on whether the disk has one or more
(maximum 3) defective cylinders. A dump
of sector zero will show if there are any
defective cylinders on the disk. Words one,
two, and three of sector 0 contain the first
sector address of any defective cylinders
found. When there is no defective cylinder,
these words contain /0653 (see DPIR under
System Generation Operating Procedures--
Card System). In the event that there are
defective cylinders on the disk, it is the
user's responsibility to calculate the dis-
placement in order to locate the desired
logical record.

6. Press PROGRAM START to initiate the dump.

Dumping continues until the last sector is printed,
at which time the printer carriage (if the 1132 is the
output device) restores to a new page and the program
WAITs at location 1C51 or 1D29.

A new sector address and/or number of sectors
can be entered at any time during execution by press-
ing IMM STOP, RESET, and PROGRAM START,

Appendix 1. Utility Routines 79

LU ST RO | PR 08 1§18 R | V000 e oY 1L T 11141901 O § W5 011 0 9 10 BB 11 S\ P N OO OO W AN) OO A

and then setting the appropriate console entry
switches.

Core Image Loader Card ID. The card system con-

sole printer and 1132 printer disk dump routines are
each loaded by a core image loader which comprises
the first six cards of the decks. As card sequence
numbers are not present on the core image loader
cards, the following chart can be used to identify
these cards.

CORE IMAGE LOADER
CARD 1 2 3 4 s 6
cowmn T2} []2] {vf2] [t]2] [2] [v]2
12 X
1|x X X
ox X X
1fx|x x| [x X X
2 X
3 X X X X
4 X
5 X X
6
7{x|x
8
9lx
Paper Tape
1, Place the desired dump routine tape (console
printer or 1132 printer) in the paper tape reader
so that one of the delete codes beyond the pro-
gram ID in the leader is beneath the read star-
. wheels,
2. Press IMM STOP, RESET, and PROGRAM LOAD
on the console.
3. The loader (on the front of the tape) will read in
and the system will WAIT,
4. Press PROGRAM START.

The disk dump program is now loaded and WAITs

at location 1C51 (console printer routine), or 1D29
(1132 printer routine), Operating instructions from
this point are the same as those listed in items 5
and 6 of the card operating procedures.

Disk Error Procedure

Detection of a disk error during & dump operation
on 8K systems causes a WAI'T at location 1C67
(console printer) or 1D51 (1132 printer). For 4K
systems, the WAIT is at 0C67 or 0D51,

To retry the operation, set all console entry
switches off and press PROGRAM START, If the
retry is successful, dumping will resume at the
beginning of the sector that caused the error.

If the error is to be ignored and the sector
printed out, make sure that the value of the console
entry switches is not zero (at least one switch on)
and press PROGRAM START.

PAPER TAPE REPRODUCING ROUTINE

This routine, available only with the paper tape sys-
tem, is a self -loading paper tape routine that repro-
duces paper tapes. The routine reads a character
and punches it with no intermediate conversion.

Operation

1, Place the paper tape reproducing routine tape in
the paper tape reader, positioning the tape so
that one of the delete codes beyond the ID in the
leader is beneath the read starwheels.

2. With the console Mode switch set to RUN, press
IMM STOP, RESET, and PROGRAM LOAD on
the console. The reproducing routine is read in
and WAITs at location 0000.

3. Remove the reproducing routine tape and place
the tape to be reproduced in the reader. Place
blank tape in the tape punch unit and produce
several inches of delete code leader by holding
down the DELETE and FEED keys simultane-
ously. Be sure to release the FEED key first.

4., Press PROGRAM START to begin the tape repro-
ducing operation. The routine continues to
operate until the paper tape reader goes not-
ready, indicating that there is no more tape to
be read. The tape reproducing routine then
WAITs at location 002C. If the paper tape punch
is not-ready, the tape reproducing routine loops
between 0027-002A. To restart, press IMM
STOP, ready the paper tape punch, and press
PROGRAM START. An unlimited number of
tapes can be reproduced by this routine. Be
sure to create a trailer (and leader) of delete

codes between the ocutput tapes if the tapes are
to be separated.

5. If the PROGRAM STOP key is pressed while the
program is in operation, the routine WAITs at
location 001D, Press PROGRAM START to con-

tinue.

PAPER TAPE UTILITY (PTUTL)

PTUTL is a paper tape utility program that is loaded
to disk during system generation and executed by the
1130 disk monitor system. It accepts input from the
console printer keyboard or 1134 paper tape reader
and provides printed output on the console printer
and/or punched output on the 1055 paper tape punch.

Using PTUTL, the user can add FORTRAN and
agsembler source records and monitor control
records to his programs. Records on existing tapes
can also be altered or deleted. This paper tape
utility program resides in the user's area on disk
and is executed by a // XEQ control record.

Operating Proceuure

A paper tape containing the following records is
supplied to the user to allow initial program exe-
cution.

//)oB
// XEQ PTUTL
// PAUS

To load this tape and execute the program, select

the appropriate initializing procedure listed below and

continue.

1. If the monitor supervisor is‘in core:
a. Place the PTUTL execute tape in the paper
tape reader.
b. Press PROGRAM START.
2. If the monitor supervisor is not in core:

a. Place the cold start paper tape record in the

paper tape reader.
b. Press IMM STOP, RESET, and PROGRAM
LOAD on the console.

c. Place the PTUTL execute tape in the paper
tape reader.
d. Press PROGRAM START.

"The paper tape utility program is loaded into

core and then comes to a WAIT at location /0498.
This wait allows the operator to ready the con-
sole printer, paper tape reader, and paper tape
punch. The user should punch a leader of delete
codes on the pape: tape punch.

At this time, the user can select the derired
program options by turning on the appropriate
console entry switches (see Figure 16).

Console Entry
_SwitchOn Option
0 Print record after reading
1 Read paper tape records from 1134
2 Accept keyboard mputI
3 Punch paper tape records on 1055
14 WAIT after punching
15 WAIT after printingz
All switches
off Exit to monitor supervisor3
NOTES:

1. The keyboard input option uses TYPEO,
therefore all features of that routine apply

to PTUTL.
a. The input record cannot exceed 80
characters.

b, Pressing the backspace key cancels the
last character entered.

¢. Pressing the ERASE FIELD key cancels
the entire record and allows the user to
restart,

d. Pressing the EOF key indicates that the
record is complete. The keyboard is
released and the program continues.

2, Keyboard input will replace the last paper

tape record read if console entry switch 2

is turned on prior to pressing PROGRAM

START.

3. The test for exit is made just before an
input record is read; therefore, a convenient

way to branch out of PTUTL is to perform a

WAIT after punching the last record desired

(console entry switch 14 on). Turn off all

console entry switches and press PROGRAM

START. Control is returned to the monitor

supervisor.

