
Systems Reference Library

File No. 1130-36
GC26-3750-3

IBM 1130 Disk Monitor System
Reference Manual

Ii
;t

,,,,111/..mr•or	 • . ^Irrt1,717,1, F7	 •Irm.	 .	 77,71,17"/MTA,M77.1.1' 	 rrne, ,,',11,11,1■MAI,"114,0&91,711/MVIRTFMMMIT,

?MACE,

The IBM 1130 Disk Monitor System, a collective name
for five distinct but interdependent programs • Supervisor.

ak Utility, assembler, FORTRAN, and subroutine
library • is a powerful, combined operating and pro-
gramming system.

This system should be distinguished from IBM 1130
ak Monitor System, Version 2, which is a separate

system. All references to the Monitor System made in this
manual concern Version 1. Readers desiring information
on Version 2 are referred to its pertinent manuals.

The programs that make up the Monitor System use
advanced programming techniques, including relucatable
subroutines, highly compressed formats for data and
programs, and flexible input and output command
structures which facilitate data conversion operations. A
unique feature of the 1130 Monitor System is the
"floating" boundary between the user program/data file
area and the disk Working Storage area. As information is
added to disk storage in the User area, the Working
Storage area is decreased in size. Conversely, if a program
or data file is deleted from disk storage User area, the
remaining programs are packed, and the disk Working
Storage area is increased in size.

The following publications may assist the user in util-
izing the system:

e IBM 1130 Functional Characteristics, Form A26.5881
O IBM 1130 FORTRAN Language. Form C26.5933
o IBM 1130 Assembler Language, Form C26•5927

O IBM 1130 Subroutine Library, Form C26.5929

Throughout this publication all references to locations
in storage are in hexadecimal unless otherwise noted;
therefore, the subscript 16 has been omitted.

11'14411m Requirements

The minimum machine features and units required for
operation of the Monitor System are:

o IBM 1131 Central Processing Unit. Model 2. with a
minimum of 4096 words of core storage

O IBM 1134 Paper Tape Reader and an IBM 1055 Paper
Tape Punch, or an IBM 1442 Card Read Punch.

If both the 1442 Card Read Punch and 1134/1055 paper
tape units are included, the 1442 Card Read Punch will be
the principal I/O device. If an 1132 Printer is included, it.
will be the principal print device; otherwise the console
printer will be the principal print device.

Fourth Edition (May 1972)

This is a reprint of GC26-3650-2 incorporating changes released in Technical Newsletter
GN33-8047. This edition applies to version 1, modification 8, of the IBM 1130 Disk Monitor
System. Information in this publication is subject to change. Before using this publication, be
sure you have the latest edition and any Technical Newsletters.

Requests for copies of IBM publications should be made to your IBM representative or the IBM
branch office serving your locality.

iiDCopyright International Business Machines Corporation 1968,1972

CONTENTS

PAPER TAPE MONITOR SYSTEM 	 45
DPIR Paper Tape Load Operating Procedures 	 45
Procedure for Initializing Disk Monitor System
from Paper Tape 	 45
Cold Start Operating Procedure 	 46
Paper Tape Control Records 	 46

APPENDIX A. ERROR MESSAGES 	 47

IBM 1130 DISK MONITOR SYSTEM - INTRODUCTION
	

1

DISK STORAGE LAYOUT
	

3

IBM Systems Area 	
	 3

User Storage Area 	
	 4

Working Storage Area
	 S

File Protection 	
	 S

0

SUPERVISOR PROGRAM 	
Skeleton Supervisor 	
Monitor Control Record Analyser
Monitor Control Records 	
Supervisor Control Records 	
Stacked Input Arrangement 	
The Loader 	

DISK UTILITY PROGRAM (DUP)
DUP Control Records 	
DUP Messages 	
DUP Operating Notes 	

ASSEMBLER 	 26

Assembler Control Records 	 26

Origin of Source Program 	 28

Assembler Paper Tape Format 	 28
Assembler Messages and Error Codes 	 29
Assembler Operating Procedures 	 29

FORTRAN COMPILER 	 32
FORTRAN Control Records 	 32
FORTRAN Printouts 	 34
//4, Records at FORTRAN Execution Time 	 35
Keyboard Input of Data Records 	 35.1
Object Program Paper Tape Data Record Format 	 35.1
FORTRAN I/O Errors 	 35.1
FORTRAN Programming Notes 	 35.1

SUBROUTINE LIBRARY
	

36
Pre-Operative Errors 	 36
Card Subroutine (CARDO and CARD!) Errors 	 36
Console Printer Subroutine (TYPEO and WRTY0)•
Errors 	 38
Keyboard Subroutine (TYPEO) Functions, 	 38
Paper Tape Subroutines (PAPT)	 39
Adding and Removing Subroutines 	 39

SYSTEM GENERATION OPERATING PROCEDURES
(CARD SYSTEM) 	 40

Disk Pack Initialization Routine (DPIR) 	 40
User-Supplied Cards 	 41
Procedure for Initializing Disk Monitor System
from Cards 	 43
Cold Start Operating Procedure 	 44

APPENDIX B. DATA FORMATS 	 57
Disk System Format (DSF) 	 57
Disk Core Image Format (DCI) 	 59
Disk Data Format (DDF) 	 59
Card System Format (CDS) 	 59
Card Data Format (CDD) 	 61
Print Data Format (PRD) 	 61
Paper Tape System (PTS) and Paper Tape Data
(PTD) Formats 	 61

APPENDIX C. DISK STORAGE UNIT CONVERSION
FACTORS 	 63

APPENDIX D. SUPERVISOR AND DUP INPUT/OUTPUT
CHARACTER CODES 	 64

APPENDIX E. 1130 SUBROUTINE LIBRARY LISTING 	 65

APPENDIX F. IN-CORE COMMUNICATIONS AREA
(COMMA) 	 70

APPENDIX G. LAYOUT OF LET/FLET ENTRIES 	 74
Three-Word Entries 	 74
Six-Word Entries 	 74

APPENDIX H. IBM00 (1130 DISK MONITOR SYSTEM
MAINTENANCE PROGRAM) 	 75

System Program Maintenance 	 7S
IBM Subroutine Library Maintenance 	 76
Operating Procedures 	 77
Error Messages 	 77

APPENDIX I. UTILITY ROUTINES 	 78
Console Printer Core Dump 	 78
1132 Printer Core Dump 	 78
Disk Dump Routines 	 79

Paper Tape Reproducing Routine 	 80
Paper Tape Utility 	 81

APPENDIX J. SAMPLE PROGRAM OUTPUT 	 84

APPENDIX K. GLOSSARY 	 89

APPENDIX L. DECIMAL AND HEXADECIMAL DISK
ADDRESSES 	

INDEX

7
7
7
7

10
12
t2

17
17
24
2S

93

96

111

,719,117A,	 rIA,■!,,,, A	 A rAA^AtIr A AMA rA'7,11VI A,AA 	 ,111

IL LUSTRA T IONS

f igu res

1. 1130 Disk Monitor System 	 1

2. Disk Storage Layout 	 3
3. Processing Input Data Under Supervisor Control 	

4. Example of Stacked Input (One Job)	 	 13

5. Example of Stacked Input (Three Jobs) 	 14

6. Layout of Object-Tifne Transfer Vector Area 	 15

7. Output Format from a DUMPLET Operation (LET) 	 22

8. Output Format from a DUMPLET Operation (FLET) 	 23
9. List Deck Format 	 27

10. System Loader Card Sequence 	 43

11. Disk System Format 	 57
12. Card Data Format 	 62
13. Print Data Format 	 62
14. Control Records and Data Organization (in

Card Form) for Monitor Program and Subroutine
Library Maintenance 	 75

15. Typeouts for 1130 Monitor System Maintenance
Program 	 77

16. PTUTL Sense Switch Options 	 83

Tables

1. Disk Storage Allocation 	 3
2. Summary of Monitor Control Records 	 9
3. Movement of Information Using DUP Control Records • 19
4. Summary of DUP Contn..1 Records 	 20
S.	 Restrictions on DUP Functions in Temporary Mode

(JOB T) 	 20
6. Summary of Assembler Control Records 	 26
7. Assembler Error Detection Codes 	 29
8. I/0 Logical Unit Designations 	 32
9. Summary of FORTRAN Control Records 	 33

104	 DPIR Halt Addresses 	 41
11. Load Mode Control Card Format 	 41
12. REQ Card Format 	 42

13. Cold Start Halt Addresses 	 44
A-1. System Loader Error Codes 	 47

A-2. System Loader Wait Locations (Part 1) 	 48

A-3. System Loader Wait Locations (Part 2) 	 48

A-4. Monitor Supervisor Error Messages 	 48
A-S. Monitor Supervisor Wait Locations 	 49
A-6. Loader Messages/Error Messages 	 50

A-7. Assembler Error Messages 	 52

A-8. FORTRAN Error Codes 	 53

A-9. DUP Error Messages 	 SS

A-10. DUP Waits and Loops 	 56

A-11. FORTRAN I/O Error Codes 	 56

H-1. IMOD Monitor System Maintenance Error Messages 	 77

iv

1130 DISK MONITOR SYSTEM

1130
Supervisor

Program

1130 1130 1130 1130
FORTRAN Assembler Disk Utility Subroutine
Compiler Program Library

1

IBM 1130 DISK MONITOR SYSTEM - INTRODUCTION

a

The 1130 Monitor is a disk-oriented system that
allows the user to assemble, compile, and/or
execute individual programs or a group of programs
with a minimum of operator intervention. Jobs to
be performed are stacked and separated by control
records that identify the operation to be performed.

The Monitor System consists of five distinct
but interdependent programs (see Figure 1):

• Supervisor program

• Disk Utility Program

• Assembler program

• FORTRAN compiler

• Subroutine library

The Supervisor program provides the necessary
control for the stacked-job concept. It reads and
analyzes the monitor control records, and transfers
control to the proper program.

	 -J

Figure I. 1130 Disk Monitor System

The Disk Utility Program is a group of routines
designed to assist the user in storing information
(data and programs) on the disk, and retrieving
and using the information stored.

The assembler program converts user-written
symbolic-language source programs into machine-
language object programs.

The FORTRAN compiler converts user-written
FORTRAN-language source programs into machine-
language object programs.

The subroutine library contains subroutines for
data input/output, data conversion, and arithmetic
functions.

The Monitor System coordinates program
operations by establishing a communications area
in memory which is used by the various programs
that make up the Monitor System. It also guides
the transfer of control between the various
monitor programs and the user's programs.
Operation is continuous and setup time is reduced
to a minimum, thereby effecting a substantial
time saving and allowing greater programming
flexibility. The complete Monitor System resides
on disk storage. Only those routines or programs
required at any one time are transferred to core
storage for execution. This feature minimizes
the core storage requirements and permits
segmenting of long programs.

In addition to decreasing the amount of
operating time, the 1130 Disk Monitor System
significantly reduces the amount of programming
to be done by the user. This is made possible
through the sharing of common subroutines by
unrelated programs. For example, input/output
or conversion operations are required by most
user programs, regardless of whether the programs
are written in the assembler language or in
FORTRAN. IBM provides a library of subroutines
as an integral part of the Monitor System.

The assembler and FORTRAN compiler
facilitate development of a library of user
programs. The object programs can be stored
on cards or paper tape, as is customary in
installations without disk storage. However, with
disk storage, programs can be stored directly
on disk without the necessity of designating actual
storage locations, remembering or documenting
the storage assignments, or updating the
storage assignments and documentation as
conditions change. The disk-stored programs

IBM 1130 Monitor System - Introduction 1

■■■■■■■,,,, 	 io	 I
,101111.1111MPIP.IPIVINAIPITPWIRMT7 rermr

and data are referred to by name when called
for use. The Monitor System, thr:".ugh the use
of a table known as the Location Equivalence
Table (LET), can locate any user program,
subroutine, or file by a table search for the
name. Stored with the name is the amount of
disk storage (in disk blocks)* required by the

program or data.
Any program that is added to the user's disk-

stored programs is usually placed at the end of
the other programs. If a program is deleted, the
remaining programs are usually packed for
effective utilization of disk storage. This packing
facility is described later in this publication.

*There are 16 disk blocks per sector; each disk
block contains 20 data words (refer to Appendix
C).

2

	 A ■■• • • yd
--J

IBM
Systems Area

User Storage Area Working Storage
Area

DISK STORAGE LAYOUT

0

Disk Storage is divided into three logical areas:
IBM Systems area, User Storage area, and
Working Storage area. The contents of these
three areas, described in detail in subsequent
paragraphs, are shown in Figure 2. The sectors
and cylinders that these areas occupy are shown
in Table 1. Appendix C shows disk storage unit
conversion factors.

IBM SYSTEMS AREA

This area contains the integral parts of the 1130
Disk Monitor System: the Supervisor program,
Disk Utility Program (DUP), FORTRAN
compiler, and the assembler. The FORTRAN
compiler and/or the assembler can be deleted
at the user's option.

Supervisor Program

This program supervises all monitor operations
and performs the control and loading functions
for the user programs and monitor programs
(FORTRAN, Assembler, and DUP). The
Supervisor is directed by monitor control records
in the stacked input. Included within the Supervisor
is the Skeleton Supervisor, which resides in core
(hiring monitor operation and provides the communica-
tions link between the monitor programs and the
user's programs.

Table 1. Disk Storage Allocation

Use Total
Sectors

Sectors
0. 1 u.	 Pd

Cylinders
Occupied

Total
Cylinders

Identification I 0 0 1/8
Cold Start 1 1 0 1/8
DCOM 1 8 0 1/8
Supervisor 53 2-7, 9-55 0-6 6 5/8
DUP 72 56-127 7-15 9
FORTRAN 104 128-231 16-28 13
Assembler 40 232-271 29-33 5
CI8 24 272-295 34-36 3
LET 8 296-303 37 I
Remainder of 1296 304-1599 38-199 162

User Area and
Working Storage

1600

Disk Utility Program (DUP)

DUP is a group of routines provided by 1BM that
aid the user in the day-to-day operation of his
installation. By means of these routines, certain
frequently required operations, such as storing,
deleting, and dumping data and/or programs from
disk storage, can be performed with minimum
programming effort by the user.

Q

Sector

0

Supervisor Control
Record Area

User Area

Supervisor
(includes

identification,
cold start,

DCOM)

DUP FORTRAN Assembler

-

FLET
(if F xedi
Area is

defined)

Fixed
Area (if
defined)

CIB LET

-

IB
Subroutines

User
Programs
and Data

Files

figure 2. Disk Storage Layout

Disk Storage Layout 3

rqt lalMat 191 7"Trr rtri 'TT .rmempemprum emit r Mrgp wl!IPIrirrm	 Run!	 II!, I p

FORTRAN Compiler

The compiler translates programs written In the
FORTRAN language into machine language, and
provides for calling the necessary arithmetic,
functional, conversion, and input/output
subroutines at execution time.

The CIB is also used by the Supervisor to
save core locations 256 10-409510 on every CALL
LINK. Before each link is executed, the Loader
restores any part of this area which has been
included in the COMMON defined by the called
link.

Supervisor Control Record Area
Assembler .

The assembler converts source programs written
in the assembler language into machine language
object programs. The conversion is one-for-one,
that is, the assembler normally produces one
machine language instruction for each instruction
of the source program.

USER STORAGE AREA

This area consists of the following:

• A Fixed area (optional) for storing core image
programs and data. If a Fixed area is
defined, there will als; he a Fixed Location
Equivalence Table (ELET).

• The Core Image Buffer (CIB)

• The Supervisor Control Record Area

• The Location Equivalence Table (LET)

• A User area for storing IBM-supplied
subroutines, user-written programs, and
data files

Core Image Buffer (C113)

Those parts of a core load (main program and
associated subprograms) that fall below core
location •1096 10 are put in the Core Image Buffer
(C113) as they are prepared for execution or for
storing in core image format by the Loader (refer
to DUP Control Records, •STORECI). When all
parts of program have been processed, either the
contents of the CIB are read back into core
storage by the Loader, which overlays itself in
the process, or DUP is recalled from disk to core
to complete the •STORECI operation, using the
CIB as source of any parts of the core load which
are to reside below core location 409610.

This area is used by the system to store
information for use by the Loader (refer to
Supervisor Control Records).

Location Equivalence Table (LET)

The Location Equivalence Table (LET) serves
functionally as a "map" for the IBM subroutines,
user's programs, and data files. Each subroutine,
user's program, or data file that is stored on
disk has at least One entry in the table. The table
entry contains the name and disk block length of
the subroutine, program, or data file. Each
entry point in a subroutine requires a separate
entry in LET. The user may print the contents
of LET by using the DUP control record DUMPLET
(refer to DUP Control Records).

User Area

As each user-written program or data file is
added to the User area, the space available for
the Working Storage area decreases. Conversely,
if a program is deleted, the Working Storage area
increases by the amount of space the program
formerly occupied in the User area. For
example, user-written programs A, B, and C
are stored on disk as follows:

C18 LI I IBM-supplied
subooution$

Non, orn

A
l'un i•nfn

B
Po.,, am

C
Woo k.n fi Stara!),

Area

If a program, D, is created, it would be stored on
disk causing the Working Storage area to contract:

CIB LET 18M-supplied Program Program Program Program Working

subroutines A B C 0 Storage
Area

If Program A is now deleted, Programs B, C, and
D would be moved up, maintaining a packed

4

condition in the User area while expanding the
Working Storage area:

C I B LET IBM-supplied Program Program Program Working Storage
subroutines
	

B
	

C
	

Area

NOTE 1: Core Image programs and data files are
always put on disk at the beginning of a sector, and
remain at the beginning of a sector even after
packing. Disk System format programs start at
the beginning of a disk block.

NOTE 2: The Working Storage area always starts
at the beginning of a sector; therefore, it might
not expand or contract by *he exact size of the
program stored or dele'ed

IBM-Supplied Subroutine Liffary

The IBM-supplied subroutine library contains
input/output, data conversion, arithmetic and
functional, and selective dump subroutines.
These subroutines are generally available for
use with both the assembler and the FORTRAN
compiler. Operating procedures are described
in a subsequent section of this manual. Appendix
E contains a complete list of all IBM-supplied
subroutines.

Flipper Routine

The subroutine library includes a Flipper routine,
which is a part of the core load for those user's
programs that use LOCAL (Load-on-Call)
routines (refer to Supervisor Control Records).
When a LOCAL routine is called, control is
passed to the Flipper routine, which reads the
LOCAL into core storage if it is not already in
core and transfers control to it. All LOCALs
in a given core load are executed from the same
core storage locations; each LOCAL overlays

4	 the previous one. All LOCALS required by a
program are relocated and stored by the Loader
in Working Storage immediately following the
last defined file, if any.

Fixed Area

The Fixed area is an optional area that the user can
define to enable him to store programs and data files
at fixed disk locations. The user can define the
size of the Fixed area to be a whole number of

cylinders, with a minimum of two, and he can
increment (but not decrease) the size of the Fixed
area by a whole number of cylinders at any time.
Unlike in the User area, when a program or data file
is deleted from the Fixed area no packing occurs.
Thus, programs or data files in this area can be
referenced by absolute sector addresses, since
they will not be moved. The Fixed area, if any
has been defined, requires a LET of its own,
i.e. , a Fixed Location Equivalence Table (FLET).
The contents of FLET may also be printed by
using the DUP control record DUMPLET. The
Fixed area is used only for the storage of core
image programs and data, and not for Disk
System format programs er for working
storage.

WORKING STORAGE AREA

The Working Storage area is used for temporary
storage. Most of the area is available to the
user during execution of his programs. The
Loader stores LOCALs (Load-on-Call routines)
and SOCALs (system overlays) in this area,
and it is also used extensively by the monitor
programs (see Working Storage Indicator Word).
For example, the assembler uses this area for
temporary storage of a program during the
assembly process; at the conclusion of an
assembly or compilation, the object program is
in the Working Storage area.

The assembler requires 32 sectors of Working
Storage for possible symbol table overflow
during an assembly, plus whatever additional
Working Storage is required for disk output
(compressed source statements in Pass 1,
object program in Pass 2). Since an assembly
requires at least one sector for disk output, the
assembler checks for the availability of 33
sectors of Working Storage before beginning to
assemble the source program. If at least 33
sectors are not available, an assembler error
message is printed (refer to Appendix A), the
assembly is terminated, and control is returned
to the Supervisor.

During a FORTRAN compilation, FORTRAN
requires the amount of Working Storage
necessary to contain the compiled program.

FILE PROTECTION

The 1130 Disk Monitor System controls file
protection. All Disk I/0 subroutines furnished by

Disk Storage Layout S

RV

,r)r, r'r",....^m'rrrfrorrrrnrrilliNrir
	 r	 rrrirr1,1,' 1 Pr

	 TrIllrr ?}AMR, OrrIr 'MI 11

IBM check the address of the sector on which they
have been instructed to write to ensure that it is
greater than the file protection address in COMMA
(refer to Appendix F), with the exception of the
Write Immediate function (described in IBM 1130
Subroutine Library, Form C26-5929). The file
protection address, which is equal to the starting
address of Working Storage, is updated by DUP

whenever a program is added to the User area.
Only data files which have been created in or

moved into Working Storage can be written into
by assembly-language programs (unless the
Write Immediate function is used). FORTRAN
programs may write directly into User and
Fixed areas (refer to *FILES under Supervisor
Control Records).

0

SUPERVISOR PROGRAM

0

The Supervisor program performs the control and
loading functions for the Monitor System. Monitor
control records, which are used to direct the
sequence of jobs without operator intervention, are
included in a stacked input arrangement and are
processed by the Supervisor program. The
Supervisor program decodes the monitor control
record and calls the proper monitor program to
pe.-form the desired operation. A typical sequence
of operations is listed below. The programs in
parentheses would be called by the Supervisor to
perform the particular operation:

1. Compilation of a FORTRAN program (FORTRAN
compiler)

2. Storage of the compiled program on disk (Disk
Utility Program)

3. Assembly of a symbolic program (Assembler)
4. Storage of the assembled program on disk

(Disk Utility Program)
5. Execution of a disk-stored program (Loader)
6. Punching of a disk-stored program into cards

(Disk Utility Program)

The Supervisor itself is a group of several
distinct but closely related routines:

• Skeleton Supervisor

• Monitor Control Record Analyzer

• Loader

• Cold Start Routine

SKELETON SUPERVISOR

The Skeleton Supervisor provides the communica-
tions link between the monitor programs and the
user's programs, i.e., it contains the necessary
logic to conduct the transition from one job to
another. The Skeleton Supervisor is read into
core storage when the operation of the monitor is
initially started by means of the Cold Start Routine
(refer to Cold Start Operating Procedure), which
occupies sector 1. The Disk Communications Area

(DCOM), which contains addresses and indicators
necessary for the operation of the monitor, Is
read into core initially with the Skeleton Supervisor.
The in-core communications area (referred to as
COMMA) is restored from DCOM whenever a Cold
Start procedure is initiated or a JOB record is
encountered (refer to Monitor Control Records).
When COMMA is restored there will be no usable
program in Working Storage. Appendix F lists
all the core locations and information contained in
COMMA.

MONITOR CONTROL RECORD ANALYZER

This routine analyzes the monitor control records,
prints out the information contained in the control
record, and calls the appropriate program: Disk
Utility Program, Assembler, FORTRAN compiler,
or Loader.

The following three formats are used by the
Monitor System to store information on disk
(refer to Appendix B):

• Disk Core Image Format (DCI)

• Disk System Format (DSF)

• Disk Data Format (DDF)

MONITOR CONTROL RECORDS

Input to the Supervisor consists of one or more
job decks, each preceded by a JOB monitor
control record (see Figure 3). The character
codes recognized by the Supervisor are listed in
Appendix D. Although the monitor control records
are described in terms of cards, these records
can be entered in card image form from paper tape
or the keyboard/console printer.

The JOB control record defines the starting and
ending points of the job; however, the total job can
consist of many subjobs. The assembler,
FORTRAN compiler, Disk Utility Program, and
user's programs can be called for operation by
the ASM, FOR, DUP, and XEQ control records,

Supervisor Program 7

-7rp lvARMMIFFITM	 T1177701r71779 MV/MIMPIIMMTWMAIF11. linnwnr,	 NT. ++64	••••••■••••47,111i• momoreeno•

Working Storage

User Storage

Assembler

ORTOAN

CUP

• Supenviser

Figure 3. Processing Input Data Under Supervisor Centred

respectively. These are each considered
individual subjobs. The successful completion of
the total job depends on the successful completion
of each individual subjob within the job. Some
subjobs are not attempted if the preceding subjobs
have not been successfully completed.

When a monitor control record is read, the
system program required to do the subjob is
read into core storage from disk storage. The
program then processes input until the end of the
subjob deck is reached, a new monitor control
record is encountered, or an error occurs.
Monitor error messages are described in
Appendix A.

Every job is assumed to begin with no
programs in Working Storage (see Working
Storage Indicator Word).

Control can be returned to the Supervisor by
manually branching to core location 0038. The

Supervisor then passes records until it
encounters a monitor control record.
MI monitor control records have the following
format:

Columns 1-2: • // (slashes, to identify monitor
control record)

3: b (blank)
4-7: Pseudo-operation code (left-

justified)

The following paragraphs contain a list of the codes
and their operations. The monitor control records
are summarized in Table 2.

NOTE: Comments are permitted in unspecified
columns in all monitor control records. A "b"
appearing in a column means that the column must
be blank.

C

Table 2. Summary of Monitor Control Records

CC	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15 16	 17 18 19

/	 /	 b	 •	 comments

Mk Stour taw- Initialize a job sequence//	 b	 J	 0	 B	 T	 —...

/	 /	 b	 A	 S	 M Read assembler into core for execution

//bFOR Read FORTRAN into core for execution

/	 /	 b	 P	 A	 U	 S Holt until START is preued

//b	 TYP Change control record input from principal input unit
to keyboard/console printer for succeeding monitor
control records

//b	 TEND Change input mode from keyboard/console printer
bock to the principal unit for succeeding monitor
control records

//bDUP Read DUP into core for execution

X	 E	 0	 Name	 L -Count- DI* Read and transfer control to mainline program/ / b	 —Ptoram	 —
0, I, N

JOB

This record causes initialization and termination
of a job sequence and restores COMMA from
DCOM. The format is

cc 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// b J OBb T	 I DENT b

The letter T in column 8 indicates temporary
mode. In this mode, programs or data files stored
in the User area by DUP are automatically deleted
at the end of the current job. DUP operations
which are permitted in temporary mode are
described in Table 5.

If columns 11-15 contain a disk storage identifica-
tion, this identification is compared with that which
is written on the first sector of the disk cartridge
to determine that the desired cartridge is mounted.
If the identification is not the same, the Supervisor
waits for operator intervention (see Appendix A,
Table A-5, Monitor Supervisor Wait Locations). The
identifier must be left-justified in its field.

This record also causes a skip to channel 1
before it is printed on an 1132 Printer.

ASM

This record causes the assembler to be read into
core storage for execution. The format is

cc 1 2 3 4 5 6
/ / b A S M.

The assembler control records and source
statements for the program to be assembled must
follow the ASM control record.

FOR

This record causes the FORTRAN compiler to be
read into core storage for execution. The format
is

cc 1 2 3 4 5 6
//bFOR

The FORTRAN control records and source state-
ments for the program to be compiled must
follow the FOR control record.

PAUS

This record causes a wait to allow the operator to
make setup changes (see Appendix A, Table A-5,
Monitor Supervisor Wait Locations). The format is

cc 1 2 3 4 5 6 7
//bPAUS

The monitor operation proceeds as soon as
PROGRAM START is pressed.

TYP

This record changes the control record input from
the principal input unit to the keyboard/console

Supervisor Program 9

MIPT.111
	 own	 ORMIPITIT	 WuRII!IPP 11 1 1 1 1 FI.11111.

printer fur succeeding monitor (only) control
records. The format is

cc 1 2 3 4 5 6
//bTYP

TEND

This record changes the input mode from the
keyboard/console printer back to the principal
input unit for succeeding monitor control records.
The format is

cc 1 2 3 4 5 6 7
/ / b I E N•D

DUP

This record causes the Disk Utility Program to be
read into core storage for execution. The format is

cc 1 2 3 4 5 6
//bDUP

Control records for the Disk Utility Program must
follow the DU P control record.

names and execution addresses of all subroutines
and subprograms included in the load, file
allocations, if any, giving file number, sector
address, and number of sectors in the file. Also,
if L is specified, a core map is printed for any
DSF program linked to under this execution.

Columns 16-17 must contain the count of
LOCAL, NOCAL, and FILES records which follow,
if any (refer to Supervisor Control Records). This
count is decimal, right-justified.

DISK 0, 1, or N	 be loaded with the program
if column 19 contains 0, 1, or N, respectively. Any
other character (including blanks) causes a special,
shorter disk routine (DISKZ) to be loaded. This
special version is intended for all FORTRAN pro-
grams; it is also intended for assembly-language
programs which do not use the disk.

Comments

This record provides comments in the listing. It
may not immediately follow an XEQ, DUP, ASM,
or FOR record. The format is

cc 1 2 3 4 5 -80
/ / b • comments

SUPERVISOR CONTROL RECORDS

XEQ

This record causes the Loader to load a specified
mainline program into core storage and to transfer
control to it. The format is

cc 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
//bXEQb XXXXX b L	 YY	 Zb

The mainline program XXXXX must be left-
justified in columns 8-12. If XXXXX is in Disk
System format, the Loader converts it to Core
Image format. If columns 8-12 are blank, the
mainline program presently stored in Working
Storage (by FORTRAN, DUP, or the assembler)
is converted and read into core and executed.

A core map is printed during conversion if
column 14 contains an I. and the program is in
Disk System format. This map includes the core
loading address of the mainline program, the

LOCAL

LOCAL is an acronym denoting routines specified
by the user to be loaded into a LOCAL overlay area
as they are called. All subroutines desired by the
user to be loaded on call at execution time must
be designated by LOCAL records following the
XEQ monitor control record. The format is
as follows:

cc 1

•LOCALML1,SU81,SUB2

where M Ll = name of a mainline program to be
executed, and SUB1 and SUB2 are subroutines in
the mainline program.

Each mainline program (in the same XEQ subjob)
that calls a subroutine to be loaded on call must
have its own LOCAL record. The same mainline
program may have more than one LOCAL record.

io

For example:

•LOCALML1,SUM,SUB2
•LOCALML2,SUB3,SUB4 	 Of

•LOCALMLI,SUBS

If the record ends with a comma, the next
record is treated as a continuation. The mainline
name is not repeated in a continuation, e. g. ,

•LOCALML1,SUBI,SUB2,
• LOCALSUBS

If the mainline program is executed from Working
Storage, the mainline name must be omitted by
putting a comma in column 7, e.g. ,

•LOCAL,SUB1,SUB2

No embedded blanks are allowed in a LOCAL record.

NOCAL

NOCAL is an acronym denoting routines which,
although not called anywhere in the core load, are to
be included in the load. Most NOCALs would
probably fall into one of the following categories:
(1) debugging aids such as dump and trace routines
which the operator branches to manually, and (2)
interrupt service routines.

All subroutines which are to be loaded but are not
called at execution time must be designated by
NOCAL records following the XEQ monitor control
record. The format is as follows:

cc	 1
•NOCALmL1,SUBI,SUB2

NOCAL records are governed by tae same rules and
restrictions as LOCAL records.

NOTE: The user must observe the following rules
in LOCAL and NOCAL records:

1. No routine can appear in a LOCAL record if it
causes any of the other routines appearing
in LOCAL records (for the same mainline pro-
gram) to be called before the first LOCAL has
returned control to the calling routine. Thus,
a LOCAL cannot call another LOCAL, nor
can it call a routine which causes a second
LOCAL to be read into core 	 executed.
FT i	 if u	 .13 and B calls C,
and A is a LOCAL, ,nor, aui i er B nor C can

appear on a LOCAL record for the same
mainline program.

2. If a given routine is designated a LOCAL,
and the System Overlay scheme is employed,
then this routine will be a LOCAL even though
it might have been included in one of the
System Overlays (SOCALs).

3. No program which uses 1.0C ALs or NOCA Ls
can be stored in Disk Core Image Format
(DCI).

4. If a subroutine is designated a LOCAL, it will
be loaded as a LOCAL even if it is not
referenced anywhere in the core load.

5.. The LOCAL information pertaining to any
given XEQ record cannot exceed 640 words,
counting all LOCAL names on the LOCAL
records as two words and mainline program
names as three words. The same rule
applies to NOCAL information,

6, Only types 3, 4, 5, and 6 subroutines can appear
on LOCAL and on NOCAL records (see Disk
System Format, Program Types, in Appendix B).

7. All conversion tables, e. g. , EBPA, HOLTB,
may not be used as LOCALs.

FILES

File numbers specified in FORTRAN DEFINE FILE
statements can he equated to:
1. names of data files in the User area or Fixed

area at execution time by means of a FILES
record entered after an XEQ monitor control
record or

2. names of data files in the Fixed area by means
of a FILES record entered after a DUP control
record STORE CI.

