
IBM
	

Data Processing Techniques

IBM 1130 Computing System User's Guide

This manual, covering a wide range of subjects that are of interest
to 1130 customer personnel, is designed for insertion in a workbook
along with user-generated materials. It deals with the steps to be
considered in any successful installation program: preinstallation
planning, documenting current applications, design of new applica-
tions, conversion, program development, testing, and program
documentation.

Additional topics discussed include the 1130 system, the 1130
Monitor, Job Management, Disk Management, Core Management,
File Organization, Disk Data Storage, FORTRAN and the Commer-
cial Subroutine Package, Sorting and System Evaluation - Performance.

It is suggested that the User's Guide be placed in a binder and
that dividers be inserted before the various sections. The resulting
workbook becomes the single major source of installation guidance
when you include your own data processing policies, standards, and
control forms.

IBM 1130 Computing System

Copies of this and other IBM publications can be obtained through IBM branch
offices. Address comments concerning the contents of this publication to:
IBM, Technical Publications Department, 112 East Post Road, White Plains, N. Y. 10601

	

Section Subsections	 Page

01
	

00
	

00
	

01

READER'S GUIDE

INTRODUCTION

This section is intended as a guide to help you get
the most out of this manual. Because of the magni-
tude of the manual and the differing needs of various
readers, such a guide, or "road map", is particu-
larly important.

For purposes of the guide, readers will be
divided into three groups:

1. Top management, who want an overview of
the system.

2. Data processing management, who have
direct responsibility for the installation and man-
agement of the 1130 System.

3. Programmers and systems analysts, who will
actually set up the system, determine the methods
to be used, and/or code the programs.

Groups 2 and 3 are subdivided into those con-
cerned with "pure" scientific applications, and
those working in a commercial or mixed scientific-
commercial atmosphere.

Figure 01.1 shows a general outline of the man-
ual and suggests which sections should be read by
each group. However, the top manager who wants
a more detailed view of the 1130 will find much of
the data processing management material to be
relevant; the data processing manager may want to
read more than Figure 01.1 indicates; etc.

The effectiveness of this Guide depends entirely
on the responsible manager in your installation.
The Guide contains possible paths to a successful
installation. Since the installation of data process-
ing equipment is a disciplined venture that involves
decisions concerning the selection of the best paths,
your management's responsibility is clearly delin-
eated. This responsibility began with the creation
of realistic objectives. Control is exercised through
timely reviews in which progress is related to
checkpoints and corrective action is undertaken.

A WORD TO TOP MANAGEMENT

Within the last several years, your company may
have increased its plant capacity to meet growing
needs. Before this new resource became fully
operational, though, many things had to be done.
Management was chosen, an organization chart
drawn up, a plan for startup formulated, a date
picked for the start of production, etc.

Just recently you may have added a new product
or service. The introduction of this product or

service involved many considerations. Its need was
studied, its function determined, an announcement
date selected, etc.

In both cases, management:
• Defined its objectives
• Made a plan
• Established checkpoints
• Assigned responsibilities
Timely reviews determined whether your plans

were being followed, your objectives met, etc. On
the basis of these reviews, modifications and adjust-
ments were made to ensure that the operation was a
success.

Now you are adding another resource to your
organization — an IBM 1130 Computing System. As
before, there are many things that you, as manage-
ment, must do if your 1130 installation is to meet
its planned objectives.

Should the installation of a new data processing
system be any less subject to management control
than a new plant, or a new product? The answer is
no. Data processing capability is a resource, just
like the new plant or new product. In fact, a data
processing system is a unique type of resource; it is
one that extends management's ability to control
other resources.

Your 1130 system may be used to maintain a per-
sonnel skills inventory or to schedule plant opera-
tions. It may be assigned to keep a close watch on
cash flow or to determine reorder points for your
inventory. In each case, data processing is a re-
source being used to control other resources.

In this light, the IBM 1130 Computing System that
you are about to install should take on an added impor-
tance. Objectives, checkpoints, and the mechanics
for review should be established for this resource,
just as for any other resource available to you.