Appendix 1. Utility Routines 81

adoaih s bl il

Gl i o p oo A —

Paper Tape Not-Ready WAITs

Condition Indication Recovery Procedure
Paper tape Program WAITs at Ready reader if additional
reader not location /0498 with tape is to be read. Set the
ready /0005 in the console entry switches as
Accumulator desired and press PROGRAM
START.
Paper Tape Program WAITS at Ready the paper tape punch
punch not location /0498 with and press PROGRAM START.
ready /0004 in the To re-punch a record
Accumulator which was being processed
when the not-ready occurred,
set console entry switches 1
and 2 off (to prevent an-
other recond from being
read), set switches 3 and 14
on {punch a record and
WAIT), aud press PROGRAM
START. After the record is
punched, retum the console
entry switches to the orig-
inal configuration and press
PROGRAM START.
Example
Assume that the following records appear on a tape.
// joB
//* (comments)
/] ASM
// bup
Asm. Control Records
Source Program

The user now desires to alter the comments

record, insert a // PAUS record after the comments
record, and delete the // DUP record. The
procedure is as follows.

L,

2.

Load and execute PTUTL. The program will
WAIT at location /0498,

Load the source tape in the paper tape reader
and ready the paper tape punch and console
printer. Remember to make a leader of delete
codes on the punch.

Turn on console entry switches 1, 3, and 14.
Press PROGRAM START.

10,
11,
12,

13.

16,
17,

18,

19,

20.

21,

The // JOB record will be read, reproduced,
and the program will WAIT.

Turn on console entry switches 0, 1, 2, 3, 14,
and 15,

Press PROGRAM START.

The comments record in the source tape will be
read and printed on the console printer. The
program will WAIT.

Press PROGRAM STAR7T. The Keyboard will be
selected (PROCEED light on) and the program
will WAIT.

Enter the new comments record in the proper
format.

Press the EOF key on the keyboard.

The new comments record will be punched on the
tape, replacing the old record. The program
will WAIT.

Turn off console entry switch 1. Press
PROGRAM START. The keyboard will be re-
selected.

Enter the // PAUS record from the keyhoard
and press EOF,.

Turn off console entry switches 0, 2, and 15.
Turn on switch 1. leave switches 3 and 14 on,
Press PROGRAM START.

The // ASM record will be read and reproduced
on the punch. The program will WAIT.

The next record, // DUP, is to be deleted; there-
fore, switches 0, 1, and 15 should be set on, all
other console entry switches should be set off.
Press PROGRAM START.

The // DUP record will be read ard printed but
not punched. The program will WAIT.

Leave the sense switches at the present setting
and press PROGRAM START. The next record
on the input tape will be read into the 1/0 buffer,
overlaying the // DUP record.

‘Turn on console entry switches 1 and 3, all
others off.

Press PROGRAM START.

The remainder of the source tape will be read

in and reproduced, record for record.

When the paper tape reader goes not-ready at
the end of the source tape, the program will
again WAIT at location /0498, Set all console
entry switches off and press PROGRAM START.
Control will return to the monitor supervisor.

J

* 5‘.': ‘inﬂ'ls.'dff n““'::::“““-
0008088080006000
> i
L .
............... O | X N
< "0...o°. :
S02000D 2960090008588 ol “.!..
.. ll‘i!;!a'l .. secssecaccene '.N. .“l " 3 'l--“E (] b4
ncou;uoun § .'o.: :;: Sose
; : :
wo .! ?® ¢ . ‘e E uno“oiunuu
. Slltgu 0 e eeeeranee ls E ﬁ e E
-.¢=;’ § :‘......:‘.'.‘.':
W\ .‘.l“l.i‘l“'..: E “...’Q.”.‘.‘“:
. :o" 2 !§§Lm 5 El- “fwg“g E
‘.“.0."..’““‘ “..l.'.‘...“...
E....St.:...‘..'i
P cofiio
ot '2.....:
: i
ooooomzo’nnncu n "y s ., ses000HAOSISESISSE
‘."&!"ﬁ.‘.i“' .' -::.Sil | :2 b3S u n:imsn .°
......:..‘... ...:.g.:."...
i
s “.- L LI
® o' ul!én i :- sesesse ne :ul " e o 'E e
“o"VES oin .-.’-':: -
: s d i
D . sese eses
:'“"‘L.“‘.‘: :‘::‘:
E waly E
o,
foud
(? ' Figure 16. PTUTL Sense Switch Options
Appendix 1. Utility Routines 83
TR R T T YRR o il - bl TT— e —

(3
$

200
‘el

"‘Ex‘““‘i..“.“‘ 4

e
S valy

:numomoc-:
sobe
° [3
® €3 o,u
¢ .
sabe g
i

APPENDIX J. SAMPLE PROGRAM QUTPUT

// JoB
// FOR

Lod I8M 1130 DISK MONITOR FORTRAN SANPLE PROGRAM
®ONE WORD INTEGERS

SLIST ALL

®10CS (CARDs 1132 PRINTERe DISK)

SNANE SAMPL

16K 1130 DISK MONITOR FORTRAN SAMPLE PROGRAM
IBM 1130 DISK MONITOR FORTRAN SAMPLE PROGRAM
SIMULTANEOUS EQUATION ROUTINE
DEFINE FILE 1 (10+3200UeINXT)
DIMENSION A(10+10)eX{10)e8(100eY(10}
301 FORMAT (1H1+20X13HINCOMPATIBILITY)
302 FORMAT (1H 20X41HMORE EQUATIONS THAN UKKNOWNS=NO SOLUYIONS)
303 FORMAT (1H 20X&46HMORE UNKNOWNS THAN EQUATIONS=SEVERAL SOLUTIONS)
304 FORMAT (1M 20X15HSOLUTION MATRIX) :
305 FORMAT{1H 20X8HMATRIX A)
306 FORMAT(1H 20X8HMATRIX B)
307 FORMAT (1M 20X10H A=INVERSE)
308 FORMAT(1H 20X24MDIAGONAL ELEMENT 13 ZERO)
309 FORMAT (1M 20X'A=INVERSE TIMES A')
M=2
Le3
READ (Mel10)
10 FORMAT{72H SPACE FOR TITLE
1)
WRITE (Lel0}
12 FORMAT (6110}
READ {(Ms12)M1eM2sL1sL29N1 N2
M)l = NOs OF ROWS OF
M2 = NOs OF COLS OF
L1 = NOs OF ROWS OF
-
-

NN

[%4 NOe OF COLS OF
N1 NOe« OF ROWS OF
N2 = NOo OF COLS OF
13 FORMAT (7F10e4)
17 FORMAT 110F10e4)
IF (N2=1163+64¢63
64 IF (L2=1163:65+6)3
65 IF (L1=M2)63+66063
66 IF (M1=N1163911+63
63 WRITE (L0301)
GO T0 2
11 NeMl
‘N=M2
IF (Ml=M2} 91416493
91 WRITE (L9302)
GO TO 2
93 WRITE (L+30)3)
GO 10 2
14 WRITE (L+30%)
DO 70 l=l¢N
READ (Mel3)(AlTsd)oJdmloN}
MRITE (LelT)(A(Lod)}eJdm)aN)
70 CONTINUE
89 FORMAT (FlO.4)
WRITE (L9306)
READ (Me891(BI(])olm)oN)
WRITE (LeB91(B(1)elnloN)
< PRESERVE THE ORIGINAL MATRIX ON DIsK
0O 19 lsl«N
19 WRITE (1°'1) (AtJel)e JuloN)
4 INVERSION OF A
20 DO 120 Ksl¢N
DmA(K oK)
IF(D)400200440
40 A(KoK)e},0