The format is as follows:

cc 1

•FILES(FILEN,NAMEN),(FILEM,NAMEM)

where FILEN and FILEM are the file numbers
specified in FORTRAN DEFINE FILE statements,
and NAMEN and NAMF:M are names of disk storage
data files which have been previously defined in a
DUP control record.

No embedded blanks are allowed. If the record
ends with a comma, the next record is treated as
a continuation, e. g. ,

•n LES(FILEN,NAMEN),
"FILES(FILEM,NAm.:M)

NOTE: Th. FILES inform:di:J:1 fur a given XEQ
record calt.iot ex..a,cd :140	 ccuntini; the
file numbers as one word and the file names as
two words.

•LOCALMLI,SU8I,SU82,SUBS
•LOCALML2,SUB3,SUB4

Supervisor Program 11

" •IMPrrr	 R . 111,1, 11, 1 . lir .9 lq	 pm 1, MR I IV, fl IONOR r@l'olp11!".11orMOMPro,140,1,Olpou ! lo,o woo mow rpm, oolgiff ROW

Any number of LOCAL, NOCAL, and FILES
records can follow the XEQ monitor control
record, but each type must be grouped
together, e. g. ,

*LOCAL
*LOCAL
*LOCAL
*NOC AL
*NOCAL
*FILES
*FILES

The following is not permitted:

*LOCAL
*N OC AL
*LOCAL
*FILES
*NOC AL

STACKED INPUT ARRANGEMENT

Input to the Monitor System consists of control
records, source programs, object programs, and
data arranged logically by job.

The following points must be considered when
arranging the input for any job.

1. Any number of comments records can be
inserted in front of (but not immediately
following) DUP, ASM, FOR, or XEQ
monitor control records.

2. Any records other than monitor control
records which remain after the execution of
an ASM, FOR, or XEQ subjob are passed
until the next monitor control record is
read. After a DUP operation, records are
passed until either a monitor control record
or another DUP control record is read.

:3. If an error is detected in an assembly,
FORTRAN compilation, or during loading
from Disk System format, the resulting
object program or any programs that follow
within the job cannot be executed. Also, if
an error is detected in an assembly,
FORTRAN compilation, or during a loading
from Disk System format during a
STORECI function, all DUP functions are
bypassed until the next valid ASM, FOR, or
JOB record is read.

4. If the FORTRAN compiler or the assembler
encounters a monitor control record, control
will be transferred to the Supervisor, i.e.,
the monitor control record will be trapped.
The Supervisor will correctly analyze the
record after the compilation or assembly has
been abandoned. DUP will not trap a monitor
control record during a DUP operation (refer
to DUP Control Records).

The stacked input arrangement shown in Figure 4
will compile, store, and execute both Programs A
and B, providing there are no source program
errors, and there is sufficient room in the Working
Storage area (refer to Working Storage Area). A
source program error causes the DUP STORE
operation (refer to DUP Control Records) to be
bypassed for that program, and all following XEQ
requests preceding the next JOB record are
disregarded. Thus, if the successful execution of
one program depends upon the successful completion
of the previous program, both programs should be
considered as one job and the XEQ control records
should not be separated by a JOB record.

Figure 5 shows the stacked input arrangement for
three jobs which are not dependent upon each other.

Job A assembles, stores, and executes source
program A. This job includes comments cards
and a PAUS monitor control card to allow the
operator to intervene.

Job B calls in the Disk Utility Program, and
stores object program B on disk.

Job C compiles, stores, and executes FORTRAN
source program C.

THE LOADER

The Loader has two basic functions:

1. To prepare entire core loads (Disk System
format loading).

2. To bring core loads into cure storage
immediately before execution (Core Image
format loading). This includes the restora-
tion of COMMON, if any, between linked core
loads.

These two loading processes are described after
a discussion of the origin which the Loader gives
a particular core load, the object-time transfer
vector, and system overlays (SOCALs). Disk
System format and Core Image format are described
in Appendix B.

12

(// b .108

(// b XEQ b NAME a

(// b XEG1 b NAME A

// b DUP

• STORE bbbbbbWSItbUAbbNAME

	Source Program a

FORTRAN Control Records
(His FOR

a (// b DUP

• STORE bbbbbbWSbbIJAbbNAME A

Source Program A

(// b FOR

rub JOB FORTRAN Control Records

/ Cold Start Cord
(sae Cold Start
Operating Procedure)

S

C

a

Figure 4. Example of Stacked Input (One job)

Origins for Core Loads

The Loader origins relocatable mainlines (main
programs) after the Disk I/O subroutine requested
by the user on the XEQ control record. One of
these disk routines is always in lower core, and
no disk routine is included in any disk-stored core
load. DISKZ is always used unless otherwise
specified. The origins used by the Loader are
shown below:

Main Program Origin
Disk I/O Version	 (hexadecimal) (decimal)

01 C2 450
0260 608
0370 880

0438 1080

The origins for absolute mainlines are not con-
trolled by the Loader; however, such mainlines
must be originated above the end of the Disk I/0
version used. All references in a core load to a
Disk I/O subroutine must be to the same one.

DISKZ
DISKO
DISK1
DISKN

Supervisor Program 13

RIP,11.1.1tip	 mem,,m1R.r..9..1,r.....Im
	

Hp 1 q!
	

Irr
	 !,!!!!!!!!m".11r!!!! ! 11111

	 II' 1!i.ra.unM1n. ^ n.• !Im mnnnRINIRP H ! IT!!! 91Inn	 !!!!!!,..1,11 I	 '

// °comments

/1 J08

Source Program A

Assembler Control Records

/Cold Start Card
(see Cold Start
Operating Procedure)

// JOB

// XEQ C

Source Program C

FORTRAN Control Records ---- -

(// FOR

(// PAUS

°STORE C

// DUP

Figure S. Example of Stacked Input (Three Jobs)

14

Ob ect-time Transfer Vector

In order to transfer to and from subroutines at
execution time, the Loader builds two separate
object-time transfer vectors: the CALL TV and
the LIBF TV (see Figure 6).

Each CALL TV entry is a single word containing
the absolute address of a subprogram entry point;
however, in the case of a LOCAL subprogram
referenced by a CALL statement, the absolute
address is the address of the corresponding
Flipper Table entry instead of the subprogram
entry point.

Each LIBF TV entry consists of three words.
Word one is the link word. Words two and three
contain a branch instruction to the subprogram
entry point; however, in the case of a LOCAL
subprogram referenced by an LIBF statement,
words two and three contain a branch instruction
to the corresponding Flipper Table entry instead
of the subprogram entry point.

The first two LIBF TV entries are special
entries, each three words long. The first entry is
the Floating Accumulator (FAC). The address of
the first word of FAC must be odd; therefore, if
necessary, a dummy entry is made in the CALL
TV to make FAC begin at an odd address. The
second special entry is used by certain sub-
routines to indicate overflow, underflow, and
divide check.

If SOCALs are used, the LIBF TV contains
special entries for SOCAL subprograms referenced
by LIBF statements. These entries transfer
indirectly either to the referenced subprogram if
the overlay containing the subprogram is
presently loaded, or to the SOC AL Flipper in
order to load the required overlay and transfer
to the referenced subprogram (refer to System
Overlays).

The CALL TV does not contain entries for
SOCAL subprograms referenced by CALI.
statements if SOCALs are used.

System Overlays (SOCALs)

System Overlays (SOCALs) are created for any
core load with a FORTRAN mainline program
if the core load will not fit into core. The
Loader selects certain subroutines used in the
core load and writes them into Working Storage
in either two or three groups (overlays). An area
in core as large as the largest overlay is reserved
for these subroutines. Whenever a subroutine in
one of these overlays is required during program
execution, the corresponding overlay is read
from the disk into the overlay area in core (if it
is not already in core).

Overlays are constructed from the IBM sub-
routine library according to type and subtype
(described in Appendix B). The user can alter
this design by changing the subtypes of the
library subroutines, or by specifying a subtype
for his own subroutines (refer to DUP Control
Records-STORE). Note that no SOCAL overlay may
be greater than sectors in length because of the
limitations of DISKZ. The two levels of SOCALs
are described in the following paragraphs.

SOCAL Level 1 uses the following two overlays:

I. Type 3, subtype 2 (arithmetics, e.g. , FADD),
and Type 4, subtype 8 (functionals, e.g. , SIN).

NOTE: If the FORTRAN program contains a write
statement to the plotter, the arithmetic and functional
subroutines EADD, FADD, EMPY, FMPY, FARO,
XMD, and XMDS cannot be included in the arithmetic
and functional SOCAL. Instead, these routines must
be in core. Due to plotter and disk interactions
concerning overlap of I/O, print speeds may be
less than previously achieved.

2. Type 3, subtype 3 (the non-disk FORTRAN
Format subroutine MO, and the FORTRAN
I/O subroutines, e.g. , CARD?..)

Dummy one - word entry in CALL TV
(if necessary) to ensure odd oddress
for FAC

First	 Disk	 Indicators	 FAC
LIBF	 I/0CALL	 CALL CALL

1 11 ff III 	 15	
End of Core

Low Core
High Core

LIBF TV
	

CALL TV
	

COMMON

Object - time TV

Figure 6. Layout of Object-Time Transfer Vector Area

Supervisor Program IS

45)

a Last
LIBF 1

Last	 Second First

mi.TIMPT,PITP,"41'4,7f.'"IMIMMWM.TS111.,..,—",....1*,IN 	 IMAM '1111M. I.Ir9Remvpril ! !	 ,Trilpflp,poppoHnrwr l■mnlempeepl	 111,mp r,

Level 1 reduces the core requirements by an
amount equal to the total size of the smaller of
these overlays. Approximately 15 words of extra
linkage, however, are required.

If core loads do not fit with Level 1, then
Level 2, employing the following three overlays,
is used:

1. Same as (1) above.
2. Same as (2) above.
3. Type 3, subtype I (disk FORTRAN I/O

subroutines SDFND and SDFIO). In addition,
this overlay includes a 320-word buffer.

Level 2 reduces the core requirements by an amount
equal to the sum of the two smallest overlays, with
approximately 15 words of extra linkage added.

The overlays will not contain all available sub-
routines of the specified types, but only those
required by the core load.

Since LOCALS take priority over SOCALs, if a
subroutine which would otherwise be in a SOCAL
overlay is designated a LOCAL, it will appear as
a LOCAL and not as part of a SOCAL.

If a core load 6,es not fit with Level 2 over-
lays, core requirement may be reduced by
additionally designating inv following as
LOC ALs:

1. Subroutines not contained in any overlay.
2. Subroutines contained in the largest overlay.

This reduces the SOCAL overlay area re-
quired in core.

If the core load does not fit into core even with
SOCALs, an error condition is indicated. An
error condition is also indicated for core loads
which do not fit and which have mainline pro-
grams written in assembler language.

Programs requiring system overlays cannot be
stored in Core Image format (refer to Appendix B,
Disk Core Image Format).

NOTE: DISKZ and the SOCAL Flipper routine use
Index Register 2 without saving or restoring it. It
is, therefore, the programmer's responsibility to
preserve the contents of Index Register 2 whenever
a program uses subroutines that cause DISKZ to be
used or subroutines that would be included in a
SOCA L.

Disk System Format Loading

A core load is built from programs stored in Disk
System format in either of two cases:

1. To execute the core load immediately (called
as a result of an XEQ control record or a
CALL LINK). In this case control must be
passed to the Core Image format loading
process at the termination of the Disk
System format loading process.

2. To store the core load in Disk Core Image
format for future execution (called as a
result of a DUP •STORECI control record -
refer to DUP Control Records). In this
case, control is returned to DUP, which
initialed the process.

In this type of loading, a mainline program (with
its required subroutines) is converted from Disk
System format to Core Image format. This
includes the construction of the core image
header record and , the object-time transfer
vector. Parts of the core load which are to
reside below location 409610 are stored in the
CIB; parts of the core load which are to reside
above location 409510 (if any) are placed directly
into core storage. LOCALs and SOCALs which
are a part of the core load are also processed and
written out on Working Storage (following the last
data file, if any).

Core Image Format Loading

In this loading process, the core load is read into
core, except for the first sector. When loading a
program immediately following its conversion from
Disk System format, only the contents of the CIB
are read into core (other parts of the core load are
already in core). When loading a program which
has previously been stored in Core Image format,
both the sections above location 4095 10, if any,
and below 4096 10 are read into core. The Skeleton
Supervisor is given the information necessary to
enable it to read in the first sector of the core
load and to move the object-time transfer vector
into its location. Control is then passed to the
Skeleton Supervisor, and finally to the object
program.

16

DISK UTILITY PROGRAM (DUP.)

The Disk Utility Program (DUP) is a group of
routines designed to accomplish the following:

• Allocate disk storage as required by each
program or data file to be stored

• Make these programs available in card or
paper tape format

DUP CONTROL RECORDS

DUP control records generally have the following
format:

CC

1 2 3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

a

O

• Provide printed status of the User area,
Fixed area, and Working Storage area.

• Perform various disk maintenance operations.

•
Asterisk
in cc 1

DUP Func-
tion Name
(cc 2- 12)

"FROM"
Device
Symbol
(cc 13 -
14)

"TO"	 Program Name
Device	 (cc 21 - 25)
Symbol
(cc 17 -
18)

Count
Field

The Disk Utility Program ie called into operation
by a DUP monitor control record. This record
may be followed by any number of DUP control
records to select the routines desired. The DUP
control records are described in subsequent
paragraphs. The character codes recognized
by DUP are listed in Appendix D.

Working Storage (WS) Indicator Word

A WS Indicator Word in COMMA (0069) contains the
disk block count of the program to indicate that a
valid program is in Working Storage. (There are 16
disk blocks in a sector.)

Upon completion of an assembly or compilation,
tha WS Indicator Word is set to the disk block count
of the program left in Working Storage in Disk System
format. If the user's program has put data in
Working Storage, then the user must put the data disk
block count into location 0069. DUP can then be
called upon to store or dump this program.

When a DUP function is used to dump from the
User area or the Fixed area, the WS Indicator
Word is set to the disk block count of the program
being moved. If the DUP function does not destroy
any part of the program in Working Storage, the
WS Indicator Word is not changed. It is set to
zero by a store to the User area, a Cold Start, or
a JOB monitor control record.

If a DUP function which involves programs
is requested from Working Storage while the WS
Indicator Word is zero, a FROM field error
message is given and the requested function is
bypassed.

All fields except Count Field are left-justified.
Each DUP control record contains an asterisk
(*) in cc 1. The DUP Function Name is in cc 2

-12. The "FROM" and "TO" symbols (cc 13 -
14 and 17 - 18, respectively) specify the I/O
devices and/or disk areas from and to which
data is to be transferred. The following
abbreviations must be used in the FROM and TO
fields:

Symbol	 Meaning
PR	 Principal Print Device
CD	 Card Reader (if the Disk Monitor

System has been loaded from
paper tape, CD is equivalent to
PT)

PT	 Paper Tape
WS	 Working Storage, Disk
UA	 User area, Disk
FX	 Fixed area, Disk

Program Name is one to five alphameric characters
specifying the name of a mainline program or the
first entry point in a subroutine.

The Count Field is in decimal, right-justified.
For data files, if the source is disk, this field
specifies the number of sectors; if the source is
cards, this field specifies the number of cards;
if the source is paper tape, this field specifies
the number of records. Unspecified portions of
DUP control records can be used for comments.
A "b" appearing in .a column indicates that the
column must be blank.

Disk Utility Program (DUP) 17

!Pm ,'1,111.FTRMPAP^MPFRIPPTIMII4IRI.,"^"..,1,.... rr,'4,..!1,1111,,RPFRRIRMRP..1 F57

In the following paragraphs, each DUP function
name is accompanied by a table showing the
symbol combinations that may be specified in the
FROM and TO fields. The tables also show the
various formats that data can be in before the
operation, and the corresponding formats to
which this data is converted by DUP after the
operation. These formats appear in parentheses
after the FROM and TO symbols, and have the
following meanings:

DSF
	 Disk System Format

DCI
	 Disk Core Image Format

DDF
	 Disk Data Format

CDS
	 Card System Fermat

CDD
	 Card Data Format

PTS
	 Paper Tape System Format

PTD
	

Paper Tape Data Format
PRD
	 Print Data Format

These formats are shown in Appendix B. Table 3
summarizes the DUP functions that move
information from one area to another; Table 4
summarizes all DUP control records; and
Table 5 gives the restrictions on DUP functions
when in temporary mode (JOB T).

DUMP (Dump Program)

The DUMP routine dumps (unloads) information
from the User area, Fixed area, or Working
Storage area to cards, paper tape, or printer,
or from the User or Fixed area to the Working
Storage area. The decimal number of disk
blocks dumped is specified in the corresponding
LET entry or in the WS Indicator Word.

CD	 PT	 PR	 WS
(CDS) (COO) (PTS) (PTO) (PRO) (DSP) (DDF)

WS (DSF) X X X

(DSF)
UA (DDF)

(DCI)

X
X
X

X
X
X

X
X
X

X
X
X

(DCI)
FX (DDF)

X
x

X
x

X
X

X
X

NOTE 1: If the DUMP is from WS, and the WS
Indicator is zero, a FROM field error message
is given (refer to Appendix A).

NOTE 2: When the DUMP is to cards, each card
is checked to see that it is blank before it is
punched (refer to Appendix A).

NOTE 3: At the end of DUMP operations, all
subsequent blank cards are selected into
Stacker 2.

DUMPDATA (Dump Data)

The DUMPDATA routine dumps data from the User
area, Fixed area, or Working Storage area to
cards, paper tape, or printer, or from the User
or Fixed area to the Working Storage area. The
number of sectors to dump must be specified by
the count field. This number of sectors will be
dumped regardless of the length of the specified
data file or program.

To
(coo)

WS (DSF)
(DDF)

X
x

x
x

X
x

Xisli
uA (DDF)

(DCI)

x
x
X

x
X
X

x
X
X

x
X
X

WO
FX (DDF)

X
X

X
X

X
X

X
X

The control record format is as follows:

et

123456789101112131415161719192021222324252627202930

• DUMPO AT A b	 "FROM"	 "TO"	 Program Name Sector Count
Symbol	 Symbol	 (required et-	 (when dun*"

cep for WS to ins from WS,
PR)	 the-actor

count overrides
the WS bunco-

PT
	

PR
	

WS
(PTD)
	

(PRO)
	

(DDF)

tor)

The control record format is as follows:

CC

1 234567891011 12131415 161718192021 222324252627282930

• oumPb	 "FROM"	 "TO"	 Program Nome
Symbol Symbol (required ex-

cept for WS to
PR)

NOTE 1: When the dump is to cards, each card
is checked to see that it is blank before it is
punched (refer to Appendix A).

NOTE 2: At the end of DUMPDATA operations, all
subsequent blank cards are selected into Stacker 2.

18

Table 3 • Movement of Information Using DUP Control Records

I

Igi (DSF)	
UA

(DDF)	 (DCI) (DSF)	
FX

(DOC)	 (DCI) (DSF)	
WS

(DDF) {COD)	
CD

(CDS) (PTD)	
PT

(PTS)

UA

(DSF) DUMP•• DUMPDATA•• DUMPDATA •• DuMP•• DUMPDATA•• DUMP"

(DDF) DUMP• •
DUMPDATA••

DUMP• •
DUMPDATA••

DUMP"
DUMPDATA••

(DCI) DUMP• •

DUMPDATA••
DUMP"
DUMPDATA••

DUMP"
DUMPDATA••

FX

(DCI) DUMP••

DUMPDATA••
DUMP"

DUMPDATA ••
DUMP"

DUMPDATA••
(00F) DUMP••

DUMPDATA••
DUMP"
DUMPDATA ••

DUMP"
DIAMPDATA••

WS

(DSF) STogc •
STOREMOD

STORECI• STORED DUMPDATA DUMP DUMPDATA DUMP

(DDF) STOMATA•

STOREMOD

STOREDATA

STOREMOD DUMPDATA DUMPDATA

CO

(C001 STOMATA• STOREDATA•• STOREDATA••

(CDS) STORE • STORE° STOREO• STORE"

PT

PTD) STOREDAT t• STOREDATA•• STOREDATA"

PTS) STORE • STORE O • STORECt" STORE"

•ElioInetes stored ;Mornettion Iron Wed g ing Swope
••Iteploan current contents of Working Swag*

I
I

To UA
(DSF)

Table 4. Summary ad DUP Control likoc.ord2

CC 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21. 22 23 24 25 26 27 28 29 30

o DUMP b
	 To — -	 Name

o DUMP DAT A b	 —Prom- 	 -- To --	 Name	 •-■ Sector COUTIt•-•••■•

a S TOR E	 -Faun- 	 — To —
	 Name

• S TOR (CI	 - Rpm.—	 — To —
	 Name	 —Count ot 'Nee--

Records

• STOREDAT A	 —Prom- 	 -- To ---	 Name	 —Sector, Card, or—
Record Count

* 5 TOR E M 0 D b	 UA m tX
	

Name

• DUMPLET
	

Mint comma of LET tis principal minting unit)

* DWADR	 (Write sector *deems lo Working Stomas area)

* DELETE
	

Name

• DEFINEbF 1 X	 ED	 b	 AR	 E	 A	 -- Cylinder
Count

• DEFINEbV0 1	 0 b	 AS S	 EMI L E	 R

• DEF INEbV0 i	 0 b FOR	 TR AN

Table 5. Restrictions on DUP Functions in Temporary Mode (JOB T)

Functions Restrictions (if any)

DUMP Nana

DUMPDATA None

STORE None

STORECI To UA only

STOREDATA To UA and WS only

STOREMOD Not allowed

DUMPLET None

DWADR Not allowed

DELETE Not allowed

DEFINE FIXED AREA Not allowed

DEFINE VOID ASSEMBLER Not allowed

DEFINE VOID FORTRAN Not allowed

The control record format is as follows:

20 21 22 23 24 25

•S TOR E
	

FROM"	 •TO"	 Program Name

	

Symbol
	

Symbol
	 (required ex-

justified) of ype 3 6 1

	

Specifies subtype (left-
	 cept for storing

to WS)

subprograms (see Appen-
dix 11). This field is
blank unless special
SOCAL handling is
desired.

NOTE: If the STORE is from WS, and the WS
Indicator is zero, a FROM field error message
is given (refer to Appendix A).

re
I 2 3 1 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

STORE

The STORE routine stores programs from cards,
paper tape, or the Working Storage area to either
the User area or Working Storage area on disk.

WS
(DSF)

I
CO (CDS)
WS (DSF)
PT (PTS)

STORECI (Store Core Image)

The STORECI routine stores programs from cards,
paper tape, or the Working Storage area to either
the User area or Fixed area on disk. The
programs are converted to Disk Core Image
format (see Appendix B), hence they are loaded
into core storage faster than programs stored
otherwise. The STORECI function uses the
Loader to convert the Disk System format pro-
gram to core image. After control is returned to

20

x

CC

1 2 3 4 5 6 7 8 9 10 11

• S TOR E CI tSee
Note 1

12 13 14 IS 16 17 I d 1? 20 21 22 23 24 25 26 27 28 29 30

"FROM"	 Program Name See Note 2
Symbol	 Symbol	 (always re-

quired)

DUP, the core image header and that portion of the
program (excluding Disk I/O) that resides below
core location 4096 10 are stored from the CIB, and
that portion of the program above core location
409510, if any, is stored from core. No
COMMON area is stored, but the transfer vector
is included. STORECI always requests a map
from the Loader since it will not be available when
the program is loaded from Core Image format.

Fran D 	(DCI)	 (DCI)
UA	 FX

The control record fornat i.i as follows:

data file starts at the beginning of the next available
sector and the length is defined in whole numbers
of sectors.

The control record format is as follows:

CC

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 76 27 28 29 30

• S TOR DATA
"FROM"	 Data File Nome tee NOTE
Symbol	 Symbol	 (not req■J iR eti tor

CD to	 ar

to WS.

CD (CDS)
ws (osn
PT (PIS)

NOTE: Count Field (cc 27-30) must contain one of
the following in decimal:
Sector count if source is WS (overrides the WS
Indicator), card count if source is CD, record
count if source is PT.

NOTE 1: Column 9 is used to specify the Disk I/0
routine required by this program.

0 DISKO
1 = DISK1
N DISKN

Others - DISKZ
(including blank)

NOTE 2: Count Field (cc 27-30) contains decimal
count of *FILES records that are required for
program being stored. This number of records
will be read before the normal STORECI function
is performed.

NOTE 3: Data files named in the *FILES record
must be in the Fixed area.

NOTE 4: If the STORECI is from WS, and the WS
Indicator is zero, an error message is given
(refer to Appendix A).

STOREDATA (Store Data)

The STOREDATA routine stores data from cards,
Working Storage area, or paper tape to the User
area, Fixed area, or Working Storage area. Each

STOREMOD (Store Modify)

The STOREMOD routine moves data from Working
Storage to the User area or Fixed area, overlaying
an item specified by name in the User area or Fixed
area. This permits the user to modify an item in
the User or Fixed area without changing its name or
relative position. If the user's program has put
data in Working Storage, the user must put the data
disk block count into location 0069. The length of
the item in Working Storage (in disk blocks) cannot
be greater than the length of the item it overlays. If
the name is not found in LET/FLET, the message
"D 16 DCTL, NAME FLD" is printed. If an attempt
is made to STOREMOD data longer than the item
already in the User or Fixed area, the function is
aborted and the message "WS TOO LONG" is printed.

lfrogl	 To	 UA	 FX

I ws	 x	 x

The control record format is as follows:

CC

1 234567 89 1011 12131415 16 . 17 18 19 20 21 22 23 24 25

S TOR EMOD b
WS	 UAor	 Data File Name

FX

Disk Utility Program (DUP) 21

r
	 MIR'fol',,,"71,,ACMVITTFCIrl,"4,Prcwrorp,I, vomul,	 ”I'MOPTOCTI .N1,9T. 11',99^4'rRII"I'M., 'MO	 I ,,,,,11151111	 'gm ■Impplumpr.

DUMPLET (Dump Location Equivalence Table)

The DIJMPLKT routine dumps the contents of the
Location Equivalence Table (LET) to the principal
printing unit (see Figure 7). If a Fixed area has
been defined, the Fixed Location Equivalence
Table (FLET) is printed as a separate table
following LET (see Figure 8).

The control record has the following format:

cc

12345678

• DUMP L ET

DWADR (Disk Write Address)

The DWADR routine writes sector addresses on
every sector in the Working Storage area. It
restores correct disk sector addresses in the
Working Storage area if they have been modified
during execution of a user's program. Previous
contents of the area are overlaid. Following the
address word, the first two words of each sector
contain D120 2663 (in hexadecimal). The next
238 words have the format Annn, where nun is the
hexadecimal address of the sector; the last 80

Line I:	 LET

XXXX XXXX

Number of words used
by LET

Line 2:
(Entries in COMMA-
base and adjusted
addresses — see
Appendix E)

XXXX XXXX	 XXXX XXXX

Work Storage starting Disk block address
sector oddreu	 available for next User

area program or data file

Line 3:
(LET sector header
words)

XXXX

Relative sector
number (0-7)

XXXX

0 if last sector
of LET; other-
wise non-zero

XXXX

Reserved

XXXX	 XXXX

Words available	 Sector address of
in this sector	 next sector

• for more entries 	 (0 if last sector)

XXXXX XXXX XXXX
For DSF

Program name Program size Starting address programs
(disk blocks) (disk blocks)

XXXXX XXXX XXXX XXXX XXXX XXXX

For core
Program name Program size Starting address Execute core Program load Actual word count	 image

(disk blocks) in User area address address in of core image pro- programs
(disk blocks) (absolute) core gram (includes a

60-word header)

XXXXX XXXX XXXX 0000 0000 XXXX
For data

Data filename Data file size
(disk blocks)

Starting address
in User area

Reserved Data file size
(disk blocks)

files

(disk blocks)

Line 4

Line n

Line 4

Line n

Line 4

Line n

NOTE I: The header words of the first sector ore printed on line 3. Additional header words are printed for each following sector as required.

NOTE 2: For multi-entry subroutines, the Program Size and Starting Address fields for entry points subsequent to the first one will be blank.

NOTE 3: Program size is the disk block count of the program. This corresponds to word 3 of the actual LET entry (see Appendix G).

NOTE 4: Words 4, 5, and 6 of the printout reflect the actual LET entry words 4, 5, and 6.

NOTE 5: All numbers are in hexadecimal.

Figure 7. Output Format from a DUMPLET Operation (LET)

22

Line I: FLET

Line 2: XXXX XXXX XXXX XXXX XXXX XXXX
(Entries in
COMMA) Sector address of C113 Sector address of FLET Number of words used by FLET

Line 3:
(FLU sector

XXXX XXXX XXXX XXXX XXXX...........—. .—......—.

header words) Relative sector 0 if lost sector of Reserved Words available in this Sector address of next
number (first
sector is
numbered 16)

F LET; otherwise
non- zero

sector for more entries sector (0 if last sector)

Line 4	 FLET entries are the same as for LET except that DSF programs do
not appear in the Fixed area; therefore, no three-word entries•

Lin'e n	 appear in FLET.

words are zeros. The control record has the
following format:

CC

2 3 4 5 6

• DWADR

DELETE (Delete Program or Data)

The DELETE routine deletes a specified program
or data file from the User or Fixed area. The
LET or FLET entry is deleted and if the program
was in the User area the User area is repacked.
A 1DUMY entry is created to replace deleted
FLET entries. Although no packing of the
Fixed area occurs, dummy entries in FLET are
packed so that two are not adjacent but are
consolidated. The control record has the
following format:

CC

1 234567891011 12131415161718192021 22232425

• DELETE	 Nome

DEFINE (Define)

The DEFINE routine defines variable parameters
required by the Monitor System. The following
options are available:

• Define or increase the size of the Fixed area

• Delete the assembler from the system

• Delete FORTRAN from the system

If the user wishes to delete the assembler or
FORTRAN, he must do so before he defines a
Fixed area.

Within the Fixed area, programs can be stored at
fixed disk locations. This area is initially defined as
a whole number of cylinders, with a minimum of two,
one of which is used for FLET, and it may be in-
creased (but not decreased) by a whole number of
cylinders at any time up to the length of Working
Storage minus four cylinders. All of the specified
increment is added to the Fixed Area after the
initial definition. Defining or increasing the size of
the Fixed area reduces disk storage available for
User and Working Storage areas by the same amount.

NOTE 1: All references are in disk blocks unless otherwise indicated.

a
NOTE 2: The header words of the first sector are printed on line 3.

there is a header for each 52 FLET entries.
Additional header words ore printed for each following sector as required;

NOTE 3: Program size is the disk block count of the program. This corresponds to word 3 of the actual FLET entry (see Appendix G).

NOTE 4: Words 4, 5, and 6 of the printout reflect the actual FLET entry words 4, 5, and 6.

NOTE 5: All numbers ore in hexadecimal.

figure 8. Output Format from a DUMP1ET Operation (FLET)

Disk Utility Program (DUP) 23

mmt.',..”•"*"' • r Orr, 'WNW Mr r	 'Tr I rri	 TIARMI■Mr,	 R""r1,./M.17/1, 	 t.grqrlIrrpqm .1. 1 . 1.1•1 . 	 fl1111.1.11rr'r

Deleting the assembler and/or FORTRAN packs
the remaining information on the disk, thus
increasing disk storage available for User and
Working Storage areas by the amount occupied by
the deleted programs (see Figure 2).

The control record formats are as follows:

To Define the Fixed area -
CC

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 2930

• DEEINEbF 1 X ED b AR E A	 NNNN

where NNNN = positive cylinder count In
decimal, right-justified,
specifying the initial size of
Fixed area (minimum of 2
cylinders) or an increment
to the Fixed area.

NOTE: The first cylinder of the first DEFINE
FIXED AREA is used for FLET.

To Delete the A s sembler -

cc

1 2 3 4 567 8910 11 12 13 14 15 1617 18 192021 22

• DEFINEbV0I D b A 5 SE M B l E R

To Delete FORTRAN -

CC

1 2 3 4567891011 12131415 1617 18 1920

will remain in control until the next monitor
control record is properly read. When a
requested DUP function has been successfully
completed, the following two-word exit message
is printed in hexadecimal:

Word 1: Disk block address off program or disk
area that has been processed.

Word 2: Number of disk blocks involved.

For the DUP functions listed below, these words
contain the following information (all addresses
and lengths are given in disk blocks):

DUP Function	 Information Printed

DUMP, STORE,	 Program address* and
STORECI, STOREMOD, program length**
DELETE

DUMPDATA,	 Program address and
STOREDATA
	

decimal sectors or
records specified con-
verted to disk blocks

DUMPLET - (LET)	 User area address and
User area length

DUMPLET - (FLET)	 Fixed area address and
Fixed area length

DWADR	 Working Storage address
and Working Storage
length

• DEFINEbV0I D b FOR IRAN	
DEFINE FIXED AREA Fixed area address

EDIT (to recall system loader)
	 and size

The *EDIT control record is used only by DUP to
recall the System Loader, which initially loads
the system into disk storage. The control
record has the following format:

cc

1 2 3 4 5

• EDI T

NOTE: This record must not be used by the user.