The 1130 Computing System, through its stored-
program power and random access disk capability,
embodies a new technology. The maximum value
will be derived from this technology only if the sys-
tem is oriented toward your objectives and its in-
stallation is closely monitored to see that those
objectives are achieved. It is through this type of
involvement that the philosophies and policies of a
manager can be manifested.

The 1130 User's Guide has been designed with
these thoughts in mind. First, it deals with all the
considerations th T lead to a successful installation.
Second, it is so org ized	 to lend itself to the"-
control and rpiew p ocess. The êtrnexstone of

Section Subsections Page

01 00 00 02

THE TOPIC:

THE READER

Top
Mgmt

DP
Mgmt

(Commercial-
Scientific)

DP
Mgmt

(Scientific)

Programmer/
Analyst

(Commercial-
Scientific)

Programmer/
Analyst

(Scientific)

Preinstallation Planning V 3 V

Documenting Current Applications Introduction Introduction 3

Preliminary Questions & Answers

Cards vs Disk Files 3 * *

Safeguarding Data V * *

Application Design

Accounting Controls V V

Forms Design V 3

Card Design V ,,/

Disk Design * *

Program Development Introduction Introduction ,./ 3

Testing Effectively 3 V ,./ V

Documentation Introduction V 3 V 3

Conversion 3 3

The 1130 System V 3 V V

The 1130 Monitor V V V /	 ,/

Job Management 3 3 V
V

Disk Management

Layout of Disk V q

Increasing Space V 4

Disk Util. Prog. V 3

Core Storage Management V V

FORTRAN

Arithmetic V 3 V 3

Overlapped I/O V V

Character Handling 3

Core Saving Tips V v

Timing 3 V

Sorting Introduction
3

Use of the Disk for Data Storage *
ntroductionIdIntro*uction

* *

Disk Organization and Processing * Introduction
* * *

Improving Your System — Performance Introduction J 3 .,/ 3

3 Read this section

*	 May be skipped if you don't have, or are not considering using, the disk for data storage

Figure 01.1

	

Section Subsections	 Page

01
	

00
	

00
	

03

this organization is an Installation Activity Schedule,
which highlights all the events leading to a success-
ful installation. This is fully described in Section 05.

This Guide should become a working document in
your organization. Although the experience and
specific needs of each organization vary consider-
ably, all the events apply to some extent in every
installation.

A WORD TO DATA PROCESSING MANAGEMENT

In addition to the comments directed toward top
management, several thoughts apply here.

You are the men in the middle — between top
management and the programmer/analyst. For this
reason the sections checked for your attention are
those concerned with how to do things the "right"
way; how to avoid potential pitfalls; how to get the
most out of your 1130 system; etc.

A WORD TO THE PROGRAMMER/ANALYST

As Figure 01.1 shows, this manual is directed pri-
marily toward you; you should read its entire con-
tents. This is especially true for those of you who
are working in a commercial, or mixed, environ-
ment.

However, the distinction between a commercial,
or mixed, environment and a "pure" scientific
environment is very tenuous. More and more,
users who once considered themselves "pure"
scientific find their applications taking on aspects
of the traditional commercial job — large data files
are developed, input and output formats become
more critical, alphabetic codes and data are en-
countered.

Actually, the subjects checked for the "pure"
scientific reader represent a bare minimum. Any-
one who is or expects to be in a mixed environment
should read the entire manual.

SUMMARY OF THE USER'S GUIDE

The Installation Phase

The following listing of the material in this Guide
reflects the major grouping of installation events
and should provide an indication of the Guide's com-
prehensive nature. Comments have been added to
each listed item to relate the manner in which that
subject matter may be used.

• Preinstallation Planning — provides a proven
method of scheduling and reviewing installation
activities, specifically tailored to the 1130 user,

and illustrates the points where management review
is most essential.

• Documenting Current Applications — concerns
the control and techniques that can be applied to the
documentation of existing procedures. Distinction
is made between manual operations and those already
mechanized.

