File Number 1130-30
Order Number_ GC26-5929-8

Systems Reterenece Library

IBM 1130 Subroutine Library

Ninth Edition May 1974)
This is a reprint of GC26-5929-7 incorporating changes released in the following newsletter GN34-0182.

This edition applies to version 2, modification 12 of IBM 1130 Disk Monitor System and to all subse-
quent modifications until otherwise indicatedin new editions or Technical Newsletters. Changes are
continually made to the specifications herein; beforeusing this publication in connection with the
operation of IBM systems, consult the latest SRL Newsletter, Order No. GN20-1130, for the editions
that are applicable and current.

Text for this manual has been prepared with the IBM Selectric® Composer.

Requests for copies of IBM publications should be made to your IBM representative or the IBM branch
office serving your locality,

A form for readers’ comments is provided at the back of this publication. If the form has been removed,
send your comments to IBM Corporation, Systems Publications, Department 27T, P. O. Box 1328, Boca
Raton, Florida 33432. Comments become the property of IBM.

©Copyright International Business Machines Corporation 1965, 1966, 1967, 1968, 1969, 1970, 1972
2

The publication describes how the
programmer can use the IBM 1130 library
subroutines to increase the efficiency of
his programs and decreass his writing and
testing time. The libraries include the
following programs:

Interrupt level Subroutines.

Interrupt Service Subroutines.

RPG Subroutines.

FORTRAN 1/0 Subroutines.

Data Code Conversion Subrout1nes.
Arithmetic and Functional Subroutines.
Selective Dump Subroutines.

Utility Programs.

The subroutines are available for use
with the 1130 Assembler, the 1130 FORTRAN
Compiler, and the 1130 RPG Compiler. The
Utility Programs are executable under
Monitor control.

In Assembler language, the user calls
the subroutines via a calling sequence.
The appropriate subroutine calls are
generated by the FORTRAN Compiler whenever
a read, write, arithmetic, or CALL
statement is encountered. The RPG Compiler
generates the appropriate subroutine
linkages. This publication describes each
subroutine and the required calling
sequence. All subroutinzs in the 1130
libraries are included in the lists that
appear in Appendix A.

It is assumed that the reader is
familiar with the methods of data handling
and the functions of instructions in the
IBM 1130 Computing System. He must also be
familiar with the Assembler or Compiler
used in conjunction with the subroutines.
The following IBM publications provide the
prerejuisite information:

IBM 1130 Functional Characteristics,
Order No. GA26-5881.

I1BM 1130 Operating System, Order No.
GA26-5717.

IBM 1130 Assembler Lanquagqe, Order No.
GC26-5927.

IBM 1130/1800 Assembler Language,

Order No. GC26-3778.
IBM_1130/1800 Basic FORTRAN ;g_Language,
Order No. GC26-3715.

IBM 1130 RPG Specifications, Order No.
GC21-5002.-

Preface

The operating procedures manuals for the
programming systems also provide
information on subroutine usage.-
manuals are:

These

IBM 1130 Card/Paper Tape_ Programming
System_Operator'’s Guide, Order No.
GC26-3629.

IBM 1130 Disk Monitor System, Version 2,
Programmer's and Operator's Guide, Order
No. GC26-3717.

MACHINE CONFIGURATION

The use of the library subroutines requires
the following minimum machine
configurations:

IBM 1131 Central Processing Unit with
4096 words of core storage.

IBM 1442 Card Read Punch, or IBM 1134
Paper Tape Reader with IBM 1055 Paper
Tape Punch.

Note: RPG, available only with the DM2
system, requires 8192 words of core
storage.

In addition, the following input/output
units and features can be controlled by
the input/output subroutines.

Console Printer/Keyboard

Single Disk Storage

1132 Printer

1627 Plotter

1403 Printer (DM2 only)

2310 Disk Storage (DM2 only)

2311 Disk Storage (DM2 card system only)

2501 Card Reader (DM2 only)

1231 Optical Mark Page Reader {(DM2 only)

Synchronous Communications Adapter (DM2
only)

Plotter subroutines are described in IBM

1130/1800 Plotter Subroutines, Order No.
GC26-3755.

SCA subroutines are described in 1IBM
1130 Synchronous Communications Adapter

Saubroutines, Order No.

GC26-3706.

INTRODUCTION . ¢ v ¢ « = ¢ o ¢ o o o =

INTERRUPT SERVICE SUBROUTINES
1SS Characteristics
Methods of Data Transfer
Interrupt Processing
ILS Operation . . . + « ¢« o« o o « =
ISS Operation . « « « « « o « .- .
General Error-Handling Procedures .
Basic 1SS Calling Sequence
Assigqnment of Core Storage Locations
(C/PT System) . . . +« & « ¢« & o o« « &
Assignment of Core Storage Locations
(DM2 SYStem) . « o o o o o o « o o « «
Descriptions of Interrupt Service
Subroutines ¢ . 4 ¢ @ . . .
1442 Card Read Punch Subroutines
(CARDO and CARD1)
2501 Card Reader Subroutines (READO
and READ1) . .
1442 Card Punch bubroutlnes (PNCHO
and PNCH1) « e e e o o
Disk Subroutines (C/PT
System) e e e e e e e .
Disk Subroutines (DM2 System) . . .
DISKZ - Disk 1/0 Subroutine
1132 Printer Subroutine (PRNT1) . .
1132 Printer/Synchronous
Communications Adapter Subroutine
(PRNT2) . « « « . . . e e e e
1403 Printer Subroutlne (PRNT3)
Keyboard/Console Printer
Paper Tape Subroutines (C/PT
SYSEEmM) & v v v e o e 4 e e e e e .
Paper Tape Subroutines (DM2 System)
Plotter Subroutine (PLOT1)
Plotter Subroutine (PLOTX)
1231 Optical Mark Page Reader
Subroutine (OMPR1) « o . e
2250 Display Unit Model 4 1/0
Subroutine (DSPYN) . . . « « &« « + =

RPG SUBROUTINES (DM2 SYSTEM)
Disk File Management Subroutines (DM2
System) c e e e e e e e .
pisk 1,0 Subroutlnes « e 4 e e o o o
File Organization
File Processing « . « « . .
Sequentially Organized Disk Routines
Indexed Sequential Organized (1SAM)
Disk Routines . . e e e e e s e =
RPG Object Time Subroutlnes e o o

SUBROUTINES USED BY FORTRAN

(C/PT SYSTEM) « = « s = « « « o o o « =
General Specifications
Error Handling
Descriptions of 1/0 Subroutines .
TYPEZ - Keyboard/Console Printer
Subroutine
WRTYZ - Console Printer Output
Subroutine

48
49

49
49
49
49
50

53
66

Contents

CARDZ - 1442 Card Read Punch 1,0
Subroutine . . .« . . .
PRPTZ - 113“/1055 Paper Tape Reader
Punch 1/0 Subroutine
PRNTZ - 1132 Printer Output
Subroutine

SUBROUTINES USED BY FORTRAN (CM2

SYSTEM) . . . - . . e e e e e o
General Spec1f1cat10ns (Except DISKZ)
Error Handling
Descriptions Of 1/0 Subroutines . .
1YPEZ - Keyboard/Console Printer 1/0
Subroutine . . . - - e o o o @
WRTYZ - Console Prlnter Output
Subroutine«
CARDZ - 1442 Card Read Punch I/O
Subroutine . . e e . -
PAPTZ - 113“/1055 Paper Tape Reader
Punch 1/0 Subroutine
PRNTZ - 1132 Printer Output
Subroutine e e e e e e .
PNCHZ - 1442 Output Subroutlne .« . .
READZ - 2501 Input Subroutine . . .
PRNZ - 1403 Printer Subroutine . . .

DATA CODE CONVERSION SUBROUTINES . . .
Descriptions Of Data Codes
~ Hexadecimal Notation
IBM Card Code . . « ¢ « ¢ o «
Perforated Tape And Transmission
(PTTC/8) v v v v o o o o o« o « o « »
Console Printer Code
Extended Binary Coded Decimal
Interchange Code (EBCDIC)
1403 Printer Code
Conversion Subroutines
BINDC . . & v ¢ o o« o o o o o o o =
DCBIN . ¢ 2o ¢ o o o o e o o o o o =
BINHX . . ¢ ¢ o ¢ a o « o o o a o =
HXBIN . . ¢ o o o o o o o o« o o o =«
HOLEB . . . & ¢ o « o « = o o « o «
SPEED . & & 4 ¢ ¢ o o o o o = » « »
PAPEB . . o o o o« o o o o o s o o o
PAPHL . . . ¢ & 4o o o o o o o o « =
PAPPR .« v ¢ o o o o o o o o s « o« @«
HOLPR . 2o «c o o o o o o o o o o o «
EBPRT . . . ¢ ¢ ¢ @ o o o o o o o «
BIDEC . . & o o o o o « o o o o o =
DECBI . &« & ¢ o o o o o o s o o o «
ZIPCO . ¢ ¢ o o o « o o o o o o« = =

ARITHMETIC AND FUNCTIONAL SUBROUTINES
Real Data Formats . . . « «. ¢ o o «
Real Number Pseudo Accumulator . . e
Calling Sequences . . . « « « « « «
Arithmetic And Functional Subroutine
Error Indicators . . . « « « - « o «

Functional Subroutine Accuracy
Extended Precision Subroutines . . .

. 73
73
. 73

98
.100
-100

Standard Precision Subroutines . . .
Elementary Function Algorithms
Sine-Cosine+ ¢ + ¢ &« & . .
Arctangent
Square Root
Natural Logarithm .
Exponiential
Hyperbolic Tangent
Real Base to Real Exponent . . .

e & e e e

SELECTIVE DUMP SUBROUTINES
Dump Selected Data On Console Printer
Or 1132 Printer « . . .

Dump Status Area . . . « ¢« ¢ o < .+ . .
SPECIAL MONITOR SUBROUTINES

FLIPR
RDREC

(LOCAL/SOCAL Overlay)
(READ *1D Record) + -
CALPR (Call System Print)
FSLEN (Fetch Phase 1Ds and Fetch

System Subroutine)
SYSUp (DCOM Update)« .« « . .

SYSTEM LIBRARY MAINLINE PROGRAMS (DM2
SYSTEM) v v o =« = o = o o o o o « o« &
Disk Maintenance Programs

-101
.102
. 102
-103
.103
<104
- 104
. 105
-105

-106

. 106
. 106

. 107
. 107
. 107
.107

- 107
.107

.109
-109

Paper Tape Utility (PTUTL)
IWRITING 1SS AND 1LS (C/PT

SYSTEM) « & 4 2 o o o « « « o o« o =

Interrupt Service Subroutines . . .

Interrupt Level Subroutines
APPENDIX A. LISTING OF SUBROUTINES .

APPENDIX B. ERRORS DETECTED BY THE
SUBROUTINES . ¢« ¢ ¢ o « o o o o o« =
C.

APPENDIX SUBROUTINE AC1ION ON

RETURN FROM A USER'S ERROR SUBROUTINE

APPENDIX D. CHARACTER CODE CHART . .
APPENDIX E. CORE REQUIREMENTS OF
SUBROUTINES . ¢ ¢« o o o o « o o « »
APPENDIX F. EXECUTION TIMES OF
SUBROUTINES . . & ¢ o« o o « o« o o &

APPENDIX G. RE-ENTERABLE CODE . . .
Re-enterable Code
Calling a Re-Enterable Subroutine
Obtaining Temporary Storage . . .
Modifying Storage or Instructions
1800 Compatibility

INDEX . ¢ ¢ ¢ o o o o a « o 2 « o «

.132
.133

. 137

.139

143
. 143
.luy
.144.1
.144.2
. 145

146

Figure 1. Call Portion of an 1SS . .
Figure 2. Interrupt Response
Portion of an ISS
Figure 3. (C/PT System ISS

Names) « ¢ o o o o« o o« « o « o o = =«
Figure 4. DM2 System ISS Names . . .
Figure 5. ISS and ILS Core
Locations for the (C/PT

System). « e e e -
Figure 6. 1SS and ILS Core
Locations for the DM2 System « o e
Figure 7. Carriage Control
Operations for 1132 Printer
Figure 8. Carriage Control
Operations for 1403 Printer
Figure 9. PLOT1 Control Digits . .
Figure 10. PLOT1 Example e e e e
Figure 10.1 PLOTX Control Digits . .
Figure 10. 2 Space Utilization for
Various Size Records for Sequential
Files.« .
Figqure 11. Dlsk Flle Informatlon
Table for Sequential Access
Figure 12. Disk File Information
Table for Direct Access
Figure 13. Format of an 1ISAM Label .
Figure 13.1 1ISAM Cyllnder Index
Chart- . .« .
Figure 13. 2 Space Utlllzatlon for
Various Size Records for Indexed
Sequential Files.« .
Figure 14. Disk File Informatlon
Table for ISAM Load (Part 1 of 2) .
Figure 15. Disk File Information
Table for ISAM Add (Part 1 of 2) . .
Figure 16. Disk File Information
Table for ISAM Sequential (@art 1

Of 2). & i i i i i h e e e e e e e s

11
1

14
15

50.1
52

54
55

57

58
59
62

64

Figures

Figure 17. Disk File Information

Table for 1SAM Random (Part 1 of 2) 67
Figqure 18. Hexadecimal Notation . . 77
Figure 19. PTTC/8 Code for the
Characters 1/ (if lower case) or

the Characters =? (if upper case) . 77
Figure 20. Types of Conversion . . . 79
Figure 20.1 System Library EBPT3 . 92
Figure 21. Arithmetic and

Functional Subroutines « e o e« « < 95
Figure 22. (C/PT System)

1SS/1LS Correspondence e s e s o <112
Figure 23. (C/PT System)

Subroutine Library (Part 1 of 3) . .118
Figure 24. 1130 Disk Monitor
Version 2 System Library (Part 1
of 9) e e e e e 8 s e o s = ® e @
Figure 25. Core Requirements of
Arithmetic and Functional
Subroutines137
Figure 26. Core Requirements of -

- 121

Miscellaneous and 1SS Subroutines .138
Figure 27. Core Requirements of
Conversion Subroutines138

Figure 28. Core Requirements of RPG
Subroutines (DM2 only)
Figure 29. Execution Times of
Conversion Subroutines139
Figure 30. Execution Times of 1130

-138

ISS (C/PT System).140
Figure 31. Execution Times of 1130

1SS (DM2 System) e 12
Figure 32. Execution Times of

Arithmetic and Function

Subroutines . . « e e . = 142
Fiqure 32.1 Modlfylng Storage or
Instructions e e o e e e e o « o J104.2

- *
. i . : ¢
i € B o5

1t is often necessary to repeat a group, or
block, of instructions many times during
the execution of a program (examples
include conversion of decimal values to
equivalent binary valuss, computation of
square roots, and the reading of data from
a card reader). It is not necessary to
write the instructions each time a function
is rejuired. 1Instead, the block of
instructions is written onces, and the main
program transfers to that block each time
it is required. Such a block of
instructions is called a subroutine.
Subroutines normally perform such basic
functions that they can assist in the
solution of many different kinds of
problems.

When a main program uses a subroutine
several times, which is the common
situation, the block of instructions
constituting the subroutine need appear
only once. Control is transferred from a
main orogram to the subroutine by a set of
instructions known as a calling seguence,
or basic linkage. A calling sequence
transfers control to a subroutine and,
through parameters, gives the subroutine
any control information required.

The parameters of a calling sequence
vary with the type of subroutine called.
An input/output subroutine requires several
parameters to identify an input/output
device, storage area, amount of data to be
transferred, etc., whereas an
arithmetic/functional subroutine usually
requires one parameter representing an
argument. Each calling szquence used with
subroutines in the 1130 system consists of
a CALL or LIBF statement (whichever is
reguired to call the specific subroutine),
followed by the DC statements that make up
the parameter list. The calling sequences
for the various subroutines in the
libraries are presented later in the
manual. Each subroutine is self-contained,
so that only those subroutines required by
the current job are in core storage during
execution.

In addition to the subroutines described
in this publication, subroutines are
available for use with the Disk Monitor
System, Version 2 that are not provided in
the system library for that version.

Introduction

These subroutines are contained in the
following separately available programs:

] Graphic Subroutine Package, which
enables the FORTRAN 1V or Assembler
language programmer to display images
in the form of lines, points, and
characters on the screen of a 2250
Model 4 Display Unit attached to the
1130 system. The program also
provides for communication between the
2250 operator and the user's program.
It is described in the publication IBM
113072250 Graphic Subroutine Package
for Basic FORTRAN 1V, GC27-6934.

. Data Transmission Subroutines, which
enable the FORTRAN IV or Assembler
language programmer to transmit data
between a program being processed by
the Disk Monitor System Version 2 and
a program being processed by a remote
System/360 Operating System. These
subroutines permit an 1130 program to
use the high-speed computational
capability and large storage capacity
of the IBM Systeny360 Operating
System. Communication between the two
systems is accomplished in binary
synchronous mode via telecommunication
lines. The data transmission
subroutines are described in the
publication IBM System/360 Operating
System and 1130 Disk Monitor System:
System/360-1130 Data Transmission for
FORTRAN, GC27-6937.

. Satellite Graphic Job Processor, which
enables the user at a 2250 Model 4
Display Unit attached to the 1130 to
easily start the processing of related
programs in a remote System/360
Operating System. This allows the
2250 user to access the high-speed
computational capability and large
storage capacity of the IBM System/360
Operating System. Use of the
Satellite Graphic Job Processor
requires the data transmission
subroutines discussed in the preceding
paragraph. The Satellite Graphic Jo
Processor is described in the :
publication IBM System/360 Operating
System and 1130 Disk Monitor System:
User's Guide for Job Control from an
IBM 2250 Display Unit_ Attached to an
IBM 1130 System, GC27-6938.

Introduction 7

Interrupt Service Subroutines

The interrupt service subroutines (ISSs)
transfer data from and to the various
input/output devices attached to the
computer. These subroutines handle all the
details peculiar to each 3device, including
the usually complex interrupt functions,
and can control many input/output devices
at the same time by overlapping their
operations.

ISS Characteristics
To fully understand subssquent descriptions
of each 1SS, the user should be familiar
with the following characteristics, which
are common to all 1SSs:

. Methods of data transfer.

. Interrupt processing.

o ILS (interrupt level subroutine)
oper ation.

) 1SS (interrupt service subroutine)
operation.

L] Seneral error-haniling procedures.

. Basic calling sequence.

METHODS OF DATA TRANSFER

IBM 1130 I/0 devices and their related
subroutines can be differentiated according
to their methods of transmitting and/or
receiving data.

Direct Program Control

Serial 1/0 devices operate via direct
program control, which requires a
programmed 1/0 operation for each word or
character transferred. A character
interrupt occurs whenever a character 1/0
operation is completed. Direct progran
control of data transfer is used for the
following system I1/0 devices: 1442 Card
Read Punch, 1442 Cari Punch, 1134 Paper
Tape Reader and 1055 Paper Tape Punch,
Console Printer, Keyboard, 1132 Printer,
and 1627 Plotter.

Data Channel

Other system 1/0 devices operate via a data.

channel, which requires an 1/0 operation
only to initiate data transfer. These
devices are provided with control
information, worl counts, and data from the

user's 1/0 area. Once initiated, data
transfer proceeds concurrently with program
execution. An operation-complete interrupt
signals the end of an 1/0 operation when
all data has been transferred. All disk
drives, the 1403 Printer, and the 2501 Card
Reader operate via a data channel.

INTERRUPT PROCESSING

Interrupt processing is divided into two
parts, level processing and device
processing. The flow of logic in response
to an interrupt is: user program
interrupted, level processing begun, device
processing begun and completed, level
processing completed, and user program
continued.

Level Processing

Level processing consists of selecting the
correct device processing subroutine,

per forming certain housekeeping functions,
and clearing the level by a BOSC
instruction when interrupt processing is
complete.

level processing is done by the ILSs
(interrupt level subroutines). Entered by
interrupts, 1ILSs give temporary control to
device processing subroutines (ISSs) and
eventually return control to the user
program. The interrupt entrance address is
stored during the loading of a core load or
program, in the appropriate interrupt
branch address; location 8 for interrupt
level zero (11LS00), location 9 for
interrupt level one (ILS01),..., location
12 (/000C) for interrupt level four
(ILSO4) . The device processing entrance
address is computed during the loading of a
core load from identifying information that
is a part of the 1LS.

In the card/paper tape system, the
device processing entrance address is
stored during the loading of a program from
identifying information stored in the I1LS,
in the compressed 1S5S header card, and in
the loader interrupt Transfer Vector.

Device Processing

Device processing consists of operating an
I/0 device, processing the interrupts, and
clearing the device by an XIO (sense DSW)
instruction when interrupt processing is
complete.

Device processing is done by the 1SSs
(interrupt service subroutines). The 1SSs
can be entered by a calling instruction
(LIBF or CALL), which either requests
certain initialization to be done or
requests an 1/0 device operation. They can
also be entered by an ILS as part of the
interrupt processing. The calling entry
point is specified in the ISS statement.
The interrupt entry points are set up in
the 1SS and identified in the ILS. They
are entered indirectly through a branch
address table.

ILS OPERAT ION

The 1SS/I1LS package services all
input/output interrupts.

Description

There is one 1LS for each interrupt level
used. Each subroutine determines which
device on its level caused a particular
interrupt; preserves the contents of the
Accumulator, the Accumulator Extension,
Index Register 1 (XR1), and the Carry and
Overflow indicators; and transmits identi-
fying information to the ISS. Disk Monitor
11.Ss also save Index Register 2 (XR2). The
special ILSX subroutines in DM2 save

and restore Index Register 3.

Interrupt service subroutines are loaded
first so that the loader loads only the
ILSs that are required. For example, if a
main program does not call the 1132 Printer
subroutine, the sukroutine for interrupt
level 1 (ILS01) need not be loaded because
no interrupts will occur on that level. An
1LS cannot be called; it is included in a
core load or program only if requested by
an ISS. If you use the 1130 Card/Paper
Tape system, see "ISS-Define Interrupt
Service Entry Point" in IBM 1130 Assembler
Language. If you use the 1130 Disk Monltor,
Version 2, system (DM2), see "Define
Interrupt Service Subroutine Entry Point”
in IBM 1130/1800 Assembler Language.

When the 1LSs are loaded, the core
addresses assigned to them are incorporated
into the appropriate locations in the
Interrupt Transfer Vector (decimal words
8-13) . Interrupts occurring during
execution of a user program cause a Branch
Indirect, via the interrupt branch address,
to the correct ILS.

Recurrent Subroutine Entries

Recurrent entries to a subroutine can
result from interrupts. For example,
during execution of the Console Printer
subroutine, a disk interrupt can start
execution of a subroutine to handle the
condition that caused the disk interrupt.

If this handling includes calling the
Console Printer subroutine, certain
information is destroyed, the most
important of which is the return address of
the program that originally called the
Console Printer.

10 prevent the loss of data resulting
from such a recurrent entry, the user must
provide the programming required to save
the return address and any other data
needed to continue an interrupted
subroutine after an interrupt has been
serviced.

Note: All 1SSs were written with the
assumption that all LIBFs to them would be
executed on the mainline level (i.e., not
while on the interrupt level). There are
no provisions in any 1SSs to handle
recurrent entries. See Bppendix G for
information on user-written re-enterable
code.

ISS OPERAT ION

This section briefly describes the
operation of the 1S8Ss. This description,
along with some basic flowcharts, should
make it easier for the reader to understand
the descriptions of individual subroutines
presented later.

The disk subroutines are included here
as 1SSs even though in the Pisk Monitor
System they are not truly ISSs. They do
however, have most of the characteristics
of an 1ISS.)

1SS Subkdivision

Each ISS is divided into a call portion and
an interrupt response portion. The call
portion is entered when a user's calling
sequence is executed; the interrupt
response portion is entered as a result of
an 1/0 interrupt.

Call Processing

The Interrupt Service Subroutines -- with
the exception of those used by FORTRAN --
save and restore the contents of the
Accumalator, Index Registers 1 and 2, and
the Carry and Overflow Indicators. ‘
However, the contents of the Accumulator
will be destroyed if a preoperative error
is detected. The call portion, illustrated

Interrupt Service Subroutines 9

in Figure 1, has four basic functions:

1. Determines if any previous operations
on the specified device are still in
progress.

2. Checks the calling sequence for
legality.

3. Saves the calling sequence.
4. Initiates the requested 1/0 operation.

The flow diagram (Fiqure 1) is nct exact
for any one 1SS. 1t is only a general
picture of the internal operation of the
call portion of an ISS.

LCetermine Status of Previous Operation.
This function can be performed by using a
programmed subroutine-busy indicator to
determine if a previous operation is
complete. The CARD1 subroutine is a good
example. When an operation is started on
the 1442, a subsequent LIBF CARD1 for the
1442 is not honored until the
subroutine-busy indicator is turned off. A
call to any other 1SS subroutine, such as
TYPEO, is not affected by the fact that the
CARD1 subroutine is busy.

Each 1SS, except PAPTN and DISKN, can
use one programmed subroutine-busy
indicator to determine if a previous
operation is complete. The PAPTN
subroutine uses two busy indicators, one
for the paper tape reader and one for the
punch. If an operation is started on the
reader, a subsequent LIBF PAPTN for the
reader is not honored until the Reader Busy
indicator is turned off. However, a LIBF
PAPTN for the paper tape punch is treated
in the same manner as a call to any other
1SS and is not affected by the fact that
the paper tape reader is busy. The
subroutine DISKN uses five busy indicators,
one for each disk drive. (Each disk drive
corresponds to a certain bit in $DBSY.)
This provides the possibility to operate
all of the disk drives simultaneocusly.

Check Leqality of Calling Sequence.
Calling sequences are checked for such
items as illegal function character,
illegal device identification code,
negative word count, etc.

Zero or

Save Calling Sequence. The call portion
saves, within itself, all of the calling
sequence information needed to perform an
I/0 operation. The user can modify a
calling sequence, even though an 1/0
operation is not yet complete.

Note: The I,/0 data area should be left
intact during an operation because the 1SS
is continually accessing and modifying that
area.

10

Initiate 1/0 Operation. The call portion
only initiates an 1/C operation.
Subsequent character interrupts crx
operation complete interrupts are handled
by the interrupt response routine.

Interrupt Response Processing

The I,/0 interrupt response portion of an
1SS is illustrated in Figure 2.

Operation. An 1/0 interrupt causes a user
program to exit to an interrupt level
subroutine, which in turn exits to the 1/0
interrupt response portion of an ISS. The
interrupt response portion checks for
errors, does any necessary data
manipulation, initiates character
operations, and initiates retry operations
in case of errors. It then returns control
to the interrupt level subroutine, which
returns control to the user.

Character Interrupts. These interrupts
occur for devices under direct program
control whenever data can be read or
written, e.g., a card column punched or a
paper tape character read.

Operation Complete Interrupts. These
interrupts occur in disk and card
operations when a specified block of data
has been read or written, e.g., a disk
record read.

Exror Detection and Recovery Procedures.
These procedures are an important part of
an ISS. However, little can be done about
reinitiating an operation until a character
interrupt or operation complete interrupt
occurs. Therefore, error indicators are
not examined until one of these interrupts
occurs.

Recoverable Device. This is an 1/0 device
that can be easily repositioned by a
subroutine or by an operator and an 1/0
operation reinitiated. If a device is not
recoverable, or if an error cannot be
corrected after a specified number of
retries, the user is informed of the error
condition. 1If a device is recoverable, the
user may request, via his error subroutine,
that the operation be reinitiated.

Entry Entry

Operation
Complete

Character
Interrupt

Return to Interrupt
Level Routine

Previous Retorn fo U
Operation urn to User
omplete at LIBF +2

Indicator
Set

TEST

Function

Indicator
Set

Return to User
at LIBF +3

Set up for
{lllegal Call

Error

Exit to User
Error Routine
Y ‘
Is
Retry
Counter
Set up for Zero
Device Not
Ready Error
< Manipulate
Data as
4 Y Specified
Set Exit to
’ Busy $PRET+ 1 L
(ﬁ Indicators
: Y Y
A J
Return to User
Save Calling at LIBF
Sequence
Parameters
4 4
Determine Initiate Next Clear Re-Initiate
Requested Character Busy 1/0
Function Operation Indicators Operation
Y
Initiate -
1/0
Operation v 1 Cleor
-t Busy e
Indicators
4 Y
Return Return to Inferrupt
to User - Level Routine
s Figure 1. Call Portion of an ISS Figure 2. Interrupt Response Portion of an

1SS

Interrupt Service Subroutines 11

GENERAL ERROR-HANDLING PROCEDURES

Each 1SS has its own error detecting
portion, which determines the type of error
and chooses an error procedure. (In this
context, the term error includes such
conditions as last card, channel 9, channel
12, etc.) Errors fall into one of two

" categories: those that are detected before
an 1/0 operation is initiated, and those
that are detected after an I/0 operation
has been initiated. Appsndix B contains a
list >f the errors detected by the 1SSs;
Appendix C contains descriptions of the
actions taken by each 1SS after the return
from user-written error subroutines.

Preoperative Error Detection

Before an ISS initiates an I/0 operation,
it checks the device status and the
legality of calling parameters. 1If a
device is not ready or a parameter is in
error, the Interrupt Service Subroutine
will wait at $PRET+1 displaying an error
indicator that defines the error (see
Appendix E) . This error indicator consists
of four hexadecimal digits that are defined
below.

$PRET is entered via a Branch and Store
Instruction Counter (BSI) instruction in
the following subroutines: DISKZ, DISK1,
DISKN, OMPR1, PLOTX, and the ISSs used by
FORTRAN. All other 1ISSs store the address
of the LIBF statement in $PRET and then
branch to $PRET+1 to wait and display the
error; i.e., when PROGRAM START is pressed,
the call to the subroutine is retried.

Digit 1 identifies the ISS subroutine
called:

C/PT System DM2 System

1-CARDO or CARD1 1- CARDO, CARD1, or
CARDZ; PNCHO, PNCH1,
or PNCHZ -

2-TYPEQ or WRTYO 2- TYPE0 or TYPEZ,
WRTYO, or WRTYZ

3-PAPT 1 or PAPTN 3- pPAPT1, PAPTN, PAPTX,
or PAPTZ
4- READO, READ1, or
READZ
5-D1SK0, DISK1, 5- DISKZ, DISK1,
" or DISKN . . or DISKN :
6-PRNT 1 6- PRNT1 or PRNTZ

12

7-PLOT1 7- PLOT1 or PLOTX
8-SCAT1, SCAT2 8- SCaT1, SCaT2,
or SCAT3 or SCAT3
9~ PRNT3 or PRNZ

A- OMPR1

Digits 2 and 3 are reserved.
Digit 4 identifies the error:
0- device not ready.

1- illegal LIBF parameter or illegal
specification in the 1I/0 area.

There is a WAIT instruction in core
location $PRET+1 and a branch instruction
(BSC I $PRET) in the next location.
Therefore, the LIBF may be executed again
(after the error condition has been
corrected) by pressing PROGRAM START on the
console. The user can, if he chooses,
replace these two instructions with an exit
to his own error subroutine.

Postoperative Error Detection

After an I/0 operation has been started,
certain conditions may be detected about
which the user should be informed. The
conditions might be card jams for which
manual intervention is needed before the
operation can continue; read checks that
have not been corrected after a specified
namber of retries; or indications of
equipment readiness, such as last card or
channel 12 indicators. All these
conditions are detected by the interrupt
response portion (see "1SS Operation®).

No Error Parameter. If no error parameter
is included in the calling sequence.that
initiated the 1/0 operation and a
postoperative error condition is detected,
the card/paper tape system subroutine
initiates a Wait procedure (programmed
loop , which continues until the operator
corrects the detected condition.

The DM2 system does not use a programmed
loop, but rather branches to a
postoperative error trap that is similar to
the preoperative error trap. Each
interrupt level (1-4) has its own
postoperative error trap with accompanying
WAIT address.

Level 1 - $PST1 (0081)
Level 2 - $PST2 (0085)
Level 3 - $PST3 (0089)
Level 4 - $PST4 (008D)

Processing resumes -- at the address’
immediately following -- after the operator
corrects the detected condition and presses
PROGRAM START.

Error Parameter Included. 1If an error
parameter is included in the calling
sequence, a Branch and Store Instruction
Counter (BS1) instruction to the user's
error subroutine specified in the calling
sequence is executed. . Identifying
information is placed in the Accumulator
and Extension (see Appendix B). When the
user's error subroutine returns control to
the 1SS using the return link (see "Basic
1SS Calling Sequence®), the subroutine
examines the Accumulator. 1If the user has
cleared the Accumulator before returning to
the subroutine, he is requesting that the
error condition be ignored and the
operation term..aated. If the user has not
cleared the Accumulator, he is requesting
that the operation be restarted, in which
case the subroutine reinitiates the
operation before returning to the user's
main program.

Implications of the Usexr's Error
Subroutine. It is important to note that a
user's error subroutine (entered via the
LIBF error parameter address) is executed
as part of the interrupt processing. The
interrupt level is still on, preventing
recognition of other intsrrupts of the same
or lower priority. This has the following
implications:

1. Return must be made to the 1SS
subroutine via the return link (set up
by the BSI instruction executed by the
1SS subroutine). Otherwise, normal
processing cannot be continued because
the 1SS must return to the ILS to
restore the contents of the
Accumulator and Extension, Status
Indicators, and Index Registers.

2. Return must be made with a BSC
instruction, not a BOSC instruction.
Otherwise, the interrupt level is
turned off, setting up the possibility
that another interrupt could occur on
the same level, thus destroying the
return address to the user from the
1LS.

3. A LIBF or CALL to another subroutine
from the user's error subroutine can
cause a recurrent-entry problem. If
that subroutine is already in use when
the interrupt occurs, the user's new
LIBF or CALL destroys the original
return address anl 3isrupts operation
of the called subroutine.

4. A LIBF or CALL to another 1SS can
cause an endless loop if the new 1/0
device operates on the same or lower

priority interrupt level than the
device that caused the error.

Note: A call to WRTY0 to type an error
message can be made only if the user does
not wait for the completion of typing or
for operator intervention before returning
to the ISS. A test loop on level 4
(typewriter) or a WAIT loop will both block
the clearing of the level that caused the
interrupt to the user's error subroutine.

5. The user should have a separate error
subroutine for each device to prevent
errors on several devices (on
different levels) from causing
recurrent-entry problems in the user's
error subroucine.

Note: The error codes in the Accumulator
may not distinguish between 1SSs, as the
preoperative error codes do.

Since the 1ILS saves Index Register 1 as
part of its interrupt processing, the
user's error subroutine can also use this
index register without saving and restoring
it. However, the user cannot depend on the
contents of Index Register 1 unless he
initializes it as part of his error
subroutine. The DM2 ILSs also save Index
Register 2. The special 1LSX subroutines
in the DM2 save and restore Index Register
3.

Programming Techniques - User's FError
Subroutine Exits. Some programming
techniques that can be used in conjunction
with the 1SS error exit are as follows:

1. To try the operation again:

Label Operation FlT Operands & Remarks
gl b .- s i) 5 a0 45 50
USnE.P‘ DxC. 1 ¢l Y N W W N N ORI TN TR O T TR TR SN N T O §
41 B.S.C. (WS ER w1y 4y gy s gy
FEES S PR N G U T WY TS S T S Y S YA S TS W WO

2. To terminate the operation:

Label]Owrcinn BT l

SER | e) " A R
P LA 06, o s 0 Lo CLEAR THE ACCUMULATOR
" S.C. LS.ER, PP I R A P A S
A s " X

3. To indicate that a condition ("last
card" or ®“channel 9%) was detected and
that the normal program flow should be
altered:

Interrupt Service Subroutines 13

(abet Operation Flr Operonds & Remorks
. a1] . - »
PP LD, LANDIC | N P B S U T S AT S
. BSC .

P LI, B F! ARD L « « v 1 v 0oy a s 4 a4y
Ci ARG . vy
Jyrar— L. ONPUY, o o . READ MNE CARD 1 1 1 .
1aa L ASER v o a0 cv0 s v by
—t LY b L i 0 T T D WY S TN S S T Y I)

1 L hd S | I L WV S W I O WO T S B § L3 a0
S AR Sy b S U ST SN B U A S 1 I 1
.S.ER. [«) M " 'S AT PR S T
PR o5 .G, X DSER,Ey 0 0 v a0 v ey
e L Y. 1.3 IR SR U | T PR N
e 1.0 INDIL 0 o0 vy s IS s
ExXy. | Bse | ir WSER L s Pt e s
U Sl Ll SRS ST 0 WA SEUTD S O S S O GO 1 TG N T T W S I 3
InpXc| IPc =% i NN

4 1 LA I ®s 2oz 13 IO W T T T S W B 1 Pt i I
nen | lsaa P A Lt
P T.0 LNDIG 1+ . L s NP

Y hd BT I U UO0 S W VO G S T N SO N WY S Y MY | B
L hd } T U ST T VO S U U U T A S T N SN S VY S SN T N SAT S) "
' 1 TR S S U WO W T 0 SO N SV S NS S S S N S

BASIC 1SS CALLING SEQUENCE

Each 1SS described in this manual is
entered via a calling sequence. These
calling sequences follow a basic pattern.
In order not to burden the reader with
redundant descriptions, this section
presents the basic calling sequences and
describes those parameters that are common
to most of the subroutines.

Basic Calling Sequence

1LIBF Name

DC Control parameter
DC I/0 area

DC Error subroutine

The above calling sequence, with the
parameters shown, is basic to most of the
I1SSs. Detailed descriptions of the above
four parameters are omitted when the
subroutines are described later in the
manual. Unless otherwise specified, the
subroutine returns control to the
instruction immediately following the last
parameter.

14

Name Parameter

Each subroutine has a symbolic name that
must be written in the LIBF statement
exactly as listed in Figures 3 and 4.

Device

Subroutine

{1442 Card Read Punch

CARDO, CARD1,
or CARDZ

-

|

1

-

|

l'

|Disk DISKO, DISK1 |

DISKN |

%

1132 Printer PRNT 1 or PRNTZ |

|

|Keyboard/Console Printer |TYPEQO or TYPEZ |

!

|Console Printer WRTY0 or WRTYZ |

]

1134/1055 Paper Tape PAPT 1, PAPTN]

| or PAPTZ |

|

1627 Plotter PLOT 1 or PLOTX |

|

Synchr. Comm. Adapter {scaT1, SCAT2, |

| |or SCAT3 1

| . L -
| Figure 3. C/PT System 1SS Names

For some devices more than one
subroutine is available, although only one
can be selected for use in any one program
(including called subroutines).

NAMEO.

shortest and least complicated.

The NAMEQ subroutine is the
The NAMEO

version is the standard subroutine for the
1442, 2501, and Console Printer/Keyboard.
The NAMEO version of the Disk routine
(DISKO) can be used if transfer of data is
|320 words or less (C/PT system only).

|
|PRNTZ, PRNTI1,
|or PRNT2

1132 Printer

|
1403 Printer |PRNZ, or PRNT3

r 1] 1
| Device | Subroutine |
L []
L3 T 1
| 1442 Card Read Punch | CARDZ, CARDO, |
| jor CARD1]
| : | |
|2501 Card Reader | READZ, READO, |
l | or READ1 |
| | |
] 1442 Card Punch |PNCHZ, PNCHO |
| . |or PNCH1]
Dis	DLSKZ, DISKI1,
]or DISKN
!	
I !	

|
Keyboard/Console Printer |TYPEZ, or TYPEO|

I
| NRTYZ, or WRTYO|

|Console Printer

I |
|PAPTZ, PAPT1, |
|PAPTN, or PAPTX]|

| 113471055 Paper Tape
|Readexr Punch

| | |
11627 Plotter |PLOT1, or PLOTX

|

1231 Optical Mark	OMPR1
Page Reader	
Synchr. Comm. Adapter	sSCAT1, SCAaT2,
	or SCAT3

|

|

4

| l

]2250 Display Unit, | DSPYN
|Model 4 |
L

L
DM2 System ISS Names

Figure 4.

NAME1. The NAME1 version is the standard
subroutine for the disk, 1132, 1403, 2501,
1134,/1055, 1231, and 1627. 1t may be used
if a user error exit is needed rather than
the internal looping and retries by the
NAMEO subroutine.

NAMEN. The NAMEN version is available to

operate the 1134/1055 Papser Tape Reader and.

Punch simultaneously and to minimize extra
disk revolutions when transferring more
than 320 words to or from the disk. The
NAMEN subroutine offers more options than
the NAME1 subroutine. In DM2, it also
operates as many as 5 disks simultaneously.

NAMEZ. The NAMEZ version is designed for
use in an error-free environment. It
provides no preoperative parameter
checking. The FORTRAN formatting
subroutines use these ISSs but they do not
use the calling sequence listed below (see
"Subroutines Used by FORTRAN") .

PRNT2. The PRNT2 version is used when the
1132 is used with the SCA.

PRNT3. The PRNT3 version is used with the

1403.

Control Parameter

The control parameter, in the form of four
hexadecimal digits, conveys necessary
control data to the ISSs by specifying the
desired function (read, write, etc.), the
device identification, and similar control
information. Most subroutines do not use
all four digits.

A typical control parameter is
illustrated below.

Hexadecimal Digits
1st 2nd 3rd 4th

1/0 Function_________J -

Not Used

Device ldentification

Since the I/0 function and device
identification digits are used in most
subroutines, a description of the purpose
of each is given here.

170 Function

The function digit in the calling sequence
specifies which 1/0 operation the user is’
requesting. Three of these functions--
read, write, and test-- are used in most
subroutines.

Read. The read function causes a specified
amount of data to be read from an input
device and placed in a specified input
area. Depending upon the device, an
interrupt signals the subroutine either
when the next character is ready or when
all requested data has been read. When the
specified number of characters has been
read, the subroutine becomes available for
another call to that device.

Arite. The write function causes a
specified amount of data from the user's
output area to be written, i.e., printed or
punched, by an output device. BAs with the
read function, an interrupt signals the
subroutine when the device can accept
another character, or when all characters
have been written. When the specified
number of characters has been written, the
subroutine becomes available for another
call to that device.

Test. The test function causes a check to
be made as to the status of a previous
operation initiated on an 1I/0 device. If

Interrupt Service Subroutines 15

the previous operation has been completed,
the subroutine branches to the LIBF+3 core
location; if the previous operation has not
been completed, the subroutine branches to
the LIBF+2 core location. The test
function is illustratel below:

LIBF Name

LIBF+¢+1T DC Control Parameter

{specifying Test function})

LIBF+2 OP Code XXXX...-.

LIBF+3 OP Code XXXX....

Note: Specifying the test function
requires two statements (one LIBF and one
DC) , except in disk subroutines, where
three statements are required.

The test function is useful in
situations in which input data has béen
requested, but no processing can be done
until the data is available.

Device Identification
This digit should be zero except for the

Test function with the PAPTN (paper tape)
subroutine.

Note: For all disk subroutines, this digit
appears in the 1/0 area rather than in the
control parameter.

1/0 Area Parameter

The 1/0 area for a particular operation
consists of one table of control
information and data. This table is
composed of a data area preceded by a
control word (two control words for disk
operations) that specifies how much data is
to be transferreld. The arsa parameter in
the calling seguence is the address
(symbolic or actual} of the first comtrol
word that precedes the data area.

The control word contains a word count
referring to the number of lata words in
the table. 1t is important to remember
that the number of words in the table is
not always the number of characters to be
read or written, because some codes pack
two characters per word. The disk
subroutines require a second control word,
which is described along with those
subroutines.

16

Error Parameter

The error parameter is the means by which
an 1SS can give temporary control to the
user in the event of conditions such as
error, last card, etc. This parameter is
not required for the NAMEQ subroutines for
the 2501, 1442, Console Printer, or
Keyboard. The instruction sequence for
setting up the error subroutine is shown
below.

LIBF NAME

DC ERROR (error parameter}

DpC 0 (returm link)

- . (error routine}

BSC 1 ERROR (branch to return link)

ERROR

The return link is the address in the
related 1SS to which control must be
returned upon completion of the error
subroutine. The link is inserted in
location ERROR by a BSI from the ISS when
the subroutine branches to the error
subroutine.

The types of errors that cause a branch
to the error address are listed in Appendix
B.

Note: The user®s error subroutine is
executed as part of the interrupt response
handling. The interrupt level is still on
and remains on until control is returned to
the ISS (see ®"General Error-Handling
Procedures®) .

Assignment of Core Storage Locations
(C/PT System)

The portion of core storage used by the 1SS
and 1LS subroutines is defined below. Care
should be used in altering any of these
locations (see Figure 5).

The areas illustrated in Figure 5 are
described below.

Interrupt Branch Addresses

ILS Subroutines. When required, the
address of ILS00 is always stored in
location 8, ILS0t in location 9,...,
in location 13 (/000D).

ILS0S

Interrupt Trap. The address of the
interrupt trap is stored in any location
for which no ILS is loaded.

1132 Printer

This area is used by 1132 Printer.

Preogerative Error Trap

This exit is used whenever a preoperative
error (illegal LIBF or device not realy) is
detected by an 1SS. To retry the call,
press START.

1SS Exit

The 1SS exit results from pressing the
Keyboard Interrupt Request key. The TYPEO,
and WRTY0 subroutines execute a BS1 1 /002C
whenever a keykoard operator request is
detected. Note that interrupt level 4 is
still on.

The user-written subroutine must return
to the TYPEO or WRTYO subroutine in order
to allow interrupts of equal or lower
priority to occur. Also a call executed to
any subroutine might cause a recurrent-
entry problem unless the user can guarantee
that the subroutine was not in use when the
keyboard interrupt occurred.

Location /002C is initialized with the
address of the interrupt trap in case the
user fails to store an address in the
interrupt trap to process Keypoard operator
requests. .

Interrupt Trap

This trap is entered when an interrupt
occurs for which there is no 1LS and/or no
ISS assigned to the pertinent bit in the
Interrupt Level Status Word (ILSW).

Interrupts of higher priority will be
processed before the system finally halts
with the IAR displaying /002F.

ISS_Counter

The 1SS counter is incremented by +1 every
time an 1SS initiates an interrupt-causing
1/0 operation and is decremented by +1 when
the operation is complete. A positive
value in this location indicates the number
of interrupt (s) pending. This counter
should never be negative.

Hex Decimal /—V\/ww

8 8 (1LS00)

9 (ILSO1)

A Interrupt Branch

10 (1L502) Addresses

B 1 (1LS03)

C 12 (ILS04)

) 13 (ILSO5)

E 14 AL /} Reserved

1F 3N T

20 32

Reserved for 1132 Printer

27 3 v 1

28 40 DC 0

29 41 WAIT Preoperative Error Trap

BSC | 40
ISS Exit (Keyboard

2C 44 bC 45 } Interrupt Request)

2D 45 bC 0

2% 46 WAIT Interrupt Trap

2F 47 MDX *-2

BOSC | 45
32 50 pC 0 }ISS Counter
~__/__,-4
IFigure 5. 1SS and 1LS Core Locations for

the C/PT System

Assignment of Core Storage Locations
(DM2 System)

The rportion of core storage used by the ISS
and 1LS subroutines is defined below. Care
should be used in altering any of these
locations (see Figure 6) .

The areas illustrated in Figure € are
described below.

Interrupt Branch Addresses

I1LS Subroutines. The address of I1LS00 is
always stored in location 8, ILSO0%1 in
location 9,..., 1LS05 in location decimal
13.

Interrupt Trap. The address of the Program
Stop Key trap ($STOP-location ,0091) is
stored in any location for which no ILS is
loaded.

Interrupt Service Subrcutines 17

Reserved Areas

These locations are reserved for the DM2
system.

1132 Printer

This area is used by 1132 Printer.

Preoperative FError Trap

This exit is used whenever a preorerative
etror (illegal LIBF or device not ready) is
detected by an 18SS. To retry the call,
press START.

1SS Counter

The 1SS counter is incremented by +1 every
time an 1SS initiates an interrupt-causing
1/0 operation and is decremented by +1 when
the operation is complete.

A positive value in this location
indicates the nunker of interrupts (s)
pending. This counter should never be
negative.

Intexrupt Request Branch Address

The subroutine ILS04 or ILSX4 executes a
BSI 1 $1IREQ whenever a Keyboard operator
request is detected.

$1IREQ (location /002C) is initialized
with the address $1420 in Resident Mcnitor.
This allows the user to terminate the job
by pressing the Interrupt Request key (INT
REQ) .

» Note the following when writing an
interrupt request subroutine:

] Interrupt level 4 is still on.

. An X10 instruction sensing Keyboard
with reset must be performed.

. Return to ILSO# or 1ILSXH4 to exit
address +6.

. ILS04 or I1ILSX4 will turn off the
interrupt.

. Subroutines that are in use when the
interrupt occurs may not be called.

For examples of INT REQ see IBM 1130
Disk Monitor System, Version 2 Programmer's

and Operator's Guide.

18

_VE_J‘"Q_V._.—J

e

;.w_/

e e e S N

tl__ Decimal P
8 8 (ILSO0)
9 9 (1Lsor)
A 10 (1L502)
) 1" (1L.503)
c 12 (1LS04)
D 13 {1L505)
E 14 \
~ .
' 'l
IF 3t
20 32
Pt Caud
A4 A
27 39 7
28 40 SPRET DC *=-*
29 41 WAt
2A 42 BSC | $PRET
2C 44 $IREQ DC v
20 45 -
~ J
/J I
3r 49 .
32 50 $10CT DC o
33 st Lo)
1
3 62 T
40 64
L)
P ol Ve f
80 128 .
81 129 $PSTI DC v
82 130 WAIT
83 131 BSC | $PSTI
85 133 [sesiz BC v-¢
86 134 WAIT
87 135 BSC | $PSTZ
89 137 $PST3 bC *-+
8A 138 WAIT
) 139 BSC | $PST3
8D 141 $PST4 DC o
8E 142 WAIT
8F 143 BSC 1 $PST4
9 145 $STOP DC o
2 146 WAIT
] 147 BOSC | $STOP
M
Figure 6. ISS and

Interfupt Branch Addresses

Reserved for Monitor System

Reserved for 1132 Printer

Preoperative Error Trap

Interrupt Request Branch Address

Reserved for Monitor System

155 Counfer

Reserved for Monitor Systein
Reserved for Monitor System
Postoperative Error Trap for Level 1
Postoperative Error Trap for Level 2

Postoperative Error Trap for Level 3

Poslﬁperufive Error Trap for Level 4

Program Stop Key Trap

1LS Core Locations for
the DPM2 System

Postoperative Error 1raps

These traps are entered when a device-
not-ready condition is detected prior to
the initiation of an 1/0 operation in the
interrupt response portion of an ISS

subroutine.

Each interrupt level (1-4) has

its own postoperative error trap. The
system will WAIT with the IAR displaying

the address of $PST1+2, $PST2+2, $PS13+2,
or $PSTH+2, depending on the interrurt
level of the device.

Description of Interrupt Service Subroutines

Note that the subroutine READO, READI1,
PNCHO, PNCH1, PRNT3, and OMPR1 are
available only with the CM2 system.

1442 CARD READ PUNCH SUBROUTINES (CARDO AND
CARD 1)

The card subroutines perform all 1/0
functions relative to the IBM 1442 Card -
Read Punch: read, punch, feed, and stacker
select.

CARDO Subroutine. The CARD0O subroutine is
shorter and less complicated than CARD1 and
is the standard sukroutine for the 1442,

CARDO can be used if the error parameter
is not needed. When an error occurs, the
subroutine loops (IM1 and C/PT system) or
will WAIT at $PSTU4+1 (DM2 system) until the
operator takes corrective action. Last
card conditions cause preoperative
not-ready exits.

where

a is 0 or 1,

b is the 1,0 function digit,

f is the number of columns to be read
from or punched into the card,

h is the length of the 1I/0 area. h must

be equal to or greater than f.

The calling sequence parameteis are
described in the following paragraphs.

Control Parameter

This parameter consists of four hexadecimal
digits as shown below:

1 2 3 4

1/0 Function l

Not Used

1/C Function

The 1/0 function digit specifies the
particular operation to be performed on the
1442 Card Read Funch. The functions,
associated digital values, and required
parameters are listed and descriked below.

25 |
] Digital Required |
CARD1 Subroutine. The CARD1 subroutine can |Function Value Parameters? |
pe used for the Card Read Punch if a user | |
error exit is neeled, rather than the error | Test 0 Control |
procedures of the CARDO subroutine. | |
|Read 1 Control, 1/0 Area, Error?|
| i
|Punch 2 Control, 1/0 Area, Error2?|
| |
Calling Sequence | Feed 3 Control, Error2 |
! | |
Label Operation flr Oparands & Ramarks l St aCker I
sl [o) fula| | “ o w s “ | Select 4 Control [
RN RTRYY: C.A @D oy CALL GARD T/O . - e |
e Dg" -g 2 CONTRO | 'Any parameter not required for a |
L AR v W40 AREA (FARAMET/ER 2 3 s
L D.C ELROR .\ \ ERBOR \PARAMET.ER | particular function must‘be omitted. I
o ey o {2Error parameter not required for CARLO. |
[LI PR S S WU ST S WA S SN WA ST YUY S SN S S S MU SN S U MY L -
i 1 L | I T T SO0 W WS TV TN WA U WA U SN N U S T N S N U S N S B R .
WRR O \Cy a0 ooy ETUARM ADDRIESS 4 1 1 : 3
ERROR DC : . : : AL Jest. Branches to LIEF+2 if the previous
R B e iii. o iiiiiaeiaoo. .. operation has not been completed, to LIEF+3
Al Ll e s e e e if the previous operation has been
L N B8.3.C. ERROR v (RETUWRN T (LA LLER | completed_
ISt AJPRES J WA I RSN [N ST TN SR TN WA T ST TN D ST SN SN SN NN W WY WO W Y
Lo LooommooenonTT Read. Reads one card and transfers a
r04e | Ipc. . £ 0000 WORD COUATI L L1 specified number of columns of data to the
B.5.5, s 0 /0 AREA e user's input area. The number of columns

read (1-80)
first location of the 1/0 area.

is specified by the user in the
The

Interrupt Service Subroutines 19

subroutine clears the remainder of the 1,0
area and stores a 1 in bit position 15 of
each word, initiates the card operation,
and returns control to the user's program.
When each column is ready to be read, a
column interrupt occurs. This permits the
card subroutine to read the data from that
column into the user's input area (clearing
bit 15), after which the user's program is
again resumed. This sequence of events is
repeated until the requested number of
columns has been read, after which the
remaining column interrupts are cleared
data read).

(no

When an operation complete interrupt
occurs, the card subroutine checks for
errors, informs the user if an, erxror
occurred (CARLC1 only), and sets up to
terminate (CARCt only) or retry the
operation.

The data in the user‘'s input area is in
a code identical to 1BM Card Code format;
that is, each 12-bit column image is
left-justified in one 16-bit word.

Punch. Punches into card the number of
columns of data specified by the word count
found at the beginning of the user's output
area. The punch operation is similar to
the read operation. As each column comes
under the punch dies, a column interrupt
occurs; the card subroutine transfers a
word from the user's output area to the
punch and then returns control to the
user's program.

This sequence is repeated until the
requested number of columns has been
punched, after which an Operation Complete
interrupt occurs. At this time the card
subroutine checks for errors, informs the
user if an error occurred (CARD1 only), and
sets up to terminate (CARD1 only) or retry
the operation. The character punched is
the image of the leftmost 12 bits in the
word.

Feed. 1nitiates a card feed cycle. This
advances all cards in the machine to the
next station, i.e., a card at the punch
station advances to the stacker, a card at
the read station advances to the punch
station, and a card in the hopper advances
to the read station. No data is read or
punched as a result of a feed operation and
no column interrupts occur. This
effectively skips a card when used in
conjuction with a Read or Punch function.

When the card advance is complete, an
Operation Complete interrupt occurs. At
this time the card subroutine checks for
errors, informs the user if an error
occurred (CARD1 only), and sets up to
terminate (CARD1 only) or retry the
operation.

20

Stacker Select. Selects stacker 2 for the
card currently at the punch station. After
the card passes the punch staticn, it is
directed to stacker 2.

1/0 Area Parameter

The 1/0 area parameter is the label of the
control word that precedes the user's 1/0
area. The control word consists of a word
count that specifies the number cf columns
of data to be read or punched, always
starting the count at column 1. The word
count must be in the range of 1-80.

Exror Parameter

CARDO. CARDO has no error varameter. If
an error is detected while an operation
complete interrupt is being processed, the
subroutine loops (C/PT system) or will WAIT
at $PST4+1 (DM2) with interrupt level 4

on, waiting for operator intervention.

When the condition has been corrected,

the 1442 made ready, and PROGRAM START
pressed, the subroutine retries the
operation,

CARD1. CARD1 has an error narameter. 1If
an error is detected, the user can request
the subroutine to terminate (clear
subroutine-busy indicator and the interrupt
level) or to loop (C/PT system) or WAIT

at $PST4+1 (DM2) for operator intervention
(interrupt level 4 on). See "Basic

Calling Sequence”.)

Protection of 1lnput Data

Since the CARD subroutines read data
directly into the user's 1/0 area, the user
can manipulate the data before the entire
card has been processed. This procedure is
inherently dangerous because, if an error
occurs, the data may be in error and
error-recovery procedures will cause the
operation to be tried again. The exit via
the error parameter is the only method of
informing the user that an error has
occurred. Therefore, do not manipulate
data before the entire card has keen
processed when using CARDO.

Wwhen using CARD1, the following
precautions should be taken:

. Do not store converted data back into
the read-in area.

/MMK

@W’N

. Do not take any irretrievable action
based on the data until the card has
been read correctly; i.e., be prepared
to convert the data or perform the
calculations a second time.

. #hen data manipulation is complete, -
check the user-assigned error
indicator that is set when a branch to
the user-written error subroutine
occurs. The data conversion or
calculations can then be reinitiated,
if necessary.

Last Card

When the last card has been detected, a
branch to the user error routine with /0000
in the Accumulator will occur. An
operation requested after the last card has
been fed from the hopper causes an exit to
$PRET. When the 1442 is made ready and the
PROGRAM START key is pressed, the last card
will be processed.