[aXaXaXaXaXal
BOEXXD> P>

DK $AMOOL
DKSAMOO2

PAGE 01
OKSAMO03
OKSAMOOS
DKSAMO0S
OKSAMO06
DKSAMOO7

PAGE 02
DKSAMOOS
DKSAMOOY
DKSAMO10
DKSAMO11
DKSANO12
DXSAMO13
DKSAMO14
DKSAMO1S
DKSAMO16
DKSAMOL7
OXSAMO1S
DKSAMOL9
DKSANO20
OKSAMO21
DKSANO22
DKSAMO2)
DKSAMO 24
DKSAMO2S
DKSAMO26
DKSAMO27
DKSAMO28
DKSAMO29
DKSAMO30
DKSAMO31
DKSAMO)2
DKSAMO33
DKSAMO34
DKSAMODS
DKSAMO36
DKSAMO3T
DKSAMO3S
OKSAMO39
DKSAMO40
OKSAMO4)
DKSAMO2
DKSAMOA3
DKSAMO#4
DKSAMOS
DKSAMO®S
DKSAMO&T
DXSAMO4S
DKSAMO49
DKSAMOSO
DKSAMOS1
DKSAMOS2
DKSAMOS?
DKSAMOS4
DKSAMOSS
DKSAMOSS
DKSAMOS?
DX SAMO3S
DXSAMO39
DKSAMO0
DKSAMO61
DKSANO62
DKSAMOS)
DKSAMOSS
DKSAMOSS
DKSAMOGS

CARDZ PRNTZ SOFI0O SDRED SOWRY SDCOM spFx

REAL CONSTANTS
«100000€ 01=0120 +000000E 000122
INTEGER CONSTANTS
2w0124 30128 120126

CORE REQUIREMENTS FOR SAMPL

COMMON 0 VARIABLES 200 PROGRAM 92

END OF COMPILATION

18M 1130 DISK MONITOR FORTRAN SAMPLE PROGRAM PAGE 03
30 DO 60 JeleN . DKSAMOG T
60 AlKeJ)eA(KeJ)/D DXSAMOGSB
1F(K=N)800130+130 DKSAMO69
80 IK=Kel OKSAMOT0
DO 120 IsIKeN DKSAMO7)
[LYYRET] DRSAMO T2
Atl1eK)a0s0 OKXSAMOTI
DO 120 Je=loN OKSAMO T4
120 AtloeJInAlls)= (D®AIKIJ)) DKSAMOTS
c BACK SOLUTION DKSAMOTS
130 IK=N=l OXSAMO?T
00 180 KelelK DKSAMO 78
1640 l1leK+} DKSAMOTY
DO 180 l=llsN DKSAMOSO
DsA(Ksl) DKSAMOS]
_ AlKel)®040 DKSAMOS2
170 DO 180 J=lN DKSAMO82
180 AlKoJImA(KsJI=tDOAIT0d)]) DKSAMO 84
GO T0 202 DKSAMOBS
200 WRITE (Le308) DXSAMOBG
GO T0 2 OKSAMOBT
(4 PRINT INVERSE DKSAMOSS
202 WRITE {(Le307) DKSAMOB9
00 201 Is]lN DKSAMO90
WRITE (LeolTI(AlLsd)eJeleN) OKSAMO91
201 CONTINUE DXSAMO92
WRITE (Le309) DKSAMOOI
4 COMPUTE AND PRINT A=INVERSE TIMES A OXSAMO94
D0 123 JwleN DKSAMO9S
< RETRIEVE ORIGINAL BY COLUMNS DKSAMO96
READ (1'J) iX(M)s MalyeN) DK$SAMO9T
0O 12° TsloN DKSAMODS
Yi[' = Ne0 DRSAMO99
D0 122 K = 1N OKSAM1 00
122 Y(I) » Y{I)eAlLoK)OX(KY) DKSAM101
123 WRITE (Lel7) (YUIDs lmleN) DXSAM102
00 21 Is=leN . DKSAM103
X(1)1=060 DKSAM] 04
DO 21 Ks}leN DOKSAMIOS
21 Xtllex{IleA(ToK}RB(K) DKSAM] 06
WRITE (Le304) OXS$SAMIO0T
WRITE (LeBS1UIX{I)olm]oN} DKRSAM108
2 CaLL EXITY DKSAM109
END DKSAM110
18M 1130 DISK MONITOR FORTRAN SAMPLE PROGRAM PAGE 06
VARJABLE ALLOCATIONS
A =00CE X =Q0E2 8 «00F6 Y ©010A O #010C INXT sQlO0E ™ =010F
Ll s0113 L2 =0ll4 NI} 0118 N2 #0116 W =017 1| s0118 J 0119
UNREFERENCED STATEMENTS
20 0 140 170
STATEMENT ALLOCATIONS
301 =0127 302 #0134 303 sQ14E 306 =Q)6A 308 <0177 306 <0180 2307 <0189
12 +0108 13 =0108 17 =010E 69 sO0lEL 66 =021C 65 20222 66 =0228
93 =026A 14 #0250 70 #0289 19 w02C6 20 e02€? 40 =02FR 30 «0306
130 =0374 140 «037¢ 170 0399 160 039D 200 «O03CF 202 <0305 201 =O03F¢
2 «04D8
FEATURES SUPPORTED
ONE WORD INTEGERS
1o¢s
CALLED SUBPROGRAMS
FADDX FMPYX FOIV FLD FLOX F$T0 FSTOX FSBRX SRED SWRT £C

L =0110 Ml =0111 M2 =0112
K s011A K «0118 1 =011C

308 #0193 309 =0lAs¢ 10 =0182
6) #0226 1) »02% 9} =026
60 =030A 80 =0325 120 =0344
122 =042D0 123 =065C 21 =048¢C

oMp SFlO SIOfx siol Suasc

Appendix J. Sample Program Output 85

A s kL3 k 10— T 1 P IN P AT LU U A T R

T TIPS e 57

// XEQ L DKgANLLS
FILES ALLOCATION
1 016C 000A
STORAGE ALLOCATION
R 47 OF71 (HEX) WORDS AVAILABLE
LIBF TRANSFER=VECTOR

g8CT8 1015
HOLT8 OFDF
GETAD OF9E
NORHM OF T4
XMDS oFs8
FARC oF3e
HOLEZ CFOO
IFIX OEDB
FLOAT OECE
FADDX OET9
SORED 06CO
FSBRX OESO
FMPYX OELC
L2284 0DCA
FSTOX 0D72
FLOX 0D8E
SOCOm Q6Es
SOFX o682
SOWRT 070
SI0Fx 0915
SuUBSC 0DAS
slol 0919
SCoMP 0901
SWRT 08F8
SRED 0928
FST0 0D7s
FLD 0092
PRNTZ 0CCO
CARDZ 0C78
SF10 09CD
$DFIO 0713
DISKZ 00Fs

SYSTEM ROUTINES
1L802 1019
03A% (HEX) IS THE EXECUTION ADORs

IOM 1130 DISK MONITOR FORTRAN SAMPLE PROGRAM
MATRIX A .
4¢21%50 =1,2120 le10%0
=221200 35090 =1,56320
141220 =1,4313%0 3.9080

MATRIX B
342160
122470
263456

A=INVERSE

002918 000833 «040467
0o1031 043836 O0el118
=0,0283 0e1029 0¢3008
A=INVERSE TIMES A
049999 «0,0000 040000
040000 09999 =040000
=0,0000 040000 100000
SOLUTION MATRIX
049321
142634
047429

“w

// JOB

7/ ASH

oL18T

SPRINT SYMBOL TABLE

COMPUTE THE SQUARE ROOT OF 66

0000 0 €030 BEGIN LD
0001 20 06406043 LIBF
0002 30 06898640 CALL
0004 20 091899C0 LIGF
0003 0 1008 SLA

.

