
File Number 1130-30
Order Number GC26-5929-8

Systems Reference Library

IBM 1130 Subroutine Library

Ninth Edition (May 1974)

This is a reprint of GC26-5929-7 incorporating changes released in the following newsletter GN34-0182.

This edition applies to version 2, modification 12 of IBM 1130 Disk Monitor System and to all subse-
quent modifications until otherwise indicated in new editions or Technical Newsletters. Changes are
continually made to the specifications herein; beforeusing this publication in connection with the
operation of IBM systems, consult the latest SRL Newsletter, Order No. GN20-1130, for the editions
that are applicable and current.

Text for this manual has been prepared with the IBM Selectric® Composer.

Requests for copies of IBM publications should be made to your IBM representative or the IBM branch
office serving your locality.

A form for readers' comments is provided at the back of this publication. If the form has been removed,
send your comments to IBM Corporation, Systems Publications, Department 27T, P. 0. Box 1328, Boca
Raton, Florida 33432. Comments become the property of IBM.

©Copyright International Business Machines Corporation 1965, 1966, 1967, 1968, 1969, 1970, 1972

2

Preface

The publication describes how the
programmer can use the IBM 1130 library
subroutines to increase the efficiency of
his programs and decrease his writing and
testing time. The libraries include the
following programs:

• Interrupt Level Subroutines.
• Interrupt Service Subroutines.
• RPG Subroutines.
• FORTRAN I/O Subroutines.
• Data Code Conversion Subroutines.
• Arithmetic and Functional Subroutines.
• Selective Dump Subroutines.
• Utility Programs.

The subroutines are available for use
with the 1130 Assembler, the 1130 FORTRAN
Compiler, and the 1130 RPG Compiler. The
Utility Programs are executable under
Monitor control.

In Assembler language, the user calls
the subroutines via a calling sequence.
The appropriate subroutine calls are
generated by the FORTRAN Compiler whenever
a read, write, arithmetic, or CALL
statement is encountered. The RPG Compiler
generates the appropriate subroutine
linkages. This publication describes each
subroutine and the required calling
sequence. All subroutines in the 1130
libraries are included in the lists that
appear in Appendix A.

It is assumed that the reader is
familiar with the methods of data handling
and the functions of instructions in the
IBM 1130 Computing System. He must also be
familiar with the Assembler or Compiler
used in conjunction with the subroutines.
The following IBM publications provide the
prerequisite information:

IBM 1130 Functional Characteristics,
Order No. GA26-5881.
IBM 1130 Operating System, Order No.
GA26-5717.

IBM 1130 Assembler Language, Order No.
GC26-5927.
IBM 1130/1800 Assembler Language,
Order No. GC26-3778.
IBM 1130/1800 Basic FORTRAN IV Language,
Order No. GC26-3715.

IBM 1130 RPG Specifications, Order No.
GC21-5002.

The operating procedures manuals for the
programming systems also provide
information on subroutine usage. These
manuals are:

IBM 1130 Card/Paper Tape Programming
System Operator's Guide, Order No.
GC26-3629.

IBM 1130 Disk Monitor System, Version 2,
Programmer's and Operator's Guide, Order
No. GC26-3717.

MACHINE CONFIGURATION

The use of the library subroutines requires
the following minimum machine
configuration:

IBM 1131 Central Processing Unit with
4096 words of core storage.

IBM 1442 Carl Read Punch, or IBM 1134
Paper Tape Reader with IBM 1055 Paper
Tape Punch.

Note: RPG, available only with the DM2
system, requires 8192 words of core
storage.

In addition, the following input/output
units and features can be controlled by
the input/output subroutines.

Console Printer/Keyboard
Single Disk Storage
1132 Printer
1627 Plotter
1403 Printer (DM2 only)
2310 Disk Storage (DM2 only)
2311 Disk Storage (DM2 card system only)
2501 Card Reader (DM2 only)
1231 Optical Mark Page Reader (DM2 only)
Synchronous Communications Adapter (DM2

only)
Plotter subroutines are described in IBM

1130/1800 Plotter Subroutines, Order No.
GC26-3755.

SCA subroutines are described in IBM
1130 Synchronous Communications Adapter
Subroutines, Order No. GC26-3706.

3

Contents

7	 CARDZ - 1442 Card Read Punch I/O
Subroutine 	 71

8	 PAPTZ - 1134/1055 Paper Tape Realer
8	 Punch I/O Subroutine 	 71
8	 PRNTZ - 1132 Printer Output
8	 Subroutine 	 71

INTRODUCTION 	

INTERRUPT SERVICE SUBROUTINES 	
ISS Characteristics 	
Methods of Data Transfer 	
Interrupt Processing 	
ILS Operation 	 9
ISS Operation 	
General Error-Handling Procedures 	 12 I

Basic ISS Calling Sequence 	
Assignment of Core Storage Locations
 (C/PT System) 	
Assignment of Core Storage Locations
(DM2 System) 	
Descriptions of Interrupt Service
Subroutines 	

1442 Card Read Punch Subroutines
(CARDO and CARD1) 	
2501 Card Reader Subroutines (READO
and READ1) 	
1442 Card Punch Subroutines (PNCHO
and PNCH1) 	 22
Disk Subroutines (C/PT
System) 	 24
Disk Subroutines (DM2 System) . . . 	 28
DISKZ - Disk I/O Subroutine 	 32
1132 Printer Subroutine (PRNT1) . . 	 33
1132 Printer/Synchronous
Communications Adapter Subroutine
(PRNT2) 	 35
1403 Printer Subroutine (PRNT3) .	 	 36
Keyboard/Console Printer 	 38
Paper Tape Subroutines (C/PT
System) 	 40
Paper Tape Subroutines (DM2 System) 	 42
Plotter Subroutine (PLOT1) 	 44
Plotter Subroutine (PLOTX) 	 45
1231 Optical Mark Page Reader
Subroutine (OMPR1) 	 46
2250 Display Unit Model 4 I/0
Subroutine (DSPYN) 	 48

RPG SUBROUTINES (DM2 SYSTEM) 	 49
Disk File Management Subroutines (DM2
System) 	 49
Disk I/O Subroutines 	 49
File Organization 	 49
File Processing 	 49
Sequentially Organized Disk Routines 50
Indexed Sequential Organized (I SAM)
Disk Routines 	 53
RPG Object Time Subroutines 	 66

1SUBROUTINES USED BY FORTRAN
(C/PT SYSTEM) 	 70
General Specifications 	 70
Error Handling 	 70
Descriptions of I/O Subroutines . . 70
TYPEZ - Keyboard/Console Printer I/O
Subroutine 	 71
WRTYZ - Console Printer Output
Subroutine 	 71

DATA CODE CONVERSION SUBROUTINES . . . 	 76
Descriptions Of Data Codes 	 76
Hexadecimal Notation 	 76
IBM Card Code 	 77
Perforated Tape And Transmission Code
(PTTC/8) 	 77
Console Printer Code 	 77
Extended Binary Coded Decimal
Interchange Code (EBCDIC) 	 78
1403 Printer Code 	 78

Conversion Subroutines 	 78
BINDC 	 79
DCBIN 	 80
BINHX 	 80
HXBIN 	 81
HOLEB 	 81
SPEED 	 82
PAPEB 	 83
PAPHL 	 85
PAPPR 	 86
HOLPR 	 87
EBPRT 	 88
BIDEC 	 89
DECBI 	 90
ZIPCO 	 90

ARITHMETIC AND FUNCTIONAL SUBROUTINES 	 93
Real Data Formats 	 93
Real Number Pseudo Accumulator . . . 	 94
Calling Sequences 	 94
Arithmetic And Functional Subroutine
Error Indicators 	 98

Functional Subroutine Accuracy 	 100
Extended Precision Subroutines . . . 	 100

14 SUBROUTINES USED BY FORTRAN (DM2
SYSTEM) 	 73

16	 General Specifications (Except DISKZ) 73
Error Handling 	 73

17	 Descriptions Of I/O Subroutines . . 	 73
IYPEZ - Keyboard/Console Printer I/O

19	 Subroutine 	 74
WRTYZ - Console Printer Output

19	 Subroutine 	 74
CARDZ - 1442 Card Read Punch I/O

21	 Subroutine 	 74
PAPTZ - 1134/1055 Paper Tape Reader
Punch I/O Subroutine 	 74
PRNTZ - 1132 Printer Output
Subroutine 	 74
PNCHZ - 1442 Output Subroutine . . . 	 75
READZ - 2501 Input Subroutine . . . 	 75
PRNZ - 1403 Printer Subroutine . . . 	 75

5

Standard Precision Subroutines . .
Elementary Function Algorithms 	
Sine-Cosine 	
Arctangent 	
Square Root 	
Natural Logarithm 	
Exponential 	 104
Hyperbolic Tangent 	 105
Real Base to Real Exponent 	 105

SELECTIVE DUMP SUBROUTINES 	 106
Dump Selected Data On Console Printer
Or 1132 Printer 	 106
Dump Status Area 	 106

SPECIAL MONITOR SUBROUTINES 	 107

FLIPR (LOCAL/SOCAL Overlay) 	 107
RDREC (READ *ID Record) 	 107
CALPR (Call System Print) 	 107
FSLEN (Fetch Phase IDs and Fetch
System Subroutine) 	 107
SYSUP (DCOM Update) 	 107

SYSTEM LIBRARY MAINLINE PROGRAMS (242
SYSTEM) 	 109
Disk Maintenance Programs 	 109

APPENDIX A. LISTING OF SUBROUTINES . . .118

APPENDIX B. ERRORS DETECTED BY THE ISS
SUBROUTINES 	 130

APPENDIX C. SUBROUTINE ACIION ON
RETURN FROM A USER'S ERROR SUBROUTINE .132

APPENDIX D. CHARACTER CODE CHART133

APPENDIX E. CORE REQUIREMENTS OF
SUBROUTINES 	 137

APPENDIX F. EXECUTION TIMES OF
SUBROUTINES 	 139

APPENDIX G. RE-ENTERABLE CODE143
Re-enterable Code 	 143

Calling a Re-Enterable Subroutine . 	 144
Obtaining Temporary Storage	 144 1
Modifying Storage or Instructions . .144.2
1800 Compatibility 	 145

. .101	 Paper Tape Utility (PTUTL) 	 111
102
102 'WRITING ISS AND ILS (C/PT
103	 SYSTEM) 	 112
103	 Interrupt Service Subroutines 	 112
104 Interrupt Level Subroutines 	 112

INDEX 	 146

6

Figures

Figure 1. Call Portion of an ISS . . 11
Figure 2. Interrupt Response
Portion of an ISS 	 11
Figure 3. (C/PT System ISS
Names) 	 14
Figure 4. DM2 System ISS Names . . 	 15
Figure 5. ISS and ILS Core
Locations for the (C/PT
System) 	 17
Figure 6. ISS and ILS Core
Locations for the DM2 System	 . . . 18
Figure 7. Carriage Control
Operations for 1132 Printer . . , . 35
Figure 8. Carriage Control
Operations for 1403 Printer 38
Figure 9. PLOT1 Control Digits	 • . 45
Figure 10. PLOT1 Example 	 45
Figure 10.1 PLOTX Control Digits . 	 46
Figure 10.2 Space Utilization for
Various Size Records for Sequential
Files	 50	 1
Figure 11. Disk File Information
Table for Sequential Access 52
Figure 12. Disk File Information
Table for Direct Access 	 54
Figure 13. Format of an ISAM Label 	 55
Figure 13.1 ISAM Cylinder Index
Chart 	 57
Figure 13.2 Space Utilization for
Various Size Records for Indexed
Sequential Files. 	 58
Figure 14. Disk File Information
Table for ISAM Load (Part 1 of 2) . 59
Figure 15. Disk File Information
Table for ISAM Add (Part 1 of 2) . . 62
Figure 16. Disk File Information
Table for ISAM Sequential (Part 1
of 2) 	 64

Figure 17. Disk File Information
Table for ISAM Random (Part 1 of 2) 67
Figure 18. Hexadecimal Notation . . 77
Figure 19. PTTC/8 Code for the
Characters 1/ (if lower case) or
the Characters =? (if upper case) . 77
Figure 20. Types of Conversion . . . 79
Figure 20.1 System Library EBPT3 . 92
Figure 21. Arithmetic and
Functional Subroutines 	 95
Figure 22. (C/PT System)
ISS/ILS Correspondence	 	 112
Figure 23. (C/PT System)
Subroutine Library (Part 1 of 3) . .118
Figure 24. 1130 Disk Monitor
Version 2 System Library (Part 1
of 9)	 	 121
Figure 25. Core Requirements of
Arithmetic and Functional
Subroutines 	 137
Figure 26. Core Requirements of -
Miscellaneous and ISS Subroutines .138
Figure 27. Core Requirements of
Conversion Subroutines 	 138
Figure 28. Core Requirements of RPG
Subroutines (DM2 only) 	 138
Figure 29. Execution limes of
Conversion Subroutines 	 139
Figure 30. Execution Times of 1130
ISS (C/PT System) 	 140
Figure 31. Execution Times of 1130
ISS (DM2 System)	 	 141
Figure 32. Execution Times of
Arithmetic and Function
Subroutines 	 142
Figure 32.1 Modifying Storage or
Instructions	 	 144.2

6.1

Introduction

It is often necessary to repeat a group, or
block, of instructions many times during
the execution of a program (examples
include conversion of decimal values to
equivalent binary values, computation of
square roots, and the reading of data from
a card reader). It is not necessary to
write the instructions each time a function
is required. Instead, the block of
instructions is written once, and the main
program transfers to that block each time
it is required. Such a block of
instructions is called a subroutine.
Subroutines normally perform such basic
functions that they can assist in the
solution of many different kinds of
problems.

When a main program uses a subroutine
several times, which is the common
situation, the block of instructions
constituting the subroutine need appear
only once. Control is transferred from a
main program to the subroutine by a set of
instructions known as a calling sequence,
or basic linkage. A calling sequence
transfers control to a subroutine and,
through parameters, gives the subroutine
any control information required.

The parameters of a calling sequence
vary with the type of subroutine called.
An input/output subroutine requires several
parameters to identify an input/output
device, storage area, amount of data to be
transferred, etc., whereas an
arithmetic/functional subroutine usually
requires one parameter representing an
argument. Each calling sequence used with
subroutines in the 1130 system consists of
a CALL or LIBF statement (whichever is
required to call the specific subroutine),
followed by the DC statements that make up
the parameter list. The calling sequences
for the various subroutines in the
libraries are presented later in the
manual. Each subroutine is self-contained,
so that only those subroutines required by
the current job are in core storage during
execution.

In addition to the subroutines described
in this publication, subroutines are
available for use with the Disk Monitor
System, Version 2 that are not provided in
the system library for that version.

These subroutines are contained in the
following separately available programs:

• Graphic Subroutine Package, which
enables the FORTRAN IV or Assembler
language programmer to display images
in the form of lines, points, and
characters on the screen of a 2250
Model 4 Display Unit attached to the
1130 system. The program also
provides for communication between the
2250 operator and the user's program.
It is described in the publication IBM
1130/2250 Graphic Subroutine Package
for Basic FORTRAN IV, GC27-6934.

• Data Transmission Subroutines, which
enable the FORTRAN IV or Assembler
language programmer to transmit data
between a program being processed by
the Disk Monitor System Version 2 and
a program being processed by a remote
System/360 Operating System. These
subroutines permit an 1130 program to
use the high-speed computational
capability and large storage capacity
of the IBM System/360 Operating
System. Communication between the two
systems is accomplished in binary
synchronous mode via telecommunication
lines. The data transmission
subroutines are described in the
publication IBM System/360 Operating
System and 1130 Disk Monitor System:
System/360-1130 Data Transmission for
FORTRAN, GC27-6937.

• Satellite Graphic Job Processor, which
enables the user at a 2250 Model 4
Display Unit attached to the 1130 to
easily start the processing of related
programs in a remote System/360
Operating System. This allows the
2250 user to access the high-speed
computational capability and large
storage capacity of the IBM System/360
Operating System. Use of the
Satellite Graphic Job Processor
requires the data transmission
subroutines discussed in the preceding
paragraph. The Satellite Graphic Job
Processor is described in the
publication IBM System/360 Operating
System and 1130 Disk Monitor System:
User's Guide for Job Control from an
IBM 2250 Display Unit Attached to an
IBM 1130 System, GC27-6938.

Introduction 7

Interrupt Service Subroutines

The interrupt service subroutines (ISSs)
transfer data from and to the various
input/output devices attached to the
computer. These subroutines handle all the
details peculiar to each device, including
the usually complex interrupt functions,
and can control many input/output devices
at the same time by overlapping their
operations.

ISS Characteristics
To fully understand subsequent descriptions
of each ISS, the user should be familiar
with the following characteristics, which
are common to all ISSs:

• Methods of data transfer.

• Interrupt processing.

• ILS (interrupt level subroutine)
operation.

• ISS (interrupt service subroutine)
operation.

• general error-handling procedures.

• Basic calling sequence.

METHODS OF DATA TRANSFER

IBM 1130 I/O devices and their related
subroutines can be differentiated according
to their methods of transmitting and/or
receiving data.

Direct Program Control

Serial I/O devices operate via direct
program control, which requires a
programmed I/O operation for each word or
character transferred. A character
interrupt occurs whenever a character I/O
operation is completed. Direct program
control of data transfer is used for the
following system I/O devices: 1442 Card
Read Punch, 1442 Card Punch, 1134 Paper
Tape Reader and 1055 Paper Tape Punch,
Console Printer, Keyboard, 1132 Printer,
and 1627 Plotter.

Data Channel

Other system I/O devices operate via a data
channel, which requires an I/O operation
only to initiate data transfer. These
devices are provided with control
information, word counts, and data from the

user's I/O area. Once initiated, data
transfer proceeds concurrently with program
execution. An operation-complete interrupt
signals the end of an I/O operation when
all data has been transferred. All disk
drives, the 1403 Printer, and the 2501 Card
Reader operate via a data channel.

INTERRUPT PROCESSING

Interrupt processing is divided into two
parts, level processing and device
processing. The flow of logic in response
to an interrupt is: user program
interrupted, level processing begun, device
processing begun and completed, level
processing completed, and user program
continued.

Level Processing

Level processing consists of selecting the
correct device processing subroutine,
performing certain housekeeping functions,
and clearing the level by a BOSC
instruction when interrupt processing is
complete.

Level processing is done by the ILSs
(interrupt level subroutines). Entered by
interrupts, ILSs give temporary control to
device processing subroutines (ISSs) and
eventually return control to the user
program. The interrupt entrance address is
stored during the loading of a core load or
program, in the appropriate interrupt
branch address; location 8 for interrupt
level zero (ILS00), location 9 for
interrupt level one (ILS01),..., location
12 (/000C) for interrupt level four
(ILSO4). The device processing entrance
address is computed during the loading of a
core load from identifying information that
is a part of the ILS.

In the card/paper tape system, the
device processing entrance address is
stored during the loading of a program from
identifying information stored in the ILS,
in the compressed ISS header card, and in
the loader interrupt Transfer Vector.

Device Processing

Device processing consists of operating an
I/O device, processing the interrupts, and
clearing the device by an XIO (sense DSW)
instruction when interrupt processing is
complete.

8

Device processing is done by the ISSs
(interrupt service subroutines). The ISSs
can be entered by a calling instruction
(LIBF or CALL), which either requests
certain initialization to be done or
requests an I/O device operation. They can
also be entered by an ILS as part of the
interrupt processing. The calling entry
point is specified in the ISS statement.
The interrupt entry points are set up in
the ISS and identified in the ILS. They
are entered indirectly through a branch
address table.

ILS OPERATION

The ISS/ILS package services all
input/output interrupts.

Description

There is one ILS for each interrupt level
used. Each subroutine determines which
device on its level caused a particular
interrupt; preserves the contents of the
Accumulator, the Accumulator Extension,
Index Register 1 (ull), and the Carry and
Overflow indicators; and transmits identi-
fying information to the ISS. Disk Monitor
ILSs also save Index Register 2 (KR2). The
special ILSX subroutines in DM2 save
and restore Index Register 3.

Interrupt service subroutines are loaded
first so that the loader loads only the
ILSs that are required. For example, if a
main program does not call the 1132 Printer
subroutine, the subroutine for interrupt
level 1 (ILS01) need not be loaded because
no interrupts will occur on that level. An
ILS cannot be called; it is included in a
core load or program only if requested by
an ISS. If you use the 1130 Card/Paper
Tape system, see "ISS-Define Interrupt
Service Entry Point" in IBM 1130 Assembler
Language. If you use the 1130 Disk Monitor,
Version 2, system (DM2), see "Define
Interrupt Service Subroutine Entry Point"
in IBM 1130/1800 Assembler Language.

When the ILSs are loaded, the core
addresses assigned to them are incorporated
into the appropriate locations in the
Interrupt Transfer Vector (decimal words
8-13). Interrupts occurring during
execution of a user program cause a Branch
Indirect, via the interrupt branch address,
to the correct ILS.

Recurrent Subroutine Entries

Recurrent entries to a subroutine can
result from interrupts. For example,
during execution of the Console Printer
subroutine, a disk interrupt can start
execution of a subroutine to handle the
condition that caused the disk interrupt.

If this handling includes calling the
Console Printer subroutine, certain
information is destroyed, the most
important of which is the return address of
the program that originally called the
Console Printer.

To prevent the loss of data resulting
from such a recurrent entry, the user must
provide the programming required to save
the return address and any other data
needed to continue an interrupted
subroutine after an interrupt has been
serviced.

Note: All ISSs were written with the
assumption that all LIBFs to them would be
executed on the mainline level (i.e., not
while on the interrupt level). There are
no provisions in any ISSs to handle
recurrent entries. See Appendix G for
information on user-written re-enterable
code.

ISS OPERATION

This section briefly describes the
operation of the ISSs. This description,
along with some basic flowcharts, should
make it easier for the reader to understand
the descriptions of individual subroutines
presented later.

The disk subroutines are included here
as ISSs even though in the Disk Monitor
System they are not truly ISSs. They do
however, have most of the characteristics
of an ISS.

ISS Subdivision

Each ISS is divided into a call portion and
an interrupt response portion. The call
portion is entered when a user's calling
sequence is executed; the interrupt
response portion is entered as a result of
an I/O interrupt.

Call Processing

The Interrupt Service Subroutines -- with
the exception of those used by FORTRAN --
save and restore the contents of the
Accumulator, Index Registers 1 and 2, and
the Carry and Overflow Indicators.
However, the contents of the Accumulator
will be destroyed if a preoperative error
is detected. The call portion, illustrated

Interrupt Service Subroutines 9

in Figure 1, has four basic functions:

1. Determines if any previous operations
on the specified device are still in
progress.

2. Checks the calling sequence for
legality.

3. Saves the calling sequence.

4. Initiates the requested I/O operation.

The flow diagram (Figure 1) is not exact
for any one ISS. It is only a general
picture of the internal operation of the
call portion of an ISS.

Determine Status of Previous Operation.
This function can be performed by using a
programmed subroutine-busy indicator to
determine if a previous operation is
complete. The CARD1 subroutine is a good
example. When an operation is started on
the 1442, a subsequent LIBF CARD1 for the
1442 is not honored until the
subroutine-busy indicator is turned off. A
call to any other ISS subroutine, such as
TYPEO, is not affected by the fact that the
CARD1 subroutine is busy.

Each ISS, except PAPTN and DISKN, can
use one programmed subroutine-busy
indicator to determine if a previous
operation is complete. The PAPTN
subroutine uses two busy indicators, one
for the paper tape reader and one for the
punch. If an operation is started on the
reader, a subsequent LIBF PAPTN for the
reader is not honored until the Reader Busy
indicator is turned off. However, a LIBF
PAPTN for the paper tape punch is treated
in the same manner as a call to any other
ISS and is not affected by the fact that
the paper tape reader is busy. The
subroutine DISKN uses five busy indicators,
one for each disk drive. (Each disk drive
corresponds to a certain bit in $DBSY.)
This provides the possibility to operate
all of the disk drives simultaneously.

Check Legality of Calling Sequence.
Calling sequences are checked for such
items as illegal function character,
illegal device identification code, zero or
negative word, count, etc.

Save Calling Sequence. The call portion
saves, within itself, all of the calling
sequence information needed to perform an
I/O operation. The user can modify a
calling sequence, even though an I/O
operation is not yet complete.

Note: The I/O data area should be left
intact during an operation because the ISS
is continually accessing and modifying that
area.

Initiate I/O Operation. The call portion
only initiates an I/O operation.
Subsequent character interrupts cr
operation complete interrupts are handled
by the interrupt response routine.

Interrupt Response Processing

The I/O interrupt response portion of an
ISS is illustrated in Figure 2.

Operation. An I/0 interrupt causes a user
program to exit to an interrupt level
subroutine, which in turn exits to the I/O
interrupt response portion of an ISS. The
interrupt response portion checks for
errors, does any necessary data
manipulation, initiates character
operations, and initiates retry operations
in case of errors. It then returns control
to the interrupt level subroutine, which
returns control to the user.

Character Interrupts. These interrupts
occur for devices under direct program
control whenever data can be read or
written, e.g., a card column punched or a
paper tape character read.

Operation Complete Interrupts. These
interrupts occur in disk and card
operations when a specified block of data
has been read or written, e.g., a disk
record read.

Error Detection and Recovery Procedures.
These procedures are an important part of
an ISS. However, little can be done about
reinitiating an operation until a character
interrupt or operation complete interrupt
occurs. Therefore, error indicators are
not examined until one of these interrupts
occurs.

Recoverable Device. This is an I/O device
that can be easily repositioned by a
subroutine or by an operator and an I/O
operation reinitiated. If a device is not
recoverable, or if an error cannot be
corrected after a specified number of
retries, the user is informed of the error
condition. If a device is recoverable, the
user may request, via his error subroutine,
that the operation be reinitiated.

10

(

Exit to
$ PRET+ 1

Set
Busy
Indicators

Return to User)
at LIBF + 2

Return to User)
at LIBF +3

Return to User
Save Calling	 at LIBF
Sequence
Parameters

(

Exit to User
Error Routine

Manipulate
Data as
Specified

Yes

Clear 	 4
Busy
Indicators

et

\ Initiate
I/O

Operation

I

(Rto Urn) (
teturn to interrupt)
Level Routine

Entry

Determine Initiate Next Clear
Requested Busy \e-Initiate/

VO
Function Operation Indicators Operation

• Figure 1. Call Portion of an ISS	 Figure 2. Interrupt Response Portion of an
ISS

Interrupt Service Subroutines 11

Digit 1 ident
called:

ifies the ISS subroutine

C/PT System

1-CARDO or CARD1

2-TYPEO or WRTYO

3-PAPT1 or PAPTN

5-DISKO, DISK1,
or DISKN

6- PRNT 1

DM2 System

1- CARDO, CARD1, or
CARDZ; PNCHO, PNCH1,
or PNCHZ •

2- TYPEO or TYPEZ,
WRTYO, or WRTYZ

3- PAPT1,	 PAPTX,
or PAPTZ

4- READO, READ1, or
READZ

5- DISKZ, DISK1,
or DISKN

6- PRNT1 or PRNTZ

GENERAL ERROR-HANDLING PROCEDURES

Each ISS has its own error detecting
portion, which determines the type of error
and chooses an error procedure. (In this
context, the term error includes such
conditions as last card, channel 9, channel
12, etc.) Errors fall into one of two
categories: those that are detected before
an I/O operation is initiated, and those
that are detected after an I/O operation
has been initiated. Appendix B contains a
list of the errors detected by the ISSs;
Appendix C contains descriptions of the
actions taken by each ISS after the return
from user-written error subroutines.

Preoperative Error Detection

Before an ISS initiates an I/O operation,
it checks the device status and the
legality of calling parameters. If a
device is not ready or a parameter is in
error, the Interrupt Service Subroutine
will wait at $PRET+1 displaying an error
indicator that defines the error (see
Appendix E). This error indicator consists
of four hexadecimal digits that are defined
below.

$PRET is entered via a Branch and Store
Instruction Counter (BSI) instruction in
the following subroutines: DISKZ, DISK1,
DISKN, OMPR1, PLOTX, and the ISSs used by
FORTRAN. All other ISSs store the address
of the LIBF statement in $PRET and then
branch to $PRET+1 to wait and display the
error; i.e., when PROGRAM START is pressed,
the call to the subroutine is retried.

7-PLOT1	 7- PLOT1 or PLOTX

8-SCAT1, SCAT2	 8- SCAT1, SCAT2,
or SCAT3	 or SCAT3

9- PRNT3 or PRNZ

A- OMPR1

Digits 2 and 3 are reserved.

Digit 4 identifies the error:

0- device not ready.

1- illegal LIBF parameter or illegal
specification in the I/O area.

There is a WAIT instruction in core
location $PRET+1 and a branch instruction
(BSC I $PRET) in the next location.
Therefore, the LIBF may be executed again
(after the error condition has been
corrected) by pressing PROGRAM START on the
console. The user can, if he chooses,
replace these two instructions with an exit
to his own error subroutine.

Postoperative Error Detection

After an I/O operation has been started,
certain conditions may be detected about
which the user should be informed. The
conditions might be card jams for which
manual intervention is needed before the
operation can continue; read checks that
have not been corrected after a specified
number of retries; or indications of
equipment readiness, such as last card or
channel 12 indicators. All these
conditions are detected by the interrupt
response portion (see "ISS Operation").

No Error Parameter. If no error parameter
is included in the calling sequence that
initiated the I/O operation and a
postoperative error condition is detected,
the card/paper tape system subroutine
initiates a Wait procedure (programmed
loop), which continues until the operator
corrects the detected condition.

The DM2 system does not use a programmed
loop, but rather branches to a
postoperative error trap that is similar to
the preoperative error trap. Each
interrupt level (1-4) has its own
postoperative error trap with accompanying
WAIT address.

Level 1 - $PST1 (0081)
Level 2 - $PST2 (0085)
Level 3 - $PST3 (0089)
Level 4 - $PST4 (008D)

12

Label Operands&llentorksOperation

0 1 	 i	 t	 t	 i	 I	 .1

U115 tEIR1 1 1 1 1 1 1 I

it	 II	 III!,,.	 t

USER, AC,
1111 BS C, r

Operanda 6

p,r,	 0
5 IRA.	 5.6	 ,r.,	 .C41141,13
PTA r.	 (1 S

Processing resumes -- at the address'
immediately following -- after the operator
corrects the detected condition and presses
PROGRAM START.

Error Parameter Included. If an error
parameter is included in the calling
sequence, a Branch and Store Instruction
Counter (BSI) instruction to the user's
error subroutine specified in the calling
sequence is executed. Identifying
information is placed in the Accumulator
and Extension (see Appendix B). When the
user's error subroutine returns control to
the ISS using the return link (see "Basic
ISS Calling Sequence"), the subroutine
examines the Accumulator. If the user has
cleared the Accumulator before returning to
the subroutine, he is requesting that the
error condition be ignored and the
operation term...aated. If the user has not
cleared the Accumulator, he is requesting
that the operation be restarted, in which
case the subroutine reinitiates the
operation before returning to the user's
main program.

Implications of the User's Error
Subroutine. It is important to note that a
user's error subroutine (entered via the
LIBF error parameter address) is executed
as part of the interrupt processing. the
interrupt level is still on, preventing
recognition of other interrupts of the same
or lower priority. This has the following
implications:

1. Return must be made to the ISS
subroutine via the return link (set up
by the BSI instruction executed by the
ISS subroutine). Otherwise, normal
processing cannot be continued because
the ISS must return to the ILS to
restore the contents of the
Accumulator and Extension, Status
Indicators, and Index Registers.

2. Return must be made with a BSC
instruction, not a BOSC instruction.
Otherwise, the interrupt level is
turned off, setting up the possibility
that another interrupt could occur on
the same level, thus destroying the
return address to the user from the
ILS.

priority interrupt level than the
device that caused the error.

Note: A call to WRTYO to type an error
message can be made only if the user does
not wait for the completion of typing or
for operator intervention before returning
to the ISS. A test loop on level 4
(typewriter) or a WAIT loop will both block
the clearing of the level that caused the
interrupt to the user's error subroutine.

5. The user should have a separate error
subroutine for each device to prevent
errors on several devices (on
different levels) from causing
recurrent-entry problems in thr
error subroutine.

Note: The error codes in the Accumulator
may not distinguish between ISSs, as the
preoperative error codes do.

Since the ILS saves Index Register 1 as
part of its interrupt processing, the
user's error subroutine can also use this
index register without saving and restoring
it. However, the user cannot depend on the
contents of Index Register 1 unless he
initializes it as part of his error
subroutine. The DM2 ILSs also save Index
Register 2. The special ILSX subroutines
in the DM2 save and restore Index Register
3.

Programming Techniques - User's Error
Subroutine Exits. Some programming
techniques that can be used in conjunction
with the ISS error exit are as follows:

1. To try the operation again:

2. To terminate the operation:
3. A LIBF or CALL to another subroutine

from the user's error subroutine can
cause a recurrent-entry problem. If
that subroutine is already in use when
the interrupt occurs, the user's new
LIBF or CALL destroys the original
return address and disrupts operation
of the called subroutine.

4. A LIBF or CALL to another ISS can
cause an endless loop if the new I/O
device operates on the same or lower

3. To indicate that a condition ("last
card" or "channel 9") was detected and
that the normal program flow should be
altered:

Interrupt Service Subroutines 13

Operand, &Remarks

Al .n
NoF,141 ,Z	 R •P,R,O,G,MA,A4	 n ki

, , , , ,	 „ ,,,,, ,	 „ , ,,,

, T ,	 3 N,E,	 ,,,.r,

r-
Device
	

Subroutine
	 4	 -4
1442 Card Read Punch	 CARDO, CARD1,

or CARDZ

DISKO, DISK1
DISKN

Disk

1132 Printer

Keyboard/Console Printer

Console Printer

1134/1055 Paper Tape

1627 Plotter

Synchr. Comm. Adapter

PRNT1 or PRNTZ

TYPEO or TYPEZ

WRTYO or WRTYZ

PAPT1, PAPTN
or PAPTZ

PLOT1 or PLOTX

SCAT1, SCAT2,
or SCAT3

'Figure 3. C/PT System ISS Names

For some devices more than one
subroutine is available, although only one
can be selected for use in any one program
(including called subroutines).

NAMEO. The NAMEO subroutine is the
shortest and least complicated. The NAME°
version is the standard subroutine for the
1442, 2501, and Console Printer/Keyboard.
The NAMED version of the Disk routine
(DISKO) can be used if transfer of data is
320 words or less (C/PT system only).

Name Parameter

Each subroutine has a symbolic name that
must be written in the LIBF statement
exactly as listed in Figures 3 and 4.

BASIC ISS CALLING SEQUENCE

Each ISS described in this manual is
entered via a calling sequence. These
calling sequences follow a basic pattern.
In order not to burden the reader with
redundant descriptions, this section
presents the basic calling sequences and
describes those parameters that are common
to most of the subroutines.

Basic Calling Sequence

LIBF Name
DC
	

Control parameter
DC
	

I/O area
DC
	

Error subroutine

The above calling sequence, with the
parameters shown, is basic to most of the
ISSs. Detailed descriptions of the above
four parameters are omitted when the
subroutines are described later in the
manual. Unless otherwise specified, the
subroutine returns control to the
instruction immediately following the last
parameter.

14

Device

1442 Card Read Punch

2501 Card Reader

1442 Card Punch

Disk

1132 Printer

1403 Printer

Keyboard/Console Printer

Console Printer

1134/1055 Paper Tape
Reader Punch

1627 Plotter

1231 Optical Mark
Page Reader

Synchr. Comm. Adapter

2250 Display Unit,
Model 4

T	 1 PRNT3. The PRNT3 version is used with the
Subroutine	 f	 1403.

-F-
CARDZ, CARDO,
or CARD1

Figure 4. DM2 System ISS Names

NAME1. The NAME1 version is the standard
subroutine for the disk, 1132, 1403, 2501,
1134/1055, 1231, and 1627. It may be used
if a user error exit is needed rather than
the internal looping and retries by the
NAMED subroutine.

NAMEN. The NAMEN version is available to
operate the 1134/1055 Paper Tape Reader and.
Punch simultaneously and to minimize extra
disk revolutions when transferring more
than 320 words to or from the disk. The
NAMEN subroutine offers more options than

I

the NAME1 subroutine. In DM2, it also
operates as many as 5 disks simultaneously.

NAMEZ. The NAMEZ version is designed for
use in an error-free environment. It
provides no preoperative parameter
checking. The FORTRAN formatting
subroutines use these ISSs but they do not
use the calling sequence listed below (see
"Subroutines Used by FORTRAN").

PRNT2. The PRNT2 version is used when the
1132 is used with the SCA.

Control Parameter

The control parameter, in the form of four
hexadecimal digits, conveys necessary
control data to the ISSs by specifying the
desired function (read, write, etc.), the
device identification, and similar control
information. Most subroutines do not use
all four digits.

A typical control parameter is
illustrated below.

Hexadecimal Digits

1st 2nd 3rd 4th

I/O Function 	

Not Used 	 	

1 -

Device Identification 	

Since the I/O function and device
identification digits are used in most
subroutines, a description of the purpose
of each is given here.

I/O Function

The function digit in the calling sequence
specifies which I/O operation the user is
requesting. Three of these functions--
read, write, and test-- are used in most
subroutines.

Read. The read function causes a specified
amount of data to be read from an input
device and placed in a specified input
area. Depending upon the device, an
interrupt signals the subroutine either
when the next character is ready or when
all requested data has been read. When the
specified number of characters has been
read, the subroutine becomes available for
another call to that device.

Write. The write function causes a
specified amount of data from the user's
output area to be written, i.e., printed or
punched, by an output device. As with the
read function, an interrupt signals the
subroutine when the device can accept
another character, or when all characters
have been written. When the specified
number of characters has been written, the
subroutine becomes available for another
call to that device.

Test. The test function causes a check to
be made as to the status of a previous
operation initiated on an I/O device. If

READZ, READO,
or READ1

PNCHZ, PNCHO
or PNCH1

DISKZ, DISK1,
or DISKN

PRNTZ, PRNT1,
or PRNT2

PRNZ, or PRNT3

TYPEZ, or TYPED

WRTYZ, or WRTYO

PAPTZ, PAPT1,
PAPTN, or PAPTX

PLOT1, or PLOTX

DMPR 1

SCAT1, SCAT2,
or SCAT3

DSPYN

Interrupt Service Subroutines 15

the previous operation has been completed,
the subroutine branches to the LIBF+3 core
location; if the previous operation has not
been completed, the subroutine branches to
the LIBF+2 core location. The test
function is illustrated below:

LIBF	 Name

L/BF+1 DC	 Control Parameter
(specifying Test function)

Error Parameter

The error parameter is the means by which
an ISS can give temporary control to the
user in the event of conditions such as
error, last card, etc. This parameter is
not required for the NAMED subroutines for
the 2501, 1442, Console Printer, or
Keyboard. The instruction sequence for
setting up the error subroutine is shown
below.

LIBF NAME

LIBF+2 OP Code. xxxx....

LIBF+3 OP Code xxxx-...

Note: Specifying the test function
requires two statements (one LIBF and one
DC), except in disk subroutines, where
three statements are required.

The test function is useful in
situations in which input data has been
requested, but no processing can be done
until the data is available.

Device Identification

This digit should be zero except for the
Test function with the PAPTN (paper tape)
subroutine.

Note: For all disk subroutines, this digit
appears in the I/O area rather than in the
control parameter.

I/O Area Parameter

The I/O area for a particular operation
consists of one table of control
information and data. This table is
composed of a data area preceded by a
control word (too control words for disk
operations) that specifies how much data is
to be transferred. The area parameter in
the calling sequence is the address
(symbolic or actual) of the first control
word that precedes the data area.

The control word contains a word count
referring to the number of data words in
the table. It is important to remember
that the number of words in the table is
not always the number of characters to be
read or written, because some codes pack
two characters per word. The disk
subroutines require a second control word,
which is described along with those
subroutines.

	

DC	 ERROR (error parameter)

	

ERROR DC	 0 (return link)

. (error routine)
BSC I ERROR (branch to return link)

The return link is the address in the
related ISS to which control must be
returned upon completion of the error
subroutine. The link is inserted in
location ERROR by a BSI from the ISS when
the subroutine branches to the error
subroutine.

The types of errors that cause a branch
to the error address are listed in Appendix
B.

Note: The user's error subroutine is
executed as part of the interrupt response
handling. The interrupt level is still on
and remains on until control is returned to
the ISS (see "General Error-Handling
Procedures").

Assignment of Core Storage Locations
(C/PT System)

The portion of core storage used by the ISS
and ILS subroutines is defined below. Care
should be used in altering any of these
locations (see Figure 5).

The areas illustrated in Figure 5 are
described below.

Interrupt Branch Addresses

ILS Subroutines. When required, the
address of ILSOO is always stored in
location 8, ILSO1 in location 9,..., 'mos
in location 13 (e000D).

Interrupt Trap. The address of the
interrupt trap is stored in any location
for which no ILS is loaded.

16

DecimalHex

8	 8
9	 9
A	 10
B	 11
C	 12
D 13

14
1F 31
20

27	 39

28	 40
29	 41

2C	 44

2D	 45
2E	 46
2F	 47

32	 50

Interrupt Branch
Addresses

Reserved for 1132 Printer

(ILS00)
(ILS01)
(ILS02)
(ILS03)
(ILSO4)

(ILS05)

1132 Printer

This area is used by 1132 Printer.

Preoperative Error Trap

This exit is used whenever a preoperative
error (illegal LIBF or device not ready) is
detected by an ISS. To retry the call,
press START.

ISS Exit

The ISS exit results from pressing the
Keyboard Interrupt Request key. The TYPEO,
and WRTYO subroutines execute a BSI I /002C
whenever a keyboard operator request is
detected. Note that interrupt level 4 is
still on.

The user-written subroutine must return
to the TYPEO or WRTYO subroutine in order
to allow interrupts of equal or lower
priority to occur. Also a call executed to
any subroutine might cause a recurrent-
entry problem unless the user can guarantee
that the subroutine was not in use when the
keyboard interrupt occurred.	 1Figure 5. ISS and ILS Core Locations for

the C/PT System
Location /002C is initialized with the

address of the interrupt trap in case the
user fails to store an address in the
interrupt trap to process Keyboard operator
requests.

Interrupt Trap

This trap is entered when an interrupt
occurs for which there is no ILS and/or no
ISS assigned to the pertinent bit in the
Interrupt Level Status Word (IISW).

Interrupts of higher priority will be
processed before the system finally halts
with the IAR displaying /002F.

Assignment of Core Storage Locations
(DM2 System)

The portion of core storage used by the ISS
and ILS subroutines is defined below. Care
should be used in altering any of these
locations (see Figure 6) .

The areas illustrated in Figure 6 are
described below.

Interrupt Branch Addresses

ISS Counter

The ISS counter is incremented by +1 every
time an ISS initiates an interrupt-causing
I/O operation and is decremented by +1 when
the operation is complete. A positive
value in this location indicates the number
of interrupt(s) pending. This counter
should never be negative.

ILS Subroutines. The address of ILSOO is
always stored in location 8, ILSO1 in
location 9,..., ILSO5 in location decimal
13.

Interrupt Trap. The address of the Program
Stop Key trap ($STOP-location /0091) is
stored in any location for which no ILS is
loaded.

Interrupt Service Subrcutines 17

(11500)
(ILS01)
(11502)
(1LS03)
(ILSO4)
(ILS05)

	1}Res.x Reserved for 1132 Printer

is/	 Reserved for Monitor System

Interrupt Branch Addresses

Reserved for Monitor System

} 155 Counter

Reserved for Monitor System

EPST1	 DC	 • - *
WAIT
BSC I PST!

85
86
87

EPST2	 DC	 • - •
WAIT
BSC I EPST2

89
8A
8B

EPST3	 bC	 • - •
WAIT
BSC I EPST3

80
BE
8F

EPST4	 DC	 * - *
WAIT
BSC I EPST4

ESTOP DC	 • - •
WAIT
BOSC I ESTOP

3E	 62 I
40	 64

80	 128
81	 129
82	 130
83	 131

133
134
135

137
138
139

141
142
143

91	 145
92	 146
93	 147

I
/Reserved for Monitor System

1
Postoperative Error Trap For Level 1

}Postoperative Error Trap for Level 2

/Postoperative Error Trap for Level 3

}Postoperative Error Trap Far Level 4

Program Stop Key Trap

•

• An X10 instruction
with reset must be

• Return to ILSO4 or
address +6.

sensing Reyboard
performed.

ILSX4 to exit

	-0/

Figure 6. ISS and ILS Core Locations for
the DM2 System

Interrupt level 4 is still on.

Reserved Areas

These locations are reserved for the DM2
system.

1132 Printer

This area is used by 1132 Printer.

PreoPerative_Error.TKaP

Hex	 Decimal

8	 8
9	 9
A	 10
BI1
C	 12

13

E	 14

IF	 31
20	 32

This exit is used whenever a preoperative
error (illegal LIBF or device not ready) is
detected by an ISS. To retry the call,
press START.

ISS Counter

SPRET	 DC	 •	 •
WAIT Preoperative Error Trap
BSC	 I	 PRET

$IREQ	 DC -) Interrupt Request Branch Address

27	 39

28	 40
29	 41
2A	 42

2C	 44
2D	 45

31	 49
32	 50
33	 51

The ISS counter is incremented by +1 every
time an ISS initiates an interrupt-causing
I/0 operation and is decremented by +1 when
the operation is complete.

A positive value in this location
indicates the number of interrupts(s)
pending. This counter should never be
negative.

Interrupt Request Branch Address

The subroutine ILSO4 or ILSX4 executes a
BSI I $1REQ whenever a Keyboard operator
request is detected.

$1REQ (location /002C) is initialized
with the address $1420 in Resident Vcnitor.
This allows the user to terminate the job
by pressing the Interrupt Request key (INT
REQ).

Note the following when writing an
interrupt request subroutine:

• ILSO4 or ILSX4 will turn off the
interrupt.

• Subroutines that are in use when the
interrupt occurs may not be called.

For examples of INT REQ see IBM 1130
Disk Monitor System, Version 2, Programmer's
and Operator's Guide.

Postoperative Error Traps

These traps are entered when a device-
not-ready condition is detected prior to
the initiation of an I/O operation in the
interrupt response portion of an ISS
subroutine. Each interrupt level (1-4) has
its own postoperative error trap. The
system will WAIT with the IAR displaying

....."

18

Label Op* rands IL RemarksOpera, ion

al• MEL 4.	 •C■A•L • I ,CaA,Rith1 ,10.

Lazat.olos, r .	 la Li • AAR •MF • T 'GIP • •
ro. A .	 1 • •	 re it 01 A•Ro.F5A • • RA 1 R•AeL4F■T■F
fad?", IR EiRtli' eaR1 P IRA IMF • Tt

• I	 e

I	 I	 I	 lllllllllllllllllllll
FIRA0a DIC1 it — e	 lllllll Rt FIT 11111ZAA	 1.111,1/71 FICISI	 1111

1	 I	 1 I	 I	 1	 llllllllllllllllllll
I	 I	 I

I	 llllllllllllllllllllllllll
I	 1 ir • r Falk OIRI 11111 API r	 RIM/ ,Tn. ,nA L.nF,R, I

t	 II	 r	 te	 el.	 I	 el.	 I	 t

,a, I	 e	 lllllllllllllllllllllll

r •	 • llll ll aNt	 af2,01	 ,c.o.u,ni,r1	 1	 a	 ■

ha	 a	 ,	 ■roi101 	 A	 l FiA llll	 ,

1	 I	 1 L • I, BIF

Pc.
n ,r, ,

r
Digital Required

Function Value	 Parameters'

Test

Read

Punch

Feed

0	 Control

1	 Control, I/O Area, Error2

2	 Control, I/O Area, Error2

3	 Control, Error2

the address of $PST1+2, $PST2+2, $PST3+2,
or $PST4+2, depending on the interrupt
level of the device.

Description of Interrupt Service Subroutines

Note that the subroutine READO, READ1,
PNCHO, PNCH1, PRNT3, and OMPR1 are
available only with the DM2 system.

where

a is 0 or 1,

b is the I/0 function digit,

f is the number of columns to be read
from or punched into the card,

h is the length of the I/O area. h must
be equal to or greater than f.

The calling sequence parameters are
described in the following paragraphs.

1442 CARD READ PUNCH SUBROUTINES (CARDO AND
CARD 1)

The card subroutines perform all I/O
functions relative to the IBM 1442 Card
Read Punch: read, punch, feed, and stacker
select.

CARDO Subroutine. The CARDO subroutine is
shorter and less complicated than CARD1 and
is the standard subroutine for the 1442.

CARDO can be used if the error parameter
is not needed. When an error occurs, the
subroutine loops (DM1 and C/PT system) or
will WAIT at $PST4+1 (DM2 system) until the
operator takes corrective action. Last
card conditions cause preoperative
not-ready exits.

CARD1 Subroutine. The CARD1 subroutine can
oe used for the Card Read Punch if a user
error exit is needed, rather than the error
procedures of the CARDO subroutine.

Calling Sequence

Control Parameter

This parameter consists of four hexadecimal
digits as shown below:

31	 41Not Used

I/0 Function

The I/O function digit specifies the
particular operation to be performed on the
1442 Card Read Punch. The functions,
associated digital values, and required
parameters are listed and described below.

Stacker
Select	 4	 Control

'- Any parameter not required for a
particular function must be omitted.

2Error parameter not required for CARDO.
L	 —J

Test. Branches to LIEF+2 if the previous
operation has not been completed, to LIEE+3
if the previous operation has been
completed.

Read. Reads one card and transfers a
specified number of columns of data to the
user's input area. The number of columns
read (1-80) is specified by the user in the
first location of the I/O area. The

1

I/O Function 	

Interrupt Service Subroutines 19

subroutine clears the remainder of the I/0
area and stores a 1 in bit position 15 of
each word, initiates the card operation,
and returns control to the user's program.
When each column is ready to be read, a
column interrupt occurs. This permits the
card subroutine to read the data from that
column into the user's input area (clearing
bit 15) , after which the user's program is
again resumed. This sequence of events is
repeated until the requested number of
columns has been read, after which the
remaining column interrupts are cleared (no
data read).

When an operation complete interrupt
occurs, the card subroutine checks for
errors, informs the user if an. error
occurred (CARD1 only), and sets up to
terminate (CARE1 only) or retry the
operation.

The data in the user's input area is in
a code identical to IBM Card Code format;
that is, each 12-bit column image is
left-justified in one 16-bit word.

Punch. Punches into card the number of
columns of data specified by the word count
found at the beginning of the user's output
area. The punch operation is similar to
the read operation. As each column comes
under the punch dies, a column interrupt
occurs; the card subroutine transfers a
word from the user's output area to the
punch and then returns control to the
user's program.

This sequence is repeated until the
requested number of columns has been
punched, after which an Operation Complete
interrupt occurs. At this time the card
subroutine checks for errors, informs the
user if an error occurred (CARD1 only) , and
sets up to terminate (CARD1 only) or retry
the operation. The character punched is
the image of the leftmost 12 bits in the
word.

Feed. Initiates a card feed cycle. This
advances all cards in the machine to the
next station, i.e., a card at the punch
station advances to the stacker, a card at
the read station advances to the punch
station, and a card in the hopper advances
to the read station. No data is read or
punched as a result of a feed operation and
no column interrupts occur. This
effectively skips a card when used in
conjuction with a Read or Punch function.

When the card advance is complete, an
Operation Complete interrupt occurs. At
this time the card subroutine checks for
errors, informs the user if an error
occurred (CARD1 only), and sets up to
terminate (CARD1 only) or retry the
operation.

Stacker Select. Selects stacker 2 for the
card currently at the punch station. After
the card passes the punch station, it is
directed to stacker 2.

I/O Area Parameter

The I/0 area parameter is the label of the
control word that precedes the user's I/0
area. The control word consists of a word
count that specifies the number cf columns
of data to be read or punched, always
starting the count at column 1. The word
count must be in the range of 1-80.

Error Parameter

CARDO. CARDO has no error Parameter. If
an error is detected while an operation
complete interrupt is being processed, the
subroutine loops (C/PT system) or will WAIT
at $PST4+1 (DM2) with interrupt level 4
on, waiting for operator intervention.
When the condition has been corrected,
the 1442 made ready, and PROGRAM START
pressed, the subroutine retries the
operation.

CARD1. CARPI has an error narameter. If
an error is detected, the user can request
the subroutine to terminate (clear
subroutine-busy indicator and the interrupt

I level) or to loop (C/PT system) or WAIT
at $PST4+1 (DM2) for operator intervention
(interrupt level 4 on). See "Basic
Calling Sequence".)

Protection of Input Data

Since the CARD subroutines read data
directly into the user's I/0 area, the user
can manipulate the data before the entire
card has been processed. This procedure is
inherently dangerous because, if an error
occurs, the data may be in error and
error-recovery procedures will cause the
operation to be tried again. The exit via
the error parameter is the only method of
informing the user that an error has
occurred. Therefore, do not manipulate
data before the entire card has been
processed when using CARDO.

when using CARD1, the following
precautions should be taken:

• Do not store converted data back into
the read-in area.

20

• Do not take any irretrievable action
based on the data until the card has
been read correctly; i.e., be prepared
to convert the data or perform the
calculations a second time.

• When data manipulation is complete,
check the user-assigned error
indicator that is set when a branch to
the user-written error subroutine
occurs. The data conversion or
calculations can then be reinitiated,
if necessary.

Calling Sequence

Operands & Remar 1 I

CIA.L.I r,A.R,D rtir	 .
• ,

TaAAA	 4AAA 4,411RAMF■r.P.R

j jjj JJjjjJjJJJJJJ	 1111111..1

..	 ..	 1■11

■111111 	 1111■111111■

RIET.U.R.Alt ,AtaDoRIELS,St

EtR.R R	 RIF.T.IIR Ah n	 •r,.4 I .1 .E.R1	 •

.....	 , , „

11111itil	 01	 11...111	

f		 4,h(7 R	
....	 ,r.,	

Last Card

When the last card has been detected, a
branch to the user error routine with /0000 where
in the Accumulator will occur. An
operation requested after the last card has
been fed from the hopper causes an exit to	 a is 0 or 1,
$PRET. When the 1442 is made ready and the
PROGRAM START key is pressed, the last card
will be processed. 	 b is the I/O function digit,

f is the number of columns to be read
from the card,

2501 CARD READER SUBROUTINES (READO AND 	 h is the length of the I/O area. h must
READ1)	 be equal to or greater than f.

These card subroutines, available only with 	 The calling sequence parameters are
the DM2 system, perform read and test	 described in the following paragraphs.
functions relative to the IBM 2501 card
reader.

READO Subroutine. READO is shorter than 	 Control Parameter
READ1, provides no error parameter, and is
the standard subroutine for operation of
the 2501 card reader. On an error, READO 	 This parameter consists of four hexadecimal
branches to $PSTY, then a WAIT for	 digits as shown below:
operation intervention will occur. The
last card condition causes a branch to 	 1	 2	 3	 4
$PRET.

I/O Function.

READ1 Subroutine. READ1 is used for 	 Not Used 	
operation of the 2501 card reader if a user
error exit is required.

I/O Function

The I/O function digit specifies the
particular operation to be performed on the
2501 Card Reader. The functions,
associated digital values, and required
parameters are listed and described below.

Interrupt Service Subroutines 21

r	 1
I	 Digital	 Required	 I
!Function Value	 Parameters''	 I
I	 I
'Test	 0	 Control	 I
!Read	 1	 Control, I/0 Area, Error21
	 1

i l Any parameter not required for a 	 I
1 particular function must be omitted.	 1
1 2The error parameter is not required for 1
1 READO.	 I
L 	 J

Test. Branches to LIBF+2 if the previous
operation has not been completed, to LIBF+3
if the previous operation has been
completed.

Read. Reads one card and transfers a
specified number of columns of data to the
user's input area. The number of columns
read (1-80) is specified by the user in the
first location of the input area. The
subroutine initiates the read function and
returns control to the user's program.

When an Operation Complete interrupt
occurs, the card subroutine checks for
errors. If an error occurred, REAM exits
to $PST4; READ1 informs the user of the
error and sets up to terminate or retry the
operation.

The data in the user's input area is in
IBM Card Code format; that is, each 12-bit
column image is left-justified in one
16-bit word.