2501 CARD READER SUBROUTINES (READQO AND
READI1)

These card subroutines, available only with
the DM2 system, perform read and test
functions relative to the 1IBM 2501 card
reader.

READO Subroutine. READ0O is shorter than
READ1, provides no error parameter, and is
the standard subroutine for operation of
the 2501 card reader. On an error, READD
branches to $PSTY, then a WAIT for
operation intervention will occur. The
last card condition causes a branch to
$PRET.

READ1 Subroutine. READ1 is used for
operation of the 2501 card reader if a user
error exit is required.

Calling Sequence

Lave! Ope Flt Operondy & Remorks
L.IBF WEALQ) Gty CIARD I NPUT ., ,
c WwaEd CONTROL, LARAME T.ER. |
. c, WOAR & 1 IO AREA_PARAME.TE R
o o ERROR . . . ERROR \F.ARAMETESR : .

| EI S SR R S S SR S S S S S VY S S N SV S R RO

Bovoaa a1 P U S S S S S SRR S MR SRR WY

L L U S R U B B G S S S S S 'Y

ERRORl DG, .

P S S

P R S
RETUBN (TO (CALLER |

85.C. ERROR,
hd 1 S B T S § U S R 'Y
-y e Y I S T S Y NS UM I U G S N N0 U S S T W SN S A
1 Al S Y 1 | SP U TRT T T TN TRN U U (Y NN SR U YN R AN S AT
L.0,A.82, C Fro00 00 WQRD COUMNT 1 0 s
LSS, Ay " 20 AREA AT
. . Lt
where

ais O0or 1,
b is the 1/0 function digit,

f is the number of columns to be read
from the card,

h is the length of the 1/0 area. h must

be equal to or greater than f.

The calling sequence parameters are
described in the following paragraphs.

Control Parameter

This parameter consists of four hexadecimal
digits as shown below:

1 .2

1/0 Funct ion____l

Not Used

1/0 Function

The 1/0 function digit specifies the
particular operation to be performed on the
2501 Card Reader. The functions,
associated digital values, and required
parameters are listed and described below.

Interrupt Service Subroutines 21

T 1
| Digital Required |
|Function Value Parameters? |
| I
[Test 0 Control |
|Read 1 Control, 1/0 Area, Error?|

i
|"Any parameter not required for a |
| particular function must be omitted. = |
|2The error parameter is not required for |
| READO. : |
L 3

Test. Branches to LIBF+2 if the previous
operation has not been completed, to LIBF+3
if the previous operation has been
completed.

Read. Reads one card and transfers a
specified number of columns of data to the
user's input area. The number of columns
read (1-80) is specified by the user in the
first location of the input area. The
subroutine initiates the read function and
returns control to the user's program.

When an Operation Complete interrupt
occurs, the card subroutine checks for
errors. If an error occurred, READ0 exits
to $PSTU; READ1 informs the user of the
error and sets up to terminate or retry the
operation.

The data in the user's input area is in
IBM Card Code format; that is, each 12-bit
column image is left-justified in one
16-bit word.

There is no separate feed function.
However, a feed can be obtained by a read
function with a word count of zero.

1/0 Area Parameter

The 1/0 area parameter is the label on the
control word that precedes the user'®s input
area. The control word consists of a word
count that specifies the number of columns
of data to be read, always starting with
column 1. The word count must be in the
range of 0-80.

Error Parameter

READO. READO has no error parameter. If
an error is detected while an Operation
Complete interrupt is being processed, the
subroutine branches to $PSTH, with

22

interrupt level 4% on, waiting for operator

intervention. When the condition has been

corrected, the 2501 made ready, and PROGRAM
START pressed, the subroutine attempts the

operation again.

READ1. READ1 has an error parameter. I1f
an error is detected, the user can request
the subroutine to terminate (that is, to
clear the subroutine's busy indicator and
turn off the interrupt level) or retry.
Prior to a retry, the subroutine checks to
see if the unit is ready. If the unit is
not ready, the subroutine branches to $PSTH
with interrupt level 4 on, waiting for
operator intervention.

Last Card

A read function requested after the last
card has been fed from the hopper causes an
exit to $PRET. When the reader is made
ready and the PROGRAM START key pressed,
the last card is read and fed into the
stacker. "

1442 CARD PUNCH SUBROUTINES (PNCHO AND
PNCHY)

These card subroutines, available only with
the DM2 system, perform all 1/0 functions
relative to the IBM 1442-5 Card Punch, that
is, punch and feed. These subroutines may
also be used with the 1442-6 or 1442-7 Card
Read Punch for punch and feed functions.

PNCHO. The PNCHO subroutine is shorter
than PNCH1, provides no error parameter,
and is the standard subroutine for
operation of the 1442 card punch. On an
error, PNCHO branches to $PST4, then a WAIT
for operator intervention will occur. The
last card condition causes a branch to
$PRET.

PNCH1. PNCH1 can be used for operation of
the 1442 card punch if a user erxor exit is
desired.

PSRN W

. L P
L_A_xA s | EAFURFSI B U T T S T A S TS
L— NI I

L

TS U T S S S T S

RTINS SR S U T N S ST U T S R S S SNt

PNCHO.

Calling Sequence — ———- - -

’ | Digital Required |

|Function Value Parameters® |

] Test 0 Control |

Lote! Operotion Py Operonds & Remarks 2

. AL « - . R |Punch 2 Control 1/0 Area, Error? |

. TBF] WCHSE & o CAld CARD QUTPUT: | | Feed 3 Control, Error2]

n C. b B BB . s CNTROL PABAMETE R, l'= 4
it L WOAR IO A RBEAL PARAMET.ER Py s

L. lloe E£RROA ERROR \PARAMETER + . . Any parameter not required for a |

L particular function must be omitted. |

- |

" hd I UG S0 [SR SV I S N TS N 0 S I S0 T A S T U SR

MU B SRV S U U U SR i S

IS IS U WD RO SN U UNUS TR0 TR S N U NN S S W 'S
BETURM T.0. (CALLER |

PR S S S S S TS S Y S U S S S B

" L n
8.5.C, L E\RROR, 1 .,

" LI L PTE EAT USSR RPN S N S S S S T T

Z.0.A.R. Ciov FiLu A MORD c.nuur L L
o S.S. _ L .00 AA.E:E&._J_u_A_._;_x_l_u_

YOI O YU S S U W

N
"

L pT— VPRI T T S NI S ST B
s
N
i

S L T

where

ais 0 or 1,

b is the 1/0 function 3igit,

f is the number of columns to be punched
into the cari,

h is the length of the 1/0 area. h must

be equal to or greater than f.

The calling sequence parameters are
described in the following paragraphs.

Control Parameter

MNpamaacmmﬂsdfwrMmhmml
digits as shown below:

1 2 3 4

1/0 Function________ﬁJ

Not used

I/0 Function

The I/0 function digit specifies the
particular operation to be performed on the
1442 Card Punch. The functions, associated
digital values, and required parameters are
listed and described below.

| 2The error parameter is not required for
L

Test. Branches to LIBF+2 if the previous
operation has not been completed, to LIBF+3
if the previous operation has been
completed.

Punch. Punches into one card the number of
columns of data specified by the word count
found at the beginning of the user's output
area. As each column comes under the punch
dies, a column interrupt occurs, the
subroutine transfers a word from the user's
output area to the punch, and then returns
control to the user's program. The
character punched is the image of the
leftmost 12 bits in the word. -

This sequence is repeated until the
requested number of columns has been
punched, after which an Operation Complete
interrupt occurs. At this time the card
subroutine checks for errors. 1If an error
occurred, PNCHO exits to $PSTU4; PNCH1
informs the user of the error and sets up
to terminate or retry the operation.

Feed. Initiates a card feed cycle. This
function advances all cards in the machine
to the next station; that is, a card at the
punch station advances to the stacker, a
card at the read station advances to the
punch station, and a card in the hopper
advances to the read station. No data is
punched as a result of a feed function and
no column interrupts occur.

When the card advance is complete, an
Operation Complete interrupt occurs. At
this time the card subroutine checks for
errors. If an error occurred, PNCHO exits
to $PSTU; PNCH1 informs the user of the
error and sets up to terminate or retry the
operation.

1/0 Area Parameter

The 1/0 area parameter is the label of the
control word that precedes the user's
output area. The control word consists of
a word count that specifies the number of
columns of data to be punched, always
starting with column 1. The word count
must be in the range of 1-80.

Interrupt Service Subroutines 23

—

Exrror Parameter

PNCHO. PNCHO has no error parameter. If
an error is detected while an Operation
Complete interrupt is being processed, the
subroutine branches to $PST4 with interrupt
level 4 on, waiting for operator
intervention. When the conldition has been
corrected, the 1442 made ready, and PROGRAM
START pressed, the subroutine retries the

operation.

PNCH1. PNCH?1 has an error parameter. If
an error is detected, the user can request
the subroutine to terminate (that is, to
clear the subroutine-busy indicator and
turn off the interrupt level) or retry.
Prior to a retry, the subroutine checks to
see if the unit is ready. If the unit is
not ready, the subroutine branches to
$PST4, with interrupt level 4 on, waiting
for operator intervention.

DISK SUBROUTINES (C/PT SYSTEM)

The disk subroutines perform all reading
and writing of data relative to disk
storage. This inclules the major
functions: seek, réad, and write, in
conjunction with readback check, file
protection, and defective cylinder
handling.

DISKO. The DISKO subroutine is the
shortest version of the disk subroutine and
can be used if not more than 320 words are
to be read or written at one time.

D1SK1. The DISK1 version is the standard
subroutine for the disk and allows more
than 320 words to be read or written;
however, a full disk revolution might occur
between sectors. DISK1 requires more core
storage than DISKO.

DISKN. The DISKN subroutine minimizes
extra disk revolutions in transferring more
than 320 words. The DISKN subroutine
requires more core storage than DISK1.

The major difference between DISK1 and
DISKN is the ability of DISKN to read or
write consecutive sectors on the disk
without taking an extra revolution. 1If a
full sector is written, the time in which
the I/0 command must be given varies.

DISKN is programmed so that the extra
revolution will not occur the majority of
the time; DISK1 approximately 50 percent of
the time.

All three disk subroutines have the same

' error-handling procedures.

24

’

Sector Numbering and File Protection

In the interest of providing disk features
permitting versatile and orderly control of
disk operations, programming conventions
have been adopted concerning sector
numbering, file protection, and defective
cylinder handling. Successful use of the
disk subroutines can be expected only if
user programs are built within the
framework of these conventions.

The primary concern behind these
conventions is the safety of data recorded
on the disk. To this end, the
file-protection scheme plays a major role,
but does so ‘in a manner that is dependent
upon the sector-numbering technique. The
latter contributes to data safety by
allowing the disk subroutine to verify the
correct positioning of the access arm
before it actually performs a write
operation. This verification requires that
sector identification be prerecorded on
each sector and that subseguent writing to
the disk be done in a manner that preserves
the existing identification. The disk
subroutines have been organized to comply
with these requirements.

Sector Numbering. The details of the
numbering scheme are as follows: each disk
sector is assigned an address from the
sequence 0,1,...,1623, corresponding to the
sector position in the ascending sequence
of cylinder and sector numbers from
cylinder 0 sector 0 (outermost), through
cylinder 202 sector 7 {innermost). The
user can address cylinders 0 through 199.
The remaining three cylinders are reserved
for defective cylinder handling.

Each cylinder contains eight sectors and
each sector contains 321 words. The sector
address is recorded in the first word of
each sector and occupies the rightmost
eleven bit positions. Of these eleven
positions, the three low-order positions
identify the sector (0-7) within the
cylinder. Utilization of this first word
for identification purposes reduces the per
sector availability of data words to 320;
therefore, transmission of full sectors of
data is performed in increments of 320
words. The sector addresses must be
initially recorded on the disk by the user
and are thereafter rewritten by the disk
subroutines as each sector is written (see
"Disk Initialization" in this section).

File Protection. File protection’is
provided to guard against the inadvertent
destruction of previously recorded data.

By having the write functions (except write
immediate) uniformly test for the
file-protect status of sectors that they
are about to write, this control can be
achieved.

This convention is implemented by
assigning a file-protected area to each
disk. The address of the first unprotected
sector (0000-1623) on each disk is stored
within the disk subroutine. Every sector
below this one is file-protected, i.e.,
no writing is permitted below this address.

Defective Cylinder Handling

A defective sector is one in which, after
ten retries, a successful writing operation
cannot be completed. A cylinder having one
or more defective sectors is defined as a
defective cylinder. The disk subroutines
can operate when as many as three cylinders
are defective.

Since there are 203 cylinders on each
disk, the subroutine can “"overflow®" the
normally used 200 cylinders when defective
cylinders are encountereld (see "Effective
Address Calculation®™ in this section).

The address of each defective cylinder
is stored within the disk subroutines by
the user (see "Disk Initialization" in
this section).

If a cylinder becomes defective during
an operation, the user can move the data
in that cylinder and each higher-addressed
cylinder into the next higher-addressed
cylinder. Then the address of the new
defective cylinder can be stored in
DISKx +16, +17, or +18 and normal opera-
tion continued. Thus the user should
not store the new defective cylinder
address in DISKx and then continue
normally because the effective sector
address computation then yields a sector
address eight higher than is desired (see
"Effective Address Calculation" in this
section).

1f there are no Jefective cylinders, all
three words in the defective cylinder table
contain /0658. 1If, for example, only
sector 0009 is defective, the table would
contain /0008 (cylinder 1), /0658, and
/0658. ‘

Calling Sequence

Lobel Operotion | |F[T Oparands & Remorks
2 | |- HECIDEE w s 30 53
PP JBE O S Kk 1 0y Ol DS L0
L Lo /b edie ¢, CIOMTROL: PARAMETER .
L QAL 1 IO AREA LPARAME T.ER,
L Nl RROR o\ . 1 ERRORL \PARAMETER + |
L LA | BN TN VA WS T S T A T WA Y T EATUA VAN SN ST SN SO S S ST ST N0 WY W
1ty LT 3 S T T SO SO0 TR Y TN TN T SN T S TR U VAN WY S S (U S D N N N Y
- B SN TS ST D W [N S G SN N N TR U S SR N S T A SN SN G U B S NS
KR OR| L -
gty ey I S S S SIS T AR A S S G S R
11 1 VR -] B SU0% WS T TN U T Y U TN U S N N TS WY N WA (N S N SN N Y
L4 1 -) Y T S WU S [U S T [N N TS TN NN U WY S T S N 2NY SN N AN G Y
n L S\ C I E\RROR & BRETUNRM (T.0 CALLER
1 i1 ¥ S ST T [0 TN A T S WA S S WA RS AT S U S S N AL N BT ST
1 i1 F W W T U T S T U W S S W S ST T TR AN W N U SN SN SN)
11 2r1 N T O T WS I T S T T T N T T T WS W T U S TN WA SN N U
LOAR Gy £y a0 WORD COUNT g oe s,
PR N o PM&CMD&E&&_‘_._._.
PR .oy o O/0 AREAR 4 0y s
PR T IS N Y T S N SIS S W W T T U T WY N S WA N A W NN SN S G N DY
where

ais 0, 1, or N

b is the 1/0 function digit,

c is in DISKN test function, the logical
drive number. Otherwise ¢ is 0.

d is the Seek option digit,
e is the Displacement option digit,

f is the number of words to be
transferred to or from the disk,

g is the sector address at which the
transfer is to begin,

h is the length of the I/0 area. h must

be equal to or greater than f.

The calling sequence parameters are
described in the following paragraphs.

Control Parameter

This parameter consists of four hexadecimal
digits as shown below:

1 2 3 4

1/0 Function_________J

Not Used

Seek Option

Displacement Option

Interrupt Service Subroutines 25

170 Function

The 1/0 function digit specifies the
operation to be performed on disk storage.
The functions, their associated digital
value, and the required parameters are
listed and described below.

r 1
{ Digital Required }
|Function Value Parameters? |
|]
|Test 0 Control, 1/0 Area I
] |
[Read 1 Control, 1,0 Area, Error |
! |
[Write with- |
|ocut RBC 2 Control, 1,0 Area, Error |
i |
[Write }
|with RBC 3 Control, 1/0 Area, Error |
l |
[Write i
|Immediate 4 Control, I/0 Area |
| |
| Seek 5 Control, 1/0 Area, Error |
b i
|"any parameter not required for a |
| particular function must be omitted. |
L J

Test. Branches to LIBF+3 if the previous
operation has not been completed, to LIBF+4
if the previous operation has been
completed.

Note: This function requires the 1/0 area
parameter even though it is not used.

Read. Positions the access arm and reads
data into the user's I/0 area until the
specified number of words has been
transmitted. Although szctor-identifi-
cation words are read and checked for
agreement with expected values, they are
neither transmitted to the 1/0 data area
nor counted in the number of words
transferred.

I1f, during the reading of a sector, a
read check occurs, up to ten retries are
attempted. If the error persists, the
function is temporarily discontinued, an
error code is placed in the Accumulator,
the address of the faulty sector is placed
in the Extension, anl an exit is made to
the error subroutine specified by the error
parameter.

Upon return from the error subroutine,
that sector operation is reinitiated or the
function is terminated, depending on
whether the Accamulator is nonzero or zero.

Write With Readback Check. This function
first checks whether or not the specified
sector address is in a file-protected area.
If it is, the subroutine places the

26

appropriate error code in the Accumulator
and exits to location /0028.

If the specified sector address is not
in a file-protected area, the subroutine
positions the access arm and writes the
contents of the indicated 1/0 data area
into consecutive disk sectors. Writing
begins at the designated sector and
continues until the specified number of
words has been transmitted. A readback
check is performed on the data written.

1f any errors are detected, the
operation is retried up to ten times. 1If
the function still cannot be accomplished,
an appropriate error code is placed in the
Accumulator, the address of the faulty
sector is placed in the Extension, and an
exit is made to the error subroutine
designated in the error parameter.

Upon return from this error subroutine,
the same sector operation is reinitiated or
the function is terminated depending upon
whether the contents of the Accumulator is
nonzero Or ZzZero.

As each sector is written, the
subroutine supplies the sector-
identification word. The identification
word for the first sector is obtained from
the 1/0 area, although it and subsequently
generated identification words are not
included in the word count. Writing less
than 320 words on any sector sets the
remaining words in that sector to zero.

Write Without Readback Check. This
function is the same as the function
described above except that no readback
check is performed.

Write Immediate. Writes data with no
attempt to position the access arm, check
for file-protect status, or check for
errors. Writing begins at the sector
number specified by the rightmost three
bits of the sector address. This function
is provided to fulfill the need for more
rapid writing to the disk than is provided
in the previously described write
functions. Primary application will be
found in the *"streaming” of data to the
disk for temporary bulk storage.

As each sector is written, the
subroutine supplies the sector-
identification word. The identification
word for the first sector is obtained from
the I/0 area, although it and subsequently
generated identification words are not
included in the word count. Writing less
than 320 words sets the remainder of the
sector to zero.

ﬁmﬁ

Seek. Initiates a seek as specified by the
seek option digit. If any errors are
detected, the operation is retried up to
ten times. ,

Seek Option

1f zero, a seek is executed to the cylinder
whose sector address is in the disk 1/0
area control word; if nonzero, a seek is
executed to the next cylinder toward the
center of the disk, regardless of the
sector address in the disk 1/0 area control
word. This option is valid only when the
seek function is specified.

The seek function requires that the user
set up the normal I/0 area parameter (see
"I/0 Area Parameter® in this section) even
though only the sector address in the I1I/0
area is used. The 1/0 area control (first)
word is ignored.

Displacement Option

1f zero, the sector address word contains
the absolute sector identification; if
nonzero, the file-protect address for the
specified disk is added to bits 4-15 of the
sector address word to generate the
effective sector identification. The
file-protect address is the sector
identification of the first unprotected
sector.

1/0 Area Par ameter

The 1/0 area parameter is the label of the
first of two control words which precede
the user's I/0 area.

The first word contains a count of the
number of data words that are to be
transmitted during the disk operation. If
the DISK1 or DISKN subroutine is used, this
count need not be limited by sector or
cylinder size, since these subroutines
cross sector and cylinder boundaries, if
necessary, in order to process the
specified number of words. However, if the
DISKO subroutine is usei, the count is
limited to 320.

The second word contains the sector
address where reading or writing is to
begin. Bits.0-3 are used for device
identification and must be zero. Bits 4-15
specify the sector address. Following the
two control words is the user's data area.

Note: The I/0 area parameters are not
available to the user until the requested
operation is completed. The word count and
sector addresses may be altered during a
requested disk operation but are restored
at the completion of the operation.

Error Parameter

Refer to the section "Basic 1SS Calling
Sequence®”.

Important Locations

The relative locations within the DISKO,
DISK1, and DISKN subroutines are defined as
follows:
DISKx +0 - entry point from calling
transfer vector when LIBF
- DISKx is executed.
loader stores address of
first location (in the
calling transfer vector)
assigned to DISKx.
entry point from 1LS
handling Disk Storage
interrupts.
area code for Disk Storage.
Zero.
zero.
cylinder identification
pits 4-12) of the cylinder
currently under the disk
read/write heads (loaded as
+202) .
unused.
reserved.
sector address (bits 4-15)
of the first
non-file-protected sector
for disk storage {loaded as
0 .
reserved.
reserved.
sector address of the first
defective cylinder for disk
storage (loaded as +1624).
sector address of the second
defective cylinder for disk
storage (loaded as +1624).
sector address of the third
defective cylinder for disk
storage (loaded as +1624).

+2 -

+4 -
+7 -
+8 -

+10 -

+11 -

+13 -

+14 -
+15 -
+16 -

+17 -

+18 -

Interrupt Service Subroutines 27

Effective Address Calculation

An effective disk address is calculated as
follows:

1. Start with the user-requested sector
address (found in the sector address
word of the 1I/0 area).

2. 1f the displacement option (found in
the control parameter) is nonzero, add
the sector address of the first
non-file-protecteld sector (found in
DISKx +13).

Note: This starting address will cause a
preoperative error exit to location /0029
if over 1599.

3. I1f the resulting addiress is equal to
or greater than the sector address of
the first defective cylinder (found in
DISKx +16), add 8.

4, If the resulting address is equal to
or greater than that of the second

defective cylinder (found in DISKx +17),

add 8 more.

5. I1f the resulting adiress is equal to
or greater than that of the third

defective cylinder (found in DISKx +18)J

add 8 more.

The address obtained from steps 1-5 is
the effective sector address.

Disk Initialization

I It is the user's responsibility to
correctly load DISKx +13, +16, +17,

and +18 at execution time and whenever

a new disk is initialized. The following
programs can be used to perform these
functions.

Disk Pack Initialization Routine (DPIR) .
The functions of this program are to write
sector addresses on a disk, to detect any
defective cylinders, and to store defective
cylinder information, file-protect
addresses, and a disk label in sector 0 of
the disk. The operating procedures for
DPIR are located in the publication IBM
1130 Card/Paper Tape Programming System
Operator's Guide.

Set Pack Initialization Routine (SPIRO,
SPIR1, and SPIRN). The function of these
subroutines is to store defective cylinder
information and the file-protect address
from sector 0 of the disk into the appro-
priate DISKx subroutine.

28

1f the above subroutines are not used,
the starting address of the DISKx routine
can be loaded into an index register for
easy use in reaching the specified
locations:

tosel Operanon [6|1 Operonds & Remart:
S L. LLT.B.E " P S S 2 PR "
P L4, B, JEXKPAND MODIWFLER (INTO 116G . .«

BT s L OBLTS, WIT M SITEN e L g L.

. .) 27 ¥ 2 R 3% (UG A ST R SN S R S

;:{.'
L
T T 17

el la il DASAZ + . . ALD CONSTAMTS: T REACH, ..i_..a
1.0 QAD 4L . THLRD MORD 10F, DISKL SiL.aT o1
08D | lLDx |1 ;m_,u;_._“_.x.&zl.-mm_‘_._x_._;_._‘_‘_._d 4

TP USROS S S SRR W
b S R " PRt 1t 1 I " I

[FRTRPE I L R

T
[

LU O B B S S N S I S SR T S P AU
o L 7O SIS S U R AU R R S
L.LBE AW 3 N SIQUEPLCE = LIAE, DI.SiK% ..

Lo RS B L T G T S R O e I O L ST RO RO |

U WU U W Y W TS TV U0 SRS SRR SRR S
A [SN S TP T T [P |
LiQAL. LAS CALLING 1TV, (CeXR3

PN UG S VU UE R S SV N S S SN §

The SPIR is a special-purpose utility
subroutine. It is not called by LIBF as
are the other disk subroutines described in
this section. SPIR0 must be used if DISKO
is called, SPIR1 if DISK1 is called, or
SPIRN if DISKN is called.

Note: In no case should SPIR be used with
the DM2 System.

The SPIR reads sector 0000 from the disk
and stores the first four words into the
disk 1SS that is in core. Therefore, the
SPIR subroutine should be called before any
calls are made to the disk 1SS.

The calling sequence for SPIR is as
follows:

CALL SPIRx
DC /0000

The four words read from sector 0000 are
described under "Disk Pack Initialization
Routine" in the publication IBM 1130
Card/Paper Tape Programming System
Operator's Guide.

DISK SUBROUTINES (DM2 SYSTEM)

All disk subroutines used by the DM2 system
(including DISKZ) reside in the IBM System
area on the monitor disk. The disk
subroutines are stored in a special core
image format in this area rather than in
the System Library, since the DM2 system
always requires a disk 1/0 subroutine. The
required version is fetched by the Core
Image Loader just prior to execution.

”“%N

The disk subroutines used with the
Monitor system are DISKZ, DISK1, and DISKN.

DISKZ. DISKZ is intended for use in a
FORTRAN environment in which FORTRAN I/0 is
used. DISKZ makes no preoperative
parameter checks and offers no file
protection. It is the shortest of the
three disk I/0 subroutines and requires a
special calling sequence (see "DISKZ-Disk
I/0 Subroutine®). This calling sequence
can also be usel with DISK1 and DISKN.
DISKZ is also used by the RPG disk
subroutines.

DISK1. DISK1 is intenleld for use by
Assembler language programs in which the
core storage requirement is of more
importance than the execution time. DISK1
is longer than DISKZ but is the shorter of
the two subroutines intended for use in
Assembler language programs (DISK1 and
DISKN) . However, DISK1 does not minimize
extra disk revolutions when transferring
more than 320 words.

DISKN. DISKN minimizes extra disk revolu-
tions in transferring more than 320

words. It provides all the functions
DISK1 does and also operates as many as 5
drives simultaneously.

Two versions of DISKN are distributed
with the Disk Monitor Svstem. Both ver-
sions are called by the same calling
sequence. The difference between them is
" the way they control disk drives. One
version of DISKN, shown in the next
drawing, can control as many as 5 single-
disk drives simultaneouslv. This version
of DISKN is for systems having only 2315
Disk Cartridges (mounted in 2310 Disk
Storage Drives and/or the 1131 CPU).

The other version of DISKN, shown in
the next drawing, can simultaneously control
a single-disk drive in the 1131 CPU and
two 2311 Disk Storage Drives (only one of
the disks in each pack). This version of
DISKN is for systems having 1316 Disk
Storage Packs (mounted in 2311 Disk Storage
Drives), and--optionally--a 2315 Disk
Cartridge mounted in the 1131 CPU.

During loading of the Disk Monitor
System, the 2310 version of DISKN is auto-
matically placed into the IBM System Area
on disk. If your system contains 231ls,
however, you must replace this version
with the 2311 version of DISKN before you
load the Disk Monitor System card deck.
(See "Monitor System Initial Load and
System Reload" in IBM 1130 Disk Monitor
System, Version 2, Programmer's and
Operator's Guide.)

Note: Both DISK1 and DISKN can be
specified on the Monitor XEQ record for use
with FORTRAN programs. However, they offer
no real advantage over DISKZ if they are
called by the disk FORTRAN I/0 subroutine.

Interrupt Service Subroutines 28.1

28

One of the major differences among the
disk subroutines is the ability to read or
write consecutive sectors on the disk
without taking extra revolutions. If full
sectors are written, the time in which the
1/0 command must be given varies. DISKN is
programmed so that transfers of more than
320 words are made with a minimum number of

extra revolutions occuring between sectors.

DISK1 and DISKN have the same error-
handling procedures.

Note: 1In the DM2 system, the disk I/O
subroutines are not stored in the System
Library; consequently they do not have LET
entries.

Sector Numbering and File Protection

In the interest of providing disk features
permitting versatile and orderly control of
disk operations, programming conventions
have been adopted concerning sector
numbering, file protection, and defective
sector handling. Successful use of disk
I/0 subroutines can be expected only if
user programs are built within the
framework of these conventions. The
primary concern behind the conventions is
the safety of data recorded on the disk.

To this end, the file-protection scheme
plays a major role, but does so in a manner
that is dependent upon the sector-numbering
technique. The latter contributes to data
safety by allowing the disk I/O subroutine
to verify the correct positioning of the
access arm before it actually performs a
write operation. This verification
requires that sector identification be
prerecorded on each sector and that
subsequent writing on the disk be done in a
manner that preserves the existing
identification. The disk 1/0 subroutines
support these requirements.

.

Sector Numbering. Each disk sector is
assigned an address from the sequence 0, 1,
«++41623, corresponding to the sector
position in the ascending sequence of
cylinder and sector numbers from cylinder
0, sector 0 (outermost), through cylinder
202, sector 7 (innermost). The user can
address cylinders -0 through 199. The
remaining three cylinders are reserved for
defective cylinder handling.

Each cylinder contains eight sectors and
each sector contains 321 words, counting
the sector address. The sector address is
recorded in the first word of each sector
and occupies the rightmost eleven bit
positions. Of these eleven positions, the
three low-order positions identify the
sector (0-7) within the cylinder.
Utilization of this first word for
identification purposes reduces the per
sector availability of data words to 320;
therefore, transmission of full sectors of
data is performed in increments of 320
words.

Sector addresses must be initially
recorded on the disk by the user (via DISC
or DCIP: see IBM 1130 Disk Monitor System,
Version 2, Programmer's and Operator's
Guide), and are thereafter rewritten by the
disk I/0 subroutines as each sector is
written.

Note: Although not actually written on the
disk, the logical drive code must be part
of the sector address parameter (bits 1-3)
which is stored in the second word of the
1/0 area. Bit 0 must always be zero.

File Protection. File protection is
provided to prohibit the inadvertent
destruction of previously recorded data.
This control is achieved by having all
write functions (except write immediate)
test for the file-protection status of
sectors they are about to write.

Interrupt.Service Subroutines 29

Each cartridge has a file-protect g is the sector address, including the

address in COMMA. This address is the logical drive code, at which the

address of the first unprotected sector, transfer is to begin,

i.e., the address of the beginning of

Working Storage. Every sector, from sector h is the length of the I/0 area. h must

0 up to the sector address maintained in be equal to or greater than f.

COMMA, is file-protected. The initial .

assignment of the file-protect address is

performed by the disk initialization

program DCIP or DISC: see IBM 1130 Disk

| Monitor System, Version 2, Programmer's Control Parameter

and Operator's Guide. Subsequent updating

of the file-protect address is performed

by the Monitor programs. This parameter consists of four hexadecimal
digits, shown below:

Defective Sector Handling. A defective
sector is a sector on which a read or write 1 2 3 4
function cannot be successfully completed

during initialization of the cartridge. A 1/0 Fanction

cylinder having one or more defective

sectors is defined as a defective cylinder. Logical Drive Code

The disk 1/0 subroutines can accommodate as (DISKN Test function Only)
many as three defective cylinders per

cartridge. Since there are 203 cylinders Seek Option
on each disk, the disk I/0 subroutines can
"overflow" the 200 cyliniers normally used Displacement Option

when defective cylinders are encountered
(see "Effective Address Calculation™ in
this section). 1/0 Function

The I/0 function digit specifies the
operation to be performed on disk storage.
The functions, their associated digital

Calling Sequence value, and the required parameters are
listed and described below.

Lobel Operation Flr Operands & Remorks.
unl o s {oln] | « s » s w r T " o | o
: LIAF] LSKa 1 o2 CALL OLSK T/0 o | Digital Required 1
. c NbPde o CONTROL LARAMETER . |Fanction Value Parameters" |
. Yol OAR o v+ 2 s L0 AREA PARAMET.ER | |
SRR R BN [Test 0 Control, 1/0 Area |
: s e e i
A B e e i e e |Read 1 Control, 1/0 Area, Error |
£.RROR X oTEN - I '
SO e e Jerdte with- !
AR T jout RBC 2 Control, I/0 Area, Error |
PR WG, T l |
e o P EPEE B PO ST B S S U RIS S S S S U A S IwIite l
ST with RBC 3 Control, 1/0 Area, Error |
Loaz | bc. £ WORD COUNT s | |
coa g ?L¢444JAAAAmaan&AAamgﬁsa__LLL |Write |
N S:5. Lo v DAOCAREAR e e | Inmediate 4 Control, 1/0 Area |
‘lLLI.I. W ST U N T SN SN S AN W N U S N SN NN W UHA SN S NV N W S R S I I
| Seek 5 Control, I/0 Area, Error |
L]
L - L
where | "Any parameter not required for a |
| particular function must be omitted. |
a is 1 or N. Note that LIBF DISKO is L !
equivalent to LIBF DISK1.
b is the I/0 function 3digit, Test. Branches to LIBF+3 if the previous
operation on the drive has not been
d is the Seek option digit, completed, to LIBF+4 if the previous
operation has been completed.
€ is the Displacement option digit,
f is the number of words to be Note: This function requires the 1/0 area
transferred to or from the 3isk, parameter even though it is not used. N

30

Read. Positions the access arm and reads
data into the user's I/0 area until the
specified number of words has been
transaitted. Although sector
identification words are read and checked
for agreement with expected values, they
are neither transmitted to the 1/0 area nor
counted in the number of words transferred.

1f, during the reading of a sector, a
read check occurs, up to 16 retries are
attempted. 1If the error persists, the
function is temporarily discontinued, an
error code is placed in the Accumulator,
the address of the faulty sector is placed
in the Extension, and an exit is made to
the error subroutine specified by the error
parameter. .

Upon return from the error subroutine,
the operation is either reinitiated or
terminated, depending on whether the
Accumulator is nonzero or zero,
respectively.

Write With Readback Check. Checks whether
or not the specified sector address is in a
file-protected area. If it is, the
subroutine places the appropriate error
code in the Accumulator and exits to $PRET.

If the specified sector address is not
in a file-protected area, the subroutine
positions the access arm and writes the
contents of the indicated 1I/0 area onto the
disk. Writing begins at the designated
sector and continues until the specified
nunber of words have been transmitted. A
readback check is performed on the data
written.

Writing less than 320 words on any
sector sets the remaining words in that
sector to zero.

If any errors are detected, the
operation is retried up to 16 times. 1If
the function cannot be accomplished, an
appropriate error code is placed in the
Accumulator, the address of the faulty
sector is placed in the Extension, and an
exit is made to the error subroutine
designated by the error parameter.

Upon return from this error subroutine,
the operation is either reinitiated or
terminated, depending upon whether the
Accumulator is nonzero or zero,
respectively.

As each sector is written, the
subroutine supplies the sector-identi-
fication word. The identification word for
the first sector is obtained from the 1I/0
area, although it and subsequently
generated identification words are not
included in the word count.

Write Without Readback Check. Functions
the same as Write With Readback Check
except that no readback check is per formed.

Write Immediate. Writes data with no
attempt to position the access arm, check
for file-protect status, or check for)
errors. Writing begins at the sector
number specified in the user's 1/0 area.
This function provides more rapid writing
to the disk than is provided in the
previously described Write functions; it
provides, for example, the ability to
“stream”™ data to the disk for temporary
bulk storage or to write addresses in
Working Storage (see "System Library
Mainline Programs (OM2 System) ADRWS®).

Writing less than 320 words on any
sector sets the remaining words in that
sector to zero.

As each sector is written, the
subroutine supplies the sector-identi-
fication word. The identification word for
the first sector is obtained from the 1/0
area, although it and subsequently
generated identification words are not
included in the word count.

Seek. Initiates a seek as specified by the
seek option digit. If any errors are detect-
ed, the operation is retried up to 16 times.

The seek function requires that the user
set up the normal I/0 area parameters (see
"I/0 Area Parameter" in this section) even
though only the sector address in the I/O
area is used.

Logical Drive Code. Digit 2 defines the
logical drive code (0, 1, 2, 3, or 4). This
digit is used only with the DISKN test function.

Seek Option. If digit 3 of the control
parameter is zero, a seek is executed to
the cylinder whose sector address is in the
I/0 area; if nonzero, a seek is executed to
the next nondefective cylinder toward the
center, regardless of the sector address in
the I/0 area. This seek to the next
nondefective cylinder must be taken into
consideration when planning for the
"streaming" of data. This option is valid
only when the seek function is specified.

Displacement QOption. If digit 4 of the
control parameter is zero, the sector
address word contains the absolute sector
identification; if nonzero, the file-protect
address for the specified cartridge is added
to bits 4-15 of the sector address word to
generate the effective sector identification.
The file-protect address is the sector
identification of the first unprotected
sector, i.e., the address of the first
sector of Working Storage.

Interrupt Service Subroutines 31

1/0 Area Parameter

The 1/0 area parameter is the label of the
first of two control words which precede
the user's 1/0 area. The first word
contains the number of data words that are
to be transferred during the disk
operation. This number need not be llmlted
by sector or cylinder size, since the
subroutines cross sector and cylindex
boundaries, if necessary, in order to
transmit the specified number of words.

The second word contains the sector
address at which reading or writing is to
begin. Bit 0 must be zero. Bits 1-3 are
the device identification (logical drive
code) and must be 0, 1, 2, 3, or 4. Bits
4-15 specify the sector address. The
user's I/0 area follows the two control
words.

Note: The I/0 area parameters are not
avallable to the user until the requested
operation is completed. The word count
and sector addresses may be altered during
a requested disk operation but are re-
stored at the completion of the operation.

Error Parameter

1f an error is detected, the user can
reguest the subroutine to terminate (that
is, to clear the subroutine's busy
indicator and turn off interrupt level 2)
or to branch to $PST2, with interrupt level
2 on, waiting for operator intervention.

Effective Address Calculation

An effective disk address is calculated as
follows:

1. Obtain the sector address found in the
sector address word of the 1/0 area.

2. 1f the displacement option digit in
the control parametzr is nonzero, add
the sector address of the first sector
that is not file-protectead.

Note: This address causes an exit to $PRET
if it exceeds 1599.

3. I1If the resultant adiress is equal to
or greater than the sector address of
the first defective cylinder, add 8.

4. If the resnltant address is equal to

or greater than that of the second
defective cylinder, add 8 more.

32

5. If the resultant address is equal to
or greater than that of the third
defective cylinder, add 8 more.

The address obtained from steps 1-5 is
the effective sector address. Defective
cylinders are handled in this manner for
all operations, including seek and write
immediate.

Monitor Entry Point

Both DISK1 and DISKN can be entered by a
BSI L. /00F2, the monitor entry point (see
calling sequence of DISKZ). This entry
point is used by the system programs and by
FORTRAN programs when DISK1 or DISKN is
specified in the XEQ record.

Reading begins at the designated sector
where the access arm reads data into the
user's I1/0 area until the specified number
of words has been transmitted.

Writing begins at the designated sector
and continues until the specified number of
words have been transmitted. A readback
check is performed on the data written on
the disk. When DISK!1 and DISKN are entered
via /00F2, however, there is no check for
writing in the file-protect area.

There is no
seek operation

possibility of performing a
when using the monitor entry
point. A word count of zero will result in
a preoperative error wait. All postopera-
tive errors will cause a branch to $PST2
(see Appendix B).

Disk Initialization

Before the DM2 system is stored on a
cartridge, the Disk Cartridge
Initialization Program (DCIP) must be
executed. This program writes sector
addresses on the disk cartridge, detects
any defective cylinders, stores defective
cylinder information and a cartridge ID in
sector 0 of cylinder 0, and initializes
DCOM. The operating procedure for DCIP is
listed in the publication IBM 1130 Disk
Monitor System, Version 2, Programmer's
and Operator's Guide.

DISKZ - DISK 1/0 SUBROUTINE

The DISKZ subroutine offers no file
protection, no preoperative parameter
checks, no write immediate function, and nc

~

write without readback check function. It
is intended for use by the DM2 programs,
RPG programs, and FORTRAN programs in which
disk FORTRAN 1/0 is used. Although DISKZ
has many of the characteristics of an ISS,
it is assembled as though it were a
mainline and is stored in a special Core
Image format in the System Device
Subroutine area.

Calling Sequence

Operands & Remorky

. . N .
£.0.D, L1, ST L boAD PARAMETERS N ACC EXT

851, L

IM;-

. Jas.s
Las T b pe .
" i D

........ | A

L
v
i
!
L
o

T

Lt
T

PEFEE Y NS S) [

L
S aa N S S I AT |
N
1

S U S I S RPN B S I

t
s
1
WMORD: CIOUNT PESTRI W 1
1 SecT ok ARDRESS st
L n/o ARIEA L .o N
1
s
)

LOAR DG ..

Buffer Size. Unlimited

Operation. DISKZ performs read, seek, and
write with readback check functions. Each
function returns control to the user after
it has been initiated. To determine the
completion of a disk operation, the user
may test $DBSY (Location ,O0EE in COMMA)
until it is cleared to zero. DISKZ itself
tests this word before initiating an
operation. Following a write, this
subroutine performs a readback check on the
data just written. If it detects an error,
it reexecutes the write. Similarly, if a
sector is not located or if an error is
detected during a read, DISKZ repeats the
operation. All operations are attempted 16
times before DISKZ indicates an
unrecoverable error.

If a partial sector (less than 320
words) is written, the remaining words of
the sector are set to zero.

No other subroutines

It is important to realize that the

D.C (Tl
ASS ||| & "
LTI N U ST T T S T S TN U U G U (0 NV U0 W% B 1 1 i3 " AL i
. e - : : Subroutines Required.

2. EQuU. [epFa . . s e NN are required by DISKZ.
. e T

T o : T
{ e O e Note:
where

a is the 1/0 function digit: 0
indicates a read, 1 a write.

b is the number of words to be
transferred to or from the disk,

c is the sector address at which the
transfer is to begin,

d is the length of the 1/0 area.
be equal to or greater than b.

d must

The word count (first word of the
buffer) must be nonnegative and must be on
an even core boundary. The sector address
must be the second word of the buffer. The
logical drive code (0, 1, 2, 3, or 4), as
defined by the // JOB DM2 control record,
is in bits 1-3 of the sector address. Bit
zero is always zero.

A word count of zero indicates a seek to
the cylinder denoted in the sector address.
File protection is not provided. If the
access arm is not positioned at the
cylinder addressed, DISKZ seeks to that
cylinder before performing the requested
function. A read follows each seek to
verify that the seek was successful. No
buffer is required for this read.

DISKZ subroutine is designed to operate in
an error-free environment; it is not
recommended for general usage. The user
should therefore use DISK1 or DISKN
whenever possible.

1132 PRINTER SUBROUTINE (PRNT1)

The printer subroutine PRNT1 handles all
print and carriage control functions
relative to the IBM 1132 Printer (see also
*“1132 Printer/Synchronous Communications
Adapter Subroutine (PRNT2)*). Only one
line of data can be printed, or one
carriage operation executed, with each call
to the printer subroutine. The data in the
output area must be in EBCDIC form, packed
two characters per computer word. Any code
other than those defined for the 1132 will
be interpreted by the PRNT1 subroutine as a
blank. (See "Appendix D. Character Code
Chart".)

Interrupt Service Subroutines 33

Calling Sequence - —
Digital Required : 1
Function Value Parameters*
tabel Operation (214 Operonds & Remarks
Al | alal s o . M 2 .
eias TLBF| PRNT.Z o+« AL PRIMTER OUT.PUT ITeSt 0 Control
S . Y- fibed@ o o . . CONTROL PARAMETER . | . |
. 2 LoAR . . L0 AREA PARAMET.E£ . |Print 2 Control, 1/0 Axea, Error
P X ST WRROR, 1 .+ (SRROR \PARAMETER . .\ .
4 .LJ 1 IS TS SR N N PO T RPN N I T S TS S T T B A S S SN Y Control
s 1 'l) TN Y VA AU N U W RO S N T G N N A 13 P | L
S hJPUr WA R SR UA R TR0 S TS VAN T 0 SN S S T SO WO S W S S ¥ : 1 1: PRI lcarrlage 3 ContrOI
Cy M-k 0., RETURN ADDRIESS: 1+ 2 «
. bR 1 ' RSN URT N VO SN VU S U ST SOV S SN Y S S WA T WY Print l
*2 o4 s TN | £ p o % ¢ 3.0 1} 3 . | L 1 3
1 i Sy 1 jl N T W W WY W0 U TN TR WO S N NN N N N S P . Numerlc q ContrOI' I/o Area' Error
- fol ERROR 1 . 2 RETUWRM 10, CALLER \
i e P ta.aeei i, |Y Any parameter not required for a
S I s ennsna e, | particular function must be omitted.
PRSI LTI PN N BT S NV S SN A B B "I N B A BT A B PR L
roag | lpc, . o , .
t&.s.s. Ao 0y o D40 AREAR 0
ol et iiiitiititiiinaa1.0.., Test. Branches to LIBF+2 if the previous
operation has not been completed, to LIBF+3
if the previous operation has been
where completed.

b is the 1/0 functibn digit,

¢ is the “"immediate" carriage operation
digit,

d is the "after-print" carriage
operation digit,

f is number of words to be printed on
the 1132 Printer,

h is the length of the 1/0 area. h must

be equal to or greater than f.

The calling sequence parameters are
described in the following paragraphs.

Control Parameter

This parameter consists of four hexadecimal
digits which are used as shown below.

1 2 3 4

1/0 Function_______,J

Carriage Control

Not Used

I1/0 Function

The I/0 function digit specifies the
operation to be performed on an 1132
Printer. The functions, their associated
digital values, and the required parameters
are listed and described below.

34

Print. Prints characters from the user's
1/0 area, checking for channel 9 and 12
indications. If either of these conditions
is detected, the subroutine branches to the
user's error subroutine after the line of
data has been printed (see Rppendix B for
error codes). Upon return from this error
subroutine, a skip to channel 1 is
initiated or the function is terminated,
depending upon whether the Accumulator is
nonzero Or Zexro.

Control Carriage. Controls the carriage as
specified by the carriage control digits
listed in Figure 7.

Print Numeric. Prints only numerals and
special characters from the user's 1/0 area
and checks for channel 9 and channel 12
indications. See ®Print® above.

Carriaqge Control. Digits 2 and 3 specify
the carriage control functions listed in
Figure 7. An "immediate®” request is
executed before the next print operation;
an "after-print® request is executed after
the next print operation and replaces the
normal space operation.

1f the 1/0 function is print, only digit
3 is examined; if the 1I/0 function is
control, and digits 2 and 3 both specify
carriage operations, only digit 2 is used.

If channel 9 or channel 12 is encountered
during a carriage control function, a branch
is made to the user's error subroutine at
completion of the next print function.

Note: An after-print request will be lost
if it is followed by an immediate request
or by a print with spacing suppressed. 1f
a series of after-print requests is given,
only the last one will be executed. A skip
operation must not be less than four lines.

s S . St S et S e, =y

Digit #2: Immediate Carriage Operations

Print Functions
Not Used

Control Function

- Immediate Skip To Channel

- Immediate Skip To Channel

- Immediate Skip To Channel

- Immediate Skip To Channel

- Immediate Skip To Channel
Immediate Skip To Channel

- Immediate Skip To Channel

- Immediate Skip To Channel

- Immediate Space Of 1

- Immediate Space Of 2

- Immediate Space Jf 3

ORI EWN =

BEHUOOWOUNI&E WN -
]

Digit #3: After-Print Carriage Operations

b c— ke S— —

Print Functions
0 - Space One Line After Printing
1 - Suppress Space After Printing

Control Function
1 - Skip After Print To Channel
- Skip After Print To Channel
~ Skip After Print To Channel
- Skip After Print To Channel
- Skip After Print To Channel
- Skip After Print To Channel
Skip After Print To Channel
- Skip After Print To Channel
- Space 1 After Print
- Space 2 After Print
- Space 3 After Print |
]

= OOANEWN

[S i e et S . S e et e s i o S St s e ey e S
HTEHOQOVWOAVMEWN
[}

Carriage Control Operations for
1132 Printer

Figure 7.

1/0 Area Parameter

The I/0 area parameter is the label of the
control word that precedes the user's 1/0
area. The control word consists of a word
count that specifies the number of computer
words of data to be printed. The data must
be in EBCDIC format, packed two characters
per computer word. The word count must be
in the range of 1-60. (See “"Descriptions
of Data Codes".)

Error Parameter

See "Basic 1SS Calling Sequence".

1132 PRINTER/SYNCHRONOUS COMMUNICATIONS
ADAPTER SUBROUTINE (PRNT2)

The printer subroutine PRNT2 is an
additional printer subroutine for the IEM
1132 Printer, specifically provided to
permit concurrent operation of the 1132 and
the Synchronous Communications Adapter.
PRNT2 handles all print and carriage
control functions related to the 1132,

Only one line of data can be printed, or
one carriage operation executed, with each
call to the printer subroutine. The data
in the ocutput area must be in EBCDIC form,
packed two characters per word. Any code
other than those defined for the 1132 will
be interpreted by the PRNT2 subroutine as a
blank.

Restriction. The PRNT1 and PRNT2
subroutines are mutually exclusive; i.e.,
both subroutines can not be in core at the
same time. Thus, if the Synchronous
Communications Adapter is in operation, the
PRNT2 subroutine must be used for
concurrent operation of the 1132 Printer.
If the PRNT2 subroutine is required in a
core load for the concurrent operation of
the 1132 Printer and the Adapter, all IBM-
and user-written programs in that core load
using the PRNT1 subroutine must be modified
to use the PRNTZ2 subroutine.

Calling Sequence

L Lobel Operstion (133 Operonds & Remorks.
n s | st luful I « N » v -
- L ZAF| BN+ o ORL L PRIMEER ODUT PUT s
c, fibodd CONTROL, PARAMELER o + i
PN L08R 3 . B0 BRES PARAMETER (1,
XN WRROR, o+ o ERROR PBHRAMET.ER o
L | TR - s A £ 3 4t : & 4 43) ¢ ¢ £ 2. 3 K. 3 4 44
., 1 L S W S N N SN UUR T SO G U T W T N W T W S T ')
L] 1 Al (IS U T W T W SN TN T WA TN S SO T TN T N T T N 1
RN RET IR M ADDRIESS

R, 0 D.Cy

'
N
N
A
L PRI WU B I S B SR U W U]
3
I
1
L

"
1 1
1 L
I P ArETN L
' 1
N I
n :
L 1

R s
LY L TR T 'Y 1 L
3s.c. E1RA0 R s P s
hd 1 IR A N - 1
LN I TR S T W Y 1 1 re A I T
1 A 214 1 1 1 i 1 14 1 1
anr | 126 £
x./.0 BREA R N

where
b is the I/0 function digqgit,

c is the "immediate® carriage operation
digit,

d is the "after-print" carriage
operation digit,

Interrupt Service Subroutines 35

f is the number of words to be printed
on the 1132 Printer,

h is the length of the 1/0 area. h must

be equal to or greater than f.

The calling sequence parameters are
described in the following paragraphs.

Control Par ameter

The control parameter consists of four
hexadecimal digits which are used as shown
below:

1 2 3 4

)
1/0 FUnction_________J

Carriage Control

Not Used

1/0 Function

The 1/0 function digit specifies the
operation to be performed on the 1132
Printer. The functions, their associated
digital values, and the required parameters
are listed and described below.

r 1
| Digital Required !
|Function Value Parameters? |
| |
[Test 0 Control |
! |
|Print 2 Control, 1,0 Area, Error |
! |
{Control 1
[Carriage 3 Control |
I |
|Print l
fNumeric 4 Control, 1/0 Area, Error |
g 1
| Aany parameter not required for a i
| particular function must be omitted. |
L 4

Test. Branches to LIBF+2 if the previous
operation has not been completed, to LIBF+3
if the previous operation has been
completed.

Print. Prints characters from the user's
1/0 area; checks for channel 9 and 12
indications. 1f either of these conditions
is detected, the subroutine branches to the
user's error routine after the line of data
has been printed (see Appendix B for error
codes) . Upon return from this error
routine, a skip to channel 1 is initiated
or the operation is terminated, depending
upon whether the Accumulator is nonzero or
zero.

36

Control Carriage. Controls the carriage as
specified by the carriage control digits
listed in Figure 7.

Print Numeric. Prints only numerals and !
special characters from the user's 1/0 area

and checks for channel 9 and 12 indica-

tions. (See "Print"™ above.)

Carriage Control. Digits 2 and 3 specify
the carriage control operations listed in
Figure 7. BAn "immediate™ regquest is
executed before the next print operation;
an "after-print" request is executed after
the next print operation and replaces the
normal space operation.

If the 1/0 function is Print, only digit
3 is examined; if the 1/0 function is
Control Carriage, and digits 2 and 3 both
specify carriage operations, only digit 2
is used.

Carriage control functions do not check
for channel 9 and channel 12 indications.

1/0 Area Parameter

The 1/0 area parameter is the label of the
control word that precedes the user's 1/0
area. The control word consists of a word
count that specifies the number of words of
data to be printed. The data must be in
EBCDIC format, packed two characters per
word. The word count must be in the range
of 1-60.

Error Parameter

See "Basic 1SS Calling Sequence".

1403 PRINTER SUBROUTINE (PRNT3)

The printer subroutine PRNT3, available
only with the DM2 system, handles all print
and carriage control functions relative to
the 1403 Printer. Only one line of data
can be printed and/or one carriage
operation executed with each call to the
printer subroutine.:

The data in the output area must be in
the 1403 character code, as defined in
"Descriptions of Data Codes™, and packed
two characters per word. Each data code
consists of seven bits and the total number
of bits should always be a valid number.
The first bit is the parity bit. If the
remaining six bits correspond to a valid

)

1403 code, that character will be printed.
A branch to the user error routine will or
will not be made depending upon the
validity of the parity bit. The user can
specify a retry of the operation, if
desired.

Calling Sequence

© Opesands & Remardy

bsa o L.I.BF WRNT T 0 Ll PRI MTER OMT.PUT,

D.LC 1hc.dd
SPENSENS s Xon LOAR .+ . L/O AREA PARAMET.ER
FFODTSUPURN W /X o RRORL,

1_;__um_lmmﬁm_l_n_a_:
1. heVRRRRE A A (0 ST P | 1 1 FE
L
.

L L1 31 b
P PR S S U S S T ST B ST S NS W A
t

Daaaia 4% R Rt

PO N S N O {) T Y NI S S W B S

ERR0E DC.

ek -m A_A_._‘_,_J__.&E.Luz.zm_mmznmm_u_*

digital values, and the. required parameters
are listed and described below.

r

Digital Required
Function Value Parameters"
Test 0 Control
|Print 2 Control, 1/0 Area, Error
Control

Carriage 3 Control

* Any parameter not required for a
particular function must be omitted.

e s e D s o et — —— — — —

Branches to LIBF+2 if the previous

where
b is the 1,/0 function 3igit,

c is the
digit,

*immediate" carriage operation
d is the "after-print® carriage
operation digit,

f is the number of words to be prlnted
on the 1403 Printer,

h is the length of the 1/0 area.

h must
be equal to or greater than f. '

Control Parameter

This parameter consists of four hexadecimal
digits which are used as shown below.

1 2 3 4

1/0 Function J I

Carriage Control

Not Used

1/0 Function

The 1/0 function digit specifies the
operation to be performed on the 1403
Printer. The functions, their associated

s
S B B N Test.
s " Sa-a.) (TR TS TS S T T R U S U UUN Y VA S T SO T Y S S R Y
S.C I, o LCALLER . .
—_ e e 1 i 1 T S W T N S S S S 1 1
A . + 1 2 1 oy M 0 S ST U S S T
P n ASEp Y I N PRSI S T T S SR NU S ST ST N S S T T 1 YU S
LOAR DL, | Foo 0 aa s NORD COLMT b v i
N 2
s

operation has not been completed, to LIBF+3
if the previous operation has been
completed.

Print. Prints characters from the user's
I1/0 area, checking for channel 9 and 12 and
error indications. 1f any of these
conditions are detected, the subroutine
branches to the user's error subroutine
after the line of data has been printed
with an error code in the Accumulator (see
Appendix B) . Upon return from this error
subroutine, a skip to channel 1 is
initiated and the function is reinitiated
or terminated, depending upon the error
code and whether the Accumulator is nonzero
or zero.

Control Carriage. Controls the carriage as
specified by the carriage control listed 1n
Fiqure 8.

Carriaqe Control. Digits 2 and 3 specify
the carriage control functions listed in
Figure 8. An "immediate™ request is
executed before the next print operation;:
an "after-print" request is executed after
the next print operation and replaces the
normal space operation.

If the function is print, only digit 3
is examined; if the function is control,
and digits 2 and 3 both specify carriage
operations, only digit 2 is used.

Carriage control functions do not check
for channel 9 or channel 12 indications.

Note: An "after-print" request is lost if
it is followed by an "immediate® request.
If a series of "after-print®" requests is
given, only the last one is executed.