• Some Preliminary Questions and Answers
Regarding Data Storage — considers the pros and
cons of using either cards or disk for data storage.
Also considers protecting your data — why and how
it should be protected.

• 1130 Application Design — includes card and
form design, record layouts, and flowcharts. The
elements of application design are made clear
through "live" illustrations, which are used through-
out. This section also aids in the selection of the
right job-oriented programming language and thus
contributes to the effectiveness of the whole installa-
tion effort.

• Program Development — devotes itself to con-
verting designs for 1130 applications into tested,
debugged machine programs. The application dis-
cussed throughout the Guide is provided to serve as
a teaching aid and time saver for the programmer.
Programming hints and aids are also provided.

• Testing Effectively — shows the methods an
installation should use in testing individual programs
and complete systems.

• Program Documentation — shows how a good
set of working documents, which a computer instal-
lation must develop, can be created during the
development phases.

• Conversion — outlines the procedures required
to perform the cutover from your present system to
the 1130.

The Operations Phase

This portion of the Guide contains several sections
of interest to users who have completed the installa-
tion phase:

• 1130 Computing System — contains a compre-
hensive description of the 1130 System and a brief
description of each component.

• 1130 Disk Monitor System — discusses the
1130 Monitor in general and leads into the more
detailed material of the next three sections.

• Job Management — covers those features of
the Monitor that help you manage the job, or unit of
work.

• Disk Management — describes the layout of
disk storage, how you may use it, and how to get
the most out of it.

Section Subsections Page

01 00 00 04

• Core Storage Management — outlines the
facilities the Monitor gives you to manage core
storage with the LOCAL, SOCAL and LINK overlay
systems.

• FORTRAN — General and Commercial —
covers many aspects of FORTRAN that are of inter-
est to all users, but with special emphasis on the
needs of commercial programmers. Use of the
Commercial Subroutine Package, arithmetic consid-
erations, and core-saving tips are among the major
topics covered.

• Sorting with Your 1130 — describes the sort-
ing process and some alternate approaches.

• Use of the Disk for Data Storage — describes
the way data is situated on the disk, and stresses
efficiency.

• Disk Data Files — Organization and Process-
ing — continues the previous topic, discussing the
various file organization techniques and how the
processing sequence affects the choice of organi-
ation.

• Improving Your System — Performance —
covers performance and how it is affected by (1) the
Monitor, (2) the programmer, and (3) the 1130
itself. Three case studies are presented to illus-
trate various approaches to improving through-
put rates and run times.

Section Subsections Page

02 00 00 01

CONTENTS

Section 01: Reader's Guide

Section 02:	 Table of Contents

Section 05:	 Preinstallation Planning
Section Contents 	 05.00.00
Introduction 	 05.01.00
General Planning 	 05.10.00
Application and Conversion Planning 	 05.20.00
Programming Planning 	 05.30.00

Section 10: Documenting Current
Applications

Section Contents 	 10.00.00
Introduction 	 10.01.00
Documentation of Manual Systems 	 10.10.00
Documentation of Punched Card
Systems 	 10.20.00
Accounting Controls 	 10.30.00
Survey Questionnaires 	 10.40.00

Billing 	 10.40.10
Accounts Receivable 	 10.40.20
Sales Analysis 	 10.40.30
Inventory 	 10.40.40
Accounts Payable 	 10.40.50
Payroll 	 10.40.60

Manual System Documentation Example-
Payroll 	 10.50.00

Introduction 	 10.50.01
Job Description 	 10.50.10
Survey Form 	 10.50.20
Sample Documents 	 10.50.30
Systems Flowchart 	 10.50.40

Section 15: Some Preliminary Questions
and Answers Regarding
Data Storage

Section Contents 	 15.00.00
Introduction 	 15.01.00
Data -- On Disk or Cards? 	 15.10.00