There is no separate feed function.
However, a feed can be obtained by a read
function with a word count of zero.

I/O Area Parameter

The I/O area parameter is the label on the
control word that precedes the user's input
area. The control word consists of a word
count that specifies the number of columns
of data to be read, always starting with
column 1. The word count must be in the
range of 0-80.

Error Parameter

READO. READO has no error parameter. If
an error is detected while an Operation
Complete interrupt is being processed, the
subroutine branches to $PST4, with

interrupt level 4 on, waiting for operator
intervention. When the condition has been
corrected, the 2501 made ready, and PROGRAM
START pressed, the subroutine attempts the
operation again.

READ1. READ1 has an error parameter. If
an error is detected, the user can request
the subroutine to terminate (that is, to
clear the subroutine's busy indicator and
turn off the interrupt level) or retry.
Prior to a retry, the subroutine checks to
see if the unit is ready. If the unit is
not ready, the subroutine branches to $PST4
with interrupt level 4 on, waiting for
operator intervention.

Last Card

A read function requested after the last
card has been fed from the hopper causes an
exit to $PRET. When the reader is made
ready and the PROGRAM START key pressed,
the last card is read and fed into the
stacker.

1442 CARD PUNCH SUBROUTINES (PNCHO AND
PNCH1)

These card subroutines, available only with
the DM2 system, perform all I/O functions
relative to the IBM 1442-5 Card Punch, that
is, punch and feed. These subroutines may
also be used with the 1442-6 or 1442-7 Card
Read Punch for punch and feed functions.

PNCHO. The PNCHO subroutine is shorter
than PNCH1, provides no error parameter,
and is the standard subroutine for
operation of the 1442 card punch. On an
error, PNCHO branches to $PST4, then a WAIT
for operator intervention will occur. The
last card condition causes a branch to
$PRET.

PNCH1. PNCH1 can be used for operation of
the 1442 card punch if a user error exit is
desired.

22

flernorLs

.CALAT,P.f4T.

1112,11,121,0 r ,	 .
TIO.A ,	 ,	 ora,O, A .R.F.A.
Fe/7.R , R ,	 , IARIRPA,

1	 4.

DC
r

FR,R.O.R pc, ,

fiR.RAR ,,,,	 ,r.A,1	 ,,

F,,,,,, „ rod, N.	 .

U.1,11,t1,311a1)11ittll11(11,1

	

Calling Sequence	 r-
Digital Required

Function Value	 Parameters'

where

a is 0 or 1,

b is the I/O function digit,

f is the number of columns to be punched
into the card,

h is the length of the I/O area. h must
be equal to or greater than f.

The calling sequence parameters are
described in the following paragraphs.

Control Parameter

This parameter consists of four hexadecimal
digits as shown below:

1	 2	 4

I/O Function

Not used

I/O Function

The I/O function digit specifies the
particular operation to be performed on the
1442 Card Punch. The functions, associated
digital values, and required parameters are
listed and described below.

Test
Punch
Feed

"Any parameter not required for a
particular function must be omitted.

2The error parameter is not required for
PNCHO.

L_ 	

Test. Branches to LIBF+2 if the previous
operation has not been completed, to LIBF+3
if the previous operation has been
completed.

Punch. Punches into one card the number of
columns of data specified by the word count
found at the beginning of the user's output
area. As each column comes under the punch
dies, a column interrupt occurs, the
subroutine transfers a word from the user's
output area to the punch, and then returns
control to the user's program. The
character punched is the image of the
leftmost 12 bits in the word.

This sequence is repeated until the
requested number of columns has been
punched, after which an Operation Complete
interrupt occurs. At this time the card
subroutine checks for errors. If an error
occurred, PNCHO exits to $PST4; PNCH1
informs the user of the error and sets up
to terminate or retry the operation.

Feed. Initiates a card feed cycle. This
function advances all cards in the machine
to the next station; that is, a card at the
punch station advances to the stacker, a
card at the read station advances to the
punch station, and a card in the hopper
advances to the read station. No data is
punched as a result of a feed function and
no column interrupts occur.

When the card advance is complete, an
Operation Complete interrupt occurs. At
this time the card subroutine checks for
errors. If an error occurred, PNCHO exits
to $PST4; PNCH1 informs the user of the
error and sets up to terminate or retry the
operation.

I/O Area Parameter

The I/O area parameter is the label of the
control word that precedes the user's
output area. The control word consists of
a word count that specifies the number of
columns of data to be punched, always
starting with column 1. The word count
must be in the range of 1-80.

0	 Control
2	 Control I/0 Area, Error2
3	 Control, Error2

-J

Interrupt Service Subroutines 23

Error Parameter

PNCHO. PNCHO has no error parameter. If
an error is detected while an Operation
Complete interrupt is being processed, the
subroutine branches to $PST4 with interrupt
level 4 on, waiting for operator
intervention. When the condition has been
corrected, the 1442 made ready, and PROGRAM
START pressed, the subroutine retries the
operation.

PNCH1. PNCHI has an error parameter. If
an error is detected, the user can request
the subroutine to terminate (that is, to
clear the subroutine-busy indicator and
turn off the interrupt level) or retry.
Prior to a retry, the subroutine checks to
see if the unit is ready. If the unit is
not ready, the subroutine branches to
$PST4, with interrupt level 4 on, waiting
for operator intervention.

IDISK SUBROUTINES (C/PT SYSTEM)

The disk subroutines perform all reading
and writing of data relative to disk
storage. This includes the major
functions: seek, read, and write, in
conjunction with readback check, file
protection, and defective cylinder
handling.

DISKO. The DISKO subroutine is the
shortest version of the disk subroutine and
can be used if not more than 320 words are
to be read or written at one time.

DISK1. The DISK1 version is the standard
subroutine for the disk and allows more
than 320 words to be read or written;
however, a full disk revolution might occur
between sectors. DISK1 requires more core
storage than DISKO.

DISKN. The DISKN subroutine minimizes
extra disk revolutions in transferring more
than 320 words. The DISKN subroutine
requires more core storage than DISK1.

The major difference between DISK1 and
DISKN is the ability of DISKN to read or
write consecutive sectors on the disk
without taking an extra revolution. If a
full sector is written, the time in which
the I/O command must be given varies.
DISKN is programmed so that the extra
revolution will not occur the majority of
the time; DISK1 approximately 50 percent of
the time.

I
All three disk subroutines have the same

error-handling procedures.

Sector Numbering and File Protection

In the interest of providing disk features
permitting versatile and orderly control of
disk operations, programming conventions
have been adopted concerning sector
numbering, file protection, and defective
cylinder handling. Successful use of the
disk subroutines can be expected only if
user programs are built within the
framework of these conventions.

The primary concern behind these
conventions is the safety of data recorded
on the disk. To this end, the
file-protection scheme plays a major role,
but does so in a manner that is dependent
upon the sector-numbering technique. The
latter contributes to data safety by
allowing the disk subroutine to verify the
correct positioning of the access arm
before it actually performs a write
operation. This verification requires that
sector identification be prerecorded on
each sector and that subsequent writing to
the disk be done in a manner that preserves
the existing identification. The disk
subroutines have been organized to comply
with these requirements.

Sector Numbering. The details of the
numbering scheme are as follows: each disk
sector is assigned an address from the
sequence 0,1,...,1623, corresponding to the
sector position in the ascending sequence
of cylinder and sector numbers from
cylinder 0 sector 0 (outermost), through
cylinder 202 sector 7 (innermost). The
user can address cylinders 0 through 199.
The remaining three cylinders are reserved
for defective cylinder handling.

Each cylinder contains eight sectors and
each sector contains 321 words. The sector
address is recorded in the first word of
each sector and occupies the rightmost
eleven bit positions. Of these eleven
positions, the three low-order positions
identify the sector (0-7) within the
cylinder. Utilization of this first word
for identification purposes reduces the per
sector availability of data words to 320;
therefore, transmission of full sectors of
data is performed in increments of 320
words. The sector addresses must be
initially recorded on the disk by the user
and are thereafter rewritten by the disk
subroutines as each sector is written (see
"Disk Initialization" in this section).

24

C3pero6c.r. .7perandl etliemlarl..

32

/ 3.5 33e3 431.3 3	 3 3 ra L./	 .Ek I	 JKI	 rd	 ,,,,,
b el.• 3 ,,,,, ,r,
	 AR AA E, TL.-.

r. AAR,	 3 3 3 3 3 rain .14 RIFIA,	 IR.A•AtE 1ER
• I? .(01R. I	 • AIR JR■17101 tP3.43/73.43ME3 TIAR3

iiiiiiii	 111111	 lllllll	 !III

III	 iiii	 1

31fi 3i113 3	 I	 3 3 tR
1
63 T1U3R3A13 3A301.1 R if3,53.S.	 3

I	 I	 1	 I	 I

■

1	 1	 1

E	 AR■ 1 3	 3 49 at-IT .(11R.Ah ■T"

lllll ll	i•	 iiiiiiiii	 1111.111	 1

1111■1, 	 111	 III	 I	 I	 I

iiiiiiii i Avoam Et/116MT iiiii 1.
9 iiiiiiiii AIACITIMA An,EAR.F.c.s lll
/11111 III	 XI/In, I A LattlA lllllllll •

1-113C

an

F.(417,0112

.11

zaAA P .C.

f

File Protection. File protection-is
provided to guard against the inadvertent
destruction of previously recorded data.
By having the write functions (except write
immediate) uniformly test for the
file-protect status of sectors that they
are about to write, this control can be
achieved.

This convention is implemented by
assigning a file-protected area to each
disk. The address of the first unprotected
sector (0000-1623) on each disk is stored
within the disk subroutine. Every sector
below this one is file-protected, i.e.,
no writing is permitted below this address.

Calling Sequence

Defective Cylinder Handling

A defective sector is one in which, after
ten retries, a successful writing operation
cannot be completed. A cylinder having one
or more defective sectors is defined as a
defective cylinder. The disk subroutines
can operate when as many as three cylinders
are defective.

Since there are 203 cylinders on each
disk, the subroutine can "overflow" the
normally used 200 cylinders when defective
cylinders are encountered (see "Effective
Address Calculation" in this section).

The address of each defective cylinder
is stored within the disk subroutines by
the user (see "Disk Initialization" in
this section).

If a cylinder becomes defective during
an operation, the user can move the data
in that cylinder and each higher-addressed
cylinder into the next higher-addressed
cylinder. Then the address of the new
defective cylinder can be stored in
DISKx +16, +17, or +18 and normal opera-
tion continued. Thus the user should
not store the new defective cylinder
address in DISKx and then continue
normally because the effective sector
address computation then yields a sector
address eight higher than is desired (see
"Effective Address Calculation" in this
section).

If there are no defective cylinders, all
three words in the defective cylinder table
contain /0658. If, for example, only
sector 0009 is defective, the table would
contain /0008 (cylinder 1), /0658, and
/0658.

where

a is 0, 1, or N.

b is the I/O function digit,

c is in DISKN test function, the logical
drive number. Otherwise c is 0.

d is the Seek option digit,

e is the Displacement option digit,

f is the number of words to be
transferred to or from the disk,

g is the sector address at which the
transfer is to begin,

h is the length of the I/O area. h must
be equal to or greater than f.

The calling sequence parameters are
described in the following paragraphs.

Control Parameter

This parameter consists of four hexadecimal
digits as shown below:

1	 2	 3	 4

I/O Function 	 f

Not Used 	

Seek Option 	

Displacement Option 	

Interrupt Service Subroutines 25

r
Digital Required

Function Value	 Parameters'

Test	 0	 Control, I/O Area

Read
	

1	 Control, I/O Area, Error

Write with-
out RBC	 2	 Control, I/0 Area, Error

Write
with RBC	 3	 Control, I/0 Area, Error

Write
Immediate 4	 Control, I/0 Area

Seek	 5	 Control, I/O Area, Error

1/3 Function

The I/0 function digit specifies the
operation to be performed on disk storage.
The functions, their associated digital
value, and the required parameters are
listed and described below.

I l Any parameter not required for a
I particular function must be omitted.
L 	

Test. Branches to LIBF+3 if the previous
operation has not been completed, to LIBF+4
if the previous operation has been
completed.

Note: This function requires the I/O area
parameter even though it is not used.

Read. Positions the access arm and reads
data into the user's I/0 area until the
specified number of words has been
transmitted. Although sector-identifi-
cation words are read and checked for
agreement with expected values, they are
neither transmitted to the I/O data area
nor counted in the number of words
transferred.

If, during the reading of a sector, a
read check occurs, up to ten retries are
attempted. If the error persists, the
function is temporarily discontinued, an
error code is placed in the Accumulator,
the address of the faulty sector is placed
in the Extension, and an exit is made to
the error subroutine specified by the error
parameter.

Upon return from the error subroutine,
that sector operation is reinitiated or the
function is terminated, depending on
whether the Accumulator is nonzero or zero.

Write With Readback Check. This function
first checks whether or not the specified
sector address is in a file-protected area.
If it is, the subroutine places the

appropriate error code in the Accumulator
and exits to location /0028.

If the specified sector address is not
in a file-protected area, the subroutine
positions the access arm and writes the
contents of the indicated I/O data area
into consecutive disk sectors. Writing
begins at the designated sector and
continues until the specified number of
words has been transmitted. A readback
check is performed on the data written.

If any errors are detected, the
operation is retried up to ten times. If
the function still cannot be accomplished,
an appropriate error code is placed in the
Accumulator, the address of the faulty
sector is placed in the Extension, and an
exit is made to the error subroutine
designated in the error parameter.

Upon return from this error subroutine,
the same sector operation is reinitiated or
the function is terminated depending upon
whether the contents of the Accumulator is
nonzero or zero.

As each sector is written, the
subroutine supplies the sector-
identification word. The identification
word for the first sector is obtained from
the I/O area, although it and subsequently
generated identification words are not
included in the word count. Writing less
than 320 words on any sector sets the
remaining words in that sector to zero.

Write Without Readback Check. This
function is the same as the function
described above except that no readback
check is performed.

Write Immediate. Writes data with no
attempt to position the access arm, check
for file-protect status, or check for
errors. Writing begins at the sector
number specified by the rightmost three
bits of the sector address. This function
is provided to fulfill the need for more
rapid writing to the disk than is provided
in the previously described write
functions. Primary application will be
found in the "streaming" of data to the
disk for temporary bulk storage.

As each sector is written, the
subroutine supplies the sector-
identification word. The identification
word for the first sector is obtained from
the I/O area, although it and subsequently
generated identification words are not
included in the word count. Writing less
than 320 words sets the remainder of the
sector to zero.

26

Seek. Initiates a seek as specified by the
seek option digit. If any errors are
detected, the operation is retried up to
ten times.

Seek Option

If zero, a seek is executed to the cylinder
whose sector address is in the disk I/O
area control word; if nonzero, a seek is
executed to the next cylinder toward the
center of the disk, regardless of the
sector address in the disk I/O area control
word. This option is valid only when the
seek function is specified.

The seek function requires that the user
set up the normal I/O area parameter (see
"I/0 Area Parameter" in this section) even
though only the sector address in the I/O
area is used. The I/O area control (first)
word is ignored.

Displacement Option

If zero, the sector address word contains
the absolute sector identification; if
nonzero, the file-protect address for the
specified disk is added to bits 4-15 of the
sector address word to generate the
effective sector identification. The
file-protect address is the sector
identification of the first unprotected
sector.

I/O Area Parameter

The I/O area parameter is the label of the
first of two control words which precede
the user's I/O area.

The first word contains a count of the
number of data words that are to be
transmitted during the disk operation. If
the DISK1 or DISKN subroutine is used, this
count need not be limited by sector or
cylinder size, since these subroutines
cross sector and cylinder boundaries, if
necessary, in order to process the
specified number of words. However, if the
DISKO subroutine is used, the count is
limited to 320.

The second word contains the sector
address where reading or writing is to
begin. Bits 0-3 are used for device
identification and must be zero. Bits 4-15
specify the sector address. Following the
two control words is the user's data area.

Note: The I/O area parameters are not
available to the user until the requested
operation is completed. The word count and
sector addresses may be altered during a
requested disk operation but are restored
at the completion of the operation.

Error Parameter

Refer to the section "Basic ISS Calling
SequenceTM.

Important Locations

The relative locations within the DISKO,
DISK1, and DISKN subroutines are defined as
follows:

	

DISKx +0 -	 entry point from calling
transfer vector when LIBF
DISKx is executed.

	

+2 -	 loader stores address of
first location (in the
calling transfer vector)
assigned to DISKx.

	

+4 -	 entry point from ILS
handling Disk Storage
interrupts.

	

+7 -	 area code for Disk Storage.

	

+8 -	 zero.

	

+9 -	 zero.

	

+10 -	 cylinder identification
Oits 4-12) of the cylinder
currently under the disk
read/write heads (loaded as
+202).

	

+11 -	 unused.

	

+12 -	 reserved.

	

+13 -	 sector address (bits 4-15)
of the first
non-file-protected sector
for disk storage (loaded as
0).

	

+14 -	 reserved.

	

+15 -	 reserved.
+16 - sector address of the first

defective cylinder for disk
storage (loaded as +1624).

	

+17 -	 sector address of the second
defective cylinder for disk
storage (loaded as +1624).

+18 - sector address of the third
defective cylinder for disk
storage (loaded as +1624).

Interrupt Service Subroutines 27

OPtIvIth

F
,LX.P,A.N,111 ditarty.ALFR

	

nsias 	

	

I 1	 ▪

.111)D TN TV AARRFSZ

	

z. 	 Aran rmic.r.a.mr.s.	 .R.E.SCaL▪
r btr	 F .1)r,c K	 s

s	 .X.22 .J) TAX	 I ,

	-1--1 .1	 -A-	 1	 4 A. -4-	 1---/1

IrAmF,_.[2,1.51X-1_,

	

•	 _I. 11,41,	 .	 I 	 .1

-L.	 • .1	 J._	 . 	 I 	 I

Effective Address Calculation

An effective disk address is calculated as
follows:

1. Start with the user ,requestedsector
address (found in the sector address
word of the I/O area).

2. If the displacement option (found in
the control parameter) is nonzero, add
the sector address of the first
non-file-protected sector (found in
DISKx +13).

Note: This starting address will cause a
preoperative error exit to location /0029
if over 1599.

3. If the resulting address is equal to
or greater than the sector address of
the first defective cylinder (found in
DISKx +16), add 8.

4. If the resulting address is equal to
or greater than that of the second
defective cylinder (found in DISKx +17),
add 8 more.

5. If the resulting address is equal to
or greater than that of the third
defective cylinder (found in DISKx +18),
add 8 more.

If the above subroutines are not used,
the starting address of the DISKx routine
can be loaded into an index register for
easy use in reaching the specified
locations:

The SPIR is a special-purpose utility
subroutine. It is not called by LIBF as
are the other disk subroutines described in
this section. SPIRO must be used if DISKO
is called, SPIR1 if DISK1 is called, or
SPIRN if DISKN is called.

Note: In no case should SPIR be used with
the DM2 System.

The address obtained from steps 1-5 is
the effective sector address.

Disk Initialization

I It is the user's responsibility to
correctly load DISKx +13, +16, +17,
and +18 at execution time and whenever
a new disk is initialized. The following
programs can be used to perform these
functions.

Disk Pack Initialization Routine (DPIFt).
The functions of this program are to write
sector addresses on a disk, to detect any
defective cylinders, and to store defective
cylinder information, file-protect
addresses, and a disk label in sector 0 of
the disk. The operating procedures for
DPIR are located in the publication IBM
1130 Card/Paper Tape Programming System

1

 Operator's Guide.

Set Pack Initialization Routine (SPIRO,
SPIR1, and SPIRN). The function of these
subroutines is to store defective cylinder
information and the file-protect address
from sector 0 of the disk into the appro-
priate DISKx subroutine.

The SPIR reads sector 0000 from the disk
and stores the first four words into the
disk ISS that is in core. Therefore, the
SPIR subroutine should be called before any
calls are made to the disk ISS.

The calling sequence for SPIR is as
follows:

CALL SPIRx
DC /0000

The four words read from sector 0000 are
described under "Disk Pack Initialization
Routine" in the publication IBM 1130

'
Card/Paper Tape Programming System
Operator's Guide.

DISK SUBROUTINES (DM2 SYSTEM)

All disk subroutines used by the DM2 system
(including DISKZ) reside in the IBM System
area on the monitor disk. The disk
subroutines are stored in a special core
image format in this area rather than in
the System Library, since the DM2 system
always requires a disk I/O subroutine. The
required version is fetched by the Core
Image Loader just prior to execution.

28

The disk subroutines used with the
Monitor system are DISKZ, DISK1, and DISKN.

DISKZ. DISKZ is intended for use in a
FORTRAN environment in which FORTRAN I/O is
used. DISKZ makes no preoperative
parameter checks and offers no file
protection. It is the shortest of the
three disk I/O subroutines and requires a
special calling sequence (see "DISKZ-Disk
I/O Subroutine"). This calling sequence
can also be used with DISK1 and DISKN.
DISKZ is also used by the RPG disk
subroutines.

DISK1. DISK1 is intended for use by
Assembler language programs in which the
core storage requirement is of more
importance than the execution time. DISK1
is longer than DISKZ but is the shorter of
the two subroutines intended for use in
Assembler language programs (DISK1 and
DISKN). However, DISK1 does not minimize
extra disk revolutions when transferring
more than 320 words.

DISKN. DISKN minimizes extra disk revolu-
tions in transferring more than 320
words. It provides all the functions
DISK1 does and also operates as many as 5
drives simultaneously.

Two versions of DISKN are distributed
with the Disk Monitor System. Both ver-
sions are called by the same calling
sequence. The difference between them is
the way they control disk drives. One
version of DISKN, shown in the next
drawing, can control as many as 5 single-
disk drives simultaneousl y . This version
of DISKN is for systems having only 2315
Disk Cartridges (mounted in 2310 Disk
Storage Drives and/or the 1131 CPU).

The other version of DISKN, shown in
the next drawing, can simultaneously control
a single-disk drive in the 1131 CPU and
two 2311 Disk Storage Drives (only one of
the disks in each pack). This version of
DISKN is for systems having 1316 Disk
Storage Packs (mounted in 2311 Disk Storage
Drives), and--optionally--a 2315 Disk
Cartridge mounted in the 1131 CPU.

During loading of the Disk Monitor
System, the 2310 version of DISKN is auto-
matically placed into the IBM System Area
on disk. If your system contains 2311s,
however, you must replace this version
with the 2311 version of DISKN before you
load the Disk Monitor System card deck.
(See "Monitor System Initial Load and
System Reload" in IBM 1130 Disk Monitor
System, Version 2, Programmer's and
Operator's Guide.)

Note: Both DISK1 and DISKN can be
specified on the Monitor XEX record for use
with FORTRAN programs. However, they offer
no real advantage over DISKZ if they are
called by the disk FORTRAN I/O subroutine.

Interrupt Service Subroutines 28.1

28.2

One of the major differences among the
disk subroutines is the ability to read or
write consecutive sectors on the disk
without taking extra revolutions. If full
sectors are written, the time in which the
I/O command must be given varies. DISKN is
programmed so that transfers of more than
320 words are made with a minimum number of
extra revolutions occuring between sectors.

DISK1 and DISKN have the same error-
handling procedures.

Note: In the DM2 system, the disk I/O
subroutines are not stored in the System
Library; consequently they do not have LET
entries.

Sector Numbering and File Protection

In the interest of providing disk features
permitting versatile and orderly control of
disk operations, programming conventions
have been adopted concerning sector
numbering, file protection, and defective
sector handling. Successful use of disk
I/O subroutines can be expected only if
user programs are built within the
framework of these conventions. The
primary concern behind the conventions is
the safety of data recorded on the disk.
To this end, the file-protection scheme
plays a major role, but does so in a manner
that is dependent upon the sector-numbering
technique. The latter contributes to data
safety by allowing the disk I/O subroutine
to verify the correct positioning of the
access arm before it actually performs a
write operation. This verification
requires that sector identification be
prerecorded on each sector and that
subsequent writing on the disk be done in a
manner that preserves the existing
identification. The disk I/O subroutines
support these requirements.

Sector Numbering. Each disk sector is
assigned an address from the sequence 0, 1,
...,1623, corresponding to the sector
position in the ascending sequence of
cylinder and sector numbers from cylinder
0, sector 0 (outermost), through cylinder
202, sector 7 (innermost). The user can
address cylinders U through 199. The
remaining three cylinders are reserved for
defective cylinder handling.

Each cylinder contains eight sectors and
each sector contains 321 words, counting
the sector address. The sector address is
recorded in the first word of each sector
and occupies the rightmost eleven bit
positions. Of these eleven positions, the
three low-order positions identify the
sector (0-7) within the cylinder.
Utilization of this first word for
identification purposes reduces the per
sector availability of data words to 320;
therefore, transmission of full sectors of
data is performed in increments of 320
words.

Sector addresses must be initially
recorded on the disk by the user (via DISC
or DCIP: see IBM 1130 Disk Monitor System,

I
Version 2, Programmer's and Operator's
Guide), and are thereafter rewritten by the
disk I/O subroutines as each sector is
written.

Note: Although not actually written on the
disk, the logical drive code must be part
of the sector address parameter (bits 1-3)
which is stored in the second word of the
I/O area. Bit 0 must always be zero.

File Protection. File protection is
provided to prohibit the inadvertent
destruction of previously recorded data.
This control is achieved by having all
write functions (except write immediate)
test for the file-protection status of
sectors they are about to write.

Interrupt • Service Subroutines 29

Operemds gem:As-
a32

n.r,.s.K,.,r .A,	 I .n.r,s,r.	 'a/	
ith .0d.orw.r	 , tIAA■R t.11 AlrIT
r	 •	 I	 St/ 17.	 EA, Palika IFIT .E.12,

ERRI7R	 FR RO JI IR IRA	 iT er IRA	 .
.........	 IIIIIIIIIIIIIIIIIII

1/.11	 lllllllllllllllll

L.L&F
p.c

jE	 l,R,F,T R l 	 01.111)1RIErC.51 1

......1...1■■■111.11111111.■

F tRAIRIRI	 .R. FIT of SIR WI Tal teLt4

n ,c.

Iti r

f llllll JIM&	 .00.1./A71

F r T XI IANIADIR■E■C■S lllll
1	 I 1 iti101 1.4■R.FIA lllllllllll

1■■■■■■.•.■■•■■••■■■•■■■■••■

FIARdloR
I	 I	 I

P.C. e

P.c. .
.81.25.Se

Each cartridge has a file-protect
address in COMMA. This address is the
address of the first unprotected sector,
i.e., the address of the beginning of
Working Storage. Every sector, from sector
0 up to the sector address maintained in
COMMA, is file-protected. The initial
assignment of the file-protect address is
performed by the disk initialization
program DCIP or DISC: see IBM 1130 Disk

' Monitor System, Version 2, Programmer's
and Operator's Guide. Subsequent updating
of the file-protect address is performed
by the Monitor programs.

Defective Sector Handling. A defective
sector is a sector on which a read or write
function cannot be successfully completed
during initialization of the cartridge. A
cylinder having one or more defective
sectors is defined as a defective cylinder.
The disk I/O subroutines can accommodate as
many as three defective cylinders per
cartridge. Since there are 203 cylinders
on each disk, the disk I/O subroutines can
"overflow" the 200 cylinders normally used
when defective cylinders are encountered
(see "Effective Address Calculation" in
this section).

Calling Sequence

where

a is 1 or N. Note that LIBF DISKO is
equivalent to LIBF DISK1.

b is the I/O function digit,

d is the Seek option digit,

e is the Displacement option digit,

f is the number of words to be
transferred to or from the disk,

g is the sector address, including the
logical drive code, at which the
transfer is to begin,

h is the length of the I/O area. h must
be equal to or greater than f.

Control Parameter

This parameter consists of four hexadecimal
digits, shown below:

1	 2
	

3	 4

I/O Function 	

Logical Drive Code
(DISKN Test function Only)._

Seek Option 	

Displacement Option

I/O Function

The I/O function digit specifies the
operation to be performed on disk storage.
The functions, their associated digital
value, and the required parameters are
listed and described below.

-1
Required
Parameters"

Test	 0	 Control, I/O Area

Read	 1	 Control, I/O Area, Error

Write with-
out RBC	 2	 Control, I/O Area, Error

Write
with RBC 3	 Control, I/O Area, Error

Write
Immediate 4	 Control, I/O Area

Seek	 5	 Control, I/O Area, Error

"Any parameter not required for a
particular function must be omitted.

L_

Test. Branches to LIBF+3 if the previous
operation on the drive has not been
completed, to LIBF+4 if the previous
operation has been completed.

Note: This function requires the I/O area
parameter even though it is not used.

r-
Digital

Function Value

-1

30

Read. Positions the access arm and reads
data into the user's I/O area until the
specified number of words has been
transmitted. Although sector
identification words are read and checked
for agreement with expected values, they
are neither transmitted to the I/O area nor
counted in the number of words transferred.

If, during the reading of a sector, a
read check occurs, up to 16 retries are
attempted. If the error persists, the
function is temporarily discontinued, an
error code is placed in the Accumulator,
the address of the faulty sector is placed
in the Extension, and an exit is made to
the error subroutine specified by the error
parameter.

Upon return from the error subroutine,
the operation is either reinitiated or
terminated, depending on whether the
Accumulator is nonzero or zero,
respectively.

Write With Readback Check. Checks whether
or not the specified sector address is in a
file-protected area. If it is, the
subroutine places the appropriate error
code in the Accumulator and exits to $PRET.

If the specified sector address is not
in a file-protected area, the subroutine
positions the access arm and writes the
contents of the indicated I/O area onto the
disk. Writing begins at the designated
sector and continues until the specified
number of words have been transmitted. A
readback check is performed on the data
written.

Writing less than 320 words on any
sector sets the remaining words in that
sector to zero.

If any errors are detected, the
operation is retried up to 16 times. If
the function cannot be accomplished, an
appropriate error code is placed in the
Accumulator, the address of the faulty
sector is placed in the Extension, and an
exit is made to the error subroutine
designated by the error parameter.

Upon return from this error subroutine,
the operation is either reinitiated or
terminated, depending upon whether the
Accumulator is nonzero or zero,
respectively.

As each sector is written, the
subroutine supplies the sector-identi-
fication word. The identification word for
the first sector is obtained from the I/O
area, although it and subsequently
generated identification words are not
included in the word count.

Write Without Readback Check. Functions
the same as Write With Readback Check
except that no readback check is performed.

Write Immediate. Writes data with no
attempt to position the access arm, check
for file-protect status, or check for
errors. Writing begins at the sector
number specified in the user's I/O area.
This function provides more rapid writing
to the disk than is provided in the
previously described Write functions; it
provides, for example, the ability to
"stream" data to the disk for temporary
bulk storage or to write addresses in
Working Storage (see "System Library
Mainline Programs (DM2 System) ADRWS").

Writing less than 320 words on any
sector sets the remaining words in that
sector to zero.

As each sector is written, the
subroutine supplies the sector-identi-
fication word. The identification word for
the first sector is obtained from the I/O
area, although it and subsequently
generated identification words are not
included in the word count.

Seek. Initiates a seek as specified by the
seek option digit. If any errors are detect-
ed, the operation is retried up to 16 times.

The seek function requires that the user
set up the normal I/O area parameters (see
"I/0 Area Parameter" in this section) even
though only the sector address in the I/O
area is used.

Seek Option. If digit 3 of the control
parameter is zero, a seek is executed to
the cylinder whose sector address is in the
I/O area; if nonzero, a seek is executed to
the next nondefective cylinder toward the
center, regardless of the sector address in
the I/O area. This seek to the next
nondefective cylinder must be taken into
consideration when planning for the
"streaming" of data. This option is valid
only when the seek function is specified.

Displacement Option. If digit 4 of the
control parameter is zero, the sector
address word contains the absolute sector
identification; if nonzero, the file-protect
address for the specified cartridge is added
to bits 4-15 of the sector address word to
generate the effective sector identification.
The file-protect address is the sector
identification of the first unprotected
sector, i.e., the address of the first
sector of Working Storage.

Logical Drive Code. Digit 2 defines the
logical drive code (0, 1, 2, 3, or 4). This
digit is used only with the DISKN test function.

Interrupt Service Subroutines 31

I/0 Area Parameter

The I/O area parameter is the label of the
first of two control words which precede
the user's I/O area. The first word
contains the number of data words that are
to be transferred during the disk
operation. This number need not be limited
by sector or cylinder size, since the
subroutines cross sector and cylinder
boundaries, if necessary, in order to
transmit the specified number of words.

The second word contains the sector
address at which reading or writing is to
begin. Bit 0 must be zero. Bits 1-3 are
the device identification (logical drive
code) and must be 0, 1, 2, 3, or 4. Bits
4-15 specify the sector address. The
user's I/O area follows the two control
words.

Note: The I/O area parameters are not
available to the user until the requested
operation is completed. The word count
and sector addresses may be altered during
a requested disk operation but are re-
stored at the completion of the operation.

Error Parameter

If an error is detected, the user can
request the subroutine to terminate (that
is, to clear the subroutine's busy
indicator and turn off interrupt level 2)
or to branch to $PST2, with interrupt level
2 on, waiting for operator intervention.

5. If the resultant address is equal to
or greater than that of the third
defective cylinder, add 8 more.

The address obtained from steps 1-5 is
the effective sector address. Defective
cylinders are handled in this manner for
all operations, including seek and write
immediate.

Monitor Entry Point

Both DISK1 and DISKN can be entered by a
BSI L /00F2, the monitor entry point (see
calling sequence of DISKZ). This entry
point is used by the system programs and by
FORTRAN programs when DISE1 or DISKN is
specified in the XEQ record.

Reading begins at the designated sector
where the access arm reads data into the
user's I/O area until the specified number
of words has been transmitted.

Writing begins at the designated sector
and continues until the specified number of
words have been transmitted. A readback
check is performed on the data written on
the disk. When DISK1 and DISKN are entered
via /00F2, however, there is no check for
writing in the file-protect area.

There is no possibility of performing a
seek operation when using the monitor entry
point. A word count of zero will result in
a preoperative error wait. All postopera-
tive errors will cause a branch to $PST2
(see Appendix B).

Effective Address Calculation

An effective disk address is calculated as
follows:

1. Obtain the sector address found in the
sector address word of the I/O area.

2. If the displacement option digit in
the control parameter is nonzero, add
the sector address of the first sector
that is not file-protected.

Note: This address causes an exit to $PRET
if it exceeds 1599.

3. If the resultant address is equal to
or greater than the sector. address of
the first defective cylinder, add 8.

4. If the resultant address is equal to
or greater than that of the second
defective cylinder, add 8 more.

Disk Initialization

Before the DM2 system is stored on a
cartridge, the Disk Cartridge
Initialization Program (DCIP) must be
executed. This program writes sector
addresses on the disk cartridge, detects
any defective cylinders, stores defective
cylinder information and a cartridge ID in
sector 0 of cylinder 0, and initializes
DCOM. The operating procedure for DCIP is
listed in the publication IBM 1130 Disk
Monitor System, Version 2, Programmer's
and Operator's Guide.

DISKZ - DISK I/O SUBROUTINE

The DISKZ subroutine offers no file
protection, no preoperative parameter
checks, no write immediate function, and nc

32

write without readback check function. It
is intended for use by the DM2 programs,
RPG programs, and FORTRAN programs in which
disk FORTRAN I/O is used. Although DISKZ
has many of the characteristics of an ISS,
it is assembled as though it were a
mainline and is stored in a special Core
Image format in the System Device
Subroutine area.

Calling Sequence

I
066,666 6 Remark.

Hsi'1.04D	 PAR.RACT,EAS , .1,N,
.8,11,/114.C.H.	 .T,O.	 ,11,1o.S.R.Z

R.c.C,	 .E,LT.
.	 ,

■
■ .,..	 	

„	 .	 .	 o		 ,	 ,	 .	 .	 .	 , .	 .	 ,	 .	 o	 ,	 ,	 .

[—LA T,

111

al
♦Al

,	 ,	 .	 . 	
'P—	 .	 U N C	 I•■ 	 AR

• .R.R.E R.	 P,A.RokilE.,T.0 R. ■

■ ..	 .	 ,	 .	 ,	 .1_1_1_1_	 ,,,,,,,,_i__LI i 	 •

•	 : ■ ,	 ,,,,,, V40.R.D.	 .610.01,N , T ,,,,,,,		 ,	 ,	 .	 ,	 .	 .
,,,,,,,, S.s,c.1,e,R,	 .A.D.D.R.Cs , 8

■ 41_ Li 0 ,ASAAA_,_,_,_ 	

IF.,
■M■■

NOON.
MOMOOO.,.

II
MI

■

MONO

■
.	 1	

■ .1..	 ..,,	 ,,,,,,,	 ,

where

a is the I/O function digit:
indicates a read, 1 a write.

Buffer Size. Unlimited

Operation. DISKZ performs read, seek, and
write with readback check functions. Each
function returns control to the user after
it has been initiated. To determine the
completion of a disk operation, the user
may test $DBSY (location /00EE in COMMA)
until it is cleared to zero. DISKZ itself
tests this word before initiating an
operation. Following a write, this
subroutine performs a readback check on the
data just written. If it detects an error,
it reexecutes the write. Similarly, if a
sector is not located or if an error is
detected during a read, DISKZ repeats the
operation. All operations are attempted 16
times before DISKZ indicates an
unrecoverable error.

If a partial sector (less than 320
words) is written, the remaining words of
the sector are set to zero.

Subroutines Required. No other subroutines
are required by DISKZ.

Note: It is important to realize that the
DISKZ subroutine is designed to operate in
an error-free environment; it is not
recommended for general usage. The user
should therefore use DISK1 or DISKN
whenever possible.

b is the number of words to be
transferred to or from the disk,

c is the sector address at which the
transfer is to begin,

d is the length of the I/O area. d must
be equal to or greater than b.

The word count (first word of the
buffer) must be nonnegative and must be on
an even core boundary. The sector address
must be the second word of the buffer. The
logical drive code (0, 1, 2, 3, or 4), as
defined by the // JOB DM2 control record,
is in bits 1-3 of the sector address. Bit
zero is always zero.

A word count of zero indicates a seek to
the cylinder denoted in the sector address.
File protection is not provided. If the
access arm is not positioned at the
cylinder addressed, DISKZ seeks to that
cylinder before performing the requested
function. A read follows each seek to
verify that the seek was successful. No
buffer is required for this read.

1132 PRINTER SUBROUTINE (PRNT1)

The printer subroutine PRNT1 handles all
print and carriage control functions
relative to the IBM 1132 Printer (see also
'1132 Printer/Synchronous Communications
Adapter Subroutine (PRNT2)'). Only one
line of data can be printed, or one
carriage operation executed, with each call
to the printer subroutine. The data in the
output area must be in EBCDIC form, packed
two characters per computer word. Any code
other than those defined for the 1132 will
be interpreted by the PRNT1 subroutine as a
blank. (See 'Appendix D. Character Code
Chart".)

Interrupt Service Subroutines 33

Operation

32

Operand. & Reeneeks

es	 30

P.R,Ahr iPia rIAATIF.R,
lllll r l	 tn147,17.1 ■PARIA IME IT 'Ea?.

ZIA A RI till, .T./.n, AIRIEJA .1114■RAM■F IT IF RI
fitIAROJZ 4:1414ARI	 ...

yyy, 	

1.	 	 deAraAcm AdmchkiE,s,s„

3113 	 I

ERJ1411171	 ,u.Rash	 Ira,/	 e

......................	 I

	 IMAIRA .r.n3 	 II

h11121113311 711011 IAIRI5A■ 3111131.111

1113111111111113.111111.1	 /1111133

4,1"ereF

ne,
D .C. ,
n.f

&cc,

alit
1-.0,4 ,

RSA.
11	 I

Calling Sequence

where

b is the I/O function digit,

c is the "immediate" carriage operation
digit,

d is the "after-print" carriage
operation digit,

f is number of words to be printed on
the 1132 Printer,

h is the length of the I/O area. h must
be equal to or greater than f.

The calling sequence parameters are
described in the following paragraphs.

Control Parameter

This parameter consists of four hexadecimal
digits which are used as shown below.

I/O Function 	 	

2	 3	 4

Carriage Control 	 1	 1

Not Used

I/O Function

The I/O function digit specifies the
operation to be performed on an 1132
Printer. The functions, their associated
digital values, and the required parameters
are listed and described below.

r
Digital Required

Function Value	 Parameters'

Test	 0	 Control

Print	 2	 Control, I/O Area, Error

Control
Carriage 3	 Control

Print
Numeric	 4	 Control, I/O Area, Error

Any parameter not required for a
particular function must be omitted.

Test. Branches to LIBF+2 if the previous
operation has not been completed, to LIBF+3
if the previous operation has been
completed.

Print. Prints characters from the user's
I/O area, checking for channel 9 and 12
indications. If either of these conditions
is detected, the subroutine branches to the
user's error subroutine after the line of
data has been printed (see Appendix B for
error codes). Upon return from this error
subroutine, a skip to channel 1 is
initiated or the function is terminated,
depending upon whether the Accumulator is
nonzero or zero.

Control Carriage. Controls the carriage as
specified by the carriage control digits
listed in Figure 7.

Print Numeric. Prints only numerals and
special characters from the user's I/O area
and checks for channel 9 and channel 12
indications. See 'Print" above.

Carriage Control. Digits 2 and 3 specify
the carriage control functions listed in
Figure 7. An "immediate" request is
executed before the next print operation;
an "after-print" request is executed after
the next print operation and replaces the
normal space operation.

If the I/O function is print, only digit
3 is examined; if the I/O function is
control, and digits 2 and 3 both specify
carriage operations, only digit 2 is used.

If channel 9 or channel 12 is encountered
during a carriage control function, a branch
is made to the user's error subroutine at
completion of the next print function.

Note: An after-print request will be lost
if it is followed by an immediate request
or by a print with spacing suppressed. If
a series of after-print requests is given,
only the last one will be executed. A skip
operation must not be less than four lines.

34

Control Function
1 - Immediate Skip To Channel 1
2 - Immediate Skip To Channel 2
3 - Immediate Skip To Channel 3
4 - Immediate Skip To Channel 4
5 - Immediate Skip To Channel 5
6 - Immediate Skip To Channel 6
9 - Immediate Skip To Channel 9
C - Immediate Skip To Channel 12
D - Immediate Space Of 1
E - Immediate Space Of 2
F - Immediate Space Of 3

Print Functions
0 - Space One Line After
1 - Suppress Space After

Control Function

Printing
Printing

Channel 11 - Skip After Print To
2 - Skip After Print To Channel 2
3 - Skip After Print To Channel 3
4 - Skip After Print To Channel 4
5 - Skip After Print To Channel 5
6 - Skip After Print To Channel 6
9 - Skip After Print To Channel 9
C - Skip After Print To Channel 12
D - Space 1 After Print
E - Space 2 After Print
F - Space 3 After Print

°wands 8 ROI*

...... ti/o	 ■Ah RIZZIA Eh qa<1	 1f.R.R.O,R

1.12.1

f.R N	 .P.A.z A471E:A	 ,,

A head	 ,,,,,
IS1.411 1.L3A, ,R./LE,	 .

.77..942.0.14F F

L,ZAF

ERRnRI

1111 •

T A Art 77C

ass.
wnoTra
,r/n

PAILN
ANFA

	 1 1132 PRINTER/SYNCHRONOUS COMMUNICATIONS
(Digit #2: Immediate Carriage Operations 1 ADAPTER SUBROUTINE (PRNT2)

Print Functions
Not Used

The printer subroutine PRNT2 is an
additional printer subroutine for the IBM
1132 Printer, specifically provided to
permit concurrent operation of the 1132 and
the Synchronous Communications Adapter.
PRNT2 handles all print and carriage
control functions related to the 1132.

Only one line of data can be printed, or
one carriage operation executed, with each
call to the printer subroutine. The data
in the output area must be in EBCDIC form,
packed two characters per word. Any code
other than those defined for the 1132 will
be interpreted by the PRNT2 subroutine as a
blank

Digit #3: After-Print Carriage Operations

t. 	

Figure 7. Carriage Control Operations for
1132 Printer

I/O Area Parameter

The I/O area parameter is the label of the
control word that precedes the user's I/O
area. The control word consists of a word
count that specifies the number of computer
words of data to be printed. The data must
be in EBCDIC format, packed two characters
per computer word. The word count must be
in the range of 1-60. (See "Descriptions
of Data Codes".)

Error Parameter

See "Basic ISS Calling Sequence".

Restriction. The PRNT1 and PRNT2
subroutines are mutually exclusive; i.e.,
both subroutines can not be in core at the
same time. Thus, if the Synchronous
Communications Adapter is in operation, the
PRNT2 subroutine must be used for
concurrent operation of the 1132 Printer.
If the PRNT2 subroutine is required in a
core load for the concurrent operation of
the 1132 Printer and the Adapter, all IBM-
and user-written programs in that core load
using the PRNT1 subroutine must be modified
to use the PRNT2 subroutine.

Calling Sequence

where

b is the I/O function digit,

c is the "immediate" carriage operation
digit,

d is the "after-print" carriage
operation digit,

Interrupt Service Subroutines 35

Digital Required
Function Value	 Parameters'

Test

Print

Control
Carriage

Print
Numeric

0	 Control

2	 Control, I/O Area, Error

3	 Control

4	 Control, I/O Area, Error

f is the number of words to be printed
on the 1132 Printer,

h is the length of the I/O area. h must
be equal to or greater than f.

The calling sequence parameters are
described in the following paragraphs.

Control Parameter

The control parameter consists of four
hexadecimal digits which are used as shown
below:

1	 2

I/0 Function 	

Carriage Control 	

Not Used 	

I/0 Function

The I/O function digit specifies the
operation to be performed on the 1132
Printer. The functions, their associated
digital values, and the required parameters
are listed and described below.

Control Carriage. Controls the carriage as
specified by the carriage control digits
listed in Figure 7.

Print Numeric. Prints only numerals and
special characters from the user's I/O area
and checks for channel 9 and 12 indica-
tions. (See "Print" above.)

Carriage Control. Digits 2 and 3 specify
the carriage control operations listed in
Figure 7. An "immediate" request is
executed before the next print operation;
an "after-print" request is executed after
the next print operation and replaces the
normal space operation.

If the I/O function is Print, only digit
3 is examined; if the I/O function is
Control Carriage, and digits 2 and 3 both
specify carriage operations, only digit 2
is used.

Carriage control functions do not check
for channel 9 and channel 12 indications.

I/O Area Parameter

The I/O area parameter is the label of the
control word that precedes the user's I/O
area. The control word consists of a word
count that specifies the number of words of
data to be printed. The data must be in
EBCDIC format, packed two characters per
word. The word count must be in the range
of 1-60.

Error Parameter

See "Basic ISS Calling Sequence".

1 Any parameter not required for a
1 particular function must be omitted.
L 	

1	 1403 PRINTER SUBROUTINE (PRNT3)

Test. Branches to LIBF+2 if the previous
operation has not been completed, to LIBF+3
if the previous operation has been
completed.

Print. Prints characters from the user's
I/O area; checks for channel 9 and 12
indications. If either of these conditions
is detected, the subroutine branches to the
user's error routine after the line of data
has been printed (see Appendix B for error
codes). Upon return from this error
routine, a skip to channel 1 is initiated
or the operation is terminated, depending
upon whether the Accumulator is nonzero or
zero.

The printer subroutine PRNT3, available
only with the DM2 system, handles all print
and carriage control functions relative to
the 1403 Printer. Only one line of data
can be printed and/or one carriage
operation executed with each call to the
printer subroutine.

The data in the output area must be in
the 1403 character code, as defined in
"Descriptions of Data Codes", and packed
two characters per word. Each data code
consists of seven bits and the total number
of bits should always be a valid number.
The first bit is the parity bit. If the
remaining six bits correspond to a valid

36

I/O Function 	

Carriage Control

Not Used 	

2
	

3f

	 4

I/O Function

1403 code, that character will be printed.
A branch to the user error routine will or
will not be made depending upon the
validity of the parity bit. The user can
specify a retry of the operation, if
desired.

digital values, and the required parameters
are listed and described below.

r-
Digital Required

Function Value	 Parameters'

Test
Calling Sequence

0	 Control

Print	 2	 Control, I/O Area, Error

L,,,,, r	 ,,,,,,,..., r •	 Opegands & .emast■

•	 •
_A_A 1.ZAF --teititt?-, ,,, .r.A.L..L.	 .p.o..nmr.r.,g .amnp.mr,
____ ar . A.,,,..c10. ,,,,, ramr.RAL, J'A.AAAI.P.T.E.R 	

TIOAE	 r/o AREA PAPAMAireFR..__.__I___I__._11..C,
A	 A	 .A.A ..

_I	 _I	 ...1_

ERR() A"

...D.C,	 ..

 A	 1	 ■

p.c.	 •

__

i

4

I

RDA A	 EXAAP. .P.A.R.AmArEte ,,,

1.	 A	 4--1_1_,_ ■ 		 ,	 ,_A__.A. __A__J-_,.

1	 	

—,gh ,__, , „ . , PA T LibiLigLAADIZIESS.1_11-1.--.1--L

1_1_	 ...—

_,__.,_ __._ . _1.	 A_	 ■

BSC

a

I

■■ 	 .	 ,.1_,	 _I_

II	 		 , 	

"P' 	 T a £41._,L,Pda..,
•

-- - -,
' I-,-1 	

.... 		 I.	 ..
I.OAR. or. If 	 	 L.0.0.14.4r,	

SC, t.f. 	 r/0	 AR/74 	,.	 .
L	 	 _1_,t_l_i_.__1_1_1_,_.__.__...

B
J__,........

where

b is the I/0 function digit,

c is the "immediate" carriage operation
digit,

d is the "after-print' carriage
operation digit,

f is the number of words to be printed
on the 1403 Printer,

h is the length of the I/O area. h must
be equal to or greater than f.

Control Parameter

This parameter consists of four hexadecimal
digits which are used as shown below.

Control
Carriage 3	 Control

F- 	 -1
" Any parameter not required for a
particular function must be omitted.

L- 	 -J

Test. Branches to LIBF+2 if the previous
operation has not been completed, to LIBF+3
if the previous operation has been
completed.

Print. Prints characters from the user's
I/O area, checking for channel 9 and 12 and
error indications. If any of these
conditions are detected, the subroutine
branches to the user's error subroutine
after the line of data has been printed
with an error code in the Accumulator (see
Appendix B). Upon return from this error
subroutine, a skip to channel 1 is
initiated and the function is reinitiated
or terminated, depending upon the error
code and whether the Accumulator is nonzero
or zero.

Control Carriage. Controls the carriage as
specified by the carriage control listed in
Figure 8.

Carriage Control. Digits 2 and 3 specify
the carriage control functions listed in
Figure 8. An 'immediate" request is
executed before the next print operation;
an "after-print" request is executed after
the next print operation and replaces the
normal space operation.

- 1

If the function is print, only digit 3
is examined; if the function is control,
and digits 2 and 3 both specify carriage
operations, only digit 2 is used.

Carriage control functions do not check
for channel 9 or channel 12 indications.

The I/O function digit specifies the
operation to be performed on the 1403
Printer. The functions, their associated

Note: An "after-print" request is lost if
it is followed by an "immediate" request.
If a series of "after-print' requests is
given, only the last one is executed.

Interrupt Service Subroutines 37

r 	 	 	 1 Error Parameter
lDigit #2: Immediate Carriage Operations
1 	

Print Functions
Not Used

See "Basic ISS Calling Sequence°.

Control Function
1 - Immediate Skip To Channel 1
2 - Immediate Skip To Channel 2
3 - Immediate Skip To Channel 3
4 - Immediate Skip To Channel 4
5 - Immediate Skip To Channel 5
6 - Immediate Skip To Channel 6
7 - Immediate Skip To Channel 7
8 - Immediate Skip To Channel 8
9 - Immediate Skip To Channel 9
A - Immediate Skip To Channel 10
B - Immediate Skip To Channel 11
C - Immediate Skip To Channel 12
D - Immediate Space Of 1
E - Immediate Space Of 2
F - Immediate Space Of 3

Digit #3: After-Print Carriage Operations
	 1

Print Functions
0 - Space One Line After Printing
1 - Suppress Spaces After Printing

Control Function
1 - Skip After Print To Channel 1
2 - Skip After Print To Channel 2
3 - Skip After Print To Channel 3
4 - Skip After Print To Channel 4
5 - Skip After Print To Channel 5
6 - Skip After Print To Channel 6
7 - Skip After Print To Channel 7
8 - Skip After Print To Channel 8
9 - Skip After Print To Channel 9
A - Skip After Print To Channel 10
B - Skip After Print To Channel 11
C - Skip After Print To Channel 12
D - Space 1 After Print
E - Space 2 After Print
F - Space 3 After Print

L 	

Figure 8. Carriage Control Operations for
1403 Printer

Note: A skip operation must not be less
than two lines.

KEYBOARD/CONSOLE PRINTER

There are two ISSs for the transfer of data
to and from the Console Printer and the
Keyboard.

TYPEO

The TYPEO Subroutine handles input and
output.

WRTYO

The WRTYO Subroutine handles output only.
If a program does not require keyboard
input, it is advantageous to use the WRTYO
subroutine because it occupies less core
storage than the TYPEO subroutine.

Only the TYPEO subroutine is described
below; the WRTYO subroutine is identical,
except that it does not allow the
read-print function.

Calling Sequence

leral °ram., ()seraph S Ararat.

•	 ■	 • LLRF TtY	 ,,,,,,

1	 1	 1	 1 /d..0.03,6 ,,,,,, PAPA

nr.	 . ,	 ,,,,
Ili

DX. . Yinn,R.D. rod tN.T ,,,,,

1	 1	 1 	 II

1.	 I

.

.

where
I/O Area Parameter

The I/O area parameter is the label of the
control word that precedes the user's I/O
area. The control word consists of a word
count that specifies the number of words of
data to be printed. The data must be in
1403 Printer code, packed two characters
per word. The word count must be in the
range of 1-60.

b is the I/O function digit,

f is the number of characters to be
printed on the console printer for
read-print operations and is 1/2 the
number of characters to be printed on a
print operation.

h is the length of the I/O area. h must
be equal to or greater than f.

38

Digital Required
Function Value
	

Parameters^

r

Test	 0
Read-Print 1
Print	 2

Control
Control, I/O Area
Control, I/O Area

Control Parameter

This parameter consists of four hexadecimal
digits, as shown below:

1	 2	 3

4

I/O Function	 1

1	 1Not Used

I/O Function

The I/O function digit specifies the
operation to be performed on the Keyboard
and/or Console Printer. The function,
their associated digital values, and the
required parameters are listed and
described below.

1 1 Any parameter not required for a
f particular function must be omitted.
I-

Test. Branches to LIBF+2 if the previous
operation has not been completed, to LIBF+3
if the previous operation has been
completed.

Read-Print. Reads from the Keyboard and
prints the requested number of characters
on the Console Printer. The operation
sequence is as follows:

1. The calling sequence is analyzed by
the call portion of the subroutine,
which then unlocks the keyboard.

2. When a key is pressed, a character
interrupt signals the interrupt
response portion that a character is
ready to be read into core storage.

3. The interrupt response portion
converts the keyboard data to Console
Printer Code (see "Descriptions of
Data Codes"). Each character is
printed as it is read; the Keyboard is
then unlocked for entry of the next
character.

4. Printer interrupts occur whenever the
2onsole Printer has completed a print
operation. When the interrupt is
received, the subroutine checks to
determine if the final character has
been read and printed. If so, the
operation is considered complete. In

I
the C/PT system, if the Console
Printer becomes not-ready during
printing, the subroutines loop,
waiting for the Console Printer
to become ready. In the DM2 system
they trap to $PRET or $PST4 (see
"Descriptions of Data Codes").

5. Steps 2 through 4 are repeated until
the specified number of characters
have been read and printed. The
characters read into the I/O area are
identical to IBM Card Code; that is,
each 12-bit image is left-justified in
one 16-bit word.

Print. Prints the specified number of
characters on the Console Printer. A
printer interrupt occurs when the Console
Printer has completed a print operation.
When an interrupt is received, the
character count is checked. If the
specified number of characters has not been
written, printing is initiated for the next
character. This sequence continues until
the specified number of characters has been
printed. Data to be printed must be in
Console Printer code (see "Descriptions of
Data Codes"), packed two characters per
16-bit word. Control characters can be
embedded in the message where desired.