Interrupt Service Subroutines 37

Error Parameter

r
|Digit #2: Immediate Carriage Operations }
e {
| See *Basic ISS Calling Sequence®. “
|Print Functions |
| Not Used
|
|Control Function |
| 1 - Immediate Skip To Channel 1] KEYBOARD/CONSOLE PRINTER
| 2 - Immediate Skip To Channel 2 |
! 3 - Immediate Skip To Channel 3
] 4 - Immediate Skip To Channel 4 There are two 1SSs for the transfer of data
| 5 - Immediate Skip To Channel 5 to and from the Console Printer and the
| 6 - Immediate Skip To Channel 6 Keyboard. .
| 7 - Immediate Skip To Channel 7
| 8 - Immediate Skip To Channel 8
| 9 - Immediate Skip To Channel 9 |
| A - Immediate Skip To Channel 10 {
| B - Immediate Skip To Channel 11 | TYPEQ
] C - Immediate Skip To Channel 12 |
{ D - Immedjate Space Of 1 i
| E - Immediate Space Jf 2 | The TYPEO Subroutine handles input and
| F - Immediate Space Of 3 | output.
4
1
}Digit #3: After-Print Carriage Operations]
3 i
| | WRTYO
|Print_ Functions |
| 0 - Space One Line After Printing |
| 1 - Suppress Spaces After Printing { The WRTY0 Subroutine handles output only.
] | 1f a program does not require keyboarad
|Control Function | input, it is advantageous to use the WRTYO
{ 1 - Skip After Print To Channel 1 | subroutine because it occupies less core
| 2 - Skip After Print To Channel 2 | storage than the TYPR0 subroutine.
| 3 - Skip After Print To Channel 3] -~
| 4 - Skip Aftexr Print To Channel 4 | Only the TYPEQ subroutine is described
| 5 - Skip After Print To Channel 5 | below; the WRTY0 subroutine is identical,
| 6 - Skip After Print To Channel 6 | except that it does not allow the
| 7 - Skip after Print To Channel 7 | read-print function.
! 8 - Skip After Print To Channel 8] .
| 9 - Skip After Print To Channel 9 |
| A - Skip After Print To Channel 10 |
1 B - Skip After Print To Channel 11 | Calling Sequence
{ C - Skip After Print To Channel 12 l
l D - Space 1 After Print |
| E - Space 2 After Print i N B el BU NS . . Cparons 3 famests .
I F - Space 3 After Print Jl Lrael || | inveed . . . cAll PRINTER IO,
L : . N C . 16,
Figure 8. Carriage Control Operations for i LOAR o L0 AREA LARAMETLER.
1403 Printer ' S T
Note: A skip operation must not be less LoAr | oC . toa o ca o WORD CODBT 1 v i1 s s
than two lines. A S R
where
1/0 Area Parameterxr .
b is the 1/0 function digit,
The 1/0 area parameter is the label of the f is the number of characters to be
control word that precedes the user‘'s 1/0 printed on the console printer for
area. The control word consists of a word read-print operations and is 1/2 the
count that specifies the number of words of number of characters to be printed on a
data to be printed. The data must be in print operation.
1403 Printer code, packed two characters
per word. The word count must be in the h is the length of the 1/0 area. h must »ﬁw\
range of 1-60. be equal to or greater than f. \

38

Control Parameter

This parameter consists of four hexadecimal
digits, as shown below:
1 2 3 4

1/0 Function_________j

Not Used

1/0 Function

The 1/0 function digit specifies the
operation to be performel on the Keyboard
and/or Console Printer. The function,
their associated digital values, and the
required parameters are listed and
described below.

[} L)
Digital Required |
|[Function Value Parameters" |
[|
|Test 0 Control |
|Read-Print 1 Control, 1/0 Area |
|Print 2 Control, 1,0 Area !
b i
T
|* Any parameter not required for a |
| particular function must be omitted. |
[J

Test. Branches to LIBF+2 if the previous
operation has not been completed, to LIBF+3
if the previous operation has been
completed.

Read-Print. Reads from the Keyboard and
prints the requested number of characters
on the Console Printer. The operation
sequence is as follows:

1. The calling sequence is analyzed by
the call portion of the subroutine,
which then unlocks the keyboard.

2. +#hen a key is pressed, a character
interrupt signals the interrupt
response portion that a character is
ready to be read into core storage.

3. The interrupt response portion
converts the keyboard 3data to Console
Printer Code (see "Descriptions of
Data Codes®™). Each character is
printed as it is read; the Keyboard is
then unlocked for entry of the next
character.

4. Printer interrupts occur whenever the
Zonsole Printer has completed a print
operation. When the interrupt is
received, the subroutine checks to
determine if the final character has
been read and printed. 1f so, the
operation is considered complete. 1In

the C/PT system, if the Console
Printer becomes not-ready during
printing, the subroutines loop,
waiting for the Console Printer

to become ready. In the DM2 system
they trap to $PRET or $PST4 (see
"Descriptions of Data Codes").

5. Steps 2 through 4 are repeated until
the specified number of characters
have been read and printed. The
characters read into the 1/0 area are
identical to IBM Card Code; that is,
each 12-bit image is left-justified in
one 16-bit word.

Print. Prints the specified number of
characters on the Console Printer. A
printer interrupt occurs when the Console
Printer has completed a print operation.
When an interrupt is received, the
character count is checked. 1If the
specified number of characters has not been
written, printing is initiated for the next
character. This sequence continues until
the specified number of characters has been
printed. Data to be printed must be in
Console Printer code (see *"Descriptions of
Data Codes®) , packed two characters per
16-bit word. Control characters can be
embedded in the message where desired.

In read-print and print operations,
printing begins where the printing element
is positioned; that is, carrier return to a
new line is not automatic when the
subroutine is called.

Keyboaxrd Functions

Keyboard functions provide for control by
the TYPEO subroutine and by the operator.

TYPEO Subroutine Control

Three keyboard functions are recognized by
the TYPEO subroutine.

Backspace. The operator presses the
backspace key whenever the previous
character is in error. The interrupt
response portion senses the control
character, backspaces the Console Printer,
and prints a slash (/) through the character
in error. 1In addition, the subroutine
prepares to replace the incorrect character
in the 1/0 area with the next character.

If the backspace key is pressed twice,
the character address is decremented by +2,
but only the last graphic character is
slashed. For example, if ABCDE was entered
and the backspace key pressed three times,
the next graphic character to be entered

Interrupt Service Subroutines 39

replaces the C but only the E is slashed.
1f XYZ is the new entry, the printout shows
ABCDPXYZ, but the buffer contains ABXYZ.

Erase Field. When the interrupt response
portion recognizes the erase field control
character, it assumes that the entire
message is in error anl is to be entered
again. The subroutine prints two slashes
on the CTonsole Printer, restores the
carrier to a new line, and prepares to
replace the old message in the I/0 area
with a new message.

The old message in the I/0 area is not
cleared. Instead, the new message overlays
the old, character by character. 1If the
0ld message is longer than the new, the
remainder of the old message follows the NL
(new-line) character terminating the new
mess age.

End of Message. When the interrupt-
response portion recognizes the
end-of-message (EOF) control character,
assumes the message has been completed,
stores an NL character in the 1/0 area,
terminates the operation.

it

and

Operator Request Function (C/PT System)

By pressing the interrupt request key (INT
REQ) on the Keyboard, the operator can
inform the program that he wishes to enter
data from the Keyboard or the Console Entry
switches. The interrupt that results
causes the TYPEO or WRTY0 subroutine to.
execute an indirect BSI instruction to core
location /002C, where the user must have
previously stored the address of an
interrupt request subroutine. Bit 1 of the
Accumulator contains the Keyboards/Console
Printer identification bit, that is, the
device status word, shifted left two bits.

The user's interrupt request subroutine
must return to the ISS subroutine via the
return link. The user's subroutine is
executed as a part of the interrupt
handling. The interrupt level remains on
until control is returnel to the ISS
subroutine (see "General Error-Handling
Procedures, Postoperative Checks").

Oper ator Request Function (DM2)

By pressing the Interrupt Request key (INT
REQ) on the keyboard, the operator can
inform the program that he wishes to enter
data from the keyboard or the Console Entry

40

switches. The interrupt that results
causes the ILSOU or ILSX4 subroutine to
execute a BSI 1 $IREQ instruction. $IREQ
is initialized with the address $I1420 in
Resident Monitor. This allows the operator
to terminate the job by pressing INT REQ
key. 1If the user wants control, $IREQ must
be set to the user Interrupt Service
subroutine. This subroutine can set
indicators or read the Console Entry
switches. 1I1f keyboard input/output is
desired, only one call to ISS can be made.
The user-written subroutine must return to
exit address plus one, in 1LSO0U4 or 1LSX4.
This is to turn off the interrupt and
return to the program that was interrupted.
In no case should the user perform an XI0O
sense Keyboard/Console with reset.

1/0 Area Parameter

The 1,0 area parameter is the label of the
control word that precedes the user's 1/0
area. The control word consists of a word
count that specifies the number of words to
be read or printed. This word count is
equal to the number of characters if the
read-print function is requested and is
equal to 1/2 the number of characters if
the print function is requested.

PAPER TAPE SUBROUTINES (C/PT SYSTEM)

The paper tape subroutines, PAPT1 and
PAPTN, handle the transfer of data from the
IBM 1134 Paper Tape Reader to core storage
and from core storage to the IBM 1055 Paper
Tape Punch. Any even number of characters
can be transferred via one calling
sequence.

The PAPTN subroutine must be used if
simultaneous reading and punching are
desired.

The PAPT1 subroutine can operate both
devices, but only one at a time.

When called, the paper tape subroutine
starts the reader or punch and then, as
interrupts occur, transfers data to or from
the user's 1/0 area. Input data is packed

‘two characters per computer word by the

subroutine; output data must already be in
the packed format when the subroutine is
called for a punch function.

Calling Seguence -—- - -
Digital Required !
Function Value Parameters® |
I
Lobat ?pﬂmim Flr Operands & Remorks Test o Control l
T BE APTa L CALL PAPER TAPE Tl0. Read 1 Control, 170 Area, Error |
ey C. e Punch 2 Control, 1I/0 Area, Error |
D \OAR 1 L/0 AREA PARAMET.ER . [~
- .fl gffFFffﬁfﬁf?fffﬁfff??ffffﬁfffﬁ 1Any parameter not required for a |
. e particular function must be omitted. |
LN M S AT S A G ST A SR t]
D.LC, 96 ~ N RETURN ADDRESS i
e PSS
., L ey Test. Branches to LIBF+2 if the previous
o ASC ERROR + sy RETURN T CALLER ot operation has not been completed, to LIBF+3
o A if the previous operation has been
R B N i ea et completed.
roae | e . £y ia o WORD COUNT ¢ oo 1 s 000
N ot /0 AREA st Read. Reads paper tape characters into the
specified number of words in the I/0 area.
Initiating reader motion causes an
interrupt to occur when a character can be
where read into core. If the specified number of

ais a tor N,

b is the I/0 function digit,

c is a check digit,

e is a device-identification digit,

f is the number of words to be read from
or punched into paper tape,

h is the length of the 1/0 area. h must
be equal to or greater than f.

The parameters used in the above calling

sequence are described in the following
paragraphs.

Control Parameter

This parameter consists of four hexadecimal
digits, as shown below:

1

1/0 Function___J

Check

]
w
S

Not Used

Device Identification

I1/0 Function

The I/0 function digit specifies the
operation to be performed on a paper tape
attachment. The functions, their
associated digital value, and the required
parameters are listed and described below.

words has not been read, or the stop
character has not been read (see ®"Check" in
this section) , reader motion is again
initiated.-

Punch. Punches paper tape characters into
the tape from the words in the 1/0 area.
Each character punched causes an interrupt
which indicates that the next character can
be accepted. The operation is terminated
by transferring either a stop character or
the specified number of words.

Check Digit

The check digit specifies whether or not
word count checking is desired while
completing a read or punch operation as
shown below:

0 Check
1 No Check

Check. This function should be used with
the Perforated Tape and Transmission Code
(PTTC/8) only (see ®Descriptions of Data
Codes®) . The PTTC/8 code for DEL is used
as the delete character when reading. The
delete character is not placed in the 1/0
area and therefore does not enter into the
count of the total number of words to be
read.

The PITC/8 code for NL is used as the
stop character when doing a read or punch.
On a read operation, the NL character is
transferred into the 1/0 area. On a punch
operation, the NL character is punched into

the paper tape.

When the NL character is encountered
before the specified number of words has
been read or punched, the operation is
terminated. When the specified number of
words has been read or punched, the

Interrupt Service Subroutines 41

operation is terminated, even though a NL
character has not been encountered.

No Check. The read or punch function is
terminated when the specified number of
words has been read or punched. No
checking is done for a delete or stop
character.

Device Identification

When the test function is specified, the
PAPTN subroutine must be told which device
(reader or punch) is to be tested for an
Operation Completes indication. (Remember
that both the reader and the punch can
operate simultaneocusly.) Therefore, the
device identification is used only for the
test function in the PAPTN subroutine. 1If
the device-identification digit is a 0, the
subroutine tests for a Reader Complete
indication; if it is a 1, the subroutine
tests for a Punch Complete indication.

1/0 Area Parameter

The 1/0 area parameter is the label of the
control word that precedes the user's 1/0
area. It consists of a word count that
specifies the number of words to be read
into or punched from cors. Since
characters are packed two per word in the
I/0 area, this count is one-half the
maximum number of characters transferred.
Because an entire eight-bit channel image
is transferred by the subroutine, any
combination of channel punches is
acceptable. The data can be a binary value
or a character code. The code most often
used is the PTTC/8 code. (See
*Descriptions of Data Cojes™.)

Error Parameter

See "Basic 1SS Calling Sequence®.

PAPER TAPE SUBROUTINES (DM2 SYSTEM)

The paper tape subroutines, PAPT1, PAPIN,
and PAPTX, handle the transfer of data from
the - I1IBM 1134 Paper Tape Reader to core
storage and from core storage to the IBM
1055 Paper Tape Punch. Any even number of
characters may be transferred via one
calling sequence (PAPTX also allows an odd
character count).

The PAPTN or PAPTX subroutine must be
used if simultaneous realing and punching

u2

are desired. The PAPT1 subroutine will
operate both devices but only one at a
time. The PAPT1 and PAPTN subroutines use
only a word count, reading and punching an
even number of characters; PAPTX can use a
word count or character count, permitting
an odd number of characters to be read or
punched. PAPTX allows the user to start
punching from or reading into the left or
right half of a word. One-frame records
can be written on tape.

When called, the paper tape subroutine
starts the reader or punch and then, as
interrupts occur, transfers data to or from
the user's 1/0 area. The data is packed
two characters per computer word by the
subroutine when reading, and must be in
that form when the subroutine is called for
a punch function.

Calling Sequence

Lobel Qperotion Flr Opecands & Remarks
n > SERD « . .
R - pAPT.a . CALL PAPEL TAPE L/O.
R (<N fihede . COMT.ROL PARAMETER. . .
A I T Yo T DAR 4 IO AREA PARAMET.ER .
n WCu ERROR « | WERROR, \PARAMET ER .
R T LT) AR AN T U S ST S WY TR T SR SHTSS S SO S NS VD S A G G S
1 * 1 I DA TN S S TR SN SR G WA W N S N SN S Y S SR U S T S N S 1 PR
SR 1 LIPS F TSNS VA SUU WU WS WY T NS D 1 N SN N N N N U SN T U5 TN WY N T G B Y
Rog| IDC, . - X 4, RETUWRM ADDRESS | 1
L L [P S G A SIS U T SR T N U R
LT N PO T T O T PO Y T Y S S S W S S U S S T
I *r [N TS T ST G S S T ST U TN U S S TS U A ST S RS
2.5.C b E\RROR: 1\, RETURMN (TO, CaLLER « . |
* 4 1 1 U S T T S S T B U ET UOT Y W T B S
21 F Y S W VAT N T UHOT T GG WY (N ST VA SN T U0 SN WA SN B TN S S S B N SR UAY
11y ®i1 ST VU S U U0 S S U NN T TR 1O W N WA S SOV U W00 WO ST U WA W Y
LOAR, X o [T ST
“‘TBSS sa v v v LA AREA sy
)] B N WS T U N T W U WY U N Y W NN S N SN T S [T T N N S S]
where
ais 1, N, or X,

b is the 1/0 function diqgit,

a check digit,

d is the character mode digit,

e is a device identification digit,

f is the number of words to be read from
or punched into paper tape,

h is the length of the I/0 area. h must
be equal to or greater than f.

The parameters used in the above calling
sequence are described in the following
paragraphs.

Control Parameter

This parameter consists of four hexadecimal
digits which are used as shown below:

1 2 3 4

1/0 Function________l

Check

Character Mode

Device ldentification

1/0 Function

The 1,0 function digit specifies a
particular operation performed on the
1134/1055 pPaper Tape attachment. The
functions, associated 3igital values and
required parameters are listed and
described below.

{ h |

Digital Requi red
|Function Value = Parameters
| |
|Test 0 Control ’
| Read 1 Control, 1,0 Area, Error
| Punch 2 Control, 1,0 Area, Error
L
T
|*Any parameter not required for a
| particular function must be omitted. |
L |

Test. Branches to LIBF+2 if the previous
operation has not been completed, to LIBF+3
if the previous operation has been

completed.

Read. Reads paper tape characters into the
specified number of words in the 1/0 area.
Initiating reader motion causes an
interrupt to occur when a character can be
read into core. 1If the specified number of
words has not been read or the stop
character has not been read (see "Check” in
this section), reader motion is again
initiated.

Punch. Punches paper tape characters into
the tape from the words in the 1/0 area.
Each character punched causes an interrupt
which indicates that the next character can
be accepted. The operation is terminated
either by encountering a stop character
(see "Check" in this section) or by
transferring the requested number of words.

Check Digit
The check digit specifies whether or not

checking is desired while Jdoing a read or
punch operation.

0 Check
1 No Check

No Check. The read or punch function is
terminated when the specified number of
words or characters has been read or
punched. No check is made for a delete or
stop character.’

Check. This function should be used with
the Perforated Tape and Transmission
(PTTC/8 Code only (see "Descriptions of
Data Codes"™ . The PTTC/8 code for DEL will
be used as the delete character when doing
a read. The delete character is not placed
in the 1/0 area and therefore is not
included in the word or character count.

The PTTC/8 code for NL will be used as
the stop character when doing a read or
punch. On a read operation, the NL
character is transferred into the I/0 area
and causes the operation to be terminated.
On a punch operation, the NI character is
punched in the paper tape and causes the
operation to be terminated.

When the NL character is encountered
before the specified number of words has
been read or punched, the operation is
terminated. When the specified number of
words has been read or punched, the
operation is terminated even though an NL
character has not been encountered.

Character Mode

This digit is examined by the PAPTX
subroutine

. If it is zero, the first word of this
I1/0 area is interpreted as a word
count.

. If it is nonzero, the first word of
the 1/0 area is interpreted as a
character count:

If the character mode digit is nonzero
and even, the first character will be

read into or punched from bits 0-7 of

the first data word. Bits 8-15 of the
last data word will not be altered if

the character count is odd.

If the character mode digit is nonzero
and odd, the first character will be
read into or punched from bits 8-15 of
the first data word. Bits 0-7 of the
first data word will not be altered.
If the character count is even, bits
8-15 of the last data word will not be
altered.

Device Identification

When the test function is specified, the
PAPTN and PAPTX subroutines must be told

interrupt Service Subroutines 43

which device (readerxr or punch) is to be
tested for an Operation Complete
indication. (Remember that both the reader
and the punch can operate simultaneously.)
Therefore, the device-identification digit
is used for the test function in the PAPTN
and PAPTX subroutines only; if it is a 0,
the subroutine tests for a Reader Complete
indication; if it is a 1, the subroutine
tests for a Punch Complete indication.

1/0 Area Parameter

The 1/0 area parameter is the label of the
control word that precedes the user's 1/0
area. The word count specifies the number
of words to be read into or punched from
the user'*s 1/0 area. Since characters are
packed two per word in the I/O area, this
count is 1/2 the maximum number of
characters transferred. The character
count, used only by the PAPTX subroutine if
the character mode is nonzero is the
maximum number of characters to be read or
punched.

Because an entire 8-bit channel image is
transferred by the subroutine, any
combination of channel punches is
acceptable. The data may be a binary value
or a character code. The code most often
used is the PTTC/8 code (see “"Descriptions
of Data Codes").

Error Parameter

See "Basic 1SS Calling Sequence®.

PLOTTER SUBROUTINE (PLOT1)

The Plotter subroutine converts hexadecimal
digits in the user's output area into
actuating signals that control the movement
of the plotter recording pen. Each
hexadecimal digit in the output area is
translated into a plotter operation that
draws a line segment or raises or lowers
the recording pen. The amount of data that
can be recorded with one calling sequence
is limited only by the size of the
corresponding output area.

44

Calling Sequence

Labet Qperation it Operonds & Remorky
a vl | by « < P » -
L LBF PLOT.L AL PLOTT.ER QUTPUT.
D vy s
. i ipe LOAR . 2, \L/O _AREA PARAMET.ER
Co RROR \ , , ELRROR (\PARAMET.EL . . .,
: 1 1 T W T S TS WY A S SN U TN B S S TUY
N3 N L T I W WY N Y T W S S A N N TS S UGN SN VI 1
e i AR 3 IR VUL T S N S W WU WY W S S N N N NN BTN VAT RN S A N O RS i
1.0.4.8: G ! TN L ORD LOIMT, 1 5 o g g .,
B.S.S. hy . SO AREAR Ly L,
A1 1aa 2 T NS D D N Y N W U S T W B MO S R S
where

b is the I/0 function digit,

f is the number of words of plotter
data,

h is the length of the 1/0 area. h must

be equal to or greater than f.

. The calling sequence parameters are
described in the following paragraphs.

Control Parameter

This parameter consists of four hexadecimal
digits, as shown below:

1 2 3 4
1/0 Function_________J

Not Used

1/70 Fanction

The I/0 function digit specifies the
operation to be performed on the 1627
Plotter. The functions, their associated
digital value, and the required parameters
are listed and described below.

>

Any parameter not required for a
particular function must be omitted.

T L)
| Digital Required |
|Function Value Parameters" |
| : |
| Test 0 Control |
|Write 1 Control, 1/0 Area, Error |
- .|

|

|

]

= o

Test. Branches to LIBF+2 if the previous
operation has not been completed, to LIBF+3
if the previous operation has been
completed.

’“WN

Write. Changes hexadecimal digits in the
output area into signals that actuate the
plotter. Figure 9 lists the hexadecimal
digits and the plotter actions they
represent. Figure 10 shows the binary and
hexadecimal configurations for drawing the
letter E.

1/0 Area Parameter

The 1/0 area parameter is the label of the
control word that precedes the user's 1/0
area.

The control word consists of a woxd
count that specifies the number of computer
words of data to be used.

Exror Parameter

This parameter is not used but must be
included because the subroutine will return
to LIBF+4. (See "Basic 1SS Calling
Sequence®.) :

PLOTTER SUBROUTINE (PLOTX)

The PLOTX subroutine converts the
hexadecimal digit in the parameter into a
control word. The control word is stored
in a buffer inside the PLOTX subroutine.
One digit is transferred with each calling
sequence. When the plotter is ready to
accept control, the movement of the plotter
recording pen is controlled by the words in
the PLOTX buffer.

h 3

|He xadecimal
|pigit

i

Flotter Action
(See Diagram Below)

i I—

t
Pen Down

Line Segment=
Line Segment=
Line Segment=
Line Segment=
Line Segment=
Line Segment=
Line Segment=
Line Segment=
Fen Up

POONAANNEWN=O0

Not Used
Not Used
Not Used

WMo
o e s e e e e e s i e e et s L T — S S ot et (et s e i S e 7]

Repeat the previous pen
motion the number of times
specified by the next digit
(Maximum- 15 times)

Repeat the previous pen
motion the number of times
specified by the next two
digits (Maximum-255 times)
Repeat the previous pen
motion the number of times
specified by the next three
digits (Maximum-4095 times)

+Y
+X, +Y
+X
+X, ~-Y
-Y
-X, =Y
-X
-X, +Y

+X

+X,+Y

+Y

r————-————-————-——-—-—-——qv————-—-—-——-—

-X,+Y -X,-Y

U I

Figure 9. PLOT1 Control Digits

Binary Hexadecimal Fiqure

0000011100010001 0711
0011101000100101 3a25
1001000100000011 9103
1010001001010101 A255
0111100111111111 19FF

P e S e — — ——

A Finish
I
}_
AN

L 2 Start

S

Figure 10. PLOT1l Example

Interitupt Service Subroutines 45

Calling Sequence

Lobel Operotion FlT Operands & Remotks
71 75 7 X 2| n 35 2 &35 b 33 o
N VA Y - LOT X oy v LA (PULOTTHER OUITPLLT,
M DG I
s FEEPEPUTE B U A U0 S S S A S S S

where e is the plotter control digit.

Control Parameter

This parameter consists of four hexadecimal
digits:

et ah
S
it

Not Used

Plotter Control

Plotter Control

The plotter control digit specifies the
recording pen action to be taken. This
digit is expressed in hexadecimal.

Hexadecimal
Digit Plotter Action
0 Pen down
1 Line segment = +Y
2 Line segment = +X,+Y
3 Line segment = +X
4 Line segment = +X,-Y
5 Line segment = -Y
6 Line segment = -X,-Y
7 Line segment = -X
8 Line segment = -X,+Y
9 Pen up
A-F Not used
+X
+X,+Y +X,-Y
+Y -Y
-X.+Y -X,-Y
-X

Figure 10.1 PLOTX Control Digits .

ué

If there is no room in the buffer for
the control digit, the subroutine will loop
until there is room.

If the plotter is in a not-ready,
not-busy condition, the subroutine exits to
SPRET where the program goes into a wait
condition until operator intervention. If
the plotter becomes not ready while execut-
ing the PLOTX subroutine commands, PLOTX
exits to $PST3 where the program goes into a
wait condition until the operator intervenes.

The PLOTX subroutine has no error-
handling capabilities.

1231 OPTICAL MARK PAGE READER SUEROUTINE
(OMPR1)

The Optical Mark Page Reader subroutine
OMPR1 handles the reading of paper
documents eight and one-half inches wide Ly
eleven inches long by the 1231 Optical Mark
Page Reader. A maximum of 100 words from
one page can be read with one call to the
subroutine.

when called
OMPR1 performs
page into core

to perform a read function,
a feed function and reads a
storage according to the
Master Control Sheet (see the publication
IBM 1231, 1232 Optical Mark Page Readers,
GA21-9012) , and the setting of the switches
on the reader. Other functions performed
by OMPR1 are feed, stacker select, and
disconnect.

Calling Sequence

Labe! Oporation Flr Oporands & Remarks
n BEE x| |l [» « o 0 » « >
P LBE) OM PR, + .\, CAbid OPT MARK PAGE LMPIUT
L C . befe v CONTROL, PARAMETER . & |
s Yor DAL IO AREA PARAMETER 1 1 1
e Ci ERROR 1, 4 1 ERROR \PARAMETER s
1 TR DRUUC SO SN NN TN R T G T WA W N DU SR SN WA S S B N N1 4 i
. A S Ll s
ra— 2 hPE—T TRt U 0 S U T S S0 N A U S U VO T T S A N 1 VR |
FRROR| DC: , I Vi RETYRAN ADORIESS 4 ¢ s
i 1 hd 1 I} FUN VRS VRS S SR D T T U N0 S Y T S 0 T P B
L P S AU VI TN UAT EPU T WUV SISV RN ISP R A
A4 A | I S T T 1 IIIIIII‘IILLLIIAAL‘II!JII
B.S C. ERROR | L RETIARN (T0 (ClARLER 1 11
hd Y TN U 0 U ST S 0 0 S S S SO U S U S S SR | Ly
AU T O U T U N N S S T N T S S S I) 1 PR
L1y Ty pe T S W T S N TRUUT SO V00 VY GO T T UV N SN D U N NN SN N B B | S
I1.04R | |8S.s. -TE) L L/0_AREAR | NI
" L L] 1 1 PR T S S S T RPN I T S R | |
where

b is the 1/0 function digit,

¢ is the stacker select digit,

e is the timing-mark-check-test digit,

h is the length of the I/0 area. h must
be equal to or greater than the numker

of words designated to be read on the
Master Control Sheet.

Contrxol Parameterx

This parameter consists of four hexadecimal
digits:

1 2 3 4
1/0 Function________J

Stacker Select

Not Used

Timing~Mark-Check-Test

1/0 Function

The I/0 function digit specifies the
operation to be performed on the 1231
reader. The functions, their associated
digital values, and the required parameters
are:

r

1

{ Digital Required {
{Function Value Parameters" |
|

Test 0 Control |
|

| Read 1 Control, 1I/0 Area, Error |
|

Feed ; 3 Control |
! |
Disconnect 4 Control |
|

Stacker |
|Select 5 Control |
L J
T 1
|'Any parameter not required for a |
| particular function must be omitted. l
L J

Test. Branches to LIBF+2 if the previous
operation has not been completed, to LIBF+3
if the previous operation has been
completed.

The operation to be tested is specified
by the fourth digit of the control
parameter. A zero value in digit 4
specifies a normal device-busy test; that
is, a test to determine if there is an
operation in progress for which no
operation complete interrupt has occurred.
The subroutine is "not busy®” once the
Operation Complete interrupt takes place.

A value of one for digit 4 specifies a
Timing~Mark-Check-Busy test. This test
indicates a "husy® condition as long as the
Test-Timing-Mark-Check indicator in the
Device Status Word is on. If the user
wishes to run with the Timing Mark Switch
set on, it is recommended that digit 4 be
set to one when performing a test function.

A test function must not directly follow
a feed function.

Read. Reads words or segments (response
positions 1-5 or 6-10 of any word) from a
document page into core storage starting at
the 1/0 area address. The first call to
OMPR1 in a program must be a read function.
The read feeds the document before reading.
When a read function follows a feed, the
read begins with the document started by
the feed. The number of bits per word read
and the number of words per document read
depends upon the way in which the Master
Control Sheet is programmed (see the
publication IBM 1231 Optical Mark Page
Readers, GA21-9012). OMPR1 reads a maximum
of 100 words. Any word not programmed to
be read (mark positions 8 or 18 not
penciled on the Master Control Sheet) is
skipped. Digit 2 of the control parameter

Interrupt Service Subroutines #7

specifies whether or not the document being
read is to be stacker-selected. If digit 2
is set to one, the document is
stacker-selected; if digit 2 is set to
zero, it is not.

Note: On a feed, or feed as the result of
a read, the document is fed from the
hopper, the selected data is read into a
delay line (and read out on a read), and
the document continues through the machine
to the stacker.

Feed. 1Initiates a feed cycle. This
function advances a document from the
hopper through the read station and into
the stacker. Selected information from the
document is stored in a delay line. A read
function following a feed causes this data
to be read.
by another feed function without an
intervening read function, the data read
from the document corresponding to the
first feed is overlaid in the delay line by
the data read from the second document.

The first call to OMPR1 in a program must
not be a feed function.

A feed function must not be followed
directly by a test function.

Disconnect. Terminates the read function
on the data currently being read from the
delay line. The subroutine-busy indicator
is cleared. .

Note: If the last document in the hopper
is disconnected the hopper empty condition
will not be detected.

Stacker Select. Performs a stacker select
on the sheet currently being read (and

fed) , providing the stacker select function
is requested while the "OK to select®™ bit
(bit 5) is on in the Device Status Word
(DSW) . This bit remains on until 50
milliseconds after the read operation is
completed. If the request to select
arrives too late, the sheet falls in the
normal stacker.

1/0 Area Parameter

The I1/0 area parameter is the label of the
user’s 1/0 area.

48

If a feed function is followed

Error Parameter

There is an error parameter for the read
function only.- Exits ars made to the
user's error subroutine when the following
conditions are detected:

Master Control Sheet Error
Timing Mark Error

Read Error

Hopper Empty

Document Selected

See "Basic ISS Calling Sequence" and
Appendices B and C.

Feed Check

1f a feed check is detected during a read
or feed operation, exit is made to $PSTH
with an error code of /A002 or /A003.
After making device ready and depressing
start key, OMPR1 will reinitiate the
operation if error code was /A003. No
stacker select will be performed on a
reinitiated operation. 1If error code was
/A002, the last document has already been
processed and the operation is not
reinitiated.

2250 DISPLAY UNIT MODEL 4 1,/0 SUBROUTINE

The 2250 1/0 subroutine, DSPYN, contains
the 2250 Interrupt Service Subroutine.
DSPYN controls the interrupt-handling
services for the 2250 Display Unit, Model
4. The 2250 1SS contains facilities for
handling attentions (graphic interrupts)
from four sources; the alphameric keyboard,
the programmed function keyboard, the light
pen, and the graphic program itself. The
DSPYN subroutine is part of the 1130/2250
Graphic Subroutine Package. A complete
description of the DSPYN 1/0 functions can
be found in IBM 1130,/2250 Graphic :
Subroutine Package for Basic FORTRAN 1V,
GC27-6934.

ﬁ“%m

The DM2 System Library contains a group of
subroutines that perform functions required
by the RPG Compiler and application
programs. These subroutines are divided
into two groups, Disk 1,/0 and RPG Object
Time Subroutines. The Disk 1/0 subroutines
are available to Assembler language
programmers. The other RPG subroutines are
for system use only. All RPG subroutines
are listed in Fiqure 24, Appendix A.

Disk File Management Subroutines

(DM2 System)

Supplied with 1130 RPG is a group of disk
1/0 subroutines that will handle all disk
file functions. These subroutines can be
used by Assembler language programmers
directly and are wholly independent of RPG.
The subroutines provided are Direct Access,
Sequential Access, and Indexed Sequential
Access Method (I1SAM). The subroutines are
stored in the System Library.

Disk I/O Subroutines

The key to the use of the Disk 1/0
subroutines is an understanding of the
basic principles of disk file organization
and disk file processing.

FILE ORGANI ZATION

File organization is the method of
arranging data records on a direct access
storage device, i.e., building the file.

The two types of file organization

available with DM2 are sequential and
indexed sequential (ISAM).

-

Sequential File Organization

A sequentially organized file is one in
which records are placed on the disk in the
same order they are read in, one after
another. Card files are always organized
this way. That is, record six cannot be
written until record five is written,
record five until record four, etc.

RPG Subroutines (DM2 System)

Sequential files on disk may be processed
sequentially or randomly.

Indexed Sequential (I1SAM) File Organization

An indexed sequential file is one in which
records are placed on the disk in ascending
collating sequence by record key. This key
may be a part number, man-number or any
other identifying information that is
present in the records on the file. 1n
addition, the indexed sequential file uses
an index to locate desired records. Each
index entry contains a cylinder address and
the highest record key on that cylinder.
All index entries are formed into an index
table. For cylinders that have cverflowed,
the index entry also contains the overflow
sector address and key of the first sector
overflowed from that cylinder.

Index tables are analogous to the index
card file in a library. 1f you know the
name of a book (record key), you can look
in the card file (index table) until you
find the card (entry) for that book. On
the card you will find a number ({cylinder
address) where the book (record) is
located. You go to the shelf (seek) and
find the number (cylinder address) you are
looking for. Now you can search for the
particular book (record) by title (record
key) .

Record on an indexed sequential

organized file may be processed
sequentially or randomly.

FILE PROCESSING

File processing is the method of retrieving
data records from the file, i.e., using the
file. Four methods of file processing are
available with DM2 RPG:

1. Sequential processing of sequentially
organized files.

2. Random processing of sequentially
organized files.

3. Sequential processing of indexed
sequential organized (ISAM) files.

4. Random processing of indexed

sequential organized (ISAM) files.

RPG Subroutines (DM2 System) 49

Sequential Processing (Sequential Files)

All records in the file are processed in
order starting with the first physical
record in the file.

Random Processing (Sequential Files)

In random processing the records in a file
can be processed in any order. To find a
record in a sequentially organized file,
the record number must be supplied to the
program. The record number indicates the
relative position (sequential locationj of
the record in the file. The disk 1/0-
routine calculates the sector address from
the record number and reads the proger
record.

Sequential Processing (Indexed Sequential

Files}

All records in an ISAM file are available
in a sequence determined by record key.
Processing may start at the begimning of
the file or at any point within the file.

Random Processing (Indexed Sequential

Files))

In random processing the records in a file
can be processed in any order. To find a
random record in an ISAM file, the file
index is searched using the record's key.
The matching entry in the index points to
the cylinder containing the record. That
cylinder is then searched for the desired
record. The match is again by record key.
This kind of processing may be called
processing in a random seguence with record
keys. .

50

SEQUENT IALLY ORGANIZED DISK ROUTINES

The sequential disk 1/0 subroutines
provided with RPG are sequential access and
direct access. A sequentially organized
file is built using the sequential access
routine or the direct access routine. It~
may be processed by either the sequential
access routine or the direct access
routine.

Space for the file is initially
established on the disk by using a DUP
STOREDATA function. STOREDATA sets aside a
specified number of sectors for the file
and enters the file name in LET or FLET.
This file name must be used in all future
references to this file.

Calculating File Size

The number of sectors needed for a file
depends on record size and number of
records. The records are fixed length and
can be defined as any size between 320
words (640 charactersy and 1 word (2
characters) . Note that records cannot
extend across sector boundaries. Thus a
320-word record (one sector) and a 161-worxd
record would each require one sector of
disk space. Careful planning is required
in calculating optimum record size for your
file. When calculating file size, always
add one record for the end of file record.

To change record sizes or add records to
a sequential file the file must be rebuilt.
1f the revised file requires additional
sectors it must be redefined (*DELETE and
*STOREDATA) , and rebuilt.

Sequential Files
Ranges of Record Lengths Records per

(in characters) Sector
1-2 320
3-4 160
5-6 106
7-8 80
9-10 64
11-12 53
13-14 45
15-16 40
17-18 35
19-20 32
21-22 29
23-24 26
25-26 24
27-28 22
29-30 21
31-32 20
33-34 18
35-36 17
37-40 16
41-42 15
43-44 14
45-48 13
49-52 12
53-58 n
59-64 10
65-70 9
71-80 8
81-90 7
91-106 6
107-128 5
129-160 4
161-212 3
213~320 2
321-640 1

Figure 10.2 Space Utilization for Various
Size Records for Sequential

Files.

Sequential Access Routine

This routine allows the programmer to
store, retrieve ands/or update records on a
sequentially organized disk file. The
space for the file must have been
previously defined by the DUP function
STOREDATA.

The sequence of events on a sequential
access is open the file, perform the
function and close the file. To accomplish
these objectives the sequential access
routine has three entry points:

SEQOP - open the file
SFQIO - read or write a record
SEQCL - close the file

The sequential access routine is a part
of the System Library. It is called by a
LIBF. One parameter must be passed to the
routine on each call and that parameter is
the address of the Disk File Information
(DFI) table. This parameter must
immediately follow the LIBF statement.

The coding required to process a data
file using the sequential access routine is
as follows:

RPG Subroutines (DM2 System) 50.1

Lobet Oparation Elr Operands & Remarks
» sl b o] falu] | - ») . . x
START L " PRI SR WSS TSN WY WOIPEY U S S S WA VO S A S S S S S S A S 1
A : .,.(us.ER Co.n.E.) s b e
LLAF SH-mP M 0P EN, 4“"““1’[AL. N2V AN A
DC . ELTB ¢ o DFl. ADDRESS (REGUIRED), .
LD, T8+ [+] U, |
AN ERRTN &, , .. 60 1.0 ERROR ROUTINE ,IF NEG
i, s .
LIABFE S‘Ecuo“. L READ ,OR, | E_R L
DG . DEITB » . .. DFEL ADDRESS, (REQUIRED): . .,

LD, PLmEmi4¢L¢QMLJELﬂMLJ&mJ4+LuJ4LL_

AN, iE‘R‘&T‘NI iy 0G0 TO ERROR, .R.o.u.T 1NE G LE NEG

DG AN P 15

ADDRES,S, (.Re.a.uzns.n —
ETUR, E.

END START, o v ¢4 v 0y 01 v 00 b s

ISP T R S N R U I R A S B M BRI

Disk File Information (DF1l) Table. A file
to be processed by the sequential access
routine must be described using a DF1 table
which is 11 worxds long. (These words are
numbered 0-10.) The DFI table has nine
entries, six of which must be filled in by
the user. The remaining three entries must
be initialized to zero by the user and are
filled in by the program during execution.

Figure 11 shows the DFI table for the
sequential access routine.

sequentially organized disk file. The
records are accessed by record number
relative to the beginning of the file,
j.e., the first record in a file is record
1, the second record 2, etc.

The sequence of events on a direct
access is open the file, perform the
function, and close the file. To
accomplish these objectives the direct
access routine has three entry points:

CAOPN - open the file
DAIO - read or write a record
CACLS - close the file

The direct access routine is a part of
the System Library. It is called Ly a
LIBF. One parameter must be passed to the
routine on each call and that parameter is
the address of the Cisk File Information
(DFI) table. This parameter must
immediately follow the LIEFF statement.

The coding required to process a data
file using the direct access routine is as
follows:

Label Oparction FlT Operands & Remarks
Operation of the Sequential Access Routine. XA E I
When the routine is entered at the open R TRTY e ““'“P§°”QRECT1--}SEn- -----
entry point SFQOP, it checks the validity e . 12 F.I. ADDRESS .(Re . r
of the DFI table entries, sets pointers and LD et BB RATAAN LoD s
switches to be used internally by the B AROR G0 T0 ERROR ROMLLME (LE M s
routine, and sets the return code in the ;QBF t
LFI table to the code for file open. For LD R T
an output function, SEQOP places the " BN I ! iGo, TGE“““&“°WT‘N5JF NEG
address of the record being processed in LIBF YR CiOSE DIRELT BFLLEL]
the DF1 table. The routine is then entered 2;. ELA . L:‘ RE REQuI RE, L
at SEQIO to perform the required prccessing BN_. ERR.OR, , 60, 1.0, ERRDR _ROUT.LNE LF, .NEG|
functions. rY IR sJ"'}‘}f"'éi;"' . . .
. . 4 at SEQCL, it DF1g SA, ELLEA , . ., USER FLVWE . ., ., , L L

When the routine is entered a e 1 TTYTIRIET Y Ea—
writes the last sector of data and an end- ERRORRAL P Sofof RoTiNe o
of-file record (for output files) and sets {ED. S.LART, . - N et
the return code to the code for file I P
closed. The end-of-file record contains a
/ (slash) and an * (asterisk) in the first
word. The remainder of the end-of-file
record is set to binary zeros. Disk File Information (CF1) Table. A file

The sequential access routine returns to
the statement immediately following the
parameter that follows the LIBF to the
routine for any of the three entry points.

Direct Access Routine

This routine allows the programmer to
retrieve and/or update records on a

to be processed by the direct access
routine must be described using a LF1 takle
which is 11 words long. (These words are
numbered 0-10.) The CFI table has nine
entries, seven of which must be filled in
by the user. The remaining two entries
must be initialized to zero by the user and
are filled in by the program during
execution.

RPG Subroutines (DM2 System) 51

r
| Word

L] Ll
Entry |

Meaning

t
[0

&=

(5]

10

,1,2|DSA

DC /0XXX

c /000X
DC LABEL
bpC .X

pc /0000

I
|
I
DC /0000]
!
[
{

|

DC /0000
!

L

i —

The first entry in a DFI table is always a DSA statement. The DSA
statement allows the programmer to refer symbolically to a disk-stored
data file without knowing its actual location. The label is defined as}
the current value of the location Assignment Counter when the DSA
statement is encountered. The operand is the name of the data file.
Further information on DSA may be found in IBM 1130/1800 Assembler |
Language. Note: The first word of the DSA instruction is used by the
sequential access routine as an update-write switch. '

XXX equals the number of records per sector. This figure is calculated|
by dividing 320 by the length of a record and ignoring the remainder.
The maximum entry is /0140 (320 one-word records) . The entry in this
woxrd must indicate the maximum number of records of X size that will
fit on a sector. For example, if the entries in words 3 and 4 of this |
table indicate 31 ten-word records, a terminal return code of /8014,
number of records per sector not maximum, will occur during program
execution. 32 ten-word records would have to be defined to use all
available 3isk space.

XXX equals the length of the record in words. The maximum entry is
/0140 (one 320-word record).

Read Mrite indicator. For read, set X to zero. For write, set X to
one. For an update, set X to zero prior to the read and one prior to |
the write.

The address of the data huffer. This address must be on an even word |
boundary. The length of the data buffer required by the program is
calculated by multiplying the number of records per sector (word 3 of
this table) by the record length (word 4 of this table) and adding 2.
The maximum length of the data buffer is 322 words.

Function indicator. X equals 1 for input, O for output and U for
update. The specified character is assembled as right-justified
EBCDIC. From the time a file is opened until it is closed this word
must not be changed.

|
|
Record number. This word must be reserved by the user and is filled in|
by the subroutine. It will contain the record number of the record |
being processed.]

|

|

Return code. This position must be reserved by the user. After each
L1BF to any of the three entry points in the sequential access routine
it should be checked for the return code.?

Record address. This word must be reserved by the user. It will
contain the address of the record being processed.

o - S VT — e e SEED Sk S . —— S— A Sep S

1 Return codes

Hexadecimal

Number
5555
8010
8011
8012
8013

All 8XXX return codes except 8017 are terminal arrors. The file must be reopened to allow program to retry
the operation. Processing will again start at the first record.

FFFF is a terminal error in the sense that it allows no further processing of the file. It does not, however, prevent
the file from being closed in the normal manner.

Meaning

File is open

Disk file is full 8015 File accessed when not open
Write indicator with input file 8016 Buffer not on even-word boundary
Read indicator with output file 8017 Write before read (UPDATE file)
Record size exceeds sector size FFFF End of file

for sequential access are as follows:
Hexadecimal

Number Meaning

8014 Number of records per sector not maximum

OFFF File is closed

oo 0 st e s o v s s S

Figure 11. Disk File Information Table for Seguential Access

52

Figure 12 shows the DFI table for the
direct access routine.

Operation of the Direct Access Routine.
When the routine is entered at the open

entry point DAOPN, it checks the validity
of the DFI table entries, sets pointers and
switches to be used internally by the
routine and sets the return code in the DFI1
table to the code for file open.

The routine is then entered at DAIO to
perform the required processing functions.

wWhen the routine is entered at DACLS, it
sets the return code in the DFI table to
the code for file closed.

The direct access routine returns to the
statement immediately following the
parameter that follows the LIBF to the
routine for any of the three entry points.

INDEXED SEQUENTIAL ORGANIZED (ISAM) DISK
ROUT INES

The indexed sequential disk 1I/0 subroutines
provided with RPG are ISAM load, ISAM add,
ISAM segquential and random.

Indexed sequential organization gives
the programmer a great deal of flexibility
in the operations he can perform on a file.
He can read or write records whose keys are
in ascending collating sequence. He can
read and update random records. (This
method is not suggested if a large portion
of the file is being processed since
reading records in this manner is slower
than reading according to a collating
segquence. The index must be searched for
the pointer to each record.) New records
can be added to ISAM files. The add
routine locates the proper positions for
the new record in the file and updates the
index accordingly.

1SAM has these advantages:
e It is a file management system
specifically designated for direct
access storage devices.

. It permits files to be processed in
random or sequential order.

. It processes records directly in the
1/0 area.

e It establishes an index allowing ease
of access to any record on the file.

e It uses an efficient chaining method
to allow new records to be added to a
file.

e It prevents records from being lost if
a disk error occurs during an add
operation.

1SAM has these restrictions:

e Records must be presorted in ascending
collating key sequence before they are
loaded on the file.

L Only one 1/0 area is permitted when a
file is loaded or processed.

L All records must contain key areas
starting in word one of the record,
and all the key areas must be the same
length.

. All records on a file must be the same
leng th.

o Only one 1ISAM function can be
per formed on an ISAM file in one run.
Hence, records cannot be both
processed and added in the same run.

. The entire area for an ISAM file must
be on one disk.

Contents of an ISAM File

An ISAM file comprises the following:
label, file index, prime data area,
overflow area.

The relative position of these
components within the ISAM file is as
follows: .

L} . L | N LD K
|File |Index|{Prime Data Area|Overflow Area|
!Labelj | |

L H

RPG Subroutines (DM2 System) 53

All 8XXX re

must be reopened to allow the program to retry the operations. Processing will again

turn codes except 8000, 8003 and 8004 are terminal errors. The file

r T Y
jWord |Entry | Meaning
b t t
10,1,2]DSA | The first entry in a DFI table is always a DSA statement. The DSA
] | i statement allows the programmer to refer symbolically to a disk-stored
| | | data file without knowing its actual location. The label is defined as|
| | the current value of the Location Assignment Counter when that DSA
I | statement is encountered. The operand is the name of the data file.
| | { For more information on DSA see IBM 1130/1800 Assembler Language. {
| | |
|3 DC /0XXX| XXX equals the number of records per sector. This entry must be the i
	same as the number of records per sector on the file you are accessing.
u DC /0XXX	XXX equals the length of the record in words. This entry must be the
!	
15	pC ,/000X
]	
I : [
6 DC 1IABEL	The address of the data buffer. This address must be on an even word
1	boundary. The length of the data buffer required is calculated by
	multiplying the number of records per sector (word 3 of this table) by
(the record length (word 4 of this table) and adding 2. The maximum]
]	{ length of the data buffer is 322 words.
17 DC /0XXX]	Record number. Word 7 and 8 must contain the number of the record on
8	DC /XXXX] which the operations are to be performed. This number is equivalent to]
1	the record's relative location in the file; hence, the 83rd record
1] would be record number 83. The entry is right-justified hexadecimal.	
	Therefore, word 7 will be all zeros for all record numbers less than
I	65,536. The direct access routine will convert the record number
I	
9 pC /0000 Return code. This word must be reserved by the user. After each LIBF	
	to any of the three entry points in the direct access routine it should
110 DC ,/0000} Record address. This word must be reserved by the user. It will	
'_ L L __{	
* Return codes for direct access are as follows:	
Hexadecimal	
! Number Meaning 1	
5555 File open {	
8000 Record number not in file 1	
8001 Record size not within limits	
8002 Records per sector not maximum	
8003 Record number not positive	
8004 Write before read 1	
8005 File accassed when not open	
8006 Buffer not on even-word boundary	
OFFF File closed	
I
!
(]

start at the f

o s s S o S i S S

irst record.

Figure 12. Disk

54

File Information Table for Direct Access

1SAM File Label. The first sector of any
ISAM file contains the file label. This
label contains information required by the
ISAM routines for all future processing of
the file. The file label is built by the
1SAM load function, updated by ISAM add,
and used by 1SAM random and sequential.
All label operations are performed
automatically by the 1ISAM routines. The
user need perform no label operation other
than reserving one sector for the label
when the file is initially defined.

The format of the ISAM'label is shown in

Figure 13.

13 L) |
|Word Number| Label Entry Description |
L L

13 r

| 1 | Key length

| 2 | Record length

| 3 | Number of index entries per|
] | sectorx

| 4 | Index entry length

| 5 | Number of records per |
| | sector |
| 6 | Record number of last prime
| | data record

| 7 | Index entry number of last

| | entry in file

| 8 | Sector address of last

{ | prime data record

| 9 | Sector address of last

| "] index entry

| 10 | Sector address of next |
| | overflow record

| 11 | Record number of next

| | overflow record]
L L 1

Figure 13. Format of an 1SAM Lébel

I1SAM File Index. The ability to read or
write records anywhere in a file is
provided by the file index. An entry in
this index contains a cylinder address and
the highest key that is associated with
that cylinder. The ISAM routines locate a
given record by searching the index for the
key and then searching the specified
cylinder for the desired record, again
searching by key. To increase the
efficiency of the 1SAM routines, one sector
of the index is retained in core storage
for each file.

The key may be a part number or an
employee name or any other identifying
information that is contained in any record
of the file. The key entries in the index
are the numbers of the highest key on each
cylinder in ascending collating sequence.
The end-of-record key is the key with the
highest possible value, i.e., all bits are
ones.

A portion of an index or index table is
shown below. Note that each entry contains
two sets of the same information. The
second set is overlayed to show overflow
data when the affected cylinder over flows.

| - T °T N T T T T T T T i
|Key| First |Key|] First | Zeros| |Key | Second |Key | Overflow |Record ||
115 | cylinder |15 | cylinder | I 130 | cylinder |31 | sector |number |}
l | address | | address ! |] | address | | address | 11
L i L {5 L i { A N 1 L - jjj
normal entry overflow entry

r~—r : ToTT : T T T T T7 T

|[Key|] Third |Key] Third | Zeros| jall | nth {lall | nth wTZeros _}
|45 | cylinder |45 | cylinder | | i1 | cylinder ||1 | cylinder | i
| | address] | address] | |bits]| address ||bits| address | |
[R L L i 2 1 1 IR 1 I 1
[—) . —————

v

normal entry

v~

last entry in index

RPG Subroutines (DM2 System) . 55

Prime LCata Area.
load routine.
two-woxrd control field to each record.

This area contains the data records placed in the file by the 1SaM
The records must all be the same length (maximum 318 words) .

ISAM adds a

C 1 This control field, called the sequence-1link
control field, is used in the overflow area as a chaining indicator.

It is used in the

prime data area to indicate whether or not a cylinder has overflowed.

Data record 1 word 1 word

Data record 1 word 1 word

r L] T 1 r L] LS L

| Key {Zeros |Zeros | | Key |Zeros |X'FFFF' |

[75 I | I | 520] | i

t L 1 1 [Il i i)
\ - S 4 \ v —
Sequence-link Sequential-link
control field. control field.

\ - —

Data record on a ﬁiime data cylinder.

Overflow Area. When a new record is added
to an indexed sequential file, it is placed
according to key sequence. If records were
to remain in precise physical order, the
insertion of each new record would require
all records with higher keys to be shifted
up. However, because 15AM files have an
overflow area, a new record can be entered
into its proper position on a cylinder and
only cause records with higher keys on that
cylinder to be shifted. The record that is
forced off the end of the cylinder by the
addition of the new record is written in
the overflow area.

The index entry of any cylinder that has
overflowed points to the overflow sector
address and record number of the overflowed
record in the overflow area. 1f two or
more records in key order are added, the
overflowed records are chained together in
the overflow area through the entries in
their sequence-link control field. The

Overflow area.

—
Last -data record on prime data cylinder
that has overflowed. '

entry in the first record points to the
second, the second to the third, etc.

last overflow record in the chain has a
sequence-link control field of all zeros.

The

The number of cylinders to be allotted
to the overflow area must be determined Ly
the programmer -when the file is initially
defined. Records are placed in the
overflow area in the order they have
overflowed, not in key sequence.

To -illustrate the overflow area, assume
that on cylinder six of a defined file the
last three entries have keys 150, 152 and
154. Key 154 would identify cylinder six
in the index. Now we add a record with key
153, a record on another cylinder and a
record with key 151. The overflow area
would appear as shown below. Key 152 would
identify cylinder six in the index. The
overflow entry for cylinder six in the
index would point to the overflow area.

T -1 Y T T) T kl -3 -3
| Key | y| | |] | Key |Over flow |Rec. |
| 154 | Zeros |}Zeros | | Zeros |Zeros |153 | sector]0001 |
! | | ;| ! ! | : |address | |
[L L N 4 1\ L J\ 5 K : & - ﬁ

First record overflowed. The sequence-
link control field is zeros indicating
the end of a chain.

56

Record overflowed
from another
cylinder

Last record overflowed. The
sequence-1link control field
points to the next key in
sequence. In this case it is
key 154 in the overflow area.-

ﬁﬂ%%

h

/W%K

Creating and Using 1SAM Files

An indexed sequential file is built using
the 1SAM load routine, is expanded using
either the ISAM sequential or I1SAM random
routine.

Space for the file is initially
established on the disk by using a DUP
STOREDATA function. STOREDATA sets aside a
specified number of sectors for that file
and enters the file name in LET or FLET.
This file name must be used in all future
references to this file.

Determining I1SAM File Size

The number of sectors required for an ISAM
file is computed by the following formula
(the remainder in all cases should be
disregarded) :

Prime data sectors + Index sectors +
Overflow sectors + 1 (File label)

where:
Prime data sectors =

Approximate number of records in file +
number of records per sector - 1

Number of records per sector

Number of records per sector = 320
Record size + 2

The maximum record size is 318 words.
Records cannot cross sector boundaries.

Index sectors =
Number of prime data cylinders + number

of index entries per sector - 1
Number of index entries per sector

Number of prime data cylinders =

number of prime data sectors + 7

8
Number of index entries per sector=

320
Index entry size

Index entry size = 2 (key length in
words) + 3

Key length is a maximum -of 25 words (50
characters). 1If the length of the key in
characters is odd, add one when calculating
the number of words, i.e., 49 characters
require 25 words.

The number of sectors
the user wishes to
allot to record
overflow before the
file must be rebuilt.
The overflow area is
automatically assigned
to start at the sector
following the last
sector of prime data.
This assignment is done
by the 1SAM locad
(close) routine.

Overflow sectors =

When computing file size, always add one
sector for the file label.

1f desired, an Assembler language
program can be used to perform the above
calculations. The programmer need only know
the index entry size (calculation shown
above) , the length of a record in words,
the approximate number of records in the
file and an estimate of the number of
sectors of overflow area needed.

Number of file Sectors
Key Length Number of Entries Accomodated in One
in Characters on One Sector Index Sector

1-2 64 512
3-4 45 350
5-6 35 280
7-8 - 2 232
9-10 24 192
142 21 168
13-14 18 144
15-16 16 128
17-18 15 120
19-20 13 104
21-22 12 96
23-24 n 88
25-28 10 80
29-30 9 72
31-34 8 64
35-38 7 56
39-44 6 48
45-50 6 48

Figure 13.1 ISAM Cylinder Index Chart

RPG Subroutines (DM2 System) 57

Indexed -Sequential Files

Ranges of Record Lengths Records per
(in characters) Sector
1-2 106
3-4 80
57 64
7-8 53
9-10 45
11-12 40
13-14 35
15-16 32
17-18 29
19-20 26
21-22 24
23-24 22
25-26 2]
27-28 20
29-30 18
31-32 17
33-36 16
37-38 15
39-40 14
41-44 13
45-48 12
49-54 1
55-60 10
61-66 9
67-76 8
77-86 7
87-102 6
103-124 5
125-156 4
157-208 3
209-316 2
317-636 1
637-640 tnvalid

Figure 13.2 Space Utilization for Various

58

Size Records for Indexed

Sequential Files.

A program to calculate all values
computed above is shown in Appendix J of
the IBM 1130 Disk Monitor System, Version
2, Programmer's and Operator's Guide.

1SAM Load Routine

This routine loads presorted records, one
after another, into the prime data area of
the file. As each prime data cylinder is
filled the load routine creates an entry in
the file index. After all records are
loaded in the prime data area the load
routine creates the end of file record and
the last index entry. The key for end of
file and last index entry are all one Lits.