General Considerations 	 15.10.01
Flexibility in Order of Processing 	 15.10.10
Jobs Involving More than One File 	 15.10.20
Frequency of Changes to Your File 	 15.10.30
Need for Inquiry into Your File 	 15.10.40
Size of Your Data File 	 15.10.50
Your Backup Requirements 	 15.10.60
Record Size 	 15.10.70
Other Considerations 	 15.10.80
Summary 	 15.10.90

How to Safeguard Your Disk Data
Files 	 15.20.00

Introduction 	 15.20.01
Know Your Data 	 15.20.10
Know What Can Happen to Your Data 15.20.20
Design an Accident-Insensitive
System 	 15.20.30
Detect Errors Before They Do
Damage 	 15.20.40
Plan Modest-Size, Modular
Programs 	 15.20.50
Always Back Up Your Disk Files with
a Duplicate Copy 	 15.20.60
Provide Tested and Documented
Recovery Procedures 	 15.20.70

Section 20: 1130 Application Design
Section Contents 	 20.00.00
Introduction 	 20.01.00
Accounting Controls 	 20.10.00

Review of Accounting Control
Principles 	 20.10.10
More Specific Suggestions for
Document and Accounting Controls 	 20.10.20

Form Design 	 20.20.00
1130 Considerations 	 20.20.10
Form Design Principles 	 20.20.20

Card Design 	 20.30.00
1130 Considerations 	 20.30.10
Card Design Principles 	 20.30.20

Design of Disk Data Files 	 20.40.00
Introduction 	 20.40.01
Data 	 20.40.10
Field Size 	 20.40.20
Data Sequence 	 20.40.30
File Organization 	 20.40.40
Record Format and Blocking 	 20.40.50
File Processing 	 20.40.60
File Control 	 20.40.70

Payroll Example 	 20.50.00
Narrative 	 20.50.10
Card Forms and Console Keyboard
Input 	 20.50.20
Console Printer and Line Printer
Forms for Output 	 20.50.30
Disk Record Formats 	 20.50.40
System Flowchart 	 20.50.50

Language Selection 	 20.60.00
Introduction 	 20.60.01
Programming Languages 	 20.60.10

Section Subsections Page

02 00 00 02

Application Programs 	 20.60.20
Which Programming Language or
Application Program Should You
Use? 	 20.60.30

Section 25: Program Development
Section Contents 	 25.00.00
Introduction 	 25.01.00
Programming and Documentation
Standards 	 25.10.00
Program Change Authorization 	 25.20.00
Programming Aids 	 25.30.00

Documenting Variable Usage 	 25.30.10
Modular Programming 	 25.30.20

Programming Examples 	 25.40.00
Introduction 	 25.40.01
Example 1: File Creation 	 25.40.10
Example 2: Add Name to the File 	 25.40.20
Example 3: Changes to the File 	 25.40.30
Example 4: Calculations and
Payroll Register 	 25.40.40
Example 5: Check Writing 	 25.40.50
Example 6: Check Register 	 25.40. 60
Example 7: 941 Report 	 25.40.70

Section 30: Testing Effectively
Section Contents 	 30.00.00
Introduction 	 30.01.00
Testing Strategy 	 30.10.00
Testing Tactics 	 30.20.00
Testing Hints 	 30.30.00
Summary 	 30.40.00

Section 35: Program Documentation
Section Contents 	 35.00.00
Introduction 	 35.01.00
Installation Manuals 	 35.10.00

Program Information Manual 	 35.10.10
Operation Manual 	 35.10.20

Documentation Examples 	 35.20.00
Payroll System -- Program
Information Manual 	 35.20.10
Payroll System -- Operation
Manual 	 35.20.20

Section 40: Conversion
Section Contents 	 40.00.00
Introduction 	 40.01.00
Planning for Conversion 	 40.10.00
Preparing for Conversion 	 40.20.00
Conversion Methods 	 40.30.00

Section 45: 1130 Computing System
Section Contents 	 45.00.00
Introduction 	 45.01.00

The 1131 CPU 	 45.05.00
Console Printer and Keyboard 	 45.05.10
Data Switches 	 45.05.20
Console Display Lamps 	 45.05.30