DEFINE VOID
ASSEMBLER

DEFINE VOID
FORTRAN

Former address and
size of assembler

Former address and
size of FORTRAN

If the above words are not printed, the DUP function
was not successfully completed. If the DUP opera-
tion cannot be performed, an appropriate error
message is printed at the time the DUP control
record causing the error is read (see Appendix A).

DUP MESSAGES

Each DUP control record is printed at the time it
is read, thus signaling that DUP has control and

* If storing or dumping from Working Storage, the
address of Working Storage is printed.

**Length is the third word of LET/FLET entry
(see Appendix G).

24

DUP OPERATING NOTES

The use of the PROGRAM STOP key, when perform-
ing DUP operations with the 1130 Disk Monitor
System, can cause the system to stop while there is
disparity between LET/FLET, DCOM, and the actual
disk contents. If the job is aborted at this time, the
disk pack will no longer contain an operating monitor
system.

DUP operations must be allowed to execute to
completion. If the PROGRAM STOP key is used

(WAIT at 0005) , the operation must be continued
from the point at which the system stopped. Core
storage must not be altered. To continue, press
PROGRAM START (see DUP Waits and Loops in
Appendix A).

Some DELETE functions may take several minutes
since they may have to pack much of disk storage.
These long DELETE and DEFINE functions must be
allowed to complete their respective operations.

Control can be returned to the DUP section that
reads DUP and monitor control records by manually
branching to core location 0276.

aw

Disk Utility Program (DUP) 25

1'1'1	 All 1119 A nRIA^A' M,7111,,I.,11.111r,r1!Ingmr! I	 1IIIIIIM1,1111.F9P.111.1 III III II	 Mill, 1, 1 1, l"f111 I WM ft

ASSEMBLER

The language for the monitor assembler is de-
scribed in the publication IBM 1130 Assembler
Language (Form C26-5927). Therefore, only a
general description of the operation and the control
records for the monitor assembler are described
in this section.

The monitor assembler cannot be operated in-
dependently of the Monitor System; however, the
assembler can be deleted from the Monitor System
if desired.

A monitor control record with the pseudo-op
ASM is used to call the assembler into operation.
The assembler reads the source program, in-
cluding control records, from cards or paper tape.
After assembly, the object program resides in the
disk Working Storage area, and can be called for
execution with a monitor XEQ control record, or
it can be stored in the User or Fixed area with a
DUP STORE or STORECI operation or punched
as a binary deck or tape with a DUP DUMP opera-
tion.

ASSEMBLER CONTROL RECORDS

Assembler control records are used to specify
assembly options and to provide input to the
assembly process for certain types of source
decks. Assembler control records can be either
card or paper tape.

Table 6. Summary of Assembler Control Records

All assembler control records have the following
format:

Column 1: *
2-71: Option

If an assembler control record contains an aster-
isk in column 1, but the option does not agree,
character for character, with its valid format,
as described below, the erroneous control record
is ignored in the assembly. The option is not
performed; however, no error results.

Assembler control records can be written in
free form, but at least one blank must separate
the last character in the operation and the first
character of any comments or numeric field.

Assembler control records and their meanings
are listed below. A summary is contained in
Table 6.

*TWO PASS MODE

The source deck (or tape) must be read twice.
TWO PASS MODE must be specified when:

1. The user desires a list deck to be punched (see
LIST DECK and LIST DECK E).

2. One pass operation cannot be performed be-
cause intermediate output (source records)
fill the Working Storage area of disk.

•TWO PASS MODE Read source deck twice; must be specified when UST DECK or LIST DECK E is specified, or when intermediate
output fills Working Storage

•UST

°LIST DECK

• LIST DECK E

•PRINT SYMBOL TABLE

•PUNCH SYMBOL TABLE

°SAVE SYMBOL TABLE

•SYSTEM SYMBOL TABLE

• LEVEL n

*FILE n

*COMMON n

Print • listing on the principal printing device

Punch a list deck on the principal VO device (requires TWO PASS MODE)

Punch only error codes (ec 18-19) into source program list deck (requires TWO PASS MODE)

Print o listing of the symbol table on the principal printing device

Punch • list deck of the symbol table on the principal 1/0 device

Save symbol table on disk as a System Symbol Table

Use System Symbol Table to initialize symbol table for this assembly

n interrupt level number. Required for ISS subroutines

n number (decimal) of sectors of Working Storage required at object time by the program being assembled

n = length of COMMON in words (decimal)

26

Label Op Code
Tag

Address of the
Instruction;

Address
Assigned to

the Label, if any

Error Flags,
if any

First Word of
the Assembled

Code •

S	

a

0

721	 I	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1- 1-	1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 171 731 11	 I	 1	 1- 180

1\---‘."----/ID and Sequence
Number, if any

Operands

Blank

*LIST with 20 frames added to the beginning of each record
corresponding to card columns 1-20.

A printed listing is provided on the principal
printing device (console printer or 1132 Printer).
The format of the printed listing corresponds to
that of the list deck (see Figure 9).

*LIST DECK

A list deck is punched on the principal I/O device
(card or paper tape). This option requires two
passes (TWO PASS MODE). The list deck format
is shown in Figure 9. In cards, object information
is punched into columns 1-19 of the source deck
in pass 2 to make the list deck. In paper tape, the
list tape punched is similar to the input tape, but

*LIST DECK E

Same as LIST DECK except no object information
other than errors (positions 18-19) are punched.

*PRINT SYMBOL TABLE

A printed listing of the symbol table is provided on
the principal printing device (console printer or
1132 Printer). Symbols are grouped five per line.
Multiply-defined symbols are preceded by the
letter M; symbols with absolute values in a relo-
eatable program are preceded by the letter A. The
M and A flags, however, are not counted as
assembly errors.

Relocation Indicators;
Col. 7 is Blank for One-
Word Instructions or DC

Or

Exponent for an
XFLC Statement.

Second Word of
the Assembled

Code

• For EBC Statements, Cot. 9-12 Contains the Number of EBC Characters

For BSS and BES Statements, Col. 9-12 Contains the Number of Words
Reserved for the Block.

Figure 9. List Deck Format

Assembles 27

ITTRomp.op rppmgmf,.w.....1.1.1R I .,117	 IT 1. 4.11.71.I1110.
	

gl■
	

PRI 'V	 VI.V1..
	

Pr.l.r1,1r1 • ∎11

*PUNCH SYMBOL TABLE

A list deck of the symbol table is punched on the
principal I/0 device (card or paper tape). The
record format is the same as for PRINT SYMBOL
TABLE. This option may be advantageous if offline
card-to-printer or paper tape-to-printer facilities
are available.

*SAVE SYMBOL TABLE

The symbol table generated in this assembly is
saved on the disk as a System Symbol Table. The
System Symbol Table is saved until the next SAVE
SYMBOL TABLE control record causes a new
assembly-generated symbol table to replace it.
This control record is also used with the SYSTEM
SYMBOL TABLE control record to add symbols to
the System Symbol Table. The SAVE SYMBOL
TABLE option requires this assembly to be absolute.
If any assembler errors are detected, or if the
symbol table exceeds the allowable size of the
System Symbol Table - 100 symbols - the symbol
table will not be saved as a System Symbol Table,
and an assembler error message will be printed
(refer to Appendix A, Assembler Error Messages).

*SYSTEM SYMBOL TABLE

Before assembly begins, the System Symbol Table
(previously built by a SAVE SYMBOL TABLE
assembly) is copied into the symbol table generated
in this assembly. This control record is used when
it is desired to refer to symbols in the System
Symbol Table without definition of those symbols in
the source program, or together with the SAVE
SYMBOL TABLE control record when it is desired
to add symbols to the System Symbol Table. All
symbols in the symbol table taken from the System
Symbol Table will have absolute values.

* LEVELbn

This control record is required for the assembly
of an ISS routine. n = A decimal interrupt level
number (0-5). If the device operates on two levels
of interrupts (1442 Card Read Punch), two LEVEL
control records are required. At least one blank
must separate the word LEVEL and the interrupt
level number.

* FILEbn

n = Number of sectors (decimal) of the disk Working
Storage area required at object time by the pro-
gram being assembled. These sectors will be
reserved at the beginning of Working Storage before
any LOCALs or SOCALs are stored. This control
record is used only when assembling a relocatable
mainline program. At least one blank must separate
the word FILE and the number of sectors.

*COMMONbn

n = Length of COMMON in words (decimal). This
allows a COMMON area to be saved in linking from
a FORTRAN mainline program to an assembly
mainline and linking back to a FORTRAN mainline.
At least one blank must separate the word COMMON
and the decimal number.

ORIGIN OF SOURCE PROGRAM

The origin of a relocatable source program will
always be at relative zero unless otherwise specified
in the source program.

The origin of an absolute source program, if
not otherwise specified, will be at the end of the
disk routine DISKN (location 0438). If the program
will use another disk routine, the origin may be set
lower to correspond to the proper disk routine. If
no disk routine is used, the origin may be set to the
end of the disk routine DISKZ (refer to Origins for
Core Loads).

ASSEMBLER PAPER TAPE FORMAT

The paper tape input to the assembler is punched on
PTTC/8 tape, one frame per character. The format
of the tape control records is the same as the card
format. The format of the symbolic program tape
records is the same as the card format except for
the following:

1. The tape does not contain preceding blanks
corresponding to card columns 1-20.

2. The tape does not contain blanks or data
corresponding to card columns 72-80.

3. Trailing blanks need not be punched. Therefore,
up to 51 characters (corresponding to card
columns 21-71) can appear in the tape record.

28

Tape records are separated by NL (new line)
characters (code DD). The delete character (code
7F) is ignored whenever it is read, but the reader
stop character (RS, code OD) causes the program
reading the tape to wait and start reading again
when PROGRAM START is pressed. The case shift
characters (codes OE, 6E), when required, are not
considered to occupy a space in the format.

ASSEMBLER MESSAGES AND ERROR CODES

Appendix A contains the assembler error messages
printed during operation of the 1130 Monitor. If
LIST DECK or LIST DECK E is specified, the error
detection codes shown in Table 7 are punched in
columns 18 and 19. For the first error detected in
each statement the assemble- stores and then punches
the code in column 18; the cote for a second error
is stored, overlayed by any subsequent errors, and
punched in column 19. Thus, if more than two
errors are detected in the same statement, only
the first and last are indicated.

At the end of the assembly, a message is printed
indicating the total number of assembly errors de-
tected in the source program. Since no more than
two errors are flagged per statement, the error
count may exceed the actual number of flags.

If symbol table overflow exceeds 32 sectors in
Working Storage, an assembler error message is
printed (refer to Appendix A). The maximum size
of the symbol table (including overflow) and, hence,
the maximum number of symbols that can be de-
fined in a program is determined by the size of
core storage as indicated below:

Size of Core Storage (words)
Type of Assembly	 4096	 8192

With Listing 3502 .4867
One Pass, No Listing 3574 4940
Two Pass, No Listing 3609 4974

ASSEMBLER OPERATING PROCEDURES

Card Input

The source deck (including assembler control
cards) can be assembled as part of a job, or it
can be assembled as a separate job. In either
case, the source deck must be preceded by a
ASM monitor control record.

Table 7. Assembler Error Detection Codes

Flag Cause Assembler Action

A Address Error
Attempt made to specify dis-
placement field, directly or
indirectly, outside range of

Displacement set to zero

-128 to •127.

C Condition Code Error Displacement set to zero
Character other than r, -, Z,
E, C	 or 0 detected in first
operand of short branch or
second operand of long BSC,
BOSC, or BSI statement.

F Format Code Error Instruction processed as if I
Character other thnn L, I, X,
or blank detected in col. 32,
or L or I format specified for

format were specified, unless
that instruction is valid only in
short loan, in which case it is

instruction solid only in short processed as if the X format
form • were specified

L Label Error Lobel ignored
Invalid symbol detected in label
field.

M Multiply Defined Label Error First occurrence of symbol in
Duplicate symbol encountered label field defines its value;
in operand. subsequent occurrences of

symbol in label field cause :.
multiply defined indicator to be
inserted in symbol table entry

Code ErrorE
Unrecognized op code Statement ignored and address

counter incremented by 2.
ISS, ILS, ENT, L1BR, SPR,
EPR, or ABS incorrectly placed.

Statement ignored

R Relocation Error
Expression does not have valid
relocation.

Expression set to zero

Nan-absolute displacement
specified.

Displacement set to zero

Absolute origin specified in
relocatable program.

Origin ignored

Non-absolute operand specified
in BSS or BES.

Operand assumed to be zero

Non-relocotable operand in Cord columns 9-12 left blank;
END statement of relocotable entry assumed to be relative
mainline program. zero
ENT operand non-telocotable. Statement ignored

S Syntax Error
Invalid expression (e.g., involid
symbol, adjacent operators,
illegal constant)

Expression set to zero

Illegal character in record. If illegal character appears in
expression, label, op code,
format, or tog field, additional
errors may be caused.

Main program entry point not
specified in END operand.

Cord columns 9-12 left blank,
entry assumed to be relative zero

Incorrect syntax in EBC store- Card columns 9-12 not punched;
ment (e.g., no delimiter in ocdress counter incremented
cord column 35, zero character
count).

by 17.

Invalid label in ENT or 155
operand.

Statement ignored

T Tog Error
Cord column 33 contains
character other than blank, 0,
I, 2, or 3 in instruction
statement.

Tag of zero assumed

U Undefined Symbol
Undefined symbol in expression Expression set to absolute zero

Assembler 29

*F rerrs ctrl	 Ittenerternternrx
	 • ...mow	 .mrprol	 •••••,,..n.prffrotqwww.T.,m11,1.//44■99M	 11,...rren.11011,,,,r,r91191111111Fr,r`

In most cases, the source deck is passed
through the 1442 Card Read Punch only once. If
the assembly is part of a stacked job, the
assembly proceeds without operator intervention.
If the END card is the last card in the stack,
when the reader goes not ready, press reader
START to process the last card.

In some cases it may be necessary to
assemble in the two-pass mode, that is, pass
the source deck through the 1442 Card Read
Punch twice. If a copy of the source deck is
placed behind the original, the source deck will
be read twice, and a stacked job is again
possible even when in the two-pass mode.

It is important to note that when a deck is
being assembled in two-pass mode, the
assembler is ready to read another card as soon
as Pass t processing of the END card is completed.
Therefore, a monitor control record must not
follow the END card the first time (or the first
END card if the deck has been copied), or the
assembler will trap this record, terminating
the assembly and returning control to the
Supervisor.

If the deck is not copied, the END card should
be the last card. Press reader START to
process the last card and complete Pass 1. The
assembler will then try to begin reading cards
for Pass 2, therefore the source deck (with its
control cards) should be removed from the stacker
and placed in the hopper. Pressing reader START
will continue Pass 2 of the assembly. The card
reader will go not ready when all cards but the
END card have been read. Press reader START
to process the END card and complete the
assembly. Operation is continuous from Pass 1
to Pass 2 if the source deck is replaced behind the
END card from the stacker during Pass 1.

If the *PUN211 SYMBOL TABLE assembler
control card is used, sufficient blank cards must
be placed after the END card and before the next
monitor control record in the stacked job. In
estimating the number of blank cards required,
allow one card for each five symbols used in
the source deck. Unnecessary blank cards will
be passed to the next monitor control record.

Paper Tape Input

Most of the procedures for card input are also
applicable to paper tape input.

If the assembly is performed in the one-pass
mode, operation is continuous, and control is
returned to the Supervisor which will then pass
any delete codes between the assembler and the
next monitor control record. The assembler
will also pass any delete codes that may occur
between records of the source program.

When it is necessary to assemble in the two-
pass mode, one of the following techniques may
be used:

1. Have the stacked job tape contain two copies
of the source program. The assembler will
simply begin reading the copy after the
original has been read in Pass 1.

2. Assemble outside of the stacked job tape.
The job tape, or a separate strip containing
an ASM monitor control record serves to
bring the assembler into core. A separate
source program tape (including assembler
control records) should then be readied on
the paper tape reader, and the assembler
will read this tape and complete Pass 1.
Ready the source tape again and the
assembler will complete Pass 2. A stacked
job tape can now be readied again on the
paper tape reader, and the Supervisor will
continue with the stack.

3. The assembly of a program may start in one-
pass mode and then be changed to two-pass
mode (see Assembler Error Messages,
Appendix A). The assembler will wait, and
pressing PROGRAM START continues the
assembly in Pass 1 of two-pass mode. If this
assembly is part of a stacked job, operator
Intervention is necessary to prevent the
assembler from reading the monitor control
record which follows the END record
(applicable to card input also). When Pass 1
intermediate output may fill Working Storage,
it is recommended that sufficient length of all
delete codes be punched into the tape after the
END statement and before the next monitor
control. When the assembler is reading the
delete codes following the END record, the
operator should press PROGRAM STOP, and
manually reposition the tape at the beginning
of the source program. When the tape is
positioned, press PROGRAM START to con-
tinue Pass 2 of the assembly.

30

When punching a list tape (*LIST DECK or
*LIST DECK E), first create a leader in the
punched tape by holding down FEED and DELETE on
the punch (press DELETE before FEED and release
FEED before releasing DELETE). The same
procedure should be used to create a trailer

following the last record punched by the assembler.
When the paper tape reader or punch is not

ready, the assembler will wait at location 0041
with 300016 displayed in the accumulator. Ready
the punch or reader, and press PROGRAM START
to continue.

re

Amenable, 31

MITTT	 TrIMPIWITRIMM7P,InnfIlOF.1,9,1'1^1.1110111'.!PIPPITIPPIIPPRIPTIIPPT.111.,TTIFT.TAMplIWPIRM I I. 	
wmproir	 mgmmi mmi gm onm,11 . 1r	 FREI Immq, ,prprri1.11M111111,11111,11,1,,IIT

FORTRAN COMPILER

The language for the Monitor FORTRAN compiler
is described in the publication IBM 1130 FORTRAN
Language (Form C26-5933). Therefore, only a
general description of the Monitor FORTRAN
compiler operation is contained here.

The FORTRAN compiler cannot be operated
independent of the Monitor System; but, if
desired, the compiler can be deleted from the
system.

A monitor control record having the pseudo-op
FOR is used to call the FORTRAN compiler into
operation. The compiler reads the source program
from cards or paper tape. After compilation, the
object program resides in the disk Working Storage
area, and can be called for execution with a monitor
XFQ control record, loaded to the User or Fixed
area with a DUP STORE or STORECI operation,
or punched as a binary deck or tape with a DUP
DUMP operation. All FORTRAN programs are
compiled in relocatable format.

For 1130 FORTRAN I/O logical unit
definitions, the I/O unit numbers are permanently
set as described in Table 8.

FORTRAN CONTROL RECORDS

Before a FORTRAN program is compiled, the user
can specify certain options by means of control
records which must precede the source program
and can be in any order. The IOCS and NAME
control records can be used only in mainline
programs; the others can be used in both mainline
programs and subroutines.

Table 8. /0 Log'cal Unit Designations

Logical
Unit

Number Device
Kind of

Transmission
Record Size

Allowed

1 Console printer Output only 120

2 1442 Card Read Input/output 80
Punch

3 1132 Printer Output only 1 carriage
control + 120

4 1134-1055 Input/output 80, plus max. of
Paper Tape 80 caw shifts for
Reader/Punch PTTC/8 cods,

plus NL cads.

6 Keyboard Input only 80

7 1627 Plotter Output only 120

All FORTRAN control records have the following
format:

Column 1: * (asterisk)
2-72: Option

FORTRAN control records can be written in
free form, no comments allowed. Any
unrecognizable control records are considered
as comments control records.

FORTRAN control records and their meanings
are listed below. A summary is contained in
Table 9.

*IOCS (CARD, TYPEWRITER, KEYBOARD, 1132
PRINTER, PAPER TAPE, DISK, PLOTTER)

This record is required to specify any I/O device
that is to be used during execution of the program;
however, only the devices required should be
included. Because the *IOCS record can appear
only in the mainline program, it must include all
the I/O devices used by all FORTRAN subprograms
that will be called. The device names must be in
parentheses with a comma between each name.

FORTRAN subprograms written in assembly
language can use any I/O subroutines for any
device that is not mentioned in *IOCS and that is
not on the same interrupt level as a device in
*IOCS. Otherwise, the subprograms must use
FORTRAN I/O routines (CARDZ, PAPTZ, PRNTZ,
WRTYZ, TYPEZ, DISKZ, PLOTX).

*LIST SOURCE PROGRAM

The source program is listed as it is read in.

*LIST SUBPROGRAM NAMES

The names of all subprograms (including
EXTERNAL subprograms) called directly by the
compiled program are listed.

*LIST SYMBOL TABLE

The following items are listed:

• Variable names and their relative addresses

e Statement numbers and their relative addresses

32

Table 9. Summary of FORTRAN Control Records

• NAME XXXXX

• IOCS (CARD, TYPEWRITER, KEYBOARD, 1132 PRINTER, PAPER TAPE,
DISK, PLOTTER)

••header information to be printed on each compiler output page

• ONE WORD INTEGERS

• EXTENDED PRECISION

• ARITHMETIC TRACE

• TRANSFER TRACE

• LIST SOURCE PROGRAM

• LIST SUBPROGRAM NAMES

• LIST SYMBOL TABLE

• LIST ALL

(XXXXX z. program name to be printed on listing)

Delete any not used

(Store integer variables in one word)

(Store floating point variables and constants in 3 words instead of 2)

(Switch 15 ON to print result of each assignment statement)

(Switch 15 ON to print value of IF or Computed GOTO)

(List source program as it is read in)

(List subprograms called directly by compiled program)

(List symbols, statement numbers, constants)

(List source program, subprogram names, symbol table)

4

• Statement function names and their relative
addresses

• Constants and their relative addresses

*LIST ALL

The source program, subprogram names, and
symbol table are listed. If this control record is
used, the other LIST control records are not
required.

*EXTENDED PRECISION

Variables and real constants are stored in three
words instead of two, and the compiler generates
linkage to extended precision routines.

*ONE WORD INTEGERS

Integer variables are allocated one word of storage
rather than the same allocation used for real
variables. Whether this control record is used or

not, integer constants are always contained in one
word. When this control record is used, the
program does not conform to the ASA Basic
FORTRAN standard for data storage, and it may
require modification in order to be used with
other FORTRAN systems.

*NAME XXXXX

The program name represented by XXXXX is printed
on the listing. XXXXX is five consecutive
characters (including blanks) starting at the first
non-blank column. This control record is used
only on mainline programs, since subprogram
names are automatically taken from the
FUNCTION or SUBROUTINE statement.

**Header Information

The information between columns 3-72 is printed
at the top of each page of compilation printout when
an 1132 Printer is the principal system printer.

*ARITHMETIC TRACE

The compiler generates linkage to trace routines
which are executed whenever a value is assigned to
a variable on the left of an equal 'sign. If Console
Entry Switch 15 is turned on at execution time and

0

FORTRAN Compiler 33

F,ry	 111■11141
	 rPRWI7ORIP,M,MMIRIFFIT119/1,171111 1	 q1111

	
roprgpipmpipp.w.r	 ARRIIIIPPRI	 .1	 Ilr

program login (see Optional Tracing) does not
prevent tracing, the value of the assigned variable
is printed as it is calculated.

*TRANSFER TRACE

The compiler generates linkage to trace routines
which are executed whenever an IF statement or
Computed GOTO statement is encountered. If
Console Entry Switch 15 is turned on at execution
time and program logic (see Optional Tracing) does
not prevent tracing, the value of the IF expression
or the value of the Computed GOTO index is printed.

If tracing is requested, an *IOCS control record
must also be present to indicate that either type-
writer or printer is needed. U both typewriter
and printer are indicated in the *IOCS record, the
printer is used for tracing. 	 •

The traced value for the assignment of a
variable on the left of an equal sign of an arithmetic
statement is printed with one leading asterisk.
For the expression of an IF statement, the traced
value is printed with two leading asterisks. The
traced value for the index of a Computed GOTO
statement is printed with three leading asterisks.

Optional Tracing

The user can elect to trace only selected parts of
the program by placing statements in the source
program logic flow to start and stop tracing. This
is done by executing a CALL to either subroutine:

CALL TSTOP (to stop tracing)
CALL TSTRT (to start tracing)

Thus, tracing occurs only if:

• The trace control records were compiled with
the source program.

• Console Entry Switch 15 is on (can be turned
off at any time).

• A CALL TSTOP has not been executed, or a
CALL TSTRT has been executed since the last
CALL TSTOP.

Operating Notes - *LIST Control Cards

A constant in a STOP or PAUSE statement is
treated as a hexadecimal number. This hexadecimal
number and its decimal equivalent appear in the list
of constants.

Variables and constants that require more than
one word of storage have the address of the word
nearest the zero address of the machine. In the
case of arrays, the given address refers to the
addressed word of the first element. In the case of
a two- or three-word integer, the integer value is
contained in the addressed word. The first variable
listed might not be addressed at 0000 because room
may be required for generated temporary storage
locations.

The relative address for variables not in
COMMON would be the actual address if the program
started at storage location zero. The relative ad-
dress for variables in COMMON would be the actual
address if the machine had 32K storage. The Loader
makes any necessary adjustments. Variables in
COMMON are adjusted to reside in the high-order
core location of the machine being used (e. g. , first
COMMON variable will be loaded to 8191 on an 8K
machine).

Loading begins at core location 01C2 (450 deci-
mal). The DISKZ routine is used regardless of
what disk routine is requested on the XEQ control
record (refer to Origins for Core Loads).

FORTRAN PRINTOUTS

Compilation Messages

Near the end of the compilation, core usage
information and the features supported (control
records used) are printed out as follows:

FEATURES SUPPORTED

EXTENDED PRECISION

ONE WORD INTEGERS

TRANSFER TRACE
ARITHMETIC TRACE

IOCS
CORE REQUIREMENTS FOR XXXXX

COMMON YYYYY VARIABLES YYYYY PROGRAM YYYYY

where XXXXX is the name of the program
designated in the *NAME control record or in the
SUBROUTINE or FUNCTION statement, and
YYYYY is the number of words allocated for the
specified parts of the program. In addition, all
unreferenced statement numbers are listed un-
conditionally.

For example:

1	 DIMENSION
2	 DIMENSION
3	 DIMENSION
4	 DIMENSION
S	 DIMENSION

C (10,10)
D (5,5)
E (6,6„6)
F (4,4)

G (2,2))

(error C08)

(error C16)

Compilation Error Messages

During compilation a check is made to determine
if certain errors have occurred. If one or more
of these errors have been detected the error
indications are printed at the conclusion of
compilation, and no object program is stored on
the disk. Only one error is detected for each
statement. In addition, due to the interaction of
error conditions, the occurrence of some errors
may prevent the detection of others until those
which have been detected are corrected. With the
exception of type 00 messages listed below, the
error message appears in the following format:

C NN ERROR IN STATEMENT NUMBER XXXXX + YYY

NN is the error number described in Appendix A.
With the exception of specification statement errors,
>0000C is the last valid statement number preceding
the erroneous statement and YYY is the count of
statements from XXXXX to the statement that is in
error. If the erroneous statement has a valid state-
ment number, XXXXX will be the statement in error
and YYY will not be printed.

This example will cause the following error messages
to be printed.

C08 ERROR AT STATEMENT 00000 + not
C16 ERROR AT STATEMENT 00000 + 002

Error indications are printed at the conclusion
of compilation. If a compilation error has occur-
red, the message

OUTPUT HAS BEEN SUPPRESSED

is printed and no object program is punched.

During compilation of sub-programs a subroutine
initialize statement (CALL SUBIN) is generated.

The CALL SUBIN statement initializes all refer-
ences to "dummy” variables contained within the
sub-program to the appropriate core location in the
calling program.

The nature of the FORTRAN compiler limits the
size of any statement in internal compiler format
to 311 words. In the case of CALL SIJBIN, the
size is calculated by the following formula:

S = 5 + ARC. + N

For example:

105	 FORMAT (15,F8.4)
110	 IF (A-B) 10,30,30

A = A+1.0
ABC	 B = B-2.0
135	 GO TO 105

(error C01)
(error C43)

where ARC, is the number of arguments in the sub-
routine parameter list and N is the total number of
times the dummy arguments are used within the
sub-program. S is the total size of the CALL SUBIN
statement; if S ever exceeds 511, an error occurs
and the message

This example will cause the following error messages 	 SUBROUTINE INITIALIZE TOO LARGE
eit
	 to be printed.

0

CO1 ERROR IN STATEMENT NUMBER 110 + 002
C43 ERROR IN STATEMENT NUMBER 135

For specification statements, XXXXX is always 00000
and YYY is the count of the number of specification
statements in error. YYY is never 000, i.e., for the
first error YYY is 001. Specification statements are
not counted unless they contain an error. Statement
numbers on specification statements and statement
functions are ignored. NN is the error code.

is printed.

If at any time during the compilation the state-
ment string overlaps the symbol table, or vice-
versa, the remainder of the compilation is by-
passed and the message

PROGRAM LENGTH EXCEEDS CAPACITY

is printed.

FORTRAN Compiler 35

911 , 1 	 Trpr^r".." .W111-.1,1111111	 .1111/	 ■■1
.... I . 11AM RIP HIP 1,1,,	 q l' • ■II 1,111 	 ,111 og.np TRI.0 ■• I MI ',or., RIF •

Type 00 Error Messages

Code and
Message
	 Meaning

C 00 MON CALL A Monitor call was executed
(via operator intervention)
during the compilation; the
compilation is terminated
and control is returned to
the monitor.

	

C 00 OVER 50
	 The FORTRAN disk I/O

DISK ERRORS AT routine encountered an

	

SECTOR nnnn	 unrecoverable disk error
during compilation;
nnnn is the hexadecimal
address of the bad sector.

	

C 00 WORKING
	

The working storage area
STORAGE	 on disk is too small to

	

EXCEEDED	 accommodate the string area
and symbol table for the
program being compiled;
the compilation is
terminated.

The following message is printed for a normal
end of compilation (with or without errors):

END OF COMPILATION

//b RECORDS AT FORTRAN EXECUTION TIME.

During FORTRAN execution time, any //b record
encountered by CARDZ or PAPTZ causes a WAIT to
occur; when PROGRAM START is pressed, control
is returned to the monitor supervisor. The super-
visor searches for the next valid monitor control
record entered from the reader. Only the //b
characters on the record trapped by CARDZ or
PAPTZ are recognized. Any other data entered in
this record is not available to other routines in the
monitor system. The record is not listed. For
off-line listing purposes, however, this record can
contain comments (e.g. /1 END OF DATA).

KEYBOARD INPUT OF DATA RECORDS

Data records of up to 80 characters can be read from
the keyboard by a FORTRAN READ statement. Data
values must he right-justified in their respective
fields.

Keyboard Operation

If it is desirable to key in less than 80 characters,
the EOF key can he pressed to stop transmittal.

Also, the ERASE FIELD or BACKSPACE key can be
pressed to restart the record transmittal if an error
is detected while entering data. If the keyboard
appears to be locked up, press REST KB to restore
the keyboard. The correct case shift must be se-
lected before data is entered.

Buffer Status After Keyboard Input

When the END FLD key is pressed prior to com-
pleting a full buffer load of 80 characters, blanks
are inserted in the remainder of the buffer. If more
data is necessary to satisfy the list items, the re-
maining numeric fields (I, E, or F) are stored in
core as zeros and remaining alphameric fields
(A or H) are stored as blanks. Processing is con-
tinuous and no errors result from the above condi-
tion.

OBJECT PROGRAM PAPER
TAPE DATA RECORD FORMAT

Data records of up to 80 EBCDIC characters in
PTTC/8 code can be read or written by the FOR-
TRAN object programs. The delete and new-line
codes are recognized. Delete codes and case shifts
are not included in the count of characters. If a
new-line code is encountered before the 80th char-
acter is read, the record is terminated. If the 80th
character is not a new-line code, the 81st character
is read and assumed to he a new-line code. A new-
line code is punched at the end of each output record.

FORTRAN I/O ERRORS
If input/output errors are detected during exe-

cution, the program stops with an error code dis-
played in the accumulator. The error displays and
meanings are listed in Appendix A, Table A-11.
If an input error is detected, zero values will be
transmitted for each corresponding list element
when the START key is pushed. Output errors
will transmit nothing for the corresponding list
elements. An exception to these general rules is
the F009 error. When this error is detected, the
conversion will continue as requested after the
START key is depressed.

When the output field is too small to contain
the number, the field is filled with asterisks and
execution is continued.

The input/output routines used by FORTRAN
(PAPTZ, CARDZ, PRNTZ, WRTYZ, TYPEZ) wait
on any I/O device error or device not in a ready
condition. When the devices are ready, press
PROGRAM START to execute the I/0 operation.

35.1

Error detection in functional and arithmetic
subroutines is possible by the use of source program
statements. Refer to "FORTRAN Machine and Pro-
gram Indicator Tests" in the manual, IBM 1130
FORTRAN Language (Form C26-5933).

FORTRAN PROGRAMMING NOTES

1. When performing synchronous transmit-
receive (STR) operations in a FORTRAN program,
the STR operations must be stopped before any
disk I/O can be executed in the FORTRAN program.
This includes FORTRAN disk READ and WRITE

statements (DISKZ) and LOCAL or SOCAL condi-
tions requiring the use of DISKZ.