The sequence of events on an I1SAM load
is open the file, perform the function and
close the file. To accomplish these
objectives the ISAM load routine has three
entry points.

1SIDO - open the file
ISLD - write a record
1SLDC - close the file

The ISAM load routine is a part of the
System Library. It is called by a LI1BF.
One parameter must be passed to the routine
on each call and that parameter is the
address of the Disk File Information (DFI)
table. This parameter must immediately
follow the LIBF statement.

"

The coding required to build a data file
using the ISAM load routine is as follows:

Lebel

Operstion
2 s

Operands & Remarks

o 3
8,T,4RT

. Teiin S ODE)

........ L

L1B8F

o LStDO . ., OPEN (ISAM (LOAD FI LE, PR
. De, pﬁm&m4+*L_&LLAMMMQéﬁLi3ugAL&mﬂLLLL_
PR I 1% 9, 0 E£T.U |
B Y- Y. W ERROR , ., ., .60 .T0, .ERROR RHU.TINQJIF NEG
e H b eV ey L 1
it L1BF LSLD, .., WRITE ggt_;,o,R,Q T
D.C, ID.FIAD, DF1l ADDRESS LReangen) s
VR [WFLAD *, 9, LOAD RETURN €.ODE
" BN ERROR , ., ., . &0 To ERROR .Rou.'rxN: .IF Ng,g
i N S
L1BF LS.LDC, N ru;sg. ISAM. LDAD FlLa .
D, AD, ADDRESS, (READULR |
LD DF IAD T . . . L,oAD RETURN ,CODE L
BN ERROR, , , G0, .10, ERAOR ROUWT.LRE LE. Nr.f.
. S I I N P S T L
» DFI!ITABL OR, 1SAM, &,04AD, Roqmus‘!_._._._x N caa o |
|DFu1AD] [D.S.A, L BA 0 WSER FPTLE L i L
. I i
EQU L ERROR, ROUTINE
14

END,

Disk File Information (DFI) Table.

A file

to be loaded by the ISAM load routine must
be described using a DFI table which is 21

words long.

0-20

(These words are numbered

.) The DFI table has nineteen entries,
eleven of which must be filled in by the

user. The remaining eight entries must be
initialized to zero by the user and are
filled in by the program during execution.

Figure 14 shows the DF1 table for the
ISAM load routine.

Operation of the 1SAM Load Routine. When
the routine is entered at the open entry
point ISLDO, it checks the validity of the
DF1 table entries, sets pointers and
switches to be used internally by the
routine and sets the return code in the DFI1
table to the code for file open.

The routine is then entered at ISLD to
load a record to the file.

When the routine is entered at ISLLC, it
writes the last record in the prime data
area, an end-of-file record, the last index
entry, and sets the return code to file
closed. The end of file record contains
all one bits.

The 1SAM load routine returns to the
statement immediately following the
parameter that follows the LIEF to the
routine for any of the three entry points.

RPG Subroutines (DM2 System) 58.1

Meaning

Word |Entry

0,1,2|DSa

3 DC /00XX

4 DC /0XXX

5 |DC IABEL1
|

6 DC LABEL2
[

7 DC /XXXX |

8 DC /XXXX

9 DC /0000

10 DC /0000

-XX equals the key length in characters. Maximum is /0032. (50

. /0140 (one 320-word record). This includes the two words required for

L

The first entry in a DFI table is always a DSA statement. The DSA
statement allows the programmer to refer symbolically to a disk stored
data file without knowing its actual location. The label is defined
as the current value of the location Assignment Counter when the DSA
statement is encountered. The operand is the name of the data file.
For more information on DSA see IBM 1130/1800 Assembler Language.

characters)
XXX equais the length of the record in words. The maximum entry is
the sequence-link control field.

The adiress of the index buffer. This address must be on an even-word
boundary. The length of the index buffer is calculated by multiplying
the number of index entries per sector by the index entry length and
adding 2. The maximum length of this buffer is 322 words.

The address of the data buffer. This address must be on an even-word

bounlary. The length of the data buffer is calculated by multiplying

the number of records per sector (word 14 in this table) by the record
length (word 4 in this table) and adding 2. The maximum length of the
data buffer is 322 words.

Routine type code. For 1SAM load, XXXX = 1111,

XXXX equals the number of sectors required for the index. See
“Determining ISAM File Size"™ in this section for the methods used to
calculate this value.

Return code. This word must be reserved by the user. RAfter each LIBF
to any of the three entry points in the 1SAM load routine it should be
checkel for the return code.?

Adiress of record being processed. This word must be reserved by the
user.

Hexadecimal
Number Meaning

1 Return codes for 1SAM load are as follows

5555 File is open

8020 Not a load function

8021 Record size or number of records per sector incorrect

8022 Key length greater than maximum

8023 Index entry length not same as length computed from key length
8024 Number of index entries per sector incorrect

8025 Prime data area is full
8026 Index area is full

8027 File is not open

8028 Index buffer not on even-word boundary

8029 Data buffer not on even-word boundary

802A Input record out of sequence : |

OFFF File is closed

All 8XXX return codes except 802A are terminal errors. The file must be reopened to allow the program to retry the
operation, Processing will again start at the first record.

Figure 14. Disk File Information Table for 1SAM load (Part 1 of 2)

RPG Subroutines (DM2 System) 59

Word [Entry Meaning

1 DC /6000

112 /XXXX |

value.
will fit on a sector.

13 DC /XXXX
value.
14 DC /XXXX

l value.

15 pc /0000 Prime data record number.

|
/0000 Injex entry number.

17 DC IABEL3} Adjress of key hold area.

18 pc /0000

the usar.

19 DC /0000

the user.

20 DC /0000

i | the user.
L L

Address of the index entry.

XXXX equals the number of index. entries per sector.
1SAM File Size"™ in this section for the methods used to calculate this
This value must be the maximum number of index entries that

XXXX equals the index entry length in words.
File Size" in this section for the methods used to calculate this

XXXX equals the number of records per sector.
File Size" in this section for the methods used to calculate this
The entry in this word must indicate the maximum number of
records that will fit on a sector.

This word must be reserved by the user.

previous record so the records can be sequence checked.
close routine has been executed this word will contain the sector
address of the last prime data sector.
many words long as there are characters in the record key.

Sector address of last index sector.
Sector address of next overflow sector.

Record number of next overflow record.

This word must be reserved by the user.

See "Determining

See "Determining ISAM

See "Determining ISAM

This word must be reserved by the user.

This area is used to hold the key of the

After the
The key hold area must be as

This word must be reserved by

This word must be reserved by

This word must be reserved by

Figure 14. Disk File Information Table for ISAM Load (Part 2 of 2)

1saM Add Routine

This routine allows the user to add records
to an existing file. The new records are
placed in proper order by key sequence in
the prime data area. The records forced
off the prime data cylinders by the new
records are placed in an overflow area. 1If
the record to be added logically falls
between the last recorl presently on the
cylinder and the last record originally on
the cylinder, it is written directly into
the overflow area. If the record being
added has a higher key than any record on
the file, it is inserted before the end of
file record. The add routine will operate
most efficiently if the records being added
are presorted by key sequence.

It is extremely important that an Add
file be closed. This is to insure the file
is properly updated for future processing.
The add file should be closed before
termination of the job as a result of
either normal or abnormal EOJ. If the job

60

is abnormally terminated because of a CPU
failure or a DASD error (indicated by error
code /5004 with DISKZ) when an ADD is being
per formed, it is possible that a duplicate
record may have been generated on the file.
If this occurs, the user should check his
file and if such a duplicate record exists,
it should be deleted.

The sequence of events on an ISAM add is
open the file, perform the function and
close the file. To accomplish these
objectives the ISAM add routine has three
entry points:

ISADO - open the file
ISAD - write a record
1SADC - close the file

The ISAM add routine is a part of the
System Library. It is called by a LIBF.
One parameter must be passed to the routine
on each call and that parameter is the
address of the Disk File Information (DFI)
table. This parameter must immediately
follow the LIBF statement.

The coding required to add recoxds to an
1saM file is as follows.

Lobel Operasion | |F|T Opscondy & Remarts .
n sl by »l |ulnl s - o = s . s £

.2 I I PPN

PP S T
PP (USER LODED \ 4y vy L

L LBE

IS AP0, | 11 OPEMHELM (HDD, FTLE |4,
D, DFTHD ., ., DFT_ADIRESS, (REJUIRED], , , ||
2., D, ND. 42 4,0, ETUR, &0 _‘
W, E,R.8.00 60, T\0, ERROR ROUTINE JF NEG
KN i e e iy
N AT LSOD . . . L
L e, ., DEZIARD. 2 . ., I DFT LRDDRESS, (REAUIRED), . .+
2D DETRD 4G\ hdRD, RETURN, EODE, i i
B Darrr
18 | I T | PTRTU T S S W S S SN U0 U A T TR T S WA N TV WA S S [S ST |
L T BF 1SR, 4 1G4 086 TSAM RDD (FLLE 4, .

. e, 2F. 20D L DET PDIREES (REQUIERED), . ,
L e D, | £ £,0,0.D T £, B
. 184 leg.r0.2 160, J.0 ERRMR ROUTINE \LE AES

Al L o S S | A1) NUDE 0 DU R TS YO S D N 1 i
*x.n;.z' 7.8 |F] B, |
D50 BT LED | MSER ETLE v 4 v v s
T 12y [T IR Y I S S ST N A AT S N N T ST S S PO BT SAPE ST BTSN A SE SR |
2e.0r lequ, A0 ERROR ROUTIME 4 oo 1o |
P - Lx a4 [I T T S N T YO MY Y WA R R "I U A T IS A R S R |
o £.4:D, STBRT v e o e
. T
L NN tu s i N N s
a i Pl W 11 L L 1 i 1
Disk File Information (DFI) Table. The

ISAM add routine requires a DFI table
describing the file. The DFI1 table (which
is 21 words long, numbersd 0-20) has
nineteen entries, six of which must be
filled in by the user. The remaining
thirteen entries must be initialized to
zero by the user and are filled in by the
program during execution.

Figure 15 shows the DFI table for the
ISAM add routine.

Operation of the ISAM Add Routine. When
the routine is entered at the open entry
point ISADO, it checks the validity of the
DF1 table entries, sets pointers and
switches to be used internally by the
routine and sets the return code in the DFI
table to the code for file open.

The routine is then entered at 1SAD to
add a record to the file.

#hen the routine is entered at 1ISADC,
the label is updated and the return code is
set to file closed.

The ISAM add routine returns to the
statement immediately following the
parameter that follows the LIBF to the
routine for any of the three entry points.

ISAM Sequential

The 1SAM sequential routine is used to
retrieve and update recoris on an ISAM

file. Processing may start at the first
record or at any record within the file.

The programmer can update each record
immediately after it is processed by
writing it back to the same location from
which it was retrieved. This update is
accomplished by specifying 0010 in word 7
of the DFI table when the file is opened
and modifying word 19 of the DFI to /0001
before issuing the LIBF ISEQ. Word 19 must
be restored to /0000 prior to reading the
next record. An update is not required if
the records are not changed.

The sequence of events for an ISAM
sequential operation is open the file, set
a low key limit if required, perform the
function and close the file. To accomplish
these objectives the ISAM sequential
routine has four entry points:

ISEQ0 - open the file

ISETL - set low key limit (start
processing at this record)

ISEQ -~ process a record

ISEQC - close the file

The ISAM sequential routine is a part of
the System Library. It is called by a
LIBF. One parameter must be passed to the
routine on each call and that parameter is
the address of the Disk File Information
(DF1) table. This parameter must
immediately follow the LIBF statement.

The coding required to retrieve and
update records on an ISAM file starting
with the first record is as follows:

[Latel Operation FlT Operancs & Eemarks.
X o s . - M P o . ~
Fram‘ ey, et
- i tea o0 GURBER (CODED o o0y b1 4
i N 2.1.0.F| LS EQO 1 2 s QPEN T8AM 1SEQUENTLAL | 1 1 :
[e PDELRD. . . .\ DEL ADDAESS (REALTAEDL o 1 |
[Py DIETanH9 1LOAD, (RETURN, O8DE, R ol
. 18N . ERROMR + .\ el T00 ELROR ROLAT.TME (\LF MEGC
n x: A 1 P o S S THNY N VU T VOO OO Y W Y Y N T S T NN 1 L4 Loa a3 3
L AL DSEQ 1 1, RERD 108 WRITE QEOORN .« 1
" e DELOD o 1, i WDET PDPRESHS: (REQUIREDDY. \ o
—] s
, B, &R208. . B0, T EAROR ROUTINE L5 MEG|
2 N AN i A N S
o . LOE LS E£4QC A OEE T8AM BLQUENTEML | 1
s ¢ . E.Z, E.X |
;J_._. led EEZ:;;E s LD AP, RETURN ODE ' l
i F.QL L RROR + £0. 70, ERROR ROKTINE T.F NES
. e i - 41 Lt | PE TS SR T N S 'Y 1 1 1
d_2ez] (na.odel [dole xspm Ssouenrzac, NN .y
iam_j.qa LLES . USER FTLE 1, s AN
E.GQu1
2 11 it]
BLDs ZART, | R P P N
s P PR NPEPEAI NP
. L N PN NN NN

RPG Subroutines (DM2 System) 61

Entry

Meaning

~

=<}

(]

1

1.,2{DS2

0

/0XXX

LABEL 1

LABEL2
/XXXX

/70000

|
/0000

/0000

The first entry in a DFI table is always a DSA statement. The DSA
statement allows the programmer to refer symbolically to a disk
storel data file without knowing its actual location. The label is
defin=d as the current value of the Location Assignment Counter when
the DSA statement is encountered. The operand is the name of the
data file. Further information on DSA may be found in IBM 1130/1800

Assembler Lanquage.

XX equals the key length in characters. Maximum is /0032 (50
characters).

XXX equals the length of the record in words. The maximum entry is
/0140 (one 320-word record).

The address of the index buffer. This address must be on an even
word boundary. The length of the index buffer is calculated by
multiplying the number of index entries per sector by the index entry
length and adding 2. The maximum length of this buffer is 322 words.

The address of the record being added to the file.
Routine type code. For 1SAM add, XXXX = 0000.

Index entry number in process. This word must be reserved by the
user.

Return code. This word must be reserved by the user. After each
LIBF to any of the three entry points in the 1SAM add routine it
should be checked for the return code.*

Prime data record number in process. This word must be reserved by
the user.

—— — oy

T TRV DTy S ey G PR STD GYUE v S SuS G =

¢ Return codes for ISAM Add are as follows.

Hexadecimal

Number Meaning
5555 File is open
8030

803t

8032

8033

8034

8035

8036

OFFF File is closed

Al 8XXX return codes except 8034 are terminal errors. The file must be reopened to allow the program to
retry the operation. Processing will again start at the first record.

Not .an add function

File is not open

Key length in DFI table not same as key length in label
Record length in DFI table not same as record length in label
Key is presently on file

Overflow area is full

Index buffer not on even-word boundary

. |
-4

Figure 15. Disk File Information Table for ISAM Add (Part 1 of 2)

62

L] Ll
Word |Entry Meaning

the user.

user.
|

" reserved by the user.

the user.

the user.

t L

1 pC /0000 Address of the index entry.

13 DC /0000 Index entry length in words.

14 pcC /0000 Number of records per sector.

This word must be reserved by the user.

12 Dc /0000 Number of index éntries per sector.

16 pc /0000 Number of last index entry for file.

17 DC ,0000 Sector address of last prime data sector.

by the user.
18 |DC ,0000 | Sector address of last index sector.
| the user.
|
19 DC 0000 Sector address of next overflow sector.
by the user.

20 DC /0000 Record number of next overflow record.

This word must be reserved by

This word must be reserved Ly

This word must be reserved Ly

This word must be reserved by the user.

This word must be reserved by the

15 pc /0000 Record number of last prime data record processed. This word must ke

This word must be reservedj

This word must be reserved

This word must be reserved Ly|

Figure 15. Disk File Information Table for 1SAM Add (Part 2 of 2)

The coding required to retrieve and update
records on an ISaM file starting at a
record other than the first record on the
file is as follows. (Note that the record
key must be placed in the key hold area in
a special format: one character per word,
occupying the rightmost eight bits of the
word. The coding included below illus-
trates one way that this can be done. It
is required only if the key characters are
left-justified.)

Disk File Information (DFI) Table. The

ISAM sequential routine requires a DFI
table describing the file. The DF1l table
(which is 21 words long, numbered 0-20) has
nineteen entries, eight of which must be
filled in by the user. The remaining
eleven entries must be initialized to zero
by the user and are filled in by the
program during execution.

Figure 16 shows the DFI table for the
ISAM sequential routine.

-J

Lobel Operation E|T Opesonds § Remosks
START by e » L
. T | N (n::n rnnt\u,“,,, s
s L.BF LSEQO . .. OPEN .[8A [
i D.C, s L
s LD +), CODE, .\ 00 sy
e | BN FR!MME&&Q&_&MLM@
T H M S T P SR A I

’!- REA LN Ll MY, ADDRESS: . TH.€ FO,bLONING EXAMPLE |

| o, ITHOD, .OF CONVERTING THE, KEY To THE .,]

il Ry o Sl e o il o
H P NP L \
LD, FLAD I 0 KEY ENGTH 1N CHARAGT.ERS, |
S.T.0. Ll 1, L.OAD, (INDEX: REGISTER i, :

W [) rmo»t , RECORD, KEY: ADPDRESS, . v, .\
ety AT 2 L8 LOAD, (INDEX, REGUSTER & 1
PR I 1 X 5 A 3.:.. ZERO REGUSTERS: , . ' .
Loop, | D . 2 F, |
e | SRA [N L LaSHIET LHARACT.ER T R, WORD
PP O, AN, N it RES T.ORE, mmg_‘z._‘s.u._._._.__._._
s MD.X, £ VIS L LNCREMENT, KEY, POINTER ,

.. | ImDux, | -1 . DECREMENT LHARAC TER \COUNT,
I Ju,p.x. Loaof 4 JLE NN ZERD, CONTINWE 1,
L4 3 |:.n 1 1l PRI R N T T S SN WA VO T N0 U T T T T B N 1
%, ENDI |OF, .Elxla L .Tu; FOR L OWE NG CODING 1S, &F.M&E.nn_

s) ILTBF) LS.E.T‘L. L0 Q6T oW KEN, LIMIT Loy

Abe, . ELAD: + ., .. DFI. ADDRESS. .(REQUIRED). . . .
Label Operation ¥ l| Operonds 3 Remorks
il i) (27 0] 13213 40 45 50 355] 45 n
e
n RROR, 4 L GO T ERROR RONIT. ME: 11.E NEIG
H i i 1 4 M E D A R U SR Bt |
L. 1.6F 1LSER . READ .nn WL TE RIECHRD 3
L. FLAD o L OF0, ADDRESS (REAUIRED), , , ¢
(Y
L] RAOR, 4 i 0, T EREMR ROMTINE 1 F: NE
: i T
. L L&F LSEQRGC, + L CLOSE I SAMN SEQUENTL ML, | s
. ELAD DE1. ADORESS, (REQUIRED), ,
[N L. .
Y N
L
S8
RAOS }gn.u
S n) 1 1 i 1 1 1
.I;u.m TART. e s N L 1 i
n LI » LI 1 . 1 t .

RPG Subroutines (LCM2 System) 63

-
-

T
|Word |Entry Meaning
[}

-

. The first entry in a DFI table is always a DSA statement. The DSA
statement allows the programmer to refer symbolically to a disk
storel data file without knowing its actual location. The label is
defin2d as the current value of the Location Assignment Counter when
the DSA statement is encountered. The operand is the name of the
data file. Further information on DSA may be found in IBM 1130/1800
Assembler Language. Note that the first word of the DSA instruction
is loaded with the last prime data sector address when the file is
openel.

v
10,1,2|DsSA

XX equals the key length in characters. Maximum is ,0032. (50
characters). The key length must be the same as the key length in
the file label.

3 DC /00XX

XXX equals the length of the record in words. The maximum entry is
/0140 (©ne 320-word record). The record length must be the same as
the rescord length in the file label. ~

4 DC /0XXX

The address of the index bhuffer. This address must be on an
even-word boundary. The length of the index buffer is calculated by
multiplying the number of index entries per sector by the index entry|
length and adding 2. The maximam length of this buffer is 322 words.|

|
The aldress of the data buffer. This address must be on an even-word|
boundary. The length of the data buffer is calculated by multiplying]
the number of records per sector by the record length and adding two.|
The maximum length of the data buffer is 322 words.

5 DC IABEL1

D . e, o, et S . i et Al Gkl A S, S S S T S, B, WO, P, S S, At b

[+,

DC IABEL2

~
Q
(p]

/XXXX Routine type code. For 1SAM sequential retrieve, XXXX = 0001. For

ISAM sequential update, XXXX = 0010.

/XXXX

@®
Q
aQ

Ajdress of key hold area if processing starts at a point other than
the first record in the file. 1If the entire file is being processed,
this word must be ,/0000.

|
|
|
|
|
|

0
Q
Q

/0000 Return code. ‘This word must be reserved by the user. After each]
LIBF to any of the four entry points in the ISAM sequential routine

it should be checked for the return code.?

-
o

Aldress of record in process. This word must be reserved by the
user.

[o et s s ey i i) A i S e (D S i, O s

|
{pC /0000
|

L

* Return codes for ISAM sequential are as follows:

Hexadecimal

Number Meaning

5555 File is open

8040 Not a sequential retrieve or update function

8041 Index buffer not on even-word boundary

8642 Data buffer not on even-word boundary

8043 Key length in DFI table not same as key length in label
8044 Record length in DFI table not same as record length in label
8045 File is not open

8046 Write before read on update

FFFF End of file

QOFFF File is closed

All 8XXX return codes except 8046 are terminal errors. The file must be reopened to allow the program
to retry the operation, Processing will again start at the first record,

FFFF is a terminal error in the sense that it allows no further processing of the file, It does not, however, prevent
the file from being closed in the normal manner,

g e easts o iy Sl ot S i) dnpeth VIV W B A YA g S D TN} VT S (S Gt A St Sl SN D i Sl e el i G S S— — — —

-—_——-——c—-——-.-—-—u—_n-———-l.

Figure 16. Disk File Information Table for ISAM Sequential (Part 1 of 2)

64

wWord |Entry Meaning

1" pc /0000
be reserved by the user.

12 pc /0000
the user.

13 pC /0000

14 pc ,0000
user.
15 pc /0000 Update-write indicator.

16 DC /0000

user.

17 pc /0000
reserved by the user.

18 pc ,0000

has been found.

19 DC /XXXX | ReaidMrite indicator.

{ | the next retrieve.

20 D2 /0000
| |]
L L

L

the user.

Address of the index entry used to locate the record.
Number of index entries per sector.

Index entry length in words.

Number of records per sector.

This word must be reserved by the user.

Number of index entry in process.
ISETL switch to indicate low-limit record found..
Internal switch used to indicate that last record in overflow area
This word must be reserved by the user.

1f routine type code (word 7 of this table)
was a retrieve, this entry should be set to /0000.

indicates an update file, this entry should be /0000 for the retrieve
| and /0001 for the update.

Prime data record number in process.

This word mast
This word must be reserved by

This word must be reserved by the user.

This word must be reserved by the

This word must be reserved by the

This word must be

1f word 7
This word should be reset to /0000 before

This word must be reserved by

Figure 16. Disk File Information for ISAM Seguential (Part 2 of 2)

Operation of the ISAM Sequential Routine.
When the routine is entered at the open
entry point ISEQO, it checks the validity
of the DFI table entries, sets pointers and
switches to be used internally by the
routine and sets the return code in the DFI
table to the code for file open.

If processing is not to start at the
first record in the file, the routine is
entered at ISETL to locate the starting
record.

. The routine is then entered at ISEQ to
perform the processing functions.

Wwhen the routine is entered at 1ISEQC,
the last record is processel and the return
code is set to file closed.

The 1SAM sequential routine returns to
the statement immediately following the
parameter that follows the LIBF to the
routine for any of the four entry points.

ISAM Random

The ISAM random routine is used to retrieve
and update records randomly on an ISAM
file. The programmer first places the key
field of the desired record in a '
user-defined area. ISAM random then
searches the index to locate the cylinder
containing the Jesired record and then
searches that cylinder for the record. The
sector containing the record is then read
and that record is made available for
processing.

The programmer can update each record
immediately after it is processed by
writing it back to the same location from
which it was retrieved. This update is
accomplished by specifying /1000 in the
seventh word of the DFI table when the file
is opened and modifying the nineteenth word
of the DF1I to /0001 before issuing the LIBF
ISRD. The .nineteenth word must be restored
to /0000 prior to reading the next record.
An update is not required if the records
are not changed.

The sequence of events for an ISaM

random operation is open the file, perform
the function and close the file. To

RPG Subroutines (DM2 System) 65

accomplish these objectives the ISAM random
routine has three entry points.

ISRDO - open the file
ISRD - process a racori
ISRDC - close the file

The ISAM random routine is a part of the
System Library. It is called by a LIPBF.
One parameter must be passed to the routine
on each call and that parameter is the
address of the Disk File Information (DFI)
table. This parameter must immediately
follow the LIBF statement.

The coding required to retrieve and
update records on an ISAM file using the
random routine is as follows:

Labe) Oparation Flr Operandh & Remarks
» =l dr e} lolsl bs © - M “ - N »
staryl], . . N R
. N e osen come) i et bty
LAY LSBT0 s st OPEN LSAM RANDOSR . N
e £ néﬁuguﬁgmLLL4+L_
N LD, , +.9, o, [
PN 1_3»;. ERROR + ., 1, 60 ,T0 ERROR .Rou.*rlna JF NEG
. NN b e NN
ATz LSRD, 1R, x £.C.OR N
}f:; Dos. 1 D s .
49 1k OAD RETURN CODE L L
JB.M. RBOR. 1 . : 1O E.RR.O.R, EG|
n.' L I WU T S N Y N A | L I} LA O S 1 1
L1BF lnseRDpC, 1) o ibros L
DC D F LAD i o . aDET D,] |
P [> S F.LAD 9, b OAD, RETURN COPE , , 11
AN ERR,OR 130 To ERROR, R.ounwa_
1 n ,: " A4 P U T U S T T T T U S N S] e 1 — PR |
#, pri| Tassel lF 3 L.
DFIAD! DSA LLEAS ¢ L WEER FILE 0 0 s
e A bt e e e e o AN
ERROR| [EQU NN r i G ERROR ROVTINE | L .
FPPE I I N " N I I ST A ST S A | ' AP
END START, Lt g
L M L N L L
£ 4 51 o W Y S0 T T 00 N TS TN WS W S NN DA T N T Vi 1 1 1
i S N S O ST 1t 1 P | il I S P 1 1

Disk File Information (DFI) Table. The
iSAM random routine regquires a DFI table
describing the file. Ths DFI table (which
is 20 words long, numbered 0-19) has
eighteen entries, eight of which must be
filled in by the user. The remaining ten
entries must be initialized to zero by the
user and are filled in by the program
during execution.

Figure 17 shows the DFI table foar the
1SAM random routine.

Operation of the ISAM Random Routine. When
the routine is entered at the open entry
point ISRDO, it checks the validity of the
DFI table entries, sets pointers and
switches to be used internally by the
routine and sets the return code in the DFI
table to the code for file open.

The file is then entered at 1ISRD to
process a record.

66

When the routine is entered at ISRDC,
the return code 1s set to file closed.

The ISAM random routine returns to the
statement immediately following the
parameter that follows the LIBF to the
routine for any of the three entry points.

" RPG OBJECT TIME SUBROUTINES

Included in the DM2 System Library is a
group of subroutines that performs
functions for the RPG cobject program.
These subroutines are intended for system
use only. Brief descriptions of the
subroutines and their entry points are
listed below.

RPG Decimal Arithmetic

Add, Subtract, and Numeric Compare. This
subroutine performs the addition,
subtraction and numeric comparison
functions requested in the RPG calculation

specification.

The entry points are:

RGADD - decimal addition routine
RGSUB - decimal subtraction routine
RGNCP - decimal numeric compare

Multiply. This subroutine multiplies two
decimal fields defined in an RPG program.

The entry point is:

RGMLT - decimal multiply
Divide. The RPG object program calls this
subroutine to divide one decimal field by
another and store the quotient in a third
field.

The entry point is:

RGDIV - decimal divide
Move Remainder. This subroutine is called
by the RPG object program immediately

following a divide operation. It places
the remainder in a specified field.

The entry point is:

RGMVR - move remainder

r T 1
Word |Entry | Meaning AJ
_ b F -
0,1,2|DSa { The first entry in a DFI table is always a DSA statement. The DSA |
	statement allows the programmer to refer symbolically to a disk	
		storel data file without knowing its actual location. The label is
	defin2d as the current value of the Location Assignment Counter when	
	the DSA statement is encountered. The operand is the name of the	
		data file. Further information on DSA may be found in IBM 1130/1800 :
		Assembler Language.
' I		
:3 }DC /00XX : XX equals the key length in characters. Maximum is ,0032. (50		
]		characters). The key length must be the same as the key length in 1
		. the file being accessed. =
}u {DC /0XXX = XXX equals the length of the record in words. The maximum entry is		
		/0140 (one 320-word record) . The record length must be the same as
	{ the rscord length on the file being accessed. =	
IS =DC LABEL1= The aldress of the index buffer. This address must be on an		
]	even-word boundary. The length of the index buffer is calculated by	
		multiplying the number of index entries per sector by the index entry
		1length and adding 2. The maximum length of this buffer is 322 words.)
:6 {DC LABELZ{ The address of the data buffer. This address must be on an even-word		
[boundary. The length of the data buffer is calculated by multiplying}
		the number of records per sector by the record length and adding two.
		The maximum length of the data buffer is 322 words.
I		
7	DC /XXXX	Routine type code. For 1ISAM random retrieve, XXXX = 0100. For ISAM
		raniom update, XXXX = 1000.
I I I		
8	DC 1ABEL3] Aldress of the key hold area containing the key of the record to be }	
		processed. The key must be in a special format: one character per
		word, occupying the rightmost eight bits of the word. See the coding]
l	for ISAM sequential that includes a LIBF to ISETL for an example of	
		how the key can be placed in this format.]
! I]		
9 [DC /0000	Return code. This entry must be reserved by the user. After each	
		LIBF to any of the three entry points in the ISAM random routine it
		shoull be checked for the return code. i
[
10	DC ,0000	Address of record in process. This word must be reserved by the }
l, L L =.		
' Return codes for ISAM random are as follows:		
= Hexadecimal !		
l Number Meaning '		
I 5555 File is open l		
' 8050 Not a random retrieve or update function		
I 8051 Index buffer not on even-word boundary I		
l 8052 Data buffer not on even-word boundary		
I 8053 Key length in DFI table not same as key length in label l		
8054 Record length in DFI table not same as record length in label i		
l 5055 File is not open l		
l 8056 Write before read on update '		
l 8057 Record not on file		
I OFFF File is closed l		
= All 8XXX return codes except 8056 and 8057 are terminal errors, The file must be reopened to allow the program }		
l to retry the operation. Processing will again start at the first record. '		
L]
Figure 17. Disk File Information Table for 1ISAM Random (Part 1 of 2)

RPG Subroutines (DM2 System) 67

r L3 L}
|Word |Entry | Meaning V}
b t t -—
111 |pC ,0000 | Address of the index entry used to locate the record. This word must
: i | be reserved by the user.
| . :
112 |bC /0000 Number of index entries per sector. This word must be reserved by
| | | the user. v
|
l13 }DC /0000 Index entry length in words. This word must be reserved by the user.
| 14 |pC ,0000 Number of records per sector. This word must be reserved by the
user.

15 |pC /0000 Prime data record number. This word must be reserved by the user.

16 DC /0000 Number of index entry in process. This word must be reserved by the
! | | wuser. |

17 DC /0000 First-time switch. This switch is set off after one record has been
| } | processed.
| ;
| 18 pc /0000 Internal switch used to indicate the record found is in the over flow
| | | area. This word must be reserved by the user. (
{ | |
| 19 [DC /XXXX | Read mrite indicator. 1If routine type code (word 7 of this table)
{ | | was a retrieve, this word should be set to /0000. If word 7 |
] | { indicates an update file, this word should be /0000 for the retrieve |
| | | and /0001 for the update. This word should be reset to /0000 before
| | | the next retrieve.
t L L -

Figure 17. Disk File Information Table for ISAM Random (Part 2 of 2)

Binary/Decimal Conversion. This subroutine

converts a three-word binary number to a
fourteen-digit decimal number and
vice-versa.

The entry points are:
RGBTD - binary to decimal conversion

RGDTB - decimal to binary conversion

RPG Sterling ani Edit

Sterling Input Conversion. This subroutine
converts a field in the British sterling

format of pounds, shillings, pence and
decimal pence to a decimal format of pence
and decimal pence.

The entry point is:
RGST1 - sterling input conversion

Sterling Output Conversion. This
subroutine performs the reverse function of
RGSTI.

The entry point is:

RGSTO - sterling output conversion

68

Edit. This subroutine edits a numeric
field using a user-specified edit word or
edit code and places the edited value in an
output area.

The entry point is:

RGEDT - edit
RPG Move

The five subroutines that comprise this
group are responsible for the movement of
data and fields requested by the object
program.

The entry points and functions-of these
subroutines are: i

move data from 1/0
buffer to assigned core

RGMV 1, RGMVS -

field
RGMV2 - move data from assigned
core field to 1/0
buffer
RGMV3 - perform the RPG calc
operation MOVE
. RGMV4 - perform the RPG calc

operation MOVEL

RPG Compare

This subroutine is used to compare
alphameric fielis.

The entry point is:

RGCMP - alphameric compare

RPG Indiqators

Test. The condition of indicators
specified in columns 9-17 of an RPG
calculation specification are tested. 1If
the conditions are met, the calc operation
is performed. If the conditions are not
met the operation is skipped.

The entry point is:
RGSI1 - test indicators

Set Resulting Indicators On Conditionally.
This subroutine sets on resulting
indicators as required based on the results
of an arithmetic operation, a compare
operation, or a table lookup. The
resulting indicators are specified in
columns 54-59 of the calculation
specification.

The entry point is:

RGS1I2 - set resulting indicators
condit ionally

Set Resulting Indicators On or Off. This
subroutine will set or reset from one to

three resulting indicators.
The entry points are:

RGSI3 - set resulting indicators on
unconditionally

RGSI4 - clear resulting indicators off
unconditionally

Zero or Blank Test. This subroutine tests
for a zero or blank and returns an
indication to the requesting program.

The entry point is:

RGSIS - test a field for zero or blank

RPG_Miscellaneous

Test Zone. Tests the zone of the leftmost
position of an RPG alpha field and returns
an indication to the requesting program.

The entry point is:

RGTSZ - perform TESTZ operation

Convert Record ID. Converts the record ID
number supplied on a Record Address File
(RAF) to a two-word binary number.

The entry point is:

RGCVB - convert record ID number to
binary

Object-Time Error. Ioad accumulator with
error number supplied by user and wait at
$PRET for operator action. This subroutine
then interprets operator action and
proceeds accordingly.

The entry point is:

RGERR - RPG object program error
interface

Blank After. This subroutine performs the
RPG blank-after function if specified on
the RPG output specification.

The entry point is:

RGBLK - zexro or blank a field

RPG Subroutines (DM2 System) 69

| Subroutines Used by F ORTRAN (C/PT System)

Many of the functions ani capabilities
available within the general I/0 and
conversion subroutines described in this
manual are beyond specification by the
FORTRAN language. For example, the feed
function of the 1442 cannot be specified in
FORTRAN. Therefore, a s2t of
limited-function 1/0 and conversion
subroutines is incluided in the subroutine
library for use by FORTRAN-compiled
programs. Any subroutines written in
Assembler language that execute 1/0
operations, and that are intended to be
used in conjunction with FORTRAN-compiled
programs must employ these special 1/0
subroutines for any 1/0 device specified in
a mainline *I10CS recorl or for any device
on the same interrupt level.

These subroutines are intended to
operate in an error-free environment and
thus provide no preoperative parameter
checking.

The subroutine library contains the
following special routines:

CARDZ - 1442 I/0 Subroutine

TYPEZ - KeyboardsConsole Printer I/0
Subroutine

WRTYZ - Console Printer Subroutine

PRNTZ - 1132 Printer Subroutine

PAPTZ - 113471055 Paper Tape 1/0
Subroutine

PLOTX - 1627 Plotter Subroutine (see
PLOTX)

HOLEZ - 1IBM Card Code/EBCDIC Conversion
Subroutine

EBCTB - EBCDIC/Console Printer Code
Table

HOLTB - 1IBM Card Cods Table

GETAD - Subroutine Used to Locate Start

Address of EBCTB/HOLTB

GENERAL SPECIFICATIONS

Except for PLOTX, the FORTRAN 1/0 device
subroutines operate in a nonoverlapped
mode. Thus, the device subroutines do not
return control to the calling program until
the operation is completed. These
subroutines are all LIBF's without
parameters.

70

The input/output buffer for the
subroutines is a 121-word buffer starting
at location /003C. The maximum amount of
data transferable is listed in the
description of each subroutine. Output
data must be stored in unpacked (one
character per word) EBCDIC format, /00XX.
Data entered from an input device is
converted to unpacked (one character per
word) EBCDIC format, ,/00XX.

The EBCDIC character set recognized by
the subroutine comprises digits 0-9,
alphabetic characters A-Z, blank, and
special characters $-+.6= (,'/*<X#3. Any
other character is recognized as a blank
by all subroutines except HOLEZ. HOLEZ
recognizes an invalid character as an
asterisk.

The Accumulator, Extension, and Index
Registers 1 and 2 are used by the FORTRAN
device subroutines and must be saved, if
required, before entry into any given
FORTRAN subroutine.

The Accumulator must be set to zero for
input operations. For output operations,
the Accumulator must be set /0002, except
for PRNT2 and WRTYZ, in which output is the
only valid operation. 1Index Registers 1
and 2 are set to the number of characters
transmitted, except for PRNTZ (1132
Printer) in which Index Register 2 contains
the number of characters printed plus an
additional character for forms control.

ERROR HANDLING

Device errors, e.g., not-ready and read
check, cause a WAIT in the subroutine
itself. After the appropriate corrective
action is taken by the operator, PROGRAM
START is pressed to execute or rem:.tlate
the operation.

DESCRIPTIONS OF I/0 SUBROUT INES

The subroutines described in the sections
that follow do not provide a check to
determine validity of parameters (contents
of Accumaulator and Index Register 2).
Invalid parameters cause indeterminate
operation of the subroutines.

TYPEZ - KEYBOARD/CONSOLE PRINTER I/0
SUBROUTINE

Buffer Size. Maximum of 80 words input,
120 words output.

Keyboard Input. The subroutine returns the
carrier, reads up to 80 characters from the
Keyboard, and stores them in the I1,/0 buffer
in EBCDIC format. Upon recognition of the
end-of-field character or reception of the
80th character, the subroutine returns
control to the user (the remainder of the
buffer is unchanged). Upon recognition of
the erase field character or the backspace
character, the carrier is returned and the

subroutine is reinitialized for the reentry

of the entire message. Characters are
printed by the Console Printer during
Keyboard input.

Console Printer Output. The subroutine
returns the carrier and prints the number
of characters indicated by Index Register 2
from the 1/0 buffer.

Subroutines Requireid. The following
subroutines are required with TYPEZ:

HOLEZ , GETAD, EBCTB, HOLTB

WRTYZ - CONSOLE PRINTER JQUTPUT SUBROUTINE

Buffer Size. Maximum of 120 words.
Operation. This subroutine returns the
carrier and prints the number of characters
indicated by Iniex Register 2 from the I/0
buffer.

Subroutines Required. The following
subroutines are required with WRTYZ:

GETAD, EBCTB

CARDZ - 1442 CARD READ PUNCH 1/0 SUBROUTINE

Buffer Size. Maximum of 80 words.

Card Input. This subroutine reads 80
columns from a card and stores the
information in the I/0 buffer in EBCDIC
format.

Card Output. This subroutine punches the
number of characters indicated by Index
Register 2 from the I/ buffer. Punching
is done in IBM card colde format.

Subroutines Required. The following
subroutines are required with CARDZ:

HOLEZ, GETAD, EBCTB, HOLTB

PAPTZ - 1134/1055 PAPFR TAPE READER PUNCH
I/0 SUBROUTINE

Buffer Size. Maximum of 80 characters.
1134 Paper Tape Input. This subroutine
reads paper tape punched in PTIC/8 format.
Paper tape is read until 80 characters have
been stored or until a new-line character
is read. 1f 80 characters have been stored
and a new-line character has not been read,
one more character, assumed to be a
new-line character, is read from tape.
(Delete and case-shift characters cause
nothing to be stored.) 1If the first
character read is not a case-shift
character, it is assumed to be a lower case
character. The input is converted to
EBCDIC format.

1055 Paper Tape Qutput. The contents of
the 1,0 buffer is converted from EBCDIC to

PTTC/8, and the number of characters
indicated by Index Register 2 is punched,
in addition to the required case-shift
characters.

PRNTZ - 1132 PRINTER OUTPUT SUBROUTINE

Buffer Size. Maximum of 121 characters.
Index Register 2. The value stored in
Index Register 2 must be the number of
characters to be printed plus an additional
character for carriage control. Up to 120
characters can be printed in any one
operation. The first character to be
printed is stored in location ,/003D.

The carriage of the 1132 printer is
controlled prior to the printing of a line.
The following is a list of the carriage
control characters and their related
functions:

/00F1 Skip to channel 1 prior to
printing

/00F0 Double space prior to printing
/004E No skip or space prior to printing
Any other character - Single space prior
to printing.

Channel 12 Control. 1If a punch in channel
12 is encountered while a line is being
printed, a skip-to-channel-1 is taken prior
to the printing of the next line.

Subroutines Used by FORTRAN (C/PT System) 71

72

Subroutines Used by FORTRAN (DM2 System)

Many of the 1/0 and conversion subroutines
cannot be specified in FORTRAN. Therefore,
the System Library includes a set of
limited-function I/0 and conversion
subroutines for FORTRAN programs. Any
Assembler language 1/0 subroutines used by
FORTRAN programs must employ these special
subroutines for any 1/0 device specified in
a mainline #*I0CS control record.

Of all the FORTRAN device subroutines,
only DISKZ, PRNTZ, PRNZ, and PLOTX return
control to the caller after initiating an
operation (PLOTX is described with the
basic 1SSs).

These subroutines are intended for use
in an error-free environment and thus
provide no preoperative parameter checking.

The System Library contains the
following 1SS and conversion subroutines
for FORTRAN programs:

CARLCZ - 1442 1/0 Subroutine

PNCHZ - 1442 Output Subroutine

REACZ - 2501 Input Subroutine

TYPEZ - Keyboard/Console Printer 1,/0
Subroutine

WRTYZ - Console Printer Subroutine

PRNTZ - 1132 Printer Subroutine

PRNZ - 1403 Printer Subroutine

PAPTZ - 1134/1055 Paper Tape 1/0
Subroutine

PLOTX - 1627 Plotter Subroutine

DISKZ - Disk 1I/0 Subroutine

HOLEZ - IBM Card Code/EBCDIC Conversion
Subroutine

EBCTB - EBCDIC/Console Printer Code
Table

HOLTB - 1IBM Card Code Table

GETAD - Subroutine to Locate Start

Address of EBCTB/HOLTB

GENERAL SPECIFICATIONS (EXCEPT D1SKZ)

The "Z® device subroutines are 1SS
subroutines. These subroutines are all
LIBF's without parameters. They use a
121-word input/output buffer, contained in
the nondisk FORTRAN 1,/0 subroutine SFIO.
The maximum amount of data transferable is
listed in the description of each
subroutine. Output data must be stored in
unpacked right-justified (one character per
word) EBCDIC format. Input data is
converted to unpacked EBCDIC format.

The EBCDIC character set recognized by
the subroutines comprises digits 0-9,
alphabetic characters A-Z, blank, and
special characters $-+.&= () ,' /#*<%X#a. BAny
other character is recognized as a blank
by all subroutines except HOLEZ. HOLEZ
recognizes an invalid character as an
asterisk.

I1f a "2" subroutine is used by an
Assembler language 1/0 subroutine, the user
should be aware of the significant
information carried by the different
registers. The Accumulator, Extension, and
Index Registers 1 and 2 are used by the
FORTRAN device subroutines and must be
saved, if required, before entry into the
subroutines. The Accumulator must be set
to zero for input operations.

For output operations, the Accumulator
must be set to /0002, except for PRNZ,
PRNTZ, PNCHZ, and WRTYZ, in which output is
the only valid operation. Index Register 2
must be set to the number of characters to
be transferred, except for PRNZ and PRNTZ.
For these two subroutines, Index Register 2
must contain the number of characters to ke
printed plus an additional character for
carriage control. 1Index Register 1 must
contain the starting address of the input
buffer.

ERROR HANDL ING

Device errors, e.g., not ready and read
check, result in a branch to $PST1, $PST2,
$PST3, and $PSTH depending on the level to
which the device is assigned. After the
appropriate corrective action is taken by
the operator, PROGRAM START is pressed to
execute or reinitiate the operation.

I1f a monitor control record is
encountered by CARDZ, REALZ, or PAPTZ, the
subroutine initiates a CALL EXIT. The
control record itself will not be
processed.

LCESCRIPTIONS OF I/0 SUBROUTINES

The subroutines described in the sections
that follow do not provide a check to
determine validity of parameters (contents
of Accumulator and Index Register 2).
Invalid parameters cause indeterminate
operation of the subroutines.

Subroutines Used by FORTRAN (LM2 System) 73

TIYPEZ - KEYBOARD/CONSOLE PRINTER 1/0
SUBROUT INE

Buffer Size. Maximum of 80 words input,
120 words output.

Keyboard@ Input. The subroutine returns the
carrier and reads up to 80 characters from
the Keyboard and stores them in the 1/0
buffer in EBCLIC format. Upon recognition
of the end-of-field character or reception
of the 80th character, the subroutine
returns control to the user (the remainder
of the buffer is unchanged). Upon
recognition of the erase field character or
the backspace character, the carrier is
returned and the subroutine is
reinitialized for the reentry of the entire
message. Characters are printed by the
Console Printer during Keyboard input.

Console Printer OQOutput. The subroutine
returns the carrier and prints the number
of characters indicated by Index Register 2
from the 1/0 buffer.

Subroutines Required. The following
subroutines are required with TYPEZ:

HOLEZ, GETAD, EBCTB, HOLTB

' WRTYZ - CONSOLE PRINTER OUTPUT SUBROUTINE

HOLEZ, GETAD, EBCTB, HOLTB

PAPTZ - 1134/1055 PAPER TAPE READER PUNCH
1/0 SUBROUTINE

Buffer Size. Maximum of 120 characters.
1134 Paper Tape Input. This subroutine
reads paper tape punched in PTTIC/8 format.
The subroutine reads paper tape until 120
characters have been stored or until a
new-line character is read. 1I1f 120
characters have been stored and a new-line
character has not been read, one more
character, assumed to be a new-line
character, is read from tape. (Celete and
case-shift characters cause nothing to ke
stored.) 1f the first character read is
not a case-shift character, it is assumed
to be a lower case character. Subsequent
reads assume the same case as the last
character read until the case is changed
by another case-shift character. The input
is converted to EBCDIC format.

1055 Paper Tape Output. The contents of
the I1/0 buffer is converted from EBCLIC to
PTTC/8, and the number of characters
indicated by Index Register 2 is punched,
in addition to the required case-shift
characters.

PRNTZ - 1132 PRINTER OUTPUT SUBROUTINE

Buffer Size. Maximum of 120 words.
Operation. This subroutine returns the
carrier and prints the number of characters
indicated by Index Register 2 from the 1I/0
buffer.

Subroutines Required. The following
subroutines are required with WRTYZ:

GETAD, EBCTB

CARDZ - 1442 CARD READ PUNCH I/0 SUBROUTINE

Buffer Size. Maximum of 80 words.

Card Input. This subroutine reads 80
columns from a card and stores the
information in the I,0 buffer in EBCDIC
format.

Card Qutput. This subroutine punches the
number of characters indicated by Index
Register 2 from the 1/0 buffer. Punching
is done in IBM Card Code.

Subroutines_ Required. The following
subroutines are required with CARDZ:

74

Buffer Size. Maximum of 121 characters.
Index Register 2. The value stored in
Index Register 2 must be the mumber of
characters to be printed, plus an
additional character for carriage control.
Up to 120 characters can be printed in any
one operation. 1f PRNTZ is user-called Ly
a L1BF PRNTZ, only an even number of
characters are printed. To print an odd
number of characters add one additional
blank.

The carriage of the 1132 Printer is
controlled prior to the printing of a line.
The following is a list of the carriage
control characters and their related
functions:

/00F1 sSkip to channel 1 prior to
printing

/00F0 Double space prior to printing
/004E No skip or space prior to printing
Any other character - Single space prior
to printing.

Channel 12 Control. If a punch in channel
12 is encountered while a line is being
printed, a skip-to-channel-1 is taken prior
to the printing of the next line provided
the next function is not S004E (no skip or
space prior to printing).

ﬁ”W§

”mﬁﬁ

~

PNCHZ - 1442 OUTPUT SUBROUTINE

Buffer Size. Maximum of 80 words.

Card Output. This subroutine punches from
the I/0 buffer the number of characters

indicated in the location preceding the
buffer. Punching is done in IBM Card Code.

Subroutines Required. The following
subroutines are required with PNCHZ:

HOLEZ, GETAD, EBCTB, HOLTB

READZ - 2501 INPUT SUBROUTINE

Buffer Size. Maximum of 80 words.

Card Input. This subroutine reads 80
columns from a card and stores the
information in the 1,0 buffer in EBCDIC
format.

Subroutines Required. The following
subroutines are required with READZ:

HOLEZ, GETAD, EBCTB, HOLTB

PRNZ - 1403 PRINTER SUBROUTINE

Buffer Size. Must be 121 words.

Index Register 2. .The first character in
the I/0 buffer is the carriage control
character, followed by up to 120 characters
to be printed. If less than 120 characters
are to be printed, the remainder of the
buffer must be cleared to blanks before
PRNZ is called. A value of 1 in Index
Register 2 indicates that the I/0 buffer
contains only a carriage control

character. A value of greater than 1 in
Index Register 2 indicates that a line

is to be printed. -

The carriage is controlled prior to the
printing of a line; no "after-print"”
carriage control is performed. The
following is a list of the carriage control
characters and their related functions:

/00F1 Skip to channel 1 prior to
printing

/00F0 Double space prior to printing
/00UE No skip or space prior to printing
Any other character - Single space prior
to printing.

Channel 12 Control. If a punch in channel
12 is encountered while a line is being
printed, a skip to channel 1 is executed
prior to printing the next line provided
the next function is not /004E (no skip or
space prior to printing).

Subroutines Used by FORTRAN {(DM2 System) 75

Data Code Conversion Subroutines

The basic unit of information within the
1130 computing system is the 16-bit binary
word. This information can be interpreted
in a variety of ways, depending on the
circumstances. For example, in internal
computer operations, words may be
interpreted as instructions, as addresses,
as binary integers, or as real (floating
point) numbers (see "Arithmetic and
Functional Subroutines®).

A variety of data codes exists for the
following reasons:

1. The programmer needs a compact
notation to represent externally the
bit configuration of each computer
word. This representation is provided
in the hexadecimal notation.

2. A code is required for representing
alphameric (mixed alphabetic and
numeric) data within the computer.
This code is provided by the Extended
Binary Coded Decimal Interchange Code
(EBCDIC) .

3. The design and operation of the
input/output devices is such that many
of them impose a unique correspondence
between character representations in
the external medium and the associated
bit configurations within the @ -
computer. Subroutines are needed to
convert input data from these devices
to a form on which the computer can
operate and to prepare computed
results for output on the devices.

This and following sections of the
manual describe the data codes used and the
subroutines provided for converting data
representations among these codes.

A detailed description of the binary,
hexadecimal, and decimal number systems is

contained in the publication, IBM Number
Systems, FC20-1618.

Descriptions of Data Codes

In addition to the internal 16-bit binary
representation, the conversion subroutines
handle the following codes:

) Hexadecimal Notation.

L] IBM Card Code.

76

o Perforated Tape and Transmission Code
(PTTC/8) -

. Console Printer (1053) Code.
] 1403 Printer Code (DM2 System only).

. Extended Binary Coded Decimal
Interchange Code (EBCDIC).

A list of these codes is contained in
Appendix D.

HEXADECIMAL NOTATION

Although binary numbers facilitate the
operations of computers, they are awkward
for the programmer to handle. A long
string of 1's and 0's cannot be effectively
transmitted from one individual to another.
For this reason, the hexadecimal number
system is often used as a shorthand method
of communicating binary numbers. Bécause
of the simple relationship of hexadecimal
to binary, numbers can easily be converted
from one system to another.

In hexadecimal notation a single digit
is used to represent a 4-bit binary value
as shown in Figure 18. Thus, a 16-bit word
in the 1130 System can be expressed as four
hexadecimal digits. For example, the
binary value

1101001110111011

can be separated into four sections as
follows:

Binary 1101 0011 1011 1011
Hexadecimal D 3 B B

Another advantage of hexadecimal
notation is that fewer positions are
required for output data printed, punched
in cards, or punched in paper tape. In the
example above, only four card columns are
required to represent a 16-bit binary word.

—

BINARY DECIMAL HEXADECIMAL

— . —

0000
0001
0010
0011
0100
0101
0110
| 0111
1000
1001
10 10
[1011
1100
1101
1110
1111

- b amd wd wd b)
NMEWN=SOWVWOINOANLEWN O
HMEHUODPOONANEWN=O

o

Figure 18. Hexadecimal Notation

IBM CARD CODE

I1BM Card Code can be useld as an
input/output code with the 1442 Card Read
Punch, 1442 Card Punch, and 2501 Card
Reader, and as an input code on the
Keyboard.

This code defines a character by a
combination of punches in a card column.
Card code data is taken from or placed into
the leftmost twelve bits of a computer word
as shown below:

89 -« - - =
1011 12 13 14 15

Card Row 12 1

101234567

ComputerWord 0 1 2 34567829
For example, a plus sign, which has a

card code of 12, 6, 8, is placed into core

storage in the binary configuration
illustrated in the following diagrams:

Binary Word

Card Code 1000000010100000

/o

dg000000
[(RERERNE]
18111118

12222222
33333333
g
55555555
ss6666eff
IRRRRRREI
[EXTTIT |
HEHH

N

PERFORATED TAPE AND TRANSMISSION CODE
(PTTC/8)

The PTTC/8 code is an 8-bit code used with
IBM 1134/1055 Paper Tape units. This code
represents a character by a stop position,
a check position, and six positions
representing the 6-bit code, Ba8421.
PTTC/8 characters can be packed two per
computer word as shown below:

st 2nd
Ve A N\ 7 A ~
SBACSB421 SBACESEA4 21

PTTC/8 Characters

Computer Word LO 12 3 456 7 8 9 1011121314 IS—I

The graphic character is defined by a
combination of binary code and case; a
control character is defined by a binary
code and has the same meaning in upper or
lower case. This implies that upper and
lower case characters must appear in a
PTTC/8 message wherever necessary to
establish or change the case.

The binary and PTTC/8 codes for 1/ (lower
case) and =? (upper case) are shown in
Figure 19.

The delete and stop characters have a
special meaning (in check mode only) when.
encountered by the paper tape subroutines.

Binary Word
0000000100110001
[
s
B
A
C
8
4
2
1] x
5
B
AlX
c|x
8
4
2
11X
Figure 19. PTTC/8 Code for the Characters

1/ (if lower case) or the
Characters =? (if upper case)

CONSOLE PRINTER CODE

The Console Printer uses an 8-bit code that
can be packed two characters per 16-bit
word.

The following control characters have

special meanings when used with the Console
Printer.

Data Code Conversion Subroutines 77

Character Control Operation

HT Tabulate

RES Shift to black ribbon

NL ‘Carrier return to new line

BS Backspace B

LF Line feed without carrier
return

RS Shift to red ribbon-

EXTENDED BINARY CODED DECIMAL INTERCHANGE
CODE (EBCDIC)

EBCDIC is the standard code for internal
representation of alphameric and special
characters and for the 1132 Printer. This
code uses eight binary bits for each
character, thus making it possible to store
either one or two characters in a 16-bit
word. Combinations of the eight bits allow
256 possible cojes. (At present, not all
of these combinations represent ’
characters.) The complete EBCDIC code is
listed in Appendix D. .

For reasons of efficiency, most of the
conversion subroutines 3o not recognize all
256 codes. The asterisked codes in
Apperdix D constitute ths subset recognized
by most of the conversion subroutines.

1403 PRINTER CODE

The 1403 Printer uses a 6-bit binary code
with one parity bit. Data format is two
7-bit characters per word, as follows:

Bit 0123456789101]121314.15

Value|* P 32168 4 2 1|* P 32168 4 2 1

st data character 2nd data character

* = Not Used
P = Parity Bit

Parity bits are not assigned by the
hardware. The conversion subroutine must
assign the parity bits and arrange the
characters in the form in which they are to
be printed.

Conversion Subroutines

These subroutines convert data to and from
16~-bit binary words and 1/0 device codes.

BINDC Binary value to 1IBM Card Code
decimal value.
DCBIN IBM Card Code decimal value to

binary value.

78

BINHX Binary value to IBM Caxd Code
hexadecimal value.

HXBIN 1IBM Card Code hexadecimal value to
binary value.

HOLEB I1BM Card Code subset to EBCDIC

: subset; EBCDIC subset to IBM Card

Code subset.

SPEED IBM Card Code characters to EBCDIC;
EBCDIC to IBM Card (ode characters.

PAPEB PTTC/8 subset to EBCDIC subset;
EBCDIC subset to PITC/8 subset.

PAPHL PTTC/8 subset to 1BM Card Code
subset; IBM Card Code subset to
PTTC/8 subset.

PAPPR PITC/8 subset to Console Printer or
1403 Printer code.

HOLPR IBM Card Code subset to Console
Printer or 1403 Printer code.