Disk Storage 	 45.10.00
Printers 	 45.15.00
Card Readers and Punches 	 45.20.00
Paper Tape Readers and Punches 	 45.25.00
Plotter 	 45.30.00
Graphic Display 	 45.35.00
Optical Readers 	 45.40.00
Storage Access Channel 	 45.45.00
Teleprocessing 	 45.50.00
The 1130 Configurator 	 45.55.00

Section 50: 1130 Disk Monitor System
General 	 50.01.00

Section 55: The Monitor - Job Management
Section Contents 	 55.00.00
Introduction 	 55.01.00
Job and Subjob 	 55.10.00
Stacked Jobs or the Input Stream 	 55.20.00
Disk Cartridge ID Checking 	 55.30.00

Section 60: The Monitor - Disk Management
Section Contents 	 60.00.00
Introduction 	 60.01.00
Disk Storage Layout 	 60.10.00

Introduction 	 60.10.01
Cylinder 0 	 60.10.10
IBM Systems Area 	 60.10.20
Working Storage (WS) 	 60.10.30
User Area (UA) 	 60.10.40
Fixed Area (FX) 	 60.10.50
Summary 	 60.10.60

Increasing the Amount of Space Avail-
able to the User 	 60.20.00

Introduction 	 60.20.01
How Much Room Do I Have 9 	 60.20.10
How Can I Make More Space
Available 9 	

	 60.20.20
Summary 	

	
60.20.30

The Disk Utility Program 	
	

60.30.00
Introduction 	

	
60.30.01

Format of Material on the Disk
	

60.30.10
The Most Commonly Used DUP
Functions 	

	
60.30.20

Special Options -- Multiple Disk
1130 Users 	 60.30.30

Section 65: The Monitor-Core Storage Management
Section Contents 	 65.00.00
Introduction 	 65.01.00

	

Section Subsections	 Page

02
	

00
	

00
	

03

Section 70: 1130 FORTRAN and the
Commercial Subroutines

Section Contents 	 70.00.00
Introduction 	 70.01.00
Arithmetic Considerations 	 70.10.00

General 	 70.10.01
Integer Mode 	 70.10 10
Real Mode 	 70.10.20
Decimal Mode 	 70.10.30
Summary 	 70.10.40

Overlapped Input/Output 	 70.20.00
Introduction 	 70.20 01
The Commerical Subroutine Package
Overlapped I/O Subroutine 	 70.20.10
Using the Overlapped I/0 System 	 70.20.20

The Interaction of Arithmetic and I/O 	 70.30.00
Character Handling Techniques 	 70 40.00

General 	 70.40.01
Code Conversion 	 70.40.10
Other Character Handling
Techniques 	 70.40.20

FORTRAN Core Saving Tips 	 70.50.00
General 	 70.50.01
Reducing Program Size 	 70.50.10
Reducing Subroutine Requirements 	 70.50.20

FORTRAN Execution Times 	 70.60.00
Processing 	 70.60.10
Summary and Conclusion 	 70.60.20

Section 75: Sorting with Your 1130
Section Contents 	 75.00.00
Introduction 	 75.01.00
Some Preliminary Information 	 75.10.00
Alternate Approaches 	 75.20.00

Use of File Organization 	 75.20.10
Sorting Offline 	 75.20.20

Methods of Sorting 	 75.30.00
Introduction 	 75.30.01
Internal Sorting Methods 	 75.30.10
External Sorting Methods 	 75.30.20

A Detailed Look at an 1130 Record
Sort 	 75.40.00
Summary 	 75.50.00

The Logical Layout of Core Storage 	 65.10.00
Basic 	 65.10.10
Flipper 	 65.10.20
SOCAL Area 	 65.10.30
LOCAL Area 	 65.10.40
Program or LINK Area 	 65.10.50
COMMON Area 	 65.10.60
Unused Area 	 65.10.70