In read-print and print operations,
printing begins where the printing element
is positioned; that is, carrier return to a
new line is not automatic when the
subroutine is called.

Keyboard Functions

Keyboard functions provide for control by
the TYPEO subroutine and by the operator.

TYPEO Subroutine Control

Three keyboard functions are recognized by
the TYPEO subroutine.

Backspace. The operator presses the
backspace key whenever the previous
character is in error. The interrupt
response portion senses the control
character, backspaces the Console Printer,
and prints a slash (/) through the character
in error. In addition, the subroutine
prepares to replace the incorrect character
in the I/O area with the next character.

If the backspace key is pressed twice,
the character address is decremented by +2,
but only the last graphic character is
slashed. For example, if ABCDE was entered
and the backspace key pressed three times,
the next graphic character to be entered

Interrupt Service Subroutines 39

replaces the C but only the E is slashed.
3f XYZ is the new entry, the printout shows
Apcpykyz, but the buffer contains ABXYZ.

Erase Field. When the interrupt response
portion recognizes the erase field control
character, it assumes that the entire
message is in error and is to be entered
again. The subroutine prints two slashes
on the Console Printer, restores the
carrier to a new line, and prepares to
replace the old message in the I/O area
with a new message.

The old message in the I/O area is not
cleared. Instead, the new message overlays
the old, character by character. If the
old message is longer than the new, the
remainder of the old message follows the NL
(new-line) character terminating the new
message.

End of Message. When the interrupt-
response portion recognizes the
end-of-message (EOF) control character, it
assumes the message has been completed,
stores an NL character in the I/O area, and
terminates the operation.

I Operator Request Function (C/PT System)

By pressing the interrupt request key (INT
REQ) an the Keyboard, the operator can
inform the program that he wishes to enter
data from the Keyboard or the Console Entry
switches. The interrupt that results
causes the TYPEO or WRTYO subroutine to
execute an indirect BSI instruction to core
location /002C, where the user must have
previously stored the address of an
interrupt request subroutine. Bit 1 of the
Accumulator contains the Keyboard/Console
Printer identification bit, that is, the
device status word, shifted left two bits.

The user's interrupt request subroutine
must return to the ISS subroutine via the
return link. The user's subroutine is
executed as a part of the interrupt
handling. The interrupt level remains on
until control is returned to the ISS
subroutine (see "General Error-Handling
Procedures, Postoperative Checks").

Operator Request Function (DM2)

By pressing the Interrupt Request key (INT
REQ) on the keyboard, the operator can
inform the program that he wishes to enter
data from the keyboard or the Console Entry

switches. The interrupt that results
causes the ILSO4 or ILSX4 subroutine to
execute a BSI I $IRD2 instruction. $IREQ
is initialized with the address $1420 in
Resident Monitor. This allows the operator
to terminate the job by pressing INT REQ
key. If the user wants control, $1REQ must
be set to the user Interrupt Service
subroutine. This subroutine can set
indicators or read the Console Entry
switches. If keyboard input/output is
desired, only one call to ISS can be made.
The user-written subroutine must return to
exit address plus one, in ILSO4 or ILSX4.
This is to turn off the interrupt and
return to the program that was interrupted.
In no case should the user perform an XIO
sense Keyboard/Console with reset.

I/O Area Parameter

The I/O area parameter is the label of the
control word that precedes the user's I/O
area. The control word consists of a word
count that specifies the number of words to
be read or printed. This word count is
equal to the number of characters if the
read-print function is requested and is
equal to 1/2 the number of characters if
the print function is requested.

(PAPER TAPE SUBROUTINES (C/PT SYSTEM)

The paper tape subroutines, PAPT1 and
PAPTN, handle the transfer of data from the
IBM 1134 Paper Tape Reader to core storage
and from core storage to the IBM 1055 Paper
Tape Punch. Any even number of characters
can be transferred via one calling
sequence.

The PAPTN subroutine must be used if
simultaneous reading and punching are
desired.

The PAPT1 subroutine can operate both
devices, but only one at a time.

When called, the paper tape subroutine
starts the reader or punch and then, as
interrupts occur, transfers data to or from
the user's I/O area. Input data is packed
two characters per computer word by the
subroutine; output data must already be in
the packed format when the subroutine is
called for a punch function.

40

labst Ooorstiao
51

Oootrands tornof ks
5o

..4.1 .1	 or,A,P,E
/ b c.0 	Althr.R.110 IIRAIRAIMP	 . .
XtrAA , RL/.A.	 .PAR.A.1.40.71E

„ ,ER.P.0.11 aPARAIMIF.TERi

■■•

A A 	 AFTIARA AOJAAFAW1 ...

.1•11i11 '. iiiiiiiiii	 1111

L 1.81E
D.C.

ERROR

ERR 0 R i ii	 R.C.r,shstLni,.1. RSC.

115

	 YAMPA COLANT

rin AREA
,

1	 2

I/O Function 	

Check 	

I

Not Used 	

Device Identification

4

Calling Sequence
Digital Required

Function Value	 Parameters"

where

a is a 1 or N,

b is the I/O function digit,

c is a check digit,

e is a device-identification digit,

f is the number of words to be read from
or punched into paper tape,

h is the length of the I/O area. h must
be equal to or greater than f.

The parameters used in the above calling
sequence are described in the following
paragraphs.

Control Parameter

This parameter consists of four hexadecimal
digits, as shown below:

I/O Function

The I/O function digit specifies the
operation to be performed on a paper tape
attachment. The functions, their
associated digital value, and the required
parameters are listed and described below.

Test	 0	 Control
Read	 1	 Control, I/O Area, Error
Punch	 2	 Control, I/O Area, Error

E- -1
"Any parameter not required for a
particular function must be omitted.

L_ 	

Test. Branches to LIBF+2 if the previous
operation has not been completed, to LIBF+3
if the previous operation has been
completed.

Read. Reads paper tape characters into the
specified number of words in the I/O area.
Initiating reader motion causes an
interrupt to occur when a character can be
read into core. If the specified number of
words has not been read, or the stop
character has not been read (see "Check" in
this section) , reader motion is again
initiated.

Punch. Punches paper tape characters into
the tape from the words in the I/O area.
Each character punched causes an interrupt
which indicates that the next character can
be accepted. The operation is terminated
by transferring either a stop character or
the specified number of words.

Check Digit

The check digit specifies whether or not
word count checking is desired while
completing a read or punch operation as
shown below:

0 Check
1 No Check

Check. This function should be used with
the Perforated Tape and Transmission Code
(PTTC/8) only (see "Descriptions of Data
Codes"). The PTTC/8 code for DEL is used
as the delete character when reading. The
delete character is not placed in the I/O
area and therefore does not enter into the
count of the total number of words to be
read.

The PTTC/8 code for NL is used as the
stop character when doing a read or punch.
On a read operation, the NL character is
transferred into the I/O area. On a punch
operation, the NL character is punched into
the paper tape.

When the NL character is encountered
before the specified number of words has
been read or punched, the operation is
terminated. When the specified number of
words has been read or punched, the

Interrupt Service Subroutines 41

Lobel Opetonds a Remarls

L.LB.F PlAtP,T a.

/1h.r A	
I

■PtA,PlEaRt	 E	 .r.
rAmramr, ■PARA11,42..
S./ ,O.

DC
AiLl pr. r.r:LAR,

r. F.RtP,n i R tEIRIR tar. tRARAJMIF tnER■

111111

F RA, XI	 ,/1101 PI ES,S1

__L

I		 -	 I 	 1	 1	 t.

1	 I		 111111.'111

EIR.R.OIR	 ,RIFtT tUiRtNi T,O,	 t

11111,11l111111,i11111,11111

F	 ,1440•17■rA CIO, VAT 1	 .
h ,L/A,AMEA
1111

operation is terminated, even though a NL
character has not been encountered.

No Check. The read or punch function is
terminated when the specified number of
words has been read or punched. No
checking is done for a delete or stop
character.

Device Identification

When the test function is specified, the
PAPTN subroutine must be told which device
(reader or punch) is to be tested for an
Operation Complete. indication. (Remember
that bath the reader and the punch can
operate simultaneously.) Therefore, the
device identification is used only for the
test function in the PAPTN subroutine. If
the device-identification digit is a 0, the
subroutine tests for a Reader Complete
indication; if it is a 1, the subroutine
tests for a Punch Complete indication.

ILO Area Parameter

The I/O area parameter is the label of the
control word that precedes the user's I/O
area. It consists of a word count that
specifies the number of words to be read
into or punched from core. Since
characters are packed two per word in the
I/O area, this count is one-half the
maximum number of characters transferred.
Because an entire eight-bit channel image
is transferred by the subroutine, any
combination of channel punches is
acceptable. The data can be a binary value
or a character code. The code most often
used is the PTTC/8 code. (See
"Descriptions of Data Codes".)

are desired. The PAPT1 subroutine will
operate both devices but only one at a
time. The PAPT1 and PAPTN subroutines use
only a word count, reading and punching an
even number of characters; PAPTX can use a
word count or character count, permitting
an odd number of characters to be read or
punched. PAPTX allows the user to start
punching from or reading into the left or
right half of a word. One-frame records
can be written on tape.

When called, the paper tape subroutine
starts the reader or punch and then, as
interrupts occur, transfers data to or from
the user's I/O area. The data is packed
two characters per computer word by the
subroutine when reading, and must be in
that form when the subroutine is called for
a punch function.

Calling Sequence

Error Parameter

See "Basic ISS Calling Sequence".

PAPER TAPE SUBROUTINES (1242 SYSTEM)

The paper tape subroutines, PAPT1, PAPTN,
and PAPTX, handle the transfer of data from
the IBM 1134 Paper Tape Reader to core
storage and from core storage to the IBM
1055 Paper Tape Punch. Any even number of
characters may be transferred via one
calling sequence (PAPTX also allows an odd
character count).

The PAPTN or PAPTX subroutine must be
used if simultaneous reading and punching

where

a is 1, N, or X,

b is the I/O function digit,

c is a check digit,

d is the character mode digit,

e is a device identification digit,

f is the number of words to be read from
or punched into paper tape,

h is the length of the I/O area. h must
be equal to or greater than f.

The parameters used in the above calling
sequence are described in the following
paragraphs.

42

Digital
Function Value

Required
Parameters

Test
Read
Punch

0	 Control
1	 Control, I'D Area, Error
2	 Control, I/O Area, Error

Control Parameter
	

0 Check
1 No Check

This parameter consists of four hexadecimal
digits which are used as shown below:

1	 2

I/O Function 	

Check 	

Character Mode 	

Device Identification 	

I/O Function

The I/O function digit specifies a
particular operation performed on the
1134/1055 Paper Tape attachment. The
functions, associated digital values and
required parameters are listed and
described below.

No Check. The read or punch function is
terminated when the specified number of
words or characters has been read or
punched. No check is made for a delete or
stop character.

Check. This function should be used with
the Perforated Tape and Transmission
(PTTC/8 Code only (see "Descriptions of
Data Codes"). The PTTC/8 code for DEL will
be used as the delete character when doing
a read. The delete character is not placed
in the I/O area and therefore is not
included in the word or character count.

The PTTC/8 code for NL will be used as
the stop character when doing a read or
punch. On a read operation, the NL
character is transferred into the I/O area
and causes the operation to be terminated.
On a punch operation, the NL character is
punched in the paper tape and causes the
operation to be terminated.

When the NL character is encountered
before the specified number of words has
been read or punched, the operation is
terminated. When the specified number of
words has been read or punched, the
operation is terminated even though an NL
character has not been encountered.

This digit is examined by the PAPTX
subroutine

• If it is zero, the first word of this
I/O area is interpreted as a word
count.

• If it is nonzero, the first word of
the I/O area is interpreted as a
character count:

If the character mode digit is nonzero
and even, the first character will be
read into or punched from bits 0-7 of
the first data word. Bits 8-15 of the
last data word will not be altered if
the character count is odd.

If the character mode digit is nonzero
and odd, the first character will be
read into or punched from bits 8-15 of
the first data word. Bits 0-7 of the
first data word will not be altered.
If the character count is even, bits
8-15 of the last data word will not be
altered.

r

1 4 Any parameter not required for a
1 particular function must be omitted.
I. 	

	 Character Mode

Test. Branches to LIBF+2 if the previous
operation has not been completed, to LIBF+3
if the previous operation has been
completed.

Read. Reads paper tape characters into the
specified number of words in the I/O area.
Initiating reader motion causes an
interrupt to occur when a character can be
read into core. If the specified number of
words has not been read or the stop
character has not been read (see "Check" in
this section), reader motion is again
initiated.

Punch. Punches paper tape characters into
the tape from the words in the I/O area.
Each character punched causes an interrupt
which indicates that the next character can
be accepted. The operation is terminated
either by encountering a stop character
(see "Check" in this section) or by
transferring the requested number of words.

Check Digit
Device Identification

The check digit specifies whether or not
checking is desired while doing a read or
punch operation.

When the test function is specified, the
PAPTN and PAPTX subroutines must be told

Interrupt Service Subroutines 43

Operwien OpearAtttellarlts
11

	

AL.O.T.11	 raid .1. .PLATT	 [AT,

	

/ d414041 	 rivv•-r.s. A PARAAMF T F R
irde0, AZFA. .AA.PAALF T.F iZ

	

nR	 F RR AEI ■PLA.R.A.A4IF FP ,,

&al AZOt rtilfAMT	 _111_ 11
•

	 t 0	 ■ I
•

1	 1	 I n C.

n r.

LOAX PC
RCA,

Calling Sequence

where

b is the I/O function digit,

f is the number of words of plotter
data,

h is the length of the I/O area. h must
be equal to or greater than f.

The calling sequence parameters are
described in the following paragraphs.

Control Parameter

This parameter consists of four hexadecimal
digits, as shown below:

2

I/O Function 	

Not Used 	

which device (reader or punch) is to be
tested for an Operation Complete
indication. (Remember that both the reader
and the punch can operate simultaneously.)
Therefore, the device-identification digit
is used for the test function in the PAPTN
and PAPTX subroutines only; if it is a 0,
the subroutine tests for a Reader Complete
indication; if it is a 1, the subroutine
tests for a Punch Complete indication.

ILO Area Parameter

The I/O area parameter is the label of the
control word that precedes the user's I/O
area. The word count specifies the number
of words to be read into or punched from
the user's I/O area. Since characters are
packed two per word in the I/O area, this
count is 1/2 the maximum number of
characters transferred. The character
count, used only by the PAPTX subroutine if
the character mole is nonzero is the
maximum number of characters to be read or
punched.

Because an entire 8-bit channel image is
transferred by the subroutine, any
combination of channel punches is
acceptable. The data may be a binary value
or a character code. The code most often
used is the PTTC/8 code (see "Descriptions
of Data Codes").

Error Parameter

See 'Basic ISS Calling Sequence".
I/O Function

PLOTTER SUBROUTINE (PLOT1)

The Plotter subroutine converts hexadecimal
digits in the user's output area into
actuating signals that control the movement
of the plotter recording pen. Each
hexadecimal digit in the output area is
translated into a plotter operation that
draws a line segment or raises or lowers
the recording pen. The amount of data that
can be recorded with one calling sequence
is limited only by the size of the
corresponding output area.

The I/O function digit specifies the
operation to be performed on the 1627
Plotter. The functions, their associated
digital value, and the required parameters
are listed and described below.

1
Digital Required

Function Value	 Parameters"

Test	 0	 Control
Write	 1	 Control, I/O Area, Error

E- 	-----I
'Any parameter not required for a
particular function must be omitted.

Test. Branches to LIBF+2 if the previous
operation has not been completed, to LIBF+3
if the previous operation has been
completed.

44

r
Hexadecimal'	 Plotter Action
Digit	 I	 (See Diagram Below)
	 4 	 -1

0 Pen Down
1 Line Segment= +Y
2 Line Segment= +X, +Y
3 Line Segment= +X
4 Line Segment= +X, -Y
5 Line Segment= -Y
6 Line Segment= -X, -Y
7 Line Segment= -X
8 Line Segment= -X, +Y
9 Fen Up
A Repeat the previous pen

motion the number of times
specified by the next digit
(Maximum-15 times)
Repeat the previous pen
motion the number of times
specified by the next two
digits (Maximum-255 times)
Repeat the previous pen
motion the number of times
specified by the next three
digits (Maximum-4095 times)
Not Used
Not Used
Not Used

F-

B

C

D
E
F

+X

—J

Hexadecimal Figure
Finish

-1q

I— —I Start
—J

0711
3A25
9103
A255
79FF

Example

Write. Changes hexadecimal digits in the
output area into signals that actuate the
plotter. Figure 9 lists the hexadecimal
digits and the plotter actions they
represent. Figure 10 shows the binary and
hexadecimal configurations for drawing the
letter E.

I/O Area Parameter

The I/O area parameter is the label of the
control word that precedes the user's I/O
area.

The control word consists of a word
count that specifies the number of computer
words of data to be used.

Error Parameter

This parameter is not used but must be
included because the subroutine will return
to LIBF+4. (See "Basic ISS Calling
Sequence".)

PLOTTER SUBROUTINE (PLOTX)

The PLOTX subroutine converts the
hexadecimal digit in the parameter into a
control word. The control word is stored
in a buffer inside the PLOTX subroutine.
One digit is transferred with each calling
sequence. When the plotter is ready to
accept control, the movement of the plotter
recording pen is controlled by the words in
the PLOTX buffer.

Figure 9. PLOT1 Control Digits

r 	 1

0000011100010001
0011101000100101
1001000100000011
1010001001010101
0111100111111111

Figure 10. PLOT1

Binary

Interrupt Service Subroutines 45

+Y 	 -Y

Hexadecimal
Digit Plotter Action

0 Pen down
1 Line segment = +Y
2 Line segment = +X ±Y
3 Line segment = +X
4 Line segment = +X, -Y
5 Line segment = -Y
6 Line segment = -X,-Y
7 Line segment = -X
8 Line segment = -X +Y
9 Pen up
A•F Not used

-X ±Y
-X

Calling Sequence

Operation
	

Operands a Ramada

.s	 so	 as

pa	 . x 	 rah, 1)1 .Pd eCIT,TIFoRe 1011117.Pa
,4009'‘P	 reItAiirRaLi ■PnCRIAM.F
leetel	 el	 le	 llllll	 llllllllllll

where e is the plotter control digit.

Control Parameter

This parameter consists of four hexadecimal
digits:

Not Used

Plotter Control

Plotter Control

The plotter control digit specifies the
recording pen action to be taken. This
digit is expressed in hexadecimal.

If there is no room in the buffer for
the control digit, the subroutine will loop
until there is room.

If the plotter is in a not-ready,
not-busy condition, the subroutine exits to
$PRET where the program goes into a wait
condition until operator intervention. If
the plotter becomes not ready while execut-
ing the PLOTX subroutine commands, PLOTX
exits to $PST3 where the program goes into a
wait condition until the operator intervenes.

The PLOTX subroutine has no error-
handling capabilities.

1231 OPTICAL MARK PAGE READER SUBROUTINE
(OMPRI)

The Optical Mark Page Reader subroutine
OMPR1 handles the reading of paper
documents eight and one-half inches wide ty
eleven inches long by the 1231 Optical Mark
Page Reader. A maximum of 100 words from
one page can be read with one call to the
subroutine.

When called to perform a read function,
OMPR1 performs a feed function and reads a
page into core storage according to the
Master Control Sheet (see the publication
IBM 1231, 1232 Optical Mark Page Readers,
GA21-9012), and the setting of the switches
on the reader. Other functions performed
by OMPR1 are feed, stacker select, and
disconnect.

Label

Figure 10.1 PLOTX Control Digits

11 6

Op ,aim	 Operand. 8 R...d.

0 .14. PA,1,	 PIA ■L ■J tOiP, T. AA .17,14 PA A	 .L111 &hi",

PAIR, lAhr 1 T. F
111)A ,L/,n, A P■FAI 	 IRAIb1iEeT.F.R1
F ol? A■C LIZ 1 ERRORIE I PARA ∎MoF ■,1

I ill	 1111,	 11.1111

1,...,31,1111111 .1 ..

FJZ.R,o,R Dr. , 716	 .■. IZP1 Td/A	 IA/IRIAM Ai 1 ill!.

1,11.1111.11111111

ill') lo	 I	 1	 I

Bcr T ErR R od? 174F IT it ARM 17-111	 ■CA L I 1E1R.

11.11111■11.11 	 ,, „, II

LOA .R, h.	 ,,,,, x./.n.	 .11 .1:78F	 ,,,	 till.
lalii

Calling Sequence r
Digital Required

Function Value	 Parameters”

Test	 0	 Control

Read	 1	 Control, I/O Area, Error

Feed	 3	 Control

Disconnect 4	 Control

Stacker
Select	 5	 Control

I l Any parameter not required for a
1 particular function must be omitted.

where

b is the I/O function digit,

c is the stacker select digit,

e is the timing-mark-check-test digit,

h is the length of the I/O area. h must
be equal to or greater than the number
of words designated to be read on the
Faster Control Sheet.

Control Parameter

This parameter consists of four hexadecimal
digits:

3	 4

I/O Function

Stacker Select

Not Used 	

Timing-Mark-Check-Test

I/O Function

The I/O function digit specifies the
operation to be performed on the 1231
reader. The functions, their associated
digital values, and the required parameters
are:

Test. Branches to LIBF+2 if the previous
operation has not been completed, to LIBF+3
if the previous operation has been
completed.

The operation to be tested is specified
by the fourth digit of the control
parameter. A zero value in digit 4
specifies a normal device-busy test; that
is, a test to determine if there is an
operation in progress for which no
operation complete interrupt has occurred.
The subroutine is "not busy" once the
Operation Complete interrupt takes place.
A value of one for digit 4 specifies a
Timing-Mark-Check-Busy test. This test
indicates a "busy" condition as long as the
Test-Timing-Mark-Check indicator in the
Device Status Word is on. If the user
wishes to run with the Timing Mark Switch
set on, it is recommended that digit 4 be
set to one when performing a test function.

A test function must not directly follow
a feed function.

Read. Reads words or segments (response
positions 1-5 or 6-10 of any word) from a
document page into core storage starting at
the I/O area address. The first call to
OMPR1 in a program must be a read function.
The read feeds the document before reading.
When a read function follows a feed, the
read begins with the document started by
the feed. The number of bits per word read
and the number of words per document read
depends upon the way in which the Master
Control Sheet is programmed (see the
publication IBM 1231 Optical Mark Page
Readers, GA21-9012). OMPR1 reads a maximum
of 100 words. Any word not programmed to
be read (mark positions 8 or 18 not
penciled on the Master Control Sheet) is
skipped. Digit 2 of the control parameter

1

Interrupt Service Subroutines 47

specifies whether or not the document being
read is to be stacker-selected. If digit 2
is set to one, the document is
stacker-selected; if digit 2 is set to
zero, it is not.

Note: On a feed, or feed as the result of
a read, the document is fed from the
hopper, the selected data is read into a
delay line (and read out on a read), and
the document continues through the machine
to the stacker.

Feed. Initiates a feed cycle. This
function advances a document from the
hopper through the read station and into
the stacker. Selected information from the
document is stored in a delay line. A read
function following a feed causes this data
to be read. If a feed function is followed
by another feed function without an
intervening read function, the data read
from the document corresponding to the
first feed is overlaid in the delay line by
the data read from the second document.
The first call to OMPR1 in a program must
not be a feed function.

A feed function must not be followed
directly by a test function.

Disconnect. Terminates the read function
on the data currently being read from the
delay line. The subroutine-busy indicator
is cleared.

Error Parameter

There is an error parameter for the read
function only. Exits are made to the
user's error subroutine when the following
conditions are detected:

Master Control Sheet Error

Timing Mark Error

Read Error

Hopper Empty

Document Selected

See °Basic ISS Calling Sequence" and
Appendices B and C.

Feed Check

If a feed check is detected during a read
or feed operation, exit is made to $PST4
with an error code of /A002 or /A003.
After making device ready and depressing
start key, OMPR1 will reinitiate the
operation if error code was /A003. No
stacker select will be performed on a
reinitiated operation. If error code was
/A002, the last document has already been
processed and the operation is not
reinitiated.

Note: If the last document in the hopper
is disconnected the hopper empty condition
will not be detected.

Stacker Select. Performs a stacker select
on the sheet currently being read (and
fed), providing the stacker select function
is requested while the "OK to select" bit
(bit 5) is on in the Device Status Word
(DSW) . This bit remains on until 50
milliseconds after the read operation is
completed. If the request to select
arrives too late, the sheet falls in the
normal stacker.

10 Area Parameter

The I/O area parameter is the label of the
user's I/O area.

2250 DISPLAY UNIT MODEL 4 I/0 SUBROUTINE
(DSPYN)

The 2250 I/O subroutine, DSPYN, contains
the 2250 Interrupt Service Subroutine.
DSPYN controls the interrupt-handling
services for the 2250 Display Unit, Model
4. The 2250 ISS contains facilities for
handling attentions (graphic interrupts)
from four sources; the alphameric keyboard,
the programmed function keyboard, the light
pen, and the graphic program itself. The
DSPYN subroutine is part of the 1130/2250
Graphic Subroutine Package. A complete
description of the DSPYN I/O functions can
be found in IBM 1130/2250 Graphic
Subroutine Package for Basic FORTRAN IV,
GC27-6934.

48

RPG Subroutines (DM2 System)

The DM2 System Library contains a group of	 Sequential files on disk may be processed
subroutines that perform functions required sequentially or randomly.
by the RPG Compiler and application
programs. These subroutines are divided
into two groups, Disk I/O and RPG Object
Time Subroutines. The Disk I/O subroutines
are available to Assembler language
programmers. The other RPG subroutines are
for system use only. All RPG subroutines
are listed in Figure 24, Appendix A.

Disk File Management Subroutines
(DM2 System)

Supplied with 1130 RPG is a group of disk
I/O subroutines that will handle all disk
file functions. These subroutines can be
used by Assembler language programmers
directly and are wholly independent of RPG.
The subroutines provided are Direct Access,
Sequential Access, and Indexed Sequential
Access Method (ISAM). The subroutines are
stored in the System Library.

Disk I/O Subroutines

The key to the use of the Disk I/O
subroutines is an understanding of the
basic principles of disk file organization
and disk file processing.

FILE ORGANIZATION

Indexed Sequential (ISAM) File Organization

An indexed sequential file is one in which
records are placed on the disk in ascending
collating sequence by record key. This key
may be a part number, man-number or any
other identifying information that is
present in the records on the file. In
addition, the indexed sequential file uses
an index to locate desired records. Each
index entry contains a cylinder address and
the highest record key on that cylinder.
All index entries are formed into an index
table. For cylinders that have overflowed,
the index entry also contains the overflow
sector address and key of the first sector
overflowed from that cylinder.

Index tables are analogous to the index
card file in a library. If you know the
name of a book (record key) , you can look
in the card file (index table) until you
find the card (entry) for that book. On
the card you will find a number (cylinder
address) where the book (record) is
located. You go to the shelf (seek) and
find the number (cylinder address) you are
looking for. Now you can search for the
particular book (record) by title (record
key) .

Record on an indexed sequential
organized file may be processed
sequentially or randomly.

File organization is the method of
arranging data records on a direct access
storage device, i.e., building the file.

The two types of file organization
available with DM2 are sequential and
indexed sequential (ISAM).

Sequential File Organization

A sequentially organized file is one in
which records are placed on the disk in the
same order they are read in, one after
another. Card files are always organized
this way. That is, record six cannot be
written until record five is written,
record five until record four, etc.

FILE PROCESSING

File processing is the method of retrieving
data records from the file, i.e., using the
file. Four methods of file processing are
available with DM2 RPG:

1. Sequential processing of sequentially
organized files.

2. Random processing of sequentially
organized files.

3. Sequential processing of indexed
sequential organized (ISAM) files.

4. Random processing of indexed
sequential organized (ISAM) files.

RPG Subroutines (DM2 System) 49

Sequential Processing (Sequential Files) 	 SEQUENTIALLY ORGANIZED DISK ROUTINES

All records in the file are processed in
order starting with the first physical
record in the file.

Random Processing (Sequential Files)

In random processing the records in a file
can be processed in any order. To find a
record in a sequentially organized file,
the record number must be supplied to the
program. The record number indicates the
relative position (sequential location) of
the record in the file. The disk I/O
routine calculates the sector address from
the record number and reads the proper
record.

The sequential disk I/O subroutines
provided with RPG are sequential access and
direct access. A sequentially organized
file is built using the sequential access
routine or the direct access routine. It'
may be processed by either the sequential
access routine or the direct access
routine.

Space for the file is initially
established on the disk by using a DUP
STOREDATA function. STOREDATA sets aside a
specified number of sectors for the file
and enters the file name in LET or FLET.
This file name must be used in all future
references to this file.

Calculating File Size

Sequential Processing (Indexed Sequential

All records in an ISAM file are available
in a sequence determined by record key.
Processing may start at the beginning of
the file or at any point within the file.

Random Processing (Indexed Sequential
Files)

In random processing the records in a file
can be processed in any order. To find a
random record in an ISAM file, the file
index is searched using the record's key.
The matching entry in the index points to
the cylinder containing the record. That
cylinder is then searched for the desired
record. The match is again by record key.
This kind of processing may be called
processing in a random sequence with record
keys.

The number of sectors needed for a file
depends on record size and number of
records. The records are fixed length and
can be defined as any size between 320
words (640 characters) and 1 word (2
characters). Note that records cannot
extend across sector boundaries. Thus a
320-word record (one sector) and a 161-word
record would each require one sector of
disk space. Careful planning is required
in calculating optimum record size for your
file. When calculating file size, always
add one record for the end of file record.

To change record sizes or add records to
a sequential file the file must be rebuilt.
If the revised file requires additional
sectors it must be redefined (*DELETE and
*STOREDATA), and rebuilt.

50

Sequential Files

Ranges of Record Lengths
(in characters)

Records per
Sector

1-2 320
3-4 160
5-6 106
7-8 80
9-10 64

11-12 53
13-14 45
15-16 40
17-18 35
19-20 32
21-22 29
23-24 26
25-26 24
27-28 22
29-30 21
31-32 20
33-34 18
35-36 17
37-40 16
41-42 15
43-44 14
45-48 13
49-52 12
53-58 11
59-64 10
65-70 9
71-80 8
81-90 7
91-106 6

107-128 5
129-160 4
161-212 3

213-320 2
321-640 1

Figure 10.2 Space Utilization for Various
Size Records for Sequential
Files.

Sequential Access Routine

This routine allows the programmer to
store, retrieve and/or update records on a
sequentially organized disk file. The
space for the file must have been
previously defined by the DUP function
STOREDATA.

The sequence of events on a sequential
access is open the file, perform the
function and close the file. To accomplish
these objectives the sequential access
routine has three entry points:

SEQOP - open the file
SEQIO - read or write a record
SEQCL - close the file

The sequential access routine is a part
of the System Library. It is called by a
LIBF. One parameter must be passed to the
routine on each call and that parameter is
the address of the Disk File Information
(DFI) table. This parameter must
immediately follow the LIEF statement.

The coding required to process a data
file using the sequential access routine is
as follows:

RPG Subroutines (DM2 System) 50.1

mi Om

.

Operoch IS emits

.

S•TART

■■■■

MONE

■■■■

mum■prinn
10■■■■M■■IIMOMMIIIIIIIIII.
NOINNIMMIIIIIIII

muumminennolum.
MOOMOOPROOMMOlk
MOOMOMPROOMMOI.F.

MOOMO■MOOO
MOOM■■nnOMM
MOOOMMITMOOMMI.
NOOMOMPREMOMOM
IONOW■MI

milmo■rnmnumnR
mom1omnnommos6

PMOOM■MFM
NOOMO■NOMO
OOMOOMMIROMOINSTA-T

■■MOM■■■■

ril■an

■■OM ■

■

■■■

■■

■■

■■L
■■

. .
,.0'	 0.E

R
0T	 +	 u
•	 •	 –01.	 :0	 TIN

•	 0	 :	 AD	 o .	 E	 R	 •1,
7:	 o	 A.. 	 SS	 -	 •	 tR	 .

:.•	 0 4..	 '	 u .	 •FE
A ;	 N	 •	 TO	 RROR	 'ou	 ,	 1

■AE,AL CLOSE	 SE • .	 E	 T	 AL	 ILE
A	 E	 S	 t ul RE

.	 L.AI	 ACTOR	 GO6E.
■■E:R o	 TO	 R' • :. 	 F	 ,.A.

'	 -
s	 -	 A	 I	 . 1.	 •	 S	 L
Le:	 7mm1A61t.._41•••••••••••IIIIIMMIIIIINIMINOMMOMMOMOMOMMOMMOMMOOMIMMIIII

RROR	 R.UTI

MIONIMMENNWOONOMNIMINMOMNIMOMIIMMOOMMEMOMMMOM

Disk File Information (DFI) Table. A file
to be processed by the sequential access
routine must be described using a DFI table
which is 11 words long. (These words are
numbered 0-10.) The DFI table has nine
entries, six of which must be filled in by
the user. The remaining three entries must
be initialized to zero by the user and are
filled in by the program during execution.

Figure 11 shows the DFI table for the
sequential access routine.

Operation of the Sequential Access Routine.
When the routine is entered at the open
entry point SEQOP, it checks the validity
of the DFI table entries, sets pointers and
switches to be used internally by the
routine, and sets the return code in the
EFI table to the code for file open. For
an output function, SEQOP places the
address of the record being processed in
the DFI table. The routine is then entered
at SEQIO to perform the required processing
functions.

When the routine is entered at SEQCL, it
writes the last sector of data and an end-
of-file record (for output files) and sets
the return code to the code for file
closed. The end-of-file record contains a
/ (slash) and an * (asterisk) in the first
word. The remainder of the end-of-file
record is set to binary zeros.

The sequential access routine returns to
the statement immediately following the
parameter that follows the LIBF to the
routine for any of the three entry points.

Direct Access Routine

This routine allows the programmer to
retrieve and/or update records on a

sequentially organized disk file. The
records are accessed by record number
relative to the beginning of the file,
i.e., the first record in a file is record
1, the second record 2, etc.

The sequence of events on a direct
access is open the file, perform the
function, and close the file. To
accomplish these objectives the direct
access routine has three entry points:

DAOPN - open the file
DAIO - read or write a record
DACLS - close the file

The direct access routine is a part of
the System Library. It is called by a
LIBF. One parameter must be passed to the
routine on each call and that parameter is
the address of the Disk File Information
(DFI) table. This parameter must
immediately follow the LIBF statement.

The coding required to process a data
file using the direct access routine is as
follows:

mI 0,mo.

A ,

Op•rond, 6 6....,
c	 4	 .5

TA •

ounimMINON

OM
NOMMOMMOOMMO,

MOOMOMMOMOMIM
mosournms
MOOMO■POOM■■MF

Ingiiiintwr

lOOMOIMMOOMUIA.10,........mw...

1111 E

mo.

IMPIEBINOOMMIIIIIIIIIIIIIMEM
•	 P R	 I A E C. T	 ,.	 E Thum

I	 4. 9	 oAD	 . ETuR	 CODE
0	 4m...,_,.000	1mumuummensommumemosommememi

o	
AD -2 . ' " IMEMIWIMMIONE.

.	 oAD	 ETU	 N	 c0•

alt"	
Go To. CEARA& kou•TJAE al- , NE,A

minnu

■■■■■pnro■■"
MNMO■MIIM
MOOMIRCOMINIkrtat qMOOMM■MM
normurrmarrh.,

MXTMOINVIM
MOMMOIMMOMMIlsrART

mem■■■F

■■

■■■

■■•

L	 CLOSE	 CT	 CC	 $	 FL	 E
A	 FISS	 REOuIRE

LO	 Tu	 &
ROR	 0	 T•	 ER' • R	 'cl	 T	 N	 I F	 ■	 A

MIOIMIIMIOOIIIIIPMIOIIPMOOOOOMOOOIIOIIIINIIIOOOIIINOOIMOOIIM
•	 If	 .4.O1111§11MOOMMIONOM

LEA	 USE'	 FMMMOMMNIMUOMMOOMMOMMIMMOMMOMMIMMOMMOMMOOVOM
R•oR	 :OuTI

MIIMMOMMEMNIMIWOOMMOOMMOOMMOMMMMOOMOOMOMMOW

IMOONIMMOIMINEMIONOMMEMOMMIONOMONOMMOOMI

Disk File Information (EFI) Table. A file
to be processed by the direct access
routine must be described using a EFI table
which is 11 words long. (These words are
numbered 0-10.) The CFI table has nine
entries, seven of which must be filled in
by the user. The remaining two entries
must be initialized to zero by the user and
are filled in by the program during
execution.

PPG Subroutines (DM2 System) 51

r —1
!Word 'Entry	 Meaning

-1
0,1,2 DSA	 The first entry in a DFI table is always a DSA statement. The DSA

statement allows the programmer to refer symbolically to a disk-stored
data file without knowing its actual location. The label is defined as
the current value of the Location Assignment Counter when the DSA
statement is encountered. The operand is the name of the data file.
Further information on DSA may be found in IBM 1130/1800 Assembler
Language. Note: The first word of the DSA instruction is used by the
sequential access routine as an update-write switch.

3	 DC /OXXX XXX equals the number of records per sector. This figure is calculated
by dividing 320 by the length of a record and ignoring the remainder.
The maximum entry is /0140 (320 one-word records). The entry in this
word must indicate the maximum number of records of X size that will

4

5

DC /OXXX

DC /000X

fit on a sector.	 For example, if the entries in words 3 and 4 of this
table indicate 31 ten-word records, a terminal return code of /8014,
number of records per sector not maximum, will occur during program
execution.	 32 ten-word records would have to be defined to use all
available disk space.

XXX equals the length of the record in words.	 The maximum entry is
/0140	 (one 320-word record).

Read/Write indicator.	 For read, set X to zero. 	 For write, set X to
one.	 For an update, set X to zero prior to the read and one prior to
the write.

6 DC LABEL The address of the data buffer. 	 This address must be on an even word
boundary.	 The length of the data buffer required by the program is
calculated by multiplying the number of records per sector (word 3 of
this table) by the record length (word 4 of this table) and adding 2.
The maximum length of the data buffer is 322 words.

7 DC .X Function indicator.	 X equals I for input, 0 for output and U for
update.	 The specified character is assembled as right-justified
EBCDIC.	 From the time a file is opened until it is closed this word
must not be changed.

8 DC /0000 Record number.	 This word must be reserved by the user and is filled in
by the subroutine.	 It will contain the record number of the record
being processed.

9 DC /0000 Return code.	 This position must be reserved by the user.	 After each
LIBF to any of the three entry points in the sequential access routine
it should be checked for the return code.'

10 DC /0000 Record address.	 This word must be reserved by the user. 	 It will
contain the address of the record being processed.

F	 1
1 Return
Hexadecimal

L.

codes for sequential access are as follows:
Hexadecimal

Number Meaning Number Meaning
5555 File is open 8014 Number of records per sector not maximum
8010 Disk file is full 8015 File accessed when not open
8011 Write indicator with input file 8016 Buffer not on even-word boundary
8012 Read indicator with output file 8017 Write before read (UPDATE file)
8013 Record size exceeds sector size FFFF End of file

OFFF File is closed
All 8XXX return codes except 8017 are terminal arrors. The file must be reopened to allow program to retry

the operation. Processing will again start at the first record.

FFFF is a terminal error in the sense that it allows no further processing of the file. It does not, however, prevent
the file from being closed in the normal manner.

Figure 11. Disk File Information Table for Sequential Access

52

Figure 12 shows the DFI table for the
direct access routine.

Operation of the Direct Access Routine.
When the routine is entered at the open
entry point DAOPN, it checks the validity
of the DFI table entries, sets pointers and
switches to be used internally by the
routine and sets the return code in the DFI
table to the code for file open.

The routine is then entered at DAIO to
perform the required processing functions.

When the routine is entered at DACLS, it
sets the return code in the DFI table to
the code for file closed.

The direct access routine returns to the
statement immediately following the
parameter that follows the LIBF to the
routine for any of the three entry points.

INDEXED SEQUENTIAL ORGANIZED (ISAM) DISK
ROUTINES

The indexed sequential disk I/O subroutines
provided with RPG are ISAM load, ISAM add,
ISAM sequential and random.

Indexed sequential organization gives
the programmer a great deal of flexibility
in the operations he can perform on a file.
He can read or write records whose keys are
in ascending collating sequence. He can
read and update random records. alas
method is not suggested if a large portion
of the file is being processed since
reading records in this manner is slower
than reading according to a collating
sequence. The index must be searched for
the pointer to each record.) New records
can be added to ISAM files. The add
routine locates the proper positions for
the new record in the file and updates the
index accordingly.

ISAM has these advantages:

• It is a file management system
specifically designated for direct
access storage devices.

• It permits files to be processed in
random or sequential order.

• It processes records directly in the
I/O area.

• It establishes an index allowing ease
of access to any record on the file.

• It uses an efficient chaining method
to allow new records to be added to a
file.

• It prevents records from being lost if
a disk error occurs during an add
operation.

ISAM has these restrictions:

• Records must be presorted in ascending
collating key sequence before they are
loaded on the file.

• Only one I/O area is permitted when a
file is loaded or processed.

• All records must contain key areas
starting in word one of the record,
and all the key areas must be the same
length.

• All records on a file must be the same
length.

• Only one ISAM function can be
performed on an ISAM file in one run.
Hence, records cannot be both
processed and added in the same run.

• The entire area for an ISAM file must
be on one disk.

Contents of an ISAM File

An ISAM file comprises the following: file
label, file index, prime data area,
overflow area.

The relative position of these
components within the ISAM file is as
follows:

r-	 4	 T	 	 -T
'File (Index(Prime Data ArealOverflow Areal
!Label)

A-	 1-	 L--

RPG Subroutines (DM2 System) 53

3 DC /OXXX

data file without knowing its actual location. 	 The label is defined as
the current value of the Location Assignment Counter when that DSA
statement is encountered. 	 The operand is the name of the data file.
For more information on DSA see IBM 1130/1800 Assembler Language.

XXX equals the number of records per sector. 	 This entry must be the
same as the number of records per sector on the file you are accessing.

4 DC /OXXX XXX equals the length of the record in words. 	 This entry must be the
same as the length of the records on the file you are accessing.

5 DC /000X Read/Write indicator. 	 For read, set X to zero. 	 For an update, set X
to zero prior to the read and one prior to the write.

6 DC LABEL The address of the data buffer. 	 This address must be on an even word
boundary.	 The length of the data buffer required is calculated by
multiplying the number of records per sector (word 3 of this table) by
the record length	 (word 4 of this table) and adding 2. 	 The maximum
length of the data buffer is 322 words.

7 DC /OXXX Record number.	 Word 7 and 8 must contain the number of the record on
8 DC /XXXX which the operations are to be performed.	 This number is equivalent to

the record's relative location in the file; hence, the 83rd record
would be record number 83.	 The entry is right-justified hexadecimal.
Therefore, word 7 will be all zeros for all record numbers less than
65,536.	 The direct access routine will convert the record number
supplied to the actual disk address.

9 DC /0000 Return code.	 This word must be reserved by the user.	 After each LIBF
to any of the three entry points in the direct access routine it should
be checked for the return code.'

10 DC /0000 Record address.	 This word must be reserved by the user.	 It will
contain the address of the record being processed.
	 -L -4

-rr
)Word tEntry	 Meaning
4 	 t	 1- 	 	 -4
0,1,2 DSA	 1 The first entry in a DFI table is always a DSA statement. The DSA

statement allows the programmer to refer symbolically to a disk-stored

I Return codes for direct access are as follows:

Hexadecimal
Number	 Meaning

5555	 File open
8000	 Record number not in file
8001	 Record size not within limits
8002	 Records per sector not maximum
8003	 Record number not positive
8004	 Write before read
8005	 File accessed when not open
8006	 Buffer not on even-word boundary
OFFF	 File closed

All 8XXX return codes except 8000, 8003 and 8004 are terminal errors. The file
must be reopened to allow the program to retry the operations. Processing will again
start at the first record.

L 	 	 -J

Figure 12. Disk File Information Table for Direct Access

54

r'*\	
ISAM File Label. The first sector of aril,
ISAM file contains the file label. This
label contains information required by the
ISAM routines for all future processing of
the file. The file label is built by the
ISAM load function, updated by ISAM add,
and used by ISAM random and sequential.
All label operations are performed
automatically by the ISAM routines. The
user need perform no label operation other
than reserving one sector for the label
when the file is initially defined.

ISAM File Index. The ability to read or
write records anywhere in a file is
provided by the file index. An entry in
this index contains a cylinder address and
the highest key that is associated with
that cylinder. The ISAM routines locate a
given record by searching the index for the
key and then Searching the specified
cylinder for the desired record, again
searching by key. To increase the
efficiency of the ISAM routines, one sector
of the index is retained in core storage
for each file.

The format
Figure 13.

of the ISAM label is shown in

'Word Number!

1
2
3

5

6

7

8

9

10

11

Label Entry Description

Key length
Record length
Number of index entries per
sector
Index entry length
Number of records per
sector
Record number of last prime
data record
Index entry number of last
entry in file
Sector address of last
prime data record
Sector address of last
index entry
Sector address of next
overflow record
Record number of next
overflow record

The key may be a part number or an
employee name or any other identifying
information that is contained in any record
of the file. The key entries in the index
are the numbers of the highest key on each
cylinder in ascending collating sequence.
The end-of-record key is the key with the
highest possible value, i.e., all bits are
ones.

A portion of an index or index table is
shown below. Note that each entry contains
two sets of the same information. The
second set is overlayed to show overflow
data when the affected cylinder overflows.

Figure 13. Format of an 1SAM Label

r- -r	 -r -r	 T	 T 7	 /	 T T	 "I"	 '11
/Key' First	 1Key1 First	 !Zeros!	 'Key I Second	 (Key 1 Overflow /Record II
115 1 cylinder 115 1 cylinder I	 I	 130 1 cylinder 131 1 sector	 'number 11
1	 1 address	 1	 1 address	 1	 I	 I	 1 address	 1	 1 address	 1	 II
L 1 	 L	 L	 1 	1.--- ..k.- 	 -L- 	 .L- 	 -I.	 L 	-I i

normal entry	 overflow entry

r- -r	 -r -r	 T	 7 T	 T	 TT T	 -r 	 -1
!Key' Third	 1Key1 Third	 !Zeros!	 !all 1 nth	 Hall 1 nth	 'Zeros	 1
145 1 cylinder 145 1 cylinder 1	 1	 11	 1 cylinder 111	 1 cylinder f	 I
1	 1 address	 1	 1 address	 1	 1	 !bits! address 11bits1 address	 1	 I
L 	 I.	 L	 L	 1 	11.---J-- -L- 	 J-L- 	 1	 1 	-I

normal entry	 last entry in index

RPG Subroutines (DM2 System) 55

Prime Data Area. This area contains the data records placed in the file by the ISAM
load routine. The records must all be the same length (maximum 3t8 words). ISAM adds a
two-word control field to each record. This control field, called the sequence-link
control field, is used in the overflow area as a chaining indicator. It is used in the
prime data area to indicate whether or not a cylinder has overflowed.

Data record	 1 word 1 word
	

Data record	 1 word 1 word
1	 r	 -T	 --/-rf Key	 'Zeros 'Zeros	 I	 ' Key	 fZeros IX I FFFF' I

175	 I	 i 	 I	 I	 520	 I	 I	 IL. 	 1	 1 	_J
'‘.11•1■..40■11■111.1M8.1

Sequence- link
control field.

‘1■1•••■•••■...■■0

Sequential-link
control field.

Last-data record on prime data cylinder
that has overflowed.

Data record on a prime data cylinder.

Overflow Area. When a new record is added
to an indexed sequential file, it is placed
according to key sequence. If records were
to remain in precise physical order, the
insertion of each new record would require
all records with higher keys to be shifted
up. However, because ISAM files have an
overflow area, a new record can be entered
into its proper position on a cylinder and
only cause records with higher keys on that
cylinder to be shifted. The record that is
forced off the end of the cylinder by the
addition of the new record is written in
the overflow area.

The index entry of any cylinder that has
overflowed points to the overflow sector
address and record number of the overflowed
record in the overflow area. If two or
more records in key order are added, the
overflowed records are chained together in
the overflow area through the entries in
their sequence-link control field. The

entry in the first record points to the
second, the second to the third, etc. The
last overflow record in the chain has a
sequence-link control field of all zeros.

The number of cylinders to be allotted
to the overflow area must be determined by
the programmer when the file is initially
defined. Records are placed in the
overflow area in the order they have
overflowed, not in key sequence.

To-illustrate the overflow area, assume
that on cylinder six of a defined file the
last three entries have keys 150, 152 and
154. Key 154 would identify cylinder six
in the index. Now we add a record with key
153, a record on another cylinder and a
record with key 151. The overflow area
would appear as shown below. Key 152 would
identify cylinder six in the index. The
overflow entry for cylinder six in the
index would point to the overflow area.

-T T7	 T	 -T	 -r ----1
I	 I	 I	 I	 I	 'Rey.	 'Overflow 'Rec. I
'Zeros IZeros I	 'Zeros 'Zeros 1153	 'sector	 10001 I

I	 I	 I	 I	 I	 I	 'address	 I	 I
L	 J. 	 -L.- 	 -L- 	 ..Jc............t	 J. 	-)L

Overflow area.

rI Key
I 154

First record overflowed. The sequence- Record overflowed Last record overflowed. The
link control field is zeros indicating from another 	 sequence-link control field
the end of a chain.	 cylinder	 points to the next key in

sequence. In this case it is
key 154 in the overflow area.-

56

Creating and Using ISAM Files

An indexed sequential file is built using
the ISAM load routine, is expanded using
either the ISAM sequential or ISAM random
routine.

Space for the file is initially
established on the disk by using a DUP
STOREDATA function. STOREDATA sets aside a
specified number of sectors for that file
and enters the file name in LET or FLET.
This file name must be used in all future
references to this file.

Determining ISAM File Size

The number of sectors required for an ISAM
file is computed by the following formula
(the remainder in all cases should be
disregarded):

Prime data sectors + Index sectors +
Overflow sectors + 1 (File label)

where:

Prime data sectors =

Approximate number of records in file +
number of records per sector - 1
Number of records per sector

Number of records per sector = 320
Record size + 2

The maximum record size is 318 words.
Records cannot cross sector boundaries.

Index sectors =

Number of prime data cylinders + number
of index entries per sector - 1
Number of index entries per sector

Number of prime data cylinders =

number of prime data sectors + 7
8

Number of index entries per sector=

320
Index entry size

Index entry size = 2 (key length in
words) + 3

Key length is a maximum •of 25 words (50
characters). If the length of the key in
characters is odd, add one when calculating
the number of words, i.e., 49 characters
require 25 words.

Overflow sectors = The number of sectors
the user wishes to
allot to record
overflow before the
file must be rebuilt.
The overflow area is
automatically assigned
to start at the sector
following the last
sector of prime data.
This assignment is done
by the ISAM load
(close) routine.

When computing file size, always add one
sector for the file label.

If desired, an Assembler language
program can be used to perform the above
calculations. The programmer need only know
the index entry size (calculation shown
above), the length of a record in words,
the approximate number of records in the
file and an estimate of the number of
sectors of overflow area needed.

Key Length
in Characters

Number of Entries
on One Sector

Number of file Sectors
Accomodated in One
Index Sector

1-2 64 512
3-4 45 360
5-6 35 280
7-8 29 232
9-10 24 192
11-12 21 168
13-14 18 144
15-16 16 128
17-18 15 120
19-20 13 104
21-22 12 96
23-24 11 88
25-28 10 80
29-30 9 72
31-34 8 64
35-38 7 56
39-44 6 48

45-50 6 48

Figure 13.1 ISAM Cylinder Index Chart

RPG Subroutines (DM2 System) 57

Indexed-Sequential Files

Ranges of Record Lengths
(in characters)

Records per
Sector

1-2 106
3-4 80
5-7 64
7-8 53
9-10 45

11-12 40
13-14 35
15-16 32
17-18 29
19-20 26
21-22 24
23-24 22
25-26 21
27-28 20
29-30 18
31-32 17
33-36 16
37-38 15
39-40 14
41-44 13
45-48 12
49-54 11
55-60 10
61-66 9
67-76 8
77-86 7
87-102 6

103-124 5
125-156 4
157-208 3
209-316 2
317-636 1
637-640 Invalid

Figure 13.2 Space Utilization for Various
Size Records for Indexed
Sequential Files.

A program to calculate all values
computed above is shown in Appendix J of
the IBM 1130 Disk Monitor System, Version
2, Programmer's and Operator's Guide.

ISAM Load Routine

This routine loads presorted records, one
after another, into the prime data area of
the file. As each prime data cylinder is
filled the load routine creates an entry in
the file index. After all records are
loaded in the prime data area the load
routine creates the end of file record and
the last index entry. The key for end of
file and last index entry are all one bits.

The sequence of events on an ISAM load
is open the file, perform the function and
close the file. To accomplish these
objectives the ISAM load routine has three
entry points.

ISLDO - open the file
ISLD - write a record
ISLDC - close the file

The ISAM load routine is a part of the
System Library. It is called by a LIEF.
One parameter must be passed to the routine
on each call and that parameter is the
address of the Disk File Information (ma)
table. This parameter must immediately
follow the LIBF statement.

58

The coding required to build a data file
using the ISAM load routine is as follows:

..,,. .,,.......,.,.
9l' 	•
■■■■

-'---L

■■IMM
■EM
NUMMI-

MO■■■MITICE111•111.INONOMMINE111111111,11111•11•111COMIIIN
mummoremommis

IMIIIMMINEMO

INEINIMMOINIII

■■O■

:

LI
8411

:...
'
1 BF

IIIIIIPPIIIIIINItDR.”

IN
III
INN

■■IIII

SIM
MEM

I.

A
,	 P	 N	 _

F	 I.	 D • RE $	 RS,Qui ..	 . lila.	 ./9	 •E	 •	 c..
.	 •	 '	 i/N	 IF	 N

_.„,,,,,,	 .	 .	 .A ,	 .	 .	 .	 ,	 ,
ISLD	 OR
. Fr A D _L.,	_.

AFA, AADAE44, LR.E.OUJRE,D). ,___,__,_
Up... 9	 . 4 DAM. ■RE.T,IAR.N. ,e,coa,

•	 a	 •	 . , , • ,ack .T.o, .E.R.1,40.R. ROUT INE ,Lf__,N,E,G
,,,	 l 	 L		 • 	 . 	 L	 . 	 L 	 . 	 L 	 L	 , 	 L	 L 	 L	 . 	 J-1.-s---1	 Ac	 o

•	 AD	 AD	 ESS	 REQu	 R
.	 ..I. 0,A D	 ,R.E.T.u.R" Z,O0 E	 ,_L_

111111111111111
.	 •	 ERROR .R.00.41.1AE_ i I F

IMMIIIMMINIIIIIIIMINIIIIIIIIIIIIIIIIIII
coN

ISA	 10 •	 P. a u_alLN.E.	 .	 ■	 , ■	 ■	 ,	 .	 .	 ,	 ,.__,__,_
C	 , 	 ,	 ,	 ,

ER' R' OR L,	 ,,,,,,,	 CRJOAL	 .1,t NE ,,,,,,,	 ,,,
IiIIII	 ,,,,	 i 	 ,,,,	 1111.L-1-A-4

CNA CI:AR,1%.„,,,,„,.,„,	 ,,,,,,,	 ,	 ,,,,,
I 	 L 	 L

Disk File Information (DFI) Table. A file
to be loaded by the ISAM load routine must
be described using a DFI table which is 21
words long. (These words are numbered
0-20.) The DFI table has nineteen entries,
eleven of which must be filled in by the

user. The remaining eight entries must be
initialized to zero by the user and are
filled in by the program during execution.

Figure 14 shows the DFI table for the
ISAM load routine.

Operation of the ISAM Load Routine. When
the routine is entered at the open entry
point ISLDO, it checks the validity of the
DFI table entries, sets pointers and
switches to be used internally by the
routine and sets the return code in the DFI
table to the code for file open.

The routine is then entered at ISLD to
load a record to the file.

When the routine is entered at ISLCC, it
writes the last record in the prime data
area, an end-of-file record, the last index
entry, and sets the return code to file
closed. The end of file record contains
all one bits.

The ISAM load routine returns to the
statement immediately following the
parameter that follows the LIEF to the
routine for any of the three entry points.