EBPRT EBCDIC subset to Oonsole Printer or.

1403 Printer code.

-The following conversion tables are used
by some of the conversion subroutines.

PRTY Console Printer and 1403 Printer
code.

EBPA EBCDIC and PTITC/8 subsets.

HOLL IBM Card Code subset.

The following conversion subroutines are
used by the DM2 system only.

BIDEC 32-bit binary value to IBM Card
Code decimal value.

DECB1 IBM Card Code decimal value to
32-bit binary value.

21 PCO Supplement to all standard

conversions except those involving
PTTC/8.

The first four listed subroutines and
the DM2 subroutines BIDEC -and DECBI change
numeric data from its input form to a
binary form, or from a binary form to an
appropriate output data code. The last
eight (including ZIPCO) convert entire
messages, one character at a time, from one
input/output code to another. The types of
conversions accomplished by these
subroutines are illustrated in Fiqure 20.

Except where specified, these
subroutines do not alter the Accumulator,
Extension, Carry and Overflow indicators,
or any index register.

AWM%

CONVERTED TO

IBM Card
Code
(Subset)

CONVERTED
FROM

PTTC/8
(Subset)

IBM Card
Code (256)

EBCDIC

Binary (256)

1132 Printer

EBCDIC
(Subset)

Decimal
Equivalent
(Card Code)

Hex
Equivalent
(Card Code)

Console
Printer

1403
Printer Code

Binary

BINDC

BINHX BIDEC

IBM Card
Code (256)

SPEED
ZIPCO*

Z|IPCO* ZIPCO*

IBM Card

Code (Subset) PAPHL

HOLEB

HOLPR HOLPR

PTTC/8

(Subset) PAPHL

PAPEB

PAPPR PAPPR

EBCDIC

(256) SPEED

ZIPCO* ZIPCO*

EBCDIC
(Subset)
1132 Printer

HOLEB PAPEB

EBPRT EBPRT

Hex .
Equivalent HXBIN
(Card Code)

PAPHL

HOLEB

HOLPR HOLPR

Decimal
Equivalent
(Card Code)

DCBIN

DECEI PAPHL

HOLEB

HOLPR HOLPR

1403

Printer Code Zlpco*

ZIPCO*

ZIPCO*

Console

Printer Code_ ZIpCO*

ZiPCO*

ZIPCO*

* In conjunction with appropriate conversion table.

Figure 20. Types of Conversion

Note 1. All mention of 1403 Printer Code
applies to the DM2 system only.
Note 2. The conversion subroutines and

conversion tables for the
Communications Adapter are
described in the publication IBM
1130 Synchronous Communications
Adapter Subroutines. The
subroutines are EBC48, HOL48, and
HXCV. The adapter subroutine
conversion table is STRTB.

Error Checking

All code conversion subroutines (except
SPEED and ZIPCO) accept only the codes
marked with an asterisk in Appendix D. An
input character that does not conform to a
specified code is an error.

BINHX and BINDC subroutines do not
detect errors. HXBIN ani DCBIN terminate
conversion at the point of error detection;
they do not replace the character in error.
The contents of the Accumulator are
meaningless when conversion is terminated
because of an error.

The remainder of the conversion
subroutines replace the character in error
with a space character, stored in the
output area in output code. C(onversion is
not terminated when an error is detected.

When a conversion subroutine detects an
error it turns the Carry indicator off and
turns the Overflow indicator on before
returning control to the user. Otherwise,
the settings of the Carry and Overflow
indicators are not changed by the
conversion subroutines.

BINDC

This subroutine converts a 16-bit binary
value to its decimal equivalent in five IBM
Card Code numeric characters and one sign
character. The five characters and the
sign are placed in six computer words as
illustrated below.

Data Code Conversion Subroutines 79

Conversion Bits in Core Storage

I/O Llocations | . Data |O-=e — 15
Accumulator +01538 {0000 0110 0000 0010
OUTPT + 1000 0000 1010
OUTPT + 1 0 0010 0000 0000
OUTPT + 2 1 0001 0000 0000
OUTPT + 3 5 0000 0001 0000
OUTPT + 4 3 0000 0100 0OO0O
OUTPT + 5 8 0000 0000 0010
Calling Sequence

Label Operation FIT Oparands & Remarks
21 25 27 30 32|33 35 40 43 50

| Y T | |I|B.F I‘l'D‘(.'lllll|llllll
W T Y T .C. 1 OIU.T.P.T. A 1t 1t 3) & 4 4.0 3
P T T | .lll ‘Illll'lllll|lll'l|
0U|7.AP|T FISISI ﬁl | I S N T I TR S T N T N B N)

Input

Input is a 16-bit binary value in the
Accumula tor.

Output

Output is an IBM Card Code sign character
(plus or minus) in location OUTPT, and five
IBM Card Code numeric characters in OUTPT +1
through OUTPT+S.

Errors Detected

The BINDC subroutine does not detect
errors.

DCBIN

This subroutine converts a decimal value in
five 1BM Caxrd Code numeric characters and a
sign character to a 16-bit binary word.
The conversion is the opposite of the BINDC
subroutine conversion.

80

Calling Sequence

Label Operation F{T Operands & Remarks

21 25 . 30 32133)]33 40 45 50
L4 1 1 IxBlF JC.BI:NA § S TN T R VU Y NUUEE T VR T WY
T S T 1 |C| L nN.P.U.‘T. | U T T T T N S T T Y
I | b bt TN VST YT ST VO WO S S T N SN N W 2N
LN.P.U.T ES.S. Fl SN T N TN Y T O TS O O S 1 1
B L3 : | IR Y SN YN N T TV N TR TN T SN N NN N
Input

Input is an IBM Card Code sign character in
location INPUT and five IEM Card Code
decimal characters in INPUT+1 through
INPUT+S.

Output

OQutput is a 16-bit binary value displayed
in- the Accumulator.

Errors Detected

Any sign other than an 1BM Cird Code plus,
ampersand, space, or minus, or any decimal
digits other than a space or 0 through 9 is
an error. Any converted value greater than
+32767 or less than -32768 is an error.

BINHX

This subroutine converts a 16-bit binary
word into hexadecimal notation in four IBM
Card Code characters as illustrated below.

Bits in Core Storage
1/O Locations | Conversion Data | 0 -——————esmt-15
Accumulator AS59E
OUTPT A
QUTPT +1 5
OUTPT +2 9
OUTPT +3 E

Calling_Segquence

Lawel Opeeation (R Operands & Kemarks
. «

At L LIBE VUSRI T Wi
[T C. [ITVR AN S R S N A IR S W
[t S bt ST URS T Y W HOY RS SO W0 S0 W S T W |

oV T.AP.T| |185.S, B O T I TP GRS E S S S S TS B
s o b doa J SO S U R NV T S N TN WOV SN S S N N S S S |

Input

Input is a 16-bit binary word in the
Accumulator.

Qutput

Output is four IBM Card Code hexadecimal
digits in location QUTPT through OUTPT+3.

Errors Detected

The BINHX subroutine does not detect
errors.

HXBIN

This subroutine converts four IBM Card Code
hexadecimal characters into one 16-bit
binary word. The conversion is the
opposite of the BINHX subroutine conversion
illustrated above.

Calling Sequence

Lo € perotios [N Operands & Remurks
“
s] IBE] L WXBIMN: 1 v a0y 4
foaa LREC L WNPLLT L v vy ey
FRRSRTRRSTS N PSP S) , 00 U U U W TR T Y S S RS SO B O
I,A'VAPAU.J{ ,EA:SJSA - i - 4! B LT s SN VRIS DU SO (s WS N WO B RN
[R T IR S RN S S SO TV U AT T VS S W WY S U ST

Lnput

Input is four IBM Card Code hexadecimal
digits in INPUT through INPUT+3.

Output

Output is a 16-bit binary word in the
Accumulator.

Errors Detected

Any input character other than an IEM Card
Code 0 through 9 or A through F is an
error.

HOLEB

This subroutine converts 1BM Card Code
subset to the EBCDIC subset or converts the
EBCDIC subset to 1BM Card Code subset.
Code conversion is illustrated below.

Bits in Core Storage

1/O Locations § Conversion Data | 0 ~@———p-15

INPUT 5 1101 0001 1110 0010
OUTPT J 0101 0000 06000
OUTPT + 1 S 0010 1000 0000 '

Calling_Sequence

Lubel Ooerateon LB R | Opecands & Remacks
Loy o L. L. RBF] LES ., ., CALL SUBSET C.ONV ERS.I.OM
ena LIDC 1 RO PARAMETER . i1 .
coanpdpe g L L ENPUT o oy JENPUT AREA JADDRESS, 4 .
coea P L L OWT RGN L L QUTAUTI AREA ADDRESS. 1.
FEREVR B> Y R Lo soiaa o a s e SR
1. *oa Y K SR NN RV N IS NN W N N Sy S IO DO DU T I N S W R U R T § 4 1
Tl U Y R | M TS U U S N1 " PR R W
PO SRR S SRR N SRR A O TR I 1 Tl i1 F 1 1 1
\LNPUT| BSS, 90 a0 JLAPOUT AREA f P
[PV W L I PR | PP I 1 L
s aop 1% Y PRI W Pl U U AP U U AU N U S 2 [
PPN LU B 40 oa 1 1 I P 11 P SR S 1.
ourerl lass R . OBUT.LUT AREA N
SRSFOIUI B PR i A R T R
whe re

e indicates the direction of conversion,

f is the number of characters to be
converted,

Data Code Conversion Subroutines 81

g is the length of the input area. g
must be equal to or greater than f if e
is 0. If e is 1, g must be equal to
£s2, or (£+1)/2 if £ is odd.

h is the length of the output area. If

e is 0, h must be egqual to or greater
than £/2, or (£+1) 2, if f is odd. 1f e
is 1, h must be equal to or greater than
£.

Control: Par ameter ‘

The control parameter consists of four
hexadecimal digits. Digits 1-3 are not
used. The fourth digit specifies the
direction of conversion:

0 - IBM Card Code to EBCDIC
1 - EBCDIC to IBM Card Code

Input

Input is either 1BM Card Code or EBCDIC
characters, (as specified by the control
parameter) starting in location INPUT.
EBCDIC characters must be packed two
characters per binary wori. IBM Card Code
characters are stored one character to each
binary word. '

Output

Output is either IBM Card Code or EBCDIC
characters starting in location OUTPT.
Characters are packed as described above.

I1f the direction of the conversion is
IBM Card Code input to EBCDIC output, the
input area can overlap the output area if
the address INPUT is equal to or greater
than the address OUTPT. If the direction
of the conversion is EBCDIC input to IBM
Card Code output, the input area can
overlap the output area if the address
INPUT+n/2 is equal to or greater than the
address OUTPT+n, where n is the character
count specified. The subroutine starts
processing at location INPUT.

Character Count

This number specifies the number of

characters to be converted; it is not egual
to the number of binary words used for the
EBCDIC characters becausz those characters

82

are packed two per binary word. If an odd
count is specified for EBCDIC output, bits
8 through 15 of the last word in the output
area are not altered.

Errors Detected

Any input character not asterisked in
Appendiva is an error.

SPEED

This subroutine converts 1IBM Card Code to
EBCDIC or EBCDIC to 1IBM Card Code. SPEED
accepts all 256 characters defined in
Appendix D.

If the input is 1IBM Card Code, the
conversion time is much faster than that of
HOLEB because a different conversion method
is used when all 256 EBCDIC characters are
accepted. If the SPEED subroutine is
called before a card reading operation is
completed, the SPEED subroutine
synchronizes with a CARD subroutine read
operation by checking bit 15 of the word to
be processed before converting the word.

If bit 15 is a one, the SPEED subroutine
waits in a loop until the CARDO or CARD1
subroutine sets the bit to a zero.

Note: SPEED should not be used with READO
or READ1 since the 2501 subroutines do not
prestore 1 bits in each word of the I/0
area. Use HOLEB or ZIPCO for 2501
operations.

Calling Sequence

tavet Operation Croerards $ Remorts

o
L LaAdb EBCDIC CONV.ELSTL.ON

I8, S P.EED. 1
L,

dgde, . ., CONT.ROL, PARAMET.ER N
" " Lo NPT, « 0 WJLNPUT, AREA RDODRESS, . . 1 .
i Cos AT o OUT.PUT: AREM ADDRESS. . 1.,
£1 i LCHARACT.ER (COMNT « \ 4 N
5 3 i 1 1
A F SEPRRETUS U N T S Y N S O S R 't [R W VOV WO B e Y L
Akt 4 LTS i b PN W S VA A S N R | 1 it] i A
MNPOT)| |BS.S, L NN INPUT, ALREA 1 2 s
LSYSPREPE B S B S S n PP I TTEN W S $ I
2 [T A Lt
L Y 1 PRSI B PRI R S PSSR T S U A W Lo
WT.PT| 18.S.S L N OUT.PUT AREPS .+ \ 4 o s e s it
: . : ' N o

where

d indicates whether the EBCDIC
characters are packed or unpackel,

e indicates the direction of conversion,

f indicates the character count,
g is the length of the input area,
h is the length of the output area,
g and h are defined as follows:

IBM Card Code to packed EBCDIC

£
£/2, or (£+1) /2, if £ is odd.

v v

g
h
1BM Card Code to unpacked EBCDIC

f
£

g
h

[\

Packed EBCDIC to IBM Card Code

g = fs2, or (£+1)/2, if £ is odd.
h2>¢€

Unpacked EBCDIC to IBM Card Code

v v

g b 4
h f

Control Parameter

This parameter consists of four hexadecimal
digits. Digits 1 and 2 must be zero. The
third digit indicates whether the EBCDIC
code is packed or unpacked.

0 - packed, two EBCDIC characters per
binary word

1 - Unpacked, one EBCDIC character pex
binary word (left-justified)

The fourth digit indicates the direction
of conversion:

0 - 1BM Card Code to EBCDIC
1 - EBCPIC to IBM Card Code

Input

Input is either IBM Card Code or EBCDIC
characters (as specified by the control
parameter) starting in location INPUT.
EBCDIC characters can be packed or
unpacked. IBM Card Code characters are
stored one character to each binary word.

Output

Output is EBCDIC or IBM Card Code
characters starting in location OUTPT.
EBCDIC characters can be packed or
unpacked; IBM Card Code characters are not
packed.

The input area should not overlap the
output area because of restart problems
that can result from card feed errors.

Character Count

This parameter specifies the numker of
EBCLCIC or 1BM Card Code characters to be
converted. If the character count is odd
and the ocutput code is packed EBCDIC, bits
8 through 15 of the last word are
unaltered.

Errors Detected

Any input character code not listed in
Appendix D is an error. All IBM Card Code
punch combinations, except multiple punches
in rows 1-7, are legal.

PAPEB

This subroutine converts PTTC/8 subset to
EBCDIC subset or EBCDIC subset to PTTC/8
subset. PAPEB conversion of FRBCLIC to
PTTC/8 with the initialize case cption
selected is illustrated below.

1/O Locations | Conversion Data 0~ Bits in Core Storugi 15
INPUT Js t101 0001 1110 0010
OUTPT +0 uc J 0000 1110 0101 0001

+1 S DEL 0011 0010 oOIN1 1IN

Data Code Conversion Subroutines 83

Calling Sequence

Lobe | r Uperation LA Operonds & Remorks
. . . . - - . “ »
ra Pz BE PAPESR, « . . CALL BRTLTIC/H_ CONVERSION, .
£ ddde, ., . CONTROL. PARA
PSS WPUT. » v+ LNPUT, AREA ADDRRESS. "
e C . DT PUT, o\ LOUTPILT, ARES ADDRESS: .
i Yo £ s CHARACT.ER (COUNT 4 s
| L i N s s x
. . P SO I N
U S-S 2i 4 2 L1 ' PYR S A W WA U NN U N S S S S [T N W 1 I Y
PUT] |8.SS, EA INPUT, \ARER ¢+ 1 2 v v v v 1y

FEPIE S S S S S S U N S A |

Y
M

n a1 PP S I S RPN P S N
1
P
1

OUTPUT: AREMA (, + .\ 4

J.PT,l&S.S I R
P FUPEPS IS B I PRI EPESI ST EPETS A S A

I
1
I S U ST AT U R SPRTE E
N
1

where

d is the case initialization digit,

e indicates the direction of conversion,
f indicates the character count,

g is the length of the input area. g
must be equal to or greater than £/2 or
(f+1) /2, if £ is odd.

h is the length of the output area. h

must be equal to or greater than £/2 or
(£+1) /2, if £ is odd.

Control Parameter

This parameter consists of four hexadecimal-

digits. Digits 1 and 2 are not used. The
third digit indicates whether or not the
case is to be initialized before conversion
begins:

0 - Initialize case
1 - Do not alter case

The fourth digit indicates the direction
of conversion:

0 - PTTC/8 to EBCDIC
1 - EBCDIC to PTTC/8

Input

Input (either PTTC/8 or EBCDIC characters,
as specified by the control parameter)
starts in location INPUT. Characters are
packed two per 16-bit computer word in both
codes.

84

Output

Output is either EBCDIC or PTTC/8
characters starting in OUTPT. Characters
in either code are in packed format. The
subroutine starts processing at location
INPUT.

1f the output is in EBCDIC, overlap of
the input and output areas is possible if
the address INPUT is equal to or greater
than the address OUTPT.

1f the output is in PTTC/8, cverlap of
the input and output areas is not
recommended because the number of output
characters might be greater than the number
of input characters.

Character Count

This parameter specifies the number of
PTIC/8 or EBCDIC characters in the input
area. The count must include case-shift
characters even though they will not appear
in the output. Because the input is
packed, -the character count will not be
equal to the number of binary words in the
input area. If an odd number of output
characters is produced, bits 8-15 of the
last word used in the output area are set
to a space character if the output is
EBCDIC, or to a delete character if the
output is PTTC/8.

There is no danger of overflowing the
output area if the number of.words in a
PTTC/8 output area is equal to the number
of characters in the input area.

Errors Detected

Any input character that is not marked with
an asterisk in Appendix D is an error.

Subroutine Operation

If the input is in PTTC/8 code, all control
characters (except case-shift (LC or UC)
characters) are converted to output.
Case-shift characters only define the case
mode of the graphic characters that follow.

If the initialize option is selected,
the case is set to lower. All characters
are interpreted as lower case characters
until an upper case shift (UC) character is
encountered. If the do-not-alter option is

selected, the case remains set according to
the last case-shift character encountered
in the previous LIBF message.

If the input is in EBCDIC, all data and
control characters are converted to output.
The user should not specify case shifting
in his input message; this is handled
automatically by the PAPEB subroutine.

Case-shift characters are inserted in a
PTTIC/8 output message where needed to
define certain graphic characters that have
the same binary value anl are
differentiated only by a case-mode
character. For example, the binary value
0101 1011 (5B), is interpreted as a § in
lower case and an ! in upper case (see
Appendix D).

If the initialize option is selected,
the case-shift character needed to
interpret the first graphic character is
inserted in the output message and the case
mode is initialized for that mode. If the
do-not-alter option is selected, the case
mode remains set accoriing to the last
case-shift character required in the
previous LIBF message, i.e., no case shift
is forced.

I1f a case-shift character appears in the
input message, it is output but does not
affect the case mode. If it is an upper
case shift (UC) and the next input
character requires an upper case shift, the
subroutine still inserts an upper case
shift into the message, i.e., two UC
characters will appear in the output
message.

The conversion is halted when the
character count is decremented to zero or
when a new-line (NL) control character is
read.

PAPHL

This subroutine converts PrrC/8 subset to
IBM Card Code subset or IBM Card Code
subset to PTTC/8 subset. The relationship
of the two codes for converting PTTC/8 to
IBM Card Code is illustrated below:

Bits in Core Storage
1/O Locations | Conversion Data| -15
INPUT uc J 0000 1110 0101 000N
S T 0011 0010 0010 001
QUTPT J 0101 0000 0000 Q00O
QUTPT +1 S 0010 1060 0000 0000
OUTPT +2 T 0010 0100 0000 0000

Calling sequence

Lobel Opu-mon[FlT Operonds 8 Remarky
» sl |» el falu] s © o M “ - -
I.8. PAPHL o\ 1 CALL, TAMCC CONVERS.IOB
DC
—~ C WMPUT o G LMPUAT, JARES ADDRESS: | 1
oS (WA TPALT: OUTRT AREA ADDRBESS: i 1
L €1 1 L CHARJLTER (LOUMYT 3 44 11 -~
Ad 1. Y i FE S i A
LI L s PRV TS T N N ST I S NS AT T T SV U B B A R Y s
i1 1 LTS P UNE W ST T ST U0 A VA N SN VU VU S N TN T TN S N NN S NG T P S B S S 'y
ANPOT IRSS, 9, i DMPUT AREA (| vt s
P) i i PRRTURD T U R S T 0 T T S N) PUT N Y a—l A
* 1 I 'l I T TV S T U S N T 1 I D 1 1 . W
Y hJ n n A A PYES VA EES WA S S R R W A PEND NP T VA T U S R
LU TO, 5.5, N it COUTPUT ARER , v 2 o o 1 11
PN A T U A R e r
where

d is the case initialization digit,
e indicates the direction of conversion,
f indicates the character count,

g is the length of the input area. g
mist be equal to or greater than f if e
is 0. If e is 1, g must be equal to
£r2, or (£+1) /2 if £ is odd.

h is the length of the output area. 1f
e is 0, h must be equal to or greater
than £/2, or (£+1) /2, if £ is odd. 1If e
is 1, h must be equal to or greater than
f.

Control Parameter

This parameter consists of four hexadecimal
digits. Digits 1 and 2 are not used. ‘The
third digit indicates whether or not the
case is to be initialized before conversion
begins:

0 - Initialize case
1 - Do not alter case

Data Code Conversion Subroutines 85

The fourth digit indicates the type of
conversion:

0 - PTTC/8 to IBM Card Code
1 - IBM Card Code to PTTC/8

Input

Input is either PTTC/8 or IBM Card Code
characters (as specified by the control
parameter) starting in location INPUT.
PTTC/8 characters are packed two per binary
word; IBM Card Code characters are not
packed.

Output

Output is either IBM Card Code or PTTC/8
code characters starting in location OUTPT.
PTIC/8 codes are packed two per binary
word; IBM Card Code characters are not
packed.

1f the conversion is 1BM Card Code input
to PTTC/8 output, the input area may
overlap the output area if the address
INPUT is egual to or greater than the
address OUTPT. Case-shift characters are
inserted in the output message where needed
to define certain graphic characters (see
*PAPEB") .

If the conversion is PITC/8 input-to 1M
Card Code output, the input area may
overlap the output area if the address
INPUT+n/2 is equal to or greater than the
address OUTPT+n, where n is the character
count. The subroutine starts processing at
location 1INPUT.

Character Count

This parameter specifies the number of
PTIC/8 or EBCDIC characters in the input
area. The count mast include case-shift
characters, even though they will not
appear in the ocutput. Because the input
may be packed, the character count may not
be equal to the number of binary words in
the input area.

There is no danger of overflowing the
output area if the number of words in the
output area is equal to the number of
characters in the input area.

86

Errors Detected

Any input character not marked by an
asterisk in Appendix D is an error.

Subroutine Operation

Case- and shift-character handlmg is
described under “"PAPEB".

If an odd number of PTIC/8 output
characters is produced, bits 8-15 of the
last used word in the output area are set
to a delete character.

The conversion is halted when the
character count is decremented to zero or
when a new-line (L) control character is
read.

PAPPR

This subroutine converts PITC/8 subset to
either Console Printer or 1403 Printer
code.. .The conversion to 1403 Printer code
is illustrated below:

1/0 Conversion | Bits in Core Storage
Locations Data 0 15

INPUT ucC J | 0000 1110 0101 0001
INPUT +1 LC $ | 0110 1110 0101 1011

OUTPT J $ | 0101 1000 0110 0010

Calling Sequence

Lobe) Operution F %LL Operands & Remarks

sl [s ol [u]a| [s © s M . - o
I.BE] ALLR .\ CALL PTIC/, B CONVERSLoM.
S Yo BEde ., CONMTROL, PARAMET.ER + .\ 1 1 i
. TALHT: + o LANPUT, BREA RDDORESS: « 1 4
Dy OUTLT, « s . OUBTAUTI AREA ARDRESS, 1 1 1+
Vel £ a1 e OHARACITER \COUWMMTI ¢ 1 2 2 23
s

I . P 38 I I I PRPRY B B S A MU S T T B S S S S L

PN LY I WU H ST T S S A S Y PRRPS ST SA W WO N T T VI A L

NPT AT

Ay S 1 PURPEED SIS W EPUN AU TN S S S S0 T WP SPUE S STINY N S N S S T W't

WMAT.PT| 18S.S | Y

where
4 is the case initialization digit,
e is the output printer code digit,

f is the number of characters in the
input area to be conwverted,

g is the length of the input area. g
must be equal to or greater than £/2 if
the character count is even, (£+1) /2 if
the character count is odd.

h is the length of the output area. h
must be equal to or greater than £/2,
minus the number of paper tape control
characters in the input area, plus 1 if
the result is odd.

Control Parameter

This parameter consists of four hexadecimal
digits. Digits 1 and 2 are not used. The
third digit indicates whether or not the
case is to be initialized before conversion
begins: ’

0 - Initialize case
1 - Do not alter case

" The fourth digit determines the output

printer code.

0 - Console Printer code
1 - 1403 Printer code

Input

Input consists of PTTC/8 characters
starting in location INPUT. PTTC/8
characters are packed two per binary word.
All control characters except case-shift
(IC or UC) characters are converted to
output. Case-shift characters are used
only to define the case mode of the graphic
characters that follow.

Output

Output consists of either Console Printer
or 1403 Printer characters starting in
location OUTPT. This code is packed two
characters per binary word. If overlap of
the input and output areas is desired, the
address INPUT must be equal to or greater
than the address OUTPT. This is necessary
because the subroutine starts processing at
location INPUT.

Character Count

This parameter specifies the number of
PTTC/8 characters in the input area. The
count must include case-shift characters,
even though they do not appear in the
output. Because the input is packed, the
character count is not equal to the number
of binary words in the input area.

If an odd number of output characters is
produced, bits 8-15 of the last used word
in the output area are set to a space
character.

The conversion is halted when the
character count is decremented to zero or
when a new-line (NL) control character is
read.

Errors Detected

Any input character not marked by an
asterisk in Appendix D is an error.

HOLPR

This subroutine converts IBM Card Code
subset to either Console Printer or 1403
Printer code. The conversion to 1403
Printer code is illustrated below.

1/0 Conversion | Bits in Core Storage
Locations Data 0 -5
INPUT J 0101 0000 0000 0000
INPUT +1 ’ 0010 0100 0010 0000
OUTPT J, 0101 1000 0001 0110

Calling Sequence

1.H ».‘wff Cerans & bemores
; - : :
boo o | AEBFLL I HOLPR v ov o Oddd, CARD, CODE, L.ONYERSIOM
P boe L vddde s L CONTROW. PARAMETER o s ..
H b RC LG, . INPUT. 1 .. . LNPUT, AREA JADDRESS. .4 . - .
DE L., DUTAT. o .. . QUTPYUT AREA ADDRESS. .« - . .
DEC ., L, Fioo. . . CHARACTER COMME s e oo,
e e ‘:l: ' R S Y SN RV SR SR
e e e Far 1
I ; [} I
UNPuT,g;s.L..:P. \
e e s s f l .
Lt JUSEN I 1 P TR I DU SR SO
N [U N S SR DU S
Fur?r BSS Lo, i o OUTPAUD AREA e
RN RRE T S S R P S

Data Code (onversion Subroutines 87

where
e is the output printer code digit,

f is the number of characters in the
input area to be converted,

g is the length of the input area. g
must be equal to or greater than f.

"h is the length of the cutput area. h
must be equal to or greater than f/2.

Control Parameter

This parameter consists of four hexadecimal
digits. Digits 1-3 are not used. The
fourth digit determines the output printer
code.

0 - Console Printer code
1 - 1403 Printer coie

Input

Input consists of IBM Card Code characters,
starting in location INPUT. The characters
are not packed.

Output

Output consists of either Console Printer
or 1403 Printer characters, starting in
location OUTPT. The code is packed two
char acters per binary word.

The input area may overlap the output
area if the address INPUT is equal to or
greater than the address OUTPT. The
subroutine starts processing at location
INPUT.

Character Count

This number specifies the number of IBM
Card Code characters to be converted and is
equal to the number of words in the input
area. If an odd count is specified, bits
8-15 of the last word used in the output
area are not altered.

88

Exrrors Detected

Any input character not marked with an
asterisk in Appendix D is an error.

EBPRT

This subroutine converts EBCDIC subset to
either Console Printer or 1403 Printer
Code. The conversion to 1403 Printer code
is shown below.

i/0 Conversion Core Storage Bits
Locations Data 0 ———=15
INPUT LE 1101 0011 1100 Q101
INPUT +1 ES 1100 0101 1110 0O10
OUTPUT LE 0001 1010 0110 1000
OUTPT +1 ES 0110 1000 GOCO 1101

Calling_Sequence

Lovet Cocicrin | 105 1l] Cperanas § bemarer

L IBE L;_mzm._wumu
DL 1 P spdde. | COMNTROL, PARAMET.ELR .

De L ILANPIAT. L LAMPIULT ARER ARCRESS., & .+ .
pe . | owrer. ... OUTALT AREA ADDRESS. .
L. Tf! et e N ARACT.ER CMIMNT v .

PR S S S I W SV U LU SO iad

~d Lot 1

N LI " i PP SN EP SRSt 1
LN PUT| |BSS, o . DNPWUT AREA 4 s b1
iy L I

2 PSR | 1 I L

i L L 1. i Lol aoad

I
X

A PRI 1 Fay 1
N i

N Ll PR S L
‘Q.H.LEJ:__PSS th I OUT.PUT AREA P
PR " ds i [N TP T P S

where

e is the output printer code digit,

f is the number of characters in the
input area to be converted,

g is the length of the input area. g
must be equal to or greater than f/2.

h is the length of the output area. h
must be equal to or greater than f/2.

Control Parameter

This parameter consists of four hexadecimal
digits. Digits 1-3 are not used. The
fourth digit determines the output printer
code.

0 - Console Printer code
1 - 1403 Printer code

Input

Input consists of EBCDIC characters
starting in location INPUT. EBCDIC
characters are packed two per word.

Cutput

Output consists of either Console Printer
or 1403 Printex code starting in location
OUTPT. The code is packed two characters
per binary word.

The address INPUT must be egqual to or
greater than the address OUTPT if overlap
of the input ani output areas is desired.
The subroutine starts processing at
location INPUT.

Character Count

-

This parameter specifies the number of
EBCDIC characters to be converted. This
count is not equal to the number of words
in the input area. If an odd count is
specified, bits 8-15 of the last word used
in the output area are not altered;
however, these bits may cause print checks
if they comprise an illegal character.

Exrors Detected

Any input character not marked with an
asterisk in Appendix D is an error.

BIDEC

This subroutine converts a 32-bit binary
value to its decimal equivalent in ten IBM
Card Code numeric characters and one sign
character. The conversion is illustrated
below:

1/O Conversion

- Core Storage Bits
Locations Data

Q0 o—————————— |5

0000 0001 0000 0000

Accumulator

+0016777218
Extension 0000 0000 0000 0010
1/0 Conversion Core Storage Bits
Locations Data 0 15
OUTPT + 16060 G000 1010 0000
OUTPT +1 0 0010 0000 0000 0000
OUTPT +2 0 0010 0000 0000 0000
QUTPT +3) 0001 0000 0000 0000
QUTPT +4 6 0000 0000 1000 0CC0
OUTPT +5 7 0000 0000 0100 0000
OUTPT +6 7 0000 0000 0100 0000
OUTPT +7 7 0000 0000 0100 0000
OUTPT +8 2 0000 1000 0000 0000
OUTPT+9 1 0001 0000 0000 0000
OUTPT +10 8 0000 0000 0010 0000

Calling Sequence

Lavel Oseration Pl Operands & Remarky
LAF] BIDEC, . il L, AINARY: C.ONVERST .M.
—t C. T PUNT L SAUT PUT AREA, ADORESS. « 4.
................... L
. T L s
o R 1 N S A A SR A S S .
W.T.P.T| |A.S.S, 11, OUT PUT ARES (1 1 s)
A I N I O I N P SN S S S L aa s)

Input

'Input is a 32-bit binary value in the

Accumulator and Extension.

Output

Output is an IBM Card Code sign character
(+ or -) in location OUTPT, and ten IBM
Card Code numeric characters in OUTPT+1
through OUTPT+10.

Data Code Conversion Subroutines 89

Errors Detected

The BIDEC subroutine does not detect
errors.

DECBI

This subroutine converts a decimal value
consgisting of ten IBM Card Code numeric
characters and a sign character to a 32-bit
binary word. This subroutine is the
opposite of the BIDEC subroutine (see
above) except that fewer than ten
characters may be specified.

Calling Seguence

Lobe! Operotion | e I Oparonds & Remarks
x| ulof ls " o M » - “
LI lpEcAzr. ChLs. DECTMAL, LONNERSTON
AP .7 MBUT, o TNPLAT. AREA ADDRESS s 1 i

. LY A MORLD:, LOUMT. ADDRESS. + o 1 11
. Al

] A4 toa b 81 U S SO W B S S S A Y S SR S Y

L

DOCANT] Vad

.....

i n LI A1 A i P i

PR LTIy i n i 1 i
I.Al.Purr'gs'e NN TP T
P Y n e i 4.2 4 B PSS W N S N A T SN G T SN U N N NON R N N A b by

where

a is the number of characters to be
converted not including the sign
character,

b is the length of the input area. b
must be equal to at least a plus 1. '

Input

Input is an IBM Card Code sign character in
location INPUT, the adiress (WDCNT) of the
number of characters (1 to 10) to be
converted, and specified number of
characters in IBM Card Code in locations
INPUT+1 through INPUT+N (where N = 1,
2,...10).

Output

Output is a 32-bit binary word, containing
the converted value, in the Accumulator and
Extension.

80

Errors Detected

Any of the following conditions causes the
Overflow indicator to be turned on, the
Carry indicator to be turned off, and an
immediate exit to be made back to the
caller:

1. Any sign other than a plus, minus,
blank, or ampersand.

2. Any character other than a space or 0
through 9.

3. Any converted value greater than
+2,147,483,647 or less than
~-2,147,u83,648,

21PO

This subroutine supplements all standard
conversions except those involving PTTC/8
code. It offers the user the option of
supplying his own conversion tables and
codes. 2IPCO uses direct table access and
is considerably faster than the other
conversion subroutines.

Calling Sequence

Label Oparation | [£ '_u Opsronds & Remarka
n w] |- s L) Ja < s s .
M I.8.£]
ILJ s Y oY bhode o o, COMT R, PARAMETER . . 1 .
" C -NPM&M&M_WJ_._LJ__L
. ne . WTPT, 4 D-MTHUTJEABA_‘MSB‘_;_._.L
P .
" A LL ¥ T U A S A T U U I W R SR £ty 2
iy " N PSR SR S S "
P L 1 T P) 1 L
Lo I T 'l I ST D N T T 'Y H 1 1
ILALPUT! I8SS, - ..t.mp.u-r AREA 1 N
PR i N s 1 RV B R N A AT S N P
PSSt s (] 14] I ST T S W 1 1 i L I .t
At L St | I WO T W S S T T S T T T S 1) VT S T N [TS T | i
'D_.H_.LE.I_F:S.S. DUTPUT: RRBEA + o 2 1
111) —td | S S VO W TS S T T S N U S T VA 1) I 1 i]

where
b is the input code digit,
c is the packed-input digit,
d is the output code digit,
e is the packed output digit,

f is the number of characters to be
converted,

g is the length of the input area,

h is the length of the output area,

j is the name of the conversion table to
be used. This CALL is not executed;
however, it is required following the
character count parameter to cause the
loading of the desired conversion. table,
provide the address of that table to
21PCO, and provide information required
by 21PCO for the return to the calling
program. .

Control Parameter

This parameter consists of four hexadecimal
digits as follows: :

1 for 12-bit IBM Card Code
input

Digit 1
@ for all other types of input
1 for unpacked input

Digit 2
0 for packed input
1 for 12-bit IBM Card Code
output

Digit 3
0 for 8-bit IBM Card Code and
Fll other types of output
1 for unpacked output

bigit 4
0 for packed output

Input

Input consists of packed or unpacked
characters in the code specified by the
conversion table and starting at location
INPUT.

Out put

Output consists of packed or unpacked
characters in the code specified by the
conversion takle and starting at location
OUTPT.

Character Count

This parameter specifies the number of
input characters to be converted. 1f an
odd count is specified with packed input;
bits 8-15 of the last word used in the
output area are not altered.

Table

The type of conversion is determined by the
table called with ZIPCO. The user may call
one of the IBM-supplied conversion tables
or he may supply his own.

The following IBM-supplied System
Library tables may be called with ZIPCO.

EBCCP - EBCDIC to Console Printer Code.

EBHOL - EBCDIC to 1IBM Card Code.

EBPT3 - EBCDIC to 1403 Printer code.

CPEBC - Console Printer code to EBCLCIC.

CPHOL - Console Printer code to IBM Card
Code.

CPPT3 - Console Printer code to 1403
Printer code.

HLEBC - IBM Card Code to EBCDIC.

HOLCP - 1IBM Card Code to Console Printer

code.

HLPT3 - IBM Card Code to 1403 Printer
code.

PT3EB - 1403 Printer code to EBCCIC.

PT3CP - 1403 Printer code to Console
Printer Code.

PTHOL - 1403 Printer code to IBM Card
Code.

Each conversion table consists of 256
characters-- 128 words with two 8-kit
characters per word. The seven low-order
bits of the character to be converted
(input character) are used as an address.
The address designates the position in the
table of the corresponding conversion
character. The high-order bit (kit 0) of
the input character designates which half
of the table word is to be used. When kit
0 is 1, the left half of the word is used.
When bit 0 is 0, the right half of the word
is used. All Qummy entries of the
IBEM-supplied tables contain the code for a
blank.

The following is an example of the
conversion performed by Z1PCO. The tables
show (1) the input EBCDIC values, (2) the
table EBPT3 used for the conversion, and
(3) the output characters in 1403 Printer
code.

Data Code Conversion Subroutines 91

Input Location

Value

INPUT 1111 0010 0111 0010
INPUT+1 | 0000 00CO 1000 0000
INPUT+2 | OTEI 1110 1111 11
Table Location) Value
EBPT3 0111 1111 O111 1N
EBPT3+1 0111 1111 0111 1IN
EBPT3+114 { CO00 0001 0111 1111
EBPT3+127 | 0111 1111 0111 1111
1403 Print
Output Location Value Character
OUTPT 0000 0001 0111 11N 2, b
QUTPT+1 JO111 1111 O111 1111 b, b
QUTPT+2 | 0111 1111 0111 1IN b, b

When 12-bit IBM Card Code is specified
as input (or output), ZIPCO performs a
packing (or unpacking) of the character to
The 1-7 row punches

8-bits (or

12 bits).

EBCOIC TO 1403 CONV TABLE FOR ZIPCO

ADDR REL OBJECT ST.NO.

0000 050978F3
0000 0 7F7F
0001 0 7F7F
0002 0 7F7F
0003 0 7FIF
0004 0 7F7F
0005 0 7F7F
0006 0 7F7F
0007 0 7F7F
0008 0 7F7F
. .

. .
.)
0072 0 O17F
0073 0 027F
0074 0 437F
0075 0 047F
0076- 0 457F
0077 0 467F
0078 0 O77F
0079 ¢ ,087F
007A 0 7F7F
0078 0 7F7F
007C 0 7F7F
0070 0 7F0B
007E 0 7F4A
007F 0 7F7F

0020 ENT
002) EBPT3 BC
0022 pc
0023 e
0024 pC
0025 [[4
0026 pc
0027 e
0028 il
0029 Dc
. .
-]
.]
0135 BC
0136 ¢
0137 neC
0138 13
0139 iy
0140 oc
0141 nC
0142 e
0143 oc
0144 C
0145 [i13
0146 DC
0147 1
0148 (1%
0149 ERD

LABEL OPCD FT OPERANDS

EBPTA

il NG
17FTF NO
{IFTF NO
1TFIF NO
{7FTF NO
17FTF NO
17FTF NO
{IFTF NO
/7FTF NO

GRAPHIC

GRAPHIC

GRAPHIC
GRAPHIC
GRAPHIC
GRAPHIC
GRAPHIC
GRAPHIC
GRAPHIC

GRAPHIC
GRAPHIC
GRAPHIC
GRAPHIC
GRAPHIC
GRAPRIC

Figure 20.1 System Library EBPT3

92

Ny
NO
NO
NO
PF
HT
Lc

DEL
NO

NO
KO
NO
NO
RO
NO

‘RO

'
NO
NO
NO
'
4+
NO

SOURCE

GRAPHIC
GRAPHIC
GRAPHIC

GRAPHIC

GRAPHIC
GRAPHIC
GRAPHIC
GRAPHIC
GRAPHIC
GRAPHIC
GRAPHIC

GRAPHIC

GRAPHIC
GRAPHIC

GRAPHIC

on the card are expressed as a 3-bit
hexadecimal number (there can never be more
than one punch between the 1 and 7 row).

In this format a 1 punch would be expressed
as 001, a 7 punch as 111. The punches in
the other card rows: 12, 11, 0, 8, and 9,
are transferred directly.

For example, take the IBM Card Code
character "+* which is a 12, 6, 8 punch.

1BM Card Code

121101 2345 6789
1 000 0000 1011
10
—

2\ 4

1 00 110
Compressed ZIPCO Fomat

——

1001 1010

Exrors Detected

No errors are detected by ZIPCO.

Figare 20.1 is a sample of the System
Library table EBPT3 (EBCDIC to 1403 Printer
code) which may be called with ZIPCO.

/ﬂﬁmax

Arithmetic and Functional Subroutines

The 1BM 1130 Subroutine System Library
includes the arithmetic and functional
subroutines that are the most frequently
required because of their general
applicability. There are 44 subroutines,
some of which have several entry points.

Figure 21 lists the arithmetic and

functional subroutines that are included in
the Subroutine System Library

REAL DATA FORMATS

Many of the IBM 1130 arithmetic and
functional subroutines offer two ranges of
precision: standard and extended. The
standard precision provides 23 significant
bits, and the extended precision provides
up to 31 significant bits. The magnitude
of a real number must not be greater than
2127 or less than 2-129 @pproximately 1038
and 10-39),

To achieve correct results from a
particular subroutine, the input arquments
must be in the proper format.

Standard-Precision Format

-

Standard-precision real numbers are stored
in core storage as shown below:

1st Word ISl 15 Most Significont Bits of Mantissa j
01 15

2nd Word 8 Least Significant

Bits of Mantissa
0 78 15

Numbers can consist of up to 23 significant
bits (mantissa) with a binary exponent
ranging from -128 to +127. Two adjacent
storage locations are required for each
number. The first (lowest) location must
be even-numbered. The sign of the mantissa
is in bit zero of the first word. The next
23 bits represent the mantissa (2°'s
complement if the number is negative) and
the remaining 8 bits represent the
characteristic. The mantissa is normalized
to fractional form, i.e., the implied
binary point is between bits zero and one.

Characteristic

The characteristic is formed by adding
+128 to the exponent. For example, an
exponent of -32 is represented by a charac-
teristic of 128-32, or 96. An exponent of
+100 is represented by a characteristic of
100 + 128, or 228. Since 12844,=/80 the
characteristic of a nonnegative exponent
always has a 1-bit in position 1, while the
characteristic of a negative exponent
always produces a 0-bit in position 1. A
normal zero consists of all zero bits in
both the characteristic and the mantissa.

Extended-Precision Format

Extended-precision real numbers are stored
in three adjacent core locations as shown
below:

1st Word Unused Characteristic

0 7 8 15
2nd Word | S Mantissa

o | 15
3rd Word Mantissa

0 15

Numbers can consists of up to 31
significant bits with a binary exponent
ranging from -128 to +127; however,
normalization can, in some cases, cause the
loss of 1 bit of significance.

Bits zero through seven of the first
word are unused; bits eight through 15 of
the first word represent the characteristic
of the exponent (formed in the same manner
as in the standard range format); bit zero
of the second word contains the sign of the
mantissa; and the remaining 31 bits
represent the mantissa (2's complement if
the number is negative).

Real Negative Number Representation

Real negative numbers differ from real
positive numbers in only one resgect; the
mantissa is always the 2's complement of
the equivalent positive value.

Arithmetic and Functional Subroutines 93

Example:

+.53125 is represented in core as
44000080

-.53125 is represented in core as
BC000080

+4.0 is represented in core as 40000083
-4.0 is represented in core as C0000083

Note that a real negatiwve number is never
represented by a value of 800000xx, where
xx is any characteristic between 00 and FF.
The mantissa value of 800000 is its own 2°'s
complement and therefore lies outside the
definition of a real negative number, i.e.,
the 2's complement of its absolute value.

Fixed-Point Format

Fractional numbers, as applied to the
fixed-point subroutines, XSQR, XMDS, XMD,
and XDD, are defined as binary fractions
with implied binary points of zero. That
is, the binary point is positioned between
the sign (bit 0) and the most significant
bit (bit 1).

The user can consider the binary point
to be in any position in his fixed-point
numbers. To correctly interpret the
results the following rules must be
observed:

1. Only numbers with binary points in
equivalent positions can be correctly
added or subtracted.

2. The binary point location in the
product of two numbers is the sum of
the binary point locations of the
multiplier and the multiplicand.

3. The binary point location in the
quotient of two numbers is the
difference between the binary point
locations of the dividend and the
divisor.

4. The binary point location in a number
that is input to the fixed-point
square root subroutine (XSQR) must be
an even number from 0-14. The binary
point location in the output root is
half the binary point location of the
input number.

94

REAL NUMBER PSEUDO ACCUMULATOR

IBM 1130 real number subroutines sometimes
require an accumilator that can accommodate
numbers in real number format. Since all
of the 1130 registers are only 16 bits in
length, a pseudo accumulator must be set up
to contain two- or three-word real numbers.
The pseudo accumulator (designated FAC for
floating accumulator) is a three-word
register occupying the three highest
locations of the Transfer Vector (see IBM
1130/1800 Assembler Language). The user
can refer to these words by using Index
Register 3 plus a fixed displacement
(XR3+125, 126, or 127) . The format of the
FAC is shown below.

Mantissa

1
{ Characteristic Mantissa

XR3+125 XR3+ 126 XR3+ 127

T ——

FAC

The effective address of the mantissa is
always even. The eight rightmost bits of
the FAC are zero when using standard
precision.

Note: Arithmetic and functional
subroutines do not save and restore the
contents of the 1130 Accumulator or the
Extension. The calling program should -
provide for this if the contents are
significant. When execution of the user's
program begins, all three words of FAC
contain zeros. Results of arithmetic and
functional subroutines are truncated.

CALLI NG SEQUENCES

The arithmetic and functional subroutines
are called via a CALL or LIBF statement
(whichever is required) followed, in some
cases, by a DC statement containing the
actual or symbolic address of an argument.
In the descriptions that follow, the
notations (ARG) and (FAC)' refer to the
contents of the operand rather than its
address. The name FAC refers to the real
number pseudo accumulator. - The

ext ended-precision subroutine names are
prefixed with the letter E (subroutines

" that handle both precisions have the same

name and do not have a prefix).

r ¥ 1
| SUBROUTINE | NAME |
k t —
|Real (Floating Point) |Standard Precision Extended Precision [
|
{Add/s ubtract *FADD /*F SUB *EADD/+ ESUB
|Multiply *FMPY . *EMPY
|Divide *#FDIV #EDIV
| Load/Store FAC *F1D/*F STO *#*ELD/#ESTO
|Trigonometric Sine/Cosine FSINE/FCOSN, FSIN/FCQOS ESINE/ECOSN, ESIN/ECOS
|Trigonometric Arctangent. FATIN, FATAN EATN, EATAN |
|Square Root FSQR, FSORT ESQR, ESORT
|Natural Logarithm FLN, FALOG ELN, EALOG
|Exponential (e) | FXPN, FEXP EXPN, EEXP
| Byperbolic Tangent | FINH/FTANH ETNH/ ET ANH
|Real Base to an Integer Exponent | *FAX1 *EAX1
|Real Base to a Real Exponent *FAXB *ERXB !
|Real to Integer IF1X IFIX
|Integer to Real FLOAT FLOAT
|Normalize NORM NORM
|Real Binary to Decimal /Real Decimal FBTD/FDIB FBTD/FDTB
|to Binary |
.|Real Arithmetic Range Check FARC FARC |
l) .
|Eixed-Point 1
l
:Integer Base to an Integer Exponent |#*FIXI *FIXI
|Fixed-Point Square Root XSQOR XSQOR
|Fixed-Point Fractional Multiply | XMDS |
| (short) .
| Fixed-Point Double Word Multiply XMD XMD
|Fixed-Point Double Word Divide XDD XDD
|Special Function
|
|Real Reverse Subtract | *FSBR *ESBR]
Real Reverse Divide	*FDVR *EDVR
Real Reverse Sign	SNR SNR
Real Absolute Value	FAVL, FABS EAVL, EABS
Integer Absolute Value	IABS 1ARBS
Miscellaneous	I
Get Parameters	FGETP EGETP =
t . 4	
[Note: By adding an X to those names prefixed with an asterisk, the user can cause the—}	
contents of 1Index Register 1 to be added to the address of the argument	
specified in the subroutine calling sequence to form the effective argument	
address. For example, FADDX would be the modified form of FADD.	
L —_—

Figure 21. Arithmetic and Functional Subroutines

Note also that some of the functional
subroutines can be called via two different
calling sequences. One calling sequence
assumes the argument is in FAC; the other
specifies the location of the argqument with
a DC statement.

In addition, some subroutines can have
indexed linkage to the argument. The
calling sequence is the same except for the
subroutine name which contains an X suffix.
Also, some subroutines perform more than
one type of arithmetic or function. For
example, FSIN and FCOS are different entry
points to the same subroutine. Each

subroutine is listed in Figure 21 with the
corresponding entry points.

Real Add

LIBF FADD, FADDX, EADD or EADDX
DC ARG

Input Real augend in FAC

Real addend in location ARG

Result (FAC) + (ARG) replaces (FAC)

Real Subtract

LIBF FSUB, FSUBX, ESUB or ESUBX
DC ARG

Arithmetic and Functional Subrcutines 95

Page of GC26-5929-6
Revised May 21, 1971
By TNL GN33-8112

Input Real minuend in FAC
Real subtrahend in location ARG
Result (FAC) - (ARG) replaces (FAQ)

Real Multiply

LI1IBF FMpPY, FMPYX, EMPY or EMPYX
DC ARG
Input Real multiplicand in FAC
Real multiplier in location ARG
Result (FAC) times (ARG) replaces (FAQ)

Real Divide

LIBF FCLIvV, FDIVX, EDIV or EDIVX
DC . ARG
Input Real dividend in FAC

Real divisor in location ARG
Result (FAC) / (ARG) replaces (FARQ
Note: On a divide by zero, the divide

check indicator is turned on, the dividend
is not changed, and the dividend remains in
FAC.

Load FAC

LIBF FLD, FLDX, ELD or ELDX

DC ARG

Input Real number in location ARG

Result (ARG) replaces (FAC)

Store FAC

LIBF FSTO, FSTOX, ESTO or ESTOX
DC ARG

Input Real number in FAC

Result (FAC) replaces (ARG)

Real Trigonometric Sine

CALL FSINE or ESINE

Input Real argument (in radians) in FAC

Result Sine of (FAC) replaces (FAC)
or

CALL FSIN or ESIN

o of ARG

Input Real argument (in radians) in
location ARG

Result Sine of (ARG) replaces (FAC)

Real Trigonometric Cosine

CALL FCOSN or ECOSN

Input Real argument (in radians) in FAC

Result Cosine of (FAC) replaces (FAC)
or

CALL FCOS or ECOS

CC ARG

Input Real argument (in radians) in
location ARG

Result Cosine of (ARG) replaces (FAQ

96

Real Trigonometric Arctangent

CALL
DC
Input
Result

CALL
DC
Input
Result

FATN or EATN

ARG

Real argument in FAC

Arctangent of (FAC) replaces
(FAC) ; the result lies within the
range t ¥ radians (90 degrees)

or

FATAN or EATAN

ARG :

Real argument in location ARG
Arctangent of (ARG) replaces
(FAC) ; the result lies within the
range * % radians (90 degrees)

Real Square Root

CALL
Input
Result

CallL
pC
Input
Result

FSQR or ESQR
Real argument in FAC
Square root of (FAC) replaces

(FAQ)
or

FSCRT or ESCRT

ARG

Real argument in location ARG
Square root of (ARG) replaces

(FAQ)

Real Natural Logarithm

CALL
Input
Result

CALL
LC
Input
Result

FLN or ELN
Real argument in FAC
Loge (FAC) replaces (FAC)

or

FALOG or EALOG

ARG .

Real argument in location ARG
Logn (@ARG) replaces (FAC)

Real Exponential

CALL
Input
Result

CALL
cC
Input
Result

FXPN or EXPN
Real argument in FAC = n
el replaces (FAC)

or

FEXP or EEXP

ARG :
Real argument in locaticn ARG = n
el replaces (FAC)

Real Hyperbolic Tangent

CALL
Input
Result

CALL
DC

FTNH or ETNH
Real argument in FAC
TANH (FAC) replaces (FAC)

or
FTANH or ETANH
ARG

Input
Result

Real argument in location ARG
TANH (ARG) replaces (FAC)

Real Base to an Integer Exponent

Real Decimal to Binary

CALL FDTB
DC LDEC
Input A string of EBCDIC coded data at

location LDEC. Each EBCDIC

LIBF FAX1, FAXIX, EAXI, or EAXIX
DC ARG
Input Real base in FAC

Result

Integer exponent in location ARG
(FAC) raised to the exponent
(ARG) replaces (FAC)

Real Base to a Real Exponent

CALL
DC
Input

Result

FAXB, FAXBX, EAXB or EAXBX
ARG

Real base in FAC

Real exponent in location ARG
(FAC) raised to the exponent
(ARG) replaces (FAC)

Real to Integer

L1BF
Input

Result

IFIX
Real namber in FAC
Integer in the Accumulator

Inteqger to Real

character occupies the rightmost 8
bits of a word. The leftmost 8
bits must be zeros. The first
character of the input must be the
sign (plus or mimus). Following
the sign, one to nine decimal
digits (0-9) may be specified.

The decimal point may appear
before, within, or after the
decimal digits. Immediately after
the last decimal digit (or decimal
point) , the exponent is specified
as follows.

Esddb
where:

s represents the sign of the
exponent (plus or minus)

d represents one of the decimal
digits (0-9)

b represents a blank (the blank is
required to indicate the end of
the string)

LIBF FLOAT

Input Integer in the Accumulator
Result Real number in FAC

Normalize

LIBF NORM

Input Real unnormalized number in FAC
Result The mantissa portion of FAC is

shifted until the most significant

bit resides in bit position 1.
The characteristic is changed to
reflect the number of bit
positions shifted.

Real Binary to Decimal

CALL FBTD
DC IDEC
Input Real number in FAC

Result A string of EBCDIC-coded data
starting at location LDEC. Each
EBCDIC character occupies the
rightmost 8 bits of a word. The
last character of the string is a

blank.

The output format is exactly as
follows:

sd.ddddddddesddb
where:

S represents a sign (plus or
minus)

d represents one of the decimal
digits 0-9

b represents a blank

No embedded blanks may appear in
the input string as the first
blank is interpreted as the end of
the data.

Result Real number in FAC

Real Arithmetic Range Check

LIBF FARC

Result This subroutine checks for real
number overflow or underflow, and
sets programmed indicators for
interrogation by a FORTRAN
program.

Integer Base_ to_an Inteqer Exponent

LIBF FIXI or FIXIX
DC ARG
Input Integer base in the Accumulator

Integer exponent in location ARG
(Accumulator) raised to the
exponent contained in ARG replaces
(Accumulator)

Result

Fixed~Point Square Root

CALL XSOR

Input Fixed-point fractional argument
(16 bits only) in the Accumulator.
Square root of (Accumulator)
replaces (Accumulator). If the
argument is negative the absolute
value is used and the Overflow
indicator is turned ON.

Result

Arithmetic and Functional Subroutines 97

Fixed-Point Doubleword Multiply

LIBF XMD

Input Doubleword fractional multiplier
in FAC (addressed by XR3 + 126)
Doubleword fractional multiplicand
in the Accumulator and Extension
Doubleword fractional product in
the Accumulator and Extension

Result

Fixed-Point Fractional Multiply

LIBF XMDS

Input Doubleword fractional multiplier
in the Acaumulator and Extension
Doubleword fractional multiplicand
in FAC (addressed by XR3 + 126)
Product in the Accumulator and
Extension (XMDS is shorter and
faster than XMD; however, the
resulting precision is 24 bits) .

Result

Fixed-Point Doubleword Divide

LIBF XDD

Input Doubleword fractional dividend in
FAC (addressed by XR3 + 126)
boubleword fractional divisor in
Accumnlator and Extension
Doubleword fractional quotient in
the Acaimulator and Extension.
The double dividend in FAC is
destroyed by the execution of the
subroutine.

Result

Real Reverse Subtract

LIBF FSBR, FSBRX, ESBR or ESBRX
DC ARG
Input Real minuend in location ARG

Real subtrahend in FAC

Result (ARG) - (FAC) replaces (FAQ

Real Reverse Divide

LIBF FIVR, FDVRX, EDVR or EDVRX

DC ARG

Input Real dividend in location ARG
Real divisor in FAC

Result (ARG) / (FAC) replaces (FAC)

Note: On a divide by zero, the divide

check indicator is turned on, the dividend
is not changed, and the dividend remains in
FAC.