Summary
	 65.20.00

Section 80: Use of the Disk for Data
Storage

Section Contents 	 80.00.00
General 	 80.01.00
The Physical, or Hardware,
Structure of the Disk 	 80.10.00
The Disk As Seen by the FORTRAN
Programmer 	 80.20.00
The Interrelationship of the Physical
and Logical Structures 	 80.30.00

The DEFINE FILE Statement 	 80.30.10
The *STORE DATA and *FILES
Cards 	 80.30.20

Record Lengths and Sector
Utilization 	 80.40.00

A Trick to Get Long Records and/or
Better Packing 	 80.40.10

Computing Record Length 	 80.50.00
Shortening Record Length 	 80.60.00
Some Examples of Disk File Layout 	 80.70.00

Example 1 	 80.70.10
Example 2 	 80.70.20
Example 3 	 80.70.30

Section 85: Disk Data Files --
Organization and Processing

Section Contents 	
	

85.00.00
General 	
	 85.01.00

Organization 	
	

85.10.00
General 	
	 85.10.01

Pure Sequential 	
	 85.10.10

Indexed Sequential 	
	

85.10.20
Direct, or Random, Organizations ... 85.10.30

Processing 	
	 85.20.00

The Interaction of Organization and
Processing 	

	 85.30.00
Introduction 	

	
85.30.00

Choosing the Organization 	
	

85.30.10

Section 90: Improving Your System
Performance

Section Contents 	 90.00.00
General 	 90.01.00
The Role of the Monitor 	 90.10.00

General 	 90.10.01
The Effect of the Monitor on
Performance 	 90.10.10

The Role of the Programmer 	 90.20.00
Planning for Performance 	 90. 20. 10
Organizing for Performance --
How to Use LOCAL's 	 90.20. 20
Programming for Performance 	 90. 20. 30

The Role of the 1130 Hardware 	 90. 30. 00

Section Subsections Page

02 00 00 04

General 	 90.30.01	 Some Case Studies of Performance
Productive Time That Cannot Be	 Improvements 	 90.40.00
Improved by Hardware Changes 	 90.30.10	 General 	 90.40.01
Productive Time That Can Be	 Case I 	 90.40.10
Improved by Hardware Changes 	 90.30.20	 Case II 	 90.40.20
Nonproductive Time That Can Be 	 Case III 	 	 90.40.30
Reduced by Hardware Changes 	 90.30.30	 Summary 	 90.40.40

PageSection Subsections

00 010005

Section 05: PREINSTALLATION PLANNING

CONTENTS

Introduction 	 05.01.00
General Planning 	 05.10.00
Application and Conversion Planning 	 05.20.00
Programming Planning 	 05.30.00

Section Subsections Page

05 01 00 01

INTRODUCTION

Now that your 1130 computing system is on order,
what should you do next? When the 1130 computing
system was proposed, mention was made that it
could perform both scientific and commercial jobs.
Some typical commercial jobs that may have been
considered at that time are:

• Payroll (used as an example later in the
manual) and labor distribution

• Accounts receivable
• Accounts payable
• Sales analysis
• Inventory control
Planning the use of the 1130 for specific applica-

tions such as the above leads to other questions that

need answers. How will the personnel for your
installation be selected? When will your applica-
tions be implemented on the 1130? How will this
job of implementation be carried to completion? In
other words, you need a plan to carry out the in-
stallation of this new system.

In answer to the first question, selection of
personnel, your IBM representative can supply you
with the Programmer's Aptitude Test, which will
help you with some of the selection. (It may be that
you will find these people in your com pany, but you
may also find it necessary to hire someone outside.)

The second and third questions, when will the
implementation be done and how, may be answered
by your general (installation) plan, which is dis-
cussed next.

Section Subsections Page

05 10 00 01

GENERAL PLANNING

The General Installation Plan is made up of two
items: the Activity List (Figure 05.1) and the
Activity Time Estimates (Figure 05.2)

Your Activity List contains the major areas of
concentration. It answers the questions "who" and
"what". Your Activity Time Estimates answers
the question "when". However, you still do not
have enough detail.