2. Any time an overlapped I/O operation (such
as FIND) is performed, a subsequent interrupt
will occur and remove the CPU from a WAIT
status if it happens to be in such a status.

3. Do not push PROGRAM STOP or IMMEDIATE
STOP to try to stop FORTRAN program execution.
This may result in destroying the monitor system
cartridge. The recommended procedure to stop
the execution during I/O operations is to cause the
I/O device being used to become not ready.

FORTRAN Compiler 35.2

7 ,1,1 I •• ••• • 11 . 11..111,111. ,1111P .1	 I 1.1TM•171.1!..1,,F9../.7.WTMIR .."	 VIIVIR1111."11111,V, Mffldfliffldf•	
P11,111 MP 111111,MI

SUBROUTINE LIBRARY

The 1130 Subroutine Library consists of a group
of subroutines that aid the programmer in making
efficient use of the IBM 1130 Computing System.
Descriptions of the subroutines and methods for
programming them are contained in the publication,
IBM 1130 Subroutine Library (Form C26-5929).

The following paragraphs describe the use of
the IBM-supplied subroutines and discuss pre-
operative errors and I/O error restarts where
special handling is required.

PREOPERATIVE ERRORS

A preoperative error is an error condition
detected before an I/O operation is started. It
denotes either an illegal LIBF parameter, an
illegal specification in I/O area, or a device
not-ready condition. This error causes a branch
to location 0029 and the following conditions:

The Instruction Address Register displays the•
address 002A.

• The Accumulator displays an error code
represented by four hexadecimal digits.

Digit 1 identifies the ISS called:
1 - CARDO or CARD1
2 - TYPEO or WRTYO
3 - PAPT1 or PAPTN
5 - DISKO, DISK1, or DISKN
6 - PRNT1
7 - PLOT1

Digits 2 and 3 are not used.
Digit 4 identifies the error:
0 - Device not ready
1 - Illegal LIBF parameter or illegal

specification in I/O area

• Location 0028 contains the address of the LIBF
in question.

The ISS is set up to attempt initiation of the
operation a second time if the LIBF is reexecuted.
Therefore, since the Loader stores a wait in-
struction in location 0029 and an indirect branch
to location 0028 in locations 002A and 002B, the

LIBF can be executed again by pressing PROGRAM
START.

When a pre-operative error is encountered the
operator can:

• Correct the error condition if possible and
press PROGRAM START, or

• Note the contents of the Accumulator and
location 0028, dump core storage, and proceed
with the next job.

CARD SUBROUTINE (CARDO AND CARD1) ERRORS

Error Parameters

CARDO. There is no error parameter. If an error
is detected during processing of an operation-
complete interrupt, the subroutine loops
internally, with interrupt level 4 on until the 1442
becomes ready, and then retries the operation.

CARD1. There is an error parameter. If an
error is detected during processing of an
operation-complete interrupt, the user program
can elect to terminate (clear "routine busy" and
the interrupt level) or to retry. A retry consists
of looping internally, with interrupt level 4 on
until the 1442 becomes ready, and then
reinitiating the function.

1442 Errors and Operator Procedures

If a 1442 error occurs, the 1442 becomes not ready
until the operator has intervened. Unless the stop
is caused by a stacker full (no indicator) or Chip .
Box indication, the 1442 card path must be
cleared before proceeding. The 1442 error
indicators and the position of the cards in the feed
path should be used to determine which cards must
be placed back in the hopper.

For the card subroutines, a retry consists of
positioning the cards as indicated in the following
paragraphs and reinitiating the function whenever
the card reader becomes ready. The card sub-
routines will skip the first card, if necessary,
on a read or feed operation.

36

Hopper 	 Indicates that card 2 failed to
pass properly from the hopper to the read station
during the card 1 feed cycle.

Card positions after error:

Card positions after error:

Punch Station

Cccner --41.

Read Station

4

Punch Station.;	 Read Station	

Stacker----410

Corner

∎--- Hopper

tir

0

Stacker

Error indicator:	 HOPR
Operator procedure: When program halts,

press NPRO to eject
card 1, place card 1 in
hopper before card 2,
and ready the 1442.

Feed Check (punch station). Indicates that card 1
is improperly positioned in the punch station at the
completion of its feed cycle.

Card positions after error:

me— Hopper
Error indicator: 	 TRANS
Operator procedure: When program halts,

empty hopper, clear
1442 card path, place
cards 2 and 3 in
hopper before card 4,
and ready the 1442.

Feed Cycle. Indicates that the 1442 took an
unrequested feed cycle and, therefore, cards 1,
2, and 3 are each one station farther ahead in
the 1442 card path than they should be.

Card positions after error:

Punch Station	 Read Station

Punch Station Read Station

4
Corner 	

Corner Stocker ■11---- Hopper

Stocker .101-• Hopper

Error indicator:	 PUNCH STA
Operator procedure: When program halts,

empty hopper, clear 1442
card path, place cards 1
and 2 in hopper before
card 3, and ready the 1442.

Transport. Indicates that card 1 has jammed in
the stacker during the feed cycle for card 2.

Error indicator:	 FEED CLU
Operator procedure: When program halts,

empty hopper, press
NPR() to eject cards
2 and 3, place cards 1,
2, and 3 in hopper
before card 4, and
ready the 1442.

Feed Check (read station). Indicates that card 1
failed to eject from the read station during its
feed cycle.

Subroutine Library 37

'7M4 7.WRIP	 '4.1.701,11!rf 11RIElerlll 9I4I119..9P.1,11401,11!!!"P.RMR-1,!IFIWIRMAr 1.1111•111111111M■11••11,111

Corner --ew

Stacker—e. 6.110.--•■ Hopper

Punch Station

Punch Station	 Read Station

Corner —to.

Stacker --a. Hopper

Card positions after error: Error indicator: 	 PUNCH

Error indicator: 	 READ STA

Operator procedure: When program halts,
empty hopper, clear
1442 card path, place
cards 1 and 2 in
hopper before card 3,
and ready the 1442.

Read Registration. Indicates incorrect card
registration or a difference between the first and
second reading of a column.

Card positions after error:

Punch Station
	

Read Station

Corner

Stocker-0.
	 Hopper

Error indicator:	 READ REG
Operator procedure: See Feed check (punch

station). Repeated
failures of this type
might indicate a machine
malfunction.

Punch Check. Indicates an error in output punch-
ing.

Card positions after error:

Operator procedure: When program halts,
empty hopper, check
card position and press
NPRO to clear 1442 card
path. If necessary,
correct card 1 to pre-
punched state. Place
(corrected) card 1 and
card 2 in hopper before
card 3 and ready the 1442.

CONSOLE PRINTER SUBROUTINE (TYPEO AND
WRTYO) ERRORS

If the carrier attempts to print beyond the manually
positioned margins, a carrier restore (independent
of the program) occurs.

Subroutine printing begins wherever the carrier
is positioned as a result of the previous print
operation. There is no automatic carrier return
as a result of an LIBF.

If the console printer indicates a not-ready
condition after printing has begun, the sub-
routines loop internally, with interrupt level
4 on, waiting for the console printer to become
ready. Operator procedures are as follows:

1. Press IMM STOP on the console.
2. Ready the console printer.
3. Press PROGRAM START on the console.

KEYBOARD SUBROUTINE (TYPEO) FUNCTIONS

Re-entry

When the Erase Field key is pressed, a character
interrupt signals the interrupt response routine
that the previously-entered keyboard message is
in error and will be reentered. The routine
prints two slashes on the console printer,
restores the carrier to a new tine, and prepares
to replace the old message in the I/O area with
the new message. The operator then enters the
new message. The old message in the I/O area
is not cleared. The new message overlays the
previous message, character by character. If
the previous message was longer than the new
message, characters from the previous message
remain (following the NI, character which
terminated the new message).

38

Corner El
tif

Hopper Misfeed. Indicates that card 2 failed to
pass properly from the hopper to the read station
during the card 1 feed cycle.

Card positions after error:

Card positions after error:

Punch Station

Corner —so

Read Station

4

Ell
Punch Station Read Station

■ Stacker—o• ra 41--Hopper

Stocker	 Hopper

Error indicator:	 HOPR
Operator procedure: When program halts,

press NPRO to eject
card 1, place card 1 in
hopper before card 2,
and ready the 1442.

Feed Check (punch station). Indicates that card 1
is improperly positioned in the punch station at the
completion of its feed cycle.

Error indicator:	 TRANS
Operator procedure: When program halts,

empty hopper, clear
1442 card path, place
cards 2 and 3 in
hopper before card 4,
and ready the 1442.

Feed Cycle. Indicates that the 1442 took an
unrequested feed cycle and, therefore, cards 1,
2, and 3 are each one station farther ahead in
the 1442 card path than they should be.

Card positions after error:

Card positions after error:	 Punch Station	 Read Station

Punch Station Read Station Corner Ell

Corner El Stacker—op •••--- Hopper

Stacker --ar
	 on.— Hopper

4
Error indicator: 	 PUNCH STA
Operator procedure: When program halts,

empty hopper, clear 1442
card path, place cards 1
and 2 in hopper before
card 3, and ready the 1442.

Transport. Indicates that card 1 has jammed in
the stacker during the feed cycle for card 2.

Error indicator: 	 FEED CLU
Operator procedure: When program halts,

empty hopper, press
NPR() to eject cards
2 and 3, place cards 1,
2, and 3 in hopper
before card 4, and
ready the 1442.

Feed Check (read station). Indicates that card 1
failed to eject from the read station during its
feed cycle.

Subroutine LibrAry 37

""11.thrtoll 111 • 11,11 11 I	 MO PIMP /RI n—r•re 'I,	 !la	 'I PM I np A POIWIVugfl..rr V.11.41 nruppimorm	 pm!, 1,,,,FilmoopPr."1. .1!	 Ir...impne

Ell

Ell

Punch Station	 Road Station

Card positions after error: Error indicator:	 PUNCH

Punch Station -'	 Read Station

Corner —ft.

Stacker Ell ae-- Hopper

Error indicator:	 READ STA
Operator procedure: When program halts,

empty hopper, clear
1442 card path, place
cards 1 and 2 in
hopper before card 3,
and ready the 1442.

Read Registration. Indicates incorrect card
registration or a difference between the first and
second reading of a column.

Card positions after error:

Corner

Hopper

	Error indicator:	 READ REG
Operator procedure: See Feed check (punch

station). Repeated
failures of this type
might indicate a machine
malfunction.

Punch Check. Indicates an error in output punch-
ing.

Card positions after error:

	

Punch Station	 Read Station

Corner —el. Ell

Stacker --41. Ell

Operator procedure: When program halts,
empty hopper, check
card position and press
NPRO to clear 1442 card
path. If necessary,
correct card 1 to pre-
punched state. Place
(corrected) card 1 and
card 2 in hopper before
card 3 and ready the 1442.

CONSOLE PRINTER SUBROUTINE (TYPEO AND
WRTYO) ERRORS

If the carrier attempts to print beyond the manually
positioned margins, a carrier restore (independent
of the program) occurs.

Subroutine printing begins wherever the carrier
is positioned as a result of the previous print
operation. There is no automatic carrier return
as a result of an LIBF.

If the console printer indicates a not-ready
condition after printing has begun, the sub-
routines loop internally, with interrupt level
4 on, waiting for the console printer to become
ready. Operator procedures are as follows:

1. Press IMM STOP on the console.
2. Ready the console printer.
3. Press PROGRAM START on the console.

KEYBOARD SUBROUTINE (TYPEO) FUNCTIONS

Re-entry

When the Erase Field key is pressed, a character
interrupt signals the interrupt response routine
that the previously-entered keyboard messau-o is
in error and will be reentered. The routine
prints two slashes on the console printer,
restores the carrier to a new line, and prepares
to replace the old message in the I/O area with
the new message. The operator then enters the
new message. The old message in the I/O area
is not cleared. The new message overlays the
previous message, character by character. If
the previous message was longer than the new
message, characters from the previous message
remain (following the NL character which
terminated the new message).

Stacker

Hopper

38

Backspace

When the backspace key is pressed, the last graphic
character entered is slashed and the address of the
next character to be read is decremented by 41.
If the backspace key is pressed twice consecutively,
the character address is decremented by +2, but
only the last graphic character is slashed. For
example, assume that ABCDE has been entered
and the backspace key pressed three times. The
next graphic character replaces the C, but only
the E is slashed. If the character F had been
used for replacement the paper would show
ABCDEFFF but ABFFF would be stored in the
buffer.

PAPER TAPE SUBROUTINE'S (PAPT)

If the reader or punch beccmes not ready during
an I/O operation, the subroutines exit to the user
via the error parameter. The user can request
the subroutine to terminate (clear device busy
and interrupt level) or to loop on not-ready
waiting for operator intervention (interrupt
level 4 on).

The following procedure should be used to
clear a paper tape not-ready condition:

1. Press IMM STOP on the console.
2. Ready the paper tape unit.
3. Press PROGRAM START on the console.

To load the paper tape reader, place the tape
so that the delete characters punched in the
leader are under the read starwheels. To
begin reading at any point in the tape other than
the leader, place the tape so that the frame
(character position) preceding the character
to be read is under the read starwheels. The
first start reader control after tape is loaded or
repositioned causes the reader to skip the
character under the read starwheels and load the
next character into the buffer.

ADDING AND REMOVING SUBROUTINES

Subroutines can be added to or removed from the
subroutine library as desired by the user. The
DUP control record STORE adds a subroutine, and
the DUP control record DELETE removes a
subroutine. Each subroutine in the IBM-
supplied System Deck is preceded by a DUP
STORE record.

The user should not remove subroutines that
are called by other subroutines left in the
library (refer to Appendix E for a list of
subroutines called by other subroutines).

0

Subroutine Library 39

SYSTEM GENERATION OPERATING PROCEDURES (CARD SYSTEM)

Before the Disk Monitor System can begin
operation, the user must perform the following
functions:

1. Load and execute the IBM-supplied Disk
Pack Initialization Routine (DPIR) to
initialize the disk pack.

2. Prepare a Load Mode Control Card and
System Configuration Cards, and insert
these cards into the IBM-supplied System
Deck.

3. Load the above deck into the disk.
4. Using the IBM-supplied Cold Start Card,

load the Supervisor program into core
storage from disk storage.

Each of the above procedures is described in
detail in subsequent sections of this manual.

DISK PACK INITIALIZATION ROUTINE (DPIR)

The DPIR (Disk Pack Initialization Routine)
performs the following functions:

1. Clears the disk and writes disk sector
addresses on all cylinders.

2. Determines which, if any, sectors are
defective and writes the addresses of the
cylinders containing the defective sectors
on sector 0000. If sector 0000 is defective,
DPIR does not write any defective cylinder
table.

3. Puts an ID on the disk pack.

The 1130 Disk Routines operate effectively with up
to three cylinders containing defective sectors.
An attempt to read or write a defective sector
that is not identified in sector 0000 results in a
read or write error after the operation has been
attempted 10 times.

At the completion of DPIR, an eight-word table
is written on sector 0000. The first word (word 0)
of the table contains the sector address 0000.
Words one, two, and three contain the first sector
address of any defective cylinders found (maximum
of three). When there is no defective cylinder,
these words contain 065816 . Word 4 is reserved.
Words five, six, and seven contain a five character
ID name in packed EBCDIC. Words five and six
contain two characters per word, and word seven

contains an EBCDIC character in the left half of the
word and an EBCDIC blank in the right half of the
word.

To determine which sectors are defective, the
user can dump core upon completion of execution;
the defective sector table starts at location 0771.
The user can also use the disk dump utility program
to dump sector 0. Word 1, 2 and 3 will contain ei-
ther the sector addresses of defective cylinders if
three or less defective cylinders are found, or wisiG
if no defective cylinders art' found.

Table 10 lists the DPIR halt addresses.

DPIR Card Load Operating Procedures

The procedure for loading and executing the Disk
Pack Initialization Routine is as follows:

1. Load the disk pack in the console cabinet, turn
the File Switch on, and wait for the FILE READY
light to come on.

2. Put the six-card loader, followed by the DPIR
deck, in the card hopper.

3. Set the console mode switch on RUN.
4. Press IMM STOP, then RESET on the console.
5. Press START on the card reader.
6. Press PROGRAM LOAD on the console; when

all cards have been read from the hopper, press
START on the card reader.

After DPIR is loaded, the routine waits at 02FF
and the keyboard is selected. (The keyboard Select
light comes on.) Wait for the File Ready light to
come on and then press PROGRAM START to con-
tinue. The KB SELECT light comes on.

1. Enter a five-character ID (of your choice) to be
written on the disk pack. If the ID is less than
five characters, left-justify by following the ID
with spaces. Only those characters recognized
by the Supervisor should be used (see Appendix
D). When the fifth character is entered, the pro-
gram branches to execute. The disk surface is
now cleared and the sector addresses are written.
The routine waits at 03C2.

2. Set all the Console Entry switches off.
3. Press PROGRAM START. The defective

sector and file protect address data is written
on sector 0000. A scan of the disk is now
performed to check for seek failures. If a
seek or read failure occurs, the routine waits
at 03EA. Other DPIR halt addresses are
described in Table 10.

40

Table 10. DPIR Halt Addresses

Holt
Address (hen).

Meaning Action Required

002E The keyboard is not restored and on attempt is mode to load DPIR.
The routine loads and comes to a holt with interrupt 4 on.

_

02EE The routine is in WAIT.

039F Sector 0000 is defective; the sector addresses have been written
on the disk, but the table has not been written on sector 0000.
(70CF loop)

03C2 The routine is in WAIT. Turn the console entry switches off; then press
PROGRAM START on the console.

03F2 The routine has run successfully, but more than three defective
sectors were found.	 (70FF loop)

•
03F6 The routine hos run successfully and no defective sectors were

found.	 (70FF loop)

0400 The routine hos run successfully and one to three defective
sectors were found.	 (70FF loop)

040A (1)	 The disk is not ready (70FF loop) (1) Make the disk ready and restart the program

(2)	 A Write Select error hos occurred (70FF loop).	 The file
ready indicator is turned off by a Write Select error.

(2) Turn off the Single Disk Storage, allowing the
cartridge unlock indicator to light; turn on the
Single Disk Storage until the disk ready indicator

0422 A seek failure or rood failure occurred during a scan of the lights, then resume operation. 	 If the error per-
disk.	 (70FF loop) sifts, CE intervention is required.

* Displayed in Storage Address Register

USER-SUPPLIED CARDS

Before loading the Disk Monitor System programs
onto the disk, the user must prepare the following
cards:
1. Load Mode Control Card
2. System Configuration Deck:

a. SCON Card
b. REQ Card(s)
c. TERM Card

The System Loader will give error messages for

Table II. Lo.td Mode Control Card I orni:it

missing or invalid user-supplied cards (see
Appendix A).

Load Mode Control Card

The Load Mode Control Card is used to specify an
initial load or a reload. It also permits the user
to specify whether the assembler and/or FORTRAN
is to be loaded. At least one of these must be loaded
on an initial load; then, if desired, it can be re-
moved by using the DEFINE function of DUP. The
format is shown in Table 11 (only columns 1 through

a

Column Punch Meaning

12 Punch Initial load.	 Monitor System programs, 11.5 and ISS subroutines required by the system, and functional subroutines
ore loaded.	 However, the assembler will not be loaded if column 2 contains a 0 punch, and FORTRAN will not be
loaded if column 2 contains a 1 punch.

I
No 12 Punch Reload.	 Monitor System programs are reloaded, and the contents of the User and Fixed areas (including LET/FLET)

ore not changed.	 Only programs presently on the disk can be reloaded; if the assembler or FORTRAN were nor
loaded during on initial load, or hove since been deleted, they cannot be reloaded.

0 Punch Bypass (do nor load) assembler.
No 0 Punch Load assembler.

2 1 Punch Bypass (do not load) FORTRAN.
No 1 Punch Load FORTRAN,

3 9 Punch Required in all cases to identify Load Mode Control Card.

System Generation Operation Procedures 41

^,••=1,1r1, gIRRIRRI I R 'R IR..	 vr,,rerrre MIM1111..P.PIN

3 are used). For example, to initially load the
monitor (including the assembler and FORTRAN),
the Load Mode Control Card is punched with a 12
punch in column 1 and a 9 punch in column 3.

System Configuration Deck

SCON Card

The SCON Card is the deck header card. The
format is as follows:

Columns	 Contents

	

1-4	 SCON

REQ Cards

REQ Cards identify devices present in system. One
card should be prepared for each I/O device on the
system. The System Loader uses this information
for selective generation and loading of ILS sub-
routines and selective loading of ISS subroutines.
The format is shown in Table 12.

TERM Card

The TERM Card is the last card of the System
Configuration Deck. The format is as follows:

Columns	 Contents

	

1-4	 TERM

NOTE: The reload procedure will not affect the
version and modification level word of DCOM
(sector 8, word 1). Therefore, if more than one
modification level deck is to be run in, dummy up-
dates from modification level 1 to the first modifi-
cation level deck must be performed using the
maintenance program IBM00 (see Note 2 page 77):

Table 12. REQ Card Format.

Columns

Device 1-3 10 15-16 21-22

(Primary (Second

(ISS No.)
Interrupt
Branch

Interrupt
Branch

Address Address

1442 Cord Read Punch 1 oe 12

Input keyboard and console
printer

2 12 Blank

1134 paper tape reader or REO 3 12 Blank
1055 paper tape punch

Disk 4 10 Blank

1132 Printer 6 09 Blank

Pbtter 7 11 Blank

NOTE:	 If both the console printer and the 1132 Printer are included,
the 1132 Printer will be the principal printing device; if
both the 1442 Card Read Punch and the 1134/1055 paper tape
units are included, the 1442 Cord Read Punch will be the
principal I/O device.

42

Two Blank Cards

Remainder of System Deck
(IBM Supplied)

System Configuration Deck
(User Supplied)

System Looder Deck - Part 2
(IBM Supplied)

Columns 73-74 contain ID: E2

System Loader Deck - Part I
(IBM Supplied)

Columns 73-74 contain ID: El

Monitor System Bootstrap
(IBM-supplied) - 6 Cards

PROCEDURE FOR INITIALIZING DISK MONITOR
SYSTEM FROM CARDS

1. Execute the following:
a. Press IMM STOP on console.
b. Press RESET on console.
c. Press NPRO on the 1442 card reader.

2. Load the following decks into hopper of the
1442 card reader (see Figure 10).
a. Monitor System Bootstrap, followed by IBM-

supplied System Loader Deck, Part 1.
Columns 73-74 contain the ID: El.

b. User-supplied Load Mode Card.

c. IBM-supplied System Loader Deck, Part 2.
Columns 73-74 contain the ID: E2.

d. User-supplied System Configuration Deck
(BOON Card, REQ Cards, TERM Card).

e. Remainder of IBM-supplied System Deck.
f. Modification level updates decks, if there

are any.
3. Execute the following:

a. Ready the 1132 Printer (if the 1132 Printer
is the principal print device)

b. Turn the File Switch on, and wait for the
File Ready light on the console to go on.

c. Press START on the 1442 card reader.
d. Press RESET on console.
e. Press PROGRAM LOAD on console.
f. The system waits at 0029.

4

Figure 10. System Loader Card Sequence

System Generation Operation Procedures 43

741"WM!'"IIMPRMII	 "'R ,,,,,,,,,, om1'1 m "rprI1IIIIR1IIr'"VRIR PPM u" , ,"" u7 "," .PRIRR RII II RRi '",1!""T R I T R . 11, 1191 ,P RRRIUVR"PRem,RoymyypR is IRHRIRRIR ,,11 i■ 	 RP"!111.1. WWI 4.11111111111111111W RimmimminpRrommulm,141

COLD START OPERATING PROCEDURE

The user must load the Supervisor Program into
Dore storage from disk storage by using the
IBM-supplied Cold Start Card (last card of sub-
routine deck) or Cold Start paper tape record:

1. to begin operation of the Disk Monitor System
after it has been loaded to the disk;

2. to return control to the Supervisor;
3. after a disk cartridge has been changed.

The procedure for executing the Cold Start Card
is as follows:

1. Insert the monitor disk pack in the console
cabinet.

2. Turn the File Switch on, and wait for the File
Ready light on the console to go on.

3. Put the Cold Start Card into the card hopper
followed by a //JOB record and another monitor
control record to processed.

4. Press IMM STOP, then RESET on the console.
5. Press START on the card reader.
6. Press PROGRAM LOAD on the console.

The Cold Start record reads the Cold Start
sector (0001) from disk into core location 0802.
The Monitor Supervisor Program is then read into
core. The first monitor control record is read
under control of the Supervisor Program by the
Monitor Control Record Analyzer'routine.

Possible stopping locations are given in Table 13.

NOTE: A cold start cannot be used to resume an
operation that has been previously terminated.
After the Supervisor has been loaded into core, the
following procedure may be used:

1. Press NPRO on the card reader.
2. Place program deck in the card hopper.
3. Press START on the card reader.
4. Press PROGRAM START on the console.

Table 13. Cold Start Halt Addresses

Wait Address
(hex)* Meaning

0024 The disk was not ready and the first XIO was
treated as a NOP

0026 The disk was not ready and the second XIO
was treated as a NOP

0034 There was a Disk Data Error

0803 Disk not ready

ceoA Disk not ready

080E Sector 000A was not read correctly

0811 Disk not reedy

0816 Sector 0009 was not recd correctly

081E Disk not ready

0823 Sector 0008 was not read correctly

0839 There was o Disk Data Error

•Displayed in Storage Address Register

44

PAPER TAPE MONITOR SYSTEM

All of the paper tape records needed to load the
Paper Tape Monitor System to disk storage are
supplied to the user by IBM. These records have
the same functions as the corresponding IBM-
supplied and user-written card decks. These
functions are described under System Generation
Operating Procedures (Card System).

The Load Mode Control record and System
Configuration records are supplied by IBM to the
user of the Paper Tape System. These tapes are
supplied with all the possible configurations, and
the user need only select the configuration for his
particular use. If these tapes are not read
correctly, the System Loader will give error
messages (see Arpendix A).

The tapes constituting the Paper Tape Monitor
System are described below. The procedure for
loading these tapes onto disk is described under
Procedure for Initializing Disk Monitor System
from Paper Tape.

Tape
	 Description

1
	 System Loader, Part 1

2
	 Load Mode Control Record (same

function as Load Mode Control
Card)

3	 System Loader, Part 2
4	 System Configuration Records

(same function as System
Configuration Deck)

5	 Supervisor Tape (includes the
Loader)

6	 Disk Utility Program
7	 FORTRAN Compiler
8	 Assembler
9, 10	 ILS Control Records and Library

Subroutines (2 parts)
11	 DPIR Tape (includes core image

loader)
16	 Cold Start Paper Tape Record

If FORTRAN and/or the assembler are not to
be loaded during an initial load, the corresponding
tapes (7 and/or 8) need not be read.

During a reload of system programs, tapes 1
through 5 must be read. If DUP, FORTRAN,
and/or the assembler are not to he reloaded, the
corresponding tapes (6, 7, and/or 8) need nut be
read. The procedures for reloading DUP,
FORTRAN, and the assembler are the same as
the card system procedures. Tapes 9 and 10 need
not be read during a reload operation.

DPIR PAPER TAPE LOAD OPERATING
PROCEDURES

The procedure for loading and executing the DPIR
(Disk Pack Initialization Routine) is as follows:

1. Insert the disk pack in the console cabinet.
2. Put the DPIR tape in the reader; position one

of the delete codes that appear after the
program name in the leader under the
read starwheels.

3. Press IMM STOP, RESET, and PROGRAM
LOAD on the console.

4. When the loader reads in and waits, position
the DPIR tape.

5. Press PROGRAM START on the console.

From this point on, the operation is identical
to the card load.

PROCEDURE FOR INITIALIZING DISK MONITOR
SYSTEM FROM PAPER TAPE

To load the paper tape system onto disk, the
operator must perform the following steps:

1. Ready the 1132 printer (if the 1132 printer is the
principal printing device).

2. Place the System Loader, Part 1, (Tape 1) in the
Paper Tape Reader. When loading tapes 1 through
10, and 16, position any one of the delete codes
following the program name in the tape leader
under the read starwheels.

3. Press RESET on the console.

Paper Tape Monitor System 45

. , 11, 1 , 1r,lrfut 	 PollIT,1"11.11?
	 qr.

4. Press PROGRAM LOAD on the console. Tape 1
is read into core starting at location 0.

5. When a WAIT occurs (at 05I3C), place the
Load Mode Control tape (Tape 2) in the
Paper Tape Reader.

6. Press PROGRAM START on the console.
7. When a WAIT occurs, place the next 'system

tape in the Paper Tape Reader.
8. Press PROGRAM START on the console.
9. Repeat steps 7 and S until the last system

tape is read.

The System Loader determines if the complete
system has been loaded. U the system has not
been loaded, the System Loader WAITs for
another tape to be readied by the operator until
the complete system is loaded.

A WAIT at 0EA6 is a checksum error,
indicating faulty tape.

COLD START OPERATING PROCEDURE

The procedure for executing the Cold Start
paper tape record is as follows:

1. Insert the monitor disk pack into the console
cabinet.

2. Turn the File Switch on, and wait for the File
Ready light on the console to go on.

3. Put the Cold Start paper tape record into the
reader; position any one of the delete codes
following the program name in the tape
leader under the read starwheels.

4. Press IMM STOP, then RESET on the console.
5. Press PROGRAM LOAD on the console.

PAPER TAPE CONTROL RECORDS

Paper tape control records must be punched in
PTTC/8 (perforated tape transmission code).
The formats are the same as the previously-
described card formats. Paper tape control
records must be separated by one NL (new
line) control character. A control record which
immediately follows paper tape data not followed
by an NL code must be preceded by one NL code.
Delete codes may precede or follow this NL code.

46

APPENDIX A. ERROR MESSAGES

Table A-1. System Loader Error Codes

Error
Code Type of Error Corrective Action

E I Check-sum error. Follow Procedure A or reload and restart.

E2 Illegal card type or blank card. Follow Procedure A or reload and restart.

E3 Card out of sequence. Follow Procedure A or reload and restart.

E4	 . ORG backward to on address lower than that established Inspect deck for card(s) missing or out of sequence. 	 Correct deck

E5

by last sector break cord,

Error in Load Mode card.

and reload edit program.

Make necessary cord correction and reload edit program.

t6 Disk error. Press PROGRAM START on console to retry.

E7	 Disk pock not initialized or Sector 0 data damaged. Use DPIR program to initialize Sector 0. 	 Initial load should follow
since DPIR clears the disk.

EV Configuration deck missing or one of the following emirs
detected:

Make corrections and reload edit program.

a) SCON card not followed by REQ cards.
b)	 less than 2 REQ cards present.
c) more than 6 REQ cords present .
d) Secondary Interrupt Branch Address (IBA) not included

in ISS il l card.
e) Secondary IBA not equal to 12.
f)	 Primary IBA not in range 8 through 12.
g)	 ISS number missing or negative.
h)	 ISS number 5 detected (illegal).
j)	 ISS number greater than 7.
k) TERM card missing

E9•• File protect address (in COMMA) prohibits loading System No recovery unless file protect address con be lowered by deleting
Loader, Part 2. port of notarial on dick.	 System Loader requires temporary use of

Cylinders 198 and 199.

E10•• During reload, old FORT or ASM address in COMMA is If COMMA has been damaged, an initial load is required; otherwise

Ell ••

different from new FORT or ASM sector address,

Fixed area or Core Image Buffer area, as defined by

system program deck is faulty.

Same as E10.
COMMA, is about to be overlayed.

•

• Applies to initial load only.

•• Applies to reload only.

Procedure A:

1. Lift remaining cords from hopper and depress NPRO on 1442.
2. Place the two ejected cards (after corrections) in cord hopper.
3. Replace remaining cards in card hopper.
4. Press START on 1442.
5. Press PROGRAM START on console.

Appendix A. Error Messages 47

Oil

',V11014111, r "Tr	 PIPT	 TT! 111111111111 III 	 I. ■. 	 1•.....P1....1111.11.1111.1•11111.P.MIT•ii..,,, !""V ,"""	 PMIRMTVIMPRIV/PHPOMINMFAIFIRPHR......"............."P.MPIMI.V"RFR4.111V.P1.1.111r,

Table A-2. System Loader (Part 1) Walt Locations

Address ' Explanation

01C7 Wait after displaying E6 error

053D Wait after displaying El error

0680 Wait after displaying E3 error

0806 Wait after displaying E2 error

0808 Wait after displaying E8 error

0821 Wait after displaying E5 error

0835 Wait after displaying E9 error

0839 Wait after displaying E8 error

083D Wait after displaying E4 error

08A4 Wait after displaying E7 error

0962 Wait after displaying E4 error

OEE6 Wait during loading of the System Loader due to
incorrect check sum, e.g., a missing card or
card out of sequence.