Real Reverse Sign

LIBF SNR
Input Real number in FAC
Result - (FAC) replaces (FAC)

Real Absolute Value

CALL FAVL or EAVL
Input Real number in FAC
Result Absolute value of (FAC) replaces

(FAC)

98

or
CALL FABS or EABS

DC ARG

Input Real number in location ARG
Result Absolute value of (ARG) replaces

(FAQ)
Inteqer Absolute Value

CALL IABS
DC ARG -
Input An integer in ARG

Result Absolute value of (ARG) replaces

{(Accumul ator)

Get Parameters (FGETP or EGETP)

Example:s
MAIN CALY, SUBR
DC ARG
NEXT etc.
SUBR DC 0
LIBF FGETP or FEGETP
SUBEX DC 0
etc.

BSC 1 SUBEX

The FGETP subroutine performs two functions
for a subroutine accessed by a CALL
statement. It loads FAC with the contents
of ARG; it sets SUBEX to return to NEXT in
the calling program.

ARITHMETIC AND FUNCTIONAL SUBROUTINE ERROR

INDICATORS

The highest three-word entry in the
Transfer Vector is reserved for the real
number pseudo accumulator (FAC). The next
to highest three-word entry is reserved for
the arithmetic and functional subroutine
error indicators.

The first word (addressed XR3 + 122) of
the second entry is used for real number
arithmetic overflow and underflow
indicators. The second word (XR3 + 123) is
used for a divide check indicator, and the
third word (XR3 + 124) is used for
functional subroutine indicators. When
execution begins, all three words contain
Zeros.

Word One

Each real number subroutine checks for
exponent underflow and overflow. If either
occurs, word one and FAC are set as
follows.

1. if overflow has occurred (FAC = ¢
maximum) , word one is set to 1.

2. if underflow has occurred (FAC =
zero), word one is set to 3.

Word Two

The real number divide subroutines check
for division by zero. 1If this occurs, word
two is set to 1. The dividend is not
changed and remains in FAC.

Word Three

The functional subroutines check for the
following error conditions and set word
three as described. All error conditions
detected by the functional subroutines are
indicated in word three.

Real Natural Logarithm. When the argument
is zero, FAC is set to the largest negative
value and a bit is moved into position 15
of word three with an OR instruction. When
the argument is negative, the absolute
value of the arqument is used and a bit is
moved into position 15 of word three with
an OR instruction.

Real Trigonometric Sine and Cosine. When
the absolute value of the arqument is equal
to or greater than 224, FAC is set to zero

and a bit is moved into position 14 of word
three with an OR instruction.

Real Square Root. When the argument is
negative, the square root of the argument's
absolute value is returmed, and a bit is
moved into position 13 of word three with
an OR instruction.

Real to Integer. When the absolute value
of the arqument is greater than 2'3-1, the
largest possible signed result is placed in
the accumulator and a bit is moved into
position 12 of word three with an OR
instruction. ’

Inteqger Base to an Inteqger Exponent. When
the base is zero and the exponent is zero
or negative, a zero result is returned and
a bit is moved into position 11 of word
three with an OR instruction.

Real Base to_an Integer Exponent. Wwhen the
base is zero and the exponent is zero or
negative, a zero result is returned and a
bit is moved into position 10 of word three
with an OR instruction.

Real Base Raised to a Real Exponent. Wwhen
the base is zero and the exponent is zero
or negative, a zero result is returned and
a bit is moved into position 9 of word
three with an OR instruction. Wwhen the
base is negative and the exponent is not
zero, the absolute value of the base is
used and a bit is moved into position 15 of
word three with an OR instruction.

End of File (DM2 System Only). When the

end-of-file record in the unformatted I1,/0
area is read, a bit is moved into position
2 of word three with an OR instruction.

Arithmetic and Functional Subroutines 99

Functional Subroutine Accuracy

Given:
€ = Maximum error
f(x) = True value of the function
f* (x) = Value generated by subroutine
+w) = Slargest valid real number
-) = 2Most negative real number

EXTENDED PRECISION SUBROUTINES

The following st atements of accuracy apply
to extended precision subroutines.

ESIN .
e = sin(x) ;sin (x) < 3.0x 10-9
for the range
: 6
-1,0x10 £ x <0
6
1.0x10° 2 x>0
forx=0sgin(x) = 0
ECOS
- % ~!
e = cos(x) - cos*(x) < 3.0x10 9

x| + 5

for the range

-1.0):106 <£x 51.0x106

100

EAT AN
atn(x) - atn*(x)

~9
) <2.,0x 10

for the range

~-3.88336148 x 1037 < x < 3.88336148 x 1037

X X -9
e - (e)* J2-0x 10 |x| whichever

ex or is
2.0 x 1070 | greater

for the range

~In(») < x < ln(x)

i.e., 0 < ex<eo
ELN

_ |In(x) - In*(x) -9
e = &) <3.0 x 10

for the range

0< X<

e = (tanh(x) - tanh*(x)] <3.0 x 107?

for the range

-0 < X <o
ESQRT
o fafx - KX -9
e= N <1.0 x 10

for the range

0< X <o

STANDARD PRECISION SUBROUTINES

The following statements of accuracy apply

to the standard precision subroutines.

FSIN
_ |sin(x) - sin*(x) < %5x 10—7
= | .
for the range
6
~1,0x10 € x<0
6
1.0x10 2 x>0
for x=0sin (x) = 0
ECOS
- * . -
e = |cos(x) cos (x)l < 2.5x10 7
T
+ —
x| +%

for the range

-1.0x1065 X 51.0x106

atn(x) ~ atn*(x)
atn(x)

<5.0 x 10"

for the range
-3.883361 x 107" < x < 3.883361 x 10°"
FEXP

X X
e - (e)*
X
e

or 7 is
2.5 x 10

for the range

~In (o) < x < In(x) i.e., 0< X <o

]
fi=
=

In(x) - In*(x)
In(x)

e= <4.0 x 107"

for the range

0<x<1
1< X<
for x=1 In(x)=0
=7
e = |tanh(x) - tanh*(x)] <2.5 x 10

for the range

- < X< +oo

Arithmetic and Functional Subroutines

greater

2.5 x 10_7|x| whichever

101

<2.5 x 107

]
i

B_ !X*
N

for the range

0< X<

Elementary Function Algorithms

The choice of an approximating algoritham
for a given function depends on such
considerations as expected execution time,
storage requirements, and accuracy. For a
given accuracy, and within reasonable
limits, storage requirements vary inversely
as the execution time. Polynomial
approximating is used to evaluate the
elementary functions to effect the desired
balance between storage requirements and
efficiency.

SINE-COSINE

Given a real number, X, n,and y are defined
such that :

. SE——
27 nry

vhere n is an integer and 0<y<!. Thaus, x =
27n + 27y, and the identities are

sin x = 'sin 27y and cos x = cos 27Y.

The polynomial approximation, F(z), for the
function (sin 27z)/z is used where
-1/4<z<1/4.,

The properties of sines and cosines are
used to compute these functions as follows:

cos 21y = F(z)

102

where

N
|

b A =

1/4-y in the range 0<y < 1/2
y-3/4 in the range 1/2< y < 1

sin 21y = F(z)

where

N NN
hon o

y in the range 0< y < 1/4

1/2-y in the range 1/4<y < 3/4

y-1in the range 3/4 < y < 1

Extended Precision

F (z) = a1 4
where

a, 6.2831853071

a, = -41,341702117

a3 81.605226206

a4 = -76.704281321

as = 42,009805726

a6 = -14,394135365
Standard Precision

F(z) = alz + a2z 3
where

a1 = 6.2831853

a, = -41. 341681

a3 = 81,602481

a4 = -76.581285

a5 = 39.760722

. 5 7
+a,z +taz +az

4

z+a223+a3z5¥a z7+a5z9+a 211

5

9

ARCTANGENT

The subroutine for arctangent is built
around a polymonial, F (x), that
approximates Arctan (z) in the range
-.23525,23, The Arctan (z) for z outside
this range is found by using the
identities

Arctan(-z) = - Arctan (z)
and

Z -
Arctan(z) = ak + Arctan -

bk+1
where
kmo
A "7 B stangy
and k is determined so that
tan(%mﬂzktan(%m k=1, 2, 3.

Having determined the value of k
appropriate to z, the transformation
X= (2-bk)/(zby+1) puts X in the range
-tanwn/ 14<x<tann/14, The polynomial F (x)

was chosen to be good over a range slightly

larger (i.e., .23<tann/14) so that the
comparisons to determine the interval in
which z lies need be only standard
precision accuracy.

Arctan (z) =_2k+F x)z20
k-F (x)z<0

F =x (1.0 2+ 4 ax6+'a x8)
x) =x (1. -2, x a2x 3 4
where

a = . 33333327142

a2 = , 19999056792

a3 = .14235177463

a4 = ,09992331248

Standard_Precision

F (x) =x(1.0 -a x2+a x4—a x6)

‘ 1 2 3
where

a1 = ,333329573

32 = .199641035

33 = ,131779888

SQUARE ROOT

Square Root (x)
2b
Let x =2 F when.25sF<1
b
then /X=2 VF

where /F = P, i=number of approximation

P1 =AF +B as a first approximation
followed by 2 Newton
iterations

vhere

A =,875, B=,27863 when ,25<F<.5

or

A =.578125, B = ,421875 when .5 <F <1

F
P+
P2=< ! Pl)
2
F
P+
P3=(2 Pz)
2

Arithmetic and Functional Subroutines

103

NATURAL LOGARITHM

Polynomial Approximation

Given a normalized real number

x=2kxf

vhere the range of f is.l(2$f<l, and j and
g are found such that x=2Jg where

(J2/25g<,J2) . This is done by setting
j=k-1, g=2f if £<J2/2 and j=k, g=f
otherwvise.
Thus:

In(x) = j.In(2) + In(g).
The approximation for 1ln(g), J2/2%9<J2, is

based on the series

ln:—t-:—= 2[(x/v) + (x3/3v3) + (x5/5v5) +]

which converges for (-v<z<v).
With the transformation

x=vEl, v=(y2+ 1)

so that -1<x<1 for J2/2<g< 2.
Substituting

In(g) = 2 (z + z3/3 + z5/5 + e)
wvhere z=x/v= ELl.
gl

The approximation used is G(z) for 1ln(g)/z
in the range .J2/2<g<]2.

Then for both extended and standard
precision,

_E-1

z —_g+1
J2/2 = . 7071067811865
In(2) = .6931471805599

Thus, the reqguired calculation is

In(x) = j .In(2) + zG(z)

104

2 4 6 8
G(z) = b°+ b2z +b4z +b6z +bsz

vhere
b0=20
b2 = ,666666564181
b4 = .400018840613
b6== . 28453572660
b8 = ,125

Standard Precision
_ 2 4 6
G(z) -b0+ b2z + b4z +b6z

where

=20

= ,66664413786
b4 = .4019234697
b6= .25

Py
Py

EXPONENTIAL

Polynomial Approximation

To find ex, the following identity is used.

To reduce the range, we let

xlogze =n+d+z

where

n is the integral portion of the real
number,

@ is a discrete fraction (l1/8, 3/8, 5/8,
or 7/8) of the real number, and

2z is the remainder which is in the range
-1/8<2z<1/8.

Thus, where

a,=1.0
&= 2% x 2% x 2 0
a1 =,693147079
and it is necessary to only approximate 2%
for -1/8<z<1/8 by using the polynomial a, = . 240226486
F(z). : ag = . 0555301557
64 =.00962173985

HYPERBOLIC TANGENT

9 .
F(z)=a_+az+az +a z3 + a z4 + a z5

0 1 2 3 4 5
2x
here - -1
vhere Tanh (x) = ezx
a0 = 1,0 e +1
a1 = .69314718057
for
a2 = ,24022648580
ag = 055504105406 X 232 Tanh (x) = 1
< - = -
a, = .0096217398747 X = -32 Tanh (x) = -1
a5 = ,0013337729375
REAL BASE TO REAL EXPONENT
InA
A=g¢e
Standard_Precision
therefore:
F = +az+az2+az3+az4 B 1nAlB BlnA
(z) =2, +a, 9 g Yy A =(en) e

Arithmetic and Functional Subroutines 105

Selective Dump Subroutines

The 18M 1130 Subroutine Library and the
System Library include three dump
subroutines: Dump Selected Data on the
(onsole Printer, Dump Selected Data on the
1132 Printer, and Dump Status Area. These
subroutines allow the user to dump selected
portions of core storage during the
execution of a user's program.

Dump Selected Data on Console Printer
or 1132 Printer

Two subroutines are available to select an
area of core storage and dump it on the
Console Printer or the 1132 Printer. Each
of these subroutines has two entry points,
one for hexadecimal output and one for
decimal output. The entry points for the
various configurations are shown below:

DMTX0 Dump on Console Printer in
hexadecimal format, using the WRTYO0
subroutine

DMTDO Dump on Console Printer in decimal
format, using the WRTYO0 subroutine

DMPX 1 Damp on 1132 Printer in hexadecimal
format, using the PRNT1 subroutine

DMPD1 Dump on 1132 Printer in decimal

format, using the PRNT1 subroutine

Calling Seguence

The calling sequence for any of the above
functions is as follows:

CALL ENTRY POINT
DC START
DC END

START and END represent the starting and
ending addresses of the portion of core
storage to be dumped. A starting address
greater than the ending address results in
the error message, ERROR IN ADDRESS, and a
return to the calling program.

Format

Before the actual dump appears on the
selected output device, the user is given

106

one line of status information. This line
indicates the status of the Overflow and
Carry indicators (ON or OFF) , the contents
of the Accumulator and Extension, and the
contents of the three index registers. The
index register contents are given in both
hexadecimal and decimal form, regardless of
which type of output was requested. The
format of the status information is shown
below:

OFF ON HHHH (#DDDDD)
Overflow Carry Accumulator

HHHH (#DDDDD)
Extension

HHHH (£DDDDD)
Index Reg 1

HHHH (+DDDDD)
index Reg 2

HHHH (DDDDD)
Index Reg 3

All other data is dumped eight words to
a line; the adlress of the first word in
each line is printed to the left of the
line. Hexadecimal data is printed four
characters per word; decimal data is
printed five digits per word, preceded by a
plus or minus sign.

Page numbers are not printed for either
subroutine. However, the 1132 Printer
subroutine does provide for automatic page
overflow upon the sensing of a channel 12
punch in the carriage tape.

Dump Status Area

This subroutine provides a relatively easy
and efficient means of dumping the first 80
words of core storage. These words contain
status information relating to index
registers, interrupt addresses, etc., which
may be required frequently during the
testing of a program. It may also be
desirable to Jump these words before
loading because pressing PROGRAM LOAD
destroys the data in the first 80 words of
core storage.

The Dump Status Area subroutine is
called via the following statement:

CALL DINPBO

The Console Printer prints the first 80
words of core storage in hexadecimal form;
the printing format provides spacing
between words. After typing the last word,
the subroutine returns control to the
calling program.

The DM2 System Library contains a group of
subroutines that perform various system
utility functions. These subroutines, with
the exception of SYSUP which can be called
by the user, are intended for system use
only. Under normal circumstances, they
should not be deleted from the System
Library.

The subroutines in ths group are:

FLIPR - LOCAL/SOCAL overlay subroutine

RDREC - Read *ID record

CALPR - Call system print

FSLEN - Fetch phase IDs

FSYSU - Fetch system subroutine (FSYSU is
an alternate entry point to FSLEN

SYSUP - DCOM update

FLIPR (LOCAL/SOCAL OVERLAY)

The System Library contains a flipper
subroutine (FLIPR) which is used to call
LOCAL (load on call) and SOCAL (system load
on call) subroutines into core storage.
FLIPR is used with DISKZ, DISK1, or DISKN.

FLIPR passes the total word count to
DISKZ, DISK1, or DISKN to fetch the LOCAL.
wWwhen a LOCAL subroutine is called, control
is passed to the flipper, which reads the
LOCAL into core storage if it is not
already in core and transfers control to
it. All LOCALs in a given core load are
executed from the same core storage
locations; each LOCAL overlays the previous
one. FLIPR fetches SOCALs in the same
manner as LOCALs.

RDREC (READ *ID RECORD)

This subroutine is called by Disk
Maintenance Programs to read the #1ID (disk
label) record. This subroutine is intended
for system use only.

CALPR (CALL SYSTEM PRINT)

This subroutine calls FSLEN to bring the
system print subroutine into core storage

Special Monitor Subroutines

for the pufpose of printing one or more
lines on the principal printer. This
subroutine is intended for system use only.

FSLEN (FETCH PHASE 1DS ANLD FFTCH SYSTEM

SUBROUT INE)

This subroutine has two entry points. They
are FSLEN and FSYSU.

L FSLEN (Fetch Phase IDs from SIET)

This entry point obtains the requested
phase ID headers from SLET.

. FSYSU (Fetch System Subroutine)

Fetches the requested system subroutine
into core storage.

This subroutine is intended for system
use only.

SYSUP (DCOM UPDATE)

Whenever a core load requires changing disk
cartridges during the job, SYSUP must be
called to update DCOM on the master
cartridge (logical drive 0) with the 1Ds
and DCOM information from all satellite
cartridges mounted on the system. The
cartridges are specified in the 1list or
array in the SYSUP calling sequence. The
list or array must be exactly five words
long or be ended by a zero (not both).

The Assembler language calling sequence
for SYSUP is:

T B

N T I T Y

Lobe! Operation | |F|T Oparonds & Romarks
n AR sl Je|uf | © o 0 3 u
s ALL SIYS.UP, KL DEOM (UWPDATE,
s N DC, L LS T oo 0 0 oy e g
L LI P L T T U U T S R A SR
i1 LA S L VIR W T S0 W U U W T Y S U PRI {
SRS L L i T S RN SR A A S ST R
LIST, " a A S S U S S SR G T N U
P s .C . 1 L1 TS W SR SR 4
P DC O N ARSI BrEY ST Ur IS B S AN
2 PR [
. 2 L - L
1 N N

[S SR

where

LIST is the address of the table of
requested cartridge 1IDs,

Special Monitor Subroutines 107

a is the ID of the master cartridge on Thus K (5) is the entry for logical 0,

the system, the master cartridge.

b is the 1D of the first satellite

cartridge on the system, SYSUP messages are listed in the
publication IBM 1130 Disk Monitor System,

c is the 1D of the second satelllte |Version 2, Programmer's and Operator's

cartridge on the system, Guide. SYSUP execution is terminated if an

error printout occurs.

d is the 1D of the third satellite
cartridge on the system,

e is the 1D of the fourth satellite
cartridge on the system.

If a is 0, the master cartridge remains
unchanged.

The FORTRAN calling sequence for SYSUP
is: 7 ’
1 I!’!lz!!g!n“HuunIll'nllﬂnl‘”uﬂﬂ””ilﬂ”

|||||££é|£||!§|||‘ﬂ])llIIlIIIIlIIlll

1.4 1 % ¢ 0 0)9 80 01 ¢ ¢ ¢ 9 ¢ 9 4 0. 0 2 &t 3 0 ¢ 4 1 3 414

where

. a is the name of the last item in an
array containing the IDs of the
satellite cartridges on the system. The
last entry in the array may be 0, in
which case the master cartridge remains
unchanged.

For example:
CALL SYSUP (K (5))
The array is stored in reverse order.
K (5) DC
K{#) DC
K(3) DC

K (2) DC
K(1) DC

108

System Library Mainline Programs (DM2 System)

The IBM 1130 IM2 System Library mainline
programs provide the user with the ability
to perform disk maintenance and paper tare
utility functions by requesting execution
of the appropriate program directly through
the job stream.

The calling sequences for the System
Library mainline programs are listed below.
The operating procedures and error messages
are contained in the IBM 1130 Disk Monitor
System, Version 2, Programmer's and
Operator 's Guide.

Disk Maintenance Programs

The disk maintenance programs are mainline
programs and subroutines that are a part of
the System Library and that initialize and
modify disk cartridge IDs, addresses, and
tables required by the DM2 system.
Normally, they should never be deleted from
the System Library.

The disk maintenance programs are:

IDENT - Print Cartridge 1D

D1SC Satellite Disk Initialization?

ir - Change Cartridge 1D

COPY Disk Copy

ACRWS - Write Sector Addresses in Working
Storage

DFCNV - C[isk LCata File Conversion

DLCIB - Delete CI1B

DSLET - Dump System Location Equivalence
Table)

MODIF - System Maintenance Program

MODSF - Library Maintenance Program

TAll new cartridges are initialized using
the standalone program DCIP (see IBM 1130
Disk Monitor System, Version 2,
Programmer's and Operator's Guide).

1DENT (Print Cartridge 1D)

This program prints the ID and physical
drive number of each cartridge mountel on
the system.

IDENT prints all cartridge 1Ds
regardless of validity (JOB card processing
‘'only recognizes valid 1Ds).

System

The calling sequence for 1DENT is:

. 37 18 39 20 2 7 23 M 29 % D 2 0N

‘MMM"I!IIIIIIIIIII!IIIIII[]

| I S N Y W T N S U N T [TN YOO N N N TN TN NN T N I N S A R .

DISC (Satellite Disk Initialization)

This program reinitializes up to four
satellite cartridges -- all but the master
cartridge. 1t writes the sector addresses,
defective cylinder addresses, a cartridge
ID, a LET, a DCOM, and a CIB on each
cartridge being reinitialized.

DISC overrides all cartridge ICs
specified on the JOB card except the master
cartridge 1D. .

The calling sequence for LISC is:

11343 s 7 ey DU R MR B WD N DB UB BT AD NN RD HEB
Z‘_/Llélol lDIIISCIlllIlllll||IlJlllllllllll
O F L 71 AL TiZ) 0,9 0,L, Ti

| N T T T N N N N OO N VU T O T T N T N T N T T 5 Y A O 2 N |

where

FID1 through FIDn are the 1Ls currently
on the satellite cartridges tc be
reinitialized (dentified by ILENT or a
JOB record) ,

T1D1 through TIDn are the IDs to be
written on the satellite cartridges by
this program. A valid cartridge ID is a
number between /0001 and /7FFF.

ID (Change Cartridge 1D)

This program changes the ID on ur to four
satellite cartridges.

1 2 3 4 8 6 7 8 9 1090 12 33 14 15 1 17 18 19 20 21 22 23 24 25 24 27 28 29 30 31 32 33 34 38 M

/|/||X|E|Q|I|1n|||||||||1||1||1:||||||||

Fﬂgﬁnghﬂnnghﬂﬁng&“ﬂbg&”nqnﬁngmﬂbggm.
I I T TN T TN T U T T U T T T U 0 S O A A O A

Library Mainline Programs (CM2 System) 109

where

FID1 through FIDn are the 1IDs currently
on the satellite cartridges being
changed (these IDs must be in the same
logical order as the entries on the JOE
card) ,

TID1 through TIDn are the new 1IDs to be
written on the selected satellite
cartridges.

COPY (isk Copy)

This program copies the contents (except
the defective cylinder table and the
cartridge ID) of one cartridge onto
another. The copy ID (word 5 of sector 0)
is incremented by one prior to being
written on the new cartridge.

The calling sequence for COPY is:

1.2 3 4 5 &8 7 8 9 10 1% 12 131 14 15 16 17 18 19 20 21 22 23 M 23 W 27 28 29 30 31 3 33 M 3 %

COAY + L i

S T T N T T TN Y T N Y T Y Y U T N T N N T TN O OO T Y N T N T Y |

where

FID1 through FILn are the IDs of the
cartridges to be copied.

TID1 through TIDn are the 1IDs of the
cartridge onto which the copies are to
be made.

If multiple copies are to be made from a
single master, FID1 through FIDn will all
contain the same 1IL.

ADRWS (Write Sector Addresses in Working
Storage

This program, linked to from DUP on
detection of the DUP control record DWADR,
writes sector addresses on all sectors of
Working Storage on the disk cartridge
specified by the LWADR control record (see
DUP in the 1BM 1130 Disk Monitor System,
Version 2, Programmer's and Operator's
Guide) .

DFCNV (Disk Data File Conversion)

This program converts 1130 FORTRAN or
Commercial Subroutine Package disk data
files to disk files acceptable to 1130 RPG.

110

The calling sequence for DFCNV is:

6 8 10 12 4 % 18 20 22 24 26 28 330 N2 M

lllLlllllllllIllllllllllllllllJLlI

OLCIB (Delete Core 1lmage Buffer)

This program deletes the CIB from a
nonsystem cartridge. 1If a user area is
defined, the user area is moved two
cylinders closer to cylinder 0. The new
addresses of disk areas moved as the result
of the deletion of the CIE are reflected in
CCOM on the master cartridge, on the
nonsystem cartridge from which the CIB is
deleted, and in COMMA.

The calling seqguence for CLCIE is:

L2 3 4 3 6.7 0.9 1980 1313 14 13 14 17 (8 09 20 %1 20 23 34 25 20 7 20 9 W I R H ¥ 1

VA

| T T T T Y T W WS O Y YO O O N T T I S O |

nlllll'lll!lllIlJlllllllllllll

where

CART is the ID of the non-system
cartridge from which the CIB is to be
deleted.

DSLET (Dump System Location Equivalence
Tablé)

This program dumps the contents of SLET on
the principal printer. Each entry printed
consists of a symbolic name, a phase ID, a
core address, a word count, and a disk
sector address. A SLET dump is listed in
the publication IBM 1130 Pisk Monitor

| system, Version 2, Programmer's and

Operator's Guide.

The calling sequence for LSLET is:

12 ll’07.’lﬂll»nll|‘l’ll|7lll'mﬂﬂnl‘uﬁﬂ?‘"”llﬁ&’l”:
/|/||X|E|_g|Q§L|E|lellllllllllllllIlllllll

) NS TN T TN T N Y T Y Y N N N Y O T S N S N T T T O N WY Y T S T A O |

MODIF (System Maintenance Progqram)

Included in the DM2 System Library is a
system maintenance program, MOLCIF, that
provides the user with the ability to
update the Monitor system on the master
cartridge. This program makes changes to
the version and modification level word in

AA@_WM:ll]nj’llxllinlnnllnllA'

DCOM, the Supervisor, DUP, FORTRAN The calling sequence for MOLIF is:

Compiler, Assembler, and/or System Library.

17 10 19 20 31 22 23 24 35 25 27 28 1 30 1

A card deck or paper tape containing 1 : : -
corrections to update the Monitor system to A XEQ MOOLEFL | v 40 0 0 it
the lateSt verSion and mOdificatiOn level | VR N T TN T TN T VPO T [N O VU T T N T T O T T N T O W U6 Y AN M N O O)

is supplied by IBM. Every modification
must be run to update the version and
modification level, even if the affected
program has been deleted from the system.

System Library Mainline Programs (DM2 System) 110.1

MODSF (Library Maintenance Program)

The purpose of MODSF is to update a library
program written in the disk system format
(DSF) and located in the User Area of disk
storage. (To modify or replace a system
program, see”MODIF (System Maintenance
Program) ®* described earlier in this
section.)

A program is updated by either replacing
existing code, inserting additional code at
the end of the program, or both. Existing
coding is replaced as the program resides
in the User Area. Sewveral programs may be
updated in a MODSF run, but only the last
program in a MODSF run may have code added
to it. When additional code is inserted,
MODSF moves the program to Working Storage
and inserts it there and ends its run by
invoking DUP. To move the updated program
back to the Users Areas, the user must
provide the necessary *DELETE and #*STORE
records.

To update a program with MODSF, the user
must prepare a patch control record, one or
more patch data records, and a patch
terminator record.

The calling sequence for MODSF is:

12 _1p 19 n n -0 <4 i}

/iy JOEGY MAOADSE 1 1 1 0 01111111yl

[W U T N W U N NN N N N N O VOO N OV O O Y TN TN T N Y N T N S N W O |

I T 2 IO N T I O T T T T N T T T T T Y S N A

PAPER TAPE UTILITY (PTUTL)

This program accepts input from the
keyboard or the 1134 paper tape reader and
provides output on the console printer

and /or the 1055 paper tape punch.

PTUTL allows changes and/or additions to
FORTRAN and Assembler language source
recoxds as well as monitor control records.

The calling sequence for PTUTL is:

$ 3 3.6 1 8 g[uqulgmnuwnalanuunvunn:lnnuu

l;‘:]!i]glt‘]girlLlI|IllI[LlIllIIIIIllIllI

G U T T T T T T T S Ay T T T N T N T T N N T T TN 1O T S N N W W

System Library Mainline Programs (DM2 System) m

| Writing ISS and ILS (C/PT System)

The section on Writing ISSs and 1LSs for
the DM2 system will be found in the 1IEM
1130 Disk Monitor System, Version 2,
Programmer's and Operator's Guide.

Interrupt Service Subroutines

Interrupt Level Subroutines

An ILS is included in a program only if

requested by a loaded 1SS.

The following

are rules for writing an ILS:

1.

Precede the subroutine with an ILS
statement.

The following rules must be adhered to when 2. Precede all instructions by an 1SS
writing an ISS: Branch Table and include one word per
ILSW bit used. If the ILSW will not
1. Precede the 1SS statement with an LIBR be scanned, (.e., a single ISS
statement if the subroutine is to be subroutine to handle all interrupts on
called by a LIBF rather than a CALL. the level) , then a one-word table is
sufficient. The minimum table size is
2. Precede the subroutine with an EPR one word. Table words must be
(extended) or an SPR (standard) nonzero.
statement if precision specification :
is necessary. ILSW Bit 15 word
: ILSW Bit 14 word
3. Precede the subroutine with one ISS . ' L
statement defining the entry point . 1SS Branch Table
(one only), the 1SS number, and the - :
ILS subroutines required. The device ILSW Bit 0 word
interrupt level assignments and the
1SS numbers used in the IBM-provided The 1SS Branch Table identifies both)
ISS and ILS subroutines are shown in the 1SS subroutine and the point A
Figure 22. within the 1SS which should be entered
: for each bit used in the ILSW. The
4. The entry points of an 1SS are defined actual linkage is generated by the
by the related ILS. This must be Relocating loader or Core Image
taken into consideration when a Converter. Basic to this generation
user-written 1SS is used with an is the 1SS number implied by bits 8-15
IBM-supplied 11S. The 11S executes a of the branch table word and specified
BS1 to the 1SS at the 1SS entry point in the 1SS statement. This number
plus n (see Figure 22). The 1SS must identifies a core location in which
retarn to the ILS via a BSC the loader or converter has stored the
instruction (not a BOSC). address of the called entry point in
the 1SS. This entry point address is
5. W#hen assembling the 1SS on the monitor incremented by the value in bits.0-7
system an *LEVEL n control card must of the branch table word, producing
be included for each interrupt level the branch linkage. The loader or
associated with the Jevice. converter replaces the 1SS branch
) q
{ TI | Device Interrupt |
11SS Number | Device J| Level Assignments |l n
3 } T L
[1 | 1442 carl Read Punch I 0, t | +4, +7
| 2 | Reyboard/Console Printer | 4 | +4
| 3] 113471055 pPaper Tape Reader/Punch | 4 [+4
| 4 | Single Disk Storage } 2] +4
| 6 { 1132 Printer | 1 | +4
| 7 | 1627 Plotter | 3 | +4 |
L [N A L J

Figure 22. C/PT System ISS/ILS Correspondence

112

table word with the generated branch
linkage.

During execution, the ISS Branch Table
contains core addresses. 1t may be
used with an indirect BSI instruction
to reach the 1SS corresponding to that
1LSW bit position. The ILSW bit that
is ON can be determined by the
execution of a SLCA instruction. At
the completion of this instruction,
the index register specified contains
a relative value equivalent to the bit
position in the ISS branch table. An
indirect, indexed BSI1 may then be used
to reach the appropriate ILS.

Each word in the 1SS branch table has
the following format:

Bits 0-7: Increment added to the
entry point named in the 1SS statement
to cbtain the interrupt entry point in
the 1SS for this ILSW bit. (In
IBM-written 1SS subroutines, this
increment is +4 for the primary
interrupt level and +7 for the
secondary interrupt level.)

Bits 8-15: 1SS number +51 for the 1SS
subroutine for this 1LSW bit. This

address should match word 13 of the
compressed 1SS header card.

3. The ILS entry point must immediately
follow the 1SS branch address takle
and must be a zero. The first zero
word in the program is the end of the
branch table and is also the entry
point of the 1LS. (The table must
contain at least one entry.) The
interrupt results in a BSI to the ILS
entry point.

4. To clear the level, a user-written
ILS, used with an 1BM~-supplied 1SS,
should exit via the return linkage
with a BOSC instruction.

ILSs supplied by IBM in the Card/Paper Tape
System, except ILS01l, pass word 2 of the

Sense Device IOCC to all ISSs. The ISSs in

the Card/Paper Tape System require that this
word be passed in the Accumulator. Observe
this convention when writing ILSs, and when
writing ISSs to be used with IBM~supplied ILSs.

Writing ISSs and ILSs {C/PT System) 113

29010511
25010511
15010571
05010571
6601051}
8v010s11
Lv010571
9601051
56010871
Yv010S71
€v010S1
20010S71
16010871
0v010S1
6£010571
8€010S1
LEOT0STH
9£01081
6E€010S7¢
¥€01081
€£010S1
2€010S711
1€01057)
0g010S1
6201051
8201081
420103711
92010571
62010571
*2010571
£€2010S1
22010871
120108
02010S71
61010571
81010S71
41010871
91010571
101051
1010571
€1010S§
2101081
11010571
01010571
600105711
80010571
10010511
90010511
0010511
»00108"1
£001051
20010S11

10010S71
0001081

MST1 3ISN3IS 0L 2201
®1X3 ONV 2OV ONIAVS 404

11X3 ONV 350LS3d 0L 09
LldNuy3iINT 2811 SS3D08d

LIX3 OGNV 73A3T 440 NuNnt

3404538

LdNHY3INT B31dvAV SS3208d
LadNAU¥3INL 2ETT SSID0uNA
MST1 3ISN3S

1 X3ONI
SNivls
NOISNILX3 GNV DOV 3AVS
6000 NOILVION VIA
IS8 JUVYMQHNVYH AS OG3ANIINI

00€0/
0
2

1v1S
2d

10871

i
ov
[o]

24ivd
Z+*dIA
1=SN3S

1+186x
i1vis
ov

]
acvos
6E90/

aN3

20
2Q
3 ss8

XOW
1 1s8

1 oso8
1 xaM

aagn
sa7

=

isae
T 0S8
oIx

! X4S
S1S
qals

24
o le]
24
1o s71

SN3IS

ov

dlA

1ux

ivis

*
10571
21vd

2d

*

L2222 a2 e 2 et e it iR ez ezl

*
#¥31dvay SNOILVIINNWWOD -

10S71 Oe1lt

E I R B IR IR BN B O B IR I IR K B I NI N

1 118
UIINJHd 2EIT ~ O 118

*1 T3A37

NO 3¥vy ¥3.idvavy SNOILvDINNWWOD
IHL ONV H3IN[dd 2€11 3HL

*1 T13A3T 803 3N]LNOUENS

T3A37 1dNYYIINT 3HL SI SIHL

1S8 3UVYMQMVH A8 Q3¥3LINZ *10STU

1 3A3T ¥od4 3NILNONENS 3A3D
- NOILVH3dO/NOILINNG
0 TI3A3T 3ONVHD - SNAVLS
- 3

LdNUMIALNI 3IHL S1 *10S711*

#RE RN

* %k %k ok % ¥

4 3

- S3ILON
3T\/YSN3 - SILNSLINLLY
3NON - Sy3dv XuoM/S37gvl

INON ~ HONMMI-

.10871

*10ST11® HONOWHL LOIMIANI IS08 - “IWWHON - SL1X3
3INON ~ SINILNOY TwyNa3LX3
3NON - 1lNdlNo
3NON - 1NdNi

6 NOI4VI0T VIA
= SANIOd AMIN3

sk ok ok ko sk sk ok ok ok ok ok 3 ok ok ok K B Kk ok k%

fl{{ii’.'}il{il'!.}i!iQQG{’Ti;ii!!}i{i'i*ili"'&‘i.
0sA1

#

00€E0
0000
2000

L40L
000008YY

2000022%

00000059
4082
oooe

too008YY
1100820%
4080

8069
9082
o18q

0000
gevo
6EYO

1o

=,
[sIe M=)

10
10

o000

000

il

2100

4100
9100
vloo

gloo
ttoo

4000

G000
2000
8000

6000
L4000
9000

S000
2000
€000

2000
1000
0000

(Ld/D) sTI ordureg

~

| Sample ISS (C/PT)

0000

03059130

0000 0 . 693E

0001 00
0003 ©
0004 ©
0005 0l
0co07 0
0008 01

000aA
ooos
GoocC
o0CcD
00QE
Q00F
cc11
o012
0013
0014
0015
0016
0018
0019
0014
0018
0o01iC
001D
CC1F
0020
0022
coz3
0024
0o0e2s
ouze
Qo027
0coz8
0029
coz2a
aoze
ooec
002E
oCc30
0031
0032
0033
0034
0C35
0037
0038
0039
co38
CU3C
003E
SO3F
Q040
0041
0042
0043
0044
0045
0046
0048
0049
0048 0

—-

C0O000000000OCO0OO0OO0OOOO0OODO0OO 8 O0O0O0DODOOOOOOONDODODOOOODOOOCOODODOOO

o
-

65800000
7006
0000
4C0000DA
0000
4COC00gF

co7e
2856
6AS4
c100
180C
4C200015
co78
4818
7101
7046
9077
4C300070
ac7a
DooB
806D
0007
Co6D
4C20001C
0868
4C040072
Co66
907%
D062
7000
7003
7030
7018
7028
9072
DOS9
C5800001
4C080070
[a]e]e}-)
80SA
DO61
D063
9058
4C300070

'Ccl101

D004
66000000
coso
D600000C
T2FF
TOFC
c101
Doaz
DO5S
7101
0843
1003
4C100050
cobcC
4C04005Q
1008

*n HDNG LIBF CARDO
LIBR
1130 1SS 01 CARDO 0 4

HURBRRFEREERRRFRRERRREERRRRRRRERERERERERRE RS RRR SN

* THIS 1130 SUBROUTINE OPERATES THE 1442 CARD #
* READER PUNCHs IT INITIATES REQUESTED OPERA-~ #
* TIONS: PROCESSES ANY COLUMN OR OPERATION *
* COMPLETE INTERRUDTSe AND AUTOMATICALLY L4
* INITIATES ERROR RECOVERY PROCEDURES. *
* *
* IDENTIFYING FEATURE - NO ERROR PARAMETER *
PYT IS T S SIS SRS LSS SR SR S a2 S A 2 et ot nd sl
* LOADER DEFINED LOCATIONS *
PTYSSse eSS YL ST RSS2SR S22 2222 S22 XSS 8l sl d s
CARDC STX 1 CA30+1 LIBF ENTRANCE (+0)
LINK LDXxX I1 O LOADER STORES TV ADDR (+2)
MDX CAl0
INT1 DC o] COLUMN INTERRUPT (+4)
BSC L NT1a4a
INT2 DC [¢] OP CMPLTE INTERRUPT (+7)

BSC L NTI10
TN I T TN T AT U 336338 T I IR NN
* L1BF PROCESSING *
HRERERFUERRERRERERREF RN RRERRRERREFERRRRRRRRRRRRER NN

* THIS PORTION STORES CALLING SEQUENCE .INFO *
* AND CHECKS THE DEVICE STATUS BEFORE ANY [/0 »
* OPERATION IS INITIATEDe A CALLING ERRCR OR *
* NOT READY 1442 CAUSES AN ERROR EXIT TO *
* LOCATION 41e IF THE OPERATION wiLL CAUSE *
* INTERRUPTSs THE ROUTINE 1S5 SET BUSY AND THE #»
* 10CS COUNTER 1S INCREMENTED TO INDICATE *
* INTERRUPT{S) PENDINGe »
*Il**l*{iii*l*{!}iI'&l'ﬁ****’il!}llli!fl**'ll*llili
CAl1Q0 sSTO TEMP SAVE STATUS

STS CA32

STX 2 CA31+1

LD 1 0 X1= ADDR OF CALL+]

SRA 12 . IS FUNCTION TEST

BSC L CAl14.2 NO

LD BUSY YESes 1S ROUTINE BuUSY

8sc +=

MDX 1 +1 NOe EXIT TO CALL+3

MDX CA28 YESs EXIT TO CALL+2
CAta s DO0OO4 1S FUNCTION LEGAL

BSC L CA40+2- NO+ ERROR

A H7003

STO CA20

A) CONST

sTo CcA!8
cals LD BUSY 1S ROUTINE BUSY

BSC L CAl1S.Z YESs WAIT TIL NOT
CA17 XIO SENSE-1 1S DEVICE READY

BSC L CA42.E NO+ ERROR

LD SENSE SETUP CONTROL [0CC
cAl8 S SETUP

STO INIT
CA20 MDX CA20+1 WHAT 1S FUNCTION

MDXx CA21 = GET

MDX CA36 = PUT

MDX CA2S = FEED

MDX CA26 = STK
caz21 s SETUP+4 GET FUNCTION

sS70 COLM+1 SET uP READ 1,0
CA218 LD I

BSC L CA4OD++ = ERROR IF ZERO OR NEG

STO CA22+1

A DoocC1 SAVE WORD COUNT +1

STO COUNT BECAUSE DECREMENT IS

sSTO RSTRT BEFORE COLUMN READ

S 00081

BSC L CA40e2- = ERROR If OVER +81

LD 11

sTO CA23+1
CA22 LDX L2 O

LD D00OO01
CA23 STO L2 0 STORE +1 IN DATA AREA

MDX 2 -1 (= NOT READ INDIC FOR

MDX CA23 SPEED CONVRT SBRT}
CA24 LD 11 SAVE DATA ADDRESS

sSTO coLM

570 RSTRT+1

MDX 1 +1 SET X1 TO SKIP 2ND PARAM
CA25 XIO SENSE-1

SLA 3 1S LAST CARD IND ON

BSC L CA25B+~- NO

Lo CAZ0 . I'S FUNCTION GET OR FEED

BSC L CA25SB+E NO

SLA 8 1S FUNCTION GET

Writing ISSs and ILSs (C/PT System)

CRDO0001
CRDOO00OO2
CRDOO0QO03
CRDOCO04
CRDO0V0OOS
CRDOOO0VSE
CRD0OCOO7
CRDO000O8B
CRDO0VO0S
CRDOGO1O
CRDOOO11
CRDO0CO12
CRDOOO13
CRDOO0O14
CRDOOO15
CRDOO0O16
CRDO0OO17
CRDOOO18
CRDOOO19
CRDOO020
CRDOOO21
CRDOOO22
CRDOOCO23
CRDO0OO24
CRDOOO25
CRDO0026
CRD0OO0O27
CrRDOOOZ28
CRD0O0029
CRDO0OO30
CRDOOO31
CRDOGO32
CRDOO033
CRDQOCO34
CRDOCO33
CRDO00 36
CRDOCO37
CRD0O0038
CRD0O0039
CRD0OO0OA0
CRD0O0041
CRD0OO042
CRDO00A43
CRDOO0AA
CRD0O004S
CRDO0046
CRDQOCA7
CRDO0048
CRD0OO00AS
CRDO0O0OS0
CRD0O0OOS1
CRDO00S2
CRD0O00OS3
CRDO0O0OS4
CRDO0O0SS
CRD0O0O0S6
CRDO00S57
CRDOOOS8
CRDOO0OS?
CRDO006O
CRDOO061
CRDOOO62
CRD0O0063
CRDOO0OE4
CRDO0O06ES
CRD0O0066
CRDO0067
CRDO0O0O68
CRDOO0O069
CRDO0O0O70
CRDO0071
CRDOOO72
CRDOO0O73
CRDO0O0O74
CRDO0OO75
CRD0OOO76
CRDOOO77
CRDOOOT8
CRDOOO79
CRDO0O0O8BO
CRDOOOS81
CRDOOO82
CRDO00OB3
CRDOOOBS
CRDOO0OSBS
CRDOOOBE
CRDOO0O87
CRDOOOSS

115

oaac
004D
0O4E
004F
0050
ous2
0053
0054
0085
0056
0058
0059
005A
vosB
00s¢C
00sD
00SE
0060
o062
0063
0065
0066
0067
0069
0068
oo06c
0060
006E
006&F
0070
0071

0072
0073
007S
0076
0078
0079
0078
0o7¢
007D
007€
0080
cos1

oos2
o082
o083
0084
008s
ocee
0087
0oas
0089
oo8Aa
o088
oco8c
008D
008E
008F
0090
0091

0092
0092
0094
0095
0096
0097
o098
0099
009A
ooss
GO9C
009D
009E

116

-

- O

[=]Xe] 8 000000000000V O0LOOOOOODONDOOOOOODOOOOOODOO0OQ

0O0000O0O0O0O0O00O0O0O0O0OOODOOO0OO0OOOOODOO =

4808
T1FF
0838
702C
74010032
1000
€038
D035
CO3F
4C20005A
0820
7001
oB2F
7101
coz29
6906
65000000
66000000
2000
4C000000
9038
DO1E
CS800001
4C080070
poze
Do2a
9021
4808
7000
co21
7008
1801
4C04001F
1003 -
4C10007C
COAC
4C04007C
0019
cO1a
71FF
6D000028
6129
7008

0000
oo82
0000
0000
0000
0000
0400
2075
1700
0000
1402
0001
0004
0008
0050
0051
1000
1001
7003
0000
0000
0000
0000
0000
02FC
02FF
02FE
0280
02048
0301

+ CA2SB

caze6

CA27
CAZ28

CA29
CA30
CA31
CA32
CA3s
CA36

CAa0

CA&2

CAA43
CAaq

*

ADDR
CHAR
coLm

TEMP

INIT

CONST
SENSE
BuUsYy

FEED

00001
Dooo4
pooos
00080
Doo81
H1000
H1001
H7003
COUNT
ERROR
INDIC
RSTRT

SETUP

BsC +
MDX 1 -1 YESe SET XRl = LIBF+]
x10 FEED-1 EJECT CARD
MDX CAa3
MDX L 50e¢+1 INCREMENT 10CS COUNTER
NOP
LD DO0O1
STO BUSY SET ROUTINE BUSY
LD ERROR
BSC L CA27.2
X110 INIT-1 INITIATE 1,0
MDX caza
xt0 FEED~1
MDX 1 +1
LD TEMP
STX 1 CA34+1 SET EXIT TO SKIP 1ST PARAM
LDX Lt O RESTORE STATUS
LOx Lz 0
LDS o
BsSC L O EXIT
s SETUP+S
sTO COLM+1 SETUP PUNCH 1/0
LD 11
BsC CAA0++ * ERROR iF ZERO OR NEG
sSTO COUNT
STO RSTRT SAVE WORD COUNT
S Doo8O DO NOT PUNCH OVER 80 COL
B8sC +
MDX- CA24
LD H1001 ERROR CODE ~ ILLEGAL CALL
MDX CAaa
SRA 1 1S DEVICE BUSY
BSC L CAI7+E YESes WAIT TIL NOT
SLA 3 1S DSW ERROR IND!C ON
BSC L CA43.- NO
LD CA20 YESs 1S FUNCT GET/FEED
8SC L CA43.E NO
570 ERROR YESe INDIC SKIP ST CD
LD H1000 ERROR CODE - DVCE NOT RDY
MDX 1 -1
STX L1 a0 STORE CALL ADDR IN a0
LDX 1 a1 SET EXIT FOR 41
MDX CAZ29
(2T ITTZIIIILTZIIL SIS LS S22 22 2 X222 SRR 2 X 2 2 s)
CONSTANTS *
RBREARRBERREERRRRERERRER AR RERRRERRERFRRRRNRRR RN RS
BssS E O
OC CHAR-1 ADDR TO REPLACE O/P AREA
DC o TEMPORARY REGISTER [+
oC o 10CC FOR COLUMN 1/0 E
DC o o
oC 0 TEMPORARY STORAGE
ocC 70400 I0CC TO INITIATE 1/0 o]
DC SETUP-CA18-1+/2000
DC /1700 SENSE DSW WITHOUT RESET O
DcC o ROUTINE BuUSY INDICATGCR
DC 71402 10CC TO FEED ! CARD]
pC +1
DC +4
DC +8
DC +80
21+ +81
o] /71000
DC 71001
OC /7003 INSTRUCTIONS = MDX X +3
DC o NOe WORDS TO XFER
DC o SKIP ONE CARD INDIC
DC o] FEED CHK (RD STATION) IND
DC 0 RESTART INFO — WORD COUNT
DC [} DATA ADDR
ocC 702FC INITIATE [0OCC SETUP - GET
3] /02FF - PUT
2] /02FE - FEED
DC 70280 - STK
DC 70204 COLUMN 10CC SETUP - GET
DC /0301 - PUT

CRDOCO8Y
CRDO0090
CRDO0OO9!L
CRDO0O0O92
CRD0O0093
CRDO0O0O94
CRD0O009S
CRDODO96
CRDOCO97
CRDOOCO98
CRDOO0S99
CRDOO100
CRDOOC101
CRD0OO102
CRDOO103
CRDOO104
CRDOO10S
CRDOO106
CRDOO107
CRDOO108
CRD0QO109
CRDOO110
CRDOO111
CRDOO112
CRDOO113
CRDOOL 14
CRDOO0115
CRDOOt 16
CRDOO117
CRDOO118
CRDOO119
CRDOO120
CRpoOO121
CRDOO122
CRDOO123 -
CRDOO124-
CRDOO125
CRDOO126
CRDOO127
CRD0O0128
CRD0O0O129
CRDOO1 30
CRDOO131
CRDOO132
CRDO0133
CRDOO! 34
CRDOO135
CRDOO136
CRpOO137
CRDOO1238
CRDOO139
CRDOO140

‘CRDOO141

CRDOO142
CRD0O143
CRDOO1 44
CRDOO145
CRDOO146&6
CRDOO147
CRD0O148
CRDOO149
CRDOO150
CRD0OO0151
CRDOO1S2
CRD00153
CRDOO154
CRDOO1SS
CRDOO! 56
CRDO0157
CRDOO158
CRDO0159
CRDOO1 60
CRDOO161
CRDOO162
CRDOO163
CRDOO164

LTT (wo3sAs 1d/D) SSTII pue SgSI Butitam

1$52000u)
05200a9>
6920004
8520004>
L62000H>
9v20004D
S200Qx40
©v52000HD
€520002D
2v2000u>
19200045
00200QuD
6€2000HD
8€200Q¥D
LE2000MD
9£200QuD
S€200QuD
$E2000HD
££20008D
2€200Q8)
1€200QuD
0€200a¥D
62200QYD
g2200Qud
L220008D
9220004D
$2200Q4D
2200042
€2z00ay>
22200082
12200042
02200082
61200QuD
81200QuD
L12000MD
91200Qu>
€120008>
v1200Qu>
€120008>
21200082
11200089
012000dD
60200aM>
802000u>
1020004
9020008
5020004)
»0200032
£020008D
2020008)
10200QuD
00200Q2D
66100Q8>
8610008
161000y
96100QuD
S610008D
+61000HD
£61000uD
2610004D
16100082
0610008D
681000
8810004
L8100G8D
9810008
S8100a4>
ve1000uD
£8100a4>
2810004D
18 100Qy>
0810008
6L 10008
841000y
LL100a3D
9L i00Qud>
S4100Q4D
L 10008D
€4 100QxD
2L100QuD
t2100aHD
0L100QH>
69100Q8D>
89 100QuD
1910002
99100aMD
9100QYD

) aN3
L11x3 TiNI 1 0S8 22IN
0/1 NWNTIOD 31N33X3 W03 01X 02IN
NWNTI0D LX3N HOd ¥0Qv 13S 1+44WI03 1 XaWw BIIN
NOI4V20T w102 oLs
ABVHOdWIL WOHA HONN saav a1
dvHD ols
viva 80000 H0
700 NI (21 118) Lig w03 1 a1
HONNd dOLS 3¥OLS *ON 1+*W100 T xaw SILIN
102 ix3N 221N Xaw
dIdS OL 135S *S3A T+91NNOD 1 XOW
dH3ILNI 10D Qv3d SIHL S ~*91IN 1 2SB
S3A 81N Xaw
SS3008d OL $70D 3MOW ANV 1-%1NNOD 71 XaW
13539 HLIM MSQ 3SN3S 1-8VHD 01X
1dNEY¥ILINT LS3N03Y NWNT0D dYHD 0LS wlIN
La 2222 22 S T s i SRR IR 2 R RS R L R

* *1lgNYYIANT 3L3TGWOD dO Nv JAVILINI OL
2bovl 3HL OL N3AID SI NOILYIIGNI NV *Q3IHINNG
* S1 Q31S3N038 NWNTIOD 1SV 3HL NIHM *and30
* ASHL SV 440 O3INHNL ATSdH3IW 3uV SLdNHY3LNI
NWNT0D ONINIVWIN 3kl *GV3d N3A38 SVH SNWNTI0D
* 40 °ON G3.S3ND3Y 3H1 ¥31d4v *00 3NILNOHENS
* TJIAIT UUILIN] WOHS O3NIIN3 S1 NOIL¥Od SIHL
LTy N S IR T Ty Y

K ok ok ok ok kK &

* ONISS3D0NY LaNHAILNI NWNTI0D *
LR 222222 SIS S SRS S SRL SIS SIS LS SRS S ST S 2L L ¥
2lIN XAW
SI1ONI 40 1 118 43S goHY3 01S
£00LH a7 3CIUN
(aQ¥) MHD Q4 d1 dINS ON J4ZILN 1 288 8CIIN
L1x3 ZINl 1 DSB8
NOILV¥Y¥3I4O O/ FLVILINI 1—-11INI1 or1x
W02 ol1s
1+1815d a
ANL3Y 804 dNL3S LNNOD oLs
LUiSH a1 EILN
24Nl 1 DS8e
auvd 1St dINS 1-G334 o1Xx
OoN -+¢CIIN T D2S8
AMYSSIO3N dINS aMyD 51 HouN3 an
AQY3Y H¥30vVIAN Il LIVA 3%214N 1 DSE8
1-3VHD 01X ZIiN
qayYd 1Sl dINS *ON -+*3C1IN 1 25"
W02 403
NI 'Qv3d 703 3NO SvM 1+1815Y a1l
S3A 3*6C1IN 1 Ds8
Q334 15NN SI | vus
dINS LNOGQ *S3A J*21AN T DSB8
HONNd 1ONNS S1 LINI a1
OND (V1S Q¥) »HD a3 3AVS ‘ G ¥IS LILIN
3014N XOW
ad> 1SV 123r3 *S3a 1-G334 oIx
OoN -+ 258
1Nd NOELONNS S1 W02 ¥03
10000 v
yaav Q1 XOlIN
1IX3 2iNI 1 oS8
ASNE 3NLLNOY ¥V3ID ASNB 0is
91 vys
INNOD SJ0I LN3W3NO3a <ON
LONNS ILYNIWN3L *ON . 1-%05 71 XOW 301IN
1ONN3 IAVILIND S3A J¢21IN T 2SS
HouN3 01S
91 vus
dO dIMS SIHL SVYM *S3A 2 vIs
doHY3 al
onvD LSV SON +Z*X01IN 1 DOS8 801IN
HMOMM3 *ON J*11IN 1 DSE
30 NOlLlvy3do St € vIIs
13538 HLIM MSQ 3SN3S 1-2VYHD o1x
¥YHD [+38
LNEY¥3INT 313dW0D ¥3dO 10000 ‘v OlIN
(222X NLTI SRS ST SRS IS SIS R S SR E Ll st
» *Q3LVILINI-38 SI NOIlLwd3d0 0/1
IML OGNV QINOI11SOd 3¥V SA¥VYD 3HL IWIL HOIHA

* 1v *AOQV3Y S3IW0D38 2vvl IHL GNv O3NIAUILNI]
& SYH HOLWH3dO 3HL T1ANN SHOOT INILNOHENS IHL
* ASIMBIHL0 *QALIVIWOD ONISSIDONHG LaNHYIIN]
* 3ivO1aN] OL GILNIW3HD3AQ SI ¥ILNNOD
* S$201 IHL ANV ASNE L1ON 13§ SI 3INILNOY 3HL
% Q3123130 N33E SVH YOUN3 ON JI *¥0 3INILOOUS
* T3A3T BH3INI WOodd O3YILINI SI NOILHOd SIHL
ERBRBRARBRESREREREERRERRER LR ERRRRRRERERERERERERRB RS
»* ON1SSID0¥d LdNUBILNI I13TWOD dO *
e T et ST N Al L A it sad il

a ok ok ok Kk Kk ok ok XK

v000083%
5680
¥80010vL
8600
L60D
660Q
sve3
©8000862
»80010vL
go00L
760010%L
©300012v
Q00
v600449L
9vE0
evoa

a30L
2800
8802
$300200%
4000082"
€860
2400
L2302
v200
8203
L000082¢
3680
3200810%
2202
S200v00Y
2880
£LQ00810%
1204
2Q02
SAoov0Ov
iog1t
SO00v00¢
9202
S001
€404
1080
=281
aso4
94d08
al200
£000082Y
8000
o181
0001
2t004dvL
§300202¢
v30Q
olgt
2001t
a30d
v800820%
v800202%¢
€001
0380
2300
2308

Q
OC00DO0OO0DOO0DCQOQO 3 [N -NoNaN«NeleNoNoleNoNeNeNoloNeReloNeleRelRol ool eNe e loNe o oo« e ie)

24C¢0
4300
3300
2300
9320
v30D
630¢C
8300
9300
%320
€300
1300
4doo
3000
2400
8d00
vaoo

6000
8do00
L0Q00
sQ00
€Qoo
2300
1qoo
0aoo
4200
3200
3200
8200
6200
8200
9200
€200
€200
2200
1200
4800
3800
2800
8800
v800
6800
8800
L800
9800
S800
800
2800
1400
0800
4v00
avoo
gvoo
Yvoo
6Y00
B8v00
LVY00
Sv00
£V00
2v00
tvoo
ovoo
4600

Appendix A. Listing of Subroutines

Figure 23 is a listing of the Card/Papér Tape System Subroutine Library.

Subroutine

Ném.e;‘ .

The Disk Monitor 2 System Library is listed in Figure 24.