-
0006 0 EB29 OR
0007 0 0018 sT0

.

[}
0008 20 05097663 LISF
0009 0 0000 DC
000A 1 0023 .4
ooos 1 0015 0C
000C 0 001A oC
0000 20 23A17170 LIBF
000E 0 2000 0C
000F 1 0014 D¢
0010 20 23A17170 L1BF
0011 0 0000 oC
0012 0 70FD MDX
0013 0 6038 EXIT
0014 0 OOOE TYPE 0OC
0015 0000 B8SS
0022 0 8181 oC
0023 0 0000 WORD1 DC
0024 oole EBC
0030 0 FO40 MASK DC
0031 0 0040 Dé& oC
0032 0000 END

BEGIN 0000 D64 003}
NO ERRORS IN ABOVE ASSEMSLY,

SMASMO01

SMASMOO02

SMASMOO03

SMASMOO®

PAGE 1
Dés SMASMO06
FLOAT INTEGER TO FLOATING PT. SMASMO007
FSQR FLOATING PTs SQRT. SMASMO08
1FIx FLOATING PTe TO INTEGER SMASMOO9
8 SMASMO10
MASK TO BUILD EBCDIC INTEGER SMASMO11l
RESULT AND EBCDIC BLANK IN WORD1. SMASMO12
MASK SMASMO13
WORD1 SMASMO1 4
CONVERT MESSAGE FROM EBCOIC SMASMO1S
TO ROTATE/TILT CODEs SMASMO16
EBPRY SMASMOLT
0 SMASMO 18
WORD] SMASMO19
TYPESL SMASM020
26 SMASMO21
TYPEO TYPE MESSAGE SMASMO22
/2000 SMASMO23
TYPE SMASMO 24
TYPEO WAIT FOR TYPING COMPLETE SMASMO25

SMASMO26
=3 SMASMO27
. RETURN TO MONITOR CONTROL SMASM020
14 SMASMO029
13 SMASMO030
/8181 SMASMO31
L ad] SMASMO32
15 THE SQUARE ROOT OF o4, SMASM033
/F040 SMASMO34
64 SMASMO35
BEGIN SMASMO3S

SYMBOL TABLE

MASK 0030 TYPE 0014 WORD1 0023

Appendix |. Sample Program Output 87

W P TN T T R R 1 VA wy

il L HWWWWMM‘WWM‘WWNWM "

L

W —"

1 TN

// XgaQ t SHASNOS T A
R &7 1907 IMEX) WORDS AVAILASLE
CALL TRANSFER VECTOR

FSaR 020¢C
LIBF TRAKSFER-VECTOR
" FARC 064C
XMDS 0650
HOoLL 0400
PRTY 0980
ZBPA 0580
FADD GaAF
#olv osoe 4
FLD 043A
FADDX 048)
FMPYX 0470
F8T0 0ASE
FGETP 0a24 : 2
NORM 0IFA -
TYPEO 0202
EBPRT 026C
tFIX 0244
FLOAT O1F4
DISKZ O00F4

SYSTEM ROMTINES

ILS0a 0691
ILS02 0éAD

01C2 (HEX) 1S THE EXECUTION ADOR,

Program Output on Console Printer

8 IS THE SQUARE ROOT OF 64

B WY JRAN R R PO 800 S 18 A P

Abgolute program: A program which, although in
Disk System format, has been written in such a
way that is can be executed from only one core

location.

Assembler core load: A core load which was built
from a mainline written in Assembly Language.

CALL routine: A routine which must be referenced
with a CALL statement. The type codes for
routines in this category are 4 and 6.

CALL TV: The transfer vector through which CALL
routines are entered at execution time. See the
section on the Loader for a description of this TV.

CIB: (the Core Image Buffer) The buffer on which
most of the first 4000 words of core are saved.
Although the CIB occupies two cylinders, the
last two sectors are not used. See the section on
the Loader for a descriptiun of the CIB and its use.

Cold Start Routine: The routine which initializes the
1130 Disk System Monitor by reading down from
the disk the Skeleton Supervisor.

COMMA (the Core Communication Area): The part
of core which is reserved for the work areas and
parameters which are required by the Monitor
programs. In general, a parameter is found in
COMMA if it is required by two or more Monitor
Programs or if it is passed from one Monitor
Program to another. COMMA is initialized from

DCOM by the Cold Start Routine and at the beginning

of each JOB.

Control Record: One of the records (card or paper
tape) which directs the activities of the 1130
Monitor System. For example, //DUP is a
Monitor contrnl record that directs the Monitor
to initialize DUP; *DUMPLET is a DUP control
record directing DUP to initialize the DUMPLET
program; *EXTENDED PRECISION is a FORTRAN
control record directing the compiler to allot
three words instead of two for the storage of data
variables.

Core Image format: Sometimes abbreviated CI
format. It is the format in which whole core
loads are stored on the disk prior to execution.

APPENDIX K. GLOSSARY

Core Image Header Record: A part of a core load
stored in Core Image format. It is actually the
last 15 words of the format. Among thege 15
words are the ITV and the setting for index
register 3.

Core Image program: A mainline program which
has been converted, along with all of its required
subroutines, to CI format. In other words, it
is a core load.

Core load: Synonymous with the term object pro-
gram, which is comprised of the ITV, the object-
time TV, the information contained 1n the Core
Image Header Record, the in-core code, and
all LOCALs, NOCALs, and SOCA Ls.

Cylinderize: The process of rounding a disk block/
sector address up to the disk block/sector ad-
dress of the next cylinder boundary.

Data block: A group of words consisting of a data
- header, data words, and Indicator Words for a

routine in Disk System format. A new data
block is created for every data break. (A data
break occurs whencver thiece is an ORG, BSS,
or BES statement, at ihe end of each record,
and whenever a new sector is required to store
the wards compriging a routine.)

Data break: Sometimes referred to as a break in
sequence. See "Data block" for a definition of
this term.

Data file: An area in either the User Area or the
Fixed Area in which data is stored.

Data format: The format in which a Data file is
stored in either the User Area or the Fixed Area.

Data group: A group of not more than nine data
words of a routine in Disk System format. In this
format cvery such group has as its first word an
associated Indicator Word. Normally a data
group consists of eight data words plus its In-
dicator Word; but, if the data block of which the
data group is a part contains a number of
data words which is not a multiple of eight, then
the last data group will contain less than nine
data words.

Clossary 89

IR | —1 1 , oozl r baddio i

p— o u | Ly

Latulh ki uabli

Data header: The first pair of words in a data block
for a routine in Disk System format. The first
word contains the loading address of the data
block, the second the total number of words
contained in the data block.