Table A-3. System Loader (Part 2) Wait Locations

Address *	' Explanation

0220 Wait after displaying E 10 error

022F Wait after displaying E 10 error

0245 Wait after displaying E II error

025F Wait after displaying E 1 error

027D Wait after displaying E 3 error

05C5 Wait after displaying E 2 error

0750 Wait after displaying E 5 error

0816 Wait after displaying E 3 error

0886 Wait after displaying E 4 error

0991 Wait after displaying E 2 error

OAD7 Wait after displaying E 6 error

OFFF Wait after displaying END reload

•Displayed in Storage Address Register

Table A-4. Monitor Supervisor Error Messages

Error Me►sage Cause of Error

M 01 PHASE NONX Execution is not permitted for this job.

M 02 INVALID The above listed record is on invalid
Supervisor record.

M 03 NON XEQ The currently called execution is not
permitted.

M 04.CHARACTER A character in the name listed above
is not permitted.

M 05 OFLO DISK The records listed above were too mans
for the disk storage allocated.

M 06 NO PROGRAM The mainline program name listed above,
or a program called by a LINK statement
is not in the LET or FLET table or is nut
a mainline program.

M 07 NON DUP DUP is not allowed for the subjoh.

M 09 RECORD TRAP A system program detected a Supervisor
record and returned control to the

,	 . Supervisor.

M 11 NOT !DENT The cartridge identifier on the cartridge
is not identical to the one on the input
record.	 The Supervisor waits to allow
the operator to rectify the difference if
desired.

M 12 SEQ ERROR LOCAL, NOCAL, and/or FILES records
ore intermixed (they must he groupedl.
This message will also be given when a
comma is missing in the record preceding
a continuation record.

M 13 T ERROR Column B in the JOB record does not
contain a blank or o T.	 An ampersand
is printed in place of the illegal char-
acter.	 The Supervisor waits so that the
operator can (1) correct the JOB record,
reload it in the reader, and press
PROGRAM START on the console; or
(2) press PROGRAM START on the
console.	 In either case tire JOB record
is processed pompletely before any other
processing.	 The job is considered non-
temporary if column 8 contains a blank
or a character other than o T.

Table A-S. Monitor Supervisor Wait Locations

Address• Explanation Operator Action

0005 Operator pressed PROGRAM STOP on the console. Press PROGRAM START to continue.

0029 I/O error or device not-reedy condition. ROW to Subroutine Library - Preoperative Errors.

0000 Disk error. Press PROGRAM START to retry.

07E6 1.	 Pause due to PADS control record. 1.	 Press PROGRAM START to continue.

2.	 Identifier error in JOB control record. 2.	 Correct the record, reenter it, and press PROGRAM START; or press
PROGRAM START.

0398 Paper tope reader not ready. Reody paper tope reader and press PROGRAM START.

0704 Column 8 in the JOB record does not containc iblank or Correct the record, reenter it, and press PROGRAM START; or press
a T. PROGRAM START.	 In either cote, the current job is processed first.

• Displayed in Storage Address Register

Appendix A. Error Messages 49

71#111,111.40,11... 1.11.19. .1.,..11111.• Him	 .■ VW 7,r6!!!!9	 !9/1""!..IPIPTIII11.4.1. 	 111	 .!!".P.PlenEwm !!9,14.9!!"11,1	 '1”

O

sa

Code and Message Explanation and Recovery Procedures

The loader has been Instructed to load a word into on address lower than that of the
first word of the mainline program. The ORG statement which caused this situation
must be removed, or the mainline program must start at a lower address.

No error. The load was too long to fit Into core. The Loader hos mode two overlays,
and the program will be executed with those two groups of routines overlaying each
other (refer to System Overlays).

No error. The load s.r.e. ton long to fit into core. The Loader hos made three overlays,
and the program will be executed with these three groups of routines overlaying one
another (refer to System Overlays).

At least one defined file has been truncated either because the previously defined
storage area in the User or Fixed area was inadequate or because there is inadequate
Working Storage available to store the file. See Message R 12 for a possible remedy.

The Leader has been instructed to load a word into on address exceeding 32, 767, which
is a negative number. The loading process is immediately terminated, because the
Loader cannot procen negative addresses. This error was probably caused by bad dote,
i.e., the program being keeled from the disk has been destroyed.

There ore at tette 82 different entry points referenced in the load by Clef statements.
A possible remedy would be to subdivide the load into two or more links.

There ore more than 135 references to different entry points with CALL and/or LIBF
statements in the load. A possible remedy would let to subdivide the load into two or
more links.

There is insufficient Working Storage remaining to occommodote the LOCAL and/or
SOCAL overlays required in the load. A possible remedy would be to create more
Working Storage by deleting subroutines, subprograms, and/or dote no longer required
by the installation.

There is insufficient Working Storage remaining to accommodate even one record of
the defined file(s). See Message R 12 for o possible remedy.

The program or data file ddsignuted in the message cannot be found in LET or FLET.
A possible remedy is to :tore the program or doto file. If the name cannot be explained
otherwise, the program being loaded has probably been destroyed.

The routine named in this message is either u type which cannot appear on a LOCAL
record, or this routine, which is a LOCAL, hos been referenced, directly or indirectly,
by another LOCAL, the name of whkh cannot be supplied by the Loader.

The routine named in the message is either a mainline, on ILS, or it has on invalid
type code. In any case, it may not nppeo. on a • NOCAL record.

The area named in this message does not begin at o sector boundary, which implies
that it is not a storage area but a relocotable program, and thus a possible error.
Choose another urea for the storage el this file.

The length of COMMON for the routine named in this message is longer than that of
the mainline program. A possible remedy is to define more COMMON for the mainline
Program.

The precision for the routine named in this message is incompatible with that of the
mainline program. Make tee precisions compatible.

At least 1", 40 different versions of the same I/O routine hove been referenced, e.g.,
both CARDZ and CARDO (FORTRAN utilizes the" Z" version). If a disk routine is
named in the message, it is possible that the XEQ record specifies one version, e.g.,
DISKO, whereas the program references another, e.g., DISK1 (a blank in col. 19 of
the XEQ record causes DISKZ to be chosen).

The area named in this message is in the User area; references in DEFINE FILE and OSA
statements for • STORf CI functions must be to the Fixed area.

R 01 ORIGIN BELOW 1ST WORD OF MAINLINE

•R 03 LOAD REQUIRES SYSTEM LOCALS, LEVEL 1

•R 04 LOAD REQUIRES SYSTEM LOCALS, LEVEL 2

R 06 FILE(S) TRUNCATED (SEE FILE MAP)

R 08 CORE LOAD EXCEEDS 32K

R 10 LIBF TV REQUIRES 82 OR MORE ENTRIES

R 11 TOO MANY ENTRIES IN LOAD-TIME TV

R 12 LOCALS/SOCALS EXCEED WKNG. STORAGE

R 13 DEFINED FILES) EXCEED WKNG. STORAGE

"R 16 XXXXX IS NOT IN LET OR FLET

"R 17 XXXXX CANNOT BE DESIGNATED A LOCAL

•• R 18 XXXXX CANNOT BE DESIGNATED A NOCAL

•• R 19 XXXXX IS NOT ON A SECTOR BOUNDARY

••R 20 XXXXX COMMON EXCEEDS THAT OF ML

••R 21 XXXXX PRECISION DIFFERENT ROM ML

"R 22 XXXXX AND ANOTHER VERSION REFERENCED

"R 23 XXXXX IS A USER AREA FILE REFERENCE

Table A-6. Loader Messages/Error Menages (Part 1)

• FORTRAN mainline programs only
••XXXXX = the name of the program or disk file concerned

50

Table A-6. Loader Mettages/Errce Messages (Part 2)

Code and Message Explanation and Recovery Procedures

'R 24 XXXXX IS BOTH A LIBF AND A CALL The routine named in this message has been either referenced improperly, i.e., CALL
instead of LIBF or vice versa, or has been referenced in both CALL and LIBF statements.
The only remedy is to reference the routine properly. NOTE: NOCALa must be CALL-
type routines,"i .e. , type 4 or 6 routines (refer to Appendix B).

• IL 25	 XXXXX HAS MORE THAN 14 ENTRY POINTS This message usually indicates that the routine has been destroyed since no routine is
stored with more than 14 entry points.

•R 26 XXXXX HAS AN INVALID TYPE CODE The routine named in this message has either been designated on an XEQ record and is
not a mainline program, indicating a mistake has probably been made in preparing the
XEQ record, or contains a type code other than 3 (subroutine), 4 (functional), 5 (ISS),
or 6 (ILS), in which case the routine has probably been destroyed.	 This error could
also be caused by a DSA statement referencing o program which is in Disk System format,
or a CALL or LIBF referencing a program in Core Image or Disk Data format.

•R 27 XXXXX LOADING HAS BEEN TERMINATED The loading of the mainline program named in this message has been terminated as a
result of the detection of the error(s) listed in the messages preceding this one.

••11, 32 XXXXX CANNOT REF •CE THE LOCAL XXXXX The routine named first in this message has referenced the routine named second, which
is a LOCAL.	 Either the first named routine is a LOCAL or it is entered (directly or
indirectly) from a LOCAL.	 Neither case can be allowed for it could cause a LOCAL
to be overlaid by another LOCAL before the first LOCAL has been completely executed.

R 40	 XXXX (HEX) = ADDITIONAL CORE REQUIRED If the load was executed, XXXX16 is the number of words by which it exceeded core
storage before the Loader mode it fit by creating special overlays (SOCALs); if the
load was not executed, the first occurrence of the message is as described and the
record indicates the number of words by which it exceeds core storage even after
creating the deepest level of special overlays. 	 A possible solution to the latter problem
is to create two or more links or LOCALS.

•••R 41	 XXXX (HEX) TOO MANY WDS IN COMMON Th. length of COMMON specified in the mainline program plus the length of the core
load exceeds core storage by XXXX 16 words.

R 42	 XXXX (HEX) IS THE EXECUTION ADDR No error.	 This message follows every successful conversion from Disk System format
to Core Image format provided a core mop is requested.

R 43	 XXXX (HEX) = ARITH/FUNC OVERLAY SIZE No error.	 It has been necessary to employ the special overlays (SOCALs), and
XXXX1 6 is the length of the arithmetic/functional overlay (refer to System Overlays).

R 44	 XXXX (HEX) = FI/0 + I/O OVERLAY SIZE No error.	 It has been necessary to employ the special overlays (SOCALs), and
XXXX1 6 is the length of the FORTRAN I/0, I/O, and conversion routine overlay
(refer to System Overlays).

R 45	 XXXX (HEX) = DISK FI/0 OVERLAY SIZE No error.	 It has been necessary to employ the special overlays (SOCALs), and
XXXX16 is the length of the Disk FORTRAN I/O overlay, including the 320-word
buffer.

R 46	 XXXX (HEX) = AN ILLEGAL ML LOAD ADDR XXXX16 is the address at which the loader has been requested to start loading the
mainline program, but this address is lower than the highest address occupied by the
version of Disk I/O requested for this load. 	 Either make the mainline origin higher
or request a shorter version of Disk.

R 47	 XXXX (HEX) WORDS AVAILABLE No error.	 XXXX16 is the number of words of core storage not occupied by this core
load.	 It is possible to get both this message and R41 in the same core load. 	 See
footnote to R41 for explanation.

XXXXX = the name of the program or disk file concerned
••XXXXX = the name of the program concerned
•••COMMON may not occupy any storage location lower than 896 10, 1216 10, 121610, or 153610,

if DISKZ, DISKO, DISKI, or DISKN, respectively, Is used.

(Concluded)

Appendix A. Error Messages SI

11 1', 	 19 111,1P FIRM In Iprymlleivf mompoprr,11,,iipiplp, rporw,,,girme ■

Table A-7. Assembles Ems Messages

Error Cods and Error Message Cause of Error Corrective Action

A 01	 MINIMUM W. S. NOT AVAILABLE--- Las than 33 secten of Working Storage are Perform a DUP DELETE to expend Working
ASSEMBLY TERMINATED available at the beginning of the assembly. Storage to a minimum of 33 sectors before

attempting further assemblies.

A 02 SYMBOL TABLE OVERFLOW EXCEEDS 4 CYUNDERS Symbol table overflow exceeds 3392 1.	 Reduce number of symbols and
symbols (refer to Movable, Messages and reassemble.
jrror Cadet to compute number of symbols 2.	 Divide program into segments and	 ,,

assemble each separately.allowed In a program).

A 03 DISK OUTPUT EXCEEDS W.S. Disk output is greater then Working 1.	 If error °cowed during pass 1, the
Storage, assembler will wait at OA06 . When

PROGRAM START is pressed, the
assembly will continue in the two-pass
mode.	 Therefore, the operator should
first insure that the source statements
can be read a second time without
encountering the next monitor control
record.

2.	 If error occurred during pass 2, object
output exceeds Working Storage.
Perform a DUP DELETE to enlarge
Working Storage.

A 04	 SAVE SYMBOL TABLE INHIBITED With SAVE SYMBOL TABLE option, symbol Reduce number of symbols and/or correct
table exceeds the allowable System the erroneous statements and reassemble.
Symbol Table size of 100 symbols, or at
least one assembly error was detected.

S2

Table A-8. FORTRAN Error Codes (Part 2)Table A-8. FORTRAN Error Cods (Past 1)

Error
Number • Cause of Error

C 01 Non-numeric character in statement number.

C 02 More than five continuation cards, or continuation card
out of sequence.

C 03 Syntax error in CALL LINK or CALL EXIT statement.

C 04 Undeterminable, misspelled, or incorrectly formed
statement.

C OS Statement out of sequence.

C 06 Statement following transfer statement or a STOP statement
does not hove statement number.

C 07 Name longer than five characters, or name not starting
with on alphabetic character.

C 08 Incorrect or missing subscript within dimension information
(DIMENSION, COMMON, or type).

C 09 Duplicate statement number.

C 10 Syntax error in COMMON statement.

C	 11 Duplicate name in COMMON statement.

C 12 Syntax error in FUNCTION or SUBROUTINE statement.

C 13

C 14

Parameter (dummy argument) appears in COMMON
statement,

Name appears twice as a parameter in SUBROUTINE or
FUNCTION statement.

C 15 •10CS control record in a subprogram.

C 16 Syntax error in DIMENSION statement.

C 17 Subprogram name in DIMENSION statement.

C 18 Name dimensioned more than once, or not dimensioned on
first appearance of name.

C 19 Syntax error in REAL, INTEGER, or EXTERNAL statement.

C 20 Subprogram name in REAL or INTEGER statement.

C 21 Name in EXTERNAL which is also in a COMMON or
DIMENSION statement.

C 22 IFIX or FLOAT in EXTERNAL statement.

C 23 Invalid real constant.

C 24 Invalid integer constant.

C 25 More than 15 dummy arguments, or duplicate dummy
argument in statement function argument list.

C 26 Right parenthesis missing from a subscript expression.

C 27 Syntax error in FORMAT statement.

C 28 FORMAT statement without statement number.

C 29 Field width specification)145.

C 33 In a FORMAT statement specifying E or F conversion,
w s 127, d s 31, or d> w, where w is an unsigned

I

Error
Number• Cause of Error

C 30 integer constant specifying the total field length of the
Cant. data, and d is an unsigned integer constant specifying

the number of decimal places to the right of the decimal
point.

C 31 Subscript error in EQUIV 's LENCE statement.

C 32 Subscripted variable in a statement function.

C 33 Incorrectly formed subscript expression.

C 34 Undefined variable in subscript expression.

C 35 Number of subscripts in a subscript expression does not
agree with the dimension information.

C 36 Invalid arithmetic statement or variable; or, in a
FUNCTION subprogram the left side of an arithmetic
statement is a dummy argument (or in COMMONt.

C 37 Syntax error in IF statement.

C 38 Invalid expression in IF statement.

C 39 Syntax error or invalid simple argument in CALL state-
ment.

C 40 Invalid expression in CALL statement.

C 41 Invalid expression to the left of an equal sign in a state-
ment function.

C 42 Invalid expression to the right of on equal sign in a state-
ment function.

C 43 In an IF, GO TO, or 1:3 statement a statement number is
missing, Invalid, incorrectly placed, or is the number
of a FORMAT statement.

C 44 Syntax error in READ or WRITE statement.

C 45 •10CS record missing with a READ or WRITE statement
(mainline program onlyl.

C 46 FORMAT statement number missing or incorrect in o
READ or WRITE statement.

C 47 Syntax error in input/output list; or on invalid list
element; or, in a FUNCTION subprogram, the input list
element is a dummy argument or in COMMON.

C 48 Syntax error in GO TO statement.

C 49 Index of a computed GO TO is missing, invalid, or not
preceded by a comma.

C 50 •TRANSFER TRACE or • ARITHMETIC TRACE control
record present, with no •10CS control record in o main-
line program.

C 51 Incorrect nesting of DO statements; or the termini.' state-
ment of the associated DO statement is a GO TO, IF,
RETURN, FORMAT, STOP, PAUSE, or DO statement.

C 52 More than 25 nested DO statements.

C 53 Syntax error in DO statement.

C 54 Initial value in DO statement is zero.

•Printed at the conclusion of Compilation. Refer to "Compilation Error Messages" under
FORTRAN Printouts; also see "Type 00 Error Messages" in the same section.

Appendix A. brae Messages 53

•IIIMMPF	 WWI	 mwm•	 ,4.1.41•1111111.11IIRIMERIPP.RITI.M, 	 RIF!

Table A-8. FORTRAN Error Codes (Past 3)

Error
Number Cause of Error

C 55 In a FUNCTION subprogram the index of DO is a
dummy argument or in COMMON.

C 59 Syntax error in STOP statement.

C 60 Syntax error in PAUSE statement.

C 61 Integer constant in STOP or PAUSE statement is >9999.

C 62 Last executable statement before END statement is not
a STOP, GO TO, IF, CALL LINK, CALL EXIT, or
RETURN statement.

C 63 Statement contains more than 15 different subscript
expressions.

C 64 Statement too long to be scanned, because of compiler
expansion of subscript expressions or compiler addition
of generated temporary storage locations.

C 65 • All variables ore undefined in on EQUIVALENCE list.

C 66• Variable made equivalent to an element of on array, in
such a manner as to cause the array to extend beyond
the origin of the COMMON area.

C 67' Two variables or array elements in COMMON are
equaled, or the relative locations of two variables or
array elements ore assigned more than once (directly or
indirectly).

C 68 Syntax error in an EQUIVALENCE statement; or an
illegal variable name in on EQUIVALENCE list.

C 69 Subprogram does not contain a RETURN statement, or
a mainline program contains a RETURN statement. 	 '

C 70 No DEFINE FILE in a mainline program which has disk
READ, WRITE, or FIND statements.

C 71 Syntax error in DEFINE FILE.

C 72 Duplicate DEFINE FILE, more than 75 DEFINE FILES,
or DEFINE FILE in subprogram.

C 73 Syntax error in record number of READ, WRITE, or
FIND statement.

• The detection of a code 65, 66, or 67 error prevents any subsequent
detection of any of these three errors.

S4

Table A-9. DUP Estor Messages (Past 1)

Code and Printed Message* Description

WS TOO LONG An attempt is made with •STOREMOD to move on item from Working Storage
that is longer than the item to be overlaid in the User or Fixed Area.

D 01 NOT PRIME ENTRY The primary name of the program in Working Storage does not match the
name an the DUP control record.

0 02 INVALID TYPE One of the following is detected: non-05F program, mispositioned header,
foreign data, or erroneous subtype.

D 03 INVALID HEADER LENGTH Word six of the DSF header is outside the range of 3-45.	 The rouses ore
similar to D 02, except for subtype.

0 05 SECONDARY ENTRY POINT NAME ALREADY IN LET IS.... The specified name is already in LET.	 The name must be deleted before this
subprogram con be stored.

D 13 DCTL, FUNCTION An invalid DUP function specified in columns 1-12 of the DUP control record.

D 14 ocn, FROM FU) Unacceptable characters are in columns 13 and 14 of the DUP control record.
If Working Storage is specified in columns 13 and 14, then there is no valid
program in Working Storage, i.e., the Working Storage Indicotor has been
set to zero, thus inhibiting the movement of programs from Working Storoge.

0 15 DCTL, TO FIELD Unacceptable characters are in columns 17 and 18 of the DUP control record.

0 16 DCTL, NAME FLD If this is a •STORE control record, then the name is already in LET/FLET.
If this is o •DUMP control record, then the name is not found in LET or FLU.
If this is a •DUMP control record of Working Storage to the principal I/O,
then a name is required in columns 21 through 25 of the DUP control record.
If this is a •DELETE control record, then the name is not found in LET or FLET.
If this is a •STOREMOD control record, then the name is not found in LET
Of FLET.

D 17 DCTL, COUNT Columns 27 through 30 are blank or include alphabetic characters.
The count field requires o decimal number.

D 18 DCTL, TMP MODE This function is not allowed during the JOB T mode.

D 41 FIXED AREA PRESENT The FORTRAN compiler and/or assembler cannot be eliminated if a Fixed
area has been previously defined.

0 42 ASSEMBLER NOT IN SYSTEM The assembler has previously been eliminated from the system.

D 43 FORTRAN NOT IN SYSTEM The FORTRAN compiler has previously been eliminated from the system.

D 44 INCREASE VALUE IN COUNT FIELD The count field was read as a value of zero or one.	 The first DEFINE
requires one cylinder for FLET plus one cylinder of Fixed area.
Thereafter, as little as one cylinder of additional Fixed area can be defined.

D 45 EXCEEDS WORK STORAGE The initiation or expansion of the Fixed area is limited to the Working
Storage available.

D 61 °UPC°, EXCEEDS WORK STORAGE This function requires more Working Storage than is available.

D 62 EXCEEDS WORK STORAGE The Working Storage area is not large enough to contain the program specified.

0 64 EXCEEDS FIXED AREA There is insufficient room in the Fixed area for the program.

D 71 SEQUENCE OR CKSUM The cords are out of sequence, or there was an orroneous checksum.

D 72 LOAD BLANK CARDS More blank cards are required to complete the dump.	 The operator performs
an NPRO and places blank cords between the two cards ejected, removes the
first card, places the first card in the output stacker, places the remainder
in front of the cards still in the reader hopper, and presses the reader START
button.

D 82 NON FILES RECORD The first six characters of records following • STORECI ore not •FILES.	 The
number of •FILES records is determined by the count field of DUP control
record STORECI.

043 INVALID CHARACTER The •FILES record following the • STORECI DUP control record has an invalid
character.

D 84 EXCEEDS SECTOR ALLOCATION Too manyFiles hove been defined. More than two sectors ore required to
contain the information from the •FILES record.

*Printed upon detection of an erroneous DUP control ►ord.

Appendix A. Error Messages 55

.1.1.4uPgRim4, W.ff/111.HWP1.11,7111PIPIITIMF11 1, ...I.,.	
nTIMINITI TM/ ff, .1"tr.111,17MTIT	 'T.F!

te

a

0

Table A-9. DUP Error Messages (Past 2)

Code and Printed MOM, A	 Description

D 92 INVALID CI CONVERT The Loader hos inhibited the continuation of *STORECI. 	 The specific
reason has been printed by the Loader.

D 94 LET/FLET OVERFLOW A ninth sector of LET/FLET is required for the LET/FLET entry. 	 A deletion
of a program with a LET/FLET entry of similar size is required before this
program can be stored.

NOTE: DCTL means the error was detected in the DUP control record. DUPCO means the error was detected In the DUP common section.

Table A-10. DUP Waits and Loops

Address' Explanation Operator Action

Loops:
70FF '4287

System check.
LET/FLET, COMMA,

Perform an initial load
of entire Monitor System

and DCOM do nat ($441
WOO. Operatina

Wait at 092C Paper tape reader not Ready paper tope reader
ready and press PROGRAM

START.

Wait at 0005 Operator pressed Do not alter core
PROGRAM STOP
an console.

storage.	 To continue,
press PROGRAM START.

•Displayed in Storage Address Register

Table A-11. FORTRAN I/O Error Codes

Error Code • Cause of Error

F000 No 'IOCS control cord appeared with the mainline
program and I/O was attempted in a subroutine.

F001 I.	 Logical unit defined incorrectly.
2.	 No •10CS control record for specified I/O

device.

F002. Requested record exceeds allocated buffer size.

F003 Illegal character encountered in input record.

F004 Exponent too large or too mall in input field.

F005 More than one E encountered in input field.

F006 More than one sign encountered in input field.

F007 More than one decimal point encountered in
input field.

F008 1.	 Read of output-only device.
2.	 Write of input-only device.

FOOS Real variable transmitted with an I format specifica-
tion or integer variable transmitted with on E or F
format specification.

F100 File not defined by DEFINE FILE statement.

F101 File record number too large, equal to zero,
or negative.

F103 Disk FIO (SOF10) ha not been initialized.

DISKZ Errors:

F102 Read error.

F104 Write error.

F106 Read back check error.

F1011 Seek error.

F 10A Forced mad error (seek or find).

•Displayed in Accumulator

S6

APPENDIX B. DATA FORMATS

DISK SYSTEM FORMAT (DSF)

Unless otherwise instructed, DUP automatically
converts programs in Card System format (CDS) to
Disk System Tormat (DSF) when storing programs to
disk storage. Likewise, programs in DSF are con-
verted to CDS when dumping from disk storage.
Disk System format is shown in Figure 11; Card
System format is described elsewhere in this
appendix.

Program Header Format

The contents of the program header record (see
Figure 11) vary with the type of routine with which
it is associated. The first 12 words of the program
header record for the seven types of programs are
identical except for word 6, which is 9 less than
the number of words in the program header record.
The format of these 12 words is as follows:

Word	 Contents

1	 Zero
2	 Checksum if source was cards;

otherwise zero
3	 Type, subtype, precision
4	 Effective length of program, i.e.,

the terminal address in the program
5	 Length of COMMON (words)
6	 Length of program header record

minus 9
7	 Zero
8	 Length of program, including

program header record in disk
blocks

9	 Number of files defined
10-11	 Name of entry point 1 (see

Appendix G)
12	 Address of entry point 1 (absolute

for type 1, relative to zero
otherwise)

Data Block

Data
Group

(1-8 words)

Indicator Word

0

Program Header
(12-54 words)

See description below.

Data Header (2 words):
Word 1 - Relative core starting

address of where data
is to be loaded

Word 2 - Number of words following
to next data header, plus number
of words in next data header

Data
Header

Data Break -
Caused by:

I. A break in sequence of program
address, e.g., ORG, BSS, DSA

2. A new data record

3. The end of the program

Indicator words and
data groups until
end-of-program
data header

End-of-program data
header (2 words): 	

Word I - Relative address of
next available core location

Word 2 - Word count (0)

Indicator words and
data groups until
data break

Figure 11. Disk System Format

Appendix B. Data Formats 57

7.1.11IMIXIntrttn ill!.11—^9. "I/	 TPTIT444,41.11,141PII,P49.	 .4 1• III 1ITIMIPPI!1..1'1FAMT,F^PRIRPIPIIIRMARRIF,411,.■.................	 .404419,4

After the first 12 words, the program header
record format depends on the type of program. The
header record for types 1 and 2 (absolute and
relocatable mainline, respectively) consists of
the first 12 words. The program types and their
header record formats are shown below.

Program Types

Type
Code	 Type of Program

1	 Mainline (absolute)
2	 Mainline (relocatable)
3	 Subroutine, not an ISS, referenced

by LIBF
4	 Subroutine, not an ISS, referenced

by CALL
5	 Interrupt service subroutine (ISS)

referenced by LIBF
6	 Interrupt service subroutine (MS)

referenced by CALL
7	 Interrupt level subroutine (ILS)

Program Formats

Type 3, 4:

Words	 Contents

Type 5, 6:

Words	 Contents

13
	

51 + ISS number
14
	

ISS number
15
	

Number of interrupt levels required
17
	

Interrupt level number associated
with primary interrupt*

18
	

Interrupt level number associated
with secondary interrupt

Type 7:

Words	 Contents

13
	

Interrupt level number

*The 1442 Card Read Punch is the only device re-
quiring more than one interrupt level.

Program Subtypes

Subtypes are defined only for type 3 and 4 sub-
routines. When undefined, the field contains a zero.

For type 3 subroutines, subtypes are defined as
follows:

Subtype	 Description

	

13-14	 Name of entry point 2 (30 bits,
right-justified)

	

15	 Address of entry point 2 (relative
to zero)

	

17-18	 Name of entry point 3 (30 bits,
right-justified)

	

19	 Address of entry point 3 (relative
to zero)

	

20-54	 Three words per entry point as
above, to a maximum of 14 entry
points. The header record ends
at the last defined entry point;
thus, it is of variable length

0	 In-core subroutines. Of the IBM
subroutine library, this group in-
cludes the trace, fix, float, dump,
subscript, normalize, flipper,
initialization, and certain conversion
subroutines

1	 Disk FORTRAN I/O subroutines,
SDFIO and SDFND

2	 Arithmetic subroutines, e. g., FADD
3	 FORTRAN Format subroutine SFIO,

and FORTRAN I/O subroutines, e. g.,
CARDZ

58

0

For type 4 subroutines, subtypes are defined as
follows:

Subtype	 Description

0	 All type 4 subroutines which are not
subtype 8, e. g., DMTDO

8	 Functional subroutines, e.g., SIN

Appendix E lists all IBM-supplied subroutines and
their subtypes.

DISK CORE IMAGE FORMAT (DCI)

A program in Disk Core Image format (DCI) is one
that the Loader has converted from Disk System
format (DSF). A DCI program is an entire core
load, i.e., it consists of a mainline program, all
subroutines referenced in the core load (except the
Disk I/O routine), the object-time transfer vector,
and the core image header record. The mainline
program and subroutines appear as they will at
execution time; however, the Loader must prepare
the program for execution before it is read into
core storage.

Although programs are loaded faster from DCI
than from DSF, DCI programs usually occupy more
disk storage because they constitute an entire core
load. In addition, unlike DSF programs, the areas
reserved by BSS and BES statements are a part of
DCI programs unless the first statement in the
.nainline is a BSS or BES.

A typical DCI program is stored on disk in the
User/Fixed area as follows:

Mainline Subroutines Object-sime Core Image

Program (if any) Transfer Vector Header
Record

The object-time transfer vector is described in
the section titled The Loader. Information contained
in the 60-word core image header record is used to
load the DCI program into core before execution.
The format is as follows:

Words	 Description

1-6	 Interrupt transfer vector (words
8-13 at execution time)
Setting for index register 3 at
execution time

8	 Core address (at execution time) of
the subroutine ILSO2

9	 Number of files defined
10	 Length of COMMON (in words)
11 Code for requested version of the

Disk I/O subroutine (-1 = DISKZ,
0 = DISKO, 1 - DISK1, 2 DISKN)

12	 Core address (at execution time) of
the entry in the LIBF TV which is
associated with the Disk I/0 sub-
routine

13	 Length of the object-time transfer
vector (in words)

14	 Core address (at execution time) of
the first word of the mainline pro-
gram, exclusive of initial BSS and/or
BES statements

15	 Total length of mainline program,
subroutines, and object-time transfer
vector (in words)

16-60	 Reserved

DISK DATA FORMAT (DDF)

Disk Data format (DDF) describes information
placed in the User area, Fixed area, or Working
Storage area as a result of the DUP control record
STOREDATA. Disk Data format consists of 320
binary words per sector; there are no headers,
trailers, or indicator words.

CARD SYSTEM FORMAT (CDS)

Card System format is in terms of words on binary
cards (see Card Data Format). This is used for
relocatable programs. The card ID and sequence
numbers (columns 73-80) are in IBM card code.

Mainline Header Card

A mainline header card specifies the size of the
common area and the size of the work area. It is

Appendix B. Data Formats 59

pmr. esmnnetn, mom, WM' ". ''''• .•	 ."	 1/111,1NMP 111.1"11111IITPTIMITMUM111r1W1P,1171PTTP.911710MMITIMMMI III! lir •

the first card of the mainline program. The
format is as follows:

	

Word
	 Contents

1	 Reserved
2	 Checksum*
3 Type code (first 8 bits):

0000 0001 - absolute
0000 0010 - relocatable

Precision code (last 8 bits):
0000 0001 - standard
0000 0010 - extended
0000 0000 - undefined

4	 Reserved
5 Length of COMMON storage area

(FORTRAN mainline program
only)

6	 0000 0000 0000 0011
7	 Work area required (FORTRAN

only)

	

8-54
	 Reserved

*The checksum is the two's complement of the
logical sum of the record count (position of the
record within the deck) and the data word(s).
The logical sum is obtained by summing the
data word(s) and the record count arithmetically
with the addition of a one each time a carry occurs
out of the high-order position of the accumulator.

Data Cards

Data cards contain the instructions and data that
constitute the assembled program. The format is
as follows:

	

Word	 Contents

1	 Location (The relative load address
of the first data word of the card or
record. Succeeding words go into
higher numbered core locations.
The relocation factor must be added
to this address to obtain the actual
load address. For an absolute
program the relocation factor is
zero.)