Subroutines Required

FORTRAN

Called by CALL

Loader Reinitialization (curd only)
Data Switch

Sense Light On
Overflow Test

Divide Check Test
Function Test

Trace Start

Trace Stop

integer Transfer of Sign
Real Transfer of Sign (E)
Reo! Transfer of Sign (S)

Called by LIBF (Card/Paper Tape)

Real IF Trace (E)

Real IF Trace (S}

Integer IF Trace (E)

integer IF Trace (S)

Integer Arithmetic Troce (E)
integer Arithmetic Trace (S)
Real Arithmetic Trace (E)
Real Arithmetic Trace (5)
Computed GO TO Trace (E)
Computed GO TO Trace (S)
Trace Test=Set Indicator
Pause

Stop

Subscript Calculation

Store Argument Address

1/0 Linkage (E)

1/0 Linkege (S)

Card Input/Output
Printer-Keyboard Output
Printer~Keyboard Input/Output
1132 Printer Output

Paper Tape Input/Qutput

Card Code-EBCDIC Conversion
Console Printer Code Table
Card-Keyboard Code Table
Address Calculation

LOAD
DATSW
SLITE, SLITT
OVERF
DVCHK
FCTST

TSTRT
TSTOP
ISIGN
ESIGN
FSIGN

VIAR, VIARX
WIAR, WIARX

VARI, VARIX

WARI, WARIX

VGOTO

WGOTO

TTEST, TSET

PAUSE

STOP

SUBSC

SUBIN

VFIO, VRED, VWRT, VCOMP
VIOAL, VIOAF, VIOFX,VIOIX,
VIOF, VIO!

WFIO, WRED, WWRT, WCOMP
WIOA], WIOAF, WIOFX,
WIOIX, WIOF, WIOI

CARDZ

WRTYZ

TYPEZ

PRNTZ

PAPTZ

HOLEZ

EBCTS

HOLTB

GETAD

None
None
None
None
None
None
TSET
TSET
None
ESUB, ELD
FSuB, FLD

TTEST, VWRT, VIOF, VCOMP

FSTO, TTEST, WWRT, WIOF, WCOMP
TTEST, VWRT, VIOF, VCOMP

TTEST, WWRT, WIOI, WCOMP
TTEST, VWRT, VIOI, VCOMP

TTEST, WWRT, WiOI, WCOMP

ESTO, TTEST, VWRT, VIOF, VCOMP
FSTO, TTEST, WWRT, WIOF, WCOMP
TTEST, VWRT, VIOI, VCOMP

TTEST, WWRT, WIOI, WCOMP

None

None

None

None

None
FLOAT, ELD/ESTO, IFIX
FLOAT, FLD/FSTO, IFIX

HOLEZ

GETAD, EBCTB
GETAD, EBCTB, HOLEZ
None

None
GETAD, EBCTB, HOLTB
None

Figure 23. C/PT System Subroutine Library (Part 1 of 3)

118

Subroutine

Names

Subroutines Required

L

ARITHMETIC AND FUNCTIONAL
Called by CALL

Real Hyperbolic Tangent (E)

Real Hyperbolic Tangent (S)

Real Base to Real Exponent (E)
Real Base to Real Exponent (S)
Real Natural Logarithm (E)

Real Natura! Logorithm (S)

Real Exponential (E)

Real Exponential (S)

Real Square Root (E)

Real Square Root (S)

Real Trigonometric Sine/Cosine (E)
Real Trigonometric Sine/Cosine (S)
Real Trigonometric Arctangent (E)
Real Trigonometric Arctangent (S)
Fixed-Point Square Root

Real Absolute Value (E)

Real Absolute Value (S}

Integer Absolute Value

Real Binary to Decimal/Real Decimal to Binary

Called by LIBF

Get Parameters (E)

Get Porameters (S)

Real Base to Integer Exponent (E)
Real Base to Integer Exponent (S)
Real Reverse Divide (E)

Real Reverse Divide (S)

Real Divide (E)

Real Divide (S)

Real Multiply (E)

Real Multiply (S)

Real Reverse Subtract (E)

Real Reverse Subtract (S)

Real Add/Subtract (E)

Real Add/Subtract (S)

Load/Store FAC (E)

Load/Store FAC (S)

Fixed Point Double Word Divide
Fixed Point Double Word Multiply
Fixed Point Fractional Multiply {short)
Real Reverse Sign

Integer to Real

Real to Integer

Fixed Integer Base to an Integer Exponent
Normalize

Rea! Arithmetic Ronge Check

DUMP
Called by CALL

Dump Status Area
Selective Dump on Console Printer
Selective Dump on Printer

INTERRUPT LEVEL*

Level 0

Level 1

Level 2

Level 3

Level 4°

*These subroutines are not identified by name in the

CONVERSION
Called by LIBF

Binary to Decimal

Binary to Hexadecimal

Decimal to Binary

EBCDIC to Console Printer Code

IBM Card Code to or From EBCDIC

IBM Card Code to Console Printer Code

ETNH, ETANH
FTNH, FTANH

EAXB, EAXBX

FAXB, FAXBX

ELN, EALOG

FLN, FALOG

EXPN, EEXP

FXPN, FEXP

ESQR, ESQRT

FSQR, FSQRT

ESIN, ESINE, ECOS, ECOSN
FSIN, FSINE, FCOS, FCOSN
EATN, EATAN

FATN, FATAN

XSQR

EAVL, EABS

FAVL, FABS

IABS

FBTD, FDTB

EGETP
FGETP

EAXI, EAXIX

FAXI, FAXIX

EDVR, EDVRX

FDVR, FDVRX

EDIV, EDIVX

FDIV, FDIVX

EMPY, EMPYX

FMPY, FMPYX

ESBR, ESBRX

FSBR, FSBRX

EADD, EADDX, ESUB, ESUBX
FADD, FADDX, FSUB, FSUBX
ELD, ELDX, ESTO, ESTOX
FLD, FLDX, FSTO, FSTOX
XDD

XMD

XMDS

SNR

FLOAT

IFIX

FIXI, FIXIX

NORM

FARC

DMP80
DMTX0, DMTDO
DMPX1, DMPD1

card and paper tape systems

BINDC
BINHX
DCBIN
EBPRT

HOLEB
HOLPR

EEXP, ELD/ESTO, EADD, EDIV, EGETP
FEXP, FLD/FSTO, FADD, FDIV, FGETP
EEXP, ELN, EMPY

FEXP, FLN, FMPY

XMD, EADD, EMPY, EDIV, NORM, EGETP

FSTO, XMDS, FADD, FMPY, FDIV, NORM, FGETP

XMD, FARC, EGETP .
XMDS, FARC, FGETP

ELD/ESTO, EADD, EMPY, EDIV, EGETP
FLD/FSTO, FADD, FMPY, FDIV, FGETP
EADD, EMPY, NORM, XMD, EGETP
FADD, FMPY, NORM, XMDS, FSTO, FGETP
EADD, EMPY, EDIV, XMD, EGETP, NORM
FADD, FMPY, FDIV, XMDS, FSTO, FGETP
None

EGETP

FGETP

None

None

ELD
FLD
ELD/ESTO, EMPY, EDVR
FLD/FSTQ, FMPY, FDVR

ELD/ESTO, EDIV
FLD/FSTO, FDIV
XDD, FARC
FARC

XMD, FARC
XMDS, FARC
EADD

FADD

FARC, NORM
NORM, FARC
None

None

XMD

None

None

None

NORM

None

None

None

None

None
WRTYO
PRNTI

None
None
None
None
None

None
None
None
EBPA, PRTY
EBPA, HOLL
HOLL, PRTY

I Figure 23. C/PT System Subroutine Library (Part 2 of 3)

Appendix A. Listing of Subroutines

Subroutine

Names

Subroutines Required

Called by LIBF (Cont'd)

Hexadecimal to Binary

EBCDIC to or from PTTC/B

1BM Card Code to or from PTTC/8
PTTC/8 to Console Printer Code
1BM Card Code to or from EBCDIC
EBCDIC and PTTC/8 Table

iBM Cord Code Table

Console Printer Code Table

DISK SUBROUTINE INITIALIZE
Called by CALL

Set Pack Initialization Subroutine

INTERRUPT SERVICE

Colled by LIBF
Card
Disk
Paper Tape
Plotter
1132 Printer
Keyboard/Console Printer

PLOTTER SUBROUTINES

Standard Plot Calls

Standard Precision Charocter

Standard Precision Scale

Standard Precision Grid

Standard Precision Plot
Extended Plot Calls

Extended Precision Character
Extended Precision Scale
Extended Precision Grid
Extended Precision Plot

Common Plot Call
Point Characters

Standard Plot LIBFs
Standard Precision Annotation

Standard Precision Plot Scaler

Extended Plot LIBFs

Extended Precisian Annotation
Extended Precision Plot Scaler

Common Plot LIBFs

Pen Mover
Interfoce
interrupt Service

Synchronous Comrunications Adaptor Subroutines

Synchronous Communications Adaptor (SCA)
STR Mode

SCA (BSC, Point-to-Point Mode)

SCA (BSC, Multi-Point Mode)

1132-SCA Print with Overlop

4 of 8 Code to EBCDIC, EBCDIC to 4 of 8 Code
4 of 8 Code to IBM Card, I1BM Card Code
to 4 of 8 Code

4 of 8 Code to Table of Displacements
Table of IBM Cord Codes

Taoble of 4 of 8 and EBCDIC Codes

HXBIN
PAPEB
PAPHL
PAPPR
SPEED
EBPA
HOLL
PRTY

SPIRO, SPIR1, SPIRN

CARDO, CARDI

DISKO, DISK1, DISKN

PAPTI, PAPTN
PLOTI
PRNTI
TYPED, WRTYO

FCHAR
SCALF
FGRID
FPLOT

ECHAR
SCALE
EGRID
EPLOT

POINT

FCHRX, FCHRI,

WCHRI

FRULE, FMOVE, FINC

ECHRX, ECHR!,
ERULE, EMOVE,

XYPLT
PLOTI
PLOTX

SCATI

SCAT2
SCAT3
PRNT2
EBC48

HOL48

HXCV
HOLCA
STRTB

VCHRI
EINC

None
EBPA
EBPA, HOLL
None
None
None
None
None

DISKO, DISK, DISKN

ILS00, 1L504
1502
ILSO4
ILS03
ILSO1
HOLL, PRTY, ILS04

FSIN, FCOS, FPLOT, FCHRX, ELD, FSTOX, FSTO
FRULE

FPLOT, POINT, FADD, FLD, FSTO, SNR
FMOVE, YPLT, PLOTI

ESIN, ECOS, EPLOT, ECHRX, ELD, ESTO, ESTOX
ERULE

EPLOT, POINT, EADD, ELD, ESTO, SNR
EMOVE, XYPLT, PLOTI

PLOTI

FLOAT, FMPY, IFIX, FADD, FLDX, FINC, XYPLT,
PLOTI, FSTOX, FLD

FLDX, FSUBX, FMPYX, FLD, FSTOX, FMPY,
IFIX, FADD

FLOAT, EMPY, IFIX, EADD, ELDX, EINC, XYPLT,
PLOTI, ESTOX, ELD

ELDX, ESUBX, EMPYX, ELD, ESTOX, EMPY,
IFIX, EADD, ESTO

PLOT!
PLOTX

10L0G/CPLOG, 1LSO1

JOLOG/CPLOG, ILSO
1L501

1L50)

HXCV, STRTB

HXCV, HOLCA, STRTB

None
None
None

Figure 23. C/PT System Subroutine Library (part 3 of 3)

120

System Library Programs Names Type and Subroutines IC Field
Subtype Regquired (73-75)

MAINLINES

Lisk Maintenance Proqrams

Lisk Initialization DI SC 2 - SYsup, RCREC, uecC
CISKZ

Print Cartridge ID ILCENT 2 - CALPR, LCISK2Z UeF

Change Cartridge ID 1D 2 - RCREC, CALPR U6G
LISKZ

Lisk Copy coPY 2 - RDREC, DISKZ [+3:]

Writer Sector Addresses in WS ADRWS (cannot 2 - Linked from u6a

. be called) DUP DWACR

Felete CIR DICIB 2 - RCREC, L[1ISKZ uer

Lump System Location

Equivalence Table CSLET 2 - FSLEN, LISK2Z U6E

Library Maintenance MOD SF 2 - L1SKZ U6 1

System Maintenance MOTCIF 2 - DISK2 U6H

Lisk Data File Conversion? DFCNV 2 - D1SK1, ELD WI1L
FLL, NORM

Paper Tape Utility

Keyboard or 1134 Input/Console PTUTL 2 - PAPHI., PAPPR, U6J

Printer or 1055 Output PAFT1, 1YPEOD

SUBROUT INES

Utility Calls

Selective Cump on Console Printer DMIDO, DMTXO 4,0 WRTIYO USEe

Selective Dump on 1132 Printer DMPD1, DMEX1 4,0 PRNT1 UsC

Cump 80 Sukbroutine DMP80 4,0 None U5a

Update DCOM SYSUP 4,0 FSLEN, FSYSU USE

Call System Print CALPR 4,0 FSLEN U7Aa

Read *1ILC Record RDREC 4,0 FSLEN u7cC

Fetch Phase 1ls or, Fetch Syster FSIEN, FSYSU 4,0 CI1ISKZ U7E

Subroutine

Cummy Log Subroutine for SCA IOLOG/CPLOG 4,0 Ncne

Subroutines

Common FORTRAN Calls

Test Data Entry Switches DATSW 4,8 None T3A

Livide Check Test DVCHK 4,8 None 13B

Functional Frror Test FCIST 4,8 None T3C

Over flow Test OVERF 4,8 None T3E

Selective Dump PDUMP 4,0 SF10, S10R1, T3F
SIORF, SWRT, :
SCOMP

*Not distributed to papertape users.

Figure 24. 1130 Disk Monitor Version 2 System Library (Part 1 of 9)

Appendix A. Listing of Subroutines

121

System Library Programs Names Type and Subroutines 1D Field
Subtype Required (73-75)
Common FORTRAN Calls
{continued)
Sense Light Control and Test SLITE, SLITT 4,8 None T3G
FORTRAN Trace Stop TSTOP ' 4,8 TSET T3H
FORTRAN Trace Start TSIRT 4,8 TSET 731
Integer Transfer of Sign 1SIGN 4,8 None T3D
Extended Arith/Funct Calls
Extenled Precision Hyperbolic Tangent ETANH, FTNH 4,8 EEXP, EADD, S21
ELCIV, EGETP,
ELLC/ESTO
Fxtended Precision A**B Function EAXB, EAXBX 4,8 EEXP, ELN, s2C
EMPY
Extended Precision Natural Logarithm ELN, EALOG 4,8 XMD, EADD, S2F
EMPY, EDI1V,
: NORM, EGFTP
Ixtended Precision Exponential EEXP, EXPN 4,8 XML, FARC, s2D
EGETP
Extended Precision Square Roct ESOR, ESORT 4,8 EADD, EMPY, S2H
FLIV, EGETP,
ELL/ESTO
Extended Precision Sine-Cosine ESIN, ESINE, 4,8 EADD, EMPY, S2G
ECCS, ECCSN NORM, XMD,
EGETP
Extenied Precision BArctangent EATN, EATAN 4,8 EADD, EMPY, S2B
EDIV, XMD,
EGETP, NORM
Extended Precision Absolute Value EABS, EAVL 4,8 EGETP S2A
Function
FORTRAN Sign Transfer Calls
Fxtended Precision Transfer cf Sign ESIGN 4,8 ESUB, ELD S2F
Standard Precision Transfer cf Sign FSIGN 4,8 FSUB, FLD R2F
Standard Arith/Funct Calls
Standard Precision Hyperbolic Tangent FIANH, FINH 4,8 FEXP, FADD, R21
FLIV, FGETP,
FLL/FSTO
Standard Precision A*#B Function FAXB, FAXBX 4,8 FEXP, FLN, FMPY R2C
Standard Precision Natural Logarithmr FLIN, FALCG 4,8 FSTO, XMDS R2E
FADD, FMPY,
FLIV, NCRM
FGETP
standard Precision Exponential FEXP, FXPN 4,8 XMDS, FARC, R2D
FGETP
Standard Precision Square Root FSQOR, FSQR1T 4,8 FADD, FMPY, R2H
’ FD1V, FGE1TP,
, FLL/FSTC
standard Precision Sine-Cosine FSIN, FSINE 4,8 FADD, FMPY, R2G
FPCCS, FCCSEN NCRM, XMDS,
FST0, FGETP
Standard Precision Arctangent FATIN, FATAN 4,8 FATLD, FMPY, R2B
FLIV, XMDS,
FSTO, FGETP
Standard Precision Absolute Value FABS, FAVL 4,8 FGETP R2A
Function

Figure 24. 1130 Disk Moﬁitor Version 2 System Library (Part 2 of 9)

122

System Library Programs Names Type and Subroutines IT Field
Suktyre Required (73-75)
Common Arith/Funct Calls
Fixed Point (Fractional) Square Roct XSOR 4,8 None T1C
Integer Absolute Function IABS 4,8 Ncne T1B
Floating Binary/EBC Decimal FBID 4,0 None T1A
Conversions {(BIN. 10 DEC.)
FDIB
(DEC. TO BIN.)
Flipper for 1OCCAL/SOCAL Subprograms]
FLIPR 4,0 DISKZ, LISK1, UsD
or DISKN
FORTRAN Trace Subroutines
Extended Floating Variable Trace SEAR, SEARX 3,0 ESTO, TI1EST, 52J
' SWRT, S10F,
SCOMP
Fixed Variakle Trace SIAR, SIARX 3,0 TTEST, SWRT, 168
S$101, ScComp
Standard Floating IF Trace SF1F 3,0 FSTC, TTEST, R2K
SWRT, SIOF,
SCOMP
Extended Floating IF Trace SEIF 3,0 FS10, TIEST, S2K
SWRT, S10F,
SCOMP
Fixed IF Trace SIIF 3,0 TIEST, SWRT, T6C
S101, SCOMP
Standard Floating Variable Trace SFAR, SFARX 3,0 FSTO, T1EST, R2J
SWRT, SIOF,
SCOoMp
GO TO Trace SGOTO 3,0 TTEST, SWRT, 16A
S1C1, SCOMP
Nondisk FORTRAN Format 1/0
FORTRAN Format Subroutine SF10, SI0O1, 3,3 FLOAT, IFI1X, TUC
: Ss1¢ca1, SICF, ELL/FSTIC or
SICAF, SICFX, FLL/FS1G,
SCCMP, SWR1, FAUSE
SRED, SICIX
FORTRAN Find Subroutine SLCFNEL 3,1 DISKZ, DISK1, 148
cr DISKN
LCisk FORTIRAN I1/0 SDF10, STCREL, 3,1 DISKZ, DISKI1, LYY
SLWRT, SCCOM, oY DISKN,
SDAF, SDF, SDI, FAUSE
srix, SDFX,
SDAL
Unformatted FORTRAN Disk 1,0 UFI10, URED, 3,1 DISKZ, DISK1, THL
UWRT, UIOI, or DISKN,
UICF, UICAl, PAUSE
UICAF, UICFX,
UI1CIX, UCCFME,
BCKSF, ECQF,
REWND

Figure 24.

Appendix A. Listing.of Subroutines

1130 Disk Monitor Version 2 System Library (Part 3 of 9)

123

EST0, ESICX

System Library Programs Names Type and Subroutines 1D Field
Subtype Required (73-75)
FORTRAN Common L IBFs
FORTRAN Pause PAUSE 3,0 None T2A
FORTRAN Stop ST0P 3,2 None T2B
FORTRAN Subscript Displacement SUBSC 3,0 None 12D
Calculation
FORTRAN Subroutine Initialization SUBIN 3,0 None T2C
FORTRAN Trace Test and Set TIEST, TSET 3,0 None T2E
FORTRAN 1,/0 and Conversion
Subroutines
FORTRAN 1442 Input/Output Subroutine CARDZ 5,3 HOLEZ, GETAD, TSA
EECTB, HOLIB,
1LS00, 1LSO4
FORTRAN 1442 Output Subroutine PNCH2Z 5.3 HOLEZ, GETAD, 56
) EECTE, HOLIB,
. 1LS00, ILSO04
FORTRAN 2501 Input Subroutine READ Z 5.3 HOL¥Z, GETAD, TSJ
EECTR, HOLITB,
_ 1LS0Y
Disk 1/0 Routine (Part of Supervisor) DISKZ - 11502 -—-
FORTRAN Paper Tape Subroutine PAFTZ2 5,3 ILSO4 I5F
FORTRAN 1132 Printer Subroutine PRN12Z 5,3 1Ls01 TS H
Call to PRNTZ to Call to PRNT2 PRTZ2 5,3 PRNT2, ILSO0% WIK
Conversion
FORTRAN 1403 Printer Subroutine PRNZ 5,3 1LSO4 TS1
FORTRAN Keyboard-Typewriter TYPEZ 5,3 GEIAD, EECTB, 15K
Subroutine HOLEZ2, ILSO4
FORTRAN Typewriter Sukroutine WRIYZ 5,3 GETRAD, EEBCTB, TSL
1LS 04
FORTRAN 1627 Plotter Subroutine PLOTX 5,0 11503 ViL
"FORTRAN Hollerith to .EBCDIC HOLEZ 3,3 GEIAD, EBCIB, 15D
Conversion HOLTB, FAUSE
FORTRAN Get Address Routine GE'TAD 3,3 None TSC
FORTRAN EBCDIC Takle EBC1IB 3,3 None 5B
FORTRAN Hollerith Table HCL1B 3,3 None TS E
FORTRAN Multiple Terminal MICAZ 4,0 MTCAO W5C
Communications Adapter (MTICA)
Call Interface
Extended Arith/Funct LIBFs
Extended Precision Get Parameter EGETP 3,2 ELD S1E
Subroutine
Extended Precision A**1 Function EAX I, EAXIX 3,2 ELD/ESTO S1B
EMPY, EDVR
Extended Precision Divide Reverse EDVR, FDVRX 3,2 ELD/FSTO, S1D
EDIV .
Extenled Precision Float Civide ECIV, EDIVX 3,2 XDD, FARC S1C
Extended Precision Float Multiply EMPY, ENPYX 3,2 XMD, FARC S1G
Extended Precision Suktract Reverse ESBR, EXBRX 3,2 EADD S1H
Extended AdA-Suktract EADD, ESUB, 3,2 FARC, NORM S1Aa
EADDX, ESURX
Extended Load-Store F1D, EIDX, 3,0 None S1F

Figure 24.

124

1130 Disk Monitor Version 2 System Library (Part 4 of 9)

System Library Programs Names Type and Subroutines 1D Field

Subtype Required (73-75)
Standard Arith/Funct LIBFs
Standard Precision Get Parameter FGETP 3,2 FLD R1E
Subroutine
Standard Precision A#**I Function FAX1, FAXIX 3,2 FLD/FSTO, R1B
FMPY, FDVR
Standard Precision Divide Reverse FDVR, FDVRX 3,2 FLD/FSTO, R1D
: FDIV
Standard Precision Float Divide FDIV, FDIVX 3,2 FARC R1C
Standard Precision Float Multiply FMPY, FMPYX 3,2 XMDS, FARC R1G
Standard Precision Subtract Reverse FSBR, FSBRX 3,2 FADD R1H
Standard Add-Subtract FADD, FSUB, 3,2 NORM, FARC R1A
i FADDX, FSUBX ’
Standard Load-Store FlD, FLDX, 3,0 None R1F
FS10, FSTCX
Standard Precision Fractional XMDS 3,2 None S31
Multiply
Common Arith/Funct LIBFs
Fixed (Fractional) Double Divide XDD 3,2 XMD S3¢G
Fixed Point (Fractional) Double XMD 3,2 None S3H
Multiply
Sign Reversal Function SNR 3,2 None S3F
Integer to Floating Point Functicn FLOAT 3,0 NORM S3C
Floating Point to Integer Functicn IFIX 3,0 None S3D
I#*J Integer Function F1XI, FIXIX 3,2 None S3B
Normalize Sukroutine NORM 3,0 None S3E
Floating Accumulator Range Check FARC 3,2 None S3Aa
Subroutine
Interrupt Service Subroutines)
1442 Card Read Punch Input/Output CARDO 5,0 ILs00, 1ILSO4 u2a
(No erroxr Parameter)
1442 Card Read Punch Input/Output CARD1 5,0 11500, 11.S04 U2B
(Error Par ameter)
2501 Card Read Input (Nc Error READO 5.0 ILS04 : u21
Par ameter)
2501 Card Read Input (Errcr READ1 5,0 ILSOu U2M
Par amet er)
1442 Card Punch Output (No Error PNCHO 5,0 ILS00, 1LS04 U2H
Par ameter)
1442 Card Punch Output (Error PNCH1 5,0 ILS00, 1LS04 - 021
Par ameter)
Multiple Sector Disk Input/Output DISK 1 - 11502 -—
(Part of Supervisor)
High Speed Multiple Sector Disk DISKN - ILS02 -—
Input/Output (Part of Supervisor) :
Synchronous Communicaticns Adapter SCAT 1 5,0 IOLOG/CPICG, W1F
(SCA) STR Mode ILS01
SCA (BSC, Point-to-Point Mode) SCAT2 5,0 IOLOG/CPLOG, W1H
ILSO1
SCA (BSC, Multi-Point Mode SCAT3 5,0 ICLOG/CPLOG, W11
I1LSO01
Paper Tape Input/Output PAPTI1 5,0 ILSOY4 U2p
Simult aneous Paper Tape lnput/Output PAPTN 5,0 I1LS04 U2E
Char acter/Word Count Paper Tape PAPTX 5,0 ILS04 U2F
Input /Cutput

Figure 24. 1130 Disk Monitor Version 2 System Library (Part 5 of 9)

Appendix A. Listing of Subroutines 125

System Library Programs Names Type and Subroutines IC Fielad
Subtype Required (73-75)
Interrupt Service Subroutines
(continued)
Plotter Output Subroutine PLOT1 5,0 1Ls03 U2G
Plotter Output Subroutine PLOTX 5,0 ILSO03 viL
1132 Printer Output Subroutine PRNT1 5,0 1LS01 023
1132-SCA Print With Overlarg PRNT2 5,0 I1Ls01 WI1E
1403 Printer Output Subroutine PRNT3 5,0 1LSO4 U2K
Keyboard/Console Printer Input/Output TYPEO 5,0 HOLL, PRTY U2N
1LS0Y
Console Printer Output Subroutine WRTYO 5,0 1LS04 u20
1231 Optical Mark Page Reader Ingut OMPR1 5,0 ILSO4 v2C
Subroutine
MICA Base Section MT CA(Q 5,0 I1LS03, TsSMm41, WSB
TSTTY
MTCA 2741 Terminal Select TSMU1 4,0 Ncne WSD
MTCA Teletype Select TSTTY 4,0 None WSE
Conversion Subroutines
Binary Word to 6 Decimal Characters BINCC 3,0 Ncne uuB
(Card Code)
Binary Word to 4 Hexadecimal BINHX 3,0 None uuc
Characters (Card Code)
6 Cecimal Characters (Card Code) tc DCBIN 3,0 None ULG
Binary Word
EBCDIC to Console Printer Output Code EBPRT 3,0 EBPA, PRTY U3
Card Code to EBCDIC-EBCDIC to Card HOLEB 3,0 EEPR, HOLL U3B
Code
Card Code to Console Printer Output HOLPR 3,0 HOLL, PRTY u3c
Code
4 Hexadecimal Characters (Card Code) HX BIN 3,0 None u3D
to Binary Word
PTIC/8 to EBCDIC-EBCDIC to PTTC/8 PAPEB 3,0 EBPA U3E
PTTC/8 to Card Code-Card Code to PAPHL 3,0 EEPA, HCLL U3F
PTTC/8 :
PITC/8 to Console Printer Output Code PAPPR 3,0 EBPA, PRTY UG
Card Code to EBCDIC-EBCDIC tc Card SPEED 3,0 None U3H
Cole
4 of 8 Code to EBCDIC-EBCDIC to U of EBCU8 3,0 HXCV, STRTB WA
8 Code
4 ¢cf 8 Code to 1IBNM Card Code- HOL 48 3,0 HXCV, HOLCA, W1iB
IBM Card Code to 4 of 8 Code STRTE
4 of 8 Code to Table of Displacements HXCV 3,0 Ncne W1
32-Bit Binary Value to IBM Card Ccde BIDEC 3,0 None UuA
LCecimal Value
1BM Card Code Decimal Value to 32-Bit TLCECBI 3,0 Ncne UUH
Binary Value
Supplement to All Standard Z1PCO 3,0 Any Z1PCO U3l
Conversions Except Those Invclving Conversion
P1TC /8 Table
MT'CA Code Conversion FEB41, BEB41, 4,0 None W52
F41EB, BU41EB,
QEB41, CU1EB
Conversion Tables
EBCDIC and PTTC/8 ERPA 3,0 Ncne U4 K
Card Code Takle HOLIL 3,0 None uup
Console Printer Output Code 1Table PRTY 3,0 None usQ
Table of IBM Card Codes HOLCA 3,0 None W1C
Table of 4 of 8 and EBCDIC Ccdes STRTB 3,0 None wWiG

Figure 24. 1130 Disk Monitor Version 2 System Library (Part 6 of 9)

126

System Library Prcgrams Names Type and Subroutines IC Field

Subtype Required (73-175)
(” “. ZIFCQ Conversion Takles
EBCDIC to Console Printer Code EBCCP 4,0 None U4l
EBCDIC to I1IEM Card Code EBHOL 4,0 None u4g
EBCDIC to 1403 Printer Code EBPT3 4,0 None U4y
Console Printer Code to EBCLIC CPEBC 4,0 None uar
Console Printer Code to 1IBM Card Code CPHOL 4,0 None U4E
Console Printer Code to 1403 Printer CPP1I3 4,0 None U4F
Cede
IBM Card Code to EBCDIC HLEBC 4,0 None u4M
. IBM Card Code to Console Printer Code HOLCP 4,0 None 40
IEM Card Code to 1403 Printer Code HLPT3 4,0 None U4N
1403 Printer Code to EBCLIC P13EB 4,0 ‘None uus
1403 Printer Code to Console Printer PI3CP 4,0 None * U4R
Code
' 1403 Printer Ccde to IBM Card Code PTHOL 4,0 None u4T
Log_Subroutine
Durmy Log Subroutine
called by SCAT1, SCAT2, SCAT3 I0OLOG, CPLOG 4,0 None w1J
Interrurt Level Subroutines
Interrupt Level Zero Subroutine 11500 7,0 None U1A
Interrupt Level One Subroutine ILSO01 7,0 None U1B
Interrupt Level Two Subroutine (Part ILS02 7,1 None u1c
of Supervisor)
Interrupt Level Three Subroutine ILS03 7,0 None Uu1D
ﬂwm« Interrupt Level Four Sukroutine (Part ILSO4 7,1 None U1E
of Supervisor)
Special Interrupt Level Sukroutines
(Restores Index Register 3)
Interrupt Level Zero Subroutine ILSX0 7.0 None U1F
Interrupt Level One Sukroutine ILSX1 7,0 None U1G
Interrupt Level Two Subroutine ILSX2 7,0 None U1tH
Interrupt Level Three Subroutine ILSX3 7,0 None U1l
Interrupt Level Four Sukroutine ILSX4 7,0 None U1J
Standard Plct Calls
Standard Precision Character FCHAR 4,0 FSIN, FCOS, VIF

FPLOT, FCHRX,
FIrC, FSTOX,

FSIC
Standard Precision Scale SCALF 4,0 FRULE V10
Standard Precision Grid FGRID 4,0 FELICT, EOINT, V1H
FADD, FLD,
FSTC, SNR
Standard Precision Plot FPLOT 4,0 FNMCVE, XYPLT, v1I
PICT1
Extended Precision Character ECHAR 4,0 ESIN, ECOS, via
EPLOT, ECHRX,
EILC, ESTO,
ESTCX

Figure 24. 1130 Disk Monitor Version 2 System Library (Part 7 of 9)

1
i

Appendix A. Listing of Subroutines 127

System Library Programs Names Type and Sukroutines ID Field
Subtyre Required (73-75)
Standard Plct Calls
(continued)
Extended Precision Scale SCALE 4,0 ERULE VIN
Extended Precision Grid EGR1D 4,0 EPLCT, EOINT, v1ic
EALCD, ELD,
L. ESTIC, SKR
Extended Precision Plot EPLOT 4,0 ENCVE, XYPLT, vic
PLCT1
Common Plot Call
Foint Characters POINT 4,0 PICTI VM
Standard Plot LIBFs
Standard Precision Annotation FCHRX, FCHRI, 3,0 FLOAT, FMPY vViG
WCHR1 IF1X, FADD,
FILCX, FINC,
XYFLT, ELOTI,
FSICX, FLUC
Standard Precision Plot Scaler FRULE, FMOVE, 3,0 FILX, FSUBX, A\'ANS
FINC FNFYX, FLD,
FSICX, FMPY,
1IF1X, FADD
Extended Plct LIBFsS
Extended Precision Annotation ECHRX, ECHRI, 3,0 FLOAT, EMPY, vViB |
VCHR1 IF1X, EALCD,
EILX, EINC,
XYFIT, ELOTI,
ESTICX, ELD
Extended Frecision Plot Scaler ERULE, EMOVE, 3,0 EIDX, ESURX, V1E
EINC . ENMPYX, ELD,
ESTCX, EMPY,
1F1X, EALCD,
ESTIC
Cormon Plct LIBFs
Pen Mover XYELT 3,2 PLOTI v1ip
Interface PLOT1 3,2 PLOTX V1K
Interrupt Service PLOTX 5,0 11503 V1L
Disk_1/0
Sequential Address SECOP, SEQIO, 3,0 CI1SKZ W2F
SEQCL
Direct Access CAOPN, LAI1O, 3,0 DISKZ W3E
DACLS
1SAM Load 1SLDO, 1ISLD, 3,0 DISKZ W3r
ISLCC
ISAM add 1SADbO, 1ISAD, 3,0 C1SK2Z W3C
1SADC
ISAM Seguential ISEQO, 1SE1L, 3,0 DI1SK2 W3E
ISEQ, 1SEQC
1SAM Random 1ISRDO, 1SRD, 3,0 DISKZ w3a

ISRDC

Figure 24.
128

1130 Disk Monitor Version 2 System Library (Part 8 of 9)

System lLibrary Programs Names Type and Subroutines ID Field
Subtype Required (73-75)
RPG LCecimal Arithmetic
Add, Subtract, and Numeric Compare? RGADD, RGSUB, 3,0 None W2T
RGNCP
Multiply? RGMLT 3,0 RGBTD, RGDTB W2S
LCivide? RGD1V 3,0 None W2R
Move Remainder" RGMVR 3,0 RGETLC W20
Binary Conversion? RGBTD, RGDTB 3,0 None W2P
RPG Sterling and Edit
Sterling lnput Conversion? RGST1 3,0 RGBTD, RGDTB W4B
Sterling Output Conversion? RGSTO 3,0 RGETL, RGLTE wWia
Edit" RGED1 3,0 RGMV2, RGSIS W20
RPG Move
From 1/0 Buffer to Core? RGV1, RGMVS 3,0 Ncne W2N
From Core to 1I/0 Buffer? RGMV2 3,0 None W2y
MOVE Operation? RGNMV3 3,0 None W2L
MOVEL Operation® RGNMVY 3,0 None W2K
RPG _Compare
Alphameric?t RGCMP 3,0 Ncne W27
RPG Indicators
Test! RGS 11 3,0 None W21
Set Resulting On? RGS12 3,0 None W2H
Set on, Set off? RGS13, RGSI4 3,0 None W2G
Test for 0 or Blank? RGSI5 3,0 None W2EF
RPG_Miscellaneous
Test Zonel RGTSZ 4,0 None W2D
Convert to Binary? RGCVB 3,0 None w2c
Object Time Error? RGERR 4,0 None W2 B
Blank After? RGBLK 3,0 None W23
Alternating Sequence? ALTISE -

TNot distrikbuted to papertape users.

Figure 24. 1130 Disk Monitor Version 2 System Library (Part 9 of 9)

Appendix A. Listing of Subroutines

129

Appendix B. Errors Detected by the ISS Subroutines

Device not ready.

CONTENTS OF ACCUMULATOR Contents of
ERROR Extension
Binary Hexadecimal (if any)
1442 Card Read Punch or 1442 Card Punch
*Lost card 0000000000000000 0000
*Feed check r
*Read check 10000000000000001 0001
*Punch check
Device not ready dr
Last card indicator on for Read booro0o00000000000 1000
IHegal device {not 0 version)
Device not in system
lilegal function {fooo01000000000001 1001
Word count over +80
Word count zero or negative
Keyboard/Console Printer
Device not ready 0010000000000000 2000
Device not in system
illegal function {001 0 00001 2001
Word count zero or negative
Keyboard wants input ?TYPE only) 1 000 600102002
1134/1055 Paper Tape Reader/Punch
*Punch not ready 0000000000000100 0004
*Reader not ready 0000000000000 1 0 0005
Device not ready 0011000006000000 3000
l”egul device
illegal function r
Wordcounfzeroorneguﬁve‘ {00110600000000001 3001
iHlegal check digit
2501 Card Reader
*Lost card 0000000000000 000O0 0000
*Feed check r
*Readcheck} 40000000000000001 0001
Device not ready 0100000000000000 4000
Iltlegal function
Word count over +80 {010000000000000 1 4001
Word count zero or negative
Disk
Bits 0-3 logical
drive number,
*Data error remaining after 16 {0 000000000000001 cool bits 4-15 working
attempts {DM2) or 10 attempts sector address
{C/PT) during read operation. ' .
Bits 0~3 logical
*Data error remaining after 16 [000000000000001 0 0002 drive number,
attempts (DM2) or 10 attempts bits 4-15 working
{C/PT) during write operation. sector address,
Bits 0-3 logical
*Seek failure remaining after 16 LO 000000000000011|0003 drive number,'
attempts (DM2) or 10 attempts bits 4-15 working
(C/PT). sector address.
*Attempt to read or write above ______[0000000000000 100 10004
sector address 1599 (disk over-
flow).
0101000000000000 5000

130

ERROR

CONTENTS OF ACCUMULATOR

Binary Hexadecimal

Contents of
Extension
(if any)

Disk (continued)

{llegal device, invalid function,
device not on system, attempt
to write in file protected area,
word count zero or negative or
starting address over 1599
(DISK1 and DISKZ only).

Write select/Power unsafe.

Data error during read/write
operation or seek failure after
16 attempts {DM2) or 10
attempts (C/PT) or on an
attempt to read or write

above sector address 1599
{disk overflow). Error occurred
during the processing of a
Monitor call. (DISK1 and
DISKZ only}.

Data error remaining after 16
attempts (DISKZ only).

1132 Printer

*Channel 9 detected
*Channel 12 detected
Device not ready or end of forms
Illegal function

Word count over +60

Word count zero or negative

Plotter

Plotter not ready

illegal function
Word count zero or negative

1403 Printer

o

— o

[~X=R=]
-0 O

_____.{0

*Sync check
*Parity check
*Chonne| 9 detected
*Channel 12 detected
Device not ready or end of forms
Illegal function }

*Ring check &

Word count over +60
Word count zero or negative

Sync check

Ri heck
PRNZ only{ ing chee }
Parity check

Optical Mark Page Reader
Master mark

{o

Timing mark error
Read error }
Hopper empty
Document selected
Device not ready
lllegal function
Feed check, last document processed
Feed check, last document not
processed

—_———0 0
O O0O0O0O0 © O

o 000 O
o o000 ©

(=} =)
-0 [+~ ReX=]

o

—-———00 O O
O 00000 O ©

-0 O

o ocoo
© ocoo
©o ocoo
o ocoo
o ooo
o ooco
o ooo
o ooo
o ooo
o —
c oo-
Y-
o ooco
o ocoo
o ooco
onw

00000000000 1] 0O0O11
000000000011y 0003
000000000100] 0004
000000000000|] 9000
00000000000 1| 9001
0000000000 10] 9002
000000000001 0001
000000000010] 0002
000000000011 0003
000000000100C| 00O 4
000000000000| AQOO
000000000001 AOO
00000000001 0] AQ O 2
00000000001 1] ADO 3

Bits 0-3 logical
drive number,

bits 4-15 working,
sector address,
except for disk
overflow.

Bits 0-3 logical
drive number,

bits 4-15 working
sector address + 1.

CALL is in location $PRET.

NOTE: The errors marked with an asterisk cause o branch to user error routine. These are postoperative errors and are detected

during the processing of interrupts; as a consequence, the user error subroutine is an interrupt subroutine, executed at the priority level
of the |/O device. All other errors cause a branch to location /0029 on the C/PT system or to one of the traps in the DM2

system, at $PRET, $PST1, $PST2, $PST3, or $PST4. If the error WAIT is in the preoperative Error Trap the address of the LIBF or the

Appendix B. Errors Detected by the ISS Subroutines

131

Appendix C. Subroutine Action on Return from a

User’s Error Subroutine

r T H
L Error Code l Condition | Subroutine Action _}
4
| 1442 Card Read Punch or f] -1
| 1442 Card Punch | : |]
0000 }1f function is PUNCH	[Eject card and terminate	
	otherwise	Terminate immediately
00011	1f Accumulator is 0	Terminate immediately
otherwise	C/PT System: Loop until	
{1442 is ready, then reinitiate		
] |operation : |
DM2 System: WAIT at $PST4, clear|

1442 with NPRO key, assure that |
|2nd card run out is in correct |}
|pre-punched form (lst card con- |
|tains punch error), replace cards
in 1442 hopper, press 1442 start]|
key, and press PROGRAM START.

i
1 -
12501 Card Reader |] |
| 0000 | [Terminate |
] 00011 | If Accumulator is |Terminate immediately |
|] otherwise |WAIT at $PST4 until 2501 is {
| | |readied and PROGRAM START |
] |pressed |
b 1 -
|1134/1055 Paper Tape Reader/Punch| | }
| 0004, 0005 If Accumulator is |Terminate immediately |
] otherwise {Check again for device ready l
t t 1 -
|Disk | | |
| 0001, 0002, and 0003 | 1f Accumulator is | Terminate immediately]
| otherwise |Retry 10 times (C/PT |
| |system) , or 16 times]
| | | (DM2 system) }
| 0004 | |Terminate and go to exit {
t { 1 -
11132 Printer I |]
0003, and 0004 If Accumulator is	Terminate immediately
otherwise	Skip to channel 1
	jand then terminate
L IR 4 -)	
r T T i	
1403 Printer	
0001 1f Accumulator is Terminate immediately	
	otherwise
and reinitiate the operation l	
0003, and 0004 If Accumulator is Terminate immediately l	
	otherwise {
	Jand then terminate
F t + -	
1231 OMPR	
0001 If Accumulator is Continue normal processing	
otherwise Use contents of Accumulator	
as new address of 1/0 area)	
00021 If Accumulator is Terminate immediately	
	otherwise {Check device ready,
] then reinitiate operation	
0003 Terminate	
00041 If Accumulator is	Terminate immediately
	otherwise?
]	{then reinitiate operation _J
L L [

' Assumes operator intervention

2 User must provide a WAIT in his error subroutine to allow him to remove the sheet from
the select stacker, place the sheet back in the hopper, and make the 1231 ready.

132

Appendix D. Character Code Chart

EBCDIC IBM Card Code . and Control P'}? PTJ;/B CPonsole 1403
ics and Contro rinter rinter .
IEI? Binary Hex Rows Hex | Crop lcNames EBCDIC ‘L"L’,‘ﬁ’“(‘f“e Hex Printer
0123 4567 12 11 09 8 7-1 Subset Hex |FLo S Notes| Hex
0 0000 0000 00 12 098 1 B030 { NUL
1 0001 01 12 9 1 9010
2 0010 02 12 9 2 8810
3 con 03 12 g 3 8410 - Punch OFf
4 0100 04 12 4 8210 unc
5* 0101 05 | 12 9 5 |80 | HT Horiz.Tab 6D (U/L) 41 @
é&* o110 06 12 9 6 8090 { LC Lower Case 6E (U/L)
7* om 07 12 9 7 8050 | DEL Delete 7F (U/L)
8 1000 08 12 9 8 8030
9 1001 09 12 9 8 1 9030
10 1010 0A 12 9 8 2 8830
n 1011 0B 12 9 8 3 8430
12 1100 oC 12 9 8 4 8230
13 1101 oD 12 98 5 8130
14 1110 OE 12 9 8 6 8080
15 nn OF 12 9 8 7 8070
16 0001 0000 10 12 11 9 8 1 D030
17 0001 11 11 9 1 5010
18 0010 12 n 9 2 4810
19 ool 13 n 9 3 4410
20* 0100 14 il 9 4 4210 | RES Restore 4C (U/L) 05
21* 0101 15 11 9 5 4110 | NL New Line DD§U/|_ 81
22* o110 16 H 9 6 4090 | BS Backspace 5E (U/L 1"
23 om 17 11 9 7 4050 | IDL Idle
24 1000 18 11 9 8 4030
25 1001 19 11 9 8 1 5030
26 1010 1A 11 9 8 2 4830
27 1011 1B 11 9 8 3 4430
28 1100 1C 11 9 8 4 4230
29 1101 1D 11 9 8 5 4130
30 1110 1E n 9 8 6 4080
.31 S IF 11 9 8 7 4070
32 0010 0000 20 11 09 8 1 7030
33 0001 21 09 1 3010
34 0010 22 09 2 2810
35 oon 23 09 3 2410
36 0100 24 09 4 2210 | BYP Bypass
37 0101 25 09 5 2110 | LF Line Feed 3D (U) 03
38* o110 26 09 6 2090 | EOB End of Block 3E (U/L)
39 o111 27 09 7 2050 | PRE Prefix
40 1000 28 . 098 2030
41 1001 29 09 8 1 3030
42 1010 2A 098 2 2830
43 on 2B 098 3 2430 R
44 1100 2C 098 4 2230
45 1101 2D 098 5 2130
44 1110 2E 09 8 6 2080 .
47 111 2F 098 7 2070
48 0011 0ccOo 30 12 11 0 9 8 1 FO30
49 0001 31 9 1 1010
50 0010 32 9 2 0810
51 0011 33 9 3 0410)
52 0100 34 9 4 0210 | PN Punch On
53+ -~ ot | 35 9 5]ono| rs Reader Stop 0D(U/L) 0 @
544 oo | 36 9 6 {00950 | UC Upper Case 0E (U/L)
55 [VARN! 37 9 7 0050 | EOT End of Trans.
56 - 1000 38 9 8 0030
57 1001 39 9 8 1 1030
58 1010 3A 9 8 2 0830
59 1011 ki:] 9 8 3 0430
60 1100 3C 9 8 4 0230
61 1101 3D 9 8 5 0130
62 1110 3E 9 8 6 00BO
63 1 1 3F 9 8 7 0070
NQTES: Typewriter Qutput
@® Tabulate @) Carrier Return * Recognized by all Conversion subroutines
@ Shift to black (4 Shift to red Codes that are not asterisked are recognized only by the SPEED subroutine

Appendix D. Character Code Chart 133

EBCDIC IBM Card Code) 1132 PTTC/8 Console 1403

Ref Binary Hex Rows Hex Graphies and Centrol Printer Hex Printer Printer
No. Names EBCDIC U-Upper Case

0123 4567 12 11 09 8 7-1 Subset Hex | L-Lower Case Hex Hex
64* 0100 0000 40 no punches 0000 | blank 40** 16 (U/L) 21 7F
65 0001 41 | 12 09 1 |so10 :
66 0010 42 | 12 09 2 | asi0
67 011 43 |12 09 3 |a4i0
68 0100 44 | 12 09 4 |a210
69 0101 45 | 12 09 5 |At0
70 0110 46 | 12 09 6 | A090
71 o1 47 | 12 09 7 | A050
72 1000 48 | 12 098 A030
73 1001 49 |12 8 1 |9020
74* 1010 A | 2 8 2 |8820 {¢ 20 (U) 02
75* 1011 48 | 12 8 3 |B8420 | . (period) 48 8 (1) 00 6E
76* 1100 4 | 12 8. 4 |8220 |< 02 (U) DE '
77 1101 4 | 12 8 5 |8120] ¢ 4D 19 (U) FE 57
78* | 1110 4E | 12 8 & |soa0 | + 4€ 70 (U) DA 6D
79 tum 4 | 12 8 7 |8080 | 1 (logical OR) 38 (U) cé
80* 0101 0000 50 | 12 8000 | & 50 70 (L) 44 15
81 0001 51 12 11 9 1 | poio
82 0010 52 12 N 9 2 c8l10
83 0011 53 | 12 1 9 3 | c410
84 0100 54 | 12 n 9 4 |c210
85 0101 55 12 1 9 5 clio
86 0110 56 12 N 9 6 | covo
87 o111 57 {12 1 -9 7 | coso
88 1000 58 |12 n 9 8 €030
89 1001 59 11 8 1 {5020
90* 1010 5A 1 8 2 ({4820 |! . 58 (U) 42
91* 101 58 11 8 3 |4420 | $ 5B 58 (L) 40 62
92* 1100 5C 1 8 4 |4220 | » 5C 08(U) D6 23
93* 1101 5D 1 8 5 |4120 |) 5D 1A (W) Fé6 2F
94* 1110 SE 11 8 6 |40a0|; 13 (U) D2
95% ‘ 1 SF 11 8 7 | 4060 |— (logical NOT) 68 (U) F2
96* 0110 0000 60 1 4000 | - (dash) 60 40 (L) 84 61
97* 0001 61 0 1 3000 | / 61 31 (L) BC 4C
98 0010 62 1 09 2 | 4810
99 0011 63 1m o9 3 | 6410
100 0100 64 1M 09 4 | 6210
101 0101 65 1M 09 5 |en10
102 0110 66 M09 6 | 6090
103 om 67 1M 09 7 | 6050
104 1000 68 11 09 8 6030
105 1001 69 o 8 1 3020
106 1010 A |12 M €000
107* 1011 6B 0 8 3 |2420 |, (comma)- 68 38 (L) 80 16
108* 1100 6C 0 8 4 |2220 | % 15 (U) 06
109* 1101 6D 0 8 5 |2120 | _(underscore) 40 (U) BE
110* 1110 6E 0 8 6 |2040]> 07 (U) 46
1* nn oF 0 8 7 20607 31 (V) 86
112 0111 0000 70 |12 11 o0 E000
13 0001 7 12 i1 0 9. 1]Fow0
114 0010 72 |12 11 o9 2 | Esi0
115 0011 73 012 109 3 | E410
116 0100 74 112 11 09 4 1E210
117 o101 75 112 11 09 5 |Eno
118 0110 76 {12 1 09 6 | E0%0
119 o 77 112 11 09 7 | €050
120 1000 78 |12 11 098 E030
121 100} Va4 8 1 1020
122* 1010 7A g8 2 |o820 |: 04 (U) 82
123* 1011 7 8 3 |o420 | # 0B (L) co
124* 1100 7C '8 4 (0220 |@ 20 (L) 04
125% 1101 7D 8 5 |0120 | ' (apostrophe) 7D 16 (U) E6 08
126* 1110 7E 8 6 |ooa0|= 7E 01 (U} C2 4A
127* 1 7F 8 7 |ooso | " 0B (U) £2

** Any code other than those defined for the 1132 will be interpreted by the
PRNT1 subroutine as a blank.

134

1132

EBCDIC IBM Card Code i PITC/8 Console 1403
1 i
&?:‘ Binary Hex Rows Hex Gruphlc's\lg;desControl E?ggfc v -U': :exr Case Printer P:_: nter
0123 4567 12 11 09 8 7- Subset Hex | L-Lower Case Hex ex
126 1000 ooco | 80 | 12 0 8 1 |go20
129 0001 81 {12 0 1 |sooo | @
130 0010 | 82 | 12 0 2 |asco|b
131 0011 83 | 12 0 3 | a0 ¢
132 oo | 84 | 12 0 4 | a20]| ¢
133 0101 8 | 1 0 5 {alw00| e
134 o110 | 86 112 0 6 |aoso|f
135 o111 87 | 12 0 7 | ac40 | g
136 1000 | 88 | 12 0o 8 A020 | b
137 1001 g8 | 12 09 Aot | i
138 1010 | 8a |12 0 8 2 |as2
139 1011 8 |12 0 8 3 | a4
140 1100 | sc | 12 0 8 4 | a0
141 1101 8D | 12 o 8 5 |amo
142 1110 8E 12 0 8 6 | AOAO
143 1 8F | 12 0 8 7 | A0s0
144 1001 ococoo | 90 |12 1 8 1 | D020
145 0001 91 |12 n 1 | pooo | j
146 coro {92 |12 n 2 |csoo| k
147 001t | 93 {12 N 3 |ca00{|
148 o100 | 94 |12 n 4 |c200 | m
149 or01 |95 |12 n 5 |cico|n
150 o110 | 96 {12 11 6 | cosofo
151 0111 97 {12 1 7 |cos0 | p
152 000 | 98 |12 1 8 €020 | q
153 1001 9% |12 n 9 coio | r
154 1010 {94 |12 n 8 2 |cs0
155 101 98 |12 1 8 3 {c420
156 1o | 9c |12 n 8 4 }cC20
157 1101 oD | 12 1N 8 5 |cCi120
158 1o | 9 |12 N 8 6 |coao
159 1 9F 12 1 8 7 C060
160 1010 0000 | AO nmo 8 1 |72
161 0001 | A1 no 1 | 7000
162 o010 | A2 1o 2 |eso0 |s
163 0011 A3 n o 3 |e400 |t
164 0100 | A4 n o 4 | 6200 | o
165 0101 | A5 n o 5 |6100 | v
166 0110 | A6 1m o 6 |6080 | w
167 o1l A7 n o 7 | 6040 | x
168 1000 | A8 1mo 8 6020 | y
169 1001 | A9 n o9 6010 | 2
170 1010 | AA n o 8 2 |80
171 1011 | AB 1m0 8 3 |e&420
172 1100 | AC no 8 4 |e20
173 101 | ap N o '8 5 |eél20
174 1o | At 1M 0 8 &6 |60A0
175 I AF 1Mo 8 7 |e0e0
176 1011 oooo | Bo 12 11 o 8 1 {Fro20
177 0001 81 |12 11 o 1 | Fooo
178 0010 B2 [12 11 0 2 | Esoo
179 0011 83 |12 11 0 3 | e400
180 0100 | B4 |12 n 0o 4 | E200
181 0101 B5 |12 11 0 5 | Ew00
182 0110 | B |12 11 0 6 | Eoso
183 o1 B2 |12 11 0 7 | E040
184 1000 | B8 |12 11 0 8 £020
185 1001 B9 [12 11 09 EO10
186 1010 |8a {12 110 8 2 |es0
187 101 BB |12 11 0 8 3 |E420
188 neo fsc {12 110 8 4 |E220
189 1101 BD {12 11 0 8 5 |EN20
190 1Mo {8 |12 11 0 8 6 |E0A0
191 1 BF J12 11 0 8 7 |Eo0s0

Appendix D. Character Code Chart

135

na32

PITC/8

EBCDIC IBM Card Code | p H Console]403
T i rinter ex . .

rﬁf,f, Binary Hex Rows Hex Gruphnc's\l:;de‘Contro EBCDIC | u-Upper Case P:lnter P:Inter

0123 4567 12 N1 098 7- Subset Hex | L-Lower Case ex ex
192 1100 0000 co | 12 0 AC00 | (+zero)
193+ 0001 c1 |2 1 9000 | A Q 61 (V) 3C or 3E &4
194* 0010 cz2 |2 2 | 8800 | B C2 62 (U) 18 or 1A 25
195* 0011 c3 | 2 3 |8400 | C c3 73 (U) 1C or 1E 26
196* 0100 c4 | 12 4 |820]D C4 64 (V) 30 or 32 67
197+ 0101 cs | 2 5 |8100|E c5 75 (U) 34 or 36 68
198* 0110 cs | 12 6 | 8080 |F Cé 76 {U) 10 or 12 29
199* om c7 | 12 7 |s8040 | G c7 67 (U) 14 or 16 2A
200* 1000 c8 | 12 8 8020 | H c8 68 (U) 24 or 26 6B
201* 1001 co | 12 9 8010 | | - C9 79 (U) 20 or 22 2C
202 1010 ca |2 098 2 |A83
203 1011 cs | 12 098 3 | A430
204 1100 cc | 12 098 4 |A230
205 1101 cD | 12 098 5 |Al130
206 1110 CE | 12 098 6 |A0BD
207 1 nn cF | 12 098 7 |A070
208 1101 0000 DO 11 °0 6000 | (- zero)
209* 0001 D1 1 1 | 5000 | J D1 51 (U) 7Cor 7E 58
210* 0010 D2 11 2 | 4800 | K D2 52 (U) 58 or 5A 19
211* 001 D3 n 3 4400 | L D3 43 (V) 5C or 5E 1A
212* 0100 D4 1 4 | 4200 | M D4 54 (U) 70 or 72 5B
213* 0101 D5 1 5 | 4100 | N D5 45 (V) 74 or 76 1C
214* 0110 D6 1 6 4080 | O Dé 46 (V) 50 or 52 5D
215* 0111 D7 R 7 4040 | P D7 57 (U) 54 or 56 5E
216* 1000 D8 1 8 4020 | Q D8 58 (U) 64 or 66 IF
217+ 1001 | D9 noo9 4010 | R D9 49() | 60oré2 20
218 1010 DA | 12 n 9 8 2 | 830
219 1011 DB | 12 1 9 8 3 | c430
220 1100 pc |12 n 9 8 4 |cC230
221 101 pD | 12 N 98 5 |cC130
222 1110 DE |12 N 9 8 6 | CoBO
223 1M DF | 12 1 98 7 | Co70
224 1110 0000 EO 0 8 2 | 2820
225 0001 El 1M1 09 1 7010
226* 0010 E2 0 2 (2800]|s E2 32 (V) 98 or 9A oD
227* 0011 E3 0 3 2400 | T E3 23 (U) 9C or 9E OF
228* 0100 E4 0 4 22001} v E4 34 (U) 80 or B2 4F
229* 0101 E5 0 5 2100 § v E5 25 (V) B4 or B6 10
230* -0110 Eé 0 6 2080 | W E6 26 (U) 90 or 92 51
231* o E7 0 7 | 2040 | X E7 37 (V) 94 or 96 52
832* 1000 E8 0 8 2020 | Y E8 38 (U) Ad or A 13
233* 1001 E9 09 2010 z E9 29 (U) AD or A2 54
234 1010 EA "N o9s8 2 6830
235 1011 EB 1M 098 3 6430
236 1100 EC 11 098 4 6230
237 1101 ED 1M 098 5 6130
238 1110 EE 11098 6 60B0
239 | LARY] EF 1M o9 8 7 6070
240 1111 0000 FO 0 2000 | © FO 1A (L) C4 49
241* 0001 Fl 1 1000 | 1 F1 01 (L) FC 40
242* 0010 F2 2 0800 | 2 F2 02 (L) D8 01
243* o011 F3 3 |o400]|3 F3 13 (L) DC 62
244* 0100 Fa 4 | o200/ 4 F4 04 (L) FO 43
245* 0101 F5 5 0100 | 5 F5 15 (L) F4 04
246* 0110 Fé 6 00s0 | 6 Fé 16 (L) DO 45
247% om F7 7 {ood0 |7 F7 07 (L) D4 46
248* 1000 F8 8 0020 | 8 F8 08 (1) E4 07
249* 1001 F9 9 coto | ¢ F9 19 (L) EO 08
250 1010 FA |12 11 09 8 2 E830
251 1011 FB 12 N1 098 3 E430
252 1100 FC |12 11 0 9 8 4 |E230
253 1101 FD |12 11 098 5 E130
254 1110 FE {12 11 0 9 8 & |EoBO
255) nm FF |12 1 098 7 |Eo70

136

Appendix E. Core Requirements of Subroutines

Communications Adapter subroutine core requirements are listed in the publication 1BM

1130 Synchronous Communications Adaptex Subroutines, GC26-3706.

MTCA subroutine core

requirements are listed in the publication IBM 1130 Computing System, Multiple Terminal

Communications Adapter (MICA),

Input/Output Control System (IOCS)

Subroutines, GC34-0015.