DCOM (the Disk Communications Area): The disk
sector which contains the work areas and par-
ameters for the Monitor Programs. It is used
to initialize COMMA by the Cold Start Routine
and at the beginning of each JOB (see ''COMMA™).

Disk block: A 20-word segment of a disk sector.
Thus, sixteen disk blocks comprise each sector.
The disk block is the smallest distinguishable
increment for DSF programs. Thus the Monitor
System permits packing of DSF programs at
smaller intervals than the hardware would other-
wise allow. The disk block is also referred to
elsewhere as the ''disk byte".

Disk System format: Sometimes abbreviated DSF.
It is the format in which mainlines and subroutines
are stored on the disk as separate entities. It
is not possible to ¢ xerute a program in DSF;
it must first be conv: rted to Core Image format.

Disk System format program: A program which is
in Disk System format. It is sometimes called a
DSF program,

_Entry point: A term which may give rise to confusion
unless the reader is careful to note the context
in which this term appears. Under various
conditions it is used to denote (1) the symbolic
address (name) of a place at which a subroutine
or a Monitor Program is entered, (2) the absolute
core address at which a subroutine or mainline
is to be entered, and (3) the address, relative to
the address of the first word of the subroutine,
at which it is to be entered. ,

Fixed area: The area on disk in which core loads

and data files are stored if it is desired that they
always occupy the same sectors. No routines
in Disk System format may be stored in this area.

FORTRAN core load: A core load which was built
from a mainline written in FORTRAN.

IBM Systems area: That part of disk storage which
is occupied hy the Monitor Programs, i.e.,
cylinders 0-33 (sectors 0-271),

ILS (an Interrupt Level Subroutine): A routine which
services all interrupts on a given level; i.e., it
determines which device on a given level caused
the interrupt and branches to a servicing routine
(IS8) for processing of that interrupt. After this
pi‘ocesslng is complete, control is returned to
the ILS, which turns off the interrupt.

Indicator Word: Tells which of the following data
words should be incremented (relocated) when
relocating a routine in Disk System format. It
also tells which are the names in LIBF, CALL,
and DSA statements. Routines which are in Disk
System format all contain Indicator Words, pre-
ceding every eight data words. Each pair of bits
in the Indicator Word is associated with one of
the following data words, the first pair with the
first data word, etc.

Instruction address register: Also called the I-
counter. It is the register in the 1130 which
contains the address of the next sequential
instruction.

In-core routine: A part of a given core load which
remains in core storage during the entire execu-
tion of the core load. 1LSs are always in-core
routines, whereas LOCALs and SOCALSs never
are.

ISS (an Interrupt Service Subroutine): A routine which
is associated with one or more of the six levels
of interrupt; i.e., CARDO, which causes inter-
rupts on two levels, is such a routine.

Job: A group of tasks (subjobs) which are to be per-
formed by the 1130 Disk Monitor System and
which are interdependent; i.e., the successful
execution of any given subjob (following the first
one) depends upon the successful execution of
at least one of those which precedes it. See the
section on the Supervisor for examples.

LET/FLET (the Location Equivalence Table for the
User Area/ the Location Equivalence Table for
the Fixed Area): The table through which the
disk addresses of programs and data files stored
in the User Area/Fixed Area may be found. LET
occupies the cylinder following the Supervisor
Control Record Area. If a Fixed Area has been
defined, FLET occupies cylinder 34 (sectors
272-279); otherwise, there is no FLET.

@

N 9 P 01 9 O O

LIBF routine. A routine which must be referenced
with an LIBF statement. The type codes for
routines in this category are 3 and 5.

LIBF TV: The transfer vector through which LIBF
routines are entered at execution time. See the
section on the Loader for a description of this TV.

Loading address: The address at which a routine or
data block is to begin. In the latter case the ad-
dress is that of an absolute core location, while
in the former it is either absolute or relative,
depending upon whether the routine is absolute
or relocatable, respectively.

LOCAL (load-on-call routine): . That part of an object
program which is not always in core. It is read
from Working Storage into a special overlay area
in core only when it is referenced in the object
program. LOCALs, which are specified for any
given execution by the User, are a means of
gaining core storage at the expense of execution
time. The Loader constructs the LOCALS and all
linkages to and from them.

Location assignment counter: A counter maintained
in the Assembler program for assigning addresses
to the instructions it assembles.

Modified EBCDIC code: A six-bit code used internally
by the Monitor programs. In converting from
EBCDIC to Modified EBCDIC, the leftmost two
bits are dropped.

Modified Polish Notation: The rearrangement of oper-
ators and operands (i.e., an operator and two
operands) into the triple form required by the
FORTRAN Compiler to generate the code neces-
sary to perform arithmetic operations.

Monitor Program: One of the following parts of the
1130 Disk System Monitor: Supervisor (SUP),
Disk Utility Program (DUP), Assembly Program
(ASM), and FORTRAN Compiler (FOR).

NOCAL (a load-although-not-called routine): A
routine which is to be included in an object
program although it is never referenced in that
program by an LIBF or CALL statement. De-
bugging aids such as a trace routine or a dump
routine fall into this category.

Object program: Synonymous with the term core
load.

Object-time TV: A coliection of both the LIBF TV
and the CALL TV.

Principal 1/0 device: The 1442 Card Read/Punch if
one is present; the 1134 Paper Tape Reader/
1055 Paper Tape Punch otherwise.

Principal print device: Sometimes referred to as
the Principal Printer. It is the 1132 Printer if
one is present; the Console Printer otherwise.

Program header record: A part of a routine stored
in Disk System format. Its contents vary with
the type of the routine with which it is associated.
It contains the information necessary, along with
information from LET, to identify the routine,
to describe its properties, and to convert it from
Disk System format to a part of a core load.

Relocatable program: A program which can be exe-
cuted from any core location. Such a program is
stored on the disk in Disk System format.

Relocation: The process of adding a relocation factor
to address constants and to those two-word
ingtructions whose second words are not (1)
invariant quantities, (2) absolute core addresses,
or (3) symbols defined as absolute core addresses.
The relocation factor for any program is the
absolute core address at which the first word of
that program is found.

Relocation indicator: The second bit in a pair of bits
in an Indicator Word. If the data word with which
this bit is associated is not an LIBF, CALL, or
DSA name, then it indicates whether or not to
increment (relocate) the data word. If the re-
location indicator is set to 1, the word is to be
relocated. '

Sectorize: The process of rounding a disk block
address up to the disk block address of the next
sector boundary.

Skeleton supervisor: That part of the Supervisor
which is always in core (except during the execu-
tion of FORTRAN core loads) and which is,
essentially, the logic necessary to process CALL

Glosary 9N

Gl UL L] AL b v R T Goleab Bl b o il L L

R I D)) Y

EXIT and CALL LINK statements. Together with
COMMA it occupies core locations 381 0-14;4:1 o

SOCAL (a System Overlay to be loaded-on-call): One
of three overlays automatically prepared by the
Loader under certain conditions when a core -
load is too large to fit into core storage. See
the section on the Loader for an explanation.

Subroutine: Used in the 1130 Digk Monitor System
interchangeably with the term subprograms,
routine, and program. Any distinctions between
these terms will have to be inferred from the
context,

Supervisor control record area: The area in which
the Supervisor Control Records are written.
This area is the cylinder following the CIB.