	

2	 Checksum

	

3	 Type code (first 8 bits):
0000 1010

Data word count (last 8 bits)
4-9	 Relocation indicators (2 bits per

data word):

00 - nonrelocatable or absolute
01 - relocatable
10 - LIEF (one word call)
11 - CALL (two word call)

10	 Data word 1
11-54	 Data words 2 through 45

EOP Card

An EOP (end of program) card is the last card
of each program and subroutine. The format is
as follows:

Word
	

Contents

1 Starting location of next routine
(this number is always even and
is assigned by the assembler)

2	 Checksum
3	 Type code (first 8 bits):

0000 1111
Last 8 bits:

0000 0000
4	 XEQ address, if mainline program

5-54	 Reserved

Subroutine Header Card

A maximum of 14 entry points can be defined for
each subroutine. The format of the subroutine
header card is as follows:

Word
	

Contents

1	 Reserved
2	 Checksum
3	 Type code (first 8 bits);

0000 0011 - to be called by a
one-word call only (LIEF)

0000 0100 - to be called by a
two-word call only (CALL)

Precision code (last 8 bits):
0000 0000 - undefined
0000 0001 - standard
0000 0010 - extended

4-5	 Reserved
6	 Number of entry points times three

7-9	 Reserved
10-11	 Name of entry point 1

12	 Relative address of entry point 1
13-51	 Names and relative addresses of

entry points 2 through 14
52-54	 Reserved

60

0

IRS Header Card

An ISS (interrupt service subroutine) header card
for each interrupt service subroutine identifies
the entry point defined by an ISS statement. Only
one entry point can be defined for each
subroutine. The format of the ISS header card
is as follows:

	

Word	 Contents

Reserved

	

2	 Checksum

	

3	 Type code (first 8 bits):
0000 0101 - to be called by a

one-word call only (LIBF)
0000 0110 - to be called by a
two-word call only (CALL)

Precision code (last 8 bits):
0000 0000 - undefined
0000 0001 - standard
0000 0010 - extended

	

4-5	 Reserved

	

6	 Six plus number of interrupt levels
required

	

7-9	 Reserved

	

10-11	 Subroutine name

	

12	 Relative entry address
13 Address of ISTV (interrupt service

transfer vector) is equal to 5110
plus the ISS number. *

	

14	 ISS number (displacement in ISTV)
= 1-810

	15	 Number of interrupt levels required

	

16	 ID number for the primary interrupt
level required (0-5)

	

17-29	 ID numbers for remaining interrupt
levels required (0-5)

	

30	 Edit word (contains a 1).

	

31-54	 Reserved

*The ISTV table is initialized by the Loader. This
table starts at location 0034. Each TV entry in
this table contains the starting addresses for the
corresponding ISS routine (maximum of 8 TV
entries).

ILS Header Card

An ILS (interrupt level subroutine) header card
identifies the ILS routine. The format of the
ILS header card is as follows:

Word	 Contents

1	 Reserved
2	 Checksum
3	 Type code (first 8 bits):

0000 0111
Reserved (last 8 bits)

4-5	 Reserved
6	 0000 0000 0000 0100

7-9	 Reserved
10-12	 Reserved

13	 Interrupt level number
14-54	 Reserved

CARD DATA FORMAT (CDD)

Paper Tape System format (PTS) is analogous to
Card System format (C1)S), and Paper Tape Data
format (PTD) is analogous to Card Data format
(CDD).

In Paper Tape format, two frames contain one
binary word, which is equivalent to 16 bits per

Card Data format (CDD) is shown in Figure 12.
Fifty four words can be placed on a card (1-1/3
columns per word, 4 columns for 3 words). The
word numbers appear in every third column across
the top of the card.

PRINT DATA FORMAT (PRI))

Print Data format is shown in Figure 13. There are
16 four-character words per line, with a space
after each word, and an additional space after each
fourth word.

PAPER TAPE SYSTEM (PTS) AND PAPER TAPE
DATA (PTD) FORMATS

Appendix B. Data Formats 61

'11911.111rrl.11.1.1911.1,1,P1111191,!11111,11TMIrrrIPATMWM.M.4,-,1,111MISOf.,,l',
	 PO TIMM

	
/11.1111,11
	 110,111 ., 	 1rlat0 ,14!,1 +nme01.7.

binary word in Card Data format. In addition, a
one-frame word count precedes a paper tape record.
A paper tape data record contains a maximum of 54
binary words, i. e. , 108 frames plus a word-count
frame.

Information that would appear in columns 73-80
of a card must not appear on paper tape.

Word 1	 Word 54

i
04

' ji
I	 I

04
3
/
sw•HIMVP

11

I	 .
I

OC

i

1
3F

4

0

s

'1'..	 3
•

E

z3

I

„

0

,

2

I

I

11:tA

i

1 , i
2 / r.

1-
3M2

EA
 IN

E!r

C

t

F

ii

i
I

m

1

I

I

2

l'il

II
I

•

11
1

'

II.
11

.

II
0

 01
pi.

112A,/

II
11

II

+	

1

p

1_

II
0
n

I

•

0

,

01,;u3r

II
01

•

1

4.E

"I
.0000000

1111111	 1

t212222
3333303 1
4444444 i
5593595
1111460118	 1
7171717

911011000

9999999

Figure 12. Card Data Format

4
characters

o
K.4n

/

4
characters

o
i.

LA

4
characters

sou
to

4
characters so.) us I

Word 1	 Word 2	 Word 3	 Word 4	 Words 5 - 16
Space after

each 4th word
Figure 13. Print Data Format

62

APPENDIX C. DISK STORAGE UNIT CONVERSION FACTORS

L.,............0,0 P
1

Word

.

Disk Block

r

Sector Track Cylinder Disk

Bits

Data Words

Disk Block

Sectors

Tracks

Cylinders

16 320

20

5,112

320•

16

20,480

1,280

64

4

•40,960

2,560

128

8

2

8,192,000

512,000

25,600

1,600

400

200

• These follow the first actual word of each sector, which is used for the address.

Appendix C. Dirk Storage Unit Conversion Factoes 63

77M	 1/1t111.11.1.1,..9.111,111,,,,,,mrrp 11 W11111111, 1111 I 1111 111••••• =P1,111 !WWI M, 11 , 11M1.11	 ',116f '•..

APPENDIX D. SUPERVISOR AND DUP INPUT/OUTPUT CHARACTER CODES

PTTC/8PTTC/8 HexHex (U = Upper Case)(U • Upper Case) Keyboard Graphic	 1132 Graphic IBM Cord Code (1 = Lower Case)
Keyboard Graphic 1132 Graphic	 IBM Card Code (L • Lower Case)

0
1
2

Numeric Characters

0
1
2

lA (L)
01 (L)
02 (L) <

Special Characters

0
1
2

12-8-3	 68 (1)
)	 12-8-4	 02(U)

3
4
5
6
7
8
9

3
4
5
6
7
8
9

3
4
5
6
7
8
9

13 (L)
04 (L)
15 (L)
16 (L)
07 (L)
oe (L)
19 (L)

(

a
S•
)

/

(12-8-5	 19 (U)
+	 12-8-6	 70 (U)
&	 12	 70(L)
S	 11-8-3	 5E3 (1.)•
•	 11-8-4	 08 (U)•
)	 11-8-5	 IA (U)
-	 11	 40 (L)
/	 0-1	 31 (L)•

Alphabetic Characters 0-8-3	 3B (L)
0-8-4	 15 (U)

A
8
C
D
E
F
G
H
I
J
K
L
M
N
0
P

A
B
C
D
E
F

H

J
K
L
M
N
0
P

12-1
12-2
12-3
12-4
12-5
12-6
12-7
12-8
12-9
11-1
11-2
11-3
11-4
11-5
11-6
11-7

61 (U)
62(U)
73(U)
64 (U)
75 (U)
76 (U)
67(U)
68 (U)
79 (U)
51 (U)
52 (U)
43 (U)
54 (U)
45 (U)
46 (U)
57 (U)

I

0
=
Space
C
I
1

%

>
?

a

Blank	 8-3	 011 (L)•
Blank	 8-4	 20 (L)•

8-5	 16 (U)
=	 8-6	 01 (U)
Blank	 Blank	 10 ()•
Blank	 12-2-8	 AO (U)
Blank	 12-7-8	 BB (U)
Blank	 11-2-8	 DB (U)
Blank	 11-6-8	 98 (U)
Blank	 11-7-8	 E8 (U)
Blank	 0-5-8	 95 (L)	 .
Blank	 0-5-8	 CO (U)
Blank	 0-6-8	 8F (U)
Blank	 0-7-8	 B1 (U).
Blank	 2-8	 84 (U)
Blank	 7-8	 BB (U)

a Q 11-8 58 (U)
R R 11-9 49(U)
S S 0-2 32 (U)
T T 0-3 23 (U)
U U 0-4 34 (U)
V V 0-5 25 (U)

W 0-6 26 (U) NOTES:	 1. DUP recognizes only those special characters flogged
X X 0-7 37 (U) with an asterisk.

Y 0-8 38 (U) 2. Any special characters not recognized by SUP and
2 2 0-9 29 (U) DUP will be corrected to on ampersand (&).

64

0

APPENDIX E. 1130 SUBROUTINE LIBRARY LISTING

Subroutines Names Subtype• Other Subroutines Required

Utility Calls

Selective Dump on Console Printer DMTDO, DMTXO 0 WRTYO

Selective Dump on 1132 Printer DMP01, DMPX1 0 PRNTI

Dump 80 Routine DMP80 0 None

Common FORTRAN Calls

Test Data Entry Switches DATSW 8 None

Divide Check Test DVCHK 8 None

Functional Error Test FCTST 8 None

Overflow Test OVERF 8 None

Sense Light Control and Test SLITE, SLITT 0 None

FORTRAN Trace Stop TSTOP 8 TSET

FORTRAN Trace Start TSTRT 8 TSET

Integer Transfer of Sign (SIGN 8 None

Extended Arith/Funct Calls

Extended Precision Hyperbolic Tangent ETANH, ETNH B EEXP, ELD/ESTO, EADD, EDIV, EGETP

Extended Precision A* •B Function EAXB, EAX8X 8 EEXP, ELI., Et',

Extended Precision Natural Logarithm ELN, EALOG 8 XMD, EADD, EMPY, EDIV, NORM, EGETP

Extended Precision Exponential EEXP, EXPN 8 XMD, FARC, EGETP	 ..

Extended Precision Square Root ESQR, ESQRT 8 ELD/ESTO, EADD, EMPY, EDIV, EGETP

Extended Precision Sine-Cosine [SIN, ESINE, ECOS, ECOSN 8 EADD, EMPY, NORM, XMD, EGETP

Extended Precision Arctongent EATN, EATAN 8 EADD, EMPY, EDIV, XMD, EGETP, NORM

Extended Precision Absolute Value Function LABS, EAVL 8 EGETP

FORTRAN Sign Transfer Calls

Extended Precision Transfer of Sign [SIGN 8 ESUB, ELD

Standard Precision Transfer of Sign FSIGN 8 FSUB, FLD

Standard Arith/Funct Calls

Standard Precision Hyperbolic Tangent FTANH, FTNH 8 FEXP, FLD/FSTO, FADD, FDIV, FGETP

Standard Precision A •• B Function FAXB, FAXBX 8 FEXP, FLN, FMPY

Standard Precision Natural Logarithm FIN, FALOG 8 FSTO, XMDS, FADD, FMPY, FDIV, NORM,
FGETP

Standard Precision Exponential FEXP, FXPN 8 XMDS, FARC, FGETP

Standard Precision Square Root FSQR, FSQRT 8 FLD/FSTO, FADD, FMPY, FDIV, FGETP

Standard Precision Sine-Cosine FSIN, FSINE, FCOS, FCOSN 8 FADD, FMPY, NORM, XMDS, FSTO, FGETP

•See Disk System Format, Program Subtypes, in Appendix B.

Appendix E. 1130 Subroutine Library Listing 65

.11	 ,1,1111,,F,1PPIT11.11,1,1119111,u m111.1!00.0 0,1m p ofnAir, lu !rl.w.r . wtqwr0r0rR0Frr• * .mf...,,.,,•...,,. rv.rprrrI!9rFrnPPn.... III,I1T ,VPI0 u '"T •

Subroutines Names Subtype Other Subroutines Required

Standard Precision Arctangent FATN, FATAN B FADO, FMPY, FEMV, XMDS, FSTO, FGETP

Standard Precision Absolute Value Function FARS, AWL B FGETP

Common Arith/Funct Calls

Fixed Point (Fractional) Square Root XSQR B Non.

Integer Absolute Function 'ABS a None

Floating Binary/EBC Decimal Conversions FWD (BIN. TO DEC.) 0 None
FDTB (DEC. TO BIN.)

Overlay Routines for LOCAL Subprograms

Long Form	 • FLIPO 0 DISKZ or DISKO

Short Form FLIPI 0 DISKI or DISKN

FORTRAN Trace Routines

Extended Floating Variable Trace SEAR, SEARX 0 ESTO, TTEST, SWRT, SIOF, SCOMP

Fixed Variable Trace SIAR, SIARX 0 TTEST, SWRT, 5101, SCOMP

Standard Floating IF Trace SAF 0 FSTO, TTEST, SWRT, SIOF, SCOMP

Extended Floating IF Trace SEIF 0 FSTO, TTEST, SWRT, SIOF, SCOMP

Fixed IF Trace SIIF 0 TTEST, SWRT, 5101, SCOMP

Standard Floating Variable Trace SEAR, SFARX 0 FSTO, TTEST, SWRT, SIOF, SCOMP

GOTO Trace SGOTO 0 TTEST, SWRT, S101, SCOMP

Non-Disk FORTRAN Format I/0

FORTRAN Format Routine SF10, S101, SIOAI, SIOF, SIOAF,
SIOFX, SCOMP, SWRT, SRED, SIOIX

3 FLOAT, ELD/ESTO or FLD/PSTO, IFIX

FORTRAN Find Routine SDFND 1 DISKZ

Disk FORTRAN I/O SDFIO, SDRED, SDWRT, SDCOM,
SDAF, SDF, SDI, SDIX, SDFX,
SDAI

1 DISKZ

FORTRAN Common LIBFs

FORTRAN Pause PAUSE 2 None

FORTRAN Stop STOP 2 None

FORTRAN Subscript Displacement SUBSC 0 None
Calculation

FORTRAN Subroutine Initialization SUBIN 0 None

FORTRAN Trace Test and Set TTEST, TSET 0 None

FORTRAN I/0 and Conversion Routines

FORTRAN Cord Routine CARDZ 3 HOLEZ

Disk I/O Routine DISKZ 0 Non.

FORTRAN Paper Tape Routine PAPTZ 3 None

66

Subroutines Nome Subtype Other Subroutines Required

FORTRAN 1132 Printer Routine PRNTZ 3 None

FORTRAN Keyboard-Typewriter Routine TYPEZ 3 GETAD, EBCTB, HOLEZ

FORTRAN Typewriter Routine WRTYZ 3 GETAD, EBCTB

FORTRAN Hollerith to EBCDIC Conversion HOLEZ 3 GETAD, EBCTB, HOLTB

FORTRAN Get Address Routine GETAD 3 None

FORTRAN EBCDIC Table EBCTB 3 None

FORTRAN Hollerith Table HOLTB 3 None

Extended Arith/Funct LIBFs

Extended Precision Get Parameter Subroutine EGETP 2 ELD

Extended Precision A•• I Function EAXI, EAXIX 2 ElD/ESTO, EMPY, EDVR

Extended Precision Divide Reverse EDVR, EDVRX 2 ELD/ESTO, EDIV

Extended Precision Float Divide EDIV, EDIVX 2 XDD, FARC

Extended Precision Float Multiply EMPY, EMPYX 2 XMD, FARC

Extended Precision Subtract Reverse ESBR, ESBRX 2 EADD
t

Extended Add-Subtract EADD, ESUB, EADDX, ESUBX 2 FARC, NORM

Extended Load-Store ELD, ELDX, EST0,-ESTOX 0 None

Standard Arith/Funct LIBFs

Standard Precision Get Parameter Subroutines FGETP 2 FLD

Standard Precision A•• 1 Function FAXI, FAXIX 2 FLD/FSTO, FMPY, FDVR

Standard Precision Divide Reverse RWR, R)VRX 2 FLD/FSTO, FDIV

St,ndord Precision Float Divide FDIV, FDIVX 2 FARC

: uriard Precision Float Multiply FMPY, FMPYX 2 XMDS, FARC

Standard Precision Subtract Reverse FSBR, FSBRX 2 FADD

Standard Add-Subtract FADD, FSUB, FADDX, FSUBX 2 NORM, FARC

Standard Load-Store FLD, FLDX, FSTO, FSTOX 0 None

Standard Precision Fractional Multiply XMOS 2 None

Common Arith/Funct LIBFs

Fixed Point (Fractional) Double Divide XDD 2 XMD

Fixed Point (Fractional) Double Multiply XMD 2 None

Sign Reversal Function SNR 2 None

Integer to Floating Point Function FLOAT 0 NORM

Floating Point to Integer Function IRX 0 None

1 ••J Integer Function FIXI, FIXIX 2 None

Appendix E. 1130 Subroutine Library Listing 67

711	 HP!	 prmp o 1' ,,,,,117,77111111r1111141 'I off 41 111 11114, 1 1/1 / 1 111/P!!!!!111111M11 11!■111IF 1 I 11 111101!,19 111,,, 1 'rl'', !!!' '1111,1 , 1 	 !" 111,!! !!", 	 111, R1',11111 1 1	 ,11 1 111, 1 11 ,1 111!!!111 1 1, 1 11 1I 111 111111/1111111,1,111,11,

Subroutines Nantes

t

Subtype Other Subroutines Required

Normalize Subroutine NORM 0 None

Floating Accumulator Range Check FARC 2 None
Subroutine

Interrupt Service Subroutines

Cord Input/Output (No Error Parameter) CARDO 0 ILSOO, I1SO4

Card Input/Output (Error Parameter) CARDI 0 11300, 11.504

One Sector Disk Input/Output DISICO 0 ILSO2

Multiple Sector Disk Input/Output DISK1 0 11302

High-Speed Multiple Sector Disk Input/Output DISKN 0 11302

Paper-Tape Input/Output PAPT1 0 ILSO4

Simultaneous Paper Tape Input/Output PAPTN 0 ILSO4

Plotter Output Routine PLOT1 0 11303

1132 Printer Output Routine PRNT1 0 ILSOI

Keyboard/Console Printer Input/Output TYPEO 0 11011, PRTY, ILSO4

Console Printer Output Routine WRTYO 0 11304

Conversion Routines

Binary Word to 6 Decimal Characters (Card BINDC 0 None
Code)

Binary Word to 4 Hexadecimal Characters BINHX 0 None
(Cord Code)

6 Decimal Characters (Card Code) to DCBIN 0 None
Binary Word

EBCDIC to Console Printer Output Code EBPRT 0 EBPA, PRTY

Card Code to EBCDIC-EBCDIC to Cord Code HOLES 0 EBPA, HOLL

Cord Code to Console Printer Output Code HOLPR 0 HOLL, PRTY

4 Hexadecimal Characters (Card Code) to HXBIN 0 None
Binary Word

PTTC/8 to EBCDIC-EBCDIC to PTTC/8 PAPER 0 EBPA

PTTC/8 to Cord Code-Cord Code to PTTC/8 PAPHL 0 EBPA,HOLL

PTTC/8 to Console Printer Output Code PAM! 0 ERPA, PRTY

Card Code to EBCDIC-EBCDIC to Cord Code SPEED 0 None

EBCDIC and PTTC/8 Table (SPA 0 None

Card Code Table HOLL 0 None

Console Printer Output Code Table PRTY 0 None

Interrupt Level Subroutines

Interrupt Level Zero Routine ILSOO None

68

5ubrout Ines Nome Subtype Other Subroutines Required

Interrupt Level One Routine 11301 None

Interrupt Level Two Routine 11502 None

Interrupt Level Three Routine 11,503 None

Interrupt Level Four Routine ILSO4 None

Appendix E. 1130 Subroutine Library listing 69

0

vpilemr.I .,r •	 •••••'''`,.'"°"•••••'''',""M"'-'1•ITIPPTI•MMVPI"VIT' is,,, 11,1111•V •111••••■•••!' Ilv W,VvVIVIVW ,uurlvvVIV rVIREPIII I 11.1f•,,,••••••••••p••Trwrwvr•pqvormr■ •111,1Tv

APPENDIX F. IN-CORE COMMUNICATIONS AREA (COMMA)

The Disk Communications Area (DCOM), sector 8
on the disk, is read into core starting in address
0028 (decimal 40). The In-Core Communications
Area (COMMA), therefore, is an image of DCOM,
but offset by 40 words. The first 10 words
(0028-0031) include the IOCS error and interrupt
error traps. The IOCS error trap entry word

(0028) is initialised to contain the version and
modification level of the Disk Monitor System,
and will be overlaid by a return address if an
IOCS error occurs.

The core locations and contents of COMMA
are shown on the following three pages.

70

Core Location Comments

Dec. Hex.
-,

I.	 50 32 IOCS counter, Incremented by 1 upon entry to every IOCS subroutine (provided an X10 is to be executed), decremented by
1 after an operation complete interrupt.

2.	 51 33 Reserved.

3.	 52 34 Core address (in user program) of Interrupt Level 2 subroutine (11502).

4.	 53 35 Number of files defined.

5.	 54-69 36-45 CALL LINK/CALL EXIT linkage to Skeleton Supervisor.

6.	 70 46 Length of COMMON (in words).

7.	 71 47 Type of Disk I/O required, e.g.,

-1 = DISKZ (special disk routine)
0 = DISKO
1 = DISK!
2 ,- DISKN

8.	 72 48 Reserved.

System Addresses

9.	 73 49 Reserved.

10.	 74 4A Sector address of FORTRAN, zero if FORTRAN deleted.

11.	 75 4B Sector address of Assembly Program, zero if deleted.

12.	 76 4C 32010 (length of 1 sector).

13.	 77 4D Sector address of first (numerically lowest) sector of Core Image Buffer (CIB). 	 Word 1 of FLET header printed by DUMPLET.

14.	 78 4E 000A (address in lower core, i.e., in the interrupt transfer vector, to which all disk interrupts branch indirectly).

15.	 79 4F Sector address of first (numerically lowest) sector of Fixed Location Equivalence Table (FLET). 	 Word 2 of FLET header
printed by DUMPLET.

16.	 80 50 Sector address of first (numerically lowest) sector of Location Equivalence Table (LET).

17.	 81 51 Sector address of first (numerically lowest) sector of User area.

18.	 82 52 File protect sector address, otherwise used as sector address of Working Storage (base).	 Word 1 of LET header printed by
DUMPLET. See Note 1.

19.	 83 53 Same as above (adjusted). 	 Word 2 of LET header printed by DUMPLET. See Note 1.

LET/FLET Entries•

20.	 84 54 Total number of words used on disk by FLET. Word 3 of FLET header printed by DUMPLET.

21.	 85 55 Reserved.

22.	 86 56 Total number of words used on disk by LET (base). Word 5 of LET header printed by DUMPLET. See Note I.

23.	 87 57 Some as above (adjusted). Word 6 of LET header printed by DUMPLET. See Note 1.

24.	 88 58 Next available disk block address in User area (base).	 Word 3 of LET header printed by DUMPLET.	 See Note I.

25.	 89 59 Same as above (adjusted). 	 Word 4 of LET header printed by DUMPLET.	 See Note I.

26.	 90-91 5A-5B Name of program (LET/FLET entry words 1 and 2).

27.	 92 5C Disk blocks used by program (LET entry word 3). 	 Second word printed out at end of DUP function.

Appendix F. In-Core Communications Area 71

merommenrresrmmeMenrmnintr.."Pr' nr.rr,e,	 11	 Iplp	 ,p■mlp!,,liplp11,W1,1,0,11ippliplpp,iMillIlli,111, 1 pp pi i.wwi 	 1,4 !,	 q•.1111111.1=11.11,,,,,,,

0

Coto Location Comments
.--

Dec. Hex. LET/FLET Entries (Continued)

28.	 93 50 Core execution address of program (relative for relocatable programs, absolute otherwise) for word 12 of the program header
record.	 1.1, used as word 4 of LET/FLET entry.

29.	 94 5E Core loading address of program, also used as first word on mainline program, or First word of define file table (LET/FLET
entry word 5 for core image program).

30.	 95 5F Word count/disk block count of program, i.e., word count for core imago programs, disk block count for data files, and
address of next available core location following the program in Disk System format that is in Working Storage on the disk
(LET/FLET entry word 6 for core image program data file).

Switches

31.	 96 60 Principal print device (odd = console printer/keyboard, even = 1132). 	 See Note 2.

32.	 97 61 Principal I/0 device (odd = 1442, even = 1134/1055). 	 See Note 2.

33.	 98 62 Temporary mode if non-zero, normal if zero.

34.	 99 63 Non-XEQ (disable XEQ until next // JOB record if non-zero, enable XEQ if zero). Se. Note 3.

35.	 100 64 Non-DUP (disable DUP functions until next //JOB record is detected if non-zero, *noble DUP functions if zero).

36.	 101 65 System Overlays and/or LOCALs are used in program if non-zero.

37.	 102 66 Disable Supervisor reading of monitor control record if non-zero, enable if zero (positive indicates monitor control record
has been read under invalid conditions, negative under valid conditions).

38.	 103 67 Loader return to Supervisor if zero, to address in switch itself if non-zero (after restoring DUP).

39. 104 66 Core mop requested if non-zero, no map if zero.

40. 105 69 WS Indicator Word (disk block count of program in Working Storage).

Parameters For Disk IOCS

41.	 106 6A Disk Arm Position

107-108 6B-6C Reserved

42.	 109 610 Disk File Protect Address

110-111 6E-6F Reserved

43.	 112-114 70-72 Table of Defective Cylinders

115-120 73-78 Reserved

Miscellaneous

44.	 121 79 Disk block address of program. 	 First word printed out at end of DUP function.

45.	 122-125 7A-7D Reserved

46.	 126 7E Size of core (10313 16' 200016)

47.	 127 7F Absolute execution address of core load (For word 4 of LET/FLET entry).

48.	 128-137 80-89 Reserved	 •

49. 138 8A Contents of index register 3 (paints to middle of a 255-word transfer vector).

50.	 139-144 88-90 System Work Area

92

NOTE 1: When requested following a //JOB T control record, DUP will
store information to disk and update LET on a temporary basis (only the
adjusted value is altered). When the next //JOB or //JOB T control
record is encountered, the adjusted value will be replaced by the base

NOTE 2: The interrupt levels associated with the I/O devices will be
specified in COMMA. Since four bits are sufficient to specify any ILS
number, three I/0 levels may be included in each of the two words in
COMMA which identify the principal I/0 device and the principal print

value. Thus, all information which has been stored in the User area since
the first //JOST record will be deleted. The //JOB T function requires
that both bass and adjusted values be available in COMMA. The base
and adjusted values will be equal except during //JOB T operation.

device (items 31 and 32,respectively). The rightmost four bits in each of
these words identify the devices themselves. The layouts of these Iwo
words are as follows:

0	 1	 2	 3 4	 5	 6	 7 8	 9	 10	 11 12	 13	 14	 15

9610
Interrupt level of
principal print device

Interrupt level of
principal I/0 device

Interrupt level of
secondary print device

Interrupt level of
column interrupt for
1442 if principal I/0
device is 1134/1055;
interrupt level of end-
of-cord interrupt for
1442 otherwise,

Reserved for future use

Interrupt level of
end-of-card interrupt
for 14.42 if principal
I/O device is 1134/
1055; interrupt level
of 1134/1055 other-
wise.

-
Principal print device
indicator (0=1132,
1=console printer/
keyboard)

Principal I/O device
indicator (0=1134/1055,
1=1442, 2=console
printer/keyboard)

Supervisor only

Example

Wotd 96:	 1132 + Console Printer 140016 Word 97: 1442 040116
Console Printer 400116 1442 + 1134/1055 044116

1134/1055 400016

NOTE 3: Set to something other than zero or one by any part of the sys-
tem that finds a non-XEQ type error, reset to one by Supervisor after

printing out a message, reset to zero by Supervisor upon sensing a//JOB
record.

Appendix F. In-Core Communications Area 73

wa.l.R1e,r1r 	IT RI
	

' gyp'AffIRIMI Orr!	 !1117

APPENDIX G. LAYOUT OF LET/FLET ENTRIES

THREE WORD ENTRIES (DISK SYSTEM FORMAT)
	

Words	 Description

Words
	 Description

1-2	 Name of the program, consisting
of five 6-bit characters, right-
justified in the 32 bits of words
1 and 2. Names of less than five
characters are padded with
terminal blanks. A 6-bit
character is formed by truncating
the leftmost two bits of the
EBCDIC representation of that
character. Bits 0 and 1 are zeros.

3	 Disk block count of the program.

SIX-WORD ENTRIES (DISK CORE IMAGE FORMAT)

Words
	 Description

1-2	 Same as for three-word entries,
except that for core-image pro-
grams, bit 0 is one and bit 1 is
zero; and for data files, both bits
0 and 1 are ones.

3	 Disk block count of the program,
including padding. Padding Is the

number of disk blocks between the
end of the last program or file
stored and the beginning of this
program, which is a sector
boundary.

4	 Execution address of the program,
i.e., the core location to which
control is passed for execution
of the program (zero for data files).

5	 Loading address of the program,
e. , the core location at which

the core image program is to
be loaded:

6	 Word count of the program, i.e. ,
the number of words to be read
from the disk when reading the
information from disk to core
storage.

NOTE 1: Eight sectors each are allocated for
LET and FLET.

NOTE 2: The order of the entries in LET is the
order in which the named items are stored in
the User area.

74

Update dote records
(new version of subroutine XXXXX)

Update function control records

Subroutine library update header

Next morntor control recnN

Update data records

Sysien program header recxrd

System moontenonce program
col

Figure 14. Control Records and Data Organization (in Card Form)

for Monitor Program and Subroutine Library Maintenance

APPENDIX H. IBM00 (1130 DISK MONITOR SYSTEM MAINTENANCE
PROGRAM)

IBM00, the 1130 Disk Monitor System maintenance
program, is the means by which a user updates his
disk as modifications are released. The program
automatically updates the monitor programs
(Supervisor, Disk Utility, FORTRAN, and
Assembler), provides a method of changing the
IBM subroutine library, and also updates the
version and modification level in the first word
in DCOM. The leftmost 4 bits represent the
version, and the rightmost 12 bits represent the
modification level.

A card deck or paper tape containing correc-
tions to maintain the monitor will be supplied
by IBM. This includes all necessary control
records. Every modification must be run to
update the version and modification level even
though the program affected is not on the disk.

IBM00 is stored on the disk as part of the
IBM subroutine library. It is called from disk
by the following control record:

CC

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

/1)(Ea IBMOO	 0

A zero must appear in position 19 of the XEQ
record to specify DISKO.

Input to the program can be stacked with
other jobs. However, when stacking modifica-
tions to the Monitor System, each patch that
increases the modification level must begin with
the above control record (see Figure 14).

Input to the program can be cards or paper
tape. IBM00 determines the input device
automatically by interrogating COMMA for the
principal I/0 device.

SYSTEM PROGRAM MAINTENANCE

Typical input for a system program update is as
follows:

CC

1 2 3 4 5 6 7 8 9 10 11 12 13 1415 16 17 18 19

// XEQ IBM 0 0	 0
Patch header record
Patch data record

One to eight data records

Patch data record
Patch header record
Patch data record

One to eight data records

Patch data record
Patch header record

Appendix H. IBM00 (1130 Disk Monitor System Maintenance Program) 75

,SOI.OrffrnpoRSIOSoloP.PF rOrlmoormoorrowor so 'moor	 COPIIP	 !IMP I IP 111 .P ter 	 ,Inp ernsle TVoOlpr!!OlI PIRO111,II	 row 4111...1 .1.1•1,MMR....111.7.11R.1....MMIMPIRMIMPWRMIPTIrITT	 Ferree,

Patch Header Record
	

Columns	 Contents

which case it is relative to the
sector address of the first
sector of the assembler).

27-29	 Relative word number of first
patch word (000-319).

33-35	 Word count of patch (001-320).
40-41	 Total records in modification

(02-99). This should appear only
on the first patch header record.
The count is the total record
count of the modification,
including data records and patch
header records.

78-80	 Sequence number (always 001).

Data Record

A data record (in terms of card input) is a binary
data card (see Appendix B, Card System Format).
One to eight data records can follow each patch
header record, depending on the size of the
patch. These must be numbered from 002 to
009, and must contain the proper checksum for
this sequence.

The data record format is as follows:

Words	 Contents

1
	 Location

2
	

Checksum
3
	 Type code (first 8 bits):

00001010;
Word count (last 8 bits)

4-9
	 Relocation indicators

10-54
	 Data words 1 through 45

55-60
	 ID and sequence number

IBM SUBROUTINE LIBRARY MAINTENANCE

Changes to the subroutine library require reloading
the new subroutine. IBM00 updates the version
and modification level word; the actual reload is
performed by a DUP DELETE function, followed
by a DUP STORE function.

Each sector to be changed requires a patch
header record. Thus, if a patch crosses a
sector, two header records are required. U
FORTRAN or the assembler is being modified,
a check is made to determine if that system
program has been voided from the disk. U so,
the modification is not made.