1627 Plotter subroutine core requirements are included in the publication IBM_1130,/1800

Plotter Subroutines.

Extended

Standard

Extended

Standard
FADD/FADDX l 107
FSUB/FSUBX
FMPY/FMPYX 52
FDIV/FDIVX 86
FLD/FLDX 54
FSTO/FSTOX ’

FLOAT 10
IFEX 40
NORM 42
FSBR/FSBRX 24
FDVR/FDVRX 28
SNR 8
FABS/FAVL 12
JABS 16
FGEPT 22
FARC 34
XMDS 28
FIXI/FIXIX 68
XSQR 52
XMD 66
XDD 74
FSIN/FSINE : 18
FCOS/FCOSN
FATN/FATAN 130
FSQR/FSQRT 70
FLN/FALOG 136
FEXP/FEXPN 118
FAXI/FAXIX 78
FAXB/FAXBX 54
FTNH/FTANH 54
FBTD (bin. to dec.)

FDTB (dec to bin,) } 446
DMTDO/DMTX0 412
DMPD1/DMPX1 520
DMP80 102
DATSW 34
DVCHK 16
FCTST 30
LOAD 138
OVERF 18
SLITE, SUITT 70
TSTOP 6
TSTRT -]
ISIGN 24
FSIGN 34

EADD/EADDX }
ESUB/ESUBX
EMPY/EMPYX
EDIV/EDIVX
ELD/ELDX }
ESTO/ESTOX

ESBR/ESBRX
EDVR/EDVRX

EABS/EAVL

EGETP

ESIN/ESINE }
ESCOS/ESCOSN
EATN/EATAN
ESQR/ESQRT
ELN/EALOG
EEXP/EXPN
EAXI/EAXIX
EAXB/EAXBX
ETNH/ETANH

ESIGN

C/PT System

WARI/WARIX 32
WIAR/WIARX 36
WIF 26
WIIF 24
WGOTO 2
WFIO/WIOI/WIOAI/
WIOF/WIOAF/
WIOFX,/WCOMP/ 854
WWRT/WRED/

WIOIX

C/PT System

VARI/VARIX 32
VIAR/VIARX 36
VIF 26
VIIE 24
VGOTO 22
VFIO/VIOI/VIOAL/
VIOF/VIOAF/

VWRT/VRED/

VIOFX/VCOMP/ 864
VIOIX ’

Figure 25. Core Requirements of Arithmetic and Functional Subroutines

Appendix E.

DM?2 System DM2 System

SDF1O/SDAF/SDAI/
SDCOM/SDF/SDFX/ } 694 694
SDI/SDIX/SDRED/
SDWRT
SDFND 78 78
SFAR/SFARX 32 SEAR/SEARX 32
SFIO/SIOI/SIOAl/
SIOF/SIOAF/SIOFX/ 1194 1190
SCOMP/SWRT/SRED/
SIOIX SEIF 28
SFIF 26 22
SGOTO 22 36
SIAR/SIARX 36 24
SIIF 24 756
UFIO 758

Core Requirements of Subroutines 137

No.
Core c X cl:\lo.
. . onversion ore
Subroutines M2 Locations g Uses Subroutines Locatinns Uses
System System (DM2 System) Dm2 c/p1
System System
CARDO - 254 242 1LSEO, ILSO4 glall)ﬁ 72 72
CARDI 258 246 1LS00, 1LS04 88 88
READO 96 - - LS04 g%l’]‘ﬁ 22 44
READ] 110 - 1LS04 ¢
PNCHO 206 - ILS04, 1LS00 HOLEB 134 134 HOLL, EBPA
PNCHI 218 - 1LS04, 1LS00 HOLPR 100 100 HOLL, PRTY
OMPR1 336 - 1LS04 EBPRT 102 102 EBPA, PRTY
PAPT1 226 254 1LS04 PAPEB 246 246 EBPA
PAPTN 306 294 1LS04 Eﬁg?RL 244 244 EBPA, HOLL
- 192 192 EBPA, PRTY
DISKO 356 iLS02 ZIPCO 162 i
DISK 1+ 418 620 1£502 i SPEED 334 130
DISK N+ 688 808 1£502 HOLL 80 80
WRTYO 124 124 LS04 EBPA 80 80
TYPEO 278 296 1L504, PRTY, HOLY PRTY 80 80
PLOTI 186 216 1LS03 Egﬁg_ 1%8 -
PRNTI 424 386 ILSO1 : 128 -
PRNT3 308 - ILS04 EBPTS 128 -
CPEBC 128 -
LS00 22 18
o1 CPHOL 128 -
ILS 26 18 CPPT3 128 -
1LS02+ 17 18 HLEBC 128 -
11503 28 18 HOLCP 128 -
11504+ 32 30 HLPT3 128 -
1LSX0 24 - PT3EB 128 -
ILSX1 30 _ PT3CP 128 -
ILSX2 2 _ PTHOL 128 -
ILSX3 34 -
1LSX4 44 - . . .
Figure 27. Core Requirements of Conversion
Subroutines
SPIRO - 48
SPIR1 - 62 No
SPIRN - 62 : oo
Subroutines Locations Uses
Disk /O
PR 1 - ——
E’EUSE gg 22 DISKZ, DISK1, DISKN SEQOF, SEQIO, SEQCL 458 DISKZ
DAOPN, DAIO, DACLS 246 DISKZ
STOP 12 8 ISLDO, ISLD, ISLDC 639 DISKZ
sy | W | s
ISEQO, , ,
SUBSC 30 30 HT
SUBIN 32 32 ISRDO, ISRD 1SRDC 460 DISKZ
TTEST/TSET 16 16 . . .
: il B
CARDZ 176 80 IL504, LS00 RGMLT ’ 320 RGBTD, RGDTB
PAPTZ 226 202 1LS04 RGDIV 815
176 RGMVR 18 RGBTD
| e : i
WRYTZ 62 66 11504 RPG Sterling and Edit
READZ 58 11504 RGSTI 258 RGBTD, RGDTB
PNCHZ 66 11504, ILSOO RGSTO 464 RGBTD, RGDTB
PRNZ 186 1LS04 RGEDT 35
HOLEZ 64 54 RPG Move
GETAD 16 14 RGMV1, RCMVS 148
EBCTB 60 54 Rcmxg ug
RGM
HOLTB 54 54 . REMV4 8
SYSuUp 1338 - FSLEN/FSYSU RPG Compare
FSLEN/FSYSU[535 - DISKZ RGCMP 82
* Part ot Resident Monitor RPG Inidcators
.
s s RGS!
Figure 26. Core Requirements of RGSI3, RGSI4 s
Miscellaneous and 1SS 9
Subroutines RGSI>
RPG Miscelloneous
RGISZ 72
RGCVB 86
RGERR 70
RGBLK 58
ALTSE (user-written) {variable)

Figure 28. Core Requirements of RPG
Subroutines (CM2 only)

138

Appendix F. Execution Times of Subroutines

Execution times for the Synchronous All the remaining time, minus cycle

Comnunications Adapter subroutines are steals, is available to the user.

listed in the adapter subroutine manual. :

2. 1ILS time is included in ISS interrupt
processing calculations

CONVERSION SUBROUTINES (see Figure 29).

| C/PT System

Basic Definitions 1LS00 - CARDO (col), CARD1 (col)
: ILS01 - PRNT1
1. All times are based on 3.6-usec ILS02 - DISKO, DISK1, DISKN
instruction cycle. ILS03 - PLOT1
ILSO4 - CARDO (op complt), CARD1 (op
2. The table ordering for codes is as complt) WRTY0, TYPEO, PAPT1,
follows (except SPEED) PAPTN
Standarl set: blank, +, §, -, 0-9, Time, Per Character
A-Z, other special Initial- Woarst Toble
Subroutine ization Look-
Extended set: stanlard, non-FORTRAN e | 34 | Butd Up
special, control et et
BINDC 1130 - - - -
3. Maximum number of characters checked gﬁﬂ& _lgg - - 1.- -
varies with the set. HXBIN 760 - - - -
Standard set HOLPR 430 | 211 | 2395 | 3533 |45.5
Except SPEED: 49 EBPRT 420 | 207 | 2487 | 3675 |47.5
SPEED only: 16 HOLEB
‘ EBCDIC output 550 159 | 2343 | 3481 145.5
KM Extended set EBCDIC input 550 | 161 | 2441 | 3629 |47.5
Except SPEED: 74 SPEED
. Packed EBCDIC output 250 270 - - -
SPEED only: 45 Unpacked EBCDIC gutpu? 270 | 260 - - -
n .. . Packed EBCDIC input 240 | 394 | 1594 | 3914 |80.0
4. Conversion times givsn are Unpacked EBCDIC input 240 | 404 | 1604 | 3924 |80.0
< < ZIPCO (DM2 only)
Best time: Found as first character Ancwaeu;;ﬁm 270 | 270 _ _ _
in set Card Code
IBM Card Code input 270 374 - - -
Worst time, standaril set: Found as 1BM Card Code output 70 | 435 | - - -
last character in set PAPPR 580
Per sl'iifl".‘t:hclr':l input 180 - - -
. . Per graphic char, input 427 | 2707 | 3895 |47.5
Y]O]’.‘St time, extenjel set: Not found Per control char. input 407 | 2687 | 3875 |47.5
in set
PAPHL
5. Time per character is best time, plus gg%ﬁr': ot 490
. s . input 180 - - -
table look-up time multiplied bY the Per graphic char. input 306 | 2482 | 3870 }49.5
number of charactars to be skipped.. Per control char. input 296 | 2472 | 3860 49.5
PTTC/8 output 490
Per control char. output 266 - 3830 |49.5
Example: Per graphic char. output 316 | 2492 | 3880 | 49.5
If best = 211, look-up = 45.5 and Per shift/graphic char. output 446 | 2622 | 4010 |49.5
character is fourth in table (9 PAPEB
Then, character time = 347.5 = 211 PTTC/8 input 440
+ 3 (45.5) Per shift char. input 190 - - -
Per graphic char. input 366 | 2542 | 3930 {49.5
Per control char. input 386 2562 | 3950 |49.5
PTTC/8 output 440
1130 1SS TIMES (see Figur=s 30 and 31) Control char. output 296 - | 3860 |49.5
Per g}:afp?ic d;‘ur. ?‘utpuf 3;2 §52§ 3(9)10 49.5
< e ay s Per shi i . .
Basic Definitions er shift/grophic char. output 65 0 | 49.5
1. Only CPU time used by ISS (including
y transfer vector BSC L) and 1LS Figure 29. Execution Times of -Conversion
{ (including forced BSI I) is given. Subroutines

Appendix F. Execution Times of Subroutines 139

DM2 System

I1LS00

1LS01
1LS0 2
I1LS03
ILSO4

CARDO (col), CARD1 (col)

PNCHO (col), PNCH1 (col)

PRNT1

DISK1, DISKN

PLOT1, PLOTX

CARDO (op complt), CARD1 (op
complt) , PNCHO (op complt), PNCH1
(op complt), READO, READ1, WRTYO,

TYPEO, PAPT1, PAPIN, PAPTX, PRNT3,
OMPR 1

Note: 1In the DM2 system, the Z subroutines ‘)
are considered to be ISSs and therefore use
the appropriate 11Ss, e.g., PRNTZ uses
1L.s01.
(Y
3. All times are based on a 3.6-usec
instruction cycle.

Subtoutine and Times (usec) Subroutine ond Times (usec)
Function (n word count) Function {n = word count)

1.500 112 PRNTI

ILSO1 134 Test 188

ILS02 112 Print 44142 + 5971.2 (n-1)*

tLS03 12 .

1LS04 148 *subtract 11.4 for each word

where 1 char. does not mat‘ch;

CARDO 22.8 where both char. do not
Test 165 motch,

Read . 14930 + 38.5 (n)

Punch 763 + 185 (n) Print Numeiic 25950 + 2736.8 (n-1)

Feed 605 +268 x

Sel. Stack. 290

x = no. idle cycles before Ist

CARDI numeric char, on wheels is

Test 165 reached

Read 14972 + 38.5 (n)

Punch 800 + 190 (n) Control

Feed 640 Single space 708

Sel. Stack . 325 Double space 998

Triple space 1288

WRTYO Skip to channel 12 676*

Test 165 Skip to channel 1 936*

Print . 228 + 734 (n)

*odd 208 for each channel crossed

TYPEO before correct one reached

Test 165) 6.5 290 DISKO

rint 685+ € (825 + 48. + a+ S e

Read prin ¢ y) o 178 dm%\

1595 b + 1224 ¢

€ = sum of char. times for each
graphic

y * no. char. skipped in table
look -up

a’ - EOM character

b = re-entry character

¢ =.backspace character

Print 344 + 920 (n)
PAPT]

Test 152

Read) 432 + 808" (n)

*add +112 if check
Punch 480 + 680* (n)
*add +96 if check

PAPTN
Test 176
Read 408 + 952* (n)
*add +112 if check
Punch 464 + 840* (n)
*add +64 if check
PLOTI
Test 130
Peint 418 = if chor is 0-9

472 = if chor is A
624 = if chor is B
698 + 752 = if char is C
224 - per dup. of
previous pen
motion

Read 1492
Write
Without RBC 1778
Wiih RBC 2050
Write Imm 1062
Seek
1 to center 1076
By addr 1502
DISK1
Test 178
Reod 900 + 760 x + 478 y
X = no. sectors
y = no. seeks after st sector
Write
Without RBC 1292 + 660 x + 822 y
Write
With RBC 1562 + 1098 x + 908 y
Write Imm 660+ 622 x + 476 y
Seek .
1 to center 1072
By adds 1468
DISKN
Test 178
Read) 908 + 652 x + 1012 y
x = no. sectors
y = no. seeks after 1st sector
Write .
Without RBC 1516 + 610 x + 926 y
Write
With RBC 1728 + 1022 x + 1178 y
Write lmm 820 + 606 x +282y
Seek
1 to center 1076
By oddr 1478

| Figure 30. Execution Times of 1130 ISS (C/PT System)

140

Subroutine and

Times { u sec)

Subroutine and

Times { usec)

Function {n = word count) Function {n = word count)
ILSO0 112 PLOTI (Cont'd)
ILSO1 134 678 + [752 = if chor is C
1LS02 102 224 = per dup. of
ILS03 112 previous pen
LS04 163 motion
CARDO . PRNTI
Test 165 Test 188
Read 14930 + 38.5 (n) Print 44142 + 5971.2 (n-1)*
Punch 763 + 185 (n)
Feed 605 *subtract 11.4 for each word
Sel. Stack. 290 where 1 chor. does not match;
22.8 where both char. do not
CARD! match.
Test 165
Read 14972 + 38.5 (n) Print Numeric 25950 + 2736.8 (n-1)
Punch - 800 + 190 (n) + 268 x
Feed 640
Sel. Stack. 325 x = no. idle cycles before 1st
numeric char. on wheels is
READO reached
Test 173
Read 546 Control
Feed 523 Single space 708
Double space 998
READ) Triple space 1288
Test 173 Skip to channel 12 676*
Read 576 Skip to channel 1 936*
Feed 553
*add 208 for each channel crossed
PNCHO before correct one reached
Test 165
Punch 763 + 185 (n) PRNT3
Feed 605 Test 183
Print 3743 + 45 (n-1)
PNCHI1 Control
Test 165 Single Space 785
Punch 800 + 190(n) Double Space 6746
Feed 640 Triple Space 12704
Skip to channel 12 817
WRTYO Skip to channel 1 817
Test 165
Print 228 + 734 {n) OMPR1
Test 227
TYPEO Feed 710
Test 165 Read 805+ 286 x c
Read print 685+ ¢ (825 - 48.5y) +39 a +
1595b + 1224 ¢ c = no. of chars. programmed to
be read
¢ =sum of chor. times for each
graphic Disconnect 506
y =no. char. skipped in table Sel. Stack. 495
look-up
a = EOM character DISK]
b = re-entry character Test 158
¢ = backspace character Read 1021 + 491 x + 1226 y
Print 344 + 920 (n) X = no. sectors
y = no. seeks after Ist sector
PAPTI
Test 152 Write
Read 432 + 808* (n) Without RBC 1035 + 491 x + 1226 y
Write
*add + 112 if check With RBC 1829 + 982 x + 2452 y
Write Imm 689 + 491 x + 489 y
Punch 480 + 680* (n) Seek
1 to-center 1843
*add + 96 if check By addr 2056
PAPTN DISKN
Test 176 Test 244
Read 408 + 952* (n) Read 1500 + 725 x + 1973 y
*add + 112 if check x = no. sectors
y = no. seeks after 15t sector
Punch 464 + 840* (n)
Write
*add + 64 if check Without RBC 1500 + 725 x + 1973 y
Write
PLOT) With RBC 2599 + 1450 x + 3947 y
Test 130 Write Imm 1085 + 725 x + 1707 y
Print 418 = if char is 0-9 Seek
678 + {472 = if char is A 1 to-center 1871
624 = if choris B By addr 2151

Figure 31. Execution Times of 1130 ISS

(DM2 System)

Appendix F. Execution Times of Subroutines

141

ARITHMETIC AND FUNCTION SUBROUTINES

The execution times of the arithmetic and
function subroutines are shown in Figure
32. All times are based on a 3.6-usec
instruction cycle; the times containing a
decimal point are milliseconds, all other
are microseconds. '

SPIR (C/PT SYSTEM)
The SPIRx subroutines take 220 psecs

(3.6-usec instruction cycle) plus the
DISKxX time to read sector 0000.

142

STANDARD EXTENDED
FADD/FADDX } EADD/EADDX 440
FSUB/FSUBX ESUB/ESUBX 490
FMPY/FMPYX EMPY/EMPYX 790
FDIV/FDIVX EDIV/EDIVX 2060
FLD/FLDX } ELD/ELDX 160
FSTO/FSTOX ESTO/ESTOX } 170
FLOAT 330
IFIX 140
NORM 260
FSBR/FSBRX ESBR/ESBRX 740
FDVR/FDVRX EDVR/EDVRX 252
SNR ‘ 80
FABS/FAVL EABS/EAVL &0
1ABS 100
FGETP EGETP 320
FARC)
XMDS -
FIXI/FIXIX 465
XSQR 550 av, (860 max.) 550 av. (860 max.)
XMD 520
XDD 1760
FSIN/FSINE } 3.0 | ESIN/ESINE 5.4
FCOS/FCOSN 3.4 | ECOS/ECOSN 5.9
FATAN/FATN 5.2 | EATAN/ATN 8.9
FSQRT/FSQR 4.5 | ESQRT/ESQR 10.4
FALOG/FLN 5.1 | EALOG/ELN 8.0
FEXP/FXPN 2.0 | EEXP/EXPN 4.4
FAXI/FAXIX 3.8 | EAXI/EAXIX. 4,7
FAXB/FAXBX 8.0 | EAXB/EAXBX 13.3
FTANH/FTNH 4.3 | ETANH/ETNH 8.1
FBTD (bin. to dec.) 40.0 40.0
FDTB (dec. to bin.) 20.0 20.0

Figure 32. Execution Times of Arithmetic
and Function Subroutines

Re-enterable Code

Re-enterable code is defined as colde that
can be executed by more than one program at
a time and that does not modify itself.
such code makes it possible for the
programmer-to write subroutines that can be
called from more than one level of program
operation; that is, from the mainline level
(no interrupt) and an interrupt priority
level or from two different interrupt
priority levels. 1Two problem areas in
writing re-enterable code are (1) obtaining
temporary storage, and (2) modifying
storage locations and/or instructions.

It is necessary, in this discussion of
re-enterable code, to point out the
following facts about the 1130 and its
method of operation:

e Instructions have direct and indirect
addressing. The operand of an
instruction can address a location that
contains either the value or the
address of the location that contains
the value to be addressed, multiplied,
etc..

e Index registers occupy Sstorage
locations that can be addressed.

e Register housekeeping is performed for
interrupts. 1BM Disk Monitor
interrupt-programming saves and
restores the index registers,
accumulator, and accumulator extension.

e Interrupts on same or lower level of
priority are inhibited. Once the CPU
has executed the hardware-forced branch
for a level of interrupt priority, no
hardware-forced branch for that level,
or a lower, level can occur until the
programmer exits from the level.

e Storage can be modified by a single
instruction (#DX instruction) that
cannot be interrupted.

e The subroutine call instruction (BSI
instruction) is not re-enterable. The
call instruction stores the return link
(address of next instruction following
the call) in a storage location. This
return-link storage location cannot pe
varied by the subroutine. Therefore, a
second call to the same subroutine
stores the return link for the second
call in the same location where the
return link for the first call was

Appendix G. Re-enterable Code

stored. (The subroutine-call
instruction is also the instruction
executed for the hardware-forced branch
that initiates processing for a level
of interrupt priority.)

e Index istructions cannot be indexed.
The index instructions (load index,
store index, modify index) cannot
specify an index register to address
the storage location from which the
register is to be loaded or modified,
or into which the register is to be
stored.

* There are no register-to-register
instructions. The index registers and
accumulator must be loaled from, stored
into, or modified from core storage.

e There is no indirect adiressing for
load-index and modify-index
instructions. ‘ihese two instructions
have only immediate operands, and
directly-addressed operands.

e There is no instruction to inhibit
interrupts. There is no mask
instruction to selectively or
completely inhibit levels of interrupt,
and no instruction to force an
interrupt level on.

1he definition of re-enterable code
given earlier can pe extended to inclule
code that modifies itself as long as the
molification does not affect the output of
the code. Such an extension permits the
code to be executed by more than one
program at a time. Using this extended
definition of re-enterable code, the
remainder of this discussion illustrates
how re-enterable code can be written for
the 1130.

‘the Lisk Monitor, the Card/Paper Tape
System, and their subroutines are not
re-enterable. 1his does not prevent the
user from writing his own re-enterable
subroutines as long as these subroutines do
not call, either directly or indirectly
(for example, LINK), any ['isk Monitor or
Card/Paper Tape subroutines.

for discussion purposes, there are two
areas in writing re-enterable code: (1)
getting to (calling) the coile, and (2)
writing the code. Assuming the existing
assemblers and compilers, re-enterable code
can only be written in assembler language.
flowever, re-enteraple subroutines may ve

Appendix G. Re-enterable Code 143

called by either assembler or FORTRAN
language programs as described below.

CALLING A RE-ENTERABLE SUBROUTINE

The RCALL macro is defined by the following
code:

The subroutine calls (LIBF and CALL) cause

the following BSI instructions to be

generated:

CALL Generated Code System

CALL subr BSI I subr TV locat Disk Monitor
System,Version
2

CALL subr BSI L subr Card/Paper
Tape System

LIBF subr BSI 3 subr TV disp | both systems

For a re-enterable call, the suproutine
call instruction should be preceded by
another instruction which places the return
link in a location saved and stored by
interrupt programming, such as in an index
register, the accumulator, or the
accumulator extension. Through conventions
agreed upon between the calling program and
subroutine, the re-enterable subroutine
called expects the return link to be in a
pre-defined register and ignores the return
link stored by the subroutine-call (branch)
instruction. The added instruction in the
calling sequence can be a load-index or
load~-accumulator instruction, or even a
load-double (accumulator and accumulator
extension) instruction. 7This combination
(load instruction + subroutine call) gives
the programmer a re-enterable call that can
be used in 1130 programming.

The re-enterable call (two instructions)
can be generated for the assembler user by
(a) writing and then using a macro, or (o)
by actually coding the two instructions.
For example, if index register 2 is
selected for the return link, the following
code could be used:

r 1
| : !
| Actual Coding or Macro [
b T 1
I | I
| IDX L2 #+2 | RCALL subr |
I I I
| CALL subr | |
1 I L i |

144

1he FORTRAN user must write a special
subroutine in assembler language and then
call that subroutine in FORTRAN. That
subroutine is not re-enterable.
Consequently, there must be a separate
special subroutine for each level (mainline
or interrupt) from which FORTRAN calls may
be executed. To call re-enterable
subroutine A with parameters X and Y, the
FORTRAN user would name subroutine A in an
EXTERNAL statement and then call special
subroutine B with parameters A, X, and Y,
in that order. Subroutine B would load the
pre-defined register with the address of
the location immediately following the A
parameter and, using the A parameter, would
call subroutine A. 1If subroutine A is
called as follows:

CALL A (X, Y)

then this call can be replaced by the
following code to obtain a re-enterable
call:

EXTERNAL A
L]
L]
*

CALL B (A, X, Y)

I1f index register 2 is selected for the
return link, special subroutine B is
defined as follows:

tobel - | Opesation rvl
2

2t
NT, 1 1 1 PN BT BV BT

8, . ‘s X ofiN I Pl 00 o0 o0 o P AP SN DN aP|
PR LX, / 2=, r, ol CALL A '
P DX, L XR2zaddr, of addry X . 1 ...
L LIBSC)&, it e @0i s ol GALML, A Ly i

PR I | U ST U T WA U SN S U VU VNN WYY NN VA [S S T U S T S)

The re-enterable calling sequence allows
the return address stored bv the call (BSI1)
to be modified by the interrupt without
affecting subroutine operation since a
re-enterable subroutine ignores the
effective address (EB) location and uses
the contents of XR2 as the return address.

-

AWMN

OBTAINING TEMPORARY STORAGE

The temporary storage locations that are
easy to use are the areas saved and
restored by interrupt programming: index
registers, accumulator, and accumulator
extension. 1There are times when these are
not adequate:

e When there are not enocugh registers

e When registers must be loaded with or
modified by calculatel values (variable
rather than constant value)

e When registers must be loaded from,
stored into, or modified by locations
addressed via index registers

Work areas in storage may be assigned to
each subroutine or program (common to many
subroutines) to provide temporary storage
for each level of operation. Such areas
may be used for storage of intermediate
results, parameters, data, calculated
addresses, etc.. These areas may be
accessed via index registers or address
constants.

Current 1130 interrupt programming does
not provide for level or program work
areas. Such areas can be provided for each
level by modifying the interrupt
programming, by requiring locations in
COMMON, or by other changes. However, it
might be easier for the user to establish
work areas within each re-enterable
subroutine as it is written, rather than to
modify already-written programs and
systems.

A number (X) of subroutine work areas of
length (N+1) can be defined: where X is
the number of work area words needed for
subroutine execution, and N is the number
of interrupt levels. The subroutine
increments the adlress of each area by 1
for each entry and decrements the addresses
by 1 for each exit. Any instruction can
then directly or indirectly reference the
area.

Access via index register. I1f index
register 2 is used to locate a U4-word area
to be used for up to three concurrent
entries, then word 1 might be used for the
address of a parameter anl word 2 for an
intermediate value, as shown in the
following code:

Operands & Remarky

a5 40 45] 5 &0 83 'l

PRI
L 1

J I PN WSS DS G IR R R

Access via Address Constants.

N 4 #1l, % s, ad Gl WO G s)t
INSTRLLDX ORKA=S, , | XREz.cunr rent) ent i ared . .t
{n i 1 PENTE WU W W N THwY Lo ot 4 boeeaasa boa e bt
A o 1 i L N R P SR T Lt
P 3 L 1 S | 4 ¢ a4 JUITIEE EEPTCO S | PN U I T S W |
L LD, L add, ,vm/‘u.e. (in), to addr .. .
e DORC v . s consStamt LMD (0 ag
7.0, I e, Siave celculhated addr, 1,001
(2] L caaa . @ed paromahi®r, a1 i1 s o
. 1 T EPETIE ST SR ST U
i FUETIETIES TS S ST U SV T S U S UV SV S0 S VO ST U [N VO DAY S 1000 U0 o S |
T CE—— IlllllAI||Ill|lAlI‘IlJI|AIlI|IlIlJ
X, ILNSTR+ !, ~% decr, work area addr, , i1
" N PR " N Y N IS U S S W W (a1
1 " 1 2 1 1 | B) W W T T | N Loa o § PO §
dmn 1 L i it Y
j IS § Fawt | AT SEr U NI TN U0 VA (N S S S T T S T S S §
b addr, constband a0t)

%, L Loomords o area oo 1 s

1 I M |

- '

[N S N Y

Assume two

words needed for each of three concurrent

entries.

Note that an address constant is
required for each word.

Indlex register 2

is used here to access call parameters
rather than work area words.

Lobel Operghion
Pl M E2d X

Operands & Remarka
35 40 45) s5 I3 65 b}

P

U TP R TR WPICRYEPIS N ST S U ST S W S

L sendragmee dd RCALL, Mmaciro, seq

PRI IO RSN R TS S G SRS B

1
L

1 P S S R
L

1 P U R I DR WP

TR FUPUE S ST TSI NN S SRS YOS Y SN IO SUP N S SO S

TEMP.A. 12, iner, addr, work word 0, , ..,

PO T TP S S I S ST A S |

hgﬁhmaﬂn}a

aner, addr wiork word A ..o

| PR RO SR ST G ST S TR SRS SR |

N TSI |

N . FEVRYI ST PRI S ST

M-
ILEMPA 4 ., Ssifore XRI i work word 1 ,,

1

P TOVEES T S Y WU VU R RN W 0 U S TV SR
1
1

MEMPA , acc=scontents, XRI 4,4

1 PETUS IS IS VT S NS VU T TPIN SIS ST S R |

i [LSE SIS (U O VA S A W ST Sy S Y UV OV T SO0 WO U T PO W S T A T

L e EVE U SRS WO S SN SR IR I SN NI U

182H1, ... addr, (A). to, work word & ..,

NEMA-Iy ., accscomt.amtis, (AN (00

- TV BV RS R SR O IV UT S S S SIS

L " TR USRI SR NP WIPE S S 1

et a g s bacta s L b e d o e L

coaobtain 1st call parameler
) hef b= fidS b il 2nd byte)

sav.e jwustifiied byte 1,

obtaim 2nd call \parameter, |

isol.a bl Bmch bud@ ot

combime with, 1st, bute . L

X
P
L

T IO WU DR (IR S

" TS TSP U O EF IO U S W S S TS S S B S B

3

PR TEWEN B IS I RO VIO S U TR R SR

NEMPA, 18, decr, addr we.rd word Jt . 1

17 H,, o8 decr, addr, werk wo.r.d .a 1

: s ex b '

b eaauy AIJJ_.LLJ.LII.AAK.LLJ.‘A_AAL‘L_L—L—L_J_L.A_J_I_L

TEMPA o4

e N A A AU N U BV SO S S NP

TEMP, S.S,

LEMA=A . . @ddr. oif. curir.ent, M.QL_.Z«:._‘LW.OL@_._
*3, , Space 1fof . Hoentrif.es 4.,

HeArF] Ibc BBEL 1\, mas te, dsel.ale rightmost
" e 1 L N - T T S S
oA S | N IPTI S S S el) I S Y 1 4 4

Note: 1Interrupts (and the subsequent call

from interrupt processing) can occur after

any instruction; therefore,

each direct

reference to the work area should address a

different area.

Otherwise, at any time, a

sequence that should address a particular
word in the work area can end up
referencing different worlds in the work
area and overlaying the contents of words
used for a previous, and yet unfinishel

Appendix G. Re-enterable Cole

144 .1

call. The following example avoids this

coding examples below illustrate four ways

problem: of loading index register 1 with the
address of table D, assuming the following
address chain and that only location A is
Label Operation FiT Operonds & Remorks » -
3 35 @ a5 0 5 %0 & - n dlrectly accessible.
. - RESTIHS ! dwner, work area ad@r 1, ..
hnnl; S W ST S R R T N S SN T TN T Y TN AN S T U NN S TN S AN WA U U S S U OV GNTE |
deu o - PP R AP ST S I AT TS B S)
3 A -y P | U N S S S T (SN U S S (A U UAD0 W S D W S A D G SR S S W |
T.0, 1A SOl Save, Male@ & 440 s 4t a)
o, 4 1 PR N ST ST S S S U T TS S ST R | ISR B S S S 21 PR §
e : 3 4 - F TSN T T U N U0 U VU S SO T SV WSO Y VRO S WS SN [N WY TS S U G T S S N |
" ESPP) 1 NP RPEIPET S SRV T SR RS RN (bl operstion | |F] 1 Operonds & Remasis
\REST.] L A ORKA— !, , . get val e . v (1 g) 2] 177 2} ol las @ 45 50 58 &0 &5
ile , N TEEEEr SRS TN Lo e b v il aaat PR M| P BRI UN IR I .
e 4 4 4 i NP S S S B A B I I W W E NNy) T SO YT I T) M 1 1 14 i 1 T | e 1 SR |
e o W I TP PR B MR S | PO AT | e N 1 i L ' PR WY L I s
D, J ESTIH I . . ged val e (1t 0y i1 1 s . 1 L T 1 P Pt .
i s .) DC c, , et
L O T T ' . D.C D) L IEPETETE SR B I ERTETTY PN |
IDC, £y Y i1 M WY M SR | L
a | B TV Pl B | T T T 8 PO U ST S T T S S O
e PRI L ' L b s
. 1 2 i i 1 P -1 P S W T S A T Y SEIU I |
C. A AT L DU S PR S PETESEN Y
LA i P 'S | I 1 PN W WU WOV TS Y '] it P
N s 1 . A T T
3 " 1 1 | e PR 1 I L i |
1SS, Y, fa 1 1 N RN S {
MODIFYING STORAGE OR INSTRUCTIONS * : : * : : :..4: 'l)
11 i1 1 | IS S RO Wt i 1 RS U0 TS S0 WU W TR Y S S S S S WY
[2] 4 Ci LINNPETIS B | [P BT ST BTG S
IIII‘IIL#L.J_l_I_Il—I_‘_I-_I_A_ILL_I_-L_IlJIJ_A_LL_A_LL_'

Storage and/or instructions can be modified
in a re-enterable subroutine if the
sequence shown in Figure 32.1 is used.

1. Save the location or instruction to be
modified in temporary storage (work
area, index register, accumulator, or
accumulator extension)

2. Modify the location or instruction

3. Execute, using the modified location or
instruction

4. Restore the location or instruction
from temporary storage

An example best illustrates the
techniques of temporary storage and

storage/instruction modification. The
Al oddesofB |-~———- B oddross of € === = — — c Table C
oddress of D -\
oddress of E N
A k>, 7
N\ o~ ~
J 1 oo Teble D
K AN

Figure 32.1 Modifying Storage or Instructions

144 .2

The load-index instruction has one less
level of indirect addressing than the
load-accumulator instruction. Using the
symbol A as an operand, an indirect
load-accumulator instruction can obtain the
address of C, while an indirect load-index
instruction can only obtain the address of
B. The coding examples illustrated below
show that using work area words is the most
expensive method, both in number of
instructions required, and in the time it
takes to execute those instructions. The
technique selected depends on the temporary
storage available at the time (accumulator
extension, or second index register, or
neither) .

Example 1. Using work area words: Example 3. Using a second index register:
i - - Operands & Remarks
7 - 2 nwl; M 35 40 s D;:'mdl&lam:; P & n |w‘ s ‘le:n s 35 40 43 2 = £ £ 7?
P f23.4 1.4 1, in = C L2X / IWNST ! save comtemts oft JNSTIAT (w0
' s X, INS, T.2+1 .1 cr _addr I r.ea N . n.JLIH.XRZ.A.‘.n....ln-nl 1al
N S PR NP SN ST T S0 NP S S G 2 L D, | 1 —"‘ﬂdr)BII1A¢lAAIAlll‘
et ot 1 T S SO VPO S SN i BAI 1 i o L e
. B PR N i S A S S i A S | 7.0 INSTI sl o, aiC ”“‘”’-B"lb”*h' Lt
s e s addr, . A BN TR INSTILE.O0X | Il - % L dindesx, weag headdo Do o
. L.D y 21 j: . .”;Cl PP ._.r. ‘&‘ : P : Ly : Lt : L. BISTX I.N,5.T1+:I, e lr:e.s,for.e. comtenmts of NST! +ll
N o { INSTImL, . acczaddr, B+l , 1\ 0141141 . N | [EVEPETUTIE RSN UPI EUEEN ST RPN S ST WU S S S VA S W |
wnsTalleo i BKA=T, @iCCma @l D 1 1 s Lo
o LI iNsSTant e
INSTA Lox |l Morka 1, | | index reg lzaddr L 4 2
£t CErEr—re i . W S T S TN W TS | PR OSSN WD TS TR S TR S NN VOO0 WS N D [N S T N T |
Cn) 1 1 ¢ | IR S T PRI 0 U0 VA WS T T W TS T S
ot e e e e .
ox I T INSTA L. deecr. addr, work area A . . . Example 4. Taking advantage of the fact
N DX, | 1] INS T2 ., .~ decr addr work @r.ea £ 1 h 113 - N
R A T that 0 index register occupy storage
R 2 R A N TP locations that can be addressed:
r It LI | IR AEPUR VOt SO SIS ST T S U PP T SHrUUY U SN T [0 TS S S [S S S |
R, S5, I it work aewrea .0y 0 s ’
R I . omords o area & v il
1 s PUTs VILIIJ_LLI‘IIllLlAlIlllIIll I R S S §
Labot Operation | || 1 Operands & Remarks
25 127 X 132133} 35 40 45 50 55 50 65 70
L pleD PR - addr, B 1 a1 v a st
...]lsro N XRI=EdEr B g i a1
o . bl ecemaddr O o4t
.y TO, Ty o0y XRl,=addr, O, 1oa Cava o4
1 1 1 PETI S bt P NNV TR ST S OO G SR BRI S S S (A S S S W S
Example 2. Using the accumulator
extension:
1800 COMPATIBILITY
Lobel Opecation FlT Op«erdA & Remarks
25 27 3 32133 35 40 45 55 50 45 0 .
i A2 1.# 3 ey f18 0 f, (LNSTIrd,)] i 3 s
PR L IX=N sl SKRVIe (NN Ge.C) et Lot v 1) 42 1 EaCh MDX lnStrUCtlon used to. lncr?ment or
{leo o acmaddt, Byt ies ..o | decrement addresses must be immediately
N 23,1 - . b s s s
s.70. INSTIET aemadar Bl oy fO]'low?d by a NOP lnSFIUCtlon because of
INSTILLDx Ll - .y . iindes, rea Ji=addri D . .1 . the skip that occurs if the addresses cross
[RTE 1,6, L T AP ST AP I B AP i S | 243
. (o IJ;NSTI #1l, . nestore comt.ents of JINSTIHI the 32K bOl:lndary (pos-ltlve value less than
Ve N . N e teeaiiaagaia i aaa] 32K, negative value equal to or greater

thap 3?K. The example 4 technique of
modifying storage and/or instructions
cannot be written since the 1800 index

registers do not occupy addressable storage
locations.

Appendix G. Re-enterable Code 145

Index

Where more than one page reference is
given, the major reference is first.

ADRWS (write sector address in
working storage: monitor system 110

Arctangent 103

Arithmetic and functional subroutine
error indicators 98

Arithmetic and functional
subroutines 93

Arithmetic subroutine core
requirements 137

Arithmetic subroutine execution
times 142

Assignment of core storage locations
(card/paper tape system) 16

Assignment of core storage locations
(monitor system) 17

Backspace 39

Basic 1SS calling sequence 14
BIDEC subroutine (monitor
system) 89

BINDC subroutine 79

BINHX subroutine 80
BSC/printer overlap 35

Call processing (1SS) 9
Calling a re-enterable subroutine 144
Calling sequences (arithmetic and
functional subroutines) 94
CaALPR (call system print;
monitor system) 107
CARDZ subroutine 71,74
CARDO subroutine 19
CARD1 subroutine 19
Card subroutines 12,14,15,19,20,70
71,73,74
Carriage control operations 34-38
Character code chart 133
Character interrupts 10
Check legality of calling
sequence (1SS) 10
Console printer code 77,133
Console printer/keyboard
subroutines 38,70,71,73,74
Contents of an 1SAM file 53
Control parameter (ISS) (also
see individual subroutines) 15
Conversion subroutine core
requirements 138
Conversion subroutine error
checking 79
Conversion subroutine execution
times 139
Conversion subroutines 78
COPY (disk copy: monitor
system) 109
Core requirements of subroutines 137
CPEBC (ZIPCO table) 91

146

CPHOL (Z1PCO table) 91
CPP13 (21PCO table) 91
Creating and using 1SAM files 57

Data channel 8

LCata code conversion subroutines 76

Data transfer, methods of 8

Data transmission subroutines 7

DCBIN subroutine 80

DECB1 subroutine (monitor
system) 90

Defective cylinder handling 25

Defective sector handling

(1isk subroutines) 30

Descriptions of data codes 76

Description of interrupt service
subroutines 19

Descriptions of 1/0 subroutines
used by FORTRAN 70,73

Determine status of previous
operation 10

Determining 1SAM file size 57

Device identification (1SS) 16

Device processing 8

Direct program control 8

DISC (disc initialization
satellite cartridge; monitor
system} 109

DFCNV (disk data file
conversion) 109,110.1

Disk file information (DFI)
table-direct access 51

Disk file information (DFI)
table-1SAM add 61

Disk file information (DFI)
table-1SAM load 58

Disk file information (DF1)
table-1SAM sequential 63

Disk file information (CF1)
table-1SAM random 66

Disk file information (DFI)
table-sequential access 51

Disk file management subroutines
(DM2) 49

Disk initialization (card/paper
tape system) 28

Disk initialization (monitor
system) 32

Disk maintenance programs
(monitor system) 109

Disk 1/0 subroutines 49

DISKN subroutine

card/paper tape system 24
monitor system 28

Disk pack initialization routine
(caxd/paper tape system) 28.1

Disk subroutines (card/paper
tape system) 24

Disk subroutines {monitor system)

D1SKZ subroutine (monitor
system) 28.1,32

28

DISKO subroutine (card/paper
tape system) 24
DISK1 subroutine
card/paper tape system 24
monitor system 28.1
DLCIB (delete core image buffer:
monitor system) 110
DPIR (card/paper tape system) 28
DSLET (dump system location
equivalence table: monitor
system) 110
DSPYN Subroutine 48
Dump on console printer 106
Dump on 1132 printer 106
Dump status area 106

EABS, real absolute value
(extended) 98

EADD (X) , real add (extended) 95

EALOG, real natural logarithm
(extended) 96,99

EATAN, real trignometric
arctangent (extended) 96,100

EATN, real trignometric arctangent
(extended) 96

EAVL, real absolute value
(extended) 98

EAXB (X) , real base to a real
exponent (extended) 97,99

EAXI (X) , real base to an integer
exponent 97,99

EBCCP (Z1PCO table) 91

EBCDIC 78,133

EBHOL (Z1PCO table) 91

EBPA (conversion table) 78

EBPRT subroutine 88

EBPT3 (ZIPCO table) 91

ECOS, real trignometric cosine
(extended) 96,99,100

ECOSN, real trignometric cosine
(extended) 96,99

EDIV (X) , real divide (extended) 96

EDVR X) , real reverse divide
(extended) 98

EEXP, real exponential
(extended) 96,100

Effective address calculation
(disk subroutines) 28,32

EGETP, get parameters
(extended) 98

ELD (X} , load FAC (extended) 96

Elementary function algorithms 102

ELN, real natural logarithm
(extended) 96,99,100

EMPY (X) , real multiply
(extended) 96

End of file (monitor system) 99

End of message 40

Erase field 40

Error detection and recovery
procedures 10

Error parameter-important
locations 27

Error parameter (1SS) (see
also individual subroutines) 16

Error detected by 1SS
subroutines 130

ESBER (X) , real reverse subtract
(extended) 98

ESIN, real trignometric sine
(extended) 96,99,100

ESINE, real trignometric sine
(extended) 96,99

ESQRT, real square root
(extended) 93,96, 101

ESTO(X) , store FAC (extended) 96

ESUB (X) , real subtract
(extended) 95

ETANH, real hyperbolic tangent
(extended) 96,101

ETNH, real hyperbolic tangent
(extended) 96

Execution times of 1130 1SS
(CM2 system) 141

Execution times of arithmetic and
function subroutines 142

EXPN, real exponential (extended) 96

Exponential 104

Extended Binary Coded Pecimal
Interchange Code (EBCDIC) 78,133

Extended precision format 93

Extended precision subroutines 100

FABS, real absolute value
(standard) 98

FADD (X) , real add (standard) 95

FALOG, real natural logarithm
(standard) 96,99

FARC, real arithmetic range
check 97

FATAN, real trignometric
arctangent (standard) 96,101

FATN, real trignometric arctangent
(standard) 96

FAVL, real absolute value
(standard) 98

FAXB (X) , real base to a real
exponent (standard) 97,99

FAXI (X) , real base to an integer
exponent (standard) 97,99

FBTD, real binary to decimal 97

FCOS, real trignometric cosine
(standard) 96,99,101

FCOSN, real trignometric cosine
(standard) 96,99

FD1V(X) , real divide (standard) 96

FDTB, real decimal to binary 97

FDVR (X) , real reverse divide
(standard) 98

FEXP, real exponential
(standard) 96,101

FGETP, get parameters (standard) 98

File organization 49

File processing 49

File protection (disk
subroutines) 25,29

Fixed-point format 94

FIX1 (X) , integer base to an
integer exponent 97,99

FLD (X) , load FAC (standard) 96

FLIPR (LOCAL/SOCAL overlay:
monitor system) 107

FLN, real natural logarithm
(standard) 96,99, 100

Index

147

FLOAT, integer to real 97

FMPY (X) , real multiply (standard) 96

FORTRAN, subroutines used by 70,73

FSBR X) , real reverse subtract
(standard) 98

FSIN, real trignometric sine
(standard) 96,99,101

FSINE, real trignometric sine
(standard) 96,99

FSLEN (fetch phase IDs from

SLET: monitor system) 107

FSQR, real square root
(standard) 96,99

FSQRT, real square root

(standard) 96,99,102

FSTO X) , store FAC (standard) 96

FSUB (X) , real subtract (standard) 95

FSYSU (fetch system subroutine:
monitor system) 107

FTANH, real hyperbolic tangent
(standard) 96,101

FTNH, real hyperbolic. tangent
(standard) 96

Functional subroutine accuracy 100

Functional subroutine core
requirements 137

Functional subroutine execution
times 142

Functional subroutines 93

FXPN, real exponential (standard) 96

General error-handling procedures 12

General specifications (FORTRAN
subroutines) 70,73

Graphic subroutine package 7,48

Hexadecimal notation 76
HLPT3 (Z1PCO table) 91
HLEBC (ZIPCO table) 91
HOLCP (ZIPCO table) 91
HOLEB subroutine 81

HOLL (conversion table) 78
HOLPR subroutine 87

HXBIN subroutine 81
Hyperbolic tangent 105

IABS, integer absolute value 98

IBM card code 77,133

1D (charge cartridge ID:
monitor system) 109

IDENT (print cartridge 1ID:
monitor system) 109

1FIX, real to integer 97,99

ILS description 9

1LS, writing 112

Implications of the user's error
routine 13

Indexed-sequential (I1SAM) file
organization 46

Indexed-sequential organized
(1IsaM) disk routines 50

148

Initiate 1/0 operation 10
INT REQ 38
Interrupt branch addresses 16,17
Interrupt level subroutines 9,17,18,112
Interrupt processing 8
Interrupt Request Branch aAdiress 18
Interrupt response processing 10
Interrupt serxvice subroutines 8
Interrupt trap 17
1/0 area parameter (1SS) (see
also individual subroutines) 16
1/0 function (1S9) (see also
individual subroutines) 16
1sAl add routine 60
ISAv add routine, operation of 61 °
I1SAM contents of 53
ISAV determining file size of 57
1SAM disk file information (DF1)
table 49,58,61,63
1saM file index 55
1sar file label 55
1SAM load routine 57
1SAM load routine, operation of 58
1SAM random 66
1SAM random routine, operation of 66
1SAM sequential 61
ISS branch table 112
ISS characteristics 8
1SS counter 17,18
1SS execution times (card/paper
tape system) 140
1SS execution times (monitor system) 141
1SS exit 17
1SS/ILS correspondence
(card/paper tape system) 112
1SS operation 9
1SS subdivision 9
1SS subroutine core requirements 137
1SS subroutine errors 130
1SS, writing 112

Keyboard/console printer
subroutines 38,70,71,73
Keyboard functions 39
Keyboard input (2 routines) 71

LDEC 97
Level processing 8

Machine configuration 3

Methods of data transfer 8

Miscellaneous subroutine core
requirements - 138

Modifying instructions 144.2

Modifying storage 144.2

MOD1F (system maintenance program:
monitor system) 110

MODSF (library maintenance program:
monitor system) 112

Monitor entry point (disk subroutines) 32

Monitor system library listing 118

Name parameter (ISS) 14 (see
also individual subroutines)
NAMEO, NAME1, NAMEN, NAMFZ (1SS) 14,15

/“WN

Natural logarithm 104
No error parameter 12
NORM, normalize 97

Obtaining temporary storage 144.1
OMPR1 subroutine (monitor
system) U6
Operation complete interrupts 10
Operation of the ISAM add
routine 61
Operation of the 1SAM
direct access routine 53
Operation of the 1SAM load routine 58
Operation of the ISAM random routine 66
Operation of the ISAM sequential
routine 65
Operation of the 1SAM
sequential access routine 51
Operator request function
(INT REQ) 38
Optical mark page reader subroutine 43
Overlapping BSC and printer
operations 35

PAPEB subroutine 83
Paper tape subroutine 4#0,42,71,74
PAPHL subroutine 85"
PAPPR subroutine 86
PAPTN subroutine
card/paper tape system 40
monitor system 42
PAPTX subroutine (monitor system) u2
PAPTZ subroutine 71,74
PAPT1 subroutine
card/paper tape system 40
monitor system 42
Perforated tape and transmission
code 77,133
PLOTX subroutine 45
PLOTY4 subroutine 44
Plotter control 43
Plotter subroutines 44,45
PNCHZ subroutine (monitor
system) 70
PNCHQ subroutine (monitor
system) 22
PNCH1 subroutine (monitor
system) 22
Polynomial approximation 102,103,104,105
Postoperative error detection 12
Postoperative error traps 18
Preoperative error detection 12
Preoperative error trap 17,18
Printer/BSC overlap 35
Printer subroutines 33-40
PRNTZ subroutine 70,74
PRNT1 subroutine 33
PRNT2 subroutine 35
PRNT3 subroutine 36
PRNZ subroutine (monitor system) 75
Programming techniques - error
subroutine exits 13
Protection of input data (card
subroutines) 20
PRTY (conversion table) 78
PTHOL (Z1PCO table) 91

PTTC/8 code 77,133

PTUTL (paper tape utility program:
monitor system) 111

PT3EB (ZIPCO table) 91

PT3CP (Z1PCO table) 91

Random processing of indexed
sequential files 50

Random processing of sequential
files 50

RDREC (read #*1ID record;
(monitor system) 107

Read-print (TYPEO) 38

READZ subroutine (monitor

system) 75
READO subroutine (monitor
system) 21
READ1 subroutine (monitor
system) 22

Real base to real exponent (elementary
function algorithm) 102

Real data formats 93

Real negative number representation 93

Real number pseudo accumulator 94

Recoverable device 10

Recurrent subroutine entries 9

Re-enterable code 143

Restrictions on use of PRNT1,
PRNT2 35

RPG compare 69

RPG core requirements 138

RPG decimal arithmetic 66

RPG indicators 69

RPG miscellaneous 69

RPG move 68

RPG object-time subroutines 66

RPG sterling and edit 68

Sample 1LS (card/paper tape
system) 114
Sample 1SS (card/paper tape
system) 115
Satellite graphic job processor 7
Save calling sequence (1SS) 10
Sector numbering (disk subroutines)
Selective dAump subroutines 106
Sequential access routines 50
Sequential file organization 49
Sequential processing (indexed
sequential files) 50
Sequential processing
files) 50
Sequentially organized disk routines 50
Set pack initialization routine
{card/paper tape system) 28
Sine cosine 102
SNR, real reverse sign 98
Special monitor subroutines 107
SPEED subroutine 82
SPIR (card/paper tape system) 28
SPIR execution time (card/paper
tape system) 142
Square root 103
Stacker select 20,47
Standard precision format 93
Standard precision subroutines 101

(sequential

Index

24,29

149

Subroutine action after return from
a user's error subroutine 130

Subroutine library listing
(card/paper tape system) 118

Subroutines used by FORTRAN 41,70,73

System library listing (monitor
system) 118

System library mainline programs 109

SYSUP (DCOM update: monitor system)

TYPEZ subroutine 70,73
TYPEO0 subroutine 38
Types of conversion (chart) 78

User's error routine implications 13
User's 1SS subroutine error exits 32

Writing 1LS (card/paper tape
system) 112 .

150

107

Writing 1SS (card/paper tape
system) 112

WRTYZ subroutine 71,74
WRTY0 subroutine 38

XDD, fixed-point doubleword
divide 98

XMD, fixed-point doubleword
multiply 98

XMDS, fixed-point fractional
multiply (short) 98

XSQR, fixed-point square root 97

Z1PCO conversion tables 91
Z1PCO subroutine (monitor
system) 90

1403 printer code 78,133
2250 Display unit, Model 4,48
| 2311 version of DISKN 28.1

GC26-5929-8

TSIV

International Business Machines Corparation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
{U.S.A. only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International)

(0g-0E L L) Ateaqiq sunnoignS OEL L NG

8-6C6G-9¢0D 'V'S'N ul parund

)

—— e e ———— e ———_— e e = QU BUOIY IO 10 IND e e e e e ——

IBM 1130 READER’'S
Subroutine Library COMMENT

GC26-5929-8 FORM

Your views about this publication may help improve its usefulness; this form
will be sent to the author’s department for appropriate action. Using this

form to request system assistance or additional publications will delay response,
however. For more direct handling of such requests, please contact your

IBM representative or the IBM Branch Office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Index Figures Examples Legibility

What is your occupation?

Number of latest Technical Newsletter (if any) concerning this publication:

Please indicate your name and address in the space below if you wish a reply.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A, (Elsewhere
an IBM office or representative will be happy to forward your comments,)

GC26-5929-8

Your comments, please . . .

This manual is part of a library that serves as a reference source for systems analysts,

programmers, and operators of IBM systems. Your comments on the other side of this
form will be carefully reviewed by the persons responsible for writing and publishing
this material. All comments and suggestions become the property of IBM.
Fold Fold
First Class
Permit 40
Armonk
New York
A——
. . —
Business Reply Mail ———
No postage stamp necessary if mailed in the U.S.A. [,
]
I
L]
T
. T
1BM Corporat.lon. e
Systems Publications, Dept 27T
P.O. Box 1328
Boca Raton, Florida 33432
Foid Fold

TSI

International Business Machines Corparation

Data Processing Division
1133 Westchestar Avenus, White Plains, New York 10604

[U.S.A. only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017

[International]

8-6265-920D V'S’ Ul paluLd (OE-0EL L) AseigiT-auitnoiqns og L | g

3

e e e e AU BUOIY PIDY MO N — e =

IBM 1130 - READER’S
Subroutine Library COMMENT -
FORM

GC206-5929-8

Your views about this publication may help improve its usefulness; this form
will be sent to the author’s department for appropriate action, Using this

form to request system assistance or additional publications will delay response,
however. For more direct handling of such requests, please contact your

IBM representative or the IBM Branch Office serving your locality.,

Possible topics for comment are:

Clarity Accuracy Completeness Organization Index - Figures Examples Legibility

What is your occupation?

Number of latest Technical Newsletter (if any) concerning this publication:

Please indicate your name and address in the space below if you wish a reply.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere,
an IBM oftice or representative will be happy to forward your comments.)

GC26-5929-8

Your comments, please . . .

This manual is part of a library that serves as a reference source for systems analysts,
programmers, and operators of IBM systems. Your comments on the other side of this
form will be carefully reviewed by the persons responsible for writing and publishing
this material. All comments and suggestions become the property of IBM,

Fold Fold
First Class
Permit 40
Armonk
New York
e
Business Reply Mail _—"
No postage stamp necessary if mailed in the U,S.A, SR
—
A
N
A
IBM Corporation —
Systems Publications, Dept 27T
P.O. Box 1328
Boca Raton, Florida 33432
Fold Fold

B

International Business Machines Corporation
Data Processing Division
1133 Wastchester Avenus, White Plains, New York 10604

[U.S.A. only]

1BM World Trade Corporation
821 United Nations Plaza, New York, New York 10017

[Intarnational]

— e = e —— e U BUOIY IN) — .

8-6265-920D 'V'S'N U! Paruld (0E-0EL L) Aieiqi] aunnoigng oELL wat

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168