RPG Subroutines (DM2 System) 58.1

-

°

~

^

r--1-

F
0,1,2

Word !Entry I
f	

-1
Meaning

DSA
-1

The first entry in a DFI table is always a DSA statement.	 The DSA
statement allows the programmer to refer symbolically to a disk stored
data file without knowing its actual location. 	 The label is defined
as the current value of the Location Assignment Counter when the DSA
statement is encountered.	 The operand is the name of the data file.
For more information on DSA see IBM 1130/1800 Assembler Language.

3 DC /OOXX XX equals the key length in characters.	 Maximum is /0032.	 (50
characters)

4 DC /OXXX XXX equals the length of the record in words.	 The maximum entry is
/0140 (one 320-word record).	 This includes the two words required for
the sequence-link control field.

5 DC LABEL1 The address of the index buffer.	 This address must be on an even-word
boundary.	 The length of the index buffer is calculated by multiplying
the number of index entries per sector by the index entry length and
adding 2.	 The maximum length of this buffer is 322 words.

6 DC LABEL2 The address of the data buffer.	 This address must be on an even-word
boundary.	 The length of the data buffer is calculated by multiplying
the number of records per sector (word 14 in this table) by the record
length	 (word 4 in this table)	 and adding 2.	 The maximum length of the
data buffer is 322 words.

7 DC /XXXX Routine type code. 	 For ISAM load, XXXX = 1111.

8 DC /XXXX XXXX equals the number of sectors required for the index.	 See
"Determining ISAM File Size' in this section for the methods used to
calculate this value.

9 DC /0000 Return code.	 This word must be reserved by the user.	 After each LIBF
to any of the three entry points in the ISAM load routine it should be
checked for the return code.'

10 DC /0000 Address of record being processed. 	 This word must be reserved by the
user.

L	
I Return codes for ISAM load are as follows

Hexadecimal
Number	 Meaning
5555	 File is open
8020	 Not a load function
8021	 Record size or number of records per sector incorrect
8022	 Key length greater than maximum
8023	 Index entry length not same as length computed from key length
8024	 Number of index entries per sector incorrect
8025	 Prime data area is full
8026	 Index area is full
8027	 File is not open
8028	 Index buffer not on even-word boundary
8029	 Data buffer not on even-word boundary
802A	 Input record out of sequence
OFFF	 File is closed

All 8XXX return codes except 802A are terminal errors. 	 The file must be reopened to allow the program to retry the
operation.	 Processing will again start at the first record.

i 	 	 _1
Figure 14. Disk File Information Table for ISAM Load (Part 1 of 2)

RPG Subroutines (DM2 System) 59

13

114

15

16

17

18

19

12	 DC /XXXX

DC /XXXX

DC /XXXX

DC /0000

DC /0000

DC LABEL3

DC /0000

DC /0000

r	 -r	 -r	 	
!Word Entry	 Meaning

t-	 t----
11	 DC /0000 Address of the index entry. This word must be reserved by the user.

XXXX equals the number of index. entries per sector. See "Determining
ISAM File Size" in this section for the methods used to calculate this
value. This value must be the maximum number of index entries that
will fit on a sector.

XXXX equals the index entry length in words. See "Determining ISAM
File Size" in this section for the methods used to calculate this
value.

XXXX equals the number of records per sector. See "Determining ISAM
File Size" in this section for the methods used to calculate this
value. The entry in this word must indicate the maximum number of
records that will fit on a sector.

Prime data record number. This word must be reserved by the user.

Index entry number. This word must be reserved by the user.

Address of key hold area. This area is used to hold the key of the
previous record so the records can be sequence checked. After the
close routine has been executed this word will contain the sector
address of the last prime data sector. The key hold area must be as
many words long as there are characters in the record key.

Sector address of last index sector. This word must be reserved by
the user.

Sector address of next overflow sector. This word must be reserved by
the user.

20	 DC /0000 Record number of next overflow record. This word must be reserved by
the user.

Figure 14. Disk File Information Table for ISAM Load (Part 2 of 2)

ISAM Add Routine

This routine allows the user to add records
to an existing file. The new records are
placed in proper order by key sequence in
the prime data area. The records forced
off the prime data cylinders by the new
records are placed in an overflow area. If
the record to be added logically falls
between the last record presently on the
cylinder and the last record originally on
the cylinder, it is written directly into
the overflow area. If the record being
added has a higher key than any record on
the file, it is inserted before the end of
file record. The add routine will operate
most efficiently if the records being added
are presorted by key sequence.

It is extremely important that an Add
file be closed. This is to insure the file
is properly updated for future processing.
The add file should be closed before
termination of the job as a result of
either normal or abnormal EOJ. If the job

is abnormally terminated because of a CPU
failure or a DASD error (indicated by error
code /5004 with DISKZ) when an ADD is being
performed, it is possible that a duplicate
record may have been generated on the file.
If this occurs, the user should check his
file and if such a duplicate record exists,
it should be deleted.

The sequence of events on an ISAM add is
open the file, perform the function and
close the file. To accomplish these
objectives the ISAM add routine has three
entry points:

ISADO - open the file
ISAD - write a record
ISADC - close the file

The ISAM add routine is a part of the
System Library. It is called by a LIBF.
One parameter must be passed to the routine
on each call and that parameter is the
address of the Disk File Information (DFI)
table. This parameter must immediately
follow the LIBF statement.

60

10111

■■■■OMENNI■■MIONONNIMNIBMONOMMOMOMOMMIIIPMENONOMONEIMMU

C TART VIII11MTABOWIT:rrNIMIWRIMMITYIN.ArMOONIIMIF15MOOMIIIIIIM
AMMOMENEM
EMU11171311Mill■■■■ 	

NOMMTIMME,1■■■■■

OpermAll.mas

.24r,r
FIAZ

12..X.SAN4Asaa.Med.TMAL
AMLED 	14SER AXLE

The coding required to add records to an file. Processing may start at the first
ISAM file is as follows.	 record or at any record within the file.

Wal 0,aan

n a

p t

a
Opamdg.ftwarla

a	 a	 so	 a	 10	 a

47-1,12

MONOWIM111111111INIONIEMONIM■■■■■■MIIIIIII■IIIiiiiMI.W.1111
1111111111111W7211111IMONO■MINMONIIIIMINIIII.NOINOLIVIEMII
INIONOMMINIIIINIMIN■MO■■■■■■■■PO■■■MOOMMOMMOMUMIIIIIMO■NAMrilrfilE7V11111111:1PrillINFIM111111IMINNIMINIIII:1711-1711117,11•11111111■■■N■ ■■

■■

■■

•
.t.r_w, 	 Mdr_.MILAAA 11.11114A,ANIONI

,	 AD 49	 to - ,	 , ET . a	 co..
mommummummiummmumummiftiiimiliiimemiiimmii

:	 PP	 ,E	 i . OM'ESS	 %	 ,U.TEM
F.r• , 4 -	 ,AJ	 :ET	 . Al	 0,5

IIMONOMOOMIIIIIMMONOMMIIIIIIIIMIIIIIIMIIIMOMinEll
- ,A.........-..,r..	 - ,mr,12/f2,w,

!.F	 :92).E.	 :5,14	 :
F:. ■.	 4....D	 T.:,	 .■E
-:o- IIIiiiielilli

0

1111121111MMIONIIIIIIIIMININEMOMMINIONIONIMOONNIONIIMMIIIMIIIIIMIIIIIIMIMMONOINIMMOOMINNOMMINISOM

Disk File Information (DFI) Table. The
ISAM add routine requires a DFI table
describing the file. The DFI table (which
is 21 words long, numbered 0-20) has
nineteen entries, six of which must be
filled in by the user. The remaining
thirteen entries must be initialized to
zero by the user and are filled in by the
program during execution.

Figure 15 shows the DFI table for the
ISAM add routine.

Operation of the ISAM Add Routine. When
the routine is entered at the open entry
point ISADO, it checks the validity of the
DFI table entries, sets pointers and
switches to be used internally by the
routine and sets the return code in the DFI
table to the code for file open.

The routine is then entered at ISAD to
add a record to the file.

When the routine is entered at ISADC,
the label is updated and the return code is
set to file closed.

The ISAM add routine returns to the
statement immediately following the
parameter that follows the LIBF to the
routine for any of the three entry points.

ISAM Sequential

The ISAM sequential routine is used to
retrieve and update records on an ISAM

The programmer can update each record
immediately after it is processed by
writing it back to the same location from
which it was retrieved. This update is
accomplished by specifying /0010 in word 7
of the DFI table when the file is opened
and modifying word 19 of the DFI to /0001
before issuing the LIBF ISEQ. Word 19 must
be restored to /0000 prior to reading the
next record. An update is not required if
the records are not changed.

The sequence of events for an ISAM
sequential operation is open the file, set
a low key limit if required, perform the
function and close the file. To accomplish
these objectives the ISAM sequential
routine has four entry points:

ISEQO - open the file
ISETL - set low key limit (start

processing at this record)
ISEQ - process a record
ISEQC - close the file

The ISAM sequential routine is a part of
the System Library. It is called by a
LIBF. One parameter must be passed to the
routine on each call and that parameter is
the address of the Disk File Information
(DFI) table. This parameter must
immediately follow the LIBF statement.

The coding required to retrieve and
update records on an 'SAM file starting
with the first record is as follows:

RPG Subroutines (142 System) 61

4	 DC /OXXX	 XXX equals the length of the record in words. The maximum entry is
/0140 (one 320-word record).

5	 DC LABEL1 The address of the index buffer. This address must be on an even
word boundary. The length of the index buffer is calculated by
multiplying the number of index entries per sector by the index entry
length and adding 2. The maximum length of this buffer is 322 words.

6	 DC LUEL2 The address of the record being added to the file.

7	 DC /XXXX	 Routine type code. fbr ISAM add, XXXX = 0000.

8	 DC /0000	 Index entry number in process. This word must be reserved by the
user.

9	 DC /0000	 Return code. This word must be reserved by the user. After each
LIBF to any of the three entry points in the ISAM add routine it
should be checked for the return code.'

10	 DC /0000

I.

Prime data record number in process. This word must be reserved by
the user.

r —r	 -r
)Word 'Entry	 I Meaning
l. -	 f	 f	 	 -4
0,1,2 DSA	 The first entry in a DFI table is always a DSA statement. The DSA

statement allows the programmer to refer symbolically to a disk
stored data file without knowing its actual location. The label is
defined as the current value of the Location Assignment Counter when
the DSA statement is encountered. The operand is the name of the
data file. Further information on DSA may be found in IBM 1130/1800
Assembler Language.

3	 DC /OOXX	 XX equals the key length in characters. Maximum is /0032 (50
characters).

I Return codes for ISAM Add are as follows.

Hexadecimal

Number Meaning
5555	 File is open
8030	 Not an add function
8031	 File is not open
8032	 Key length in DFI table not same as key length in label
8033	 Record length in DFI table not same as record length in label
8034	 Key is presently on file
8035	 Overflow area is full
8036	 Index buffer not on even-word boundary
OFFF	 File is closed

All 8XXX return codes except 8034 are terminal errors. The file must be reopened to allow the program to
retry the operation. Processing will again start at the first record.

Figure 15. Disk File Information Table for ISAM Add (Part 1 of 2)

62

WWI	 014,0r Opera. tenor“

AE.4.1.5,TERS
LOAD WOAD OF KF Yo.n.P. 2

........	 .	 ..	 Aloao
OI	 RES 0A,E, .W0,1321_ OF KE Y

/WCA.E■MEN,T, .KEY. .P.o./N.T.e.R •
• 1	 DEcR 14.E.N.T. .C, HA iq A T.E.F4 .C.0.0,117;

.... . F ..	 AkthE	 .

TAM,	 ALA	 Ats.1,FLE.DI
TSFTI 	 SEA-. L.OM KAN y	4J)3).RE,S.S. ,CR,E.OU.1/2.E.D).

A MFOF, ,E
L 1,11,F

r-----r	 -r
Word !Entry	 1

11 DC /0000

12 DC /0000

13 DC /0000

14 DC /0000

15 DC /0000

16 DC /0000

17 DC /0000

18 DC /0000

19 DC /0000

20 DC /0000

Meaning

Address of the index entry. This word must be reserved by the user.

Number of index entries per sector. This word must be reserved by
the user.

Index entry length in words. This word must be reserved by the user.

Number of records per sector. This word must be reserved by the
user.

Record number of last prime data record processed. This word must be
reserved by the user.

Number of last index entry for file. This word must be reserved by
the user.

Sector address of last prime data sector. This word must be reserved
by the user.

Sector address of last index sector. This word must be reserved by
the user.

Sector address of next overflow sector. This word must be reserved
by the user.

Record number of next overflow record. This word must be reserved by
the user.

1

—J

Figure 15. Disk File Information Table for ISAM Add (Part 2 of 2)

The coding required to retrieve and update
records on an ISAM file starting at a
record other than the first record on the
file is as follows. (Note that the record
key must be placed in the key hold area in
a special format: one character per word,
occupying the rightmost eight bits of the
word. The coding included below illus-
trates one way that this can be done. It
is required only if the key characters are
left-justified.)

Disk File Information (DFI) Table. The
ISAM sequential routine requires a DFI
table describing the file. The DFI table
(which is 21 words long, numbered 0-20) has
nineteen entries, eight of which must be
filled in by the user. The remaining
eleven entries must be initialized to zero
by the user and are filled in by the
program during execution.

Figure 16 shows the DFI table for the
ISAM sequential routine.

mminsOMITIMIMMICRION. IONONIMOMMIM	 gmmwmmw.	 PRO -w AMMOINNIONNAMMIll111111.11MUNIMOINIONIMOMMOINEMONOMMINIIIIIIINNIONMENIMMINOMPOn■rmlorrewrirmirwArwrincr.

mlimmummiminummumiemmenmmommetrtimmos

WWI
	

Op. a 14.466

15
	

1545	 so	 55	 4.065	 70

L.D.	 .F,1 A,O+ . 9. .	 ILA.A.D. IE.E.T.1/.R111 ,r.o.o.e

■■■■■■1311■■■,
MUM 1111
■■■■■■■■■■
mommummimmliimmumurrAWIT*i*Immthltiwirmos
■■■■■M■■■■■■MOO strewn=IIIIMONIUMOIMMININNIIIMMEMMOMPOININININOMMIONOMParYlllimenninrIONONOONONONOM
MEMOMMMMOMMOimmrimmummilumummummrammirmusommummNOMINUOMMIIIMMEMOMMOOMININIIIINIONIMENNIUM

•

A.D.+ . 	 oll.F Till RAI	 . E

RPG Subroutines (EM2 System) 63

1
Meaning

-1
The first entry in a DFI table is always a DSA statement. The DSA
statement allows the programmer to refer symbolically to a disk

r
!Word 'Entry

0,1,2 DSA

stored data file without knowing its actual location.	 The label is
defined as the current value of the Location Assignment Counter when
the DSA statement is encountered. 	 The operand is the name of the
data file.	 Further information on DSA may be found in IBM 1130/1800
Assembler Language.	 Note that the first word of the DSA instruction
is loaded with the last prime data sector address when the file is
opened.

3 DC /OOXX XX equals the key length in characters. 	 Maximum is /0032.	 (50
characters).	 The key length must be the same as the key length in
the file label.

4 DC /OXXX XXX equals the length of the record in words. 	 The maximum entry is
/0140 (one 320-word record).	 The record length must be the same as
the record length in the file label.

5 DC LABEL 1 The address of the index buffer. 	 This address must be on an
even-word boundary.	 The length of the index buffer is calculated by
multiplying the number of index entries per sector by the index entry
length and adding 2.	 The maximum length of this buffer is 322 words.

6 DC LABEL2 The address of the data buffer. 	 This address must be on an even-word
boundary.	 The length of the data buffer is calculated by multiplying
the number of records per sector by the record length and adding two.
The maximum length of the data buffer is 322 words.

7 DC /XXXX Routine type code.	 Eta- ISAM sequential retrieve, XXXX = 0001. 	 For
ISAM sequential update, XXXX = 0010.

8 DC /XXXX Address of key hold area if processing starts at a point other than
the first record in the file.	 If the entire file is being processed,
this word must be /0000.

9 DC /0000 Return code.	 This word must be reserved by the user.	 After each
LIBF to any of the four entry points in the ISAM sequential routine
it should be checked for the return code.'

10 DC /0000 Address of record in process. 	 This word must be reserved by the
user.

L.

1 Return codes for ISAM sequential are as follows:
Hexadecimal
Number Meaning
5555	 File is open
8040	 Not a sequential retrieve or update function
8041	 Index buffer not on even-word boundary
8042	 Data buffer not on even-word boundary
8043	 Key length in DFI table not same as key length in label
8044	 Record length in DR table not same as record length in label
8045	 File is not open
8046	 Write before read on update
FFFF	 End of file
OFFF	 File is closed

All 8XXX return codes except 8046 are terminal errors. The file must be reopened to allow the program
to retry the operation. Processing will again start at the first record.

I
FFFF is a terminal error in the sense that it allows no further processing of the file. It does not, however, prevent

the file from being closed in the normal manner.

Figure 16. Disk File Information Table for ISAM Sequential (Part 1 of 2)
-J

64

1
Meaning

Address of the index entry used to locate the record. This word must
be reserved by the user.

Number of index entries per sector. This word must be reserved by
the user.

Index entry length in words. This word must be reserved by the user.

Number of records per sector. This word must be reserved by the
user.

Update-write indicator. This word must be reserved by the user.

Number of index entry in process. This word must be reserved by the
user.

ISETL switch to indicate low-limit record found. This word must be
reserved by the user.

Internal switch used to indicate that last record in overflow area
has been found. This word must be reserved by the user.

Read/Write indicator. If routine type code (word 7 of this table)
was a retrieve, this entry should be set to /0000. If word 7
indicates an update file, this entry should be /0000 for the retrieve
and /0001 for the update. This word should be reset to /0000 before
the next retrieve.

Prime data record number in process. This word must be reserved by
the user.

Word
r	 -T	

Entry	 I

11 DC /0000

12 DC /0000

13 DC /0000

14 DC /0000

15 DC /0000

16 DC /0000

17 DC /0000

18 DC /0000

19 DC /XXXX

20 DC/0000

Figure 16. Disk File Information for ISAM Sequential (Part 2 of 2)

Operation of the ISAM Sequential Routine.
When the routine is entered at the open
entry point ISEQO, it checks the validity
of the DFI table entries, sets pointers and
switches to be used internally by the
routine and sets the return code in the DFI
table to the code for file open.

If processing is not to start at the
first record in the file, the routine is
entered at ISETL to locate the starting
record.

. The routine is then entered at ISEQ to
perform the processing functions.

When the routine is entered at ISEQC,
the last record is processed and the return
code is set to file closed.

The ISAM sequential routine returns to
the statement immediately following the
parameter that follows the LIEF to the
routine for any of the four entry points.

ISAM Random

The ISAM random routine is used to retrieve
and update records randomly on an ISAM
file. The programmer first places the key
field of the desired record in a
user-defined area. ISAM random then
searches the index to locate the cylinder
containing the desired record and then
searches that cylinder for the record. The
sector containing the record is then read
and that record is made available for
processing.

The programmer can update each record
immediately after it is processed by
writing it back to the same location from
which it was retrieved. This update is
accomplished by specifying /1000 in the
seventh word of the DFI table when the file
is opened and modifying the nineteenth word
of the DFI to /0001 before issuing the LIBF
ISRD. The .nineteenth word must be restored
to /0000 prior to reading the next record.
An update is not required if the records
are not changed.

The sequence of events for an ISAM
random operation is open the file, perform
the function and close the file. To

RPG Subroutines (DM2 System) 65

accomplish these objectives the ISAM random
routine has three entry points.

ISRDO - open the file
ISRD - process a record
ISRDC - close the file

The ISAM random routine is a part of the
System Library. It is called by a LIBF.
One parameter must be passed to the routine
on each call and that parameter is the
address of the Disk File Information (DFI)
table. This parameter must immediately
follod the LIBF statement.

The coding required to retrieve and
update records on an ISAM file using the
random routine is as follows:

lad AI 	OP. =A . two Ls

,	 .	 .	 .	 „	 .

iiiiimusenummourmwmumumummumen
■■■■■■INIM■■■■ 	, .	

R	 'c'IIMONIMMINIU PEN ..■■■■NIEI■■■.	 :	 _mourroun■ 	 G. T.	 ,I7 ..0	 ,	 E111110011MOMMIIMIONIMAITIMIllMININIMINIIIII1111111INTIMIEIN111MIllrEMINIINIMIIIIMMIIII111•011,1111T AM11111•1111MOOM	 CIMMIEMARIA
IIIIIIRNIIIIIIINNI■OIM■■■■
D1117111171F1111,113STATTI■M1111■■■■ 	L E	 USE

■■■■■■■
Ea&oE MITIMONLIwomumwmr	 • 0 	 N illOOMMIIIMIONUMNIIIIIIIIMONIMMEIIMONIIIIMOMINOMMIll

°I7""Mlir1111.1111111111UNNIMMIIIIIIIMIINIIIIIIIIIMMEMIIIIMMIIIMINIIMONM
■MI■■■■■■■■■

Disk File Information (DFI) Table. The
ISAM random routine requires a DFI table
describing the file. The DFI table (which
is 20 words long, numbered 0-19) has
eighteen entries, eight of which must be
filled in by the user. The remaining ten
entries must be initialized to zero by the
user and are filled in by the program
during execution.

Figure 17 shows the DFI table for the
ISAM random routine.

Operation of the ISAM Random Routine. When
the routine is entered at the open entry
point ISRDO, it checks the validity of the
DFI table entries, sets pointers and
switches to be used internally by the
routine and sets the return code in the DFI
table to the code for file open.

The file is then entered at ISRD to
process a record.

%ben the routine is entered at ISRDC,
the return code is set to file closed.

The ISAM random routine returns to the
statement immediately following the
parameter that follows the LIBF to the
routine for any of the three entry points.

RPG OBJECT TIME SUBROUTINES

Included in the DM2 System Library is a
group of subroutines that performs
functions for the RPG object program.
These subroutines are intended for system
use only. Brief descriptions of the
subroutines and their entry points are
listed below.

RPG Decimal Arithmetic

Add, Subtract, and Numeric Compare. This
subroutine performs the addition,
subtraction and numeric comparison
functions requested in the RPG calculation
specification.

The entry points are:

RGADD - decimal addition routine

RGSUB - decimal subtraction routine

RGNCP - decimal numeric compare

Multiply. This subroutine multiplies two
decimal fields defined in an RPG program.

The entry point is:

RGMLT - decimal multiply

Divide. The RPG object program calls this
subroutine to divide one decimal field by
another and store the quotient in a third
field.

The entry point is:

RGDIV - decimal divide

Move Remainder. This subroutine is called
by the RPG object program immediately
following a divide operation. It places
the remainder in a specified field.

The entry point is:

RGMVR - move remainder

66

6

7

8

9

10

DC LABEL2

DC /XXXX

DC LABEL3

DC /0000

DC /0000

	 -r
!Word !Entry	 I Meaning

0,1,2 DSA	 The first entry in a DFI table is always a DSA statement. The DSA
statement allows the programmer to refer symbolically to a disk
stored data file without knowing its actual location. The label is
defined as the current value of the Location Assignment CU ureter when
the DSA statement is encountered. The operand is the name of the
data file. Further information on DSA may be found in IBM 1130/1800
Assembler Language.

3	 DC /OOXX	 XX equals the key length in characters. Maximum is /0032. (50
characters). The key length must be the same as the key length in
the file being accessed.

4 DC /OXXX XXX equals the length of the record in words. The maximum entry is
/0140 (one 320-word record). The record length must be the same as
the record length on the file being accessed.

5	 DC LABEL1 The address of the index buffer. This address must be on an
even-word boundary. The length of the index buffer is calculated by
multiplying the number of index entries per sector by the index entry
length and adding 2. The maximum length of this buffer is 322 words.

The address of the data buffer. This address must be on an even-word
boundary. The length of the data buffer is calculated by multiplying
the number of records per sector by the record length and adding two.
The maximum length of the data buffer is 322 words.

Routine type code. For ISAM random retrieve, XXXX = 0100. For ISAM
random update, XXXX = 1000.

Address of the key hold area containing the key of the record to be
processed. The key must be in a special format: one character per
word, occupying the rightmost eight bits of the word. See the coding
for ISAM sequential that includes a LIBF to ISETL for an example of
how the key can be placed in this format.

Return code. 'This entry must be reserved by the user. After each
LIBF to any of the three entry points in the ISAM random routine it
should be checked for the return code.

Address of record in process. This word must be reserved by the
user

-I
I Return codes for ISAM random are as follows:

Hexadecimal
Number Meaning
5555	 File is open

8050	 Not a random retrieve or update function
8051	 Index buffer not on even-word boundary

8052	 Data buffer not on even-word boundary
8053	 Key length in DFI table not same as key length in label
8054	 Record length in DFI table not same as record length in label
8055	 File is not open
8056	 Write before read on update
8057	 Record not on file
OFFF	 File is closed

All 8XXX return codes except 8056 and 8057 are terminal errors. The file must be reopened to allow the program
to retry the operation. Processing will again start at the first record.

L 	 -i
Figure 17. Disk File Information Table for ISAM Random (Part 1 of 2)

RPG Subroutines (DM2 System) 67

Meaning

Address of the index entry used to locate the record. This word must
be reserved by the user.

Number of index entries per sector. This word must be reserved by
the user.

Index entry length in words. This word must be reserved by the user.

Number of records per sector. This word must be reserved by the
user.

Prime data record number. This word must be reserved by the user.

Number of index entry in process. This word must be reserved by the
user.

First-time switch. This switch is set off after one record has been
processed.

Internal switch used to indicate the record found is in the overflow
area. This word must be reserved by the user.

Read/Write indicator. If routine type code (word 7 of this table)
was a retrieve, this word should be set to /0000. If word 7
indicates an update file, this word should be /0000 for the retrieve
and /0001 for the update. This word should be reset to /0000 before
the next retrieve.

r-----r	 -r
(Word 'Entry

11 DC /0000

12 DC /0000

13 DC /0000

114 DC /0000

15 DC /0000

16 DC /0000

17 DC /0000

18 DC /0000

19 DC /XXXX

Figure 17. Disk File Information Table for ISAM Random (Part 2 of 2)

Binary/Decimal Conversion. This subroutine
converts a three-word binary number to a
fourteen-digit decimal number and
vice-versa.

The entry points are:

RGBTD - binary to decimal conversion

RGDTB - decimal to binary conversion

Edit. This subroutine edits a numeric
field using a user-specified edit word or
edit code and places the edited value in an
output area.

The entry point is:

RGEDT - edit

RPG Move

RPG Sterling and Edit

Sterling Input Conversion. This subroutine
converts a field in the British sterling
format of pounds, shillings, pence and
decimal pence to a decimal format of pence
and decimal pence.

The entry point is:

RGSTI - sterling input conversion

Sterling Output Conversion. This
subroutine performs the reverse function of
RGSTI.

The entry point is:

RGSTO - sterling output conversion

The five subroutines that comprise this
group are responsible for the movement of
data and fields requested by the object
program.

The entry points and functions of these
subroutines are:

RGMV1, RGMV5 - move data from I/O
buffer to assigned core
field

RGMV2 -	 move data from assigned
core field to I/O
buffer

RGMV3 -	 perform the RPG calc
operation MOVE

RGMV4 -	 perform the RPG calc
operation MOVEL

68

RPG Compare

This subroutine is used to compare
alphameric fields.

The entry point is:

RGCMP - alphameric compare

Zero or Blank Test. This subroutine tests
for a zero or blank and returns an
indication to the requesting program.

The entry point is:

RGSIS - test a field for zero or blank

RPG Miscellaneous
RPG Indicators

Test. The condition of indicators
specified in columns 9-17 of an RPG
calculation specification are tested. If
the conditions are met, the calc operation
is performed. If the conditions are not
met the operation is skipped.

The entry point is:

RGSI1 - test indicators

Set Resulting Indicators On Conditionally.
This subroutine sets on resulting
indicators as required based on the results
of an arithmetic operation, a compare
operation, or a table lookup. The
resulting indicators are specified in
columns 54-59 of the calculation
specification.

The entry point is:

RGSI2 - set resulting indicators
conditionally

Set Resulting Indicators On or Off. This
subroutine will set or reset from one to
three resulting indicators.

The entry points are:

RGSI3 - set resulting indicators on
unconditionally

RGSI4 - clear resulting indicators off
unconditionally

Test Zone. Tests the zone of the leftmost
position of an RPG alpha field and returns
an indication to the requesting program.

The entry point is:

RGTSZ - perform TESTZ operation

Convert Record ID. Converts the record ID
number supplied on a Record Address File
(RAE) to a two-word binary number.

The entry point is:

RGCVB - convert record ID number to
binary

Obiect-Time Error. Load accumulator with
error number supplied by user and wait at
$PRET for operator action. This subroutine
then interprets operator action and
proceeds accordingly.

The entry point is:

RGERR - RPG object program error
interface

Blank After. This subroutine performs the
RPG blank-after function if specified on
the. RPG output specification.

The entry point is:

RGBLK - zero or blank a field

RPG Subroutines (DM2 System) 69

I Subroutines Used by FORTRAN (C/PT System)

Many of the functions and capabilities
available within the general I/O and
conversion subroutines described in this
manual are beyond specification by the
FORTRAN language. For example, the feed
function of the 1442 cannot be specified in
FORTRAN. Therefore, a set of
limited-function I/O and conversion
subroutines is included in the subroutine
library for use by FORTRAN-compiled
programs. Any subroutines written in
Assembler language that execute I/O
operations, and that are intended to be
used in conjunction with FORTRAN-compiled
programs must employ these special I/O
subroutines for any I/O device specified in
a mainline *IOCS record or for any device
on the same interrupt level.

These subroutines are intended to
operate in an error-free environment and
thus provide no preoperative parameter
checking.

The subroutine library contains the
following special routines:

CARDZ - 1442 I/O Subroutine
rYPEZ - Keyboard/Console Printer I/O

Subroutine
WRITZ - Console Printer Subroutine
PRNTZ - 1132 Printer Subroutine
PAPTZ - 1134/1055 Paper Tape I/O

Subroutine
PLOTX - 1627 Plotter Subroutine (see

PLOTX)
HOLEZ - IBM Card Code/EBCDIC Conversion

Subroutine
EBCTB - EBCDIC/Console Printer Code

Table
HOLTB - IBM Carl Code Table
GEFAD - Subroutine Used to Locate Start

Address of EBCTB/HOLTB

GENERAL SPECIFICATIONS

Except for PLOTX, the FORTRAN I/O device
subroutines operate in a nonoverlapped
mode. Thus, the device subroutines do not
return control to the calling program until
the operation is completed. These
subroutines are all LIBF's without
parameters.

The input/output buffer for the
subroutines is a 121-word buffer starting
at location /003C. The maximum amount of
data transferable is listed in the
description of each subroutine. Output
data must be stored in unpacked (one
character per word) EBCDIC format, /OOXX.
Data entered from an input device is
converted to unpacked (one character per
word) EBCDIC format, /OOXX.

The EBCDIC character set recognized by
the subroutine comprises digits 0-9,
alphabetic characters A-Z, blank, and
special characters $-+. 6= 0 ,°/*0112. Any
other character is recognized as a blank
by all subroutines except HOLEZ. HOLEZ
recognizes an invalid character as an
asterisk.

The Accumulator, Extension, and Index
Registers 1 and 2 are used by the FORTRAN
device subroutines and must be saved, if
required, before entry into any given
FORTRAN subroutine.

The Accumulator must be set to zero for
input operations. For output operations,
the Accumulator must be set /0002, except
for PRNTZ and WRTYZ, in which output is the
only valid operation. Index Registers 1
and 2 are set to the number of characters
transmitted, except for PRNTZ (1132
Printer) in which Index Register 2 contains
the number of characters printed plus an
additional character for forms control.

ERROR HANDLING

Device errors, e.g., not-ready and read
check, cause a WAIT in the subroutine
itself. After the appropriate corrective
action is taken by the operator, PROGRAM
START is pressed to execute or reinitiate
the operation.

DESCRIPTIONS OF I/O SUBROUTINES

The subroutines described in the sections
that follow do not provide a check to
determine validity of parameters (contents
of Accumulator and Index Register 2).
Invalid parameters cause indeterminate
operation of the subroutines.

70

TYPEZ - KEYBOARD/CONSOLE PRINTER I/O	 Subroutines Required. The following
SUBROUTINE	 subroutines are required with CARDZ:

HOLEZ, GETAD, EBCTB, HOLTB
Buffer Size. Maximum of 80 words input,
120 words output.

Keyboard Input. The subroutine returns the
carrier, reads up to 80 characters from the
Keyboard, and stores them in the I/O buffer
in EBCDIC format. Upon recognition of the
end-of-field character or reception of the
80th character, the subroutine returns
control to the user (the remainder of the
buffer is unchanged). Upon recognition of
the erase field character or the backspace
character, the carrier is returned and the
subroutine is reinitialized for the reentry
of the entire message. Characters are
printed by the Console Printer during
Keyboard input.

Console Printer Output. The subroutine
returns the carrier and prints the number
of characters indicated by Index Register 2
from the I/O buffer.

Subroutines Required. The following
subroutines are required with TYPEZ:

HOLEZ, GETAD, EBCTB, HOLTB

WRTYZ - CONSOLE PRINTER OUTPUT SUBROUTINE

Buffer Size. Maximum of 120 words.

Operation. This subroutine returns the
carrier and prints the number of characters
indicated by Index Register 2 from the I/O
buffer.

Subroutines Required. The following
subroutines are required with WRTYZ:

GETAD, EBCTB

CARDZ - 1442 CARD READ PUNCH I/0 SUBROUTINE

Buffer Size. Maximum of 80 words.

Card Input. This subroutine reads 80
columns from a card and stores the
information in the I/O buffer in EBCDIC
format.

Card Output. This subroutine punches the
number of characters indicated by Index
Register 2 from the Ii0 buffer. Punching
is done in IBM card code format.

PAPTZ - 1134/1055 PAPER TAPE READER PUNCH
I/O SUBROUTINE

Buffer Size. Maximum of 80 characters.

1134 Paper Tape Input. This subroutine
reads paper tape punched in PTTC/8 format.
Paper tape is read until 80 characters have
been stored or until a new-line character
is read. If 80 characters have been stored
and a new-line character has not been read,
one more character, assumed to be a
new-line character, is read from tape.
(Delete and case-shift characters cause
nothing to be stored.) If the first
character read is not a case-shift
character, it is assumed to be a lower case
character. The input is converted to
EBCDIC format.

1055 Paper Tape Output. The contents of
the I/0 buffer is converted from EBCDIC to
PTTC/8, and the number of characters
indicated by Index Register 2 is punched,
in addition to the required case-shift
characters.

PRNTZ - 1132 PRINTER OUTPUT SUBROUTINE

Buffer Size. Maximum of 121 characters.

Index Register 2. The value stored in
Index Register 2 must be the number of
characters to be printed plus an additional
character for carriage control. Up to 120
characters can be printed in any one
operation. The first character to be
printed is stored in location /003D.

The carriage of the 1132 printer is
controlled prior to the printing of a line.
The following is a list of the carriage
control characters and their related
functions:

/00F1 Skip to channel 1 prior to
printing
/00F0 Double space prior to printing
/004E No skip or space prior to printing
Any other character - Single space prior
to printing.

Channel 12 Control. If a punch in channel
12 is encountered while a line is being
printed, a skip-to-channel-1 is taken prior
to the printing of the next line.

Subroutines Used by FORTRAN (C/PT System) 71

7 2

Subroutines Used by FORTRAN (DM2 System)

Many of the I/O and conversion subroutines
cannot be specified in FORTRAN. Therefore,
the System Library includes a set of
limited-function I/O and conversion
subroutines for FORTRAN programs. Any
Assembler language I/O subroutines used by
FORTRAN programs must employ these special
subroutines for any I/O device specified in
a mainline *IOCS control record.

Of all the FORTRAN device subroutines,
only DISKZ, PRNTZ, PRNZ, and PLOTX return
control to the caller after initiating an
operation (PLOTX is described with the
basic ISSs).

These subroutines are intended for use
in an error-free environment and thus
provide no preoperative parameter checking.

The System Library contains the
following ISS and conversion subroutines
for FORTRAN programs:

CARDZ - 1442 I/O Subroutine
PNCHZ - 1442 Output Subroutine
REAEZ - 2501 Input Subroutine
TYPEZ - Keyboard/Console Printer I/O

Subroutine
WRTYZ - Console Printer Subroutine
PRNTZ - 1132 Printer Subroutine
PRNZ - 1403 Printer Subroutine
PAPTZ - 1134/1055 Paper Tape I/O

Subroutine
PLOTX - 1627 Plotter Subroutine
DISKZ - Disk I/O Subroutine
HOLEZ - IBM Card Code/EBCDIC Conversion

Subroutine
EBCT B - EBCDIC/Console Printer Code

Table
HOLTB - IBM Card Code Table
GEFAD - Subroutine to Locate Start

Address of EBCTB/HOLTB

GENERAL SPECIFICATIONS (EXCEPT DISKZ)

The "Z" device subroutines are ISS
subroutines. These subroutines are all
LIBF's without parameters. They use a
121-word input/output buffer, contained in
the nondisk FORTRAN I/O subroutine SFIO.
The maximum amount of data transferable is
listed in the description of each
subroutine. Output data must be stored in
unpacked right-justified (one character per
word) EBCDIC format. Input data is
converted to unpacked EBCDIC format.

The EBCDIC character set recognized by
the subroutines comprises digits 0-9,
alphabetic characters A-Z, blank, and
special characters $-+.&.= p „ 1 /*<%#@. Any
other character is recognized as a blank
by all subroutines except HOLEZ. HOLEZ
recognizes an invalid character as an
asterisk.

If a "Z" subroutine is used by an
Assembler language I/O subroutine, the user
should be aware of the significant
information carried by the different
registers. The Accumulator, Extension, and
Index Registers 1 and 2 are used by the
FORTRAN device subroutines and must be
saved, if required, before entry into the
subroutines. The Accumulator must be set
to zero for input operations.

For output operations, the Accumulator
must be set to /0002, except for PRNZ,
PRNTZ, PNCHZ, and WRTYZ, in which output is
the only valid operation. Index Register 2
must be set to the number of characters to
be transferred, except for PRNZ and PRNTZ.
For these two subroutines, Index Register 2
must contain the number of characters to be
printed plus an additional character for
carriage control. Index Register 1 must
contain the starting address of the input
buffer.

ERROR HANDLING

Device errors, e.g., not ready and read
check, result in a branch to $PST1, $PST2,
$PST3, and $PST4 depending on the level to
which the device is assigned. After the
appropriate corrective action is taken by
the operator, PROGRAM START is pressed to
execute or reinitiate the operation.

If a monitor control record is
encountered by CARDZ, READZ, or PAPTZ, the
subroutine initiates a CALL EXIT. The
control record itself will not be
processed.

DESCRIPTIONS OF I/O SUBROUTINES

The subroutines described in the sections
that follow do not provide a check to
determine validity of parameters (contents
of Accumulator and Index Register 2).
Invalid parameters cause indeterminate
operation of the subroutines.

Subroutines Used by FORTRAN (DM2 System) 73

TYPEZ - KEYBOARD/CONSOLE PRINTER I/O
SUBROUTINE

Buffer Size. Maximum of 80 words input,
120 words output.

Keyboard Input. The subroutine returns the
carrier and reads up to 80 characters from
the Keyboard and stores them in the I/O
buffer in EBCDIC format. Upon recognition
of the end-of-field character or reception
of the 80th character, the subroutine
returns control to the user (the remainder.
of the buffer is unchanged). Upon
recognition of the erase field character or
the backspace character, the carrier is
returned and the subroutine is
reinitialized for the reentry of the entire
message. Characters are printed by the
Console Printer during Keyboard input.

Console Printer Output. The subroutine
returns the carrier and prints the number
of characters indicated by Index Register 2
from the I/O buffer.

Subroutines Required. The following
subroutines are required with TYPEZ:

HOLEZ, GETAD, EBCTB, HOLTB

WRTYZ - CONSOLE PRINTER OUTPUT SUBROUTINE

HOLEZ, GETAD, EBCTB, HOLTB

PAPTZ - 1134/1055 PAPER TAPE READER PUNCH
I/O SUBROUTINE

Buffer Size. Maximum of 120 characters.

1134 Paper Tape Input. This subroutine
reads paper tape punched in PTTC/8 format.
The subroutine reads paper tape until 120
characters have been stored or until a
new-line character is read. If 120
characters have been stored and a new-line
character has not been read, one more
character, assumed to be a new-line
character, is read from tape. (Delete and
case-shift characters cause nothing to be
stored.) If the first character read is
not a case-shift character, it is assumed
to be a lower case character. Subsequent
reads assume the same case as the last
character read until the case is changed
by another case-shift character. The input
is converted to EBCDIC format.

1055 Paper Tape Output. The contents of
the I/O buffer is converted from EBCDIC to
PTTC/8, and the number of characters
indicated by Index Register 2 is punched,
in addition to the required case-shift
characters.

PRNTZ - 1132 PRINTER OUTPUT SUBROUTINE

Buffer Size. Maximum of 120 words.

Operation. This subroutine returns the
carrier and prints the number of characters
indicated by Index Register 2 from the I/O
buffer.

Subroutines Required. The following
subroutines are required with WRTYZ:

GETAD, EBCTB

CARDZ - 1442 CARD READ PUNCH I/O SUBROUTINE

Buffer Size. Maximum of 80 words.

Card Input. This subroutine reads 80
columns from a card and stores the
information in the I/O buffer in EBCDIC
format.

Card Output. This subroutine punches the
number of characters indicated by Index
Register 2 from the I/O buffer. Punching
is done in Imo! Card Code.

Subroutines Required. The following
subroutines are required with CARDZ:

Buffer Size. Maximum of 121 characters.

Index Register 2. The value stored in
Index Register 2 must be the number of
characters to be printed, plus an
additional character for carriage control.
Up to 120 characters can be printed in any
one operation. If PRNTZ is user-called by
a LIBF PRNTZ, only an even number of
characters are printed. To print an odd
number of characters add one additional
blank.

The carriage of the 1132 Printer is
controlled prior to the printing of a line.
The following is a list of the carriage
control characters and their related
functions:

/00F1 Skip to channel 1 prior to
printing
/00F0 Double space prior to printing
/004E No skip or space prior to printing
Any other character - Single space prior
to printing.

Channel 12 Control. If a punch in channel
12 is encountered while a line is being
printed, a skip-to-channel-1 is taken prior
to the printing of the next line provided
the next function is not /004E (no skip or
space prior to printing).

74

PNCHZ - 1442 OUTPUT SUBROUTINE
	

PRNZ - 1403 PRINTER SUBROUTINE

Buffer Size. Maximum of 80 words.

Card Output. This subroutine punches from
the I/O buffer the number of characters
indicated in the location preceding the
buffer. Punching is done in IBM Card Code.

Subroutines Required. The following
subroutines are required with PNCHZ:

HOLEZ, GETAD, EBCTB, HOLTB

READZ - 2501 INPUT SUBROUTINE

Buffer Size. Maximum of 80 words.

Card input. This subroutine reads 80
columns from a card and stores the
information in the I/O buffer in EBCDIC
format.

Subroutines Required. The following
subroutines are required with READZ:

HOLEZ, GETAD, EBCTB, HOLTB

Buffer Size. Must be 121 words.

Index Register 2. The first character in
the I/O buffer is the carriage control
character, followed by up to 120 characters
to be printed. If less than 120 characters
are to be printed, the remainder of the
buffer must be cleared to blanks before
PRNZ is called. A value of 1 in Index
Register 2 indicates that the I/O buffer
contains only a carriage control
character. A value of greater than 1 in
Index Register 2 indicates that a line
is to be printed.

The carriage is controlled prior to the
printing of a line; no "after-prints
carriage control is performed. The
following is a list of the carriage control
characters and their related functions:

/00F1 Skip to channel 1 prior to
printing
/00F0 Double space prior to printing
/004E No skip or space prior to printing
Any other character - Single space prior
to printing.

Channel 12 Control. If a punch in channel
12 is encountered while a line is being
printed, a skip to channel 1 is executed
prior to printing the next line provided
the next function is not /004E (no skip or
space prior to printing).

Subroutines Used by FORTRAN IDM2 System) 75

Data Code Conversion Subroutines

The basic unit of information within the
1130 computing system is the 16-bit binary
word. This information can be interpreted
in a variety of ways, depending on the
circumstances. For example, in internal
computer operations, words may be
interpreted as instructions, as addresses,
as binary integers, or as real (floating
point) numbers (see "Arithmetic and
Functional Subroutines").

A variety of data codes exists for the
following reasons:

1. The programmer needs a compact
notation to represent externally the
bit configuration of each computer
word. This representation is provided
in the hexadecimal notation.

2. A code is required for representing
alphameric (mixed alphabetic and
numeric) data within the computer.
This code is provided by the Extended
Binary Coded Decimal Interchange Code
(EBCDIC).

3. The design and operation of the
input/output devices is such that many
of them impose a unique correspondence
between character representations in
the external medium and the associated
bit configurations within the
computer. Subroutines are needed to
convert input data from these devices
to a form on which the computer can
operate and to prepare computed
results for output on the devices.

This and following sections of the
manual describe the data codes used and the
subroutines provided for converting data
representations among these codes.

A detailed description of the binary,
hexadecimal, and decimal number systems is
contained in the publication, IBM Number
Systems, FC20-1618.

Descriptions of Data Codes
In addition to the internal 16-bit binary
representation, the conversion subroutines
handle the following codes:

• Hexadecimal Notation.

• IBM Card Cole.

• Perforated Tape and Transmission Code
(PTTC/8).

• Console Printer (1053) Code.

• 1403 Printer Code (DM2 System only).

• Extended Binary Coded Decimal
Interchange Code (EBCDIC).

A list of these codes is contained in
Appendix D.

HEXADECIMAL NOTATION

Although binary numbers facilitate the
operations of computers, they are awkward
for the programmer to handle. A long
string of l's and 0's cannot be effectively
transmitted from one individual to another.
For this reason, the hexadecimal number
system is often used as a shorthand method
of communicating binary numbers. Because
of the simple relationship of hexadecimal
to binary, numbers can easily be converted
from one system to another.

In hexadecimal notation a single digit
is used to represent a 4-bit binary value
as shown in Figure 18. Thus, a 16-bit word
in the 1130 System can be expressed as four
hexadecimal digits. For example, the
binary value

1101001110111011

can be separated into four sections as
follows:

Binary 1101 0011 1011 1011
Hexadecimal D 3 B B

Another advantage of hexadecimal
notation is that fewer positions are
required for output data printed, punched
in cards, or punched in paper tape. In the
example above, only four card columns are
required to represent a 16-bit binary word.

76

Binary Word

1
000 0 00010011000

BINARY DECIMAL HEXADECIMAL

0000	 0	 0
0001	 1	 1
0010	 2	 2
0011	 3	 3
0100	 4	 4
0101	 5	 5
0110	 6	 6
0111	 7	 7
1000	 8	 8
1Q01	 9	 9
10 10	 10	 A
1011	 11	 B
1100	 12	 C
1101	 13	 D
1110	 14	 E
1111	 15	 F

L 	

Figure 18. HeNadecimal Notation

IBM CARD CODE

IBM Card Code can be usei as an
input/output code with the 1442 Card Read
Punch, 1442 Card Punch, and 2501 Card
Reader, and as an input code on the
Keyboard.

This code defines a character by a
combination of punches in a card column.
Card code data is taken from or placed into
the leftmost twelve bits of a computer word
as shown below:

Card Row	 12 11 0 1 2 3 4 5 6 7 8 9 - - - -
Computer Word 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

For example, a plus sign, which has a
card code of 12, 6, 8, is placed into core
storage in the binary configuration
illustrated in the following diagram:

PERFORATED TAPE AND TRANSMISSION CODE
(PTTC/1)

The PTTC/8 code is an 8-bit code used with
IBM 1134/1055 Paper Tape units. This code
represents a character by a stop position,
a check position, and six positions
representing the 6-bit code, BA8421.
PTTC/8 characters can be packed two per
computer word as shown below:

lst	 2nd
PTTC/8 Characters 	 B AC8421 5 B A C 8 4 2 1
Computer Word
	

1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The graphic character is defined by a
combination of binary code and case; a
control character is defined by a binary
code and has the same meaning in upper or
lower case. This implies that upper and
lower case characters must appear in a
PTTC/8 message wherever necessary to
establish or change the case.

The binary and PTTC/8 codes for 1/ (lower
case) and =? (upper case) are shown in
Figure 19.

The delete and stop characters have a
special meaning (in check mode only) when
encountered by the paper ta pe subroutines.

B
A
C
8
4
2

x

Card Code

Binary Word

1000000010100000
x

Figure 19. PTTC/8 Code for the Characters
1/ (if lower case) or the
Characters =? (if upper case)

CONSOLE PRINTER CODE

The Console Printer uses an 8-bit code that
can be packed two characters per 16-bit
word.

The following control characters have
special meanings when used with the Console
Printer.

B
A
C
8
4
2

20000000
2	 VIII

11111111

22222222

33333331

44444444

55555555

6266664

17177717

6666061

N
?????rn

.	

Data Code Conversion Subroutines 77

Character Control Operation
	

BINHX Binary value to IBM Card Code
hexadecimal value.

Hr	 Tabulate
RES	 Shift to black ribbon
NL	 Carrier return to new line
BS	 Backspace
LF	 Line feed without carrier

return
RS	 Shift to red ribbon

EXTENDED BINARY CODED DECIMAL INTERCHANGE
CODE (EBCDIC)

EBCDIC is the standard code for internal
representation of alphameric and special
characters and for the 1132 Printer. This
code uses eight binary bits for each
character, thus making it possible to store
either one or two characters in a 16-bit
word. Combinations of the eight bits allow
256 possible codes. (At present, not all
of these combinations represent
characters.) The complete EBCDIC code is
listed in Appendix D.

For reasons of efficiency, most of the
conversion subroutines do not recognize all
256 codes. The asterisked codes in
Appendix D constitute the subset recognized
by most of the conversion subroutines.

1403 PRINTER CODE

The 1403 Printer uses a 6-bit binary code
with one parity bit. Data format is two
7-bit characters per word, as follows:

Bit 0	 1	 2	 3	 4	 5 6 7 8	 9	 10	 11	 12 13 14 15
Value *	 P	 32 16 8	 4 2 1* P	 32 16 8	 4 2 1

g 1st data character 2nd data character
* = Not Used	 .
P = Parity Bit

Parity bits are not assigned by the
hardware. The conversion subroutine must
assign the parity bits and arrange the
characters in the form in which they are to
be printed.

Conversion Subroutines
These subroutines convert data to and from
16-bit binary words and I/O device codes.

BINDC Binary value to IBM Card Code
decimal value.

DCBIN IBM Card Code decimal value to
binary value.

HXBIN IBM Card Code hexadecimal value to
binary value.

HOLEB IBM Card Code subset to EBCDIC
subset; EBCDIC subset to IBM Card
Code subset.

SPEED IBM Card Code characters to EBCDIC;
EBCDIC to IBM Card Code characters.

PAPEB PTTC/8 subset to EBCDIC subset;
EBCDIC subset to PTTC/8 subset.

PAPHL PTTC/8 subset to IBM Card Code
subset; IBM Card Code subset to
PTTC/8 subset.

PAPPR PTTC/8 subset to Console Printer or
1403 Printer code.

HOLPR IBM Card Code subset to Console
Printer or 1403 Printer code.

EBPRT EBCDIC subset to Console Printer or
1403 Printer code.

The following conversion tables are used
by some of the conversion subroutines.

PRTY	 Console Printer and 1403 Printer
code.

EBPA	 EBCDIC and PTTC/8 subsets.

HOLL	 IBM Card Code subset.

The following conversion subroutines are
used by the DM2 system only.

BIDEC 32-bit binary value to IBM Card
Code decimal value.

DECBI IBM Card Code decimal value to
32-bit binary value..

ZIPCO Supplement to all standard
conversions except those involving
PTTC/8.

The first four listed subroutines and
the DM2 subroutines BIDEC and DECBI change
numeric data from its input form to a
binary form, or from a binary form to an
appropriate output data code. The last
eight (including ZIPCO) convert entire
messages, one character at a time, from one
input/output code to another. The types of
conversions accomplished by these
subroutines are illustrated in Figure 20.

Except where specified, these
subroutines do not alter the Accumulator,
Extension, Carry and Overflow indicators,
or any index register.

78

CONVERTED TO

CONVERTED
FROM BieBinary IBM Card

Code (256)
IBM Card

Codeode
(Subset)

PTTC/8 EBCDIC
(256)

EBCDIC
11T2jbP7tn)ter

Console
Printer

Hex
21,:.irvdaeLite)

Decimal
reitc:irvda&dte) 1403

Printer Code

Binary BINHX BINDC
BIDEC

IBM Card
Code (256)

SPEED
ZIPCO* ZIPCO* ZIPCO*

IBM Card
Code (Subset) PAPHL HOLEB HOLPR HOLPR

PTTC/8
(Subset) PAPHL PAPEB PAPPR PAPPR

EBCDIC
(256) SPEED ZIPCO* ZIPCO*

EBCDIC
(Subset) HOLEB PAPEB EBPRT EBPRT
1132 Printer
Hex •
Equivalent HXBIN PAPHL HOLEB HOLPR HOLPR
(Card Code)
Decimal
Equivalent
(Card Code)

DCBIN
DECBI PAPHL HOLEB HOLPR HOLPR

1403
Printer Code ZIPCO* ZIPCO* ZIPCO*

Console
Printer Code. ZIPCO* ZIPCO* ZIPCO*

*	 In conjunction with appropriate conversion table.
Figure 20. Types of Conversion

Note 1. All mention of 1403 Printer Code
applies to the DM2 system only.

Note 2. The conversion subroutines and
conversion tables for the
Communications Adapter are
described in the publication IBM
1130 Synchronous Communications
Adapter Subroutines. The
subroutines are EBC48, HOL48, and
HXCV. The adapter subroutine
conversion table is STRTB.

Error Checking

The remainder of the conversion
subroutines replace the character in error
with a space character, stored in the
output area in output code. Conversion is
not terminated when an error is detected.

When a conversion subroutine detects an
error it turns the Carry indicator off and
turns the Overflow indicator on before
returning control to the user. Otherwise,
the settings of the Carry and Overflow
indicators are not changed by the
conversion subroutines.

All code conversion subroutines (except
SPEED and ZIPCO) accept only the codes
marked with an asterisk in Appendix D. An
input character that does not conform to a
specified code is an error.

BINHX and BINDC subroutines do not
detect errors. HXBIN and DCBIN terminate
conversion at the point of error detection;
they do not replace the character in error.
The contents of the Accumulator are
meaningless when conversion is terminated
because of an error.

BINDC

This subroutine converts a 16-bit binary
value to its decimal equivalent in five IBM
Card Code numeric characters and one sign
character. The five characters and the
sign are placed in six computer words as
illustrated below.

Data Code Conversion Subroutines 79

I/O Locations
Conversion)

Data
Bits in Core Storage

0.4	 15..
Accumulator +01538 0 0 0 0	 0 1 1 0	 0 0 0 0	 0 0 1 0
OUTP + I 0 0 0	 0 0 0 0	 1 0 1 0	 'nk*
OUTPT + 1 0 0 0 1 0	 0 0 0 0	 0 0 0 0	 ;:.:101:010
OUTPT + 2 1 o o o 1	 o o o o	 0 0 o o	 1101#1,:...,
OUTPT + 3 5 o o 0 o	 o o o 1	 o o o o NOMIX
OUTPT + 4 3 0000 - 0 1 00	 0000 coax
OUTPT + 5 8 0000	 0 0 . 0 0	 0 0 1 0	 :koala

Calling Sequence

Label
21	 25

Operation

V	 30

F
32

T
33

Operands R. Remarks
55	 40	 45	 50

.	 .	 .	 , L 118,F 0 C Ft I Al
1.11 Dr, 1 l'aM P fir
1111 *111 •IIIIII	 1	 1	 1	 1	 lllllll

Em.P.1),T EARS, 6	
1	 1	 1	 1 ti	 1 1	 Ji	 1	 IIIIIIIIIIII■

Calling Sequence

Label
m	 u

Operation
27	 30

F
nm

T Operands 8 Remarks
33	 40	 45	 50

1	 Ili 1....Z.lif 1511,A1 DC
1111 pc. . OIUT PT
I	 1	 1	 1 •I	 i	 i • 	

Or i.np.T 85,6.