The first two sectors are reserved for *LOCAL
records, the next two for *NOCAL records and
the next two for *FILES records. The last two
sectors in this cylinder are not utilized. See
the Supervisor section for the formats of these
records.

The Monitor: Refers to the 1130 Disk System
Monitor.

User area: The area on the disk in which all routines
in Disk System format are found. Core loads

(l.e., programs in Core Image format) and Data
files may also be stored in this area. All IBM-
supplied routines are found here, since they are
stored in Disk System format. This area begins
at the cylinder following LET and occupies as
many sectors as are required to store the rou-
tines and files residing there.

Usger programs: Are mainlines and subroutines
which have been written by the user.

User storage: That part of disk storage which is
neither Working Storage nor the IBM Area.
1t begins at cylinder 34 (sector 272), which
would be the beginning of the CIB unless a
Fixed Area is defined. In this case FLET
would occupy cylinder 34 (sectors 272-279),
the Fixed Area would begin at cylinder 35
(sector 280), and the CIB would occupy the first
two cylinders following the Fixed Area, the
length of which is defined by the user.

Working storage: The area on disk immediately fol-
lowing the last sector occupied by the User
Area. This is the only one of the three major
divisions of disk storage (IBM Area, User
Storage, Working Storage) which does not begin
at a cylinder boundary.

XR1, XR2, XR3: The acronyms for index registers
1, 2, and 3, respectively.

i)

APPENDIX L, DECIMAL AND HEXADECIMAL DISK ADDRESSES

stCToR SECTOR CYLINDER CYLINDER SECTOR SECTOR
ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS ﬁt‘;g::?:“ i;g&??sﬁ .
BASE 10 BASE 16 BASE 10 BASE 16 BASE 10 BASE 16 BASE 10 BASE 16
+00000 0000 +00000 0000 +00800 0320 «00100 006¢
+00008 0008 00001 0001 +00868 0328 +00101 0063
+00016 0010 «00002 0002 00816 0330 +00102 0044
+00024 oo0's +00003 0003 00824 0338 +00103 0067
*00032 000 +00004 0004 +00832 0340 +00104 0048
+00040 o028 +00005 0005 +00840 0348 00105 0049
+00048 0030 +00008 0008 +00048 0150 +00106 008A
+00036 0038 +00007 0007 +00856 0358 +00107 0068
400054 0040 +000038 0008 +00864 0340 +00108 004C
+00072 0048 +00009 0009 +«00872 0368 100109 006D
+00080 0050 +00010 000A +00880 0370 00110 006F
+00088 0038 +00011 0008 +00888 0378 «Q0t 11 00&F
+000%: 0050 +00012 000C +008% 0380 +00142 0070
b +00104 0068 +00013 000D +00904 0388 +00113 007}
0112 0070 +00014 000¢ +00912 0390 +00114 0072
+00120 0078 400015 O00F 200920 03%8 200118 0073
+00128 0080 +00016 0010 +00928 03A0 «001 18 0074
. +00136 0088 +00017 001t 100936 0348 017 0075
= +00144 0090 +00018 0012 *00944 0380 00118 0078
@ Q0152 0098 400019 0013 +00952 038 +00119 0077
+00160 0CAQ +00020 0014 +00960 03C0 *00120 0078
+00168 A8 +00021 0015 100968 03C8 +00121 0079
*00176 0080 +00022 0016 100976 0300 100122 . 007A
+00184 00R8 400023 0017 +00984 0lD8 +00123 0078
*00192 00C0O +00024 0018 00992 03E0 00124 0072C
+00200 00C8 +00025 0019 «01000 03¢B +00125 0070
*00208 0000 +00026 00lA «01008 03F0 «00126 007€
100218 0008 +00027 0018 101016 038 +00127 oo
+00224 00ED +00028 o00C *01024 0400 400128 0080
+00232 00E8 +00029 0010 *01032 0408 +00129 0081
+00240 00F0 400030 O0E +01040 0410 +00130 0082
+00248 00FB +00031 * O0F «01048 0418 «00131 0083
+002564 0100 +00032 0020 +01056 0420 00132 0084
00264 0108 +00033 0021 +01064 0428 +00133 00as
100272 o1to +00034 0022 +01072 0430 +00134 0084
*00280 ons +00035 0023 +01080 0438 +00135 0087
00288 0120 *00036 0024 +01088 0440 +00138 0088
+002% 0128 +00037 0023 +0109% 0448 +00137 0089
+00304 0130 +00038 0026 01104 0450 +00138 008A
+00312 ons +00039 0027 012 0458 +00139 0088
+00320 0140 +00040 0028 +01120 0440 +00140 008C
«00328 0148 .. +0004) 0029 01128 0468 «00141 008D
+00338 0150 +00042 002A 01136 0470 00142 0cst
00344 0158 +00043 0028 +01144 0478 +0014 087
o «00352 0160 +00044 002¢C 01152 0480 *00144 00%0
400360 0168 +00045 0020 +01160 0488 «00145 0091
\ *00346 0170 +00046 002¢ +0l 168 0490 ~00146 00
+00378 0478 +00047 002F 01176 0498 00147 0093
+00384 0180 +00048 0030 +01184 04A0 +00148 0094
+00392 0ea +00049 0031 01192 04AB «00149 0095
+00400 0190 +00050 0032 +01200 0480 00150 00%¢
+00406 o198 «00031 0033 +01208 048y +00151 0097
+0041e 0140 +00052 0024 01218 04CO +00152 0098
+00424 01aR +00053 0035 401224 04C8 +00153 0099
+00432 0180 +00054 0026 101232 0400 00154 009A
«00440 otsa +00055 0037 01240 0408 +00155 0098
*00448 0¥y +00056 0038 +01248 04E0 +00156 009C
*00450 01C8 +00057 0029 +01256 0at8 . 00157 0090
+00484 0100 +00058 003a +01264 0450 +00158 009€
+00472 0108 +0005¢ 0033 Wwnn 04F8 +00159 009
+00480 [} 34 +000a0 003C 101280 0500 00160 O0CAQ
*00488 08 +00001 000 101288 0508 +00161 00A!
100496 Mo 00067 003€ 01296 0510 001462 00A2
100504 VIF8 +00083 UO03F *01304 0518 «00163 00A3
+00512 0200 00064 0040 0112 1520 +00164 00A4
100520 0208 + 00065 vl 01320 0528 100165 00AS
+00528 0210 + 00068 0042 1328 0530 100166 00A6
100530 o218 100087 0043 +01338 0538 +00167 00A7
00544 0220 +00064 0044 201344 0540 +00168 00a8
100552 0228 «00069 0045 01382 0548 +00149 00A9
«00560 0230 10000 0048 +04360 0550 00170 00AA
00508 0238 +0007 0047 01368 0598 «00171 00A8
+00576 0240 +00072 0048 101776 0560 *00t72 00AC
00584 0248 +000 '8 V49 -01.184 0568 00173 00AD
100592 0250 +00024 004a 03392 0570 00174 O0AE
+00000 0258 4000/ 0048 +01400 0578 100475 OOAF
2 100608 0260 400075 004C +01408 0580 100176 0080
*00s16 0264 0?2’ 004D 01416 0589 00177 008!
+00624 0270 {0008 004E 101424 05% «00178 0082
100632 0278 000 /9 004F 101432 0598 +00179 0083
@ +00640 V280 +QOUB0 0050 +01440 o5A0 +00180 0084
100648 0288 +00081 0051 101448 0348 +0181 0085
100658 0290 00082 0052 01456 0580 +00182 0086
00604 0298 +00083 0053 «0l4od 0588 +00183 0087
100672 0240 00084 0054 01472 05C0 +00184 0088
+00680 0248 +00085 0055 *01480 03C8 +00185 0089
+00688 0280 +00088 0056 01488 0sD0 «00186 008A
+000% 0288 +0008? 0087 +014% 0508 «00187 0088
+00/04 c2Co +00068 0058 +01504 0SE0 +00188 008C
+00712 02C8 +00089 0059 01512 03E8 +00189 0080
00720 0200 +000%0 005A 101520 08F0 +00190 008E
+00728 0208 +00091 0058 +01528 0sF8 +00191 008F
+00736 20 00092 005C 101536 0400 *00192 00C0
- +00744 0268 +00093 005D 01544 0608 +00193 00C1
+00752 0x%o 00094 005E 01552 0sl0 +00194 00C2
«00760 028 00095 005F «01560 0518 +00195 00C3
«00768 0300 +000% 0060 01548 0620 “00196 00Cs
00776 0308 40009/ 004t 0157 0628 «00197 00Cs
+00784 0310 +00098 0062 401584 0630 +00198 00Cs
*00792 038 + 00099 0063 +01592 0838 00199 00C?