Before going into more detail, go back and be
sure the two lists are fully understood.

The Activity List contains the major installation
activities you need to complete a successful instal-
lation. The first two areas, Installation Organiza-
tion and Document Current Processes, although not
end products, are most important. They are the
foundation of your installation. The remaining
items on the list are:

• Application Design
• Operations Planning
• Physical Planning
• Conversion and Applications Complete
• Evaluation
These will go smoothly if you ensure that the

first two areas are complete.
Your Activity Time Estimates makes this point

clear; notice that the early parts of your installation
efforts, as mentioned previously, must all have
start dates. If your foundation is firm and on
schedule, the later installation activities will also
be smooth and on schedule.

The later installation activities require more
detail. You may find these items helpful in planning
applications other than those listed.

GENERAL INSTALLATION PLAN
ACTIVITY LIST

Installation Organization
Select personnel:

Management
Programmers
Operators

Education
Train management
Train programmers
Train operators

Document Current Processes
Document current:

Payroll and labor distribution procedures
Accounts receivable procedures
Accounts payable procedures
Sales analysis procedures
Inventory control procedures

Determine 1130 documentation standards
Schedule application development and conversion
Management review

Application Design
Application development:

Payroll and labor distribution
Accounts receivable
Accounts payable
Sales analysis
Inventory control

Convert:
Payroll files
Accounts receivable files
Accounts payable files
Inventory files

Operation Planning
Establish operating schedules and procedures

Physical Planning
Physical layout
Management review
Order cables
Physical alterations

System Delivered

Conversion and Applications Complete

Entire Systems Evaluation

Figure 05.1.

	

Section Subsections
	

Page

05
	

10
	

00
	

02

APPLICATION DEVELOPMENT PLAN

ACTIVITY TIME ESTIMATES

Activity

Duration
in

Weeks

"Must"
Start (S) or

Original Schedule
Dates

Revised
Dates # 1

Revised
Dates # 2

Finish (F)
Date Start Finish Start Finish Start Finish

Figure 05.2.

Section Subsections Page

05 20 00 01

APPLICATION AND CONVERSION PLANNING

Figure 05.3 is the Activity List for your Applica-
tion Development Plan. This corresponds to the
Activity List for your General Installation Plan.
Similarly, Figure 05.4 is the Activity Time Esti-
mates for your Application Development Plan.

The Application Development Plan is, in general,
composed of three items:

1. Analysis
a. Review of present system
b. Designing reports and card layouts
c. Flowcharting

2. Evaluation
a. Establishment of controls

b. Management review
3. Programming of the application
The most important steps in this process are,

once more, the earliest: Analysis and Evaluation.
If these items are complete, that is, if the indiv-
iduals and groups involved agree with what you
propose, the remainder of the installation effort
will be relatively free from serious problems.

Figures 05.5 and 05.6 are, respectively, the
Activity List and Activity Time Estimates for the
Conversion Plan.

Notice that the discussion of the Application
Development Plan so far has not included program-
ming. The question, how will the programming be
carried to completion, will be discussed next.

	

Section Subsections
	

Page

05
	

20
	

00
	

02

APPLICATION DEVELOPMENT PLAN
ACTIVITY LIST

For each application:

Review present system

Design reports and card layouts

Flowchart

Establish controls

Management review

*Program development

*Further detail

Figure 05.3.