The format of a patch header record (in
terms of card input) is as follows:

Columns
	 Contents

1-3
	

Program ID (FOR, ASM, DUP,
SUP)

10-11
	

Monitor System Version (01-15).
The patch is not made if the
version number does not agree
with the version number in DCOM.

15-17	 Modification Level (000-999).
This must be the same in every
header within a patch deck. The
patch is made only if the modifica-
tion level number is equal to or
one greater than the modification
level in DCOM. Changes to the
modification level must be in
ascending order, increasing by
one level at a time.

The user may rerun the
modifications to his system by
starting with modification level
001. If this is lower than the
modification level in DCOM, a
message is typed, followed by a
wait. This notifies the user that
he is processing his modifications
from the beginning; upon continuing,
the patch is made and the
modification level is changed to
001.

The modification level in DCOM
is updated after the last record of
the entire change is processed.

21-23	 Sector Address (absolute,
decimal, sector to be modified,
except for the assembler, in

76

Typical input for a subroutine update is as	 ERROR MESSAGES

follows:
IBM00 error messages are listed in Table H-1.

CC

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Table H-1. IBM00 Monitor System Maintenance Error Messages

// X EQ IBM 0 0
	

0

(Subroutine header record)

// DUP

*DELETE	 name

• S TOR E
	

C D	 U A	 name
or

P T

(New version of the subroutine)

Subroutine Header Record

The subroutine header record must go through
IBM00 even if the subroutine being modified is
not on the user's disk. This is necessary to
update the version and modification level word
in DCOM so that the next sequential modification
level can be made.

The format of a subroutine header record
(in terms of card input) is as follows:

Columns	 Contents

	

1-3	 SUB (to signify a subroutine update)

	

10-11	 Monitor System Version (01-15)

	

15-17	 Modification Level (000-999)

OPERATING PROCEDURES

The card deck or paper tape supplied•by IBM is to
be run as a monitor job. When the control record
//XEQ IBM00 is read, the version and modification
level of the monitor is typed (see Figure 15, lines
1, 2, and 3). When the correct input is read,
lines 1 through 6 of Figure 15 are typed.

Code and Message Meaning

U01 INVALID HEADER Program cannot recognize header
record.

UO2 CHECKSUM ERROR Data record checksum error. 	 A record
might be out of sequence or there
might be an invalid data record.

UO3 MCR BEFORE EOJ Monitor control record was encoun-
tered before the updating process
was completed.

U04 VERSION ERROR The version on disk does not agree
with the version in header record.

U05 MOD. LEVEL ERROR The modification level in the header
record is not equal to or one greater
than the modification level on disk.

NOTE 1: All of the above errors require a retry of the execution after
corrective action has been token. Following on error typeout, the
program waits; pressing PROGRAM START couses on exit to the
Supervisor.

NOTE 2: A user can start at modification No. I and add all modifi-
cations to dote. A message is typed when this condition is encountered,
followed by a wait. PROGRAM START must be pushed to continue.
The following message will be typed: 'THE MONITOR SYSTEM IS
BEING UPDATED WITH MOD. LEVEL NO. 1. PUSH PROGRAM
START TO CONTINUE.'

(Line 1)
	

IBM00 MONITOR SYSTEM MAINTENANCE
(Line 2)
	

VERSION NO. IS	 XX
(Line 3)
	

PRESENT MODIFICATION LEVEL IS XXX

(Line 4)
	

MONITOR SYSTEM UPDATE COMPLETED
(Line 5)
	

VERSION NO. IS XX
(Line 6)
	

NEW MODIFICATION LEVEL IS XXX

Figure 15. Typeouts for 1130 Monitor System Maintenance Program

Appendix U. IBM00 (1130 Disk Monitor System Maintenance Program) 77

wiwYNEPA 1.11.1.0—• grirorrm	 r r.rr 	 1.19,/,'"1110,P,11, PM, PRIMII'.1.1.111-11,411WWIAIRRIIIWIII,PrIFIRIIIIMMIIIMIRIE1NIIMT,11'11,1111P011,,,,0111111I1IMPW111117,71FM, M.T.PRIVRIPMMITAINIPPRIPrIRAIRIN.

APPENDIX I. UTILITY ROUTINES

In addition to the IBM subroutine library, the follow-
ing utility programs, each complete with subroutines
and loaders, are supplied to the user to enable him
to perform operations external to the 1130 disk moni-
tor system. The individual program writeups indicate
whether the program is available for the card system
only, the paper tape system only, or both. Where the
program is applicable to both systems, operating
procedures are included for card and paper tape.

The paper tape utility routine is loaded as part of
the paper tape disk monitor system.

• Disk Pack Initialization Routine (DPIR). This rou-
tine is described under System Generation Opera-
ting Procedures -- Card System. The DPER card
and paper tape loading procedures are listed under
the appropriate system generation procedure.

• Console Printer Core Dump

• 1132 Printer Core Dump

• Console Printer Disk Dump

• 1132 Printer Disk Dump

• Paper Tape Reproducing Routine

• Paper Tape Utility Routine (PTUTL)

CONSOLE PRINTER CORE DUMP (CARD SYSTEM
ONLY)

This routine aids the user in the debugging of pro-
grams. The programmer can dump portions Of core
by loading a single-card console routine which occu-
pies the first 80 words of core. The output device is
the console printer.

Format

This routine dumps core in hexadecimal form, start-
ing with the word specified in the console entry
switches. Dumping continues until PROGRAM STOP
is pressed.

Words are dumped in four-digit hexadecimal form,
with a space between each word. The first word
typed is the starting address of the dump. The num-
ber of characters per line depends upon the margin
settings of the console printer.

Operating Procedures

1. With the console Mode switch set to RUN, press
IMM STOP and RESET on the console.

2. Set the console entry switches to the hexadecimal
address at which dumping is to start.

3. Place the program card in the reader.
4. Press START on the 1442.
5. Press PROGRAM LOAD on the console.

Dumping continues until PROGRAM STOP is
pressed. Press PROGRAM START to resume the
dump.

1132 PRINTER CORE DUMP

This is a self-loading, four-card routine that dumps
the contents of core storage in hexadecimal format
on the 1132 Printer (the fourth card is blank). The
routine is available in card and paper tape.

Dumping begins at hexadecimal address 00A0 and
continues to the end of core. Sixteen words per line
are printed, preceded by the four-digit hexadecimal
address of the first word of each line.

Card Operating Procedure

1. Ready the 1132 printer.
2. With the console Mode switch set to RUN, press

IMM STOP and RESET on the console.
3. Place the dump routine deck in the 1442 card

read punch hopper.
4. Press START on the 1442.
5. Press PROGRAM LOAD on the console.

Dumping continues until the last 16 words of core
are addressed and printed.

78

The program does not skip to the top of a new page
to start, nor is page numbering or page overflow pro-
vided.

Paper Tape Operating Procedure

1. Ready the 1132 printer.
2. Place the dump from 00A0 tape in the paper tape

reader so that one of the delete codes beyond the
program ID in the leader is beneath the read
starwheels.

3. Press IMM STOP, RESET, and PROGRAM LOAD
on the console.

The output format is the same as described for the
card routine.

DISK DUMP ROUTINES

Two routines are provided which allow the user to
print out the contents of any disk sector or sectors.

• Console Printer Disk Dump

• 1132 Printer Disk Dump

These routines are available in card and paper
tape.

Format

Each sector printout (320 words) consists of 20 lines
with 16 four-digit words per line, each word in hexa-
decimal form. Two sectors are printed on each page,
each sector preceded by a two-word header. The
leftmost digit of the first header word is the number
of sectors remaining to be dumped; the remaining
three digits show the sector address of the sector
being dumped. The second header word contains the
contents of the first word of the sector which is also
the address of the sector.

Operating Procedures

Card

1. With the console Mode switch set to RUN, press
IMM STOP and RESET on the console.

2. Place the desired dump routine (console printer
or 1132 printer) in the reader hopper.

3. Press START on the 1442.
4. Press PROGRAM LOAD on the console.

The program is loaded and on 8K systems
WAITs at location 1051 (console printer routine),
or 1D29 (1132 printer routine). For 4K systems,
the WAIT addresses will be 0051 and OD29.

5. Set the console entry switches as indicated below.
a. Enter the number of sectors to be dumped

(in hexadecimal) in console entry switches
0-3. The maximum number of sectors that
can be dumped at one time is 15 (switches
0-3 on); the minimum number is one
(switches 0-3 off or switch 3 on).

b. Enter the hexadecimal address of the first
sector to be dumped in console entry
switches 4-15 (000 - 657). If an illegal
sector address is entered, the program
WAITs at location 0029. Press 1MM STOP,
RESET, and PROGRAM START to return
the program to location 105] or 1D29. The
correct sector address can then be entered
in the console entry switches.

Note that the sector address entered in
console entry switches 4-15 is a physical
address, not a logical address. It is there-
fore possible for the data being dumped to
be moved up 8, 16, or 24 sectors depending
on whether the disk has one or more
(maximum 3) defective cylinders. A dump
of sector zero will show if there are any
defective cylinders on the disk. Words one,
two, and three of sector 0 contain the first
sector address of any defective cylinders
found. When there is no defective cylinder,
these words contain /0658 (see DPIR under
System Generation Operating Procedures--
Card System). In the event that there are
defective cylinders on the disk, it is the
user's responsibility to calculate the dis-
placement in order to locate the desired
logical record.

6. Press PROGRAM START to initiate the dump.

Dumping continues until the last sector is printed,
at which time the printer carriage (if the 1132 is the
output device) restores to a new page and the program
WAITs at location 1051 or 1D29.

A new sector address and/or number of sectors
can be entered at any time during execution by press-
ing IMM STOP, RESET, and PROGRAM START,

Appendix I. Utility Routines 79

" Mlf!!!'!99 ,11 .111P1R1W'll ATV 1991/991111.119119 1.19 	 19199.9699M999971,99 IMF RPM' I RRO, ', I. ,	 +'99	 1' FARM	 9 9. 1 .1 9999.1 9 919999,999mor 9 PRI !,	 9wginuirw.i.pplroririmpiroppgrr.T,,■•■••■••19.....m,m9979.9r ,r,91.9p,11,,,,,

CORE IMAGE LOADER

2 3 4 5 6
1 2 1 2 I

x

X
X

2

x

I 2 12 1 2

x
x
x

X

X

x

X

X

X

X
x

x

X

X
x

X

x

X
x

X

CARD

COLUMN

12
11
0

2

3
4

5
6
7

9

and then setting the appropriate console entry
switches.

Core Image Loader Card ID. The card system con-
sole printer and 1132 printer disk dump routines are
each loaded by a core image loader which comprises
the first six cards of the decks. As card sequence
numbers are not present on the core image loader
cards, the following chart can be used to identify
these cards.

Paper Tape

1. Place the desired dump routine tape (console
printer or 1132 printer) in the paper tape reader
so that one of the delete codes beyond the pro-
gram ID in the leader is beneath the read star-
wheels.

2. Press IMM STOP, RESET, and PROGRAM LOAD
on the console.

3. The loader (on the front of the tape) will read in
and the system will WAIT.

4. Press PROGRAM START.

The disk dump program is now loaded and WAITs
at location 1051 (console printer routine), or 1D29
(1132 printer routine). Operating instructions from
this point are the same as those listed in items 5
and 6 of the card operating procedures.

Disk Error Procedure

Detection of a disk error during a dump operation
on 8K systems causes a WAI T at location 1067
(console printer) or 1D51 (1132 printer). For 4K
systems, the WAIT is at 0067 or OD51.

To retry the operation, set all console entry
switches off and press PROGRAM START. If the
retry is successful, dumping will resume at the
beginning of the sector that caused the error.

If the error is to be ignored and the sector
printed out, make sure that the value of the console
entry switches is not zero (at least one switch on)
and press PROGRAM START.

PAPER TAPE REPRODUCING ROUTINE

This routine, available only with the paper tape sys-
tem, is a self -loading paper tape routine that repro-
duces paper tapes. The routine reads a character
and punches it with no intermediate conversion.

Operation

1. Place the paper tape reproducing routine tape in
the paper tape reader, positioning the tape so
that one of the delete codes beyond the ID in the
leader is beneath the read starwheels.

2. With the console Mode switch set to RUN, press
IMM STOP, RESET, and PROGRAM LOAD on
the console. The reproducing routine is read in
and WAITs at location 0000.

3. Remove the reproducing routine tape and place
the tape to be reproduced in the reader. Place
blank tape in the tape punch unit and produce
several inches of delete code leader by holding
down the DELETE and FEED keys simultane-
ously. Be sure to release the FEED key first.

4. Press PROGRAM START to begin the tape repro-
ducing operation. The routine continues to
operate until the paper tape reader goes not-
ready, indicating that there is no more tape to
be read. The tape reproducing routine then
WAITs at location 002C. If the paper tape punch
is not-ready, the tape reproducing routine loops
between 0027-002A. To restart, press IMM
STOP, ready the paper tape punch, and press
PROGRAM START. An unlimited number of
tapes can be reproduced by this routine. Be
sure to create a trailer (and leader) of delete

80

0

codes between the output tapes if the tapes are
to be separated.

5. If the PROGRAM STOP key is pressed while the
program is in operation, the routine WAITE; at
location 001D. Press PROGRAM START to con-
tinue.

PAPER TAPE UTILITY (PTUTL)

PTUTL is a paper tape utility program that is loaded
to disk during system generation and executed by the
1130 disk monitor system. It accepts input from the
console printer keyboard or 1134 paper tape reader
and provides printed output on the console printer
and/or punched output on the 1055 paper tape punch.

Using PTUTL, the user can add FORTRAN and
assembler source records and monitor control
records to his programs. Records on existing tapes
can also be altered or deleted. This paper tape
utility program resides in the user's area on disk
and is executed by a // XEQ control record.

Operating Procek;ure

A paper tape containing the following records is
supplied to the user to allow initial program exe-
cution.

// JOB
// XEQ PTUTI.
// PAUS

To load this tape and execute the program, select
the appropriate initializing procedure listed below and
continue.

1. If the monitor supervisor is • in core:
a. Place the PTUTL execute tape in the paper

tape reader.
b. Press PROGRAM START.

2. If the monitor supervisor is not in core:
a. Place the cold start paper tape record in the

paper tape reader.
b. Press IMM STOP, RESET, and PROGRAM

LOAD on the console.

c. Place the PTUTL execute tape in the paper
tape reader.

d. Press PROGRAM START.
3. The paper tape utility program is loaded into

core and then comes to a WAIT at location /0498.
This wait allows the operator to ready the con-
sole printer, paper tape reader, and paper tape
punch. The user should punch a leader of delete
codes on the paper tape punch.

At this time, the user can select the desired
program options by turning on the appropriate
console entry switches (see Figure 16).

Console Entry
Switch On	 Option

0	 Print record after reading
1	 Read paper tape records from 11 34
2	 Accept keyboard inputi

14
3

WAIT after punching3
Punch paper tape records on MS

WAIT after printing215
All switches

Exit to monitor supervisor3off

NOTES:
1. The keyboard input option uses TYPEO,

therefore all features of that routine apply
to PTUTL.
a. The input record cannot exceed 80

characters.
b. Pressing the backspace key cancels the

last character entered.
c. Pressing the ERASE FIELD key cancels

the entire record end allows the user to
restart.

d. Pressing the EOF' key indicates that the
record is complete. The keyboard is
released and the program continues.

2. Keyboard input will replace the last paper
tape record read if console entry switch 2
is turned on prior to pressing PROGRAM
START.

3. The test for exit is made just before an
input record is read; therefore, a convenient
way to branch out of PTUTL is to perform a
WAIT after punching the last record desired
(console entry switch 14 on). Turn off all
console entry switches and press PROGRAM
START. Control is returned to the monitor
supervisor.

Appendix 1. Utility Routines 	 81

1111.11147111".W...m.1,1,,. • PI
. iii 011.1.,1■111M. 111•111.1■=1.■1111111.11. 	 11111glifUl.rs,n, V!

Raria wallPF

Paper Tape Not-Ready WAITs

Condition	 Indication	 Recovery Procedure

Paper tape	 Program WAITs at	 Ready reader if additional
reader not	 location /0498 with	 tape is to be read. Set the
ready	 /0005 in the	 console entry switches as

Accumulator	 desired and press PROGRAM
START.

Paper Tape Program WAITS at 	 Ready the paper tape punch
punch not	 location /0498 with	 and press PROGRAM START.
ready	 /0004 in the	 To re-punch a record

Accumulator	 which was being processed
when the not-ready occurred,
set console entry switches 1
and 2 off (to prevent an-,
other record from being
read), set switches 3 and 14
on (punch a record and
WAIT), and press PROGRAM
START. After the record is
punched, return the console
entry switches to the orig-
inal configuration and press
PROGRAM START.

Example

Assume that the following records appear on a tape.

// JOB
//t (comments)
// ASM
// DUP
Asm. Control Records
Source Program

The user now desires to alter the comments
record, insert a // PAUS record after the comments
record, and delete the // DUP record. The
procedure is as follows.

I., Load and execute PTUTL. The program will
WAIT at location /0498.

2. Load the source tape in the paper tape reader
and ready the paper tape punch and console
printer. Remember to make a leader of delete
codes on the punch.

3. Turn on console entry switches 1, 3, and 14.
4. Press PROGRAM START.

5. The // JOB record will be read, reproduced,
and the program will WAIT.

6. Turn on console entry switches 0, 1, 2, 3, 14,
and 15.

7. Press PROGRAM START.
8. The comments record in the source tape will be

read and printed on the console printer. The
program will WAIT.

9. Press PROGRAM START. The Keyboard will be
selected (PROCEED light on) and the program
will WAIT.

10. Enter the new comments record in the proper
format.

11. Press the EOF key on the keyboard.
12. The new comments record will be punched on the

tape, replacing the old record. The program
will WAIT.

13. Turn off console entry switch 1. Press
PROGRAM START. The keyboard will be re-
selected.

14. Enter the // PAUS record from the keyboard
and press EOF.

15. Turn off console entry switches 0, 2, and 15.
Turn on switch 1. Leave switches 3 and 14 on.

16, Press PROGRAM START.
17. The // ASM record will he read and reproduced

on the punch. The program will WAIT.
18. The next record, // DUP, is to be deleted; there-

fore, switches 0, 1, and 15 should be set on, all
other console entry switches should be set off.

19. Press PROGRAM START.
20. The /1 DUP record will be read and printed but

not punched. The program will WAIT.
21. Leave the sense switches at the present setting

and press PROGRAM START. The next record
on the input tape will be read into the I/O buffer,
overlaying the // DUP record.

22. Turn on console entry switches 1 and 3, all
others off.

23. Press PROGRAM START.
24. The remainder of the source tape will be read

in and reproduced, record for record.
25. When the paper tape reader goes not-ready at

the end of the source tape, the program will
again WAIT at location /0498. Set all console
entry switches off and press PROGRAM START.
Control will return to the monitor supervisor.

0	 •
*)

••••
•

0E114:••••113•040*••••••
•
• Nt1V	 ••••••••••••e••••••••2
..•e •0 •

o ts• • •owl*

	

0111	 OS. .10.00	 •.	 •••■••• 	 ••
•:Sst Sill

.0. OttCOES .0 	 41	 cu	 •.	 t	 •
o .0	 •	 • •••••••••• OOOOO•. .•• NO

••

oSS
CS

1.
e.

	 o. MHO I ..• 	
o.	 .6.

•

SIR	 .5.0• •. •S.	 ••••00 .. o
	 S6. SOIIIN 4	 04 •• •4S 00.	 .e6	 •••••. •••

••
•

«•••/• a

ao	
••••• •

••••••••••••••••••

••Imo OOOOO imomese...

DJ

so Pa:ill:Pe 65
•••••0••••00•

•

SOO	 1J ••• •. 6.
• o.

.•	 • NO0. •• tolito 0 	••
•.	 .•• • .0•• INS

•

•••••0 a J••••••••• •
0114141 	

•
SO •• CV NA ill •• ••••

LOP	 •
•• C	 TOO •o▪

•

a

	 2116.0006 •O••O

NITInfra •

SYS	 .
6 NI • S.	 	 •••••.•••••.•

• •3	 m	 ••:. sol lim	 .7,0VIS 	 I •PAPIMAPI •It.	 . •	 •	 t	 0 o.	 ••• ,•• No

•

SO IT	 .o.	 SO 1•	 .5.
JO	 S .	 06	 0..0.	 o.	 ••••

•
•. 00	

.•
.6 	

S. 	 ►SS •	 •.1. SNII1N IS .e.... 	 	 11*. Suit 16 ..0....So Al •0..	 00	 ••	 0	 •	 •
..	 *.	 00	 ••••

•
••0•• •

• 00 •• •••••
Figure 16. FTUTL Sense Switch Options

	

Appendix 1. Utility Routines 	 83

.ff••••.!■!1•!.1•91,'P,1•!01,11, P.100 R•P!1 . 101000 . 1 ..••• • !MM.	 •19/,

••. 0.• VII •11•0	 •• • •• NO• •	 •
• • 00 •	

•

• •	 •	 a
•

0500 ••••• •
•••••01•LI1111•5•••	 •	 •• C3 •
• •	 ••••• •• WAIT	 •• co• •••••••••••	

.•

APPENDIX J. SAMPLE PROGRAM OUTPUT

/I JOB
	

DKRAM001
/i FOR
	

DKSAM002

PAGE 01
(16	 IBM 1130 DISK MONITOR FORTRAN SAMPLE PROGRAM	 OKSAMOOS
'ONE WORD INTEGERS	 OKSAM004
"LIST ALL	 OKSAMOOS
•10CS 'CARD. 1132 PRINTER. DISK)	 OKSAM006
INANE SAMPL	 OKSAM007

IBM 1130 DISK MONITOR FORTRAN SAMPLE PROGRAM 	 PAGE 02
C	 IBM 1130 DISK MONITOR FORTRAN SAMPLE PROGRAM 	 OKSAM008
C	 SIMULTANEOUS EQUATION ROUTINE 	 DKSAM009

DEFINE FILE 1 110.320.U.INXT1	 OKSAM010
DIMENSION A110.10114(101.81101.Y1101	 OKSAM011

301 FORMAT 11M1.20X1SHINCOMPATIBILITT)	 OKSAM012
302 FORMAT (114 2OX41HMORE EQUATIONS THAN UNKNOWNS-NO SOLUTIONS) 	 DKSAM013
303 FORMAT 11H 20X46HMORE UNKNOWNS THAN EQUATIONS-SEVERAL SOLUTIONS) ISKSAM014
304 FORMAT (1H 20X1SMSOLUTION MATRIX)	 OKSAM015
30S FORMAT(1H 20X8HMATRIX AI	 OKSAM016
306 FORMAT(IH 20X8HMATRIX	 DICSAM017

307 FORMAT (1M 20X1OH AftINVERSE)	 OKSAM018
308 FORMAT11M 20X24MDIAGONAL ELEMENT IS ZERO) 	 OKSAM019
309 FORMAT (1H 20X'A— INVERSE TIMES A*1	 OKSAMO20

	

M■2	 OKSAMO21

	

L•3	 OKSAMO22
READ (14.101	 OKSAMO23

10 FORMAT(72H	 SPACE FOR TITLE	 OKSAMO24
1	 1	 DKSAMO2S
WRITE (Le10)	 DKSAMO26

12 FORMAT (61101	 OKSAMO27
READ 114,121M1012..10L2IN1eN2 	 OKSAMO28

C	 MI • NO. OF ROWS OF A	 OKSAMO211
C	 M2 • NO. OF COLS OF A	 (*SAMOS°
C	 LI • NO. OF ROWS OF X	 OKSAM031
C	 L2 ■ NO. OF COLS OF X	 OKSAMO32
C	 NI ■ NO. OF ROWS OF B	 OKSAM033
C	 N2 ■ NO. OF COLS OF 8	 DKSAM034

13 FORMAT (7F10.4)	 DKSAMOSS
17 FORMAT 110F10.4/	 *SAMOSA

IF 1N21163,64.63	 DICSAMOS?
64 IF 11.2.• 1163.65.63	 (*SAMOS'
6S IF (L1 .442163.66.63	 OKSAM039
66 IF 1M1 —N1/63.11.63	 DICSAM040
63 WRITE (L.301)	 OKSAM041

GO TO 2	 DKSAM042
11 N•MI	 DKSAM043

'NEM2 DKSAMO44
IF (M1—M2) 91.140344 OKSAM045

91 WRITE (L.3021	 DICSAM046
GO TO 2 DKSAMO47
93 WRITE (L.303)

GO TO 2	
DRSAM048
OKSAM049

14 WRITE (L.SOS) DKSAMOSO
DO 70 1 • 104	 DKSAMOSI
READ 1161311AIIWIW•1041 	 DKSAMOS2
WRITE IL.171(AlIeJ/W•1oN1	 *SAMOS)

70 CONTINUE	 DKSAMOS4
89 FORMAT (F10.41	 *SAMOS

WRITE (1.1306)	 DKSAMOS6
READ 101.891113111.101.N1 	 *SAMOS?
WRITE 11.98911811/.1•1.N1 	 (*SAMOS'

C	 PRESERVE THE ORIGINAL MATRIX ON DISK DKSAMOS9
DO 19 I •loN DKSAM060

19 WRITE 11'11 1A1.1.1111 .1E101	 DKSAM061
C	 INVERSION OF A	 DKSAM062

20 DO 120 K■loi	 *SAMOS,
0•1111.1(1	 OKSAM064
IFID140.200.40	 (*UMW

40 AIKIIK1.1.0	 OKSAM06*

Sli

IBM 1130 DISK MONITOR FORTRAN SAMPLE PROGRAM	 PAGE 03
90 DO 60 J • 1.14	 DKSAM067
60 AIK.JI.A111.J1/0	 DKSAM068

DKSAM069
$0 IK•K.1	 DKSAM070

DO 120 1.1KoN	 DKSAM071
D.A11.111	 OKSAM072
AII.K1.0.0	 COKSAM073
DO 120 .1 • 1.N OKSAM074

120 AlleJl■Alle./1-.(0•44KoJII DKSAM075
C	 BACK SOLUTION	 (*SAMOS

130 IK•N-1 OKSAM077
00 180 10.1.1K

140

	

	
OKSAM078

11 .K+1 DKSAM079
DO 180 1•11.N	 DICSAM080

DKSAM081D.AIK.11
AIK.11.0.0	 DKSAM082

170 DO 180 .1 • 1.14	 OKSAM083
180 AIK.J1.011K.JI •• 10• 411.J11	 DKSAM084

GO TO 202	 OKSAM085
200 WRITE IL00111

GO TO 2	
OKSAMO$6

ICSAM087
C

	

	
D

PRINT INVERSE DICSAM088
202 WRITE 103071

00 201 1.10N	
DIESAM0119
DKSAM090

WRITE ILI,1711AlleJlsJ•1oN1	 OKSAM001
201 CONTINUE	 DICSAM092

WRITE IL.3091	 DICSAM093
C	 COMPUTE AND PRINT A-INVERSE TIMES A	 OKSAM094

DO 123 J■I.N 	 DKSAM095
C	 RETRIEVE ORIGINAL BY COLUMNS	 OKSAM006

READ 11'JI ;XIMI. M.1041
DO 12' 1.1.N	

COKSAM097

r11' • ^.0	
OKSAM098
OKSAM099

DO 122 K • 1.N	 DKSAM100
122 Y111 • TIII+1111.K1•X(K1	 OKSAM101
123 WRITE 11..171 ITIllo 1.1.N) 	 DKSAM102

DO 21 1 . 10	 DKSAM103
X111.0.0
DO 21 K.104	

OKSAM104
OKSAM105

21 XIII•X1110111.KI.BIKI	 DKSAM106
WRITE IL$3041 OKSAM107
WRITE 11. 111011X111.1.1.N1 DKSAM108

2 CALL EXIT	 DKSAM109
END	 DKSAM110

IBM 1130 DISK MONITOR FORTRAN SAMPLE PROGRAM	 PAGE 04

VARIABLE ALLOCATIONS
A	 .00CE X	 •00E2

	
.00F6 Y	 •010A 0	 .010C 1NXT .010E M	 0010F L	 .0110 M1	 .0111 M2	 ■0112

LI	 .0113 L2	 .0114 NI
	 .0115 N2	 •0116 N	 .0117 I	 .0116 .0	 .0119 K	 eollA IK	 •0116 11	 •011C

UNREFERENCED STATEMENTS
20	 50	 140	 170

STATEMENT ALLOCATIONS
301 .0127 302 .0134 303 8014E 304 •016A 305 .0177 306 •0180 307 .0189 306 .0193 309 .01A4 10	 •0162
12	 .0108 13	 ■01011 17	 ■01DE 69	 • 01E1 64	 •021C 65	 ■0222 66	 .0226 63	 .022E 11	 .02S4 91	 •0244
93	 .024A 14	 .0260 70	 .0289 19	 .02C6 20	 .02E7 40	 ■o2Fe SO	 .0306 60	 •030A 60	 •0325 120 ■0344
130 .037 4 140 .037E 170 .0)99 160 .039D 200 •03CF 202 .03D5 201 .03F6 122 ■0420 123 •045C 21	 •0411C
2	 .0406

FEATURES SUPPORTED
ONE WORD INTEGERS
IOCS

CALLED SUBPROGRAMS
FADDX FMPYX FDIV	 FLO	 FLOX	 FSTO	 'sun FSSRX SREO	 SWAT	 SCOMP SFIO	 SIOFX 5101	 SUBIC
CARD2 PRNTZ SDFIO SORED SOWRT SDCOM SOFX

REAL CONSTANTS
.100000E 01 .0120	 .000000E 00.0122

INTEGER CONSTANTS
2.0124	 3.0125	 1.0126

CORE REOUIREMENTS FOR SAMPL
COMMON	 0 VARIABLES	 288 PROGRAM	 952

END OF COMPILATION

Appendix J. Sample Program Output OS

4.1r, "Ww,WPTImmmIrr PfIMPPI, 	FIFO, M!,flurm' IN. 11,1. 1	 W	 111411.11T,..

// XE0

FILES ALLOCATION

1 016C 000A

STORAGE ALLOCATION

R 47 OF71 IHExI WORDS AVAILABLE

LIEF TRANSFER•VECTOR

EOCT8 1013
MOLTS OFDF
GETAD 0F9E
NORM	 OF74
XmDS	 OF58
FARC	 0,36
HOLEZ
IFIX OEM
FLOAT OECE
FADOX 0E79
SDRED 06C0
FS6Rx 0E50
FMPYX OE1C
FDIV	 ODCA
FSTOX 0D72
FLDx	 ODBE
SDCON 06E4
SDFX	 0662
SDWRT 070E
SIOFx	 0915
SUBSC 00A6
SIOI	 0919
SCOMP 0901
SWRT	 08F8
SRED	 0928
FSTO	 0076
FLD 0092
PRNTZ OCCO
CARDZ 0078
SFIO	 09CD
SDFIO	 0713
DISKZ	 00F4

SYSTEM ROUTINES

ILSO2	 1019

03A5 IHEXI IS THE EXECUTION ADOR.

ISM 1130 DISK MONITOR FORTRAN SAMPLE PROGRAM
MATRIX A.

482150	 -1.2120	 1.1030
-2.1200	 3.3030	 -1.6320
1.1220	 -1.3130	 3.9860

MATRIX 8
3.2160
1.2470
2.3456

A-INVERSE
0.2915	 0.0833	 -0.0467
081031	 063836	 0.1118

-0.0283	 0.1029	 0.3008
A-INVERSE TIMES A

0.9999 -0.0000	 0.0000
0.0000	 0.9999 -0.0000

•060000	 0.0000	 1.0000
SOLUTION MATRIX

069321
162034
0.7429

OKSAM111

86

// J08	 SMASM001
// AIM	 SMASM002

•LIST	 SMASM003

'PRINT SYMBOL TABLE	 SMASM004

COMPUTE THE SQUARE ROOT OF 64 PAGE	 1
0000 0 COSO BEGIN LO 064 SMASM006
0001 20 06406063 LIBF FLOAT	 INTEGER TO FLOATING PT. SMASM007
0002 30 06090640 CALL FSQR	 FLOATING PT. SORT. SMASM008
0004 20 091199C0 LISP IFIX	 FLOATING PT. TO INTEGER SMASM009
0005 0 1008 SLA 8 SMASM010

• MASK TO BUILD EBCDIC INTEGER SMASM011
• RESULT AND EBCDIC BLANK IN WORO1. SMASM012

0006 0 E829 OR MASK SMASM013
0007 0 0018 STO WOR01 SMASM014

• CONVERT MESSAGE FROM EBCDIC SMASM015
• TO ROTATE/TILT CODE. SMASM016

0008 20 05097663 LISP EBPRT SMASM017
0009 0 0000 DC 0 SMASM018
000A 1 0023 DC MORO1 SMASM019
0008 1 0015 DC TYPES' SMASMO20
000C 0 001A DC 26 SMASMO21
0000 20 23A17170 LIBF TYPEO	 TYPE MESSAGE SMASMO22
000E 0 2000 DC /2000 SMASMO23
000F 1 0014 DC TYPE SMASMO24
0010 20 23A17170 LISP TYPEO	 WAIT FOR TYPING COMPLETE SMASMO25
0011 0 0000 DC SMASMO26
0012 0 70FD MDX •..3 SMASMO27
0013 0 6038 EXIT RETURN TO MONITOR CONTROL SMASMO28
0014 0 000E TYPE	 DC 14 SMASMO29
0015 0000 BSS 13 SMASM030
0022 0 8181 DC /8181 SMASM031
0023 0 0000 MOROI DC •.• SMASM032
0024 0018 EBC .IS THE SQUARE ROOT OF 64. SMASM033
0030 0 F040 MASK	 DC /F040 SMASM034
0031 0 0040 064	 DC 64 SMASM035
0032 0000 ENO BEGIN SMASM036

SYMBOL TABLE

BEGIN 0000	 D64 9031	 MASK 0030	 TYPE 0014	 MOROI 0023

NO ERRORS IN ABOVE ASSEMBLY.