Appendix L. Decimal and Hexadecimal Disk Addresses 93

ALY VARAIVY 0 1010 oA W1 00 370N G T S T73/ A0 0 B 1 01101 0 NI I 1) L LU0 DV 10T O OO OO 10 ON 11)1 1Y)1 O ot 0O Y TR SO £ 10010 R B S LGS 1 EEPRYNN T

Adding and removing subroutines 39
ARITHMETIC TRACE, FORTRAN control record 33
ASM, monitor control record 9
Assembler 26

control records 26

error detection codes 29

messages and error codes 29

operating procedures (card) 29

operating procedures (paper tape) 30

origin of source program 28

paper tape format 28
Assembler control records 26

COMMON 28

FILE 28

LEVEL 28

usTt 27

LIST DECK 27

LIST DECKE 27

PRINT SYMBOL TABLE 27

PUNCH SYMBOL TABLE 28

SAVE SYMBOL TABLE 28

SYSTEM SYMBOL TABLE 28

TWO PASS MODE 26
Assembler error messages (Table A-7) 52

Card Data format (CDD) 61
Card subroutine errors (CARDO and CARD1) 36
Cand System format (CDS) 59
Character codes, Supervisor and DUP 1/0 (Appendix D) 64
Cold start

halt addresses (Table 13) 44

operating procedure, card 44

operating procedure, paper tape 46
Cold start operating procedures {cards) 44
Cold start operating procedures {(paper tape) 46
COMMA (In-Core Communications Area) 7

core locations (Appendix F) 70
Comments, Mouitor control record 10
COMMON, assembler control record 28
Common Arith/Funct calls (Appendix E) 66
Cominou Arith/Funct LIBFs (Appendix E) 67
Common FORTRAN calls (Appendix E) 65
Compilation crror messages 35
Compilation messages 34
Coasole Printer Core Dump 78
Console Printer Disk Dump 79
Console printer subroutine ervors (TYPEO and WRTYO) 38
Control records

Assembler 26

DUP 17

FORTRAN 32

Monitor 7

Supervisor 10

Conversion factors, disk storage unit 63
Conversion routines (Appendix E) 68
Core image buffer (CIB) 4
Core Image format

format (Appendix B) 59

loading 16

Data cards (Card System format) 60
Data formats (Appendix B) 57

Card Data (CDD) 61

Card System (CDS) 59

Disk Core Image (DCI) 59

Disk Data (DDF) 59

Disk System (DSF) 57

Paper Tape Data (PTD) 61

Paper Tape System (PTS) 61

Print Data (PRD) 61
DCOM (Disk Communications Area) 7
DEFINE, DUP control record 23
DELETE, DUP control record 23
Disk Communications Area (DCOM) 7
Disk Core Image format (DCI) 59
Disk Data format (DDF) 59
Disk dump routines

Console Printer Disk Dump 79

1132 Printer Disk Dump 79
Disk FORTRAN 1/0 (Appendix E) 66
Disk Pack Initialization Routine (DPIR) 40
Disk storage allocation {Table 1) 3
Disk storage layout 3
Disk storage unit conversion factors 63
Disk system format (DSF)

format (Appendix B) 57

loading 16
Disk Utility Program (DUP) 17

control records 17

error 1aessages (Table A-9) 55

messages 24

operating notes 25
DPIR card load operating procedures 40
DPIR paper tape load operating procedures
DUMP, DUP control record 18
DUMPDATA, DUP contro! record 18
DUMPLET, DUP control record 22
DUP, monitor control record 10
DUP control records 17

DEFINE 23

DELETE 23

DUMP 18

DUMPDATA 18

DUMPLET 22

DWADR 22

EDIT 24

45

i

uﬂ.evg,_

8%

53 @&

q -

STORE 20

STORECI 20

STOREDATA 21

STOREMOD 20
DUP error messages (Table A-9) §S5
DUP operating notes 25
DUP walits and loops (Table A-10) 56
DWADR, DUP control record 22

EOP card {Card System format) 60
Ervor messages (Appendix A) 47
Assembler (Table A-7) 47
DUP (Table A-9) S5
DUP Waits and Loops (Table A-10) 56
FORTRAN (Table A-8) 53
FORTRAN }/O (Table A-11) 56
IBMOO 77
Loader(Table A-6) S0
Monitor Supervisor (Table A-4) 48
Monitor Supervisor Wait Locations (Table A-5) 49
System Loader{Table A-1) 47
System Loader Wait Locations, Part 1 (Table A-2) 48
System Loader Wait Locations, Past 2 (Table A-3) 48
Extended Arith/Funct calls (Appendix E) 65
Extended Arith/Funct LIBFs (Appendix E) 67
EXTENDED PRECISION, FORTRAN coatrol record 33

FILE, assembler contol record 28
File protection 5
FILES, supervisor control record 11
Fixed area 5
Fixed Location Equivalence Table (FLET) 5
FLET (Fixed Location Equivalence Table) §
layout of LET/FLET entries (Appendix G) 74
output format (Figure 8) 23
Flipper routine 5
FOR, monitor control record 9
Formats (Appendix B) 57
FORTRAN common LIBFs (Appendix E) 66
FORTRAN compiler 32
compilation crror messages 35
‘compilation messages 34
control records 32
1/0 logical unit designadons (Table 8) 32
printouts 34 :

'FORTRAN control records 32

ARITHMETIC TRACE 33

EXTENDED PRECISION 33

ocs 32

LIST ALL 33

LIST SOURCE PROGRAM 32

LIST SUBPROGRAM NAMES 32

LIST SYMBOL TABLE ' 32

NAME 33

ONE WORD INTECERS 33

TRANSFER TRACE M4
FORTRAN error codes (Table A-8) 53
FORTRAN find routine (Appendix E) 66
FORTRAN I/O and conversion routines (Appendix E) 66
FORTRAN I/O errors 35,1
FORTRAN 1/0 error codes (Table A-11) S6
FORTRAN 1/0 logical unit designations 32
FORTRAN sign transfer calls (Appendix E) 65