Input

Input is a 16-bit binary value in the
Accumulator.

Output

Output is an IBM Card Code sign character
(plus or minus) in location OUTPT, and five
IBM Card Code numeric characters in OUTPT+1
through OUTPT+5.

Input

Input is an IBM Card Code sign character in
location INPUT and five IBM Card Code
decimal characters in INPUT+1 through
INPUT+5.

Output

Output is a 16-bit binary value displayed
in the Accumulator.

Errors Detected

Any sign other than an IBM Card Code plus,
ampersand, space, or minus, or any decimal
digits other than a space or 0 through 9 is
an error. Any converted value greater than
+32767 or less than -32768 is an error.

BI NHX
Errors Detected

This subroutine converts a 16-bit binary
The BINDC subroutine does not detect
	

word into hexadecimal notation in four IBM
errors.	 Card Code characters as illustrated below.

I/O Locations Conversion Data
Bits in Core Storage

150

Accumulator A59E 1010 0101 1001	 1110
OUTPT A 1001 0000 0000 Mit
OUTPT + 1 5 0000 0001 0000:K
OUTPT + 2 9 0000 0000 000i NOW
OUTPT +3 E 1000 0001 000041016:

DCBIN

This subroutine converts a decimal value in
five IBM Card Code numeric characters and a
sign character to a 16-bit binary word.
The conversion is the opposite of the BINDC
subroutine conversion.

80

Calling Sequence	 Input

Input is four IBM Card Code hexadecimal
digits in INPUT through INPUT+3.Operation Operands Itemarl.s

.1,41' Ai ILX

nlll.TR.T :11111 I I

.1.. A	 J _L 1 1.1_ s

0.11,neff_BS,S,
_	 „I	 _1_

_41 .L. L 1 1
1 L 1 1_1 1

1-11
1_, 	

L_I__L I I	 I

Output

Output is a 16-bit binary word in the
Accumulator.

Input	 Errors Detected

Input is a 16-bit binary word in the
Accumulator.

Output

Output is four IBM Card Code hexadecimal
digits in location OUTPT through OUTPT+3.

Errors Detected

The BINHX subroutine does not detect
errors.

Any input character other than an IBM Card
Code 0 through 9 or A through F is an
error.

HOLEB

This subroutine converts IBM Card Code
subset to the EBCDIC subset or converts the
EBCDIC subset to IBM Card Code subset.
Code conversion is illustrated below.

I/O Locations Conversion Data
Bits in Core Storage

0	 15

INPUT JS 1101	 0001	 1110 0010
OUTPT J 0101 0000 0000 OA*
OUTPT + 1 S 0010 1000 0000 00116

MEIN
Calling Seguence

This subroutine converts four IBM Card Code
hexadecimal characters into one 16-bit
binary word. The conversion is the
opposite of the BINHX subroutine conversion
illustrated above.

Calling Sequence

operands a Remurks

1 1 A	 LI BE	 114X.RZA__I. , . , , i 	.,
121_C. 1. 1	 1.N,Ear, , „ . . , . 1.3 ■31_, 	 1

I
7. __t_ .1.	 31._ •, ,._1. 1 1_1.. .1._.1 _l___I___L-1—L _L _ A_J___L

.z„ 4 1 P,u,r _ gs _c--1— I	 _...t	 I— 4 ., L A _i_ I 1 _i_ _L___ _L._1. _L 1_—L J. 1. 1
1. —.■ L L. -,--1 1 i L.-- L	 i I s. 1 1 11_1_11 11 _I _L-1. 1_1 1 1 1 1 _..L.

I .F.1.1	 1.4.1 .1 . 3531/3,1•SIF3T.

.

Lila? AILT. •AIR.F	
OLLILT.P.1.1.1", .	 1141.T ,a111.11 A.R.F 	 41 .4.1111).12.F
f	 JC■Fl, A RA ra- FR. 	 c.adku T 	

 .	

33 33 1_3_1_, 	 1 	
9 1	 TAI3P3U T 343/Zr,39 	

t	 (MIT PUT, .ARFA
111

where

e indicates the direction of conversion,

f is the number of characters to be
converted,

Data Code Conversion Subroutines 81

tall Ope•wan

A.R.E.A. I	 •1.31P.1).T fiSS

C.P.E.E11	 .	 11.C.r .rAAI.
/410 d • 	041,T.Rdla • .1.4g..,A.A4 ET F12
,Al.PJAT14,11.1NR.FS	.0 .

AU.T.P.U.Ta	 09.011RXS
	 1.1,14112.A	 ICIOttAAhT1 a	 .	 a

....

/

pc. •

f)C• •

0 If T.P.T PIS, S.

are packed two per binary word. If an odd
count is specified for EBCDIC output, bits
8 through 15 of the last word in the output
area are not altered.

Errors Detected

Any input character not asterisked in
Appendix D is an error.

SPEED

This subroutine converts IBM Card Code to
EBCDIC or EBCDIC to IBM Card Code. SPEED
accepts all 256 characters defined in
Appendix D.

If the input is IBM Card Code, the
conversion time is much faster than that of
HOLEB because a different conversion method
is used when all 256 EBCDIC characters are
accepted. If the SPEED subroutine is
called before a card reading operation is
completed, the SPEED subroutine
synchronizes with a CARD subroutine read
operation by checking bit 15 of the word to
be processed before converting the word.
If bit 15 is a one, the SPEED subroutine
waits in a loop until the CARDO or CARD1
subroutine sets the bit to a zero.

Note: SPEED should not be used with READO
or READ1 since the 2501 subroutines do not
pre store 1 bits in each word of the I/O
area. Use HOLEB or ZIPCO for 2501
operations.

Calling Sequence

g is the length of the input area. g
must be equal to or greater than f if e
is O. If e is 1, g must be equal to
f/2, or (f+1)/2 if f is odd.

h is the length of the output area. If
e is 0, h must be equal to or greater
than f/2, or (E+1)/2, if f is. odd. If e
is 1, h must be equal to or greater than
f.

Oantrol.Parameter

The control parameter consists of four
hexadecimal digits. Digits 1-3 are not
used. The fourth digit specifies the
direction of conversion:

0 - IBM Card Code to EBCDIC
1 - EBCDIC to IBM Card Code

Input

Input is either IBM Card Code or EBCDIC
characters, (as specified by the control
parameter) starting in location INPUT.
EBCDIC characters must be packed two
characters per binary word. IBM Card Code
characters are stored one character to each
binary word.

Output

Output is either IBM Card Code or EBCDIC
characters starting in location OUTPT.
Characters are packed as described above.

If the direction of the conversion is
IBM Card Code input to EBCDIC output, the
input area can overlap the output area if
the address INPUT is equal to or greater
than the address OUTPT. If the direction
of the conversion is EBCDIC input to IBM
Card Code output, the input area can
overlap the output area if the address
INPUT+n/2 is equal to or greater than the
address OUTPT+n, where n is the character
count specified. The subroutine starts
processing at location INPUT.

Character Count
where

This number specifies the number of
characters to be converted; it is not equal
to the number of binary words used for the
EBCDIC characters because those characters

d indicates whether the EBCDIC
characters are packed or unpacked,

e indicates the direction of conversion,

82

f indicates the character count,	 Output

g is the length of the input area, 	 Output is EBCDIC or IBM Card Code
characters starting in location OUTPT.
EBCDIC characters can be packed or

h is the length of the output area,	 unpacked; IBM Card. Code characters are not
packed.

g and h are defined as follows:
The input area should not overlap the

output area because of restart problems
IBM Card Code to packed EBCDIC
	

that can result from card feed errors.

g � f
h � f/2, or (f+1)/2, if f is odd.

IBM Card Code to unpacked EBCDIC
	

Character Count

g � f
h � f	 This parameter specifies the number of

EBCDIC or IBM Card Code characters to be
Packed EBCDIC to IBM Card Code 	 converted. If the character count is odd

and the output code is packed EBCDIC, bits
g � f/2, or (f+1)/2, if f is odd.	 8 through 15 of the last word are
h � f	 unaltered.

Unpacked EBCDIC to IBM Card Code

g � f
h � f

Errors Detected

Control Parameter

This parameter consists of four hexadecimal
digits. Digits 1 and 2 must be zero. The
third digit indicates whether the EBCDIC
code is packed or unpacked.

0 - Packed, two EBCDIC characters per
binary word

1 - Unpacked, one EBCDIC character per
binary word (left-justified)

The fourth digit indicates the direction
of conversion:

0 - IBM Card Code to EBCDIC
1 - EBCDIC to IBM Card Code

Input

Input is either IBM Card Code or EBCDIC
characters (as specified by the control
parameter) starting in location INPUT.
EBCDIC characters can be packed or
unpacked. IBM Card Code characters are
stored one character to each binary word.

Any input character code not listed in
Appendix D is an error. All IBM Card Code
punch combinations, except multiple punches
in rows 1-7, are legal.

PAPEB

This subroutine converts PTTC/8 subset to
EBCDIC subset or EBCDIC subset to PTTC/8
subset. PAPEB conversion of EBCDIC to
PTTC/8 with the initialize case cption
selected is illustrated below.

I/O Locations Conversion Data 0.
Bits in Core Storage

15■

INPUT JS 1101 0001 1110 0010

OUTPT +0
ft

UC
S

J
DEL

0000
0011

1110
0010

0101
0111

0001
1111

Data Code Conversion Subroutines 83

C■Pe•o.on ChlecoadWoor“

1	 •	 I
AL

,NPuT

L.TdiF C.A.AI V F A. I 41 N.
	 1%14.T.R.AI .RAEA .M.F.T

.	 AAA ARX,C s. .
r N A R.A.r..T.F,Ia .r.11.1AAI T

9	 INPUT AREA cla
	•

•	 .	 .
.......... rAti,r,otar,Ss.

n.r.
n.r.

Calling Sequence 	 Output

where

d is the case initialization digit,

e indicates the direction of conversion,

f indicates the character count,

g is the length of the input area. g
must be equal to or greater than f/2 or
(f+1)/2, if f is odd.

h is the length of the output area. h
must be equal to or greater than f/2 or
(f+1)/2, if f is odd.

Control Parameter

This parameter consists of four hexadecimal
digits. Digits 1 and 2 are not used. The
third digit indicates whether or not the
case is to be initialized before conversion
begins:

0 - Initialize case
1 - Do not alter case

The fourth digit indicates the direction
of conversion:

0 - PTTC/8 to EBCDIC
1 - EBCDIC to PTTC/8

Input

Input (either PTTC/8 or EBCDIC characters,
as specified by the control parameter)
starts in location INPUT. Characters are
packed two per 16-bit computer word in both
codes.

Output is either EBCDIC or PTTC/8
characters starting in OUTPT. Characters
in either code are in packed format. The
subroutine starts processing at location
INPUT.

If the output is in EBCDIC, overlap of
the input and output areas is possible if
the address INPUT is equal to or greater
than the address OUTPT.

If the output is in PTTC/8, overlap of
the input and output areas is not
recommended , because the number of output
characters might be greater than the number
of input characters.

Character Count

This parameter specifies the number of
PTIC/8 or EBCDIC characters in the input
area. The count must include case-shift
characters even though they will not appear
in the output. Because the input is
packed, the character count will not be
equal to the number of binary words in the
input area. If an odd number of output
characters is produced, bits 8-15 of the
last word used in the output area are set
to a space character if the output is
EBCDIC, or to a delete character if the
output is PTTC/8.

There is no danger of overflowing the
output area if the number of- words in a
PTTC/8 output area is equal to the number
of characters in the input area.

Errors Detected

Any input character that is not marked with
an asterisk in Appendix D is an error.

Subroutine Operation

If the input is in PTTC/8 code, all control
characters (except case-shift (LC or UC)
characters) are converted to output.
Case-shift characters only define the case
mode of the graphic characters that follow.

If the initialize option is selected,
the case is set to lower. All characters
are interpreted as lower case characters
until an upper case shift (UC) character is
encountered. If the do-not-alter option is

84

brawl Orn*

11

Opmandt 6 It oak.

P.A.P41 . L CIA .1— L,	 xautcr	 C.17.11.V.F.RA 111141.
Osidp	 r rui.riaro	 0,112.A.14F.T,	 .

ro,LAILT ,11AAP.I	 .A.ILAO.	 •	 .
1	 1	 1 nr, .

I.	 • 	 • rxr.
•	 1	 1 (W71P.LAT MATJAII.Ts

CIM A R 11.GeT,C.11	1	 1	 1	 1 or. ,
1	 1	 •	 •

1	 1

r AI P LAT, .A.R•Euld • •ZALP.U.T

1	 1	 •	 1

selected, the case remains set according to
the last case-shift character encountered
in the previous LIBF message.

If the input is in EBCDIC, all data and
control characters are converted to output.
The user should not specify case shifting
in his input message; this is handled
automatically by the PAPEB subroutine.

Case-shift characters are inserted in a
PTTC/8 output message where needed to
define certain graphic characters that have
the same binary value and are
differentiated only by a case-mode
character. For example, the binary value
0101 1011 (5B), is interpreted as a $ in
lower case and an ! in upper case (see
Appendix D).

If the initialize option is selected,
the case-shift character needed to
interpret the first graphic character is
inserted in the output message and the case
mode is initialized for that mode. If the
do-not-alter option is selected, the case
mode remains set according to the last
case-shift character required in the
previous LIBF message, i.e., no case shift
is forced.

If a case-shift character appears in the
input message, it is output but does not
affect the case mode. If it is an upper
case shift (UC) and the next input
character requires an upper case shift, the
subroutine still inserts an upper case
shift into the message, i.e., two UC
characters will appear in the output
mess age.

The conversion is halted when the
character count is decremented to zero or
when a new-line (NL) control character is
read.

I/O Locations Conversion Data
Bits in Core Storage

,	 --0 15

INPUT UC J 0000 1110 0101 0001
S T 0011 0010 0010 0011

OUTPT J 0101 0000 0000 0000
OUTPT +1 S 0010 1000 0000 0000
OUTPT +2 T 0010 0100 0000 0000

Calling sequence

r1U.T.P.r
	 417.IATAIATA	 ,

1	 1	 1

where

d is the case initialization digit,

e indicates the direction of conversion,

f indicates the character count,

g is the length of the input area. g
must be equal to or greater than f if e
is O. If e is 1, g must be equal to
f/2, or (1E+1)/2 if f is odd.

h is the length of the output area. If
e is 0, h must be equal to or greater
than f/2, or (f+1)/2, if f is odd. If e
is 1, h must be equal to or greater than
f.

PAPHL

This subroutine converts PTTC/8 subset to
IBM Card Code subset or IBM Card Code
subset to PTTC/8 subset. The relationship
of the two codes for converting PTTC/8 to
IBM Card Code is illustrated below:

Control Parameter

This parameter consists of four hexadecimal
digits. Digits 1 and 2 are not used. The
third digit indicates whether or not the
case is to be initialized before conversion
begins:

0 - Initialize case
1 - Do not alter case

Data Code Conversion Subroutines 85

lane

ze

On nation

7/	 97

Operand. bener.

4.,711X PaLoo.R	 rod J	 .11T,T,Cd"
bdpid e	 C.O.U.T.i?"L "Allah/a E 7 PR I 	 d	 •

TJJ,P.11.7 ,,,,,, I.AAP4.0.7 * IA tILEA	 ."0.Q.A.5 R
AiATJAT 	 AILATAM/ITI .4.12.F14.	 F	 <4

E 	 	 da.11.A.r.7.F.R. ,ralabIler.

it	 I • 	 e	 e

7,141.P,u.T
	 9 TAPtl).9, ■A R.F A

The fourth digit indicates the type of
	

Errors Detected
conversion:

0 - PTTC/8 to IBM Card Code	 Any input character not marked by an
1 - IBM Card Code to PTTC/8 	 asterisk in Appendix D is an error.

Subroutine Operation
Input

Case- and shift-character handling is
Input is either PTTC/8 or IBM Card Code 	 described under 'PAPEB".
characters (as specified by the control
parameter) starting in location INPUT. 	 If an odd number of PTTC/8 output
PTTC/8 characters are packed two per binary characters is produced, bits 8-15 of the
word; IBM Card Code characters are not
	

last used word in the output area are set
packed.	 to a delete character.

The conversion is halted when the
character count is decremented to zero or
when a new-line ou4 control character is

Output
	

read.

Output is either IBM Card Code or PTTC/8
code characters starting in location OUTPT.
PTTC/8 codes are packed two per binary
word; IBM Card Code characters are not
packed.

If the conversion is IBM Card Code input
to PTTC/8 output, the input area may
overlap the output area if the address
INPUT is equal to or greater than the
address OUTPT. Case-shift characters are
inserted in the output message where needed
to define certain graphic characters (see
"PAPEB°).

If the conversion is PTTC/8 input to IBM
Card Code output, the input area may
overlap the output area if the address
INPUT+n/2 is equal to or greater than the
address OUTPT+n, where n is the character
count. The subroutine starts processing at
location INPUT.

Character Count

PAPPR

This subroutine converts PTTC/8 subset to
either Console Printer or 1403 Printer
code. The conversion to 1403 Printer code
is illustrated below:

I/O
Locations

Conversion
Data

Bits in Core Storage
150 -

INPUT UC J 0000 1110 0101 0001
INPUT +1 LC 0110 1110 0101 1011

OUTPT J $ 0101 1000 0110 0010

Calling Sequence

This parameter specifies the number of
PTTC/8 or EBCDIC characters in the input
area. The count must include case-shift
characters, even though they will not
appear in the output. Because the input
may be packed, the character count may not
be equal to the number of binary words in
the input area.

There is no danger of overflowing the
output area if the number of words in the
output area is equal to the number of
characters in the input area.

.........	 .A.R.AA

86

Character Count

This parameter specifies the number of
PTTC/8 characters in the input area. The
count must include case-shift characters,
even though they do not appear in the
output. Because the input is packed, the
character count is not equal to the number
of binary words in the input area.

If an odd number of output characters is
produced, bits 8-15 of the last used word
in the output area are set to a space
character.

The conversion is halted when the
character count is decremented to zero or
when a new-line (NL) control character is
read.

where

d is the case initialization digit,

e is the output printer code digit,

f is the number of characters in the
input area to be converted,

g is the length of the input area. g
must be equal to or greater than f/2 if
the character count is even, (f+1) ,2 if
the character count is odd.

h is the length of the output area. h
must be equal to or greater than f/2,
minus the number of paper tape control
characters in the input area, plus 1 if
the result is odd.

Control Parameter
Errors Detected

This parameter consists of four hexadecimal
digits. Digits 1 and 2 are not used. The 	 Any input character not marked by an
third digit indicates whether or not the	 asterisk in Appendix D is an error.
case is to be initialized before conversion
begins:

0 - Initialize case
1 - Do not alter case

The fourth digit determines the output
printer code.

0 - Console Printer code
1 - 1403 Printer code

Input

Input consists of PTTC/8 characters
starting in location INPUT. PTTC/8
characters are packed two per binary word.
All control characters except case-shift
(LC or UC) characters are converted to
output. Case-shift characters are used
only to define the case mode of the graphic
characters that follow.

Output

Output consists of either Console Printer
or 1403 Printer characters starting in
location OUTPT. This code is packed two
characters per binary word. If overlap of
the input and output areas is desired, the
address INPUT must be equal to or greater
than the address OUTPT. This is necessary
because the subroutine starts processing at
location INPUT.

HOLPR

This subroutine converts IBM Card Code
subset to either Console Printer or 1403
Printer code. The conversion to 1403
Printer code is illustrated below.

I/O
Locations

Conversion
Data

Bits in Core Storage
0 ...15•

INPUT J 0101 0000 0000 0000

INPUT+1 , 0010 0100 0010 0000

OUTPT J, 0101 1000 0001 0110

Calling Sequence

J–Z.B.44 1 I iti3O.L.P.4.	 r n	 .r	 v FJP,s

• . 	 /,(1141tie.

	

.	 .	 ,D.C. . 	 A . .	 SALP.V.T,
p.c. 	 	 .	 A S.,Edh. n

f t	 _,C.,0,11AILT
,	 .

JJ.P.U.In, ,134 . S . 	 	 TAP,u.r.

.

.	 A- A ,12,1LT,P if r, A	 A,

DC.

Data Code Conversion Subroutines 87

where

e is the output printer code digit,

f is the number of characters in the
input area to be converted,

g is the length of the input area. g
must be equal to or greater than f.

h is the length of the output area. h
must be equal to or greater than f/2.

Control Parameter

This parameter consists of four hexadecimal
digits. Digits 1-3 are not used. The
fourth digit determines the output printer
code.

0 - Console Printer code
1 - 1403 Printer code

Input

Input consists of IBM Card Code characters,
starting in location INPUT. The characters
are not packed.

Output

Output consists of either Console Printer
or 1403 Printer characters, starting in
location OUTPT. The code is packed two
characters per binary word.

The input area may overlap the output
area if the address INPUT is equal to or
greater than the address OUTPT. The
subroutine starts processing at location
INPUT.

Errors Detected

Any input character not marked with an
asterisk in Appendix D is an error.

EBPRT

This subroutine converts EBCDIC subset to
either Console Printer or 1403 Printer
Code. The conversion to 1403 Printer code
is shown below.

I/O Conversion Core Storage Bits
Locations Data 0 15

INPUT LE 1101 0011 1100 0101

INPUT +1 ES 1100 0101 1110 0010

OUTPUT LE 0001 1010 0110 1000

OUTPT +1 ES 0110 1000 0000 1101

Calling Sequence

• .	
-.....„........

t_IEZ.P.RX _,.._
3 46.6.91e	 I .

r..A., ,	 cairixrc	 rnasivEftsr,rhAi

r 0.70.T.12,(1.L_	 .PA RA .44,F,T ,F aeMIMI
MOON. ;_rd,,Lear__, ,_ _LiLp,IL -r. ,A,R,C .4. 0.4.0,047,ES ..S , ____,_
OMII ,

O.
I•Al.r.P,T. .. -

, ,_
. - JILLT.PAhr, , AR.F A, .Al2.110,F5 C	 _,_

__,CW,49 RA ra- F.R. r.n,thnhy__■____-_.
I __,	 , _,_,_,__,_,_ ,,_	 ,„._._._„_

II •
MIMI

INIMIL , ■_-_ 	 I____,__,_

',.	 ,. . -Ta.PALrL.A.szti.,__L_

11111111111WAHE -_,_„__L_,	 , .	 •	 •	 . _.. _■_.__. .,__,_,_ 	 .1_
MOMM NIZI a--1-1-l.-/-.1.	 .	 I....--
ION■IIMIENIIIMII ,	 ,_ I.__, .t _,	 .A__,. -_,_	 __.._...,_-
MOMMele011in , At./.7.P.U.Ti.	 ..A.R.LAI.

11111111•111M11111 .L	 -1--t. A.--..- -.4....	 i	 •	 I	 1	 t	 L	 .	 1

where

Character Count

This number specifies the number of IBM
Card Code characters to be converted and is
equal to the number of words in the input
area. If an odd count is specified, bits
8-15 of the last word used in the output
area are not altered.

e is the output printer code digit,

f is the number of characters in the
input area to be converted,

g is the length of the input area. g
must be equal to or greater than f/2.

h is the length of the output area. h
must be equal to or greater than f/2.

88

f.Jperands 6 Remark.

1111,1111i	 k	 iit.

Control Parameter

This parameter consists of four hexadecimal
digits. Digits 1-3 are not used. The
fourth digit determines the output printer
code.

0 - Console Printer code
1 - 1403 Printer code

Input

Input consists of EBCDIC characters
starting in location INPUT. EBCDIC
characters are packed two per word.

Output

Output consists of either Console Printer
or 1403 Printer code starting in location
OUTPT. The code is packed two characters
per binary word.

The address INPUT must be equal to or
greater than the address OUTPT if overlap
of the input and output areas is desired.
The subroutine starts processing at
location INPUT.

I/O
Locations

Conversion
Data

Core Storage Bits
0 15

Accumulator

Extension
+0016777218

0000

0000

0001

0000

0000

0000

0000

0010

I/O
Locations

Conversion
Data

Core Storage Bits
0 15

OUTPT + 1000 0000 1010 0000
OUTPT +1 0 0010 0000 0000 0000
OUTPT +2 0 0010 0000 0000 0000
OUTPT +3 1 0001 0000 0000 0000
OUTPT +4 6 0000 0000 1000 0000
OUTPT +5 7 0000 0000 0100 0000
OUTPT +6 7 0000 0000 0100 0000
OUTPT +7 7 0000 0000 0100 0000
OUTPT +8 2 0000 1000 0000 0000
OUTPT +9 1 0001 0000 0000 0000
OUTPT +10 8 0000 0000 0010 0000

Calling Sequence

Character Count

•
This parameter specifies the number of
EBCDIC characters to be converted. This
count is not equal to the number of words
in the input area. If an odd count is
specified, bits 8-15 of the last word used
in the output area are not altered;
however, these bits may cause print checks
if they comprise an illegal character.

Errors Detected

Any input character not marked with an
asterisk in Appendix D is an error.

Input

Input is a 32-bit binary value in the
Accumulator and Extension.

BIDEC

This subroutine converts a 32 -bit binary
value to its decimal equivalent in ten IBM
Card Code numeric characters and one sign
character. The conversion is illustrated
below:

Output

Output is an IBM Card Code sign character
(+ or -) in location OUTPT, and ten IBM
Card Code numeric characters in OUTPT+1
through OUTPT+10.

Data Code Conversion Subroutines 89

Chuomion Opened. & Remain
45

j.si "	 . .GA L+	 E Z AL 'WV FIPS r
. ."(2,ALT.R.17.1 .AIAJZ.AMF,T,N.12,

...... 71MP,10.7.	 .
	 alAT.ALLTI	 ADJIJIW.S3

C 	 .r.li,A.L.4.r.T	 .C.0.1,AAAT

I	 •	 I

LS AF
Pr. ,
Ate.
_nr
n,r,

r 4/ P.11.T. 1A.ILle/1	T

	IIIATJP,11 T. 0,14,47.4. 	0,11.TP,T

Errors Detected

The BIDEC subroutine does not detect
errors.

DECBI

This subroutine converts a decimal value
consisting , of ten IBM Card Code numeric
characters and a sign character to a 32-bit
binary word. This subroutine is the
opposite of the BIDEC subroutine (see
above) except that fewer than ten
characters may be specified.

Calling Sequence

lete,	 Onnendo 6.nnsko

	

1,, ,r jaw	 rvr.Ar. e•A•	 "Fr 14.4.A.1_.	 tIAJ,
.PU T	 T PIP,I AT. AR gm* 4,0.0.1t.4"e

	

or. •	 MARA. .1' ..1141,141.1* .A.1%13.120 ee

yAnr ALT
	 	 Ion	 C41,11.A■T 	

	

T AAPUT iRi C.	 	Iro1l.011.1' A R FA

where

a is the number of characters to be
converted not including the sign
character,

b is the length of the input area.
must be equal to at least a plus 1.

Input

Input is an IBM Card Code sign character in
location INPUT, the address (WDCan) of the
number of characters (1 to 10) to be
converted, and specified number of
characters in IBM Card Code in locations
INPUT+1 through INPUT+N (where N = 1,
2,...10).

Output

Output is a 32-bit binary word, containing
the converted value, in the Accumulator and
Extension.

Errors Detected

Any of the following conditions causes the
Overflow indicator to be turned on, the
Carry indicator to be turned off, and an
immediate exit to be made back to the
caller:

1. Any sign other than a plus, minus,
blank, or ampersand.

2. Any character other than a space or 0
through 9.

3. Any converted value greater than
+2,147,483,647 or less than
-2,147,483,648.

ZIPCO

This subroutine supplements all standard
conversions except those involving PTTC/8
code. It offers the user the option of
supplying his own conversion tables and
codes. ZIPCO uses direct table access and
is considerably faster than the other
conversion subroutines.

Calling Sequence

where

b is the input code digit,

c is the packed input digit,

d is the output code digit,

e is the packed output digit,

f is the number of characters to be
converted,

g is the length of the input area,

90

h is the length of the output area,	 Table

j is the name of the conversion table to
be used. This CALL is not executed; 	 The type of conversion is determined by the
however, it is required following the
	

table called with ZIPCO. The user may call
character count parameter to cause the 	 one of the IBM-supplied conversion tables
loading of the desired conversion table, or he may supply his own.
provide the address of that table to
ZIPCO, and provide information required
by ZIPCO for the return to the calling 	 The following IBM-supplied System
program.	 Library tables may be called with ZIPCO.

Control Parameter

This parameter consists of four hexadecimal
digits as follows:

1 for 12-bit IBM Card Code
input

Digit 1
0 for all other types of input

1 for unpacked input
Digit 2

0 for packed input

1 for 12-bit IBM Card Code
output

Digit 3
0 for 8-bit IBM Card Code and
all other types of output

1 for unpacked output
Digit 4

0 for packed output

Input

Input consists of packed or unpacked
characters in the code specified by the
conversion table and starting at location
INPUT.

Output

Output consists of packed or unpacked
characters in the code specified by the
conversion table and starting at location
OUTPT.

Character Count

This parameter specifies the number of
input characters to be converted. If an
odd count is specified with packed input,
bits 8-15 of the last word used in the
output area are not altered.

EBCCP - EBCDIC to Console Printer Code.
EBHOL - EBCDIC to IBM Card Code.
EBPT3 - EBCDIC to 1403 Printer code.
CPEBC - Console Printer code to EBCDIC.
CPHOL - Console Printer code to IBM Card

Code.
CPPT3 - Console Printer code to 1403

Printer code.
HLEBC - IBM Card Code to EBCDIC.
HOLCP - IBM Card Code to Console Printer

code.
HLPT3 - IBM Card Code to 1403 Printer

code.
PT3EB - 1403 Printer code to EBCCIC.
PT3CP - 1403 Printer code to Console

Printer Code.
PTHOL - 1403 Printer code to IBM Card

Code.

Each conversion table consists of 256
characters-- 128 words with two 8-bit
characters per word. The seven low-order
bits of the character to be converted
(input character) are used as an address.
The address designates the position in the
table of the corresponding conversion
character. The high-order bit (bit 0) of
the input character designates which half
of the table word is to be used. When bit
0 is 1, the left half of the word is used.
When bit 0 is 0, the right half of the word
is used. All dummy entries of the
IBM-supplied tables contain the code for a
blank.

The following is an example of the
conversion performed by ZIPCO. The tables
show (1) the input EBCDIC values, (2) the
table EBPT3 used for the conversion, and
(3) the output characters in 1403 Printer
code.

Data Code Conversion Subroutines 91

Input Location Value

INPUT 1111 0010 0111 0010

INPUT +1 0000 0000 1000 0000

INPUT+2 0111 1111 1111 1111

Table Location Value

EBPT3 0111 1111 0111 1111

EBPT3+1 0111 1111 0111 1111

EBPT3 +114 0000 0001 0111 1111

EBPT3+127 0111 1111 0111 1111

Output Location Value
1403 Print
Character

OUTPT 0000 0001 0111 1111 2, b

OUTPT+1 0111 1111 0111 1111 b, b

OUTPT+2 0111 1111 0111 1111 b, b

When 12-bit IBM Card Code is specified
as input (or output), ZIPCO performs a
packing (or unpacking) of the character to
8-bits (or 12 bits). The 1-7 row punches

on the card are expressed as a 3-bit
hexadecimal number (there can never be more
than one punch between the 1 and 7 row).
In this format a 1 punch would be expressed
as 001, a 7 punch as 111. The punches in
the other card rows: 12, 11, 0, 8, and 9,
are transferred directly.

For example, take the IBM Card Code
character m +■ which is a 12, 6, 8 punch.

IBM Card Code

12 11 0 1 2 3 4 5 6 7 8 9
1 0 0 0 0 0 0 0 1 0 1	 0

1 0 0	 1 1 0	 1 0

Compressed ZIPCO Format

1001	 1. 0 1 0

Errors Detected

No errors are detected by ZIPCO.

Figure 20.1 is a sample of the System
Library table EBPT3 (EBCDIC to 1403 Printer
code) which may be called with ZIPCO.

EBCDIC TO 1403 CONY TABLE FOR ZIPCO	 SOURCE

ADDR REL OBJECT

0000	 050978F3

ST.NO.

0020

LABEL OPCD FT OPERANDS

ENT	 EBPT3
0000 0 7F7F 0021 EBPT3 DC /7F7F NO GRAPHIC NUL
0001 0 7F7F 0022 DC /7F7F NO GRAPHIC NO GRAPHIC
0002 0 7F7F 0023 DC /7F7F NO GRAPHIC NO GRAPHIC
0003 7F7F 0024 DC /7F7F NO GRAPHIC NO GRAPHIC
0004 0 7F7F 0025 DC /7F7F NO GRAPHIC PF
0005 0 7F7F 0026 DC /7F7F NO GRAPHIC HT
0006 0 7F7F 0027 DC /7F7F NO GRAPHIC LC
0007 0 7F7F 0028 DC /7F7F NO GRAPHIC DEL
0008 0 7F7F 0029 DC /7F7F NO GRAPHIC NO GRAPHIC

•
•

• •. ..
•

0072 0 017F 0135 DC /017F 2 NO GRAPHIC
0073 0 027F 0136 DC /027F 3 NO GRAPHIC
0074 0 437F 0137 DC /437F 4 NO GRAPHIC
0075 0 047F 0138 DC /047F 5 NO GRAPHIC
0076 0 457F 0139 DC /457F 6 NO GRAPHIC
0077 0 467F 0140 DC /467F 7 NO GRAPHIC
0078 0 077F 0141 DC /077F 8 140 GRAPHIC
0079 0 .087F 0142 DC /087F 9
007A 0 7F7F 0143 DC /7F7F NO GRAPHIC NO GRAPHIC
007B 0 7F7F 0144 DC /7F7F NO GRAPHIC NO GRAPHIC
007C 0 7F7F 0145 DC /7F7F NO GRAPHIC NO GRAPHIC
007D 0 7FOB 0146 DC /7F08 NO GRAPHIC
007E 0 7F4A 0147 DC /7F4A NO GRAPHIC
007F 0 7F7F 0148 DC /7F7F NO GRAPHIC NO GRAPHIC
0080 0149 END

Figure 20.1 System Library EBPT3

92

Unused	 Characteristic	 I1st Word

0

2nd Word

o	 1

3rd Word

0

7 8 15

S
	

Mantissa

15

Mantissa

15

Arithmetic and Functional Subroutines

The IBM 1130 Subroutine System Library
includes the arithmetic and functional
subroutines that are the most frequently
required because of their general
applicability. There are 44 subroutines,
some of which have several entry points.

Figure 21 lists the arithmetic and
functional subroutines that are included in
the Subroutine System Library

REAL DATA FORMATS

Many of the IBM 1130 arithmetic and
functional subroutines offer two ranges of
precision: standard and extended. The
standard precision provides 23 significant
bits, and the extended precision provides

• up to 31 significant bits. The magnitude
of a real number must not be greater than
2127 or less than 2- 128 (approximately 1038
and 10-39).

To achieve correct results from a
particular subroutine, the input arguments
must be in the proper format.

Standard-Precision Format
•

Standard-precision real numbers are stored
in core storage as shown below:

I SI	 15 Most Significant Bits of Mantissa

0 1 	15

8 Least Significant
Bits of Mantissa
	 Characteristic

0	 78	 15

Numbers can consist of up to 23 significant
bits (mantissa) with a binary exponent
ranging from -128 to +127. Two adjacent
storage locations are required for each
number. The first (lowest) location must
be even-numbered. The sign of the mantissa
is in bit zero of the first word. The next
23 bits represent the mantissa (2's
complement if the number is negative) and
the remaining 8 bits represent the
characteristic. The mantissa is normalized
to fractional form, i.e., the implied
binary point is between bits zero and one.

The characteristic is formed by adding
+128 to the exponent. For example, an
exponent of -32 is represented by a charac-
teristic of 128-32, or 96. An exponent of
+100 is represented by a characteristic of
100 + 128, or 228. Since 128,e/80 the
characteristic of a nonnegative exponent
always has a 1-bit in position 1, while the
characteristic of a negative exponent
always produces a 0-bit in position 1. A
normal zero consists of all zero bits in
both the characteristic and the mantissa.

Extended-Precision Format

Extended-precision real numbers are stored
in three adjacent core locations as shown
below:

Numbers can consists of up to 31
significant bits with a binary exponent
ranging from -128 to +127; however,
normalization can, in some cases, cause the
loss of 1 bit of significance.

Bits zero through seven of the first
word are unused; bits eight through 15 of
the first word represent the characteristic
of the exponent (formed in the same manner
as in the standard range format); bit zero
of the second word contains the sign of the
mantissa; and the remaining 31 bits
represent the mantissa (2's complement if
the number is negative).

Real Negative Number Representation

Real negative numbers differ from real
positive numbers in only one respect; the
mantissa is always the 2's complement of
the equivalent positive value.

1st Word

2nd Word

Arithmetic and Functional Subroutines 93

Example:

+.53125 is represented in core as
44000080

-.53125 is represented in core as
BC000080

+4.0 is represented in core as 40000083

-4.0 is represented in core as 00000083

Note that a real negative number is never
represented by a value of 800000xx, where
xx is any characteristic between 00 and FF.
The mantissa value of 800000 is its own 2's
complement and therefore lies outside the
definition of a real negative number, i.e.,
the 2's complement of its absolute value.

REAL NUMBER PSEUDO ACCUMULATOR

IBM 1130 real number subroutines sometimes
require an accumulator that can accommodate
numbers in real number format. Since all
of the 1130 registers are only 16 bits in
length, a pseudo accumulator must be set up
to contain two- or three-word real numbers.
The pseudo accumulator (designated FAC for
floating accumulator) is a three-word
register occupying the three highest
locations of the Transfer Vector (see IBM
1130/1800 Assembler Language). The user
can refer to these words by using Index
Register 3 plus a fixed displacement
(XR3+125, 126, or 127). The format of the
FAC is shown below.

I I I	 Characteristic	 1- Mantissa	 I	 Mantissa	 I

XR3+ 125 XR3+ 126

FAC

XR3+ 127

Fixed-Point Format

Fractional numbers, as applied to the
fixed-point subroutines, XSQR, XMDS, XMD,
and XDD, are defined as binary fractions
with implied binary points of zero. That
is, the binary point is positioned between
the sign (bit 0) and the most significant
bit (bit 1).

The user can consider the binary point
to be in any position in his fixed-point
numbers. To correctly interpret the
results the following rules must be
observed:

1. Only numbers with binary points in
equivalent positions can be correctly
added or subtracted.

2. The binary point location in the
product of two numbers is the sum of
the binary point locations of the
multiplier and the multiplicand.

3. The binary point location in the
quotient of two numbers is the
difference between the binary point
locations of the dividend and the
divisor.

4. The binary point location in a number
that is input to the fixed-point
square root subroutine (XSQR) must be
an even number from 0-14. The binary
point location in the output root is
half the binary point location of the
input number.

The effective address of the mantissa is
always even. The eight rightmost bits of
the FAC are zero when using standard
precision.

Note: Arithmetic and functional
subroutines do not save and restore the
contents of the 1130 Accumulator or the
Extension. The calling program should
provide for this if the contents are
significant. When execution of the user's
program begins, all three words of FAC
contain zeros. Results of arithmetic and
functional subroutines are truncated.

CALLING SEQUENCES

The arithmetic and functional subroutines
are called via a CALL or LIBF statement
(whichever is required) followed, in some
cases, by a DC statement containing the
actual or symbolic address of an argument.
In the descriptions that follow, the
notations (ARG) and awl refer to the
contents of the operand rather than its
address. The name FAC refers to the real
number pseudo accumulator. The
extended-precision subroutine names are
prefixed with the letter E (subroutines
that handle both precisions have the same
name and do not have a prefix).

94

Add/Subtract
Multiply
Divide
Load/Store FAC
Trigonometric Sine/Cosine
Trigonometric Arctangent
Square Root
Natural Logarithm
Exponential (e)
Hyperbolic Tangent
Real Base to an Integer Exponent
Real Base to a Real Exponent
Real to Integer
Integer to Real
Normalize
Real Binary to Decimal/Real Decimal
to Binary
Real Arithmetic Range Check

Fixed-Point

Integer Base to an Integer Exponent
Fixed-Point Square Root
Fixed-Point Fractional Multiply
(short)
Fixed-Point Double Word Multiply
Fixed-Point Double Word Divide

Special Function

Real Reverse Subtract
Real Reverse Divide
Real Reverse Sign
Real Absolute Value
Integer Absolute Value

Miscellaneous

Get Parameters
J.

-1
SUBROUTINE
	 NAME

FReal (Floating Point)	 Standard Precision	 Extended Precision

*FADD/*FSUB	 *EADD/*ESUB
*FMPY	 *EMPY
*FDIV	 *EDIV
*FLD/*FSTO	 *ELD/*ESTO
FSINE/FCOSN, FSIN/FCOS ESINE/ECOSN, ES IN/ECOS
FATN, FATAN
FSQR, FSQRT
FLN, FALOG
FXPN, FEXP
FTNH/FTANH

*FAXI
*FAXB
IFIX
FLOAT
NORM
FBTD/FD TB

FARC	 FARC

*FIXI
XSQR

XMD
XDD

*ES BR
*EDVR
SNR
EAVL, EABS
IABS

FGETP	 EGETP

EATN, EATAN
ESQR, ESQRT
ELN, EALOG
EXPN, EEXP
ETNH/ETANH

*EAXI
*EAXB
IFIX
FLOAT
NORM
FBTD/FDTB

*FIXI
XSQR
XMD S

XMD
XDD

*FSBR
*FDVR
SNR
FAVL, FABS
LABS

Note: By adding an X to those names prefixed with an asterisk, the user can cause the
contents of Index Register 1 to be added to the address of the argument
specified in the subroutine calling sequence to form the effective argument
address. For example, FADDX would be the modified form of FADD.

I -J
Figure 21. Arithmetic and Functional Subroutines

Note also that some of the functional
subroutines can be called via two different
calling sequences. One calling sequence
assumes the argument is in FAC; the other
specifies the location of the argument with
a DC statement.

In addition, some subroutines can have
indexed linkage to the argument. The
calling sequence is the same except for the

subroutine is listed in Figure 21 with the
corresponding entry points.

Real Add

LIBF	 FADD, FADDX, EADD or EADDX
DC	 ARG
Input	 Real augend in FAC

Real addend in location ARG
Result	 (FAC) + (ARG) replaces (FAC)

subroutine name which contains an X suffix.
Also, some subroutines perform more
one type of arithmetic or function.

than
For

Real Subtract

example, FSIN and FCOS are different entry LIBF FSUB, FSUBX, ESUB or ESUBX
points to the same subroutine.	 Each DC ARG

Arithmetic and Functional Subroutines 95

Page of GC26-5929-6
Revised May 21, 1971
By TNL GN33-8112

Input	 Real minuend in FAC
Real subtrahend in location ARG

Result	 (FAC) - (ARG) replaces (FAC)

Real Multiply

LIBF	 EMPY, EMPYX, EMPY or EMPYX
DC	 ARG
Input	 Real multiplicand in FAC

Real multiplier in location ARG
Result	 (FAC) times (ARG) replaces (FAC)

Real Divide

LIBF	 FDIV, FDIVX, EDIV or EDIVX
DC	 ARG
Input	 Real dividend in FAC

Real divisor in location ARG
Result	 (FAC) / (ARG) replaces (FAC)

Real Trigonometric Arctangent

CALL	 FATN or EATN
DC	 ARG
Input	 Real argument in FAC
Result Arctangent of (FAC) replaces

gmcl; the result lies within the
range tilradians (±90 degrees)

or

CALL
	

FATAN or EATAN
DC
	

ARG
Input
	

Real argument in location ARG
Result Arctangent of (ARG) replaces

(FIX); the result lies within the
range ti[radians (±90 degrees)

Real Square Root

Note: On a divide by zero, the divide
check indicator is turned on, the dividend
is not changed, and the dividend remains in
FAC.

CALL
Input
Result

FSQR or ESQR
Real argument in FAC
Square root of (FAC) replaces
(FAG)

or

Load FAC

LIBF	 FLD, FLDX, ELD or ELDX
DC	 ARG
Input	 Real number in location ARG
Result	 (ARG) replaces (FAC)

Store FAC

CALL	 FSQRT or ESQRT
DC	 ARG
Input	 Real argument in location ARG
Result Square root of (ARG) replaces

(FAG')

Real Natural Logarithm

LIBF	 FSTO, FSTOX, ESTO or ESTOX
DC	 ARG
Input	 Real number in FAC
Result	 (FAC) replaces (ARG)

CALL
Input
Result

FLN or ELN
Real argument in FAC
Loge (FAC) replaces ('AC)

or

Real Trigonometric Sine

CALL	 FSINE or ESINE
Input	 Real argument (in radians) in FAC
Result Sine of (FAC) replaces (FAC)

or

CALL	 FSIN or ESIN
DC	 ARG
Input	 Real argument (in radians) in

location ARG
Result Sine of (ARG) replaces (FAC)

Real Trigonometric Cosine

CALL
	

FCOSN or ECOSN
Input
	

Real argument (in radians) in FAC
Result
	

Cosine of (FAC) replaces (FAC)

or

CALL	 FCOS or ECOS
DC	 ARG
Input	 Real argument (in radians) in

location ARG
Result Cosine of (ARG) replaces (FAQ

CALL	 FALOG or EALOG
DC	 ARG
Input	 Real argument in location ARG
Result Logn put(4 replaces (FAC)

Real Exponential

CALL	 FXPN or EXPN
Input	 Real argument in FAC = n
Result e n replaces (FAC)

or

CALL
	

FEXP or EEXP
DC
	

ARG
Input
	

Real argument in location ARG = n
Result e n replaces (FAC)

Real Hyperbolic Tangent

CALL	 FTNH or ETNH
Input	 Real argument in FAC
Result TANH (FAC) replaces (FAC)

or
CALL
	

FTANH or ETANH
DC
	

ARG

96

Input	 Real argument in location ARG
	

Real Decimal to Binary
Result TANH (ARG) replaces (FAC)

CALL
DC
Input

Real Base to an Integer Exponent

LIBF	 FAXI, FAXIX, EAXI, or EAXIX
DC	 ARG
Input	 Real base in FAC

Integer exponent in location ARG
Result	 (FAC) raised to the exponent

(ARG) replaces •(FW)

Real Base to a Real Exponent

CALL	 FAX B, FAXBX, EAXB or EAXBX
DC	 ARG
Input	 Real base in FAC

Real exponent in location ARG
Result	 (FAC) raised to the exponent

(ARG) replaces (FAC)

FDTB
LDEC
A string of EBCDIC coded data at
location LDEC. Each EBCDIC
character occupies the rightmost 8
bits of a word. The leftmost 8
bits must be zeros. The first
character of the input must be the
sign (plus or minus). Following
the sign, one to nine decimal
digits (0-9) may be specified.
The decimal point may appear
before, within, or after the
decimal digits. Immediately after
the last decimal digit (or decimal
point) , the exponent is specified
as follows.

Real to Integer

LIBF
	

IFIX
Input
	

Real number in FAC
Result Integer in the Accumulator

Integer to Real*

LIBF	 FLOAT
Input	 Integer in the Accumulator
Result Real number in FAC

Normalize

LIBF	 NORM
Input	 Real unnormalized number in FAC
Result The mantissa portion of FAC is

shifted until the most significant
bit resides in bit position 1.
The characteristic is changed to
reflect the number of bit
positions shifted.

Real Binary to Decimal

CALL
	

FBT D
DC
	

LDEC
Input
	

Real number in FAC
Result A string of EBCDIC-coded data

starting at location LDEC. Each
EBCDIC character occupies the
rightmost 8 bits of a word. The
last character of the string is a
blank.

The output format is exactly as
follows:

sd.ddddddddEsddb

where:

s represents a sign (plus or
minus)
d represents one of the decimal
digits 0-9
b represents a blank

Esddb

where:

s represents the sign of the
exponent (plus or minus)
d represents one of the decimal
digits (0-9)
b represents a blank (the blank is
required to indicate the end of
the string)

No embedded blanks may appear in
the input string as the first
blank is interpreted as the end of
the data.

Result Real number in FAC

Real Arithmetic Range Check

LIBF
	

FARC
Result This subroutine checks for real

number overflow or underfloor, and
sets programmed indicators for
interrogation by a FORTRAN
program.

Integer Base to an Integer Exponent

LIBF	 FIXI or FIXIX
DC	 ARG
Input	 Integer base in the Accumulator

Integer exponent in location ARG
Result	 (Accumulator) raised to the

exponent contained in ARG replaces
(Accumulator)

Fixed-Point Square Root

CALL	 XSQR
Input	 Fixed-point fractional argument

(16 bits only) in the Accumulator.
Result Square root of (Accumulator)

replaces (Accumulator). If the
argument is negative the absolute
value is used and the Overflow
indicator is turned ON.

Arithmetic and Functional Subroutines 97

Fixed-Point Doubleword Multiply	 or

LIBF	 XMD
Input	 Doubleword fractional multiplier

in FAC (addressed by XR3 + 126)
Doubleword fractional multiplicand
in. the Accumulator and Extension

Result Doubleword fractional product in
the Accumulator and Extension

Fixed-Point Fractional Multiply

LIBF	 XMDS
Input	 Doubleword fractional multiplier

in the Accumulator and Extension
Doubleword fractional multiplicand
in FAC (addressed by XR3 + 126)

Result Product in the Accumulator and
Extension (XMDS is shorter and
faster than XMD; however, the
resulting precision is 24 bits) .

Fixed-Point Doubleword Divide

LIBF	 XDD
Input	 Doubleword fractional dividend in

FAC (addressed by XR3 + 126)
Doubleword fractional divisor in
Accumulator and Extension

Result Doubleword fractional quotient in
the Accumulator and Extension.
The double dividend in FAC is
destroyed by the execution of the
subroutine.

Real Reverse'Subtract

LIBF	 FSBR, FSBRX, ESBR or ESBRX
DC	 ARG
Input	 Real minuend in location ARG

Real subtrahend in FAC
Result	 (ARG) - (FAC) replaces (FAC)

Real Reverse Divide

LIBF	 FDVR, FDVRX, EDVR or EDVRX
DC	 ARG
Input	 Real dividend in location ARG

Real divisor in FAC
Result	 (ARG) / (FAC) replaces (FAC)

Note: On a divide by zero, the divide
check indicator is turned on, the dividend
is not changed, and the dividend remains in
FAC.

Real Reverse Sign

LIBF	 SNR
Input	 Real number in FAC
Result -(FAC) replaces (FAC)

Real Absolute Value

CALL	 FAVL or EAVL
Input	 Real number in FAC
Result Absolute value of (FAC) replaces

(FAC)

CALL	 FABS or EABS
DC	 ARG
Input	 Real number in location ARG
Result Absolute value of (ARG) replaces

Integer Absolute Value

CALL
	

LABS
DC
	

ARG
Input
	

An integer in ARG
Result Absolute value of (ARG) replaces

(Accumulator)

Get Parameters (FGETP or EGETP)

Example:

MAIN CALL SUBR

	

DC	 ARG
NEXT etc.

	

SUER DC	 0
LIBF . FGETP or EGETP

	

SUBEX DC	 0
etc.

BSC I SUBEX

The FGETP subroutine performs two functions
for a subroutine accessed by a CALL
statement. It loads FAC with the contents
of ARG; it sets SUBEX to return to NEXT in
the calling program.

ARITHMETIC AND FUNCTIONAL SUBROUTINE ERROR
INDICATORS

The highest three-word entry in the
Transfer Vector is reserved for the real
number pseudo accumulator (FAC). The next
to highest three-word entry is reserved for
the arithmetic and functional subroutine
error indicators.

The first word (addressed XR3 + 122) of
the second entry is used for real number
arithmetic overflow and underflow
indicators. The second word (XR3 + 123) is
used for a divide check indicator, and the
third word (XR3 + 124) is used for
functional subroutine indicators. When
execution begins, all three words contain
zeros.

98

Word One	 and a bit is moved into position 14 of word
three with an OR instruction.

Each real number subroutine checks for
exponent underflow and overflow. If either
occurs, word one and FAC are set as
follows.

1. if overflow has occurred (FAC =
maximum), word one is set to 1.

2. if underflow has occurred (FAC =
zero), word one is set to 3.

Word Two

The real number divide subroutines check
for division by zero. If this occurs, word
two is set to 1. The dividend is not
changed and remains in FAC.

Real Square Root. When the argument is
negative, the square root of the argument's
absolute value is returned, and a bit is
moved into position 13 of word three with
an OR instruction.

Real to Integer. When the absolute value
of the argument is greater than 2 115-1, the
largest possible signed result is placed in
the accumulator and a bit is moved into
position 12 of word three with an OR
instruction.

Integer Base to an Integer Exponent. When
the base is zero and the exponent is zero
or negative, a zero result is returned and
a bit is moved into position 11 of word
three with an OR instruction.

Word Three

The functional subroutines check for the
following error conditions and set word
three as described. All error conditions
detected by the functional subroutines are
indicated in word three.

Real Natural Logarithm. When the argument
is zero, FAC is set to the largest negative
value and a bit is moved into position 15
of word three with an OR instruction. When
the argument is negative, the absolute
value of the argument is used and a bit is
moved into position 15 of word three with
an OR instruction.

Real Trigonometric Sine and Cosine. When
the absolute value of the argument is equal
to or greater than 224 , FAC is set to zero

Real Base to an Integer Exponent. When the
base is zero and the exponent is zero or
negative, a zero result is returned and a
bit is moved into position 10 of word three
with an OR instruction.

Real Base Raised to a Real Exponent. When
the base is zero and the exponent is zero
or negative, a zero result is returned and
a bit is moved into position 9 of word
three with an OR instruction. When the
base is negative and the exponent is not
zero, the absolute value of the base is
used and a bit is moved into position 15 of
word three with an OR instruction.

End of File (DM2 System Only). When the
end-of-file record in the unformatted I/O
area is read, a bit is moved into position
2 of word three with an OR instruction.

Arithmetic and Functional Subroutines 99

Isin(x) - sin*(x)
X

for the range

-1. 0 x 106 x <0

1. x 106 > x> 0

ESIN
e < 3.0 x 10-9

for the range

-1n(ob) < x < In (o)

i.e., 0 < ex<ao

Functional Subroutine Accuracy EATAN

Given:
e =

atn (x) - atn * (x)
< 2.0 x 10-9

atn(x)

f (x)
f* (x)
(<+00)

Maximum error
True value of the function

= Value generated by subroutine
= Slargest valid real number

for the range

-3.88336148 x 1037
� x � 3.88336148 x 1037

(>-6°) o st negative real number

BETE/WED PRECISION SUBROUTINES 	 EE XP

The following statements of accuracy apply	 e = ex - (ex)* 2.0 x 10-9 lx1 whichever
exto extended precision subroutines. Or

2.0 x 10-9
is

greater

for x = 0 sin (x) 0

ECOS
cos(x) - cos*(x)

rix/ + 2

< 3.0 x 10-9 Iln(x) - In*(x)
In (x) <3.0 x 10-9

ELN

ee

for the range
	 for the range

-1.0x 106 < x < 1.0 x 106	
0 < X < co

100

-3.883361 x 1037 x 3.883361 x 103
7

FEXP

e
X
 - (e

X
)*2.5 x 10-7 lx1	 whichever

1
e = 	 II

2.5 x 10
-7

greater
ex	 or	 is

ETANH	 FATAN

e	 Itanh(x) - tanh*(x)I <3.0 x 10
-9

for the range

atn(x) - atn*(x)
< 5.0 x 10-7e =

atn(x)

for the range
— a° < X < oo

Entir

I 4R= 	 sfir I <1.0 x 10 -9e
45c

for the range

0 < x < ao

STANDARD PRECISION SUBROUTINES

The following statements of accuracy apply
to the standard precision subroutines.

for the range

-in (00) < x < in (00) i.e., 0 < ex < 03

FLN
FSIN

e 	 isin(x) - sin*(x) < 2.5 x 10
-7 in(x) - in*(x)

e = 	 < 4.0 x 10-7
In (x)

for the range

-1.0 x 10
6
 < x <0

1.0 x 10
6
 > x >0

for x = 0 sin (x) 0

for the range

0< x < 1
1< x<03

for x = 1 In (x) a--.0

FTANH

FCOS

e = cos(x) - cos*(x) < 2.5 x 10-7
	 e	 itanh(x) - tanh*(x)I <2.5 x 10

-7

Ix / f
for the range

for the range

-1.0 x	 x � 1.0 x 106
	

- 60 < X < + 00

Arithmetic and Functional Subroutine s 101

Extended Precision

F (z) = a_z+a z3+a z5+a z7+a
5
z9+a

6
z 11

i 2	 3	 4

where

= 6.2831853071
= -41.341702117
= 81.605226206
= -76.704281321
= 42.009805726
= -14.394135365

a l
a2
a3
a4
a5
a6

FSQRT	 where

e	 -	 <2.5 x 10-7
Nfic

z = 1/4-y in the range 0< y < 1/2
z = y-3/4 in the range 1/2 < y < 1

for the range	 sin 2ry = F(z)

0 < x < 00	 where

Elementary Function Algorithms z = y in the range 0 y < 1/4

The choice of an approximating algorithm z = 1/2-y in the range 1/4 < y < 3/4

for a given function depends on such z = y-1 in the range 3/4 < y < 1
considerations as expected execution time,
storage requirements, and accuracy. For a
given accuracy, and within reasonable
limits, storage requirements vary inversely
as the execution time. Polynomial
approximating is used to evaluate the
elementary functions to effect the desired
balance between storage requirements and
efficiency.