Appendix I. Sample Program Output 87

• ugrw	 WWI s1.11	
	 1,1,r

11.1.41,1,V

FSOR	 0200

LISP TRANSFE

FARC 066C
RHOS 0630
HOLL 0400
PRTY OSBO
(SPA 060
FADO 04AP
FOIV 0$01
FLO 04SA
FADOX 0456
FMPYX 0470
FSTO 043E
►GETP 0424
NORM 03FA
TYPEO 0202
(SPRY 026C
!FIX 0244
FLOAT 01F4
DMZ 00F4

// 4E0	 L

R 47 1907 MIMI WORDS AVAILABLE

CALL TRANSFER VECTOR

-VECTOR

&RAMOS?

SYSTEM ROUTINES

ILSO4 0691
11.502	 0640

01C2 (HEX) IS THE EXECUTION A000•

Program Output on Console Printer

8 IS THE SQUARE ROOT OF 64

88

APPENDIX K. GLOSSARY

Absolute program: A program which, although in
Disk System format, has been written in such a
way that is can be executed from only one core
location.

Assembler core load: A core load which was built
from a mainline written in Assembly Language.

CALL routine: A routine which must be referenced
with a CALL statement. The type codes for
routines in this category are 4 and 6.

CALL TV: The transfer vector through which CALL
routines are entered at execution time. See the
section on the Loader for a description of this TV.

CIB: (the Core Image Buffer) The buffer on which
most of the first 4000 words of core are saved.
Although the CIB occupies two cylinders, the
last two sectors are not used. See the section on
the Loader for a description of the C113 and its use.

Cold Start Routine: The routine which initializes the
1130 Disk System Monitor by reading down from
the disk the Skeleton Supervisor.

COMMA (the Core Communication Area): The part
of core which is reserved for the work areas and
parameters which are required by the Monitor
programs. In general, a parameter is found in
COMMA if it is required by two or more Monitor
Programs or if it is passed from one Monitor
Program to another. COMMA is initialized from
DCOM by the Cold Start Routine and at the beginning
of each JOB.

Control Record: One of the records (card or paper
tape) which directs the activities of the 1130
Monitor System. For example, //DUP is a
Monitor control record that directs the Monitor
to initialize DUI': *DI'MPLET is a DUP control
record directing 1/113 to initialize the DUMPLET
program; *EXTENDED PRECISION is a FORTRAN
control record directing the compiler to allot
three words instead of two for the storage of data
variables.

Core Image format: Sometimes abbreviated CI
format. It is the format in which whole core
loads are stored on the disk prior to execution.

Core Image Header Record: A part of a core load
stored in Core Image format. It is actually the
last 15 words of the format. Among these 15
words are the ITV and the setting for index
register 3.

Core Image program: A mainline program which
has been converted, along with all of its required
subroutines, to CI format. In other words, it
is a core load.

Core load: Synonymous with the term object pro-
gram, which is comprised of the ITV, the object-
time TV, the information contained in the Core
Image Header Record, the in-core code, and
all LOCALs, NOCALs, and SOCALs.

Cylinderize: The process of rounding a disk block/
sector address up to the disk block/sector ad-
dress of the next cylinder boundary.

Data block: A group of words consisting of a data
header, data words, and Indicator Words for a
routine in Disk System format. A new data
block is created for every data break. (A data
break occurs wheneve • 	is an ORG, BSS,
or BES statement, at Lhe end of each record,
and whenever a new sector is required to store
the words comprising a routine.)

Data break: Sometimes referred to as a break in
sequence. See "Data block" for a definition of
this term.

Data file: An area in either the User Area or the
Fixed Area in which data is stored.

Data format: The format in which a Data file is
stored in either the User Area or the Fixed Area.

Data group: A group of not more than nine data
words of a routine in Disk System format. In this
format every such group has as its first word an
associated Indicator Word. Normally a data
group consists of eight data words plus its In-
dicator Word; but, if the data block of which the
data group is a part contains a number of
data words which is not a multiple of eight, then
the last data group will contain less than nine
data words.

Glossary 89

.11M7'71!,	 ..."'	 """,M1"111'' Cr,	".""1' .." ".•.'"'"'",^44/!'"FIRer11111,1"	 11,911111411",' PRNIPP I WNW' I,'	 ."

Data header: The first pair of words in a data block
for a routine in Disk System format. The first
word contains the loading address of the data
block, the second the total number of words
contained in the data block.

DCOM (the Disk Communications Area): The disk
sector which contains the work areas and par-
ameters for the Monitor Programs. It is used
to initialize COMMA by the Cold Start Routine
and at the beginning of each JOB (see "COMMA").

Disk block: A 20-word segment of a disk sector.
Thus, sixteen disk blocks comprise each sector.
The disk block is the smallest distinguishable
increment for DSF programs. Thus the Monitor
System permits packing of DSF programs at
smaller intervals than the hardware would other-
wise allow. The disk block is also referred to
elsewhere as the "disk byte".

Disk System format: Sometimes abbreviated DSF.
It is the format in which mainlines and subroutines
are stored on the disk as separate entities. It
is not possible to (xe nute a program in DSF;
it must first be corn- rted to Core Image format.

Disk System format program: A program which is
in Disk System format. It is sometimes called a
DSF program.

Entry point: A term which may give rise to confusion
unless the reader is careful to note the context
in which this term appears. Under various
conditions it is used to denote (1) the symbolic
address (name) of a place at which a subroutine
or a Monitor Program is entered, (2) the absolute
core address at which a subroutine or mainline
is to be entered, and (3) the address, relative to
the address of the first word of the subroutine,
at which it is to be entered.

Fixed area: The area on disk in which core loads
and data files are stored if it is desired that they
always occupy the same sectors. No routines
in Disk System format may be stored in this area.

FORTRAN core load: A core load which was built
from a mainline written in FORTRAN.

IBM Systems area: That part of disk storage which
is occupied by the Monitor Programs, i.e. ,
cylinders 0-33 (sectors 0-271),

ILS (an Interrupt Level Subroutine): A routine which
services all interrupts on a given level; i.e. , it
determines which device on a given level caused
the interrupt and branches to a servicing routine
(ISS) for processing of that interrupt. After this
processing is complete, control is returned to
the ILS, which turns off the interrupt.

Indicator Word: Tells which of the following data
words should be incremented (relocated) when
relocating a routine in Disk System format. It
also tells which are the names in LIBF, CALL,
and DSA statements. Routines which are in Disk
System format all contain Indicator Words, pre-
ceding every eight data words. Each pair of bits
in the Indicator Word is associated with one of
the following data words, the first pair with the
first data word, etc.

Instruction address register: Also called the I-
counter. It is the register in the 1130 which
contains the address of the next sequential
instruction.

In-core routine: A part of a given core load which
remains in core storage during the entire execu-
tion of the core load. 1LSs are always in-core
routines, whereas LOCALs and SOCALs never
are.

ISS (an Interrupt Service Subroutine): A routine which
is associated with one or more of the six levels
of interrupt; i.e. , CARDO, which causes inter-
rupts on two levels, is such a routine.

Job: A group of tasks (subjobs) which are to be per-
formed by the 1130 Disk Monitor System and
which are interdependent; i.e., the successful
execution of any given subjob (following the first
one) depends upon the successful execution of
at least one of those which precedes it. See the
section on the Supervisor for examples.

LET/FLET (the Location Equivalence Table for the
User Area/ the Location Equivalence Table for
the Fixed Area): The table through which the
disk addresses of programs and data files stored
in the User Area/Fixed Area may be found. LET
occupies the cylinder following the Supervisor
Control Record Area. If a Fixed Area has been
defined, FLET occupies cylinder 34 (sectors
272-279); otherwise, there is no FLET.

90

LIBF routine. A routine which must be referenced
with an LIBF statement. The type codes for
routines in this category are 3 and 5.

LIBF TV: The transfer vector through which LIBF
routines are entered at execution time. See the
section on the Loader for a description of this TV.

Loading address: The address at which a routine or
data block is to begin. In the latter case the ad-
dress is that of an absolute core location, while
in the former it is either absolute or relative,
depending upon whether the routine is absolute
or relocatable, respectively.

LOCAL (load-on-call routine): That part of an object
program which is not always in core. It is read
from Working Storage into a special overlay area
in core only when it is referenced in the object
program. LOCALs, which are specified for any
given execution by the User, are a means of
gaining core storage at the expense of execution
time. The Loader constructs the LOCALs and all
linkages to and from them.

Location assignment counter: A counter maintained
in the Assembler program for assigning addresses
to the instructions it assembles.

Modified EBCDIC code: A six-bit code used internally
by the Monitor programs. In converting from
EBCDIC to Modified EBCDIC, the leftmost two
bits are dropped.

Modified Polish Notation: The rearrangement of oper-
ators and operands (i. e. , an operator and two
operands) into the triple form required by the
FORTRAN Compiler to generate the code neces-
sary to perform arithmetic operations.

Monitor Program: One of the following parts of the
1130 Disk System Monitor: Supervisor (SUP),
Disk Utility Program (DUP), Assembly Program
(ASM), and FORTRAN Compiler (FOR).

NOCAL (a load-although-not-called routine): A
routine which is to be included in an object
program although it is never referenced in that
program by an LIBF or CALL statement. De-
bugging aids such as a trace routine or a dump
routine fall into this category.

Object program: Synonymous with the term core
load.

Object-time TV: A collection of both the LIBF TV
and the CALL TV.

Principal I/O device: The 1442 Card Read/Punch if
one is present; the 1134 Paper Tape Reader/
1055 Paper Tape Punch otherwise.

Principal print device: Sometimes referred to as
the Principal Printer. It is the 1132 Printer if
one is present; the Console Printer otherwise.

Program header record: A part of a routine stored
in Disk System format. Its contents vary with
the type of the routine with which it is associated.
It contains the information necessary, along with
information from LET, to identify the routine,
to describe its properties, and to convert it from
Disk System format to a part of a core load.

Relocatable program: A program which can be exe-
cuted from any core location. Such a program is
stored on the disk in Disk System format.

Relocation: The process of adding a relocation factor
to address constants and to those two-word
instructions whose second words are not (1)
invariant quantities, (2) absolute core addresses,
or (3) symbols defined as absolute core addresses.
The relocation factor for any program is the
absolute core address at which the first word of
that program is found.

Relocation indicator: The second bit in a pair of bits
in an Indicator Word. If the data word with which
this bit is associated is not an LIBF, CALL, or
DSA name, then it indicates whether or not to
increment (relocate) the data word. If the re-
location indicator is set to 1, the word is to be
relocated.

Sectorize: The process of rounding a disk block
address up to the disk block address of the next
sector boundary.

Skeleton supervisor: That part of the Supervisor
which is always in core (except during the execu-
tion of FORTRAN core loads) and which is,
essentially, the logic necessary to process CALL

Glosary 91

• ■fo-, ■••	"1' """ " .."."'"."'"IWOM/111,.1,.1!.1.1101,11 WC ,	IPP,

EXIT and CALL LINK statements. Together with
COMMA it occupies core locations 3810-14410.

SOCAL (a System Overlay to be loaded-on-call): One
of three overlays automatically prepared by the
Loader under certain conditions when a core
load is too large to fit into core storage. See
the section on the Loader for an explanation.

Subroutine: Used in the 1130 Disk Monitor System
interchangeably with the term subprograms,
routine, and program. Any distinctions between
these terms will have to be inferred from the
context.

Supervisor control record area: The area in which
the Supervisor Control Records are written.
This area is the cylinder following the CIB.
The first two sectors are reserved for *LOCAL
records, the next two for *NOCAL records and
the next two for *FILES records. The last two
sectors in this cylinder are not utilized. See
the Supervisor section for the formats of these
records.

The Monitor: Refers to the 1130 Disk System
Monitor.

(i.e. , programs in Core Image format) and Data
files may also be stored in this area. All IBM-
supplied routines are found here, since they are
stored in Disk System format. This area begins
at the cylinder following LET and occupies as
many sectors as are required to store the rou-
tines and files residing there.

User programs: Are mainlines and subroutines
which have been written by the user.

User storage: That part of disk storage which is
neither Working Storage nor the IBM Area.
It begins at cylinder 34 (sector 272), which
would be the beginning of the CIB unless a
Fixed Area is defined. In this case FLET
would occupy cylinder 34 (sectors 272-279),
the Fixed Area would begin at cylinder 35
(sector 280), and the CIB would occupy the first
two cylinders following the Fixed Area, the
length of which is defined by the user.

Working storage: The area on disk immediately fol-
lowing the last sector occupied by the User
Area. This is the only one of the three major
divisions of disk storage (IBM Area, User
Storage, Working Storage) which does not begin
at a cylinder boundary.

User area: The area on the disk in which all routines	 XR1, XR2, XR3: The acronyms for index registers
in Disk System format are found. Core loads 	 1, 2, and 3, respectively.

92

APPENDDC L. DECIMAL AND HEXADECIMAL DISK ADDRESSES

SECTOR
.9008055

SECTOR
A004155

01.0400
A004155

CYLINDER
A001005

SECTOR	
SADDRESS	 A=	

CYLINDER

{ASE 10 AAA 16 0.95E 10 EASE 16 BASS 10 SASE 16 BASE 10 EASE 16

•0000 0000 .00003 0000 .00800 0320 .03100 0064
.03038 0008 •00001 0001 •00808 0328 .00101 0065
.00016 0010 •000012 0002 .00816 0330 .00102 0066
.00024 0018 400003 0003 400824 0338 •00103 0067
•00032 00620 .01004 0004 .00832 0340 .00104 0068
.00340 0028 .00005 0005 .00840 0348 .00105 0069
•0048 0030 .00006 0006 .00848 0350 •0106 0064
.00056 oma •00007 0007 .00856 0158 .00107 0068
.00064 0040 00008 0008 00864 0360 .00108 006C
013072 0048 +00009 0009 .00872 0368 .00109 0060
03080 0050 •00010 000A .03880 0370 .00110 006E
.00088 0058 •3011 0008 .00888 0378 .00111 006E
.00096 0060 .00012 000C '00896 0380 .00112 0070
.00104 0068 .00013 0000 .00904 03E18 .00113 0071
.00112 0070 •00014 0001 .00912 0390 .00114 0072
.00120 0078 •00015 000E .00920 0398 .00115 0073
.00128 0080 .00016 0010 .00928 0340 •30116 0074
.00136 0088 •0017 0011 030936 0148 •00117 0075
.00144 0090 .00018 0012 .00944 0380 •30118 0076
•00152 0098 .00019 0013 .00952 0388 •30119 0077

02 .00160 0040 .420020 0014 .00960 03(0 .00120 0078
.00168 00.98 •00021 0015 •00968 03C8 .00121 0079
.03176 0080 •03022 0016 .00976 0300 .00122 0074
.00184 0088 .00023 0017 .00984 0308 .00123 0078
.03192 0000 .00024 0018 *03991 03E0 •0124 007C
.00200 OMB .00025 0019 01030 03E8 .00125 0070
.00208 0000 .00026 001A •01008 03E0 •00126 0071
.00216 0008 .00027 0018 .01016 03E8 .00127 0374
.00224 00E0 •03028 001C .01024 0400 •00128 0080
• 0232 00E8 .00029 0010 .01032 0408 .00129 0081
.00240 00E0 .00030 0011 .01040 0410 .00130 0082
.00248 0008 •00031. 0010 .01048 0418 .00131 0083
• 0256 0100 •3032 0020 .01056 0420 .00132 0084
•00264 0108 •00033 0021 401064 0428 •00133 0085
.03272 0110 *00034 0022 .01072 0430 •00134 0086
.00280 0118 •00035 0023 .01080 0438 00/35 0087
.00288 0120 •00036 0024 .01088 0440 •00136 0088
.00296 0128 .00037 0025 .01096 0448 •00137 0089
.00304 0130 •0038 0026 '01104 0450 •00138 008A
•00312 0138 .00039 0027 .01112 0458 .00139 0080
.00320 0140 .00040 0038 031120 0460 •00140 0080
.00328 0148 .00041 0029 001128 0468 •00141 0080
•20336 0150 •00042 0024 .01136 0470 •00142 008E
•0344 0158 .00043 0028 •01144 0478 .00143 0084
.00352 0160 •3044 002C •01152 0480 *00144 0090
.00360 0168 .00045 0020 •01160 0488 •00145 0091
•30368 0170 •00046 0029 •01168 0490 •03146 0092
•00376 0178 .00047 0020 .01176 0498 •0147 0093
•20384 0180 •00048 0030 •01181 0440 .00148 0094
•0342 0188 •03049 0031 .01192 04.98 •00149 0095
•00400 0190 •03050 0032 031200 0480 •30150 0096
•0408 otos •00051 0033 .01208 0498 •0151 0097
•00416 0140 .00052 0034 •01216 04(0 •00157 0098
•0424 0140 .00053 0035 •01224 0408 .00153 0099
.00432 0100 •00054 0036 .01232 0400 •30154 009A
.00440 0)88 •0055 0037 •0240 0408 •00155 0098
.00448 OICO •00056 0038 •01248 04E0 •00156 009(

.02456 01(8 •00057 0039 .01256 04E8 •00157 0090

.00464 0100 .00058 0034 .01264 04E0 •00158 009E
.00472 0108 •00059 00311 .01272 0408 •00159 NYW
.00480 01E0 •00000 003C .01280 0500 .00160 0040
.00488 008 •00061 0030 .01288 0508 •00161 0041
•00496 000 •0162 0031 •0296 0510 •00162 0042
.00504 4008 •00063 0039 .01304 0518 •00163 0043
•00512 0200 .00364 0040 •01312 0520 .00164 00.44
•00501 0208 •00065 0041 •1320 0528 .00165 0045
•00528 0210 •0066 0042 .01328 0530 .00166 0046
•00536 0218 •00067 0043 •01336 0538 .00167 0047
020544 0220 .00068 0044 •01344 0540 •30168 0048
.00552 0228 •00069 0045 .01352 0548 .00169 0049
•00500 0230 •00070 0046 .01360 0550 •0170 00AA
•00566 0238 .00071 0047 •01368 0558 030171 00.4E
.00576 0240 .00072 0048 .0t776 OW .00172 0044
• 00584 0248 •000'1 0049 •1364 0568 •00173 0016.0

43. .00502 0250 •00074 0044 •01392 0570 •00)74 004E
•00000 0258 •00015 0048 •01400 0578 •00175 00A0
•00608 0260 •0076 004C .01408 0580 •00176 0080
.00616 0268 .00074 0040 •(416 0588 .00177 0081
.00624 0270 .002'8 0041 .01424 0590 .00178 0082
.00632 0118 •)049 EINE .01432 0598 •0179 0083

•00640 0280 •00080 0050 •01440 0540 •00180 0084
• 00648 0188 •0008t 0051 .01448 0548 .3081 0085
.00656 0290 .00042 005/ •01456 0500 •00182 0086
.00E44 0298 •00083 0053 .01464 •0588 •00183 0087
•00672 0240 •OOAA 0054 .01472 0500 •00184 0088
•03680 0248 .00085 0055 .01480 0508 •00185 0089
.00688 0280 •00086 0056 .01488 0500 •00186 0064
•00090 0208 •00087 0057 •1496 0508 •0187 0089
•03704 CICO •0008 0058 .01504 05E0 .00188 008(
.00712 02(8 •00089 0059 •01512 05E8 .00189 0080
. 03720 0200 •2093 0054 .0520 05E0 •0190 0089
•00728 0208 •00091 0058 .01528 0598 .00191 008E
• 3736 02E0 •0092 005(•01536 0600 .00192 09(0
•0744 02E8 •00093 0050 •1544 0608 .0003 00(1
.00752 0290 •3094 005E .01552 0610 .00194 0002
•00760 0208 •0355 005E •31560 0618 •00195 0003
.00768 0300 •00096 0060 •0568 0620 .00196 00(4
.00776 0308 .0009/ 0061 .01576 0628 •3197 00(5
•0784 0310 •00093 0062 .01584 0630 000198 0006
.00792 0318 •00099 0063 .01592 0638 •0150 00(7

Appendix L. Decimal and Hexadecimal Disk Addresses 93

-n, mom! 19119 	 ! pm 	 97	 wm,1,1 !I I ,	 III	 n

INDEX

Adding and removing subroutines 39
ARITHMETIC TRACE, FORTRAN control record 33
ASM, monitor control record 9
Assembler 26

control records 26
error detection codes 29
messages and error codes 29
operating procedures (card) 29
operating procedures (paper tape) 30
origin of source program 28
paper tape format 28

Assembler control records 26
COMMON 28
FILE 28
LEVEL 28
UST 27
UST DECK 27
LIST DECK E 27
PRINT SYMBOL TABLE 27
PUNCH SYMBOL TABLE 28
SAVE SYMBOL TABLE 28

SYSTEM SYMBOL TABLE 28
TWO PASS MODE 26

Assembler error messages (Table A-7) 52

Card Data format (CDD) 61
Card subroutine errors (CARDO and CARD1) 36
Card System format (CDS) 59
Character codes, Supervisor and DUP	 (Appendix D) 64
Cold start

halt addresses (Table 13) 44
operating procedure, card 44
operating procedure, paper tape 46

Cold start operating procedures (cards) 44
Cold start operating procedures (paper tape) 46
COMMA (In-Core Communications Area) 7

core locations (Appendix F) 70
Comments, Monitor control record 10
COMMON, assembler control record 28
Common Arith/Funct calls (Appendix E) 66
Common Arith/Eunct LIEWs (Appendix E) 67
Common FORTRAN calls (Appendix E) 65
Compilation error messages 35
Compilation messages 34
Console Printer Core Dump 78
Console Printer Disk Dump 79

Console printer subroutine errors (TYPEO and WRTYO) 38
Control records

Assembler 26
DUP 17
FORTRAN 32
Monitor 7
Supervisor 10

Conversion factors, disk storage unit 63

Conversion routines (Appendix E) 68
Core image buffer (C113) 4
Core Image format

format (Appendix B) 59
loading 16

Data cards (Card System format) 60
Data formats (Appendix B) 57

Card Data (CDD) 61
Card System (CDS) 59
Disk Core Image (DCI) 59
Disk Data (DDF) 59
Disk System (DSF) 57
Paper Tape Data (MD) 61
Paper Tape System (PTS) 61
Print Data (PRA) 61

DCOM (Disk Communications Area) 7
DEFINE, DUP control record 23
DELETE, DUP control record 23
Disk Communications Area (DCOM) 7
Disk Core Image format (DCI) 59

Disk Data format (DDF) 59
Disk dump routines

Console Printer Disk Dump 79
1132 Printer Disk Dump 79

Disk FORTRAN I/O (Appendix E) 66

Disk Pack Initialization Routine (DPIR) 40
Disk storage allocation (Table 1) 3
Disk storage layout 3
Disk storage unit conversion factors 63
Disk system format (DSF)

format (Appendix B) 57
loading 16

Disk Utility Program (DUP) 17
control records 17
error messages (Table A-9) SS
messages 24
operating notes 25

DPIR card load operating procedures 40
DPIR paper tape load operating procedures 45
DUMP, DUP control record 18
DUMPDATA, DUP control record 18

DUMP1FT, DUP control record 22
DUP, monitor control record 10
DUP control records 17

DEFINE 23
DELETE 23
DUMP 18

DUMPDATA 18
DUMPLET 22
DWADR 22
EDIT 24

94

STORE 20
STORECI 20
STOREDATA 21
STOREMOD 20

DUP error messages (Table A-9) SS
DUP operating notes 25
DUP waits and loops (Table A-bo) 56
DWADR, DUP control record 22

EOP card (Card System format) 60
Error messages (Appendix A) 47

Assembler (Table A-7) 47
DUP (Table A-9) 55
DUP Waits and Loops (Table A-10) 56
FORTRAN (Table A-8) 53
FORTRAN I/O (Table A-11) 56
IBM® 77
Loader (Table A-6) 50
Monitor Supervisor (Table A-4) 48
Monitor Supervisor Wait Locations (Table A-5) 49
System Loader-(Table A-I) 47
System Loader Wait Locations, Part 1 (Table A-2) 48
System Loader Wait Locations, Part 2 (Table A-3) 48

Extended Aritia/Funct calls (Appendix E) 65
Extended Ari th/Funct LI BEs (Appendix E) 67
EXTENDED PRECISION, FORTRAN control record 33

FILE, assembler control record 28
File protection 5
FILES, supervisor control record 11
Fixed area 5
Fixed Location Equivalence Table (FLET) 5
FLET (Fixed Location Equivalence Table) 5

layout of LET/FLET entries (Appendix C) 74
output format (Figure 8) 23

Flipper routine S
FOR, monitor control record 9
Formats (Appendix B) 57
FORTRAN common LIBEs (Appendix E) 66
FORTRAN compiler 32

compilation error messages 35
compilation messages 34
control records 32
I/O logical unit designations (Table 8) 32
printouts 34

FORTRAN control records 32
ARITHMETIC TRACE 33
EXTENDED PRECISION 33
IOCS 32
LIST ALL 33
LIST SOURCE PROGRAM 32
LIST SUBPROGRAM NAMES 32
LIST SYMBOL TABLE' 32
NAME 33
ONE WORD INTEGERS 33
TRANSFER TRACE 34

FORTRAN error codes (Table A-8) 53
FORTRAN find routine (Appendix E) 66
FORTRAN I/O and conversion routines (Appendix E) 66
FORTRAN I/O errors 35. 1

FORTRAN I/O error codes (Table A-II) 56
FORTRAN I/O logical unit designations 32
FORTRAN sign transfer calls (Appendix E) 65

FORTRAN trace routines (Appendix E) 66

Header information, FORTRAN 33

IBM systems area 3
IBM00 (1130 Disk Monitor System Maintenance Program) 75
ILS header card (Card System format) 61
In-Core Communications Area (COMMA) 7

core locations (Appendix F) 70
Initializing Disk Monitor System from cards 43
Initializing Disk Monitor System from paper tape 45
Interrupt level subroutines (Appendix E) 68
Interrupt service subroutines (Appendix E) 68
I/0 logical unit designations, FORTRAN 32
IOCS, FORTRAN control record 32
ISS header card (Card System format) 61

JOB, monitor control record 9

Keyboard input of data records 35.1
Keyboard subroutine functions (TYPEO) 38

Layout of LET/FLET entries (Appendix G) 74
LET (Location Equivalence Table) 4

layout of LET/FLET entries (Appendix G) 74
output format (Figure 7) 22

LEVEL, assembler control record 28
LIST, assembler control record 27
LIST ALL, FORTRAN control record 33
11ST DECK, assembler control record 27
LIST DECK E, assembler control record 27
LIST SOURCE PROGRAM, FORTRAN control record 32
LIST SUBPROGRAM NAMES, FORTRAN control record 32
UST SYMBOL TABLE, FORTRAN control record 32
Load Mode Control Card 41
Loader 12
Loader messages/error messages (Table A-6) SO
LOCAL, supervisor control record 10
Location Equivalence Table (LET) 4
Logical unit designations (FORTRAN I/0) 32

Machine requirements ii
Mainline header card (Card System format) S9
Monitor control record analyzer 7
Monitor control records 7

ASM 9
Comments 10
DI IP 10
OR 9

JOB 9
PAUS 9
TEND 10
TYP 9
XEQ 10

Monitor supervisor error messages (Table A-4) 48
Monitor supervisor wait locations (Table A-5) 49

NAME, FORTRAN control record 33
NOCAL, supervisor control record 11
Non-disk FORTRAN format I/O (Appendix E) 66

Object-time transfer vector 15
ONE WORD INTEGERS, FORTRAN control record 33

Index 95

711 , 111111,11 I 	 PAW,	 P11"19/10111T1.111,,,, HMI", ISM' F 	 Il Ngn	 I	 1111 '	 Iln I 1 	 4 411 1! ' 11 ' 11 941W ',Iliu m ! lump feel.' m Imp	 !!!!1!!! !IF! •'' fl 111110=	 I	 .16111111111111111111.11iiipp110110 ,11,1111,11 hh 11 0.1.111111 1 11111.111.11411,411 TIP II'

Operating procedures
cold start (cards) 44
cold start (paper tape) 46
Console Printer Core Dump 78
Console Printer Disk Dump (card) 79
Console Printer Disk Dump (paper tape) 80
DPIR card load 40
DPIR paper tape load 45

IBM00 77
initializing Disk Monitor System from cards 43
initializing Disk Monitor System from paper tape 45
Paper Tape Reproducing routine 80
Paper Tape Utility routine (PTUTL) 81
system generation (card system) 40
1132 Printer Core Dump 78
1132 Printer Disk Dump (card) 79
1132 Printer Disk Dump (paper tape) 80

Optional tracing (FORTRAN) 34
Origins for core loads 13
Overlay routines for LOCAL subprograms (Appendix E) 66

Paper tape control records 46

Paper Tape Data format (PTD) 61
Paper tape monitor system 45
Paper tape not-ready WAITs 82

Paper Tape Reproducing routine 80
Paper tape subroutines (PAPT) 39
Paper Tape System format (PTS) 61
Paper Tape Utility routine (PTUTL) 81
Patch header record (IBM00) 76
PAUS, monitor control record 9
Pre-operative errors (subroutine library) 36
Print Data format (PRD) 61
PRINT SYMBOL TABLE, assembler control record 27

Program header record (Disk System format) 57
Program subtypes 58.
Program types 58
PTUTL (Paper Tape Utility routine) 81
PUNCH SYMBOL TABLE, assembler control record 28

REQ Cards 42

Sample program output 79
SAVE SYMBOL TABLE, assembler control record 28
SCON Card 42 4
Skeleton Supervisor- 7

SOCALs (system overlays) 15
Stacked input arrangement 12
Standard Arith/Funct calls (Appendix E) 65
Standard Arith/Funct LIBEs (Appendix E) 67
STORE, DUP control record 20
STORECI, DUP control record 20
S'TOREDATA, DUP control record 21
STOREMOD, DUP control record 21

Subroutine header card (Card System format) 60
Subroutine header record (IBM00) 77
Subroutine library 5, 36

listing (Appendix E) 6S
maintenance 76

Subtype codes 58
Supervisor and DUP I/O character codes (Appendix D) 64
Supervisor control record area 4
Supervisor control records 10

FILES 11
LOCAL 10
NOCAL 11

Supervisor program 3, 7
System Configuration Deck 42
System generation (card system) 40
System loader error codes (Table A-1) 47
System loader wait location; Part 1 (Table A-2) 48
System loader wait locations, Part 2 (Table A-3) 48
System overlays (SOCALs) 15
System program maintenance (IBM00) 75
SYSTEM SYMBOL TABLE, assembler control record 28

TEND, monitor control record 10
TERM Card 42
TRANSFER TRACE, FORTRAN control record 34
Tracing (FORTRAN) 34
TWO PASS MODE, assembler control record 26
TYP, monitor control record 9
Type codes 58

User area 4
User storage area 4
User-supplied cards 41
Utility calls (Appendix E) 65
Utility routines (Appendix I) 78

Console Printer Core Dump 78
Console Printer Disk Dump 79
Disk Pack Initialization Routine (DPIR) 40
Paper Tape Reproducing routine 80
Paper Tape Utility routine 81
1132 Printer Core Dump 78
1132 Printer Disk Dump 79

Working Storage area 5
Working storage indicator word 17

XEQ, monitor control record 10

1130 Disk Monitor System Maintenance Program IBM00) 75
1130 subroutine library listing (Appendix E) 65
1132 Printer Core Dump 78
1132 Printer Disk Dump 79
1442 Errors and Operator Procedures (CARDO and CARDI) 36

96

5 0
Nell 11.1111.6.1111IFINI	 WI. le.	 WI grpo.cmoppra,• o,pppic•Tp 	 vppi p.11oilipRoppipui rm.! 411%,•!...,P•11•WIRIR....10.. • .I" 111Ple11.14111 111111

GC26-3750-3

UMW ANIM

NM

.1= ■ IMO
IMN

a am
•

International Business Machines Corporation
Data Processing Division
1133 W4tchester Avenue, White Plains, NY: 10604

IBM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., U.S.A. 10591

IBM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avernie, White Plains, N.Y., U.S.A. 10601

9

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106