FORTRAN trace routines (Appendix E) 66
Header information, FORTRAN 33

IBM systems area 3
IBMOO (1130 Disk Monitor System Maintenance Program) 75
ILS header card (Card System format) 61
In-Core Communications Area (COMMA) 7
core locations (Appendix F) 70
Initializing Disk Monitor System from cards 43
Initializing Disk Monitor System from paper tape 4S
Intersupt level subroutines (Appendix E) 68
Interrupt service subroutines (Appendix E) 68
1/0 logical unit designations, FORTRAN 32
10CS, FORTRAN control record 32
ISS header card (Card System format) 61

]OB, monitor control record 9

Keyboard input of data records 35.1
Keyboard subroutine functions (TYPEO) 38

Layout of LET/FLET entries (Appendix G) 74
LET {Locadon Equivalence Table) 4
layout of LET/FLET entries (Appendix G) 74
output format (Figure 7) 22
LEVEL, assembler control record 28
LIST, assembler control record 27
LIST ALL, FORTRAN coatrol record 33
LIST DECK, assembler control record 27
LIST DECK E, assembler coutrol record 27
LIST SOURCE PROGRAM, FORTRAN control record 32
LIST SUBPROGRAM NAMES, FORTRAN control record 32
LIST SYMBOL TABLE, FORTRAN control record 32
Load Mode Control Card 41
Loader 12
Loader messages/ error messages (Table A-6) SO
LOCAL, supervisor control record 10
Location Equivalence Table (LET) 4
Logical unit designations (FORTRAN 1/0) 32

Machine requirements {i
Mainline header card {Card System format) 59
Monitor control record analyzer 7
Monitor control records 7

ASM 9

Comments 10

DuUpP 10

FOR 9

joB 9

PAUS 9

TEND 10,

TYP 9

XEQ 10
Monitor supervisor error messages (Table A-4) 48
Monitor supervisor wait locations (Table A-5) 49

NAME, FORTRAN control record 33
NOCAL, supervisor control record 11
Non-disk FORTRAN format 1/O (Appendix E) 66

Object-time transfer vector 15
ONE WORD INTEGERS, FORTRAN control record 33

NI 1] UMIYAUTIEN8 BT (OO O 1 Y 0 FONYY 0 3018 L (1

U0 P Iy R i Y 0 1AV LD 11 | AR) 1}

Index 95

L

'y

L JOUOR UL TTEL

VY N WV 1) ||

Operating procedures
cold start (cards) 44
cold start (paper tape) 46
Console Printer Core Dump 78
Console Printer Disk Dump (card) 79
Console Printer Disk Dump (paper tape) 80
DPIR card load 40
DPIR paper tape load 45
IBMOO 77
initializing Disk Monitor System from cards 43
initializing Disk Monitor System from paper tape 45
Paper Tape Reproducing routine 80
Paper Tape Utility routine (PTUTL) 81
system gencration {card system) 40
1132 Printer Core Duinp 78
1132 Printer Disk Dump (card) 79
1132 Printer Disk Dump (paper tape) 80
Optional tracing (FORTRAN) 34
Origins for core loads 13

Overlay routines for LOCAL subprograms (Appendix E) 66

Paper tape contrel records 46

Paper Tape Data format (PTD) 61

Paper tape monitor system 45

Paper tape not-ready WAITs 82

Paper Tape Reproducing routine 80

Paper tape subroutines (PAPT) 39

Paper Tape System format (PTS) 61

Paper Tape Utility routine (PTUTL) 81

Patch header record (IBM0O) 76

PAUS, monitor control record 9

Pre-~operative errors (subroutine library) 36

Print Data format (PRD) 61

PRINT SYMBOL TABLE, assembler control record 27
Program header record (Disk System format) 57
Program subtypes S8

Program types 58

PTUTL (Paper Tape Utility routine) 81

PUNCH SYMBOL TABLE, assembler control record 28

REQ Cupds 42 -

Sample program output 79

SAVE SYMBOL TABLE, assembler control record 28
SCON Card 42 o

Skeleton Supervisor 7

SOCALs (system overlays) 15

Stacked input arrangement 12

Standard Arith/Funct calls (Appendix E) 65
Standard Arith/Funct LIBFs (Appendix E) 67
STORE, DUP control record 20

STORECI, DUP contro! record 20
STOREDATA, DUP control record 21
STOREMOD, DUP control record 21

Subroutine header card (Card System format) 60
Subroutine header record (IRMO0) 77
Subroutine library S, 36

listing (Appendix E) 65

maintenance 76
Subtype codes 58

Supervisor and DUP I/O character codes (Appendix D) 64

Supervisor contro! record area 4
Supervisor control records 10
FILES 11
LOCAL 10
NOCAL 11
Supervisor program 3, 7
System Configuration Deck 42
System generation (card system) 40
System loader error codes (Table A-1) 47
System loader wait locations Past 1 (Table A-2) 48
System loader wait locations, Part 2 (Table A-3) 48
System overlays (SOCALs) 15
System program maintenance (IBM0OO) 75

SYSTEM SYMBOL TABLE, assembler control record 28

TEND, monitor control record 10

TERM Cand 42 B
TRANSFER TRACE, FORTRAN control record 34
Tracing (FORTRAN) 34

TWO PASS MODE, assembler control record 26
TYP, monitor control record 9

Type codes S8

User area 4

User storage area 4

User-supplied cards 41

Utility calls (Appendix £) 65

Utility routines (Appendix I) 78
Cousole Printer Core Dump 78
Console Printer Disk Dump 79
Disk Pack Initialization Routine (DPIR) 40
Paper Tape Reproducing routine 80
Paper Tape Utility routine 81
1132 Prioter Core Dump 78
1132 Printer Disk Dump 79

Working Storage area S
Working storage indicator word 17

XEQ, monitor control record 10

1130 Disk Monitor System Maintenance Program IBM0Q)
1130 subroutine library listing (Appendix E) 65

1132 Printer Core Dump 78

1132 Printer Disk Dump 79

1442 Errors and Operator Procedures {CARDO and CARD1) 36

BB m«.&"

1
p

@

Ay GEB

5p

LLrm nr o U U 2 LI AL D L IR U R DL B i PUL e L I LT LT

‘ﬁw“'fll‘i""iWﬁ!ﬁ?‘““ﬁinI‘lﬁ!mi*ﬁ‘mmumm-mwlwl,"wwiiwnw-‘um‘umﬁm‘umm RO o PO Y Y e O OO N 1 OO0 et [g N T

GC26-3750-3

3

7

[
A1 [

-

International Business Machines Corporation
Data Processing Division ’
1133 W?g.tchester Avenue, White Plains, N.Y. 10604

1BM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9. North Tarrytown, N.Y., U.S.A. 10591

1BM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue, White Plains, N.Y., U.S.A. 10601

(9€-0€ 1 1) {enuely 80UAIBAY WRISAS JOMUOW %5iQ OELL S|

€-:0G4€-920D 'V'S'N ul palulid

D

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106