SINE-COSINE

Polynomial Approximation

Given a real number, x, n,and y are defined
such that

= n + y2w

where n is an integer and 0540. Thus, x =
2wn + 27y, and the identities are

sin x = 'sin 2iry and cos x = cos 2 ry.

Standard Precision

F(z) = a
1
 z+a

2
z
3
	+ a

4
z
7
 + a

5z9R3z
5

The polynomial approximation, F(z), for the
function (sin 2rz)/z is used where
-1/45z51/4.

where

The properties of sines and cosines are
used to compute these functions as follows:

a1
a2
a
3

=
=
=

6.2831853
-41.341681
81.602481

a
4

= -76.581285
cos 2wy = F(z) a

5 = 39.760722

102

F (x) = x(1.0 - a x2 + a2 x4 - a3 x
6)•	 1

where

al = .333329573
a2 = .199641035
a

3
= .131779888

ARCTANGENT	 Standard Precision

Polynomial Approximation

The subroutine for arctangent is built
around a polymonial, F (x),, that
approximates Arctan (z) in the range
-.23SzS.23. The Arctan (z) for z outside
this range is found by using the
identities

Arctan(-z) = - Arctan (z)

and

Arctan(z) = ak + Arctan

where

{zzbkbki
SQUARE ROOT

Square Root (x)

Let x = 2 2bF when . 25sF < 1
kr).ak =	 bk = tan ak

and k is determined so that

(2k-1)17	 k = 1, 2, 3.tan	 � z 1 ‹ tanLL2k+1 u14 	 14

then iX = 2b iF

where fF = P.

P = AF + B1

i = number of approximation

as a first approximation
followed by 2 Newton
iterations

Having determined the value of k
appropriate to z, the transformation
x=(z-bk)/(z14+1) puts x in the range
-tan g/145x<tanr/14. The polynomial F (x)
was chosen to be good over a range slightly
larger (i.e., .23<tan7r/I4) so that the
comparisons to determine the interval in
which z lies need be only standard
precision accuracy.

Arctan (z) = nak + F (x) z 0
k - F (x) z < 0

Extended Precision

F (x) = x (1.0 - a1 x2 +a2 x4 -a3 x6 +a4 x
8)

where

a1 = .33333327142'a = .199990567922a = .14235177463
3a4 = .09992331248

where

A = . 875, B = . 27863 when .25 � F < .5

or

A = . 578125, B = .421875 when .5 � F <1

P 2 = 1 P1)
2

(2 + P
2)P =3 2

Arithmetic and Functional Subroutines 103

NATURAL LOGARITHM

Polynomill Anprogimation

Given a normalized real number

x =2kx f

where the range of f is. 1/2<_f<1, and j and
g are found such that x=24 where
(4-2/2.1.g<Th. This is done by setting
j=k-1, g=2f if f<4-2/2 and j=k, g=f
otherwise.

Thus:

ln(x) = j. ln(2) + ln(g).

The approximation for ln(g), ,12/25g<4-2, is
based on the series

xv+In	 = 2[(x/v) + (x3/3v3) + (x5/5v5) +...v-x

which converges for (-v<x<v).
With the transformation

g6:1x = t. , v = (4-2 + 1)2

so that -1Sx<1 for 4-2/2.ig<4.2.
Substituting

In (g) = 2 (z + z3/3 + z5/5 +)

where z = x/v =	 •
g+1

The approximation used is G(z) for ln(g)/z
in the range 4-2/25g<42.

Then for both extended and standard
precision,

g-1
z = g+1

,r2/2 = . 7071067811865
In (2) = . 6931471805599

Thus, the required calculation is
1n(x) = j .1n(2) + zG(z)

Extended Precision

G(z) = b0+ b2z2+b4z4 + b6z6 +b8z8

where
=2.0130

b2 = . 666666564181

b4 = .400018840613

b6 = . 28453572660

b8 = . 125

Standard Precision

	

G(z) =1)_+ b z 2+ b4 	b z6
u 	 4	 6

where

= 2. 0b0
b2 = . 66664413786
b4 = .4019234697
b6 = . 25

EXPONENTIAL

Polynomial laroximation

To find ex , the following identity is used.

To reduce the range, we let

x log2e = n + d + z

where
n is the integral portion of the real

number,

d is a discrete fraction (1/8, 3/8, 5/8,
or 7/8) of the real number, and

z is the remainder which is in the range
-1/8.1z51/8.

104

Thus,	 where

e
x = 2

n
x 2

d
x 2

z 	 a=1.0 1.00
a
l = . 693147079and it is necessary to only approximate 2z

for -1/8Sz.11/8 by using the polynomial	 a
2
 = . 240226486

F (z).	 a
3
 = . 0555301557

a
4
 = . 00962173985

Extended Precision

HYPERBOLIC TANGENTF(z) = a
0
 + a

l
z + a

2
z
2
 + a

3
z3 + a

4
z
4
 + a

5
z
5

where	 e2
x-1

Tanh (x) =
a = 1.0	 e2x +1
0

a	 .693147180571
for

a
2

= .24022648580
x > 32	 Tanh (x) = 1a

3
 = .055504105406

x -32	 Tanh (x) = -1a
4
 = .0096217398747

a
5
 = .0013337729375

REAL BASE TO REAL EXPONENT

A = e
lnA

Standard Precision

therefore:

F(z) = a0 + al
z + a2

z
2

+ a z3 + a4z
4

3 AB
e

B	 lnA B
= e

BlnA

Arithmetic and Functional Subroutines 105

Selective Dump Subroutines

The IBM 1130 Subroutine Library and the
System Library include three dump
subroutines: Dump Selected Data on the
Console Printer, Dump Selected Data on the
1132 Printer, and Dump Status Area. These
subroutines allow the user to dump selected
portions of core storage during the
execution of a user's program.

Dump Selected Data on Console Printer
or 1132 Printer
Two subroutines are available to select an
area of core storage and dump it on the
Console Printer or the 1132 Printer. Each
of these subroutines has two entry points,
one for hexadecimal output and one for
decimal output. The entry points for the
various configurations are shown below:

DMTX0 Dump on Console Printer in
hexadecimal format, using the WRTYO
subroutine

DMTDO Dump on Console Printer in decimal
format, using the WRTYO subroutine

DMPX1 Dump on 1132 Printer in hexadecimal
format, using the PRNT1 subroutine

DMPD1 Dump on 1132 Printer in decimal
format, using the PRNT1 subroutine

Calling Sequence

The calling sequence for any of the above
functions is as follows:

CALL ENTRY POINT
DC	 START
DC	 END

START and END represent the starting and
ending addresses of the portion of core
storage to be dumped. A starting address
greater than the ending address results in
the error message, ERROR IN ADDRESS, and a
return to the calling program.

Format

Before the actual dump appears on the
selected output device, the user is given

one line of status information. This line
indicates the status of the Overflow and
Carry indicators (ON or OFF), the contents
of the Accumulator and Extension, and the
contents of the three index registers. The
index register contents are given in both
hexadecimal and decimal form, regardless of
which type of output was requested. The
format of the status information is shown
below:

OFF	 ON	 HHHH (±DDDDD) HHHH (±DDDDD)
Overflow Carry Accumulator Extension

HHHH (±DDDDD) HHHH (±DDDDD) HHHH (±DDDDD)
Index Reg 1	 Index Reg 2 Index Reg 3

All other data is dumped eight words to
a line; the address of the first word in
each line is printed to the left of the
line. Hexadecimal data is printed four
characters per word; decimal data is
printed five digits per word, preceded by a
plus or minus sign.

Page numbers are not printed for either
subroutine. However, the 1132 Printer
subroutine does provide for automatic page
overflow upon the sensing of a channel 12
punch in the carriage tape.

Dump Status Area

This subroutine provides a relatively easy
and efficient means of dumping the first 80
words of core storage. These words contain
status information relating to index
registers, interrupt addresses, etc., which
may be required frequently during the
testing of a program. It may also be
desirable to dump these words before
loading because pressing PROGRAM LOAD
destroys the data in the first 80 words of
core storage.

The Dump Status Area subroutine is
called via the following statement:

CALL DMP80

The Console Printer prints the first 80
words of core storage in hexadecimal form;
the printing format provides spacing
between words. After typing the last word,
the subroutine returns control to the
calling program.

106

Special Monitor Subroutines

The DM2 System Library contains a group of
subroutines that perform various system
utility functions. These subroutines, with
the exception of SYSUP which can be called
by the user, are intended for system use
only. Under normal circumstances, they
should not be deleted from the System
Library.

The subroutines in the group are:

FLIPR - LOCAL/SOCAL overlay subroutine
RDREC - Read *ID record
CALPR - Call system print
FSLEN - Fetch phase IDs
FSYSU - Fetch system subroutine (FSYSU is

an alternate entry point to FSLEN)
SYSUP - DOOM update

FLIPR (LOCAL/SOCAL OVERLAY)

The System Library contains a flipper
subroutine (FLIPR) which is used to call
LOCAL (load on call) and SOCAL (system load
on call) subroutines into core storage.
FLIPR is used with DISKZ, DISK1, or DISKN.

FLIPR passes the total word count to
DISKZ, DISK1, or DISKN to fetch the LOCAL.
When a LOCAL subroutine is called, control
is passed to the flipper, which reads the
LOCAL into core storage if it is not
already in core and transfers control to
it. All LOCALs in a given core load are
executed from the same core storage
locations; each LOCAL overlays the previous
one. FLIPR fetches SOCALs in the same
manner as LOCALs.

RDREC (READ *ID RECORD)

This subroutine is called by Disk
Maintenance Programs to read the *ID (disk
label) record. This subroutine is intended
for system use only.

CALPR (CALL SYSTEM PRINT)

This subroutine calls FSLEN to bring the
system print subroutine into core storage

for the purpose of printing one or more
lines on the principal printer. This
subroutine is intended for system use only.

FSLEN (FETCH PHASE IDS AND FETCH SYSTEM
SUBROUTINE)

This subroutine has two entry points. They
are FSLEN and FSYSU.

• FSLEN (Fetch Phase IDs from SLET)

This entry point obtains the requested
phase ID headers from SLET.

• FSYSU (Fetch System Subroutine)

Fetches the requested system subroutine
into core storage.

This subroutine is intended for system
use only.

SYSUP (DCOM UPDATE)

Whenever a core load requires changing disk
cartridges during the job, SYSUP must be
called to update DCOM on the master
cartridge (logical drive 0) with the IDs
and DCOM information from all satellite
cartridges mounted on the system. The
cartridges are specified in the list or
array in the SYSUP calling sequence. The
list or array must be exactly five words
long or be ended by a zero (not both).

The Assembler language calling sequence
for SYSUP is:

opera,,.,
	

Opmndsdlie.A.

rAdd.	 soe.cui. ,,,, ,oadd. ac am AJPOATE
DC
	 WST

llllllll	 .■.■,,■,■	 lllllllll

lllllllllllllllllll

nkr„	 /ft	 lllllllll
hi■■■	 ei..ie■■■■ 	 Lk	 tat,

Ark	 r1.111/i1111	 11111111/III

where

LIST is the address of the table of
requested cartridge IDs,

Special Monitor Subroutines 107

a is the ID of the master cartridge on 	 Thus K(5) is the entry for logical 0,
the system,	 the master cartridge.

b is the ID of the first satellite
cartridge on the system,

c is the ID of the second satellite
cartridge on the system,

d is the ID of the third satellite
cartridge on the system,

e is the ID of the fourth satellite
cartridge on the system.

If a is 0, the master cartridge remains
unchanged.

The FORTRAN calling sequence for SYSUP
is:
1 I 3 4 0 llllllll TR 13 14 13 14 17 II 10 20 II 44 u 34 4:7212, 30 31 31 33
1 1 I I I C134414 ISIYSIUIP1(139 . 1 1 1 1 I 1 I I 1 1 1 1 I I I

where

a is the name of the last item in an
array containing the IDs of the
satellite cartridges on the system. The
last entry in the array may be 0, in
which case the master cartridge remains
unchanged.

For example:

CALL SYSUP (K (5))

The array is stored in reverse order.

K (5) DC
K (4) DC
K (3) DC
K (2) DC
K (1) DC

SYSUP messages are listed in the
publication IBM 1130 Disk Monitor System,
'Version 2, Programmer's and Operator's
Guide. SYSUP execution is terminated if an
error printout occurs.

108

System Library Mainline Programs (DM2 System)

The IBM 1130 DM2 System Library mainline
programs provide the user with the ability
to perform disk maintenance and paper tape
utility functions by requesting execution
of the appropriate program directly through
the job stream.

The calling sequences for the System
Library mainline programs are listed below.
The operating procedures and error messages
are contained in the IBM 1130 Disk Monitor

1 System, Version 2, Programmer's and
Operator's Guide.

Disk Maintenance Programs

The disk maintenance programs are mainline
programs and subroutines that are a part of
the System Library and that initialize and
modify disk cartridge IDs, addresses, and
tables required by the DM2 system.
Normally, they should never be deleted from
the System Library.

The disk maintenance programs are:

IDENT - Print Cartridge ID
DISC	 Satellite Disk Initialization'
ID	 - Change Cartridge ID
COPY	 Disk Copy
ADRWS - Write Sector Addresses in Working

Storage
DFCNV - Disk Data File Conversion
DLCIB - Delete CIB
DSLET - Dump System Location Equivalence

Table
MODIF - System Maintenance Program
MODSF - Library Maintenance Program

'All new cartridges are initialized using
the standalone program DCIP (see IBM 1130

I

Disk Monitor System, Version 2,
Programmer's and Operator's Guide).

The calling sequence for IDENT is:

1 1 3 4 0.1 7 9 9 10 1112 13 14 11 16 17 111 19 1021 322S 2•23 26271124 3031 1333 $

1/1 'MAO 11101/1Afirl 1 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 1

DISC (Satellite Disk Initialization)

This program reinitializes up to four
satellite cartridges -- all but the master
cartridge. It writes the sector addresses,
defective cylinder addresses, a cartridge
ID, a LET, a DOOM, and a CIB on each
cartridge being reinitialized.

DISC overrides all cartridge Its
specified on the JOB card except the master
cartridge ID.

The calling sequence for DISC is:

I 2 3 4 5 6	 10 11 17 15 1,5 15 16 17 1S 19 20 21 22 23 24 23 26 77 28 29 30 31 32 33 34 SS 36

I, F1210121,	 AZ1 a • 1•• I• IFIZIO4 Ta■Dat1 I

where

FID1 through FIDn are the IDs currently
on the satellite cartridges tc be
reinitialized (identified by IDENT or a
JOB record),

TID1 through TIDn are the IDs to be
written on the satellite cartridges by
this program. A valid cartridge ID is a
number between /0001 and /7FFF.

ID (Change Cartridge ID)

IDENT (Print Cartridge ID)

This program prints the ID and physical
drive number of each cartridge mounted on
the system.

IDENT prints all cartridge IDs
regardless of validity (JOB card processing
only recognizes valid IDs).

This program changes the ID on up to four
satellite cartridges.

k

,

I I 3 • • 6 7 I 9933 to II . 12 13 14 is 16 17 II 19 20 21 n 23 24 SS 26 27 28 29 30 31 n 33 31 13 36

XX IXICIPIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIt
270iPIIICA11, 1 TaIAL, IF1/41121, 1711'1E421y I . 1 . 1 . A ZLI14. I ,r,r,o,t, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

System Library Mainline Programs (DM2 System) 1119

where	 The calling sequence for DFCNV is:

FID1 through FIDn are the IDs currently
on the satellite cartridges being
changed (these IDs must be in the same
logical order as the entries on the JOB
card),

TID1 through TIDn are the new IDs to be
written on the selected satellite
cartridges.

COPY (Disk Copy)

This program copies the contents (except
the defective cylinder table and the
cartridge ID) of one cartridge onto
another. The copy ID (word 5 of sector 0)
is incremented by one prior to being
written on the new cartridge.

The calling sequence for COPY is:

1 2 3 4 5 6 7 11 9 10 II 12 13 14 15 16 17 le 19 20 21 22 23 34 35 26 27 21 29 30 31 32 33 34 35 36

/1 1X1E91 le1011AYI 1 1 1 1 1 1 1	 / 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

yaFizat,iralatij 1Fµ20121, frizo,21 • • • Allit rzat
1	 1	 1	 1	 lllllllll	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1 .1 	1	 1	 1	 1	 1	 1

where

FID1 through FIDn are the IDs of the
cartridges to be copied.

TID1 through TIDn are the IDs of the
cartridge onto which the copies are to
be made.

If multiple copies are to be made from a
single master, FID1 through FIDn will all
contain the same ID.

ADRWS (Write Sector Addresses in Working
Storage)

This program, linked to from DUP on
detection of the DUP control record DWADR,
writes sector addresses on all sectors of
Working Storage on the disk cartridge
specified by the DWADR control record (see
DUP in the IBM 1130 Disk Monitor System,
Version 2, Programmer's and Operator's
Guide).

2 4	 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

AA Jo= 44FCA4/	 1
A l

DLCIB (Delete Core Image Buffer)

This program deletes the CIB from a
nonsystem cartridge. If a user area is
defined, the user area is moved two
cylinders closer to cylinder 0. The new
addresses of disk areas moved as the result
Of the deletion of the CIE are reflected in
DCOM on the master cartridge, on the
nonsystem cartridge from which the CIB is
deleted, and in COMMA.

The calling sequence for ULCIE is

11 U 1114171• NA 11aa 113 A p t. 193433	 1113:

/iX 4.6.4% 44..c.rms 	
,i,TACIAAT	

where

CART is the ID of the non-system
cartridge from which the CIB is to be
deleted.

DSLET (Dump System Location Equivalence
Table)

This program dumps the contents of SLET on
the principal printer. Each entry printed
consists of a symbolic name, a phase ID, a
core address, a word count, and a disk
sector address. A SLET dump is listed in
the publication IBM 1130 Disk Monitor

' System, Version 2, Programmer's and
Operator's Guide.

The calling sequence for ISLET is:

1 1 7 4 17 • 6 	 9 10 11 12 13 14 13 /6 17 111913313323 34 3334 2739 393031 34 333433:44 141E191 la5LIEI71 1 1	 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 I 1 1

MODIF (System Maintenance Program)

DFCNV (Disk Data File Conversion)

This program converts 1130 FORTRAN or
Commercial Subroutine Package disk data
files to disk files acceptable to 1130 RPG.

Included in the DM2 System Library is a
system maintenance program, MODIF, that
provides the user with the ability to
update the Monitor system on the master
cartridge. This program makes changes to
the version and modification level word in

110

DCOM, the Supervisor, DUP, FORTRAN
Compiler, Assembler, and/or System Library.
A card deck or paper tape containing
corrections to update the Monitor system to
the latest version and modification level
is supplied by IBM. Every modification
must be run to update the version and
modification level, even if the affected
program has been deleted from the system.

The calling sequence for MOUE is:

1 • 3 4 5 • 2 • • 10 II 12 13 14 15 111 17 II If 20 2122nu 05 36 37 II 14 30 31 53 2) 34 35
/154	 1111111111 I i 1 1 1 1 1 1 1 1 1 1 1

llllllllllllllllllllllllllllllll	 1	 I	 I

System Library Mainline Programs (DM2 System) 110.1

.

MODSF (Library Maintenance Program)	 The calling sequence for MODSF is:

The purpose of MODSF is to update a library
program written in the disk system format
(DSF) and located in the User Area of disk
storage. (To modify or replace a system
program, see"MODIF (System Maintenance
Program)" described earlier in this
section.)

A program is updated by either replacing
existing code, inserting additional code at
the end's:3f the program, or both. Existing
coding is replaced as the program resides
in the User Area. Several programs may be
updated in a MODSF run, but only the last
program in a MODSF run may have code added
to it. When additional code is inserted,
MODSF moves the program to Working Storage
and inserts it there and ends its run by
invoking DUP. To move the updated program
back to the Users Areas, the user must
provide the necessary *DELETE and *STORE
records.

To update a program with MODSF, the user
must prepare a patch control record, one or
more patch data records, and a patch
terminator record.

1 	 7011 If" 14 IS IS 17 11 11170 11 ans. SS 21 27 MI 3, nsinn 34 IS 7

Ait 7X 'Era 'MAINS F

llllllllllllllllllllllllllllll 14111

PAPER TAPE UTILITY (PTUTL)

This program accepts input from the
keyboard or the 1134 paper tape reader and
provides output on the console printer
and/or the 1055 paper tape punch.

PTUTL allows changes and/or additions to
FORTRAN and Assembler language source
records as well as monitor control records.

The calling sequence for PTUTL is:

1 E 3456 7 1I• 10 I/ 17 13 14 15 15 17 10 19 20 21 n 23 25 25 25 V 20 V 33 31 32 73 34 35 •

1/ IXIAltik 149771.4711.. lllllllllllllllllllllll

1 1111111111111111111111111111111111k

System Library Mainline Programs (DM2 System) 111

Writing ISS and ILS (C/PT System)

The section on Writing ISSs and ILSs for
the DM2 system will be found in the IBM

I

1130 Disk Monitor System, Version 2,
Programmer's and Operator's Guide.

Interrupt Service Subroutines

The following rules must be adhered to when
writing an ISS:

1. Precede the ISS statement with an LIBR
statement if the subroutine is to be
called by a LIBF rather than a CALL.

2. Precede the subroutine with an EPR
(extended) or an SPR (standard)
statement if precision specification
is necessary.

3. Precede the subroutine with one ISS
statement defining the entry point
(one only), the ISS number, and the
ILS subroutines required. The device
interrupt level assignments and the
ISS numbers used in the IBM-provided
ISS and ILS subroutines are shown in
Figure 22.

4. The entry points of an ISS are defined
by the related ILS. This must be
taken into consideration when a
user-written ISS is used with an
IBM-supplied ILS. The ILS executes a
BSI to the ISS at the ISS entry point
plus n (see Figure 22). The ISS must
return to the ILS via a BSC
instruction (not a BOSC).

5. When assembling the ISS on the monitor
system an *LEVEL n control card must
be included for each interrupt level
associated with the device.

Interrupt Level Subroutines

An ES is included in a program only if
requested by a loaded ISS. The following
are rules for writing an ILS:

1. Precede the subroutine with an ILS
statement.

2. Precede all instructions by an ISS
Branch Table and include one word per
ILSW bit used. If the ILSW will not
be scanned, (i.e., a single ISS
subroutine to handle all interrupts on
the level), then a one-word table is
sufficient. The minimum table size is
one word. Table words must be
nonzero.

ILSW Bit 15 word
ILSW Bit 14 word

ISS Branch Table

ILSW Bit 0 word

The ISS Branch Table identifies both
the ISS subroutine and the point
within the ISS which should be entered
for each bit used in the ILSW. The
actual linkage is generated by the
Relocating Loader or Core Image
Converter. Basic to this generation
is the ISS number implied by bits 8-15
of the branch table word and specified
in the ISS statement. This number
identifies a core location in which
the loader or converter has stored the
address of the called entry point in
the ISS. This entry point address is
incremented by the value in bits 0-7
of the branch table word, producing
the branch linkage. The loader or
converter replaces the ISS branch

r 	 -r	 	 7	
I	 1
IISS Number 1	 Device	 I

	 4	
1 1442 Carl Read Punch
2 Keyboard/Console Printer
3 1134/1055 Paper Tape Reader/Punch
4 Single Disk Storage
6 1132 Printer
7 1627 Plotter

	

—71"	 1
Device Interrupt
Level Assignments	 n

	

+	 -1
0, 4	 +4, +7
4	 +4
4	 +4
2
	 +4

1
	 +4
3
	 +4

-J

Figure 22. C/PT System ISS/ILS Correspondence

112

table word with the generated branch
linkage.

During execution, the ISS Branch Table
contains core addresses. It may be 	 3.
used with an indirect BSI instruction
to reach the ISS corresponding to that
ILSW bit position. The ILSW bit that
is ON can be determined by the
execution of a SLCA instruction. At
the completion of this instruction,
the index register specified contains
a relative value equivalent to the bit
position in the ISS branch table. An	 4.
indirect, indexed BSI may then be used
to reach the appropriate ILS.

Each word in the ISS branch table has
the following format:

address should match word 13 of the
compressed ISS header card.

The ILS entry point must immediately
follow the ISS branch address table
and must be a zero. The first zero
word in the program is the end of the
branch table and is also the entry
point of the ILS. (The table must
contain at least one entry.) The
interrupt results in a BSI to the ILS
entry point.
To clear the level, a user-written
ILS, used with an IPM-supplied ISS,
should exit via the return linkage
with a BOSC instruction.

Bits 0-7: Increment added to the
entry point named in the ISS statement
to obtain the interrupt entry point in
the ISS for this ILSW bit. (In
IBM-written ISS subroutines, this
increment is +4 for the primary
interrupt level and +7 for the
secondary interrupt level.)

Bits 8-15: ISS number +51 for the ISS
subroutine for this ILSW bit. This

ILSs supplied by IBM in the Card/Paper Tape
System, except ILS01, pass word 2 of the
Sense Device IOCC to all ISSs. The ISSs in
the Card/Paper Tape System require that this
word be passed in the Accumulator. Observe
this convention when writing ILSs, and when
writing ISSs to be used with IBM-supplied ILSs.

Writing ISSs and ILSs (C/PT System) 113

tIL

29010511 ON3 8100
25010511 *
18010511 M511 3SN3S 01 3301	 00E0/	 30	 SN3S 00E0 0 1100
08010511 0	 DO 0000 0 9100
69010511 •1X3 ONV 379 ONIAVS 804	 a	 3	 SSG	 09 Z000 9100
89010511 *
19010511 11X3 ONV 3801538 01 00	 1VIS	 XOW 1401 0 0100
99010511 1d118831N1 Zell 553308d 	 Zd	 1	 158	 dIA 00000899 10 1100
G0010511 *
09010511 11X3 ON9 13A31 440 warn	 10511	 13508 20000379 10 4000
C9010511 *
20010511 *-* 11	 X01	 18X 00000059 00 0000
10010511 09	 001 1093 0 3000
09010511 3801938	 0	 SOI	 1015 0002 0 8000
69010511 *
99010511 1.:18831N1 831d909 553308d	 2193	 I	 1SG 10000890 10 6000
49010811 1.081831Ni 2911 SS33084	 Zr•d1A	 I	 389 11008239 10 1000
99010511 AS II 3SN3S	 I-SN3S	 OIX 4090 0 9000
8901051! *
99010811 1 X30NI	 1+18X I	 XIS 8069 0 5000
Ec010911 snivls	 ISIS	 815 9092 0 9000
29010511 NOISN31X3 ONV 339 3A95	 OV	 OIS 0180 0 E000
te9t0S11 6000 NO110301 VIA	 ■
09010511 189 38121408VH AS 03831013 	 0	 30 10511 0000 0 Z000
62010511 9990/	 30	 2190 9990 0 1000
EIZOIOS11 6990/	 30	 Zd 6E90 0 0000
17010511 10	 511
97010511 •
9701051! 	
92010511 *	 ******	 •
£701051! *83Id90V Sw011v3INI1W03 - 1 119 	 *	 *
77010511 *	 83IN18d 2911 - 0 Ile	 *	 *
17010511 *	 .1 13/%31	 *	 *
07010511 * NO 38V 8318909 5N011931M1WW00 	 *	 *
61010911 *	 3H1 ONV 83INI8d ZCII 3H1	 *	 *
91010511 *	 61 13A31 804 aminodenS	 *	 *
11010511 *	 13A31 18118831Ni 3H1 SI SIH1 	 r	 *
91010511 *	 10911	 OCII	 *
51010911 *	 - 5310N *
91010511 *	 319*sn3L1 - s31ne1rs119 *
£1010911 *	 3NON - 59389 NdOM/531801 *
21010511 *	 3NON - 80883-	 *
11010511 *	 • 10511 • H9n08H1 1031i10wi 0508 - 19880N - 51IX3 *
01010911 *	 3NON - 53N1InO8 1914831X3 *
6001051! *	 3NON - lacuna *
90010511 *	 3NON - lowN1 *
100I0511 *	 6 N0I19301 VIA	 *
90010511 *	 188 389MOLIVH A8 0383IN3 • 10911 - SINIOd AdIN3 *
50010511 *	 1 13A31 804 241111099M 13A31	 •
90010511 *	 1e018831N1 3H1 SI • 10511 • - NOI1V8380/NOII7NM4 *
£0010911 *	 0 13A31 30NVH3 - SnlviS *
2001051/ *	 10911 - allii *
10010511 	
00010911 10511	 ONOH	 ***

(Id/D) SZI eTdures I

I Sample ISS (C/PT)
*** HONG	 LIEF CARDO

LIBR
CRD00001
CRD00002
CRD00003
CR000004

0000	 03059130	 1130 ISS 01 CARDO	 0	 4

THIS 1130 SUBROUTINE OPERATES THE 1442 CARD * CR000005
READER PUNCH. IT INITIATES REQUESTED OPERA- * cpo00006
TIONS. PROCESSES ANY COLUMN OR OPERATION	 * CR1300007
COMPLETE INTERRUPTS. AND AUTOMATICALLY	 * CR000008
INITIATES ERROR RECOVERY PROCEDURES.	 * CRD00009

* CRD00010
IDENTIFYING FEATURE - NO ERROR PARAMETER 	 * CRD00011

***************** ******* * ************************** cpp00012
* LOADER DEFINED LOCATIONS 	 * CR000013
**** *********** **************** ******************** cpp00014

0000 0 -695E	 CARDO STx	 I CA30+1	 LIBF ENTRANCE	 (+01 CR000015

0001 00 65800000	 LINK LDX II 0	 LOADER STORES TV ADDR (+2) CRD00016
0003 0 7006	 MDX	 CA10	 CRD00017

0004 0 0000	 INT1 DC	 0	 COLUMN INTERRUPT	 (+4) CR000018
0005 01 4000000A	 BSC L NT14	 CRD00019
0007 0 0000	 INT2 DC	 0	 OP CMPLTE INTERRUPT	 (+7) CRD00020
0008 01 4000009F	 BSC L NTIO	 CR000021
	 22
* LIBF PROCESSING	 * CRD00023
*********************************** **************** cR000024
* THIS PORTION STORES CALLING SEOUENCE.INFO	 * CRD00025

AND CHECKS THE DEVICE STATUS BEFORE ANY I/O * CR000026
* OPERATION IS INITIATED. A CALLING ERROR OR * CR000027
* NOT READY 1442 CAUSES AN ERROR EXIT TO	 * CRD00028
* LOCATION 41. IF THE OPERATION WILL CAUSE	 * CRO00029
* INTERRUPTS. THE ROUTINE IS SET BUSY AND THE * CR000030
* IOCS COUNTER IS INCREMENTED TO INDICATE 	 * CRD00031
* INTERRUPTS) PENDING.	 * CR000032
	 CRD00033

0004 0 0076	 CA10 STO	 TEMP	 SAVE STATUS	 CRD00034
0006 0 2856	 STS	 CA32	 CR000035
0000 0 6454	 STX 2 0431+1	 CRD00036
0000 0 C100	 LD	 1 0	 xim ADDR OF CALL+1	 CRD00037
000E 0 180C	 SRA	 12 .	 IS FUNCTION TEST	 CR000038
000E 01 4C200015	 BSC L CAI4.Z	 NO	 CRD00039
OCII 0 C078	 LD	 BUSY	 YES. IS ROUTINE BUSY	 CR000040
0012 0 4818	 BSC	 +-	 CR000041
0013 0 7101	 MDX	 I +1	 NO. EXIT TO CALL+3	 CR1300042
0014 0 7046	 MDX	 CA28	 YES. EXIT TO CALL+2	 CRD00043
0015 0 9077	 CA14 S	 D0004	 IS FUNCTION LEGAL	 CR000044
0016 01 4C300070	 BSC L CA40.Z-	 NO. ERROR	 CRD00045
0018 0 8074	 A	 H7003	 CR000046
0019 0 DOOB	 STO	 CA20	 CRD00047
OOIA 0 806D	 A	 CONST	 CRD00048
0018 0 0007	 ST0	 CA18	 CRD00049
001C 0 CO6D	 CA15 LD	 BUSY	 IS ROUTINE BUSY	 CRD00050
0010 01 4C20001C	 BSC L CA15.Z	 YES. WAIT TIL NOT	 CRD00051
00IF 0 0868	 CAI7 X10	 SENSE-1	 IS DEVICE READY	 CRD00052
0020 01 40040072	 BSC L CA42.E	 NO. ERROR	 CR000053
0022 0 C066	 LD	 SENSE	 SETUP CONTROL IOCC	 CRD00054
0023 0 9075	 CAI8 S	 SETUP	 CRD00055
0024 0 D062	 STO	 INIT	 CR000056
0025 0 7000	 CA20 MDX	 CA20+I	 WHAT IS FUNCTION	 CRD00057
01.26 0 7003	 MDX	 CA2I	 = GET	 CR000058
0027 0 7030	 MDX	 CA36	 . PUT	 CRD00059
0028 0 7018	 MDX	 CA25	 = FEED	 CRD00050
0029 0 7028	 MDX	 CA26	 = STK	 CRD00061
602A 0 9072	 CA21 S	 SETUP+4	 GET FUNCTION	 CR000002
002B 0 D059	 STO	 COLM+1	 SET UP READ I/O	 CRD00063
002C 00 C5800001	 CA216 LD	 II 1	 CR000064
002E 01 4C080070	 BSC L CA40.+	 = ERROR IF ZERO OR NEG	 CRD00065
0030 0 D009	 STO	 CA22+I	 CRD00006
0031 0 805A	 A	 00001	 SAVE WORD COUNT +I	 CR000067
0032 0 0061	 STO	 COUNT	 BECAUSE DECREMENT IS CRD00068
0033 0 D063	 STO	 RSTRT	 BEFORE COLUMN READ	 CRD00069
0034 0 9058	 S	 00081	 CRD00070
0035 01 4C300070	 BSC L CA40.Z-	 = ERROR IF OVER +81	 CR000071
0037 0 0101	 LD	 1 1	 CRD00072
0038 0 0004	 STO	 CA23+1	 CR000073
0039 00 66000000	 CA22 LOX L2 0	 CR1300074
0038 0 CO50	 LD	 D0001	 CR000075
0030 00 D6000000	 CA23 STO L2 0	 STORE +1 IN DATA AREA	 CRD00076
003E 0 72FF	 MDX	 2 -1	 (= NOT READ INDIC FOR CR000077
003F 0 70FC	 MDX	 CA23	 SPEED CONVRT SBRT)	 CRD00078
0040 0 0101	 C424 LD	 I 1	 SAVE DATA ADDRESS	 CRD00079
0041 0 0042	 STO	 COLM	 CRD00080
0042 0 D055	 STO	 RSTRT+1	 CR000081
0043 0 7101	 MDX	 1 +1	 SET X1 TO SKIP 2ND PARAM CRD00082
0044 0 0843	 CA25 XIO	 SENSE-I	 CR000083
0045 0 1003	 SLA	 3	 IS LAST CARD IND ON	 CR000084
0046 01 4C100050	 BSC L CA25B.-	 NO	 CR000085
0048 0 cODC	 LD	 CA20	 IS FUNCTION GET OR FEED CRD00086
0049 01 40040050	 BSC L CA258.E	 NO	 CRD00087
0048 0 1008	 SLA	 B	 IS FUNCTION GET	 CRD00088

Writing ISSs and ILSs (C/PT System) 115

004C 0 4808	 BSC	 +	 CRD00089
0040 0 71FF	 MDX	 1 -1	 YES. SET XRI . LIE1F+1 CRD00090
004E 0 0838	 XIO	 FEED-1	 EJECT CARD	 CRD00091
004F 0 702C	 MDX	 CA43	 CR000092
0050 00 74010032	 .CA258 MDX L 50.+1	 INCREMENT IOCS COUNTER	 CRD00093
0052 0 1000	 NOP	 CRD00094
0053 0 CO38	 LD	 D0001	 CRD00095
0054 0 D035	 STO	 BUSY	 SET ROUTINE BUSY	 CRD00096
0055 0 CO3F	 CA26 LD	 ERROR	 CR000097
0056 01 4C200054	 BSC L CA27.Z	 CRD00098
0058 0 082D	 XI0	 INIT-1	 INITIATE 1/0	 CRD00099
0059 0 7001	 MDX	 CA28	 CR000100
005A 0 082F	 CA27 XI0	 FEED-I	 CR000101
0058 0 7101	 CA28 MDX	 1 +1	 CRD00102
005C 0 CO29	 LD	 TEMP	 CRD00103
005D 0 6906	 CA29 STX	 I CA34+I	 SET EXIT TO SKIP 1ST PARAM CRD00104
005E 00 65000000	 CA30 LOX LI 0	 RESTORE STATUS	 CRD00105
0060 00 66000000	 CA31 LOX L2 0	 CRD00106
0062 0 2000	 CA32 LDS	 0	 CR000107
0063 00 4C000000	 CA34 BSC L 0	 EXIT	 CRD00108
0065 0 9038	 CA36 S	 SETUP+5	 CRD00109
0066 0 DO1E	 STO	 COLM+1	 SETUP PUNCH I/O	 CR000110
0067 00 C5800001	 LD	 11 I	 CRD00111
0069 01 4C080070	 BSC L CA40.+	 . ERROR IF ZERO OR NEG CRD00112
0066 0 D028	 STO	 COUNT	 CRD00113
0060 0 D02A	 STO	 RSTRT	 SAVE WORD COUNT	 CR000114
0060 0 9021	 S	 00080	 DO NOT PUNCH OVER 80 COL CR000115
006E 0 4808	 BSC	 +	 CRD00116
006F 0 70D0	 MDX	 CA24	 CR000117
0070 0 CO21	 CA40 LD	 H1001	 ERROR CODE - ILLEGAL CALL CRD00118
0071 0 7006	 MDX	 CA44	 CRD00119
0072 0 1801	 CA42 SRA	 I	 IS DEVICE BUSY	 CRD00120
0073 01 4C04001F	 BSC L CAI7.E	 YES. WAIT TIL NOT	 cRD00121
0075 0 1003	 -	 SLA	 3	 IS DSW ERROR INDIC ON	 CRD00122
0076 01 4C10007C	 BSC L CA43.-	 NO	 CR000123•
0078 0 COAC	 LD	 CA20	 YES. IS FUNCT GET/FEED CRD00124
0079 01 4C04007C	 BSC L CA43.E	 NO	 CR000125
0078 0 D019	 STO	 ERROR	 YES. INDIC SKIP 1ST CD CR000126
0070 0 C014	 CA43 LD	 H1000	 ERROR CODE - OVCE NOT RDY CR000127
0070 0 71FF	 CA44 MDX	 1 -1	 CRD00128
007E 00 60000028	 STX LI 40	 STORE CALL ADDR IN 40	 CRD00129
0080 0 6129	 LDX	 1 41	 SET EXIT FOR 41	 CRD00130
0081 0 7008	 MDX	 CA29	 CRD00131
	 CR000132
•	 CONSTANTS	 • CRD00133
	 0134

0082	 0000	 BSS E 0	 CRD00135
0082 I 0082	 ADDR DC	 CHAR-1	 ADDR TO REPLACE 0/P AREA CR000136
0083 0 0000	 CHAR DC	 0	 TEMPORARY REGISTER	 0 cR000137
0084 0 0000	 COLM DC	 0	 IOCC FOR COLUMN I/0	 E CRD00138
0085 0 0000	 DC	 0	 0 CRD00139
0086 0 0000	 TEMP DC	 0	 TEMPORARY-STORAGE	 CR000140
0087 0 0400	 INIT DC	 /0400	 IOCC TO INITIATE I/O	 0 Cp000141
0088 0 2075	 CONST DC	 SETUP-CAI8-1+/2000	 CRD00142
0089 0 1700	 SENSE DC	 /1700	 SENSE DSW WITHOUT RESET 0 CR000143
008A 0 0000	 BUSY DC	 0	 ROUTINE BUSY INDICATOR	 CRD00144
0088 0 1402	 FEED DC	 /1402	 IOCC TO FEED I CARD	 0 CRD00145
008C 0 0001	 D0001 DC	 +1	 CRD00146
00BD 0 0004	 D0004 DC	 +4	 CRD00147
008E 0 0008	 D0008 DC	 +8	 CR000148
008F 0 0050	 D0080 DC	 +80	 CRD00149
0090 0 0051	 D0081 DC	 +81	 CRD00150
0091 0 1000	 HI000 DC	 /1000	 CRD00151
0092 0 1001	 H1001 DC	 /1001	 CR000152
0093 0 7003	 H7003 DC	 /7003	 INSTRUCTIONS = MDX X +3	 CR000153
0094 0 0000	 COUNT DC	 0	 NO. WORDS TO XFER	 CRD00154
0095 0 0000	 ERROR DC	 0	 SKIP ONE CARD INDIC	 CRD00155
0096 0 0000	 INDIC DC	 0	 FEED CHK (RD STATION) IND CR000156
0097 0 0000	 RSTRT DC	 0	 RESTART INFO - WORD COUNT CRD00157
0098 0 0000	 DC	 0	 DATA ADDR CRD00158

0099 0 02FC	 SETUP DC	 /02Fc	 INITIATE MCC SETUP - GET CR000159
009A 0 02FF	 DC	 /02FF	 - PUT CR000160
0098 0 02FE	 DC	 /02FE	 - FEED CRD00161

009C 0 0280	 DC	 /0280	 - STK CRD00162

009D 0 0204	 DC	 /0204	 COLUMN IOCC SETUP - GET CR000163

009E 0 0301	 DC	 /0301	 - PUT CRD00164

116

LIT (ma4sAs Id/D) sS7I Pus sSSI 511T4T2M

15200087 0N3 2400
05200083 11X3 IINI 1 759 aZIN 90000839 TO 4300
69200083 0/I Nwn103 311133X3 w103 OIX 021N 5680 0 3300
89200080 Nwn100 1X3N 804 8009 135 1+•w103 1 xaw 811N 98001091 10 0300
/9200083
99900083

NO1193o,
Ativtodwai w084 HDNild

w103
8009

015
al

8600
c600

0
o

9300
9300

59900083 dvHD 015 6600 0 6300
99200087 9190 80000 80 5983 0 8300
C9200093 103 NI	 (21	 11e)	 119 1.4100 r 01 78000973 TO 9300
27200087 H3NOd d015 38015 • ON 1+.69100 1 xaw 9I1N 79001094 10 yaoo
19200083 107 1x3N ZZIN xOw 900L 0 E300
09200083 dINS 01 135 • 53A 1+•1Nn03 1 xaw 96001091 To 1300
6E200083 8831N1 100 0939 SIH1 SI -.9tIN 1 0513 93000109 to 4000
8E200080 S3A 811N XOW COOL o 3000
1C200083 SS3008d 01 5103 380W ANY I-.1NnO3 1 XOW 76004491 To oaoo
9C200093 13538 H111* msa 35N35 1-89H3 OIX 9990 0 9000
5E200083 idn8831N1 1530038 Nwn103 89HO 015 91IN evoa 0 9000
vczooaao ***** ************* * ******** ************************
CC200080 *	 •Idnd831N1 3131dw03 dO NV 319111N1 01 	 *
zczooaao * 2991 3HI 01 N3A19 SI NotivotoNt NV • 03HoNnd	 *
1C200083 *	 SI 031S30038 NwnlOD 1591 31-11 NaHm • 90330	 *
0E200080 *	 A3H1 SV 440 03N8n1 A1383w 389 SId0883IN1	 *
69200093 * Nwn100 0NINivw38 311 . 0938 N339 59H sNwnloo	 *
ezzooaao *	 AO • ON 0315311038 3141 83149 . 00 3NIIn088n5	 *
12200080 *	 13A31 9831N1 14084 031431N3 SI NOI1d0d SIH1 	 *
92200080 ******** * ***** * ***** ************************* ***** *
82200083 •	 ONISS3309d 1dn9931NI NIW1100	 *

C22000143	 ZIIN	 XOW 930L 0 6000
22200080	 310NI 40 1 118 13S	 80883	 015 3900 o 9000
19200093	 EOOLH	 al 3CIIN 9803 0 1000
ozzooaao (08) AHD OA AI dINS ON	 D•211N	 1	 388 8cIIN 50002039 10 5000
61200080	 1Ix3	 21N!	 I	 DSO c0000eov to £000
81200080	 N011983,40 0/I 319111N1	 1-11N1	 OIX £880 0 2000
11700083	 'clop	 01S 2800 0 1000
91200083	 1+18158	 al LOOD 0 0000
51200083	 A9139 804 dncas	 1N/loo	 01S 9300 0 4000
91200083	 10158	 01	 C11N EIDOD 0 3300
C1200083	 21N)	 I	 DSEI /0000839 10 3300
21200087	 aavo 151 dIAS	 1-0334	 OIX 3880 0 8300
ttzoociao	 ON	 --1-.CIIN	 1	 0S8 30008130 IO 6300
01200083	 A89S5373N dINS 0893 SI 	 80883	 al 3303 0 8300
60200080	 ' A0939 830938 111 IIVA	 3•211N	 1	 358 53009039 10 9300
80200083	 1-894-43	 0IX	 ZIIN 3880 0 5300
L0200083	 0893 ISI d1x5 'ON	 -+'3CIIN	 1	 358 10008139 to C300
90200083	 w103	 803 1304 0 2300
80200083	 NI %V38 103 3N0 SVA	 1+18158	 al 9003 0 1300
90200083	 S3A	 3•9C11N	 1	 Ose 50009039 10 4800
£0200080	 0334 13N04 SI	 I	 985 1081 o 3900
20200083	 dINS 1N00 • S3A	 3•211N	 1	 358 90009030 10 0800
10200080	 HDT,Ind I3N114 SI	 1INI	 01 GOOD 0 9800
00200083 ON!	 IV1S 091 NHD 04 3A95	 .	 G	 915	 II1N 5001 0 9900
66100083	 3011N	 XOW £401 0 6800
96100083 03 1591 133r3 *53A	 1-0334	 OIX 1080 0 8800
16100083	 ON	 -+	 358 8189 0 1800
96100083	 Ind NOI13N0.4 SI	 1.4103	 803 0304 0 9800
56100083	 10000	 V 9008 0 9800
96100083	 8009	 01 XOIIN 0303 0 9800
C6100083	 11X3	 Z1NI	 I	 OS8 10000809 10 2800
26100080	 ASne 3N111108 89310	 ASne	 015 8000 0 1900
16100083	 91	 VdS 0181 0 0800
06100080 iNnoo 5301 1N3W3143313	 dON 0001 0 4900
68100083	 101014 319N191831 • ON	 1-005	 1	 XOW 3011N 2E00449/ 00 0900
eetooado	 10N04 31V111NI	 • S3A	 3•211N	 1	 3S9 s000zoov to 9900
48100083	 801483	 019 9300 0 9900
98100083	 91	 985 0181 0 6900
58100083	 dO dINS SIH1 SVA • S3A	 2	 V1S ZOOI 0 81100
98100083	 80883	 01 0303 0 L900
£8100083	 0893 1S91 • ON	 +Z'XOIIN	 1	 359 9011N veooezov 10 9900
28100080	 80883 'ON	 3'111N	 1	 358 99007000 10 E900
18100083	 NO NOI1V93d0 SI	 E	 915 £001 0 2*100
08100083	 13538 H1114 ASO 3SN3S	 1-89143	 OIX 0380 0 1900
6LI00093	 89H3	 01S 2300 0 0900
81100083	 1dn9831N1 3131d1400 83d0	 10000	 9	 011N 3308 0 4600
ILI 	
91100080 *	 .03191114-38 SI NO11983d0 0/1 	 *
81100083 * 3141 ONV 03N0111S0d 389 5081/3 3141 3911 H31HM	 *
91_100083 *	 19 • A0939 53W0038 2791 3H1 ONV 03N3A831NI	 *
£1100083 * 8V+1 80198390 3H1 1111,4n Sd001 3Nl1n0813n5 3141 	 *
utooctao *	 381M93H10 • 03131dWO3 5NISS3008d Idn8831N1 	 *
11100083 *	 31931081 01 031N3838330 SI 83114107	 *
01100083 *	 5301 3141 ONV Asne ION 13S SI 3N1In08 3141	 *
69100083 * *03133130 N338 S IM 80883 ON 4! • 00 3NII0O8S	 *
89100083 *	 13A31 8831N1 W084 03831443 SI NO11140d 51441 	 *
19100	
99100083 *	 9N1SS3009d 101119931N' 3131dW03 dO 	 *
891 	

Appendix A. Listing of Subroutines

I

Figure 23 is a listing of the Card/Paper Tape System Subroutine Library.
 The Disk Monitor 2 System Library is listed in Figure 24.

Subroutine Names Subroutines Required

FORTRAN

Called by CALL

Loader Reinitialization (curd only) LOAD None
Data Switch DATSW None
Sense Light On SLITE, SLITT None
Overflow Test OVERF None
Divide Check Test DVCHK None
Function Test FCTST None
Trace Start TSTRT TSET
Trace Stop TSTOP TSET
Integer Transfer of Sign ISIGN None
Real Transfer of Sign (E) ESIGN ESUB, ELD
Real Transfer of Sign (5) FSIGN FSUB, FLD

Called by LIBF (Card/Paper Tape)

Real IF Trace (E) VIF TTEST, VWRT, VIOF, VCOMP
Real IF Trace (S) WIF FSTO, TTEST, WWRT, WIOF, WCOMP
Integer IF Trace (E) VIIF TTEST, VWRT, VIOF, VCOMP
Integer IF Trace (S) WIIF TTEST, WWRT, WIOI, WCOMP
Integer Arithmetic Trace (E) VIAR, VIARX TTEST, VWRT, VI01, VCOMP
Integer Arithmetic Trace (S) WIAR, WIARX TTEST, WWRT, WIOI, WCOMP
Real Arithmetic Trace (E) VARI, VARIX ESTO, TTEST, VWRT, VIOF, VCOMP
Real Arithmetic Trace (S) WARI, WARIX FSTO, TTEST, WWRT, WIOF, WCOMP
Computed GO TO Trace (E) VGOTO TTEST, VWRT, VI01, VCOMP
Computed GO TO Trace (5) WGOTO TTEST, WWRT, WIOI, WCOMP
Trace Test-Set Indicator TTEST, TSET None
Pause PAUSE None
Stop STOP None
Subscript Calculation SUBSC None
Store Argument Address SUBIN None
I/O Linkage (E) VFIO, VRED, VWRT, VCOMP FLOAT, ELD/ESTO, FIX

VIOAI, VIOAF, VIOFX,VIOIX,
VIOF, V101

I/O Linkage (S) WFIO, WRED, WWRT, WCOMP FLOAT, FLD/FSTO, IFIX
WIOAI, WIOAF, WIOFX,
WIOIX, WIOF, WIOI

Card Input/Output CARDZ HOLEZ
Printer-Keyboard Output WRTYZ GETAD, EBCTB
Printer-Keyboard Input/Output TYPEZ GETAD, EBCTB, HOLEZ
1132 Printer Output PRNTZ None
Paper Tape Input/Output PAPTZ None
Card Code-EBCDIC Conversion HOLEZ GETAD, EBCTB, HOLTB	 •
Console Printer Code Table EBCTB None
Card-Keyboard Code Table HOLTB None
Address Calculation GETAD None

Figure 23. C/PT System Subroutine Library (Part 1 of 3)

118

Subroutine Names Subroutines Required

ARITHMETIC AND FUNCTIONAL

Called by CALL

Rea Hyperbolic Tangent (E) ETNH, ETANH EEXP, ELD/ESTO, EADD, EDIV, EGETP
Rea Hyperbolic Tangent (5) FTNH, FTANH FEXP, FLD/FSTO, FADD, FDIV, FGETP
Rea Base to Real Exponent (E) EAXB, EAXBX EEXP, ELN, EMPY
Rea Base to Real Exponent (5) FAXB, FAXBX FEXP, FLN, FMPY
Rea Natural Logarithm (E) ELN, EALOG XMD, EADD, EMPY, EDIV, NORM, EGETP
Rea Natural Logarithm (5) FLN, FALOG FSTO, XMDS, FADD, FMPY, FDIV, NORM, FGETP
Rea Exponential (E) EXPN, EEXP XMD, FARC, EGETP
Rea Exponential (5) FXPN, FEXP XMDS, FARC, FGETP
Rea Square Root (E) ESQR, ESQRT ELD/ESTO, EADD, EMPY, EDIV, EGETP
Rea Square Root (5) FSQR, FSQRT FLD/FSTO, FADD, FMPY, FDIV, FGETP
Rea Trigonometric Sine/Cosine (E) ESIN, ESINE, ECOS, ECOSN EADD, EMPY, NORM, XMD, EGETP
Rea Trigonometric Sine/Cosine (5) FSIN, FSINE, FCOS, FCOSN FADD, FMPY, NORM, XMDS, FSTO, FGETP
Rea Trigonometric Arctangent (E) EATN, EATAN EADD, EMPY, EDIV, XMD, EGETP, NORM
Rea Trigonometric Arctangent (5) FATN, FATAN FADD, FMPY, FDIV, XMDS, FSTO, FGETP
Fixed-Point Square Root XSQR None
Rea Absolute Value (E) EAVL, EABS EGETP
Rea Absolute Value (S) FAVL, FABS FGETP
Integer Absolute Value IABS None
Rea

Called

Binary to Decimal/Real Decimal to Binary

by LIBF

FBTD, FDTB None

Get Parameters (E) EGETP ELD
Get Parameters (S) FGETP FLD
Real Base to Integer Exponent (E) EAXI, EAXIX ELD/ESTO, EMPY, EDVR
Real Base to Integer Exponent (5) FAXI, FAXIX FLD/FSTO, FMPY, FDVR
Rea Reverse Divide (E) EDVR, EDVRX ELD/ESTO, EDIV
Rea Reverse Divide (5) FDVR, FDVRX FLD/FSTO, FDIV
Rea Divide (E) EDIV, EDIVX XDD, FARC
Rea Divide (5) FDIV, FDIVX FARC
Rea Multiply (E) EMPY, EMPYX XMD, FARC
Rea Multiply (S) FMPY, FMPYX XMDS, FARC
Rea Reverse Subtract (E) ESBR, ESBRX EADD
Rea Reverse Subtract (5) FSBR, FSBRX FADD
Rea Add/Subtract (E) EADD, EADDX, ESUB, ESUBX FARC, NORM
Rea Add/Subtract (5) FADD, FADDX, FSUB, FSUBX NORM, FARC
Load/Store FAC (E) ELD, ELDX, ESTO, ESTOX None
Load/Store FAC (5) FLD, FLDX, FSTO, FSTOX None
Fixed Paint Double Word Divide XDD XMD
Fixed Point Double Word Multiply XMD None
Fixed Point Fractional Multiply (short) XMDS None
Real Reverse Sign SNR None
Integer to Real FLOAT NORM
Real to Integer IFIX None
Fixed Integer Base to an Integer Exponent FIXI, FIXIX None
Normalize NORM None
Real Arithmetic Range Check FARC None

DUMP

Called by CALL

Dump Status Area DMP80 None
Selective Dump on Console Printer DMTDO, DMTDO WRTYO
Selective Dump on Printer DMPX 1, DMPD I PRNT1

INTERRUPT LEVEL*

Level 0 None
Level 1 None
Level 2 None
Level 3
Level 4' ' None

None
*These subroutines are not identified by name in the card and paper tape systems

CONVERSION

Called by LIBF

Binary to Decimal BINDC None
Binary to Hexadecimal BINHX None
Decimal to Binary DCBIN None
EBCDIC to Console Printer Code EBPRT EBPA, PRTY
IBM Card Code to or From EBCDIC HOLEB EBPA, HOLL
IBM Card Code to Console Printer Code HOLPR HOLL, PRTY

Figure 23. C/PT System Subroutine Library (Part 2 of 3)

Appendix A. Listing of Subroutines 119

Subroutine Names Subroutines Required

Called by LIBF (Cont'd)
Hexadecimal to Binary HXBIN None
EBCDIC to or from PTTC/8 PAPEB EBPA
IBM Card Code to or from PTTC/8 PAPHL EBPA, HOLL
PTTC/8 to Console Printer Code PAPPR None
IBM Card Code to or from EBCDIC SPEED None
EBCDIC and PTTC/8 Table EBPA None
IBM Cord Code Table MOLL None
Console Printer Code Table PRTY None

DISK SUBROUTINE INITIALIZE

Called by CALL
Set Pack Initialization Subroutine SPIRO, SPIRT, SPIRN DISKO, DISK1, DISKN

INTERRUPT SERVICE

Called by LIBF
Card CARDO, CARD1 ILSOO, ILSO4
Disk DISKO, DISK1, DISKN 11502
Paper Tape PAPT1, PAPTN 1L504
Plotter PLOT1 ILS03
1132 Printer PRNT1 ILSO1
Keyboard/Console Printer TYPEO, WRTYO HOLL, PRTY, ILSO4

PLOTTER SUBROUTINES

Standard Plot Calls
Standard Precision Character FCHAR FSIN, FCOS, FPLOT, FCHRX, 'PLO, FSTOX, FSTO
Standard Precision Scale SCALE FRULE
Standard Precision Grid FGRID FPLOT, POINT, FADD, FLD, FSTO, SNR
Standard Precision Plot FPLOT FMOVE, YPLT, PLOTI

Extended Plot Calls
Extended Precision Character ECHAR ESIN, ECOS, EPLOT, ECHRX, ELD, ESTO, ESTOX
Extended Precision Scale SCALE ERULE
Extended Precision Grid EGRID EPLOT, POINT, EADD, ELD, ESTO, SNR
Extended Precision Plot EPLOT EMOVE, XYPLT, PLOTI

Common Plot Call
Point Characters POINT PLOTI

Standard Plot LIBFs
Standard Precision Annotation FCHRX, FCHRI , WCHRI FLOAT, FMPY, IFIX, FADD, FLDX, FINC, XYPLT,

PLOTI, FSTOX, FLD
Standard Precision Plot Scaler FRULE, FMOVE, FINC FLDX, FSUBX, FMPYX, FLD, FSTOX, FMPY,

IFIX, FADD

Extended Plot LIBFs
Extended Precision Annotation ECHRX, ECHRI, VCHRI FLOAT, EMPY, IFIX, EADD, ELDX, EINC, XYPLT,

PLOTI, ESTOX, ELD
Extended Precision Plot Scaler ERULE, EMOVE, EINC ELDX, ESUBX, EMPYX, ELD, ESTOX, EMPY,

IFIX, EADD, ESTO

Common Plot LIBFs
Pen Mover XYPLT PLOT I
Interface PLOT! PLOTX
Interrupt Service PLOTX

Synchronous Communications Adaptor Subroutines
Synchronous Communications Adaptor (SCA) SCAT] IOLOG/CPLOG, ILSO1
STR Mode
SCA (BSC, Point-to-Point Mode) SCAT2 IOLOG/CPLOG, ILSO1
SCA (BSC, Multi-Point Mode) SCAT3 ILSO1
1132-SCA Print with Overlap PRNT2 ILSO1
4 of 8 Code to EBCDIC, EBCDIC to 4 of 8 Code EBC48 HXCV, STRTB
4 of 8 Code to IBM Card, IBM Card Code
to 4 of 8 Code

HOL48 HXCV, HOLCA, STRTB

4 of 8 Code to Table of Displacements HXCV None
Table of IBM Card Codes HOLCA None
Table of 4 of 8 and EBCDIC Codes STRTB None

I

Figure 23. C/PT System Subroutine Library (Part 3 of 3)

120

System Library Programs
	 Names	 Type and Subroutines	 IL Field

Subtype Required
	

(73-75)

MAINLINES

Disk Maintenance Programs

Disk In it i aliz at ion DISC 2 - SYSUP, RDREC,
DISKZ

U6 C

Print Cartridge ID IDENT 2 - CALPR, DI SKZ U6F
Change Cartridge ID ID 2 - RDREC, CALPR U6G

DISKZ
Disk Copy COPY 2 - RDREC , DISKZ 06B
Writer Sector Addresses in WS ADRWS (cannot

be called)
2 - Linked from

DUP DWAER
U6A

Delete CIB DLCIB 2 - RDREC, U6E
Lump System Location
Equivalence Table ESLET 2 - FSLEN, DISKZ U 6E
Library Maintenance MOD SF 2 - LISKZ U61
System Maintenance mom 2 - DISKZ U6H
Disk Data File Conversion) DFCNV 2 - DISK1, ELL` VOL

FLE, NORM

Paper Tape Utility

Keyboard or 1134 Input/Console
Printer or 1055 Output

PTUTL 2 - PAPH•, PAPPR,
'IYPEO

U6J

SUBROUTINES

Utility Calls

Selective Dump on Console Printer DMTXO 4,0 14131Y0 U5 E
Selective Dump on 1132 Printer DMPD 1, DMPX 1 4,0 PRN'I1 U5C
Lump 80 Subroutine DMP80 4,0 None U5 A
Update DCOM SYSUP 4,0 FSLEN, FSYSU U5E
Call System Print CALPR 4,0 FSLEN U7A
Read *ID Record RDREC 4,0 FSLEN U7 C
Fetch Phase IDs or, Fetch System FSLEN, FSYSU 4,0 DISKZ U7E
Subroutine
Dummy Log Subroutine for SCA IOLOG/CPLOG 4,0 Ncne
Subroutines

Common FORTRAN Calls

Test Data Entry Switches DATSW 4,8 None 'I3A
Divide Check Test DVCHK 4,8 None 13B
Functional Error Test FC'IST 4,8 None 13C
Overflow Test OVERF 4,8 None T3E
Select ive Dump PD UMP 4,0 SFIO, SIOPI,

SIOPF, SWRT,
S COMP

T3 F

'Not distributed to papertape users.

Figure 24. 1130 Disk Monitor Version 2 System Library (Part 1 of 9)

Appendix A. Listing of Subroutines 121

System Library Programs Names Type and
Subtype

Subroutines	 ID Field
Required	 (73-75)

Common FORTRAN Calls
(continued)

Sense Light Control and Test SLITE, SL ITT 4,8 None	 T3G
FORTRAN Trace Stop TSTOP 4,8 TSET	 T3 B
FORTRAN Trace Start TSTRT 4,8 TSET	 T3 I
Integer Transfer of Sign ISIGN 4,8 None	 T3 D

Extended Arith/Funct Calls

Extended Precision Hyperbolic Tangent ETANH, ETNH 4,8 EEXP, EADD,	 S2I
EEIV, EGETP,
ELE/ESTO

Extended Precision A**B Function EAXB, EAXBX 4,8 EEXP, ELN,	 S2C
EMPY

Extended Precision Natural Logarithm ELN, EALOG 4,8 XMD, EADD,	 S2E
EMPY, EDIV,
NORM, EGETP

Extended Precision Exponential EEXP, EXPN 4,0 XME, FARC,	 S2D
EGETP

Extended Precision Square Root ESQR, ESQRT 4,8 EADD, EMPY,	 S2H
EEIV, EGETP,
ELE/ESTO

Extended Precision Sine-Cosine ES IN, ESINE,
ECCS, ECCSN

4,8 EADD, EMPY,	 S2G
NORM, XMD,
EGETP

Extended Precision Arctangent EATN, EATAN 4,8 EADD, EMPY,	 S2E
EDIV, XMD,
EGETP, NORM

Extended Precision Absolute Value EARS, EAVI 4,8 EGETP	 S2A
Function

FORTRAN Sign Transfer Calls

Extended Precision Transfer cf Sign ESIGN 4,8 ESUB, ELD	 S2 F
Standard Precision Transfer cf Sign FSIGN 4,8 FSUB, FLD	 R2 F

Standard Arith/Funct Calls

Standard Precision Hyperbolic Tangent FIANH, FTNH 4,8 FEXP, FADD,	 R2I
FEIV, FGETP,
FLE/FSTO

Standard Precision A**B Function FAX E, FAXBX 4,8 FEXP, FLN, FMPY R2C
Standard Precision Natural Logarithm FLN, FAICG 4,8 FSTO, XMDS	 R2E

FADD, FMPY,
FLIV, NCRM
FGETP

Standard Precision Exponential FFXP, FXPN 4,8 XMDS, FARC,	 R2D
FGETP

Standard Precision Square Root FSQR, FSQR7 4,8 FADD, FMPY,	 R2H
FDIV, FGETP,
FLE/FSTC

Standard Precision Sine-Cosine FSIN,	 FSINE 4,8 FADD, FMPY,	 R2G
FCCS, FCCSN NCRM, XMDS,

FSTO, FGETP
Standard Precision Arctangent FAIN, FATAN 4,8 FAED, FMPY,	 R2B

FEIV, XMDS,
FSTO, FGETP

Standard Precision Absolute Value FABS, FAVL 4,8 FGETP	 R2A
Function

Figure 24. 1130 Disk Monitor Version 2 System Library (Part 2 of 9)

122

System Library Programs
	 Names	 Type and Subroutines 	 ID Field

Subtype Required	 (73-75)

Common Arith/Funct Calls
Fixed Point (Fractional) Square Root XSQR 	 4,8	 None	 T1C
Integer Absolute Function	 IABS	 4,8	 Ncne	 T1B
Floating Binary/EBC Decimal	 FBID	 4,0	 None	 T1A
Conversions	 (BIN. SO DEC.)

FDTB
(DEC. TO BIN.)

Flipper for LOCAL/SOCAL Subprograms
FL,IPR
	

4,0	 DISKZ, DISKZ,	 U5D
or DISKN

FORTRAN Trace Subroutines

Extended Floating Variable Trace SEAR, SEARX 3,0 ESTO, TTEST,
SWRT, SIOF,
SCOMP

S2J

Fixed Variable Trace SIAR, SIARX 3,0 TTEST, SWRT,
SIOI, SCOMP

168

Standard Floating IF Trace SFIF 3,0 FSTO, TTEST,
SWRT, SIOF,
SCOMP

R2K

Extended Floating IF Trace SELF 3,0 FSTO, TTEST,
SWRT, SIOF,
SCOMP

S2F

Fixed IF Trace SIIF 3,0 TTEST, SWRT,
SIOI, SCOMP

T6C

Standard Floating Variable Trace SFAR, SFARX 3,0 FSTO, TTEST,
SWRT, SIOF,
SCOMP

R2J

GO TO Trace SGOTO 3,0 TTEST, SWRT,
SICI, SCONP

I6A

Nondisk FORTRAN Format I/0

FORTRAN Format Subroutine SFIO, SIOI,
SICAI, SICF,
SICAF,	 SICFX,
SCUP, SWRT,
SEED, SICIX

3,3 FLOAT, IFIX,
ELE/FSIC or
FLE/FSTO,
PAUSE

T4C

FORTRAN Find Subroutine SCENE 3,1 DISKZ, DISK1,
cr DISKN

T4B

Disk FORTRAN I/O SDFIO, SDRED,
SEWRT, SDCOM,
SDAF, SDF, SDI,
SDIX,	 SDFX,
SDAI

3,1 DISKZ, DISK1,
cr DISKN,
PAUSE

74A

Unformatted FORTRAN Disk I/0 UFIO, URED,
UWRT, UI0I,
UICF,	 UICAI,
UICAF, UICFX,
UICIX,	 UCCMP,
BCESP, EOF,
REWND

3,1 DISKZ, DISK1,
or DISKN,
PAUSE

T4E

Figure 24. 1130 Disk Monitor Version 2 System Library (Part 3 of 9)

Appendix A. Listing of Subroutines 123

System Library Programs Names Type and
Subtype

Subroutines
Required

ID Field
(73-75)

FORTRAN Common LIBFs

FORTRAN Pause PAUSE 3,0 None T2A
FORTRAN Stop STOP 3,2 None T2B
FORTRAN Subscript Displacement SUBSC 3,0 None 12D
Calculation
FORTRAN Subroutine Initialization SUBIN 3,0 None T2C
FORTRAN Trace Test and Set 'HEST, TSET 3,0 None T2E

FORTRAN I/0 and Conversion
Subroutines

FORTRAN 1442 Input/Output Subroutine CARDZ 5,3 HOLEZ, GETAD,
EBCTB, BOLTS,
ILSOO, ILSO4

T5A

FORTRAN 1442 Output Subroutine PNCHZ 5,3 HOLEZ, GETAD,
EECTE, HOLTB,
ILSOO, ILSO4

T5G

FORTRAN 2501 Input Subroutine READZ 5,3 HOLEZ, GETAD,
EECTE, HOLTB,
ILSO4

T5J

Disk I/0 Routine	 (Part of Supervisor) DISKZ - ILSO2 ---
FORTRAN Paper Tape Subroutine PAPTZ 5,3 ILSO4 T5F
FORTRAN 1132 Printer Subroutine PRNTZ 5,3 ILSO1 T5H
Call to PRNTZ to Call to PRN72 PRTZ2 5,3 PRNTZ, LLSO1 WU(
Conversion
FORTRAN 1403 Printer Subroutine PRNZ 5,3 ILSO4 T5I
FORTRAN Keyboard-Ty pewriter
Subroutine

TYPEZ 5,3 GETAD, EBCTB,
HOLEZ, ILSO4

T5F

FORTRAN Typewriter Subroutine WRTYZ 5,3 GETAD, EBCTB,
ILSO4

T5L

FORTRAN 1627 Plotter Subroutine PLOTX 5,0 ILSO3 V1L
FORTRAN Hollerith to EBCDIC
Conversion

HOLEZ 3,3 GETAD, EBCTB,
HOLTB, PAUSE

15D

FORTRAN Get Address Routine GETAD 3,3 None T5C
FORTRAN EBCDIC Table EBCTB 3,3 None T5B
FORTRAN Hollerith Table HOUR 3,3 None T5E
FORTRAN Multiple Terminal MTCAZ 4,0 MTCAO W5C
Communications Adapter (MICA)
Call Interface

Extended Arith/Funct LIBFs

Extended Precision Get Parameter EGETP 3,2 ELD S1E
Subroutine
Extended Precision A**I Function EAXI, EAXIX 3,2 ELD/ESTO S1B

EMPY, EDVR
Extended Precision Divide Reverse EDVR, FDVRX 3,2 ELD/FSTO,

EDIV
S1D

Extended Precision Float Divide EDIV, EDIVX 3,2 XDD, FARC S1C
Extended Precision Float Multiply EMPY, EMPYX 3,2 XMD, FARC S1G
Extended Precision Subtract Reverse ESBR, EXBRX 3,2 EADD Sin
Extended Add-Subtract EADD, ESUB,

EADDX, ESUBX
3,2 FARC, NORM S1A

Extended Load-Store ELD, ELDX,
ESTO, ESTCX

3,0 None S1F

Figure 24. 1130 Disk Monitor Version 2 System Library (Part 4 of 9)

124

System Library Programs Names Type and
Subtype

Subroutines
Required

ID Field
(73-75)

Standard Arith/Funct LIBFs

Standard Precision Get Parameter FGETP 3,2 FLD 121
Subroutine
Standard Precision A**I Function FAX I, FAX IX 3,2 FLD/FSTO,

FMPY, FDVR
R1B

Standard Precision Divide Reverse FDVR, FDVRX 3,2 FLD/FSTO,
FDIV

R1D

Standard Precision Float Divide FDIV, FDIVX 3,2 FARC R1C
Standard Precision Float Multiply FMPY, FMPYX 3,2 XMDS, FARC R1G
Standard Precision Subtract Reverse FSBR, FSBRX 3,2 FADD R111
Standard Add-Subtract FADD, FSUB,

FADDX, FSUBX
3,2 NORM, FARC R1A

Standard Load-Store FLD, FLDX,
FM), FSTCX

3,0 None R1F

Standard Precision Fractional XMDS 3,2 None S3 I
Multiply

Canmon Arith/Funct LIBFs

Fixed	 (Fractional)	 Double Divide XDD 3,2 MAD S3G
Fixed Point	 (Fractional)	 Double XMD 3,2 None 5311
Multiply
Sign Reversal Function SNR 3,2 None S3F
Integer to Floating Point Function FLOAT 3,0 NORM S3C
Floating Point to Integer Function IFIX 3,0 None S3D
I**J Integer Function FIXI, FIXIX 3,2 None S3B
Normalize Subroutine NORM 3,0 None S3E
Floating Accumulator Range Check FARC 3,2 None S3A
Subroutine

Interrupt Service Subroutines

1442 Card Read Punch Input/Output CARDO 5,0 ILSOO,	 ILSO4 U2 A
(No error Parameter)
1442 Card Read Punch Input/Output CARD1 5,0 ILSOO , ILSO 4 U 2B
(Error Parameter)
2501 Card Read Input 	 (Nc Error READO 5,0 ILSO4 U2I.
Parameter)
2501 Card Read Input	 (Error READ1 5,0 ILSO4 U2M
Parameter)
1442 Card Punch Output	 (No Error PNCHO 5,0 ILSOO, 11,504 U2H
Parameter)
1442 Card Punch Output	 (Error PNCH1 5,0 ILSOO, ILSO4 U2I
Parameter)
Multiple Sector Disk Input/Output DISK 1 ILSO2
(Part of Supervisor)
High Speed Multiple Sector Disk DISKN ILSO2
Input/Output	 (Part of Supervisor)
Synchronous Communications Adapter
(SCA) STR Mode

SCAT 1 5,0 IOLOG/CPLOG,
ILSO1

W1F

SCA	 (BSC, Point-to-Point Mode) S CAT 2 5,0 IOLOG/CPLOG,
ILSO1

W 1H

SCA	 (BSC, Multi-Point Mode SCATS 5,0 ICLOG/CPLOG,
ILSO1

W1I

Paper Tape Input/Output PAPT1 5,0 ILSO4 U2D
Simultaneous Paper Tape Input/Output PAPTN 5,0 ILSO4 U2E
Character/Word Count Paper Tape PAPTX 5,0 ILSO4 U2 F
Input/Output

Figure 24. 1130 Disk Monitor Version 2 System Library (Part 5 of 9)

Appendix A. Listing of Subroutine s 125

System Library Programs Names Type and
Subtype

Subroutines
Required

It Field
(73-75)

Interrupt Service Subroutines
(continued)

Plotter Output Subroutine PLOT1 5,0 ILSO3 U2G
Plotter Output Subroutine PLOTX 5,0 ILSO3 V1 L
1132 Printer Output Subroutine PRNT1 5,0 ILSO1 02 J
1132-SCA Print With Overlap PRNT2 5,0 ILSO1 W1 E
1403 Printer Output Subroutine PRNT3 5,0 ILSO4 U2K
Keyboard/Console Printer Input/Output TYPEO 5,0 BOLL, PRTY U2N

ILSO4
Console Printer Output Subroutine WRTYO 5,0 ILSO4 U20
1231 Optical Mark Page Reader Input OMPR1 5,0 ILSO4 U2C
Subroutine
MTCA Ba se Section MTCAO 5,0 ILSO3 , TSM41,

TSTTY
W5B

MTCA 2741 Terminal Select TSM41 4,0 Ncne W5D
MTCA Teletype Select TSTTY 14,0 None W5E

Conversion Subroutines

Binary Word to 6 Decimal Characters BIDEC 3,0 Ncne U 4B
(Card Code)
Binary Word to 4 Hexadecimal BINHX 3,0 None U4C
Characters	 (Card Code)
6 Decimal Characters	 (Card Code)	 tc DCBIN 3,0 None U4G
Binary Word
EBCDIC to Console Printer Output Code EBPRT 3, 0 EBPA, PRTY U 3A
Card Code to EBCDIC-EBCDIC to Card HOLEB 3,0 EEPA, BOLL U3 B
Code
Card Code to Console Printer Output HOLPR 3,0 HOLL, PRTY U3C
Code
4 Hexadecimal Characters	 (Card Code)
to Binary Word

HXEIN 3,0 None U3D

PTTC/8 to EBCDIC-EBCDIC to PTTC/8 PAPEB 3,0 EBPA U3E
PTTC/8 to Card Code-Card Code to PAPHL 3,0 EEPA, BOLL U3 F
PTTC/8
PITC/8 to Console Printer Output Code PAPPR 3,0 EBPA, PRTY U3G
Card Code to EBCDIC-EBCDIC tc Card SPEED 3,0 None 03 B
Co le
4 of 8 Code to EBCDIC-EBCDIC to 4 of EEC48 3,0 HXCV, STRTB W 1A
8 Code
4 cf 8 Code to IBM Card Code-
IBM Card Code to 14 of 8 Code

HOL48 3,0 HXCV, HOLCA,
STRTP

W1B

4 of 8 Code to Table of Displacements HXCV 3, 0 Ncne W 1D
32-Bit Binary Value to IBM Card Ccde BIDEC 3,0 None 04A
Decimal Value
IBM Card Code Decimal Value to 32-Bit CECEI 3,0 Ncne 1314H
Binary Value
Supplement to All Standard ZIPCO 3,0 Any ZIPCO U3I
Conversions Except Those Involving Conversion
P1TC/8 Table
MTCA Code Conversion FEB41,

F41EB,
QEB41,

BEB41,
B41EB,
C41EB

4,0 None W5A

Conversion Tables
EBCDIC and PTTC/8 EEPA 3,0 Ncne U4 K
Card Code Table BOLL 3,0 None U4 P
Console Printer Output Code Table PRTY 3,0 None U4Q
Table of IBM Card Codes HOLCA 3,0 None W1C
Table of 4 of 8 and EBCDIC Ccdes STRTB 3,0 None W1 G

Figure 24. 1130 Disk Monitor Version 2 System Library (Part 6 of 9)

126

System Library Programs Names Type and
Subtype

Subroutines
Required

IC Field
(73-75)

ZIFCO Conversion Tables

EBCDIC to Console Printer Code EBCCP 4,0 None U4I
EBCDIC to IEM Card Code EBHOL 4,0 None U4J
EBCDIC to 1403 Printer Code EBPT3 4,0 None U4L
Console Printer Code to EBCDIC CPEBC 4,0 None
Console Printer Code to IBM Card Code CPHOL 4,0 None U4E
Console Printer Code to 1403 Printer CPPT3 4,0 None U4F
Code
IBM Card Code to EBCDIC HLEBC 4,0 None U4M
IBM Card Code to Console Printer Code HOLCP 4,0 None U40
IBM Card Code to 1403 Printer Code HLPT3 4,0 None U4N
1403 Printer Code to EBCDIC PT3EB 4,0 None U4S
1403 Printer Code to Console Printer PT3CP 4,0 None U4R
Code
1403 Printer Code to IBM Card Code PTHOL 4,0 None U4T

Loci Subroutine

Dummy Log Subroutine
called by SCAT1, SCAT2, SCATS IOLOG, CPLOG 4,0 None 141J

Interrupt Level Subroutines

Interrupt Level Zero Subroutine ILSOO 7,0 None U1A
Interrupt Level One Subroutine ILSO1 7,0 None U1B
Interrupt Level Two Subroutine (Part
of Supervisor)

ILSO2 7,1 None U1C

Interrupt Level Three Subroutine ILSO3 7,0 None U1D
Interrupt Level Four Subroutine (Part
of Supervisor)

ILSO4 7,1 None U1E

Special Interrupt Level Subroutines
(Restores Index Register 3)
Interrupt Level Zero Subroutine USX() 7,0 None U1F
Interrupt Level One Subroutine ILSX1 7,0 None U1G
Interrupt Level Two Subroutine ILSX2 7,0 None U1H
Interrupt Level Three Subroutine ILSX3 7,0 None U1I
Interrupt Level Four Subroutine ILSX4 7,0 None U1J

Standard Plot Calls

Standard Precision Character FCHAR 4, 0 FSIN, FCOS,
FPLOT, FCHRX,
FLU, FSTOX,
FSTC

V1F

Standard Precision Scale
Standard Precision Grid

SCALF
FGRID

4,0
4,0

FRULE
FPLCT, POINT,

V10
V1H

FADD, F•D,
FSTC, SNR

Standard Precision Plot FPLOT 4,0 FMCVE, XYPLT,
PLCT1

V1I

Extended Precision Character ECHAR 4,0 ESIN, EGOS,
EPLOT, ECHRX,

V1A

ELD, ESTO,
ESTCX

Figure 24. 1130 Disk Monitor Version 2 System Library (Part 7 of 9)

Appendix A. Listing of Subroutines 127

System Library Programs Naves Type and
Subtype

Subroutines
Required

ID Field
(73-75)

Standard Plot Calls
(continued)

Extended Precision Scale SCALE 4,0 ERULE V1N
Extended Precision Grid EGRID 4,0 EPLCT, POINT,

EADD, ELD,
ESTC, SKR

V1C

Extended Precision Plot EPLOT 4,0 EFCVE, XYPLT,
PLCI1

V1C

Common Plot Call

Point Characters POINT 4,0 PICTI V1M

Standard Plot LIBFs

Standard Precision Annotation FCHRX, FCHRI,
WCHRI

3,0 FLOAT, FMPY
IFIX, FADD,
FLEX, FINC,
XYFLT, FUT',
FSTCX, Ftr

V1G

Standard Precision Plot Scaler FRULE, FMOVE,
FINC

3,0 FLEX, FSUBX,
FFFYX, FLD,
FSTCX, FMPY,
IFIX, FADD

V1J

Extended Plot LIBFs

Extended Precision Annotation ECHRX, ECHRI,
VCHRI

3,0 FLOAT, EMPY,
IFIX, EADD,
ELDX, EINC,
XYFLT, FLOTI,
ESTCX, ELD

V1B

Extended Precision Plot Scaler ERULE, EMOVE,
EINC

3,0 ELDX, ESUBX,
ENPYX, ELD,
ESTCX, EMPY,
IFIX, EADD,
ESTC

V1E

Common Plot LIBFs

Pen Mover XYFLT 3,2 PLOTI V1P
Interface PLOTI 3,2 PLOTX V1K
Interrupt Service PLOTX 5,0 ILSO3 V1L

Disk I/O

Sequential Address SEQOP, SEQIO,
SEQCL

3,0 DISRZ W2F

Direct Access DAOPN, EAIO,
DACLS

3,0 DISRZ w3E

ISAM Load ISLDO, ISLD,
ISLDC

3,0 DISRZ W3L

ISAM Add ISADO, ISAD,
ISADC

3,0 DISRZ W3C

ISAM Sequential ISEQO, ISM,
ISEQ, ISEQC

3,0 DISRZ W3E

ISAM Random ISRDO, ISRD,
ISRDC

3,0 DISRZ W3A

Figure 24. 1130 Disk Monitor Version 2 System Library (Part 8 of 9)

128

System Library Programs Names Type and
Subtype

Subroutines
Required

ID Field
(73-75)

RPG Cecimal Arithmetic

Add, Subtract, and Numeric Compare° RGADD,
RGNCP

RGSUB, 3,0 None W2T

Multiply°
Eivide l

RGMLT
RGDIV

3,0
3,0

RGBTD,
None

RGDTB W2S
W2R

Move Remainder° RGMVR 3,0 RGETE W2Q
Binary Conversion° RGBTD, RGDTB 3,0 None W2P

RPG Sterling and Edit

Sterling Input Conversion°
Sterling Output Conversion°
Edit°

RGSTI
RGSTO
RGED1

3,0
3,0
3,0

RGBTD,
RGETE,
RGMV2,

RGDTB
RGETE
RGSI5

W4B
W4A
W20

RPG Move

From I/O Buffer to Core°
From Core to I/O Buffer°

RGMV1,
RGFV2

RGMV5 3,0
3,0

Ncne
None

W2N
W2F

MOVE Operation° RGFV3 3,0 None W2L
MOVEL Operation° RGFV4 3,0 None W2R

RPG Compare

Alphameric° RGCMP 3,0 Ncne W2J

RPG Indicators

Test° RGSI1 3,0 None W2I
Set Resulting On° RGSI2 3,0 None W2B
Set on, Set off°
Test for 0 or Blank°

RGSI3,
RGSI5

RGSI4 3,0
3,0

None
None

W2G
W2E

RPG Miscellaneous

Test Zone° RGTSZ 4,0 None W2D
Convert to Binary° RGCVB 3,0 None W2C
Object Time Error° RGERR 4,0 None W2B
Plank After° RGBLK 3,0 None W2A
Alternating Sequence° ALTSE --

°Not distributed to papertape users.

Figure 24. 1130 Disk Monitor Version 2 System Library (Part 9 of 9)

Appendix A. Listing of Subroutines 129

Appendix B. Errors Detected by the ISS Subroutines

ERROR
CONTENTS OF ACCUMULATOR Contents of

Extension
(if any)Binary Hexadecimal

1442 Card Read Punch or 1442 Card Punch

*Last card 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0000

*Feed check
**Read check [0000000000000001 0001
*Punch check
Device not ready
Last card indicator on for Read 1	 0 0 0[000i 0 0 0 0 0 0 0 0 0 0 0 0
Illegal device (not 0 version)
Device not in system

0[0 0 0 1 0 0 0	 0 0 0 0 0 0 0 1Illegal function 1	 0 0	 1
Word count over +80
Word count zero or negative

Keyboard/Console Printer

Device not ready 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0
Device not in system
Illegal function [0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 1
Word count zero or negative
Keyboard wants input (TYPE	 only) 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 2

1134/1055 Paper Tape Reader/Punch

• Punch not reedy 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 4
*Reader not ready 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 5
Device not ready 0 0 1	 1 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0
Illegal device
Illegal function
Word count zero or negative [0 0 1	 1 0 0 0 0 0 0 0 0 0 0 0 1 300	 1
Illegal check digit

2501 Card Reader

•Lost card 0

*Feed check 1
*Read check f f000000000000000 1 0001

Device not ready 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4000

Illegal function
Word count over +80 4 0 0 1[0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
Word count zero or negative

Disk

• Data error remaining after 16
attempts (DMZ or 10 attempts

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 1

Bits 0-3 logical
drive number,
bits 4-15 working
sector address.

IC/PT) during read operation.
Bits 0-3 logical

• Data error remaining after 16
attempts (DM2) or 10 attempts
IC/PT) during write operation.

[0000000000 0 0 0 0 1 0 0 0 0 2 drive number,
bits 4-15 working
sector address.

Bits 0-3 logical
•Seek failure remaining after 16
attempts IDM2) or 10 attempts
IC/PT).

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1	 1 0 0 0 3 drive number,
bits 4-15 working
sector address.

*Attempt to read or write above
sector address 1599 (disk over-
flow).

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 4

Device not ready. 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0

130

ERROR CONTENTS OF ACCUMULATOR Contents of
Extension
(if any)Binary Hexadecimal

Disk (continued)
Illegal device, invalid function,
device not on system, attempt
to write in file protected area,
word count zero or negative or
starting address over 1599
(DISKZ and DISKZ only).

[0 1	 0 1 0 0 0 0 0 0 0 0 0 0 0 1 5 0 0 1

Write select/Power unsafe. 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 5 0 0 2

Data error during read/write
operation or seek failure after
16 attempts (DM2) or 10
attempts (0/PT) or on an
attempt to read or write
above sector address 1599
(disk overflow). Error occurred
during the processing of a
Monitor call. (DISK1 and

[0 1	 0 1	 0 0 0 0 0 0 0 0 0 1 0 0 5 0 0 3

Bits 0-3 logical
drive number,
bits 4-15 working,
sector address,
except for disk
overflow.

DISKZ only).

Data error remaining after 16
attempts (DISKZ only).

[0 1	 0 1	 0 0 0 0 0 0 0 0 0 1 0 0 5 0 0 4 Bits 0-3 logical
drive number,
bits 4-15 working
sector address + 1.

1132 Printer

*Channel 9 detected 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1	 I 0003
*Channel 12 detected 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 4
Device not ready or end of forms 0 1	 l i 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0
Illegal function

0 0 0 0 00	 1	 1Word count over +60 0 0 0 0 0 0 0 1 6 0 0 1
Word count zero or negative

Plotter

Plotter not ready 0	 1	 1	 1	 0 0 0 0 0 0 0 0 0 0 0 0 7000

Illegal function 0	 1	 1	 1	 0 0 0 0 0 0 0 0 0 0 0 1 7 00	 1Word count zero or negative}

1403 Printer

*Ring check
0 0 0 0 0 0 0 0 1 0 0 0 1*Sync check 0 0 0 0 0 0 0

*Parity check
*Channel 9 detected 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1	 1 0 0 0 3
*Channel 12 detected 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 4
Device not ready or end of forms 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0
Illegal function
Word count over +60

1
[1	 001	 0 0 0 0 0 0 0 0 0 0 0 1 900 1

Word count zero or negative

PRNZ only(Ring checkSync check -it 0 0 1 0 0 0 0 0 0 0 0 0 0	 1 0 9 0 0 2
Parity check

Optical Mark Page Reader
Master mark 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0	 1
Timing mark error 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 2Read error	 }
Hopper empty 0 0 0 0 0 0 0 0 0 0 0 0	 1	 1 0 0 0 3
Document selected 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 4
Device not ready 1	 0	 1	 0 0 0 0 0 0 0 0 0 0 0 A 0 0 0
Illegal function 1	 0	 1	 0 0 0 0 0 0 0 0 0 0 1 A 0 0 1
Feed check, last document processed 1	 0 1	 0 0 0 0 0 0 0 0 0 1	 0 A 0 0 2
Feed check, last document not

processed 1	 0	 1	 0 0 0 0 0 0 0 0 0	 1	 1 A 0 0 3

NOTE: The errors marked with an asterisk cause a branch to user error routine. 	 These are postoperative errors and are detected
during the processing of interrupts; as a consequence, the user error subroutine is an interrupt subroutine, executed at the priority level
of the I/O device.	 All other errors cause a branch to location /0029 on the C/PT system or to one of the traps in ti.e DM2system, at	 $PRET, $PST1, $PST2, $PST3, or $PST4. 	 If the error WAIT is in the preoperative Error Trap 	 the address of the LIBF or the
CALL is in location $PRET.

Appendix B. Errors Detected by the ISS Subroutines 131

1442 Card Read Punch or
1442 Card Punch

0000

00011

4

If function is PUNCH
otherwise

If Accumulator is 0
otherwise

4

Appendix C. Subroutine Action on Return from a
User's Error Subroutine

T
Error Code	 Condition	 Subroutine Action

Eject card and terminate
Terminate immediately
Terminate immediately
C/PT System: Loop until
1442 is ready, then reinitiate
operation
DM2 System: WAIT at $PST4, clear
1442 with NPRO key, assure that
2nd card run out is in correct
pre-punched form (1st card con-
tains punch error), replace cards
in 1442 hopper, press 1442 start
key, and press PROGRAM START.

2501 Card Reader
0000
00011 If Accumulator is 0

otherwise

Terminate
Terminate immediately
WAIT at $PST4 until 2501 is
readied and PROGRAM START
pressed

1134/1055 Paper Tape Reader/Punch
0004, 0005	 lIf Accumulator is 0

otherwise
I- 	 +
Disk

If Accumulator is 0
otherwise

0001, 0002, and 0003

0004

4	
Terminate immediately
Check again for device ready

4 	 -1

Terminate immediately
Retry 10 times (C/PT
system) , or 16 times
(DM2 system)
Terminate and go to exit

	 4
1132 Printer

0003, and 0004 If Accumulator is
otherwise

0 !Terminate immediately
!Skip to channel 1
land then terminate
	 4 	

1231 OMPR
0001

00021

0003
0004'

If Accumulator is 0
otherwise

If Accumulator is 0
otherwise

If Accumulator is 0
otherwise2

Terminate immediately
Check for device ready
and reinitiate the operation
Terminate immediately
Skip to channel 1
and then terminate

4 	
Continue normal processing
Use contents of Accumulator
as new address of I/O area
Terminate immediately
Check device ready,
then reinitiate operation
Terminate
Terminate immediately
Check device ready,
then reinitiate operation

1-	 -J

1403 Printer
0001 If Accumulator is 0

otherwise

0003, and 0004 If Accumulator is 0
otherwise

Assumes operator intervention
User must provide a WAIT in his error subroutine to allow him to remove the sheet from
the select stacker, place the sheet back in the hopper, and make the 1231 ready.

132

Appendix D. Character Code Chart

Ref
No.

EBCDIC IBM Card Code
Graphics and Control

Names

1132
Printer

EBCDIC
Subset HexS

PTTC/8
Hex

U-Upper Case
-Lower Case

Console
Printer

Hex
Notes

1403
Printer

Hex
Binary

0123	 4567
Hex Rows

12	 11	 0	 9	 8	 7-1
Hex

0	 0000	 0000 00 12	 0	 9	 8	 1 B030 NUL
1 0001 01 12	 9	 1 9010
2 0010 02 12	 9	 2 8810
3 0011 03 12	 9	 3 8410
4 0100 04 12	 9	 4 8210 PF Punch Off
5* 0101 05 12	 9	 5 8110 HT Horiz.Tab 6 D (U/L) 41 0
6* 0110 06 12	 9	 6 8090 LC Lower Case 6 E (U/L)
7* 0111 07 12	 9	 7 8050 DEL Delete 7F (U/L)
8 1000 08 12	 9 8030
9 1001 09 12	 9 1 9030

10 1010 OA 12	 9 2 8830
11 1011 OB 12	 9 3 8430
12 1100 OC 12	 9 4 8230
13 1101 OD 12	 9 5 8130
14 1110 OE 12	 9 6 8080
15 1111 OF 12	 9 7 8070

16	 0001	 0000 10 12 1	 9	 8	 1 D030
17 0001 11 1	 9	 1 5010
18 0010 12 1	 9	 2 4810
19 0011 13 1	 9	 3 4410
20* 0100 14 1	 9	 4 4210 RES Restore 4C (U/L) 05 2
21* 0101 15 1	 9	 5 4110 NL New Line D D (U/L) 81 (3)
22* 0110 16 1	 9	 6 4090 BS Backspace 5 E (U/L) 11
23 0111 17 1	 9	 7 4050 IDL Idle
24 000 18 1	 9 4030
25 001 19 1	 9 1 5030
26 010 IA 1	 9 2 4830
27 011 1B 1	 9 3 4430
28 100 1C 1	 9 4 4230
29 101 ID 1	 9 5 4130
30 110 1E 1	 9 6 40B0
31 111 IF 1	 9 7 4070

32	 0010	 0000 20 11 9	 8	 1 7030
33 0001 21 9	 1 3010
34 0010 22 9	 2 2810
35 0011 23 9	 3 2410
36 0100 24 9	 4 2210 BYP Bypass
37* 0101 25 9	 5 2110 IF Line Feed 3 D (U/L) 03
38* 0110 26 9	 6 2090 EOB End of Block 3E (U/L)
39 0111 27 9	 7 2050 PRE Prefix
40
41

1000
1001

28
29

, 9
9 1

2030
3030

42 1010 2A 9 2 2830
43 1011 2B 9 3 2430
44 1100 2C 9 4 2230
45 1101 2D 9 5 2130
46 1110 2E 9 6 2080
47 1111 2F 9 7 2070

48	 0011	 0000 30 12	 11	 0	 9	 8	 1 F030
49 0001 31 9	 1 1010
50 0010 32 9	 2 0810
51 0011 33 9	 3 0410
52 0100 34 9	 4 0210 PN Punch On
53* 0101 35 9	 5 0110 RS Reader Stop 0 D(U/L) 09 0
54° 0110 36 9	 6 0090 UC Upper Case OE (U/L)
55 0111 37 9	 7 0050 EOT End of Trans.
56 1000 38 9 0030
57 1001 39 9 1 1030
58 1010 3A 9 2 0830
59 1011 3B 9 3 0430
60 1100 3C 9 4 0230
61 1101 3D 9 5 0130
62 1110 3E 9 6 0080
63	 , 1111 3F 9 7 0070

NOTES: Typewriter Output
C) Tabulate
C) Shift to black 8 Carrier Return

Shift to red
* Recognized by all Conversion subroutines

Codes that are not asterisked are recognized only by the SPEED subroutine

Appendix D. Character Code Chart 133

Ref
No.

EBCDIC IBM Card Code
Graphics and Control

Names

1132
Printer

EBCDIC
Subset Hex

MC/8
Hex

U-Upper Case
L-Lower case

Console
Printer

Hex

1403
Printer

Hex
Binary

0123	 4567
Hex Rows

12	 11	 0	 9	 8	 7-1
Hex

64*	 0100	 0000 40 no punches 0000 blank 40** 16 (U/L) 21 7F
65 0001 41 12 9	 1 B010
66 0010 42 12 9	 2 A810
67 0011 43 12 9	 3 A410
68 0100 44 12 9	 4 A210
69 0101 45 12 9	 5 A110
70 0110 46 12 9	 6 A090
71 0111 47 12 9	 7 A050
72 1000 48 12 9 A030
73 1001 49 12 1 9020
74* 1010 4A 12 2 8820 + 20(U) 02
75* 1011 4B 12 3 8420 . (period) 4B 613 (L) 00 6E
76* 1100 4C 12 .	 4 8220 < 02(U) DE
77* 1101 4D 12 5 8120 (4D 19(U) FE 57
78* 1110 4E 12 6 80A0 + 4E 70 (U) DA 6D
79*	 1 1111 4F 12 7 8060 I (logical OR) 3B (U) C6

80*	 0101	 0000 50 12 8000 & 50 70 (L) 44 15
81 0001 51 12 1	 9	 1 D010
82 0010 52 12 1	 9	 2 C810
83 0011 53 12 1	 9	 3 C410
84 0100 54 12 1	 9	 4 C210
85 0101 55 12 1	 9	 5 C110
86 0110 56 12 1	 9	 6 C090
87 0111 57 12 1	 9	 7 CO50
88 1000 58 12 1	 9 CO30
89 1001 59 1 1 5020
90* 1010 5A 1 2 4820 !^

5B (U) 42
91* 1011 5B 1 3 4420 $ 5B 513 (L) 40 62
92* 1100 5C 1 4 4220 * 5C 08(U) D6 23
93* 1101 5D 1.1 5 4120) 5D lA (U) F6 2F
94* 1110 5E 11 6 40A0 ; 13 (U) D2
95*	 V 1111 5F 11 7 4060 —1 (logical NOT) 6B (U) F2

96*	 0110	 0000 60 11 4000 - (dash) 60 40(L) 84 61
97* 0001 61 1 3000 / 61 31 (L) BC 4C
98 0010 62 11 9	 2 6810
99 0011 63 11 9	 3 6410

100 0100 64 11 9	 4 6210
101 0101 65 11 9	 5 6110
102 0110 66 11 9	 6 6090
103 0111 67 11 9	 7 6050
104 1000 68 11 9 6030
105 1001 69 1 3020
106 1010 6A 12	 11 0000
107* 1011 6B 3 2420 , (comma) . 6B 3B (L) 80 16
108* 1100 6C 4 2220 % 15 (U) 06
109* 1101 6D 5 2120 _ (underscore) 40 (U) BE
110* 1110 6E 6 20A0 > 07(U) 46
111* 1111 6F 7 2060 ? 31(U) 86

12	 0111	 0000 70 12	 11 E000
13 0001 71 12	 11 9 -	 1 F010
14 0010 72 12	 11 9	 2 E8I0
15 0011 73 12	 11 9	 3 E4I0
16 0100 74 12	 11 9	 4 E210
17 0101 75 12	 11 9	 5 E110
18 0110 76 12	 11 9	 6 E090
19 0111 77 12	 11 9	 7 E050
20 1000 78 12	 11 9 E030
21 1001 79 1 1020
22*
23*

1010
1011

7A
7B

2
3

082
0420

i,
ff

04 (U)
OB (L)

82
CO

24* 1100 7C 4 0220 @ 20(L) 04
25* 1101 7D 5 0120 ' (apostrophe) 7D 16 (U) E6 OB
26* 1110 7E 6 00A0 = 7E 01 (U) C2 4A
27* 1	 1111 7F 7 0060 " 08 (U) E2

**Any code other than those defined for the 1132 will be interpreted by the
PRNT1 subroutine as a blank.

134

Ref
No.

EBCDIC IBM Card Code
Graphics and Control

Names

1132
Printer

EBCDIC
Subset Hex

PTTC/8
Hex

U-Upper Case

L-Lower Case

Console
Printer

Hex

1403
Printer

Hex
Binary

0123	 4567

Hex Rows

12	 11	 0	 9	 8	 7-1

Hex

128	 1000	 0000 80 12 8	 1 8020
129 0001 81 12 1 B000 a
130 0010 82 12 2 A800 b
131 0011 83 12 3 A400 c
132 0100 84 12 4 A200 d
133 0101 85 12 5 A100 e
134 0110 86 12 6 A080 I
135 0111 87 12 7 A040 9
136 1000 88 12 A020 h
137 1001 89 12 9 A010 i
138 1010 8A 12 2 A820
139 1011 BB 12 3 A420
140 1100 8C 12 4 A220
141 1101 8D 12 5 Al20
142 1110 8E 12 6 AOAO
143 1111 8F 12 7 A060

144	 1001	 0000 90 12 1	 8	 1 D020
145 0001 91 12 1	 1 D000 j
146 0010 92 12 1	 2 C800 k
147 0011 93 12 1	 3 C400 I
148 0100 94 12 1	 4 C200 m
149 0101 95 12 1	 5 C100 n
150 0110 96 12 1	 6 C080 o
151 0111 97 12 1	 7 C040 p
152 000 98 12 1 CO20 q
153 001 99 12 1	 9 C010 r
154 010 9A 12 1 2 C820
155 011 9B 12 1 3 C420
156 100 9C 12 1 4 C220
157 101 9D 12 1 5 C120
158 110 9E 12 1 6 COAO
159 111 9F 12 1 7 C060

160	 1010	 0000 AO 1 8	 1 7020
161 0001 Al 1 1 7000
162 0010 A2 1 2 6800 s
163 0011 A3 1 3 6400 r
164 0100 A4 1 4 6200 u
165 0101 A5 1 5 6100 v
166 0110 A6 1 6 6080 w
167 0111 A7 1 7 6040 x
168 1000 A8 1 8 6020 y
169 1001 A9 1 9 6010 z
170 1010 AA 1 8	 2 6820
171 1011 AB 1 8	 3 6420
172 1100 AC 1 8	 4 6220
173 1101 AD 1 8	 5 6120
174 1110 AE 1 8	 6 60A0
175 V	 1111 AF 1 8	 7 6060

•
176	 1011	 0000 BO 12 1 8	 1 F020
177 0001 81 12 1 1 F000
178 0010 B2 12 1 2 E800
179 0011 B3 12 1 3 E400
180 0100 B4 12 1 4 E200
181 0101 B5 12 1 5 E100
182 0110 B6 12 1 6 E080
183 0111 B7 12 1 7 E040
184 1000 B8 12 1 E020
185 1001 B9 12 1 9 E010
186 1010 BA 12 1 2 E820
187 1011 BB 12 1 3 E420
188 1100 BC 12 1 4 E220
189 1101 BD 12 1 5 E120
190 1110 BE 12 1 6 E0A0
191 1111 BF 12 1 7 E060

Appendix D. Character Code Chart 135

Ref
No.

EBCDIC IBM Card Code
Graphics and Control

Names

1132
Printer

EBCDIC
SSubset Hex

PTTC/8
Hex

U-Upper Case
L-Lower Case

Console
Printer

Hex

1403
Printer

Hex
Binary

0123	 4567
Hex Rows

12	 11	 0	 9	 8	 7-1

Hex

192	 1100	 0000 CO 12	 0 A000 (+ zero)
193* 0001 CI 12	 1 9000 A CI 61 (U) 3C or 3E 64
194* 0010 C2 12	 2 8800 B C2 62 (U) 18 or lA 25
195* 0011 C3 12	 3 8400 C C3 73 (U) 1C or 1E 26
196* 0100 C4 12	 4 8200 D C4 64 (U) 30 or 32 67
197* 0101 C5 12	 5 8100 E C5 75 (U) 34 or 36 68
198* 0110 C6 12	 6 8080 F C6 76 (U) 10 or 12 29
199* 0111 C7 12	 7 8040 G C7 67 (U) 14 or 16 2A
200* 1000 C8 12 8020 H C8 68 (U) 24 or 26 6B
201* 1001 C9 12	 9 8010 I C9 79 (U) 20 or 22 2C
202 1010 CA 12 9 2 A830
203 1011 CB 12 9 3 A430
204 1100 CC 12 9 4 A230
205 1101 CD 12 9 5 A130
206 1110 CE 12 9 6 AOBO
207 t	 1111 CF 12 9 7 A070

208	 1101	 0000 DO 1	 0 6000 (- zero)
209* 0001 Dl 1	 1 5000 J DI 51 (U) 7C or 7 E 58
210* 0010 D2 1	 2 4800 K D2 52 (U) 58 or 5A 19
211* 0011 D3 1	 3 4400 L D3 43 (U) 5C or 5E lA
212* 0100 D4 1	 4 4200 M D4 54 (U) 70 or 72 5B
213* 0101 D5 1	 5 4100 N D5 45 (U) 74 or 76 1C
214* 0110 D6 1	 6 4080 0 D6 46 (U) 50 or 52 5D
215* 0111- D7 1	 7 4040 P D7 57 (U) 54 or 56 5E
216* 1000 D8 1 4020 Q D8 58 (U) 64 or 66 1F
217* 1001 D9 1	 9 4010 R D9 49 (U) 60 or 62 20
218 1010 DA 12 1	 9 2 C830
219 1011 DB 12 1	 9 3 C430
220 1100 DC 12 1	 9 4 C230
221 1101 DD 12 1	 9 5 C130
222 1110 DE 12 1	 9 6 COBO
223 1111 DF 12 1	 9 7 C070

224	 1110	 0000 E0 8	 2 2820
225 0001 E 1 11 9	 1 7010
226* 0010 E2 2 2800 S E2 32 (U) 98 or 9A OD
227* 0011 E3 3 2400 T E3 23 (U) 9C or 9E OE
228* 0100 E4 4 2200 U E4 34 (U) BO or B2 4F
229* 0101 E5 5 2100 V E5 25 (U) B4 or B6 10
230* -0110 E6 6 2080 W E6 26 (U) 90 or 92 51
231* 0111 E7 7 2040 X E7 37 (U) 94 or 96 52
232* 000 E8 2020 Y E8 38 (U) A4 or A6 13
233* 001 E9 9 2010 Z E9 29 (U) AO or A2 54
234 010 EA 11 9 2 6830
235 011 EB 11 9 3 6430
236 100 EC 11 9 4 6230
237 101 ED 11 9 5 6130
238 110 EE 11 9 6 6080
239	 V 111 EF 11 9 7 6070

240*	 1111	 0000 FO 0 2000 0 FO IA (L) C4 49
241* 0001 F1 1 1000 1 Fl 01(L) FC 40
242* 0010 F2 2 0800 2 F2 02(L) D8 01
243* 0011 F3 3 0400 3 F3 13 (1.) DC 02
244*
245*

0100
0101

F4
F5

4
5

0200
0100

4
5

F4
F5

04(L)
15 (L)

FO
F4

43
04

246* 0110 F6 6 0080 6 F6 16 (1.) DO 45
247* 0111 F7 7 0040 7 F7 07(L) D4 46
248* 1000 F8 0020 8 F8 08 (L) E4 07
249* 1001 F9 9 0010 9 F9 19 (L) E0 08
250 1010 FA 12 1 9 2 E830
251 1011 FB 12 1 9 3 E430
252 1100 FC 12 1 9 4 E230
253 1101 FD 12 1 9 5 E130
254 1110 FE 12 1 9 6 Eon
255 1111 FF 12 1 9 7 E070

i
i

136

Appendix E. Core Requirements of Subroutines

Communications Adapter subroutine core requirements are listed in the publication IBM
1130 Synchronous Communications Adapter Subroutines, GC26-3706. MTCA subroutine core
requirements are listed in the publication IBM 1130 Computing System, Multiple Terminal
Communications Adapter (MTCA), Input/Output Control System (IOCSL Subroutines, GC34-0015.
1627 Plotter subroutine core requirements are included in the publication IBM 1130/1800
Plotter Subroutines.

Standard Extended

FA DD/FA DDX	 1
FSUB/FSUBX	 1 102 EA DD/EA DDX

ESUB/ESUBX
1
1 98

FMPY/FMPYX 52 EMPY/EMPYX 46
FDIV/FDIVX 86 EDIV/EDIVX 78
FLD/FLDX	 1
FSTO/FSTOX	 i 54 ELD/ELDX

ESTO/ESTOX) 46
FLOAT 10 10
I Fl X 40 40
NORM 42 42
FSBR/FSBRX 24 ESBR/ESBRX 24
FDVR/FDVRX 28 EDVR/EDVRX 28
SNR 8 8
FAB S/FAVL 12 EABS/EAVL 12
IABS 16 16
FGEPT 22 EGETP 22
FA RC 34 34
XMDS 28 --
Fl XI/H XI X 68 68
XSQR 52 52
XMD 66 66
X DD 74 74
FSI N/FSI NE	 }
FCOS/FCOSN 118 E SI N/E SI NE

ESCOS/ESCOSN
i
I 138

FATN/FATAN 130 EAT N/EATA N 148
FSQR/FSQRT 70 E SQR/E SORT 76
FLN/FALOG 136 E LN/EA LOG 148
FEXP/FEXPN 118 EEXP/EXPN 140
FAXI/FAXI X 78 EAXI/EAXI X 82
FAXB/FAXBX 54 EAXB/EAXBX 54
FTNH/FTANH 54 ETNH/ETANH 46
FBTD (bin. to dec.) I 446 446
FDTB (dec. to bin.) 1
DMTDO/DMTXO 412 412
DMP Dl/DMPX1 520 520
DMP80 102 102
DAT SW 34 34
DVCHK 16 16
FCTST 30 30
LOAD 138 138
OVERF 18 18
SLITE,	 SLI TT 70 70
TSTOP 6 6
TSTRT 6 6
!SIGN 24 24
FSIGN 34 ESIGN 34

Standard Extended

C/PT System C/PT System

WARI/WARI X 32 VARI/VA RI X 32
WIAR/WIARX	 36 VIAR/VIARX	 36
WI F	 26 VI F	 26
WI I F	 24 VIIF	 24
WGOTO	 22 VGOTO	 22
WFIO/W101/WIOA I/ VFI 0/VI 01/VI 0A1/
WI OF/WI OA F/ VI OF/VI OAF/
WI OFX/WC OM P/	 854 VI OFX/VCOMP/ 864
WWRT/WRE D/ VWRT/VRE D/

1

WI OIX VIOIX

DM2 System DM2 System
SDFI 0/S DA F/S DA I/
SDCOM/SDF/SDFX/
SDI/SDI X/SDRED/ 694 694

SDWRT
SDF ND	 78 78
SFAR/SFARX	 32 SEAR/SEA RX	 32
SFIO/S101/SIOA1/
SI OF/SI 0AF/si OFX/ 1194 1190
SC OMP/SWRT/S RE 0/
SIOIX SEIF	 28
SFI F	 26 22
SGOTO	 22 36
SIAR/SIARX	 36 24
SI IF	 24 756
UFI 0	 758

Figure 25. Core Requirements of Arithmetic and Functional Subroutines

Appendix E. Core Requirements of Subroutines 137

Subroutines

No.
Core

Locations
DM2	 C/PT
System	 System

Uses

(DM2 System)

CARDO 254 242 I LSOO, I LSO4
CARD1 258 246 I LSOO, I LSO4
READO 96 ILSO4
READI 110 ILSO4
PNCHO 206 I LSO4, I LSOO
PNCH1 218 I LSO4, I LSOO
OMPRI 336 I LSO4
PAPT1 226 254 ILSO4
PA PTN 306 294 ILSO4
DISKO 356 I LSO2
DI SKI . 418 62(1 I LSO2
DISK N. 688 .	 808 I LSO2
WRTYO 124 124 I LSO4
TYPEO 278 296 ILSO4, PRTY, HOLL
PLOT1 186 216 I LSO3
PRNT1 424 386 ILSO1
PRNT3 308 - ILSO4
I LSOO 22 18
ILSO1 26 18
I LS02* 17 18
I LSO3 28 18
I LSO4. 32 30
I LSXO 24 -
I LSXI 30 -
I LSX2 24 -
I LSX3 34 -
I LSX4 44 -

SPIRO - 48
SPI R I - 62
SPI RN - 62

F LI PR 102 DISKZ,DISK1,DISKN
PAUSE 22 22
STOP 12 8

SUB SC 30 30
SUB I N 32 32
TTEST/TSET 16 16
DISKZ* 238 I LSO2
CARDZ 176 80 I LSO4, ILSOO
PAPTZ 226 202 ILSO4
PRNTZ 218 176 11.501
TYPEZ 106 82 ILSO4
WRYTZ 62 66 ILSO4
REA DZ 58 11504
PNC HZ 66 I LSO4, I LSOO
PRNZ 186 11_504
HO LEZ 64 54
GETAD 16 14
EBCTB 60 54
HOLTB 54 54

SYSUP 1338 FSLEN/FSYSU
FSLEN/FSYSU 535 DISKZ

* Part of Resident Monitor

Figure 26. Core Requirements of
Miscellaneous and ISS
Subroutines

Conversion
Subroutines

No.
Core

Locations

DM2	 C/PT
System	 System

Uses

BINDC 72 72
DCBIN 88 88
BINHX 44 44
HXBIN 66 66

HOLEB 134 134 HOLL, EBPA
HOLPR 100 100 HOLL, PRTY
EBPRT 102 102 EBPA, PRTY
PAPEB 246 246 EBPA
PAPHL 244 244 EBPA, HOLL
PAPPR 192 192 EBPA, PRTY
Z IPC 0 162 -
SPEED 334 330
HOLL 80 80
EBPA 80 80
PRTY 80 80
EBCCP 128 -
EBHOL 128 -
EBPT3 128 -
CPEBC 128 -
CPHOL 128 -
CPPT3 128 -
HLEBC 128 -
HOLCP 128 -
H LPT3 128 -
PT3EB 128 -
PT3C P 128 -
PTHOL 128 -

Figure 27. Core Requirements of Conversion
Subroutines

Subroutines

No.
Core

Locations Uses

Disk I/O

SEQOP, SEQIO, SEQCL 458 DISKZ
DAOPN, DAIO, DACLS 246 DISKZ
ISLDO, ISLD, ISLDC 639 DISKZ
ISADO, ISAD, ISADC 1799 DISKZ
ISEQO, ISETL, ISEQ, 721 DISKZ
ISEQC
ISRDO, ISRD	 ISRDC 460 DISKZ

RPG Decimal Arithmetic

RGADD, RGSUB, RGNCP 464
RGMLT 320 RGBTD, RGDTB
RGDIV 815
RGMVR 118 RGBTD
RGBTD, RGDTB 112

RPG Sterling and Edit

RGSTI 258 RGBTD, RGDTB
RGSTO 464 RGBTD, RGDTB
RGEDT 315

RPG Move

RGMV1, RGMV5 148
RGMV2 179
RGMV3 48
RGMV4 86

RPG Compare
RGCMP 82

RPG Inidcotors
RGSI I 68
RGSI2 78
RGSI3, RGSI4 40

RGSI5 92

RPG Misce I loneous
RGTSZ 72
RGCVB 86
RGERR 70
RGBLK 58
ALTSE (user-written) (variable)

Figure 28. Core Requirements of RPG
Subroutines (CF2 only)

138

Appendix F. Execution Times of Subroutines

Execution times for the Synchronous
Communications Adapter subroutines are
listed in the adapter subroutine manual.

CONVERSION SUBROUTINES (see Figure 29).

All the remaining time, minus cycle
steals, is available to the user.

2. ILS time is included in ISS interrupt
processing calculations

C/PT System

Basic Definitions

1. All times are based on 3.6-psec
instruction cycle.

2. The table ordering for codes is as
follows (except SPEED)

ILSOO -
ILSO1 -
ILSO2 -
ILSO3 -
ILSO4 -

CARDO (col), CARD1 (col)
PRNT1
DISKO, DISK1, DISKN
PLOT 1
CARDO (op complt), CARD1 (op
complt) WRTYO, TYPEO, PAPT1,
PAPTN

Standard set: blank, +, &, -, 0-9,
A-Z, other special

Extended set: standard, non-FORTRAN
special, control

3. Maximum number of characters checked
varies with the set.

Standard set
Except SPEED: 49
SPEED only:	 16

Extended set
Except SPEED: 74
SPEED only:	 45

4. 2onversiontimes given are

Best time: Found as first character
in set

Worst time, standard set: Found as
last character in set

Worst time, extended set: Not found
in set

5. Time per character is best time, plus
table look-up time multiplied by the
number of characters to be skipped.,

Example:
If best = 211, look-up = 45.5 and
character is fourth in table (-)
Then, character time = 347.5 = 211
+ 3 (45.5)

1130 ISS TIMES (see Figures 30 and 31)

Basic Definitions

1. Only CPU time used by ISS (including
transfer vector BSC L) and ILS
(including forced BSI I) is given.

itia l -Initial-
ization

Time, Per Character

Worst Table
Look-

Best Std.
Set

Extd.
Set

Up

BINDC 1130 - - -
DCBIN 1110 - - -
BINHX 620 - - -
HXBIN 760 - - -

HOLPR 430 211 2395 3533 45.5
EBPRT 420 207 2487 3675 47.5

HOLEB
EBCDIC output 550 159 2343 3481 45.5
EBCDIC input 550 161 2441 3629 47.5

SPEED
Packed EBCDIC output 250 270 - - -
Unpacked EBCDIC output 270 260 - - -
Packed EBCDIC input 240 394 1594 3914 80.0
Unpacked EBCDIC input 240 404 1604 3924 80.0

ZIPCO (DM2 only)
All codes except IBM 270 270 - - -

Card Code
IBM Card Code input 270 374 - - -
IBM Card Code output 270 435 - - -

PAPPR 580
Per shift char. input 180 - - -
Per graphic char. input 427 2707 3895 47.5
Per control char. input 407 2687 3875 47.5

PAPHL
PTTC/8 input 490
Per shift char. input 180 - - -
Per graphic char. input 306 2482 3870 49.5
Per control char. input 296 2472 3860 49.5
PTTC/8 output 490
Per control char. output 266 - 3830 49.5
Per graphic char. output 316 2492 3880 49.5
Per shift/graphic char. output 446 2622 4010 49.5

PAPEB
PTTC/8 input 440
Per shift char. input 190 - - -
Per graphic char. input 366 2542 3930 49.5
Per control char. input 386 2562 3950 49.5
PTTC/8 output 440
Control char. output 296 - 3860 49.5
Per graphic char. output 346 2522 3910 49.5
Per shift/graphic char. output 476 2652 4040 49.5

Figure 29. Execution Times of 'Conversion
Subroutines

Appendix F. Execution Times of Subroutines 139

DM2 System

ILSOO - CARDO (col), CARD1 (col)
PNCHO (col), PNCH1 (col)

ILSO1 - PRNT1
ILSO2 - DISK 1, DISKN
ILSO3 - PLOT1, PLOTX
ILSO4 - CARDO (op complt), CARD1 (op

complt), PNCHO (op complt), PNCH1
(op complt), READO, READ1, WRTY04

Subroutine and
Function

Times (p.sec)
(n	 word count)

ILSOO 112
!LSO' 134
ILSO2 112
ILSO3 112
11504 148

CARDO
Test 165
Read 14930 • 38.5 (n)
Punch 763 •	 185 (n)
Feed 605
Sel.	 Stack. 290

CARD1
Test 165
Read 14972 4 38.5 (n)
Punch 800 • 190 (n)
Feed 640
Sel.	 Stack. 325

WRTYO
Test 165
Pr int 228 + 734 (n)

TYPEO
Test 165
Read print 685 • E (825 + 48.5y) + 3900 +

1595 b + 1224 c

e , sum of char. times for each
graphic

y	 no. char. skipped in table
look-up

a	 EOM choracter
b - re-entry character
c -.backspace character

Print 344 + 920 (n)

PAPT1
Test 152
Read 432 4 808* (n)

*add +112 if check

Punch 480 4 680* (n)

*odd +96 if check

PAPTN
Test 176
Read 408 + 952* (n)

*add +112 if check

Punch 464 + 840* (n)

*add +64 if check

PLOT1
Test 130
Print 418 = if char is 0-9

472 = if char is A
624 = if char is B

698 + 752 = if char is C
224	 per dup. of

previous pen
motion

TYPEO, PAPT1, MTN, PAPTX, PRNT3,
DMPR 1

Note: In the DM2 system, the Z subroutines
are considered to be ISSs and therefore use
the appropriate ILSs, e.g., PRNTZ uses
ILS01.

3. All times are based on a 3.6-psec
instruction cycle.

Subroutine and
Function

Times (ihsec)
(n = word count)

PR NT I
Test 188
Print 44142 + 5971.2 (n-I)*

*subtract 11.4 for each word
where 1 char. does not ma•ch;
22.8 where both char, do not
match.

Print Numeric 25950 + 2736.8 (n-I)
+268 x

x = no. idle cycles before 1st
numeric char, on wheels is
reached

Control
Single space 708
Double space 998
Triple space 1288
Skip to channel 12 676*
Skip to channel 1 936*

*odd 208 for each channel crossed
before correct one reached

DISKO
Test 178
Read 1492
Write
Without RBC 1778
With RBC 2050
Write Imm 1062
Seek
1	 to center 1076
By adds 1502

DISK I
Test 178
Read 900 + 760 x + 478 y

x = no. sectors
y = no. seeks after 1st sector

Write
Without RBC 1292 + 660 x + 822 y
Write
With RBC 1562 + 1098 x + 908 y
Write Imm 660 + 622 x + 476 y
Seek
1 to center 1072
By adds 1468

DISK N
Test 178
Read 908 + 652 x + 1012 y

x = no. sectors
y = no. seeks after 1st sector

Write
Without RBC 1516 + 610 x + 926 y
Write
With RBC 1728 + 1022 x + 1178 y
Write Imm 820 + 606 x + 282 y
Seek
1 to center 1076
By oddr 1478

Figure 30. Execution Times of 1130 ISS (C/PT System)

140

Subroutine and
Function

Times (p sec)
(n = word count)

ILSOO 112
!LSO] 134
ILSO2 102
ILSO3 112
ILSO4 163

CARDO
Test 165
Read 14930 + 38.5 (n)
Punch 763 + 185 (n)
Feed 605
Sel. Stack. 290

CARD
Test 165
Read 14972 + 38.5 (n)
Punch 800 + 190 (n)
Feed 640
Sel. Stack. 325

READO
Test 173
Read 546
Feed 523

READ1
Test 173
Read 576
Feed 553

PNCHO
Test 165
Punch 763 + 185 (n)
Feed 605

PNCH1
Test 165
Punch 800+ 190'(n)
Feed 640

WRTYO
Test 165
Print 228 + 734 (n)

TYPEO
Test 165
Read print 685 +	 t (825 - 48.5y) + 390 a +

1595 b + 1224 c

*	 = sum of char. times for each
graphic

y	 = no. char. skipped in table
look-up

a	 = EOM character
b	 = re-entry character
c	 = backspace character

Print 344 + 920 (n)

PAPTI
Test 152
Read 432 + 808* (n)

*add + 112 if check

Punch 480 + 680* (n)

*add + 96 if check

PAPTN
Test 176
Read 408 + 952* (n)

*add + 112 if check

Punch 464 + 840* (n)

*add + 64 if check

PLOT1
Test 130
Prin (= if char is 0-9

678+ 	 472 = if char is A
624 = if char is B

Subroutine and
Function

Times -(p sec)
(n = word count)

PLOT] (Cont'd)
678+ f 752 = if char is C

-I. 224 = per dup. of
previous pen
motion

PRNT1
Test 188
Print 44142 + 5971.2 (n-1)"

*subtract 11.4 for each word
where 1 char. does not match;
22.8 where both char. do not
match.

Print Numeric 25950 + 2736.8 (n-1)
+ 268 x

x = no. idle cycles before 1st
numeric char. on wheels is
reached

Control
Single space 708
Double space 998
Triple space 1288
Skip to channel 12 676*
Skip to channel 1 936*

*add 208 for each channel crossed
before correct one reached

PRNT3
Test 183
Print 3743 + 45 (n-1)
Control
Single Space 785
Double Space 6746
Triple Space 12704
Skip to channel 12 817
Skip to channel 1 817

OMPRI
Test 227
Feed 710
Read 805 + 286 x c

c = no. of chars. programmed to
be read

Disconnect 506
Sel. Stack. 495

DISK!
Test 158
Read 1021 + 491 x + 1226 y

x = no. sectors
y = no. seeks after 1st sector

Write
Without RBC 1035 + 491 x + 1226 y
Write
With RBC 1829 + 982 x + 2452 y
Write Imm 689 + 491 x + 489 y
Seek
1 to-center 1843
By addr 2056

DISKN
Test 244
Read 1500 + 725 x + 1973 y

x = no. sectors
y = no. seeks after Ist sector

Write
Without RBC 1500 + 725 x + 1973 y
Write
With RBC 2599 + 1450 x + 3947 y
Write Imm 1085 + 725 x + 1707 y
Seek
1 to-center 1871
By addr 2151

Figure 31. Execution Times of 1130 ISS (DM2 System)

Appendix F. Execution Times of Subroutines 141

ARITHMETIC AND FUNCTION SUBROUTINES

The execution times of the arithmetic and
function subroutines are shown in Figure
32. All times are based on a 3.6-psec
instruction cycle; the times containing a
decimal point are milliseconds, all other
are microseconds.

SPIR (C/PT SYSTEM)

The SPIRx subroutines take 220 psecs
(3.6-psec instruction cycle) plus the
DISKx time to read sector 0000.

STANDARD EXTENDED

FADD/FADDX 1	 460 ADDXEADD	 440 /E
FSUB/FSUBX	 560 ESUB/ESUBX	

1	
490

FMPY/FMPYX	 560 EMPY/EMPYX	 790
FDIV/FDIVX	 766 EDIV/EDIVX	 2060
FLD/FLDX	 1	 180 ELD/ELDX	 1	 160
FSTO/FSTOX J	 180 ESTO/ESTOX 5	 170
FLOAT	 330 330
IFIX	 140 140
NORM	 260 260
FSBR/FSBRX	 650 ESBR/ESBRX	 740
FDVR/FDVRX	 1090 EDVR/EDVRX	 2520
SNR	 80 80
FABS/FAVL	 50 EABS/EAVL	 60
IABS	 100 100
FGETP	 330 EGETP	 320
FARC	 60 60
XMDS	 260 --
FIXI/FIXIX	 465 465
XSQR	 550 ay. (860 max.) 550 ay . (860 max.)
XMD	 520 520
XDD	 1760 1760
FSIN/FSINE	 1
FCOS/FCOSN J	

3.0
3.4

ESIN/ESINE	 1.
ECOS/ECOSN	

5.4
5.9

FATAN/FATN	 5.2 EATAN/EATN	 8.9
FSQRT/ESQR	 4.5 ESQRT/ESQR	 10.4
FALOG/FLN	 5.1 EALOG/ELN	 8.0
FEXP/FXPN	 2.0 EEXP/EXPN	 4.4
FAXI/FAXIX	 3.8 EAXI/EAXIX	 4.7
FAXB/FAXBX	 8.0 EAXB/EAXBX	 13.3
FTANH/FTNH	 4.3 ETANH/ETNH	 8.1
FBTD (bin. to dec.)} 	 40.0
FDTB (dec, to bin.)	 20.0

40.040.
20.0

Figure 32. Execution Times of Arithmetic
and Function Subroutines

142

Appendix G. Re-enterable Code

Re-enterable Code

Re-enterable code is defined as code that
can be executed by more than one program at
a time and that does not modify itself.
Such code makes it possible for the
programmer. to write subroutines that can be
called from more than one level of program
operation; that is, from the mainline level
(no interrupt) and an interrupt priority
level or from two different interrupt
priority levels. Two problem areas in
writing re-enterable code are (1) obtaining
temporary storage, and (2) modifying
storage locations and/or instructions.

It is necessary, in this discussion of
re-enterable code, to point out the
following facts about the 1130 and its
method of operation:

• Instructions have direct and indirect
addressing. The operand of an
instruction can address a location that
contains either the value or the
address of the location that contains
the value to be addressed, multiplied,
etc..

• Index registers occupy storage
locations that can be addressed.

• Register housekeeping is performed for
interrupts. IBM Disk Monitor
interrupt-programming saves and
restores the index registers,
accumulator, and accumulator extension.

• Interrupts on same or lower level of
priority are inhibited. Once the CPU
has executed the hardware-forced branch
for a level of interrupt priority, no
hardware-forced branch for that level,
or a lower, level can occur until the
programmer exits from the level.

• Storage can be modified by a single
instruction (2/TX instruction) that
cannot be interrupted.

• The subroutine call instruction (BSI
instruction) is not re-enterable. The
call instruction stores the return link
(address of next instruction following
the call) in a storage location. This
return-link storage location cannot ne
varied by the subroutine. Therefore, a
second call to the same subroutine
stores the return link for the second
call in the same location where the
return link for the first call was

stored. (The subroutine-call
instruction is also the instruction

• executed for the hardware-forced branch
that initiates processing for a level
of interrupt priority.)

• Index istructions cannot be indexed.
The index instructions (load index,
store index, modify index) cannot
specify an index register to address
the storage location from which the
register is to be loaded or modified,
or into which the register is to be
stored.

• There are no register-to-register
instructions. The index registers and
accumulator must be loaded from, stored
into, or modified from core storage.

• There is no indirect adiressing for
load-index and modify-index
instructions. These two instructions
have only immediate operands, and
directly-addressed operands.

• There is no instruction to inhibit
interrupts. There is no mask
instruction to selectively or
completely inhibit levels of interrupt,
and no instruction to force an
interrupt level on.

The definition of re-enterable code
given earlier can ne extended to include
code that modifies itself as long as the
modification does not affect the output of
the code. Such an extension permits the
code to be executed by more than one
program at a time. Using this extended
definition of re-enterable code, the
remainder of this discussion illustrates
how re-enterable code can be written for
the 1130.

The Disk Monitor, the Card/Paper Tape
System, and their subroutines are not
re-enterable. This does not prevent the
user from writing his own re-enterable
subroutines as long as these subroutines do
not call, either directly or indirectly
(for example, LINK), any risk Monitor or
Card/Paper Tape subroutines.

For discussion purposes, there are two
areas in writing re-enterable code: (1)
getting to (calling) the code, and (2)
writing the code. Assuming the existing
assemblers and compilers, re-enterable code
can only be written in assembler language.
However, re-enteraole subroutines may be

Appendix G. Re-enterable Code 143

1,•,74

65	 70

,X.7. .2 ay./ 	, ,n,	 ,,,re Ur

called by either assembler or FORTRAN
language programs as described below.

CALLING A RE-ENTERABLE SUBROUTINE

The subroutine calls (LIBF and CALL) cause
the following BSI instructions to be
generated:

CALL Generated Code System

CALL subr BSI I subr TV locat Disk Monitor
System,Version
2

CALL subr BSI L subr Card/Paper
Tape System

LIBF subr BSI 3 subr TV disp both systems

For a re-enterable call, the subroutine
call instruction should be preceded by
another instruction which places the return
link in a location saved and stored by
interrupt programming, such as in an index
register, the accumulator, or the
accumulator extension. Through conventions
agreed upon between the calling program and
subroutine, the re-enterable subroutine
called expects the return link to be in a
pre-defined register and ignores the return
link stored by the subroutine-call (branch)
instruction. The added instruction in the
calling sequence can be a load-index or
load-accumulator instruction, or even a
load-double (accumulator and accumulator
extension) instruction. This combination
(load instruction + subroutine call) gives
the programmer a re-enterable call that can
be used in 1130 programming.

The re-enterable call (two instructions)
can be generated for the assembler user by
(a) writing and then using a macro, or (b)

by actually coding the two instructions.
For example, if index register 2 is
selected for the return link, the following
code could be used:

The RCALL macro is defined by the following
code:

The FORTRAN user must write a special
subroutine in assembler language and then
call that subroutine in FORTRAN. That
subroutine is not re-enterable.
Consequently, there must be a separate
special subroutine for each level (mainline
or interrupt) from which FORTRAN calls may
be executed. To call re-enterable
subroutine A with parameters X and Y, the
FORTRAN user would name subroutine A in an
EXTERNAL statement and then call special
subroutine B with parameters A, X, and Y,
in that order. Subroutine B would load the
pre-defined register with the address of
the location immediately following the A
parameter and, using the A parameter, would
call subroutine A. If subroutine A is
called as follows:

CALL A (X, Y)

then this call can be replaced by the
following code to obtain a re-enterable
call:

EXTERNAL A
•
•
•
CALL B (A, X, Y)

If index register 2 is selected for the
return link, special subroutine B is
defined as follows:

label

31	 o
,	 Opwatical

v	 w
F

xxxl
T

• a
OM* 6 Itemds

45	 50	 55 60 65	 70

L Nr, a 	
ft,41,

2 2=	 4:441,,ofs CA41, A ,, 	 t
.... DX, 2 a 	 ,,,, AIRR,.a.ddr	 of ohol,ofr, X i

SC L2	 	,2 ,,,, eascid,	 ,ho, ,GALL A t

The re-enterable calling sequence allows
the return address stored by the call (BSI)
to be modified by the interrupt without
affecting subroutine operation since a
re-enterable subroutine ignores the
effective address (EA) location and uses
the contents of XR2 as the return address.

r
	

1
I	 Actual Coding or
	 Macro	 1

	 –r	

I	 I
	

I
I	 LOX L2 *+2	 I

	
RCALL subr

I	 I
I	 CALL	 subr I

	
1

144

OBTAINING TEMPORARY STORAGE

The temporary storage locations that are
easy to use are the areas saved and
restored by interrupt programming: index
registers, accumulator, and accumulator
extension. There are times when these are
not adequate:

• When there are not enough registers

• When registers must be loaded with or
modified by calculate] values (variable
rather than constant value)

• When registers must be loaded from,
stored into, or modified by locations
addressed via index registers

Work areas in storage may be assigned to
each subroutine or program (common to many
subroutines) to provide temporary storage
for each level of operation. Such areas
may be used for storage of intermediate
results, parameters, data, calculated
addresses, etc.. These areas may be
accessed via index registers or address
constants.

Current 1130 interrupt programming does
not provide for level or program work
areas. Such areas can be provided for each
level by modifying the interrupt
programming, by requiring locations in
COMMON, or by other changes. However, it
might be easier for the user to establish
work areas within each re-enterable
subroutine as it is written, rather than to
modify already-written programs and
systems.

A number (X) of subroutine work areas of
length (N+1) can be defined: where X is
the number of work area words needed for
subroutine execution, and. N is the number
of interrupt levels. The subroutine
increments the address of each area by 1
for each entry and decrements the addresses
by 1 for each exit. Any instruction can
then directly or indirectly reference the
area.

Access via index register. If index
register 2 is used to locate a 4-word area
to be used for up to three concurrent
entries, then word 1 might be used for the
address of a parameter an3 word 2 for an
intermediate value, as shown in the
following code:

tztol 5
Omalon27	 33

F	 Ir 33
Opa ea, a Ream.

15	 40	 45	 SO	 55	 .	 65	 70

1

MIMI AMON
MOO il

MOO `

MOM .

WrZEIMMMOSIROw .. :
MONONSINO11 4= 11

Ill= '11/71111M11
MOOMMXIMMIIEI1111001IN11111111r1

a r.

MOPE AIM
MOO AM

IMO

MI A

1•11

•	 i Inc./.	 ald.cl.rt_Wt.	 cer.e.a.	 .	 I	 •	 ■	 .	 , l,
.-	 X -	 ,= cAer,r,e,a1A_AeteAtre4, .a.r.ela, , , , 1

1 1_1..._7 ...a_lr	 •	 t	 o	 .	 I	 .	 7....._ 7_1-J. .7._•__1-7_1-1.--....y .., L ,_	
I .	 I	 1 " 1 1_,	 ■	 .	 .	 .	 ,	 ,..	 _I_	 _L_L__L_L

. acid	 v4h/ Li e. ,(trt)	 1m	 chd.cl.r ... 4
....

I	 • • :	 t 4 od, 51 crtai,a1 .4 J 	 -,-1-1-1./1_,_t_
save	 / c,41 1a,t,ed ,a ddr),g.,e_t„ .P ar,c2ja4t,g,c,__,_,,__L_,_1_,_,,, „,_,_,

I	 4	 1	 1	 ■	 A	 1	 L	 1.1...... -J...1-1-1-1....,1-1.
1.- 1_ 1- -.1_,,__1_,--i .u.--.1--.- L_I-L_Ii

11111A11141 I	

	 ./1 -■	 	 I
111111ill

MOM alilln

ADDR	 41.

OEM •!IIION1111111

•	 c	 4	 '

fit

A MI

C

/ NSTR.# 1 / 	 -4 ,d,e,c,r, pvox,k, ,ar"a, ,a,d,c)r, 	 ,
,

e	 it,	 .	 ,		 _L	 ,	 	 	 t

2	 1_1- a L	 L--■--A--L--L-1_, •	 •	 1	 ■ 	 •	 •	 ,1_1_1-
INOMIWIMIONI 1 1		 1i41111-1-1.-1.—i

14	 md,d.r,	 .c to,n,s,t,atrbt.		 	 	 t

ORKA b -,' SS. l',. *4.	 4 ,	 wax ,k,	 a,r ea
i'' '	. I	 1	 .	 .	 ■ 	 I		 1	 .	 .	 ,	 ,	 1

Ii..11,..,1,..11-1-1111■41.1.•..1...,,

Access via Address Constants. Assume two
words needed for each of three concurrent
entries. Note that an address constant is
required for each word. Inlex register 2
is used here to access call parameters
rather than work area words.

ga,
25

Opsna an
77	 30

F	 i
•	

Opelarat d 1600.10
35	 40	 45	 SO	 55	 .	 65	 70

MOO
OEM

MOM
MO

MOM
11111111111

"Mr

IMO
MEM
UM

IIBIII
I III.

5 IN
MI
1111

.	 I	 •	 .	 •	 ,_1_,	 L._ J.	 ■ 	 •	 ..	 	_7.	 .1_, _.7 _i_t
I	 met r °recta, bre RCA/ d ,many o sett)

7. 7_, 7_1_	 .. 1_. 1_	 A.	 A 7__7_1_1	 _7_4	 .1.._ __1.
1	 I, ,	 1_ t 7 L 	_.	 _7_1_7_
II	 ,y,,, ,1 ,_ ,. , , 1	 , 	

_	 -	 2	 1	 c r	 . d d r , wto,r,k. Wtor . d. . I .	 . I

NM
..!!,.

MIN
WM

Ism
ME

Emu
MOO

MN
MOM

MN
MINI

mum
MEM

MOO
IMMO

MOM

NOM
MIN

MOO
T•IN

NO=
WM

IMMO
IIMIll's

MIME
MOM
III

011110161117M

ME MINIU■

MIMI

11111.11.11

111
timu■s
r477/11100

.inemen
Miii

MO
a NE
WM 1111,1•11
IIIIIIIIIIIIIII

2 4 7 1 I
MEIIIMMI
MOPR♦NE111117-

Will
!NM

MIS

V i
A _
INN

OM

SIMI
III
INN
INA_

IMMI

I Ig
V BUG
a mn,Ell4 NI1 III

I	 .	 ,	 ,	 i._.,.		 •	 .	 .	 4_4_4_1	 	IL..;	 -• 6 +	 2	 ‘	 c_,r aAd.r, re,g,nk, kya9,t- d 2, 	
I	 i	 111 ,.. ,1	 J. 1 A	_7_1.-1 .1.-1-1,
111	 1_	 1	 t	 1_LA_	 _1	 _t	 _t_

,	 ■	 i	 1..1-1-	 A	 	.I.
I		 Ast ore	 XR), *ye yv,o,r tk, word	 1	

.-A	 accacotn,l,e,t1I,s,	 XR1 4-, --	 . 	 .—, . 	
I	 '-	 -,_-_■- 	 ■ 	 1......7 t I 1.. 1_71	 I	 A •	 4	 .1	 	
II	 1 ,	 I__L ii.	 t	 L.	 1	 1_1	 I_A_, 1 ', .,±,11,_ ,. , asts_,/ r,_ IA), .) PI WtoArtk two,rdit	 2	 .

... --u	 chc.c.t...c mn 1 en Ls	 (A)	II	 1_ 	 	 1	 ..	 /....._e_i_1_,_._u_1_,
,__,_1_■_., L.,. 11 1_7_1_111• L__L_L__I__L_L_1

I	 ■	 ■	 1	 L	 .	 ,	 .	 I t	 I._	 L	 L	 1	 L L	 ,	 ■	 . y_ _	 - _
I l'• 	, 	 0,b.l-',aj.n,	 1 s I	 ,c a I /_1_1_,	 _,po,c,ame,t,e,rA,_
V	 ,I,e 1 I -j,us t,i,fry„ 2.0„ck._A__„,_,	 . 1„2,.y„t„etPA 	 save	 hu,s,t i Iti.es_._,),(1 le
II	 , ,. ,o,A1 ,cr i m	 2nd Aceal,l, lis,a,r,ame 1.e.r	 I

f% z.'FF'	 , . A_ .4%0).0 (Le Age■CLAbtiltt.ea_. 	 1	 1.,_1__7_1.A	 L_L._,_	 StaLeki ^de W i tiltAl ,e2_ A AY,1_,e.L1._,_._,A_
11	 I	 a	 •••	 1	 t.	 7	 7	 1	 4,	 ,	 1.1.	 A	 .	 7_1.7_.	 .	 	

A	 ,_._.__L_I___ ,_ 4_..._1_ .	 .	 •	 .	 ■.1 _I_11, .	 ,	 .	 .	 ,	 .	 .	 , 17_, 7	 t__1,	 ,	 1 i I_ 1.,_,A__L_t_t_7_1_1_I 1M
1 1

II	 r.- •	 -..,_,IALlerrx„._,crtdc1r,_wia,r,k, Avio,r.st .1.	 , . . , I

.-.	 2,0 *1	 ,-,2, ,c)e,c.r. .a.dd.r,	 tA,,,o,r,k, reo r cl. .2. ..

......	 •	 •	 16.x,	 .	 ■I
■.1■■/1..■

mrzta
7MMTAMMIIMOMO

=MG
inzrmmu,

MOO
IM■NIMINT,e,orr,

OM II.

a
-_J__± 	 i__..	 1	 L.1 _...,_._	 ,	 _.	 .	 4	 ._ .	 .1_ .7 .7	 1	 1 _7_, ,	 ,	 1	 • _s_u___I__

II 111111•11111	 	

Mill ..L	 t	 I	 ,._	 .	 1	 1_7_1 _1.		 _1_,_.....t111	 4	 •
..-,a_	 astdr	 02,1	 curd: en I Ave„o,r„k,r.d, .1eo

5 IP.0,e e AL0X......JAAerti.),rti ..ete..A_A__,_.__.__.,_
,	 ,	 . peas k,	 Lo	 ,i,s,o,l,a,t,e„	 ,r,i ,a,h 1 mo.s,t. I

bto,t.e.	 1	 ,	 I	 • _l_t_7_,_
.		 i 	 .	 •	 .	 i		 •	 .	 ..

Note: Interrupts WO the subsequent call
from interrupt processing) can occur after
any instruction; therefore, each direct
reference to the work area should address a
different area. Otherwise, at any time, a
sequence that should address a particular
word in the work area can end up
referencing different words in the work
area and overlaying the contents of words
used for a previous, and yet unfinished

Appendix G. Re-enterable Code 144.1

Opwerais Jilonor.
35	 a4554	 55	 ea	 64

OCIC.S.T..1.+01 .1. ■acr. mar ,k„a , r , e ,, ,, csd,d.r. .

Operands 6 Ras
so	 ss

Y.,	 „	 ,,,,,,	 .J	 J

,,,,,	 i	 i	 ,,,,,,,,,

C	

,,,,,	 "	 1	 1 ,
.1	 Ilt	 ,,,,,,,

call. The following example avoids this
problem:

MODIFYING STORAGE OR INSTRUCTIONS

Storage and/or instructions can be modified
in a re-enterable subroutine if the
sequence shown in Figure 32.1 is used.

1. Save the location or instruction to be
modified in temporary storage (work
area, index register, accumulator, or
accumulator extension)

2. Modify the location or instruction

3. Execute, using the modified location or
instruction

4. Restore the location or instruction
from temporary storage

An example best illustrates the
techniques of temporary storage and
storage/instruction modification. The

coding examples below illustrate four ways
of loading index register 1 with the
address of table D, assuming the following
address chain and that only location A is
directly accessible.

The load-index instruction has one less
level of indirect addressing than the
load-accumulator instruction. Using the
symbol A as an operand, an indirect
load-accumulator instruction can obtain the
address of C, while an indirect load-index
instruction can only obtain the address of
B. The coding examples illustrated below
show that using work area words is the most
expensive method, both in number of
instructions required, and in the time it
takes to execute those instructions. The
technique selected depends on the temporary
storage available at the time (accumulator
extension, or second index register, or
neither).

A address of B coldressofC
oddremofD
address of E

Figure 32.1 Modifying Storage or Instructions

144.2

Example 1. Using work area words:

,e.,
25

Open..
27	 35

F 1
23

Operand, & Res=r4s
15	 40	 45	 50	 55	 60	 65	 'a

DX, IINST,14-11.„1, 	 ,i1a.c.r	 .crldd.r. erio.r.k. 	 ,a,r.ea, .4 ,,,,,	 i
DX L 1,N,S,T,2,1.11,,,1„1,n,c,r,	 ,ced,d.r. kria,r,k, 	 ,air e,a,	 8	 .	 .	 ,	 I

l
, 	 	 I	 r	 3	 ,,	 t

i	 I	 •	 Irrr	 rIr	 Iltlir	 1111	 ar•irir•I
LA ,,,	 ,aic,c,=,a,c4c 1r	 a	 ,,,,,,,	 .	 ,,,,,,	 4

•	 ',Oral	 	 i 	 t
.T0 1 IINST,1,411 ,,, a , c,c,e,a,cria,r, 	 a-fra, ,	 .	 ,	 1	 ,,,,,,	 .	 .	 .	 I

1 1V,ST.1 L.0 . / RKA-11,	 .	 4110 C — GI cAdf,	 D	 I	 x 1	 •	 ,,,,	 I 	 3 _L__/--L_I
i	 2	 1	 1.1ilellilL1111.,.,

.8K,E1,-,1	 . ,i,n,d,e,k	 ,r,e,q,	 1,,ad,d,r,	 ,D, 	 , 1111111i1111 1 ,,,,„.,

leel
.....11=YMOMMIN

arAnal 1 .11 1	 T 1 # 1	 -1	 • e c r	 a d cl,r,	 pv,o,r,k, ,a,r,e,a, ,A,	 , , , ,
.	 1	 -	 cl,r,	 wer.k.	 ,a.r.e.a.	 a,	 I.■ 1.•
isr	 1.1,	 111■1111	 .1111iti	 alriloi

I
I	

,	 ■	 I	 I	 L	 I	 1	 I	 L	 ,	 ,,,,,,,,,,,,,,,,,,

Mill i,
in or k	 -	 r,e,a ,, 1 ,,,,,,,,	 r 	 1	 I 	 I 	 r 	 r 	 • 	 I
4,-,	 ,or k	 ch♦ ea 	2	 tORK811111

Example 3. Using a second index register:

labe 2, ,	 OperatI. F	 T Op

35.5	 45	
Operand, I Remarks

50	 55	 60	 65
3,

LAX / !Atari :ha,	 , , sa,v,e	 clam t,e,rnl e, .o,ff, ,1,tisni,i-.1, ,inn

	 	 X82,	 t	 ,	 ,	 ,	 ,,,,	 1	 ,	 ,	 . 	 1	 ,	 . 	 I

,41	 	 	 ccr=ad,dr, a	 1	 .	 , 	 ,	 1	 ,,,,,,,

1 ,N,ST 1,+, 1 ,	 ,	 ,a,c,c,.,a cid, r ,	 ,43,.... I,

1,N,S.T1 DX 11 41,-31.	 ,	 1	 .	 .i,n.cle,x,	 ,r.ea	 1.=,a,ddr.	 .0	 .	 I	 .	 1

TX 1,1•15,T,1,3,1,	 ,	 „r le,s,lo,r,e„c,o,n11,e,n,1,s, 	 ,o,f,	 .1,N.S.T.1,1-11

Example 4. Taking advantage of the fact
that 1130 index register occupy storage
locations that can be addressed:

°pendia..	 f 1	 Operands I Remade,
27	 30 D 33 35	 l0	 45	 50	 55	 a	 65

L!	 .	 d I ,B,_i__,_ , 	 , 	 	 	 I__

	

MOON WM t11111	 ,148,10.-. a chd,r, a, , , , ,, _,_ ,_ , , , , , , ,,_

	

MMOOMINMERSOOM	 _,_,_L_,3c c ,,, acAdr D 1.__ 4_4_ A__ 1_ A_.,	 i
MOOMOIMOMOIROM	 X 1eaddr a i , ,_, , , 	

	 I	 I	 I •,,L_Lele tl ■__, 	

Example 2. Using the accumulator
extension:

1800 COMPATIBILITY

M.5
15

Opetar.c.
17	 30

F
32

3
31 15

Operands , Round"
es	 50	 55	 51 65	 R0

MOIMINErM
11.1.11111MMIIIMI
IMOOMMEIN111111111A,
MOOMMIWAIMMO

IIIIIIII

'

•. ,	 c	 ndis,	 Lo.f. A INST.1,#,1, , ,	 .
• ‘,,e,	 L ie,.	 aa,c,	 ,e,o,f,	 1 ,	 ,	 ,	 ,	 I
•,_, ,	 ,_ atP,c,=,a.a,d,r, a ,,,,, A. 	,_-_,—_,---_,-- 	..
NST1 1 cceaddr	 111, , 	 , L,_, , , „ „ „

, „ „1,ncle,k	 ,r,e,a, .1,.=.ari.d,r, 	 ,D	 , ,	 , 	 ,	 ,	 •

MOMrailtal
11111011111111111•111•*InBIM 1' IIIIi/	 Tr 1	 ,c,o,n I enl s	 of_,_,_,r,e,s,t,o,r,e, 1 NST1 #1

,	 ,	 ,	 -,_„,_,__,__, ,	 ,..,	 .._,__1_, _l__1_,_,,__1_,._1_4_,__,__

Each MDX instruction used to increment or
decrement addresses must be immediately
followed by a NOP instruction because of
the skip that occurs if the addresses cross
the 32K boundary (positive value less than
32K, negative value equal to or greater
than 32K. The example 4 technique of
modifying storage and/or instructions
cannot be written since the 1800 index
registers do not occupy addressable storage
locations.

Appendix G. Re-enterable Code 145

Index

Where more than one page reference is
given, the major reference is first.

ADRWS (write sector address in
working storage: monitor system) 110
Arctangent 103
Arithmetic and functional subroutine
error indicators 98
Arithmetic and functional
subroutines 93

Arithmetic subroutine core
requirements 137

Arithmetic subroutine execution
times 142
Assignment of core storage locations
(card/paper tape system) 16

Assignment of core storage locations
(monitor system) 17

Backspace 39
Basic ISS calling sequence 14
BIDEC subroutine (monitor
system) 89
BINDC subroutine 79
BINHX subroutine 80
BSC/printer overlap 35

Call processing (ISS) 9
Calling a re-enterable subroutine 144
Calling sequences (arithmetic and
functional subroutines) 94

CALPR (call system print;
monitor system) 107
CARDZ subroutine 71,74
CARDO subroutine 19
CARD1 subroutine 19
Card subroutines 12,14,15,19,20,70
71,73,74
Carriage control operations 34-38
Character code chart 133
Character interrupts 10
Check legality of calling
sequence (ISS) 10
Console printer code 77,133
Console printer/keyboard
subroutines 38,70,71,73,74

Contents of an ISAM file 53
Control parameter (ISS) (also
see individual subroutines) 15
Conversion subroutine core
requirements 138
Conversion subroutine error
checking 79

Conversion subroutine execution
times 139

Conversion subroutines 78
COPY (disk copy: monitor -
system) 109
Core requirements of subroutines 137
CPEBC (ZIPCO table) 91

CPHOL (ZIPCO table) 91
CPP13 (ZIPCO table) 91
Creating and using ISAM files 57

Data channel 8
Data code conversion subroutines 76
Data transfer, methods of 8
Data transmission subroutines 7
DCBIN subroutine 80
DECBI subroutine (monitor
system) 90
Defective cylinder handling 25
Defective sector handling
(disk subroutines) 30

Descriptions of data codes 76
Description of interrupt service
subroutines 19

Descriptions of I/O subroutines
used by FORTRAN 70,73
Determine status of previous
operation 10

Determining ISAM file size 57
Device identification (ISS) 16
Device processing 8
Direct program control 8
DISC (disc initialization
satellite cartridge; monitor
system) 109

DFCNV (disk data file
conversion) 109,110.1

Disk file information (DFI)
table-direct access 51

Disk file information (DFI)
table-ISAM add 61

Disk file information (DFI)
table-ISAM load 58

Disk file information (DFI)
table-ISAM sequential 63

Disk file information (DFI)
table-ISAM random 66

Disk file information (DFI)
table-sequential access 51

Disk file management subroutines
(DM2) 49

Disk initialization (card/paper
tape system) 28

Disk initialization (monitor
system) 32

Disk maintenance programs
(monitor system) 109

Disk I/O subroutines 49
DISKN subroutine

card/paper tape system 24
monitor system 28

Disk pack initialization routine
(card/paper tape system) 28.1

Disk subroutines (card/paper
tape system) 24

Disk subroutines (monitor system) 28
DISKZ subroutine (monitor
system) 28.1,32

146

DISKO subroutine (card/paper
tape system) 24
DISK1 subroutine

card/paper tape system 24
monitor system 28.1

DLCIB (delete core image buffer:
monitor system) 110
DPIR (card/paper tape system) 28
DSLET (dump system location
equivalence table: monitor
system) 110
DSPYN Subroutine 48
Dump on console printer 106
Dump on 1132 printer 106
Dump status area 106

EABS , real absolute value
(extended) 98

EADD (X) , real add (extended) 95
EALOG, real natural logarithm
(extended) 96,99

EATAN, real trignometric
arctangent (extended) 96,100
EATN, real trignometric arctangent
(extended) 96

EAVL , real absolute value
(extended) 98

EAXB (X) , real base to a real
exponent (extended) 97,99
EAXI (X) , real base to an integer
exponent 97,99
EBCCP (ZIPCO table) 91
EBCDIC 78,133
EBHOL (ZIPCO table) 91
EBPA (conversion table) 78
EBPRT subroutine 88
EBPT3 (ZIPCO table) 91
ECOS , real trignometric cosine
(extended) 96,99,100

ECOSN, real trignometric cosine
(extended) 96,99

EDIV (X) , real divide (extended) 96
EDVR (X) , real reverse divide

b (extended) 98
EEXP , real exponential
(extended) 96,100

Effective address calculation
(disk subroutines) 28,32

EGETP, get parameters
(extended) 98

ELD (X) , load FAC (extended) 96
Elementary function algorithms 102
ELN, real natural logarithm
(extended) 96,99,100

EMPY (X) , real multiply
(extended) 96

End of file (monitor system) 99
End of message 40
Erase field 40
Error detection and recovery
procedures 10

Error parameter-important
locations 27
Error parameter (ISS) (see
also individual subroutines) 16
Error detected by ISS
subroutines 130

ESBR (X) , real reverse subtract
(extended) 98

ESIN, real trignometric sine
(extended) 96,99,100

ESINE, real trignometric sine
(extended) 96,99

ESQRT, real square root
(extended) 93,96,101

ESTO (X) , store FAC (extended) 96
ESUB (X) , real subtract
(extended) 95

ETANH, real hyperbolic tangent
(extended) 96,101

ETNH, real hyperbolic tangent
(extended) 96

Execution times of 1130 ISS
(DM2 system) 141

Execution times of arithmetic and
function subroutines 142

EXPN, real exponential (extended) 96
Exponential 104
Extended Binary Coded Decimal
Interchange Code (EBCDIC) 78,133

Extended precision format 93
Extended precision subroutines 100

FAI3S, real absolute value
(standard) 98

FADD (X) , real add (standard) 95
FALOG, real natural logarithm
(standard) 96,99

FARC, real arithmetic range
check 97
FATAN, real trignometric
arctangent (standard) 96,101
FATN, real trignometric arctangent
(standard) 96

FAVL, real absolute value
(standard) 98

FAXB (X) , real base to a real
exponent (standard) 97,99

FAXI (X) , real base to an integer
exponent (standard) 97,99

FBTD, real binary to decimal 97
FCOS, real trignometric cosine
(standard) 96,99,101

FCOSN, real trignometric cosine
(standard) 96,99

FDIV (X) , real divide (standard) 96
FDT.b, real decimal to binary 97
FDVR (X) real reverse divide
(standard) 98

FEXP, real exponential
(standard) 96,101

FGETP, get parameters (standard) 98
File organization 49
File processing 49
File protection (disk
subroutines) 25,29

Fixed-point format 94
FIXI (X) integer base to an
integer exponent 97,99

FLD (X) load FAC (standard) 96
FLI PR (LOCAL/SOCAL overlay:
monitor system) 107
FLN, real natural logarithm
(standard) 96,99,100

Index 147

FLOAT, integer to real 97
Ft'PY (X) , real multiply (standard) 96
FORTRAN, subroutines used by 70,73
FSBR (X) , real reverse subtract
(standard) 98

FSIN, real trignometric sine
(standard) 96,99,101

FSINE, real trignometric sine
(standard) 96,99

FSLEN (fetch phase IDs from
SLET: monitor system) 107
FSQR, real square root
(standard) 96,99

FSQRT, real square root
(standard) 96,99,102

FSTO (X) , store FAC (standard) 96
FSUB (X) , real subtract (standard) 95
FSYSU (fetch system subroutine:
monitor system) 107
FTANH, real hyperbolic tangent
(standard) 96,101

FTNH, real hyperbolic tangent
(standard) 96

Functional subroutine accuracy 100
Functional subroutine core
requirements 137
Functional subroutine execution
times 142
Functional subroutines 93
FXPN, real exponential (standard) 96

General error-handling procedures 12
General specifications (FORTRAN
subroutines) 70,73
Graphic subroutine package 7,48

Hexadecimal notation 76
HLPT3 (ZIPCO table) 91
HLEBC (ZIPCO table) 91
HOLCP (ZIPCO table) 91
HOLEB subroutine 81
HOLL (conversion table) 78
HOLPR subroutine 87
HXBIN subroutine 81
Hyperbolic tangent 105

LABS, integer absolute value 98
IBM card code 77,133
ID (charge cartridge ID:
monitor system) 109
IDENT (print cartridge ID:
monitor system) 109
IFIX, real to integer 97,99
ILS description 9
ILS, writing 112
Implications of the user's error
routine 13
Indexed-sequential (ISAM) file
organization 46
Indexed-sequential organized
(ISAM) disk routines 50

Initiate I/O operation 10
REQ 38

Interrupt branch addresses 16,17
Interrupt level subroutines 9,17,18,112
Interrupt processing 8
Interrupt Request Branch Address 18
Interrupt response processing 10
Interrupt service subroutines 8
Interrupt trap 17
I/O area parameter (ISS) 	 (see
also individual subroutines) 16

I/0 function (ISS) 	 (see also
individual subroutines) 16

ISAL add routine 60
ISAM add routine, operation of 61
ISAM contents of 53
ISAM determining file size of 57
ISAM disk file information (ET')
table 49,58,61,63

ISAM file index 55
ISAM file label 55
ISAM load routine 57
ISAM load routine, operation of 58
ISAM random 66
ISAM random routine, operation of 66
ISAM sequential 61
ISS branch table 112
ISS characteristics 8
ISS counter 17,18
ISS execution times (card/paper
tape system) 140

ISS execution times (monitor system) 141
ISS exit 17
ISS/ILS correspondence
(card/paper tape system) 112

ISS operation 9
ISS subdivision 9
ISS subroutine core requirements 137
ISS subroutine errors 130
ISS, writing 112

Keyboard/console printer
subroutines 38,70,71,73

Keyboard functions 39
Keyboard input (Z routines) 71

LDEC 97
Level processing 8

Machine configuration 3
Methods of data transfer 8
Miscellaneous subroutine core
requirements 138

Modifying instructions 144.2
Modifying storage 144.2
MOD1F (system maintenance program:
monitor system) 110

MODSF (library maintenance program:
monitor system) 112

Monitor entry point (disk subroutines) 32
Monitor system library listing 118

Name parameter (ISS) 14 (see
also individual subroutines)
NAMEO, NAME1, NAMEN, NAMEZ (ISS) 14,15

148

Natural logarithm 104
No error parameter 12
NORM, normalize 97

Obtaining temporary storage 144.1
OMPR1 subroutine (monitor
system) 46

Operation complete interrupts 10
Operation of the ISAM add
routine 61

Operation of the ISAM
direct access routine 53
Operation of the ISAM load routine 58
Operation of the ISAM random routine 66
Operation of the ISAM sequential
routine 65

Operation of the ISAM
sequential access routine 51

Operator request function
(INT REQ) 38

Optical mark page reader subroutine 43
Overlapping BSC and printer
operations 35

PAPEB subroutine 83
Paper tape subroutine 40,42,71,74
PAPHL subroutine 85'
PAPPR subroutine 86
PAPTN subroutine

card/paper tape system 40
monitor system 42

PAPTX subroutine (monitor system) 42
PAPTZ subroutine 71,74
PAPT1 subroutine

card/paper tape system 40
monitor system 42

Perforated tape and transmission
code 77,133

PLOTX subroutine 45
PLOT4 subroutine 44
Plotter control 43
Plotter subroutines 44,45
PNCHZ subroutine (monitor
system) 70

PNCHO subroutine (monitor
system) 22

PNCH1 subroutine (monitor
system) 22

Polynomial approximation 102,103,104,105
Postoperative error detection 12
Postoperative error traps 18
Preoperative error detection 12
Preoperative error trap 17,18
Printer/BSC overlap 35
Printer subroutines 33-40
PRNTZ subroutine 70,74
PRNT1 subroutine 33
PRNT2 subroutine 35
PRNT3 subroutine 36
PRNZ subroutine (monitor system) 75
Programming techniques - error
subroutine exits 13

Protection of input data (card
subroutines) 20

PRTY (conversion table) 78
PTHOL (ZIPCO table) 91

PTTC/8 code 77,133
PTUTL (paper tape utility program:
monitor system) 111

PT3EB (ZIPCO table) 91
PT3CP (ZIPCO table) 91

Random processing of indexed
sequential files 50

Random processing of sequential
files 50

RDREC (read *ID record;
(monitor system) 107

Read-print (TYPEO) 38
READZ subroutine (monitor
system) 75
READO subroutine (monitor
system) 21
READ1 subroutine (monitor
system) 22
Real base to real exponent (elementary
function algorithm) 102

Real data formats 93
Real negative number representation 93
Real number pseudo accumulator 94
Recoverable device 10
Recurrent subroutine entries 9
Re-enterable code 143
Restrictions on use of PRNT1,
PRNT2 35

RPG compare 69
RPG core requirements 138
RPG decimal arithmetic 66
RPG indicators 69
RPG miscellaneous 69
RPG move 68
RPG object-time subroutines 66
RPG sterling and edit 68

Sample ILS(card/paper tape
system) 114

Sample ISS(card/paper tape
system) 115

Satellite graphic job processor 7
Save calling sequence (ISS) 10
Sector numbering (disk subroutines) 24,29
Selective dump subroutines 106
Sequential access routines 50
Sequential file organization 49
Sequential processing (indexed
sequential files) 50

Sequential processing (sequential
files) 50
Sequentially organized disk routines 50
Set pack initialization routine
(card/paper tape system) 28

Sine cosine 102
SNR, real reverse sign 98
Special monitor subroutines 107
SPEED subroutine 82
SPIR (card/paper tape system) 28
SPIR execution time (card/paper
tape system) 142

Square root 103
Stacker select 20,47
Standard precision format 93
Standard precision subroutines 101

Index 149

Subroutine action after return from
a user's error subroutine 130

Subroutine library listing
(card/paper tape system) 118

Subroutines used by FORTRAN 41,70,73
System library listing (monitor
system) 118

System library mainline programs 109
SYSUP (DCOM update: monitor system) 107

TYPEZ subroutine 70,73
TYPEO subroutine 38
Types of conversion (chart) 78

User's error routine implications 13
User's ISS subroutine error exits 32

Writing ISS (card/paper tape
system) 112
WRTYZ subroutine 71,74
WRTYO subroutine 38

XDD, fixed-point doubleword
divide 98
XMD, fixed-point doubleword
multiply 98

XMDS, fixed-point fractional
multiply (short) 98

XSQR, fixed-point square root 97

ZIPCO conversion tables 91
ZIPCO subroutine (monitor
system) 90

Writing ILS (card/paper tape
system) 112

1403 printer code 78,133
2250 Display unit, Model 4,48

1 2311 Version of DISKN 28.1

150

GC26-5929-8

XEN
International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
[U.S.A. only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International)

IBM 1130
Subroutine Library

GC26-5929-8

Your views about this publication may help improve its usefulness; this form
will be sent to the author's department for appropriate action. Using this
form to request system assistance or additional publications will delay response,
however. For more direct handling of such requests, please contact your
IBM representative or the IBM Branch Office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Index Figures Examples Legibility

READER'S
COMMENT
FORM

What is your occupation? 	

Number of latest Technical Newsletter (if any) concerning this publication: 	

Please indicate your name and address in the space below if you wish a reply.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere,
an IBM office or representative will be happy to forward your comments.)

GC26-5929-8

Your comments, please ...

This manual is part of a library that serves as a reference source for systems analysts,
programmers, and operators of IBM systems. Your comments on the other side of this
form will be carefully reviewed by the persons responsible for writing and publishing 	

0
this material. All comments and suggestions become the property of IBM.	 z

r
3

Fold
	

Fold

First Class
Permit 40
Armonk
New York

Business Reply Mail
No postage stamp necessary if mailed in the U.S.A.

IBM Corporation	
IN111•111111MII

Systems Publications, Dept 27T
P.O. Box 1328
Boca Raton, Florida 33432

I 9

I
I 3

a'Fold
	

Fold

C

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
[U.S.A. only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

IBM 1130
Subroutine Library

GC26-5929-8

Your views about this publication may help improve its usefulness; this form
will be sent to the author's department for appropriate action. Using this
form to request system assistance or additional publications will delay response,
however. For more direct handling of such requests, please contact your
IBM representative or the 11341 Branch Office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization	 Index	 Figures Examples Legibility

What is your occupation? 	

Number of latest Technical Newsletter (if any) concerning this publication: 	

Please indicate your name and address in the space below if you wish a reply.-

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere,
an IBM office or representative will be happy to forward your comments.)

GC26-5929-8

Your comments, please ...

This manual is part of a library that serves as a reference source for systems analysts,
programmers, and operators of IBM systems. Your comments on the other side of this
form will be carefully reviewed by the persons responsible for writing and publishing
this material. All comments and suggestions become the property of IBM.

Fold
	

Fold

First Class
Permit 40
Armonk
New York

Business Reply Mail
No postage stamp necessary if mailed in the U.S.A.

IBM Corporation
Systems Publications, Dept 27T
P.O. Box 1328
Boca Raton, Florida 33432

Fold	 Fold

RDM
International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
[U.S.A. only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

1

1
0C

0
r:••

1

1

1

1

—1

1

1

1

1`2

1
0

1 c2
-0

I aCti
I R.

0
Cw)0
-0

ei•
CD
Q.

3'

in
5>

C)
1%.3
rn
in
co

to

co

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168