APPLICATION DEVELOPMENT PLAN

. ACTIVITY TIME ESTIMATES

"Must" Original Schedule Revised Revised
Duration Start 151 or .	 Dates Dates # 1 Dates #2

in Finish (FI
Activity Weeks Date Start Finish Start Finish Start Finish

Payroll and Labor
Distribution

Review present system 2.0
Design reports and
card layouts 2.0
Flowchart 1.5
Establish controls 1.0
Management review 1.0

*Program development 7.0
Accounts Receivable

Review present system 1.5
Design reports and
card layouts 2.0
Flowchart 1.0
Establish controls 1.5
Management review 1.0

• Program development 5.0
Accounts Payable

Review present system .5
Design reports and
card layouts 2.0
Flowchart 1.0
Establish controls .5
Management review 1.0

• Program development 6.0
Sales Analysis

Review present system 1.0
Design reports and
card layouts 1.0
Flowchart 1.0
Establish controls .5
Management review 1.0

• Program development 4.0
Inventory Control

Review present system 1.0
Design reports and
card layouts 2.0
Flowchart 2.0
Establish controls .5
Management review 1.0

•Program development 7.0

• Further detan (Figure 05.8)

Figure 05.4.

Section Subsections Page

05 20 00 03

CONVERSION PLAN
ACTIVITY LIST

For each application (where applicable):

Develop conversion procedures

Train conversion personnel

Convert files

Parallel or pilot run

Train other departments

Figure 05. 5

CONVERSION PLAN

ACTIVITY TIME ESTIMATES

"Must" Original Schedule Revised Revised
Duration

in
Start (S) or
Finish (F)

Dates Dates # 1 Dates # 2

Activity Weeks Date Start Finish Start Finish Start Finish

Develop data preparation and
card punching procedures 1.0

Develop conversion control
plans and procedures 1.0

Train conversion personnel 2.0
Convert payroll and labor

distribution files 2.0
Convert accounts receivable

files 4.0
Convert accounts payable files 4.0
Convert inventory files 6.0
Train other departments --

all applications 4.0
Parallel runs -- payroll and

labor distribution 4.0
Parallel runs -- accounts

receivable 4.0
Parallel runs -- accounts

payable 4.0
Parallel runs -- inventory

control 2.0
TOTAL CONVERSION 10.0 (F) - 4/8/68

Figure 05.6.

	

Section Subsections	 Page

05
	

30
	

00
	

01

PROGRAMMING PLANNING

The Activity List and Activity Time Estimates for
the Program Development Plan (Figures 05.7 and
05.8 respectively) complete the planning.

This is the detailed level of planning on which
your installation depends. For this reason you must
have control over the progress of these activities.
The Progress Charts for Program Development
(Figure 05.9) will provide the necessary control.
Used in conjunction with the Activity Time Esti-
mates for the Program Development Plan, these
charts show you, at all times, the progress of
your installation effort. You can determine whether
it is ahead of schedule, on schedule, or behind
schedule and requiring action.

PROGRAM DEVELOPMENT PLAN
ACTIVITY LIST

For each application:

Define program

Flowchart

Code

Desk-check and list

Prepare test data

Test

Production test

Complete program documentation

Figure 05.7.

•■•

Section Subsections Page

05 30 00 02

PROGRAM DEVELOPMENT PLAN

ACTIVITY TIME ESTIMATES

"Must" Original Schedule Revised Revised
Duration Start (5) or Dates* Dates # 1 * Dates #2'

in Finish (F)
Activity Weeks Date Start Finish Start Finish Start Finish

Define PAY 01 (Payroll) .1
Flowchart PAY 01 .1
Code PAY 01 .1
Desk-check, list PAY 01 .1
Test data PAY 01 .1
Test PAY 01 .2
Production test PAY 01 .2
Complete documentation PAY 01 .2

Define PAY 02 (Payroll) 1.0
Flowchart PAY 02 .5
Code PAY 02 .8
Desk-check, list PAY 02 .2
Test data PAY 02 .2
Test PAY 02 1.0
Production test PAY 02 1.0
Complete documentation PAY 02 .5

Define PAY 03 (Payroll) 5
Flowchart PAY 03 .2
Code PAY 03 .5
Desk-check, list PAY 03 .1
Test data PAY 03 .1
Test PAY 03 .2
Production test PAY 03 .2
Complete documentation PAY 03 .2

Define PAY 04 (Payroll) 5
Flowchart PAY 04 .2
Code PAY 04 .5
Desk-check, list PAY 04 .1
Test data PAY 04 .2
Test PAY 04 .2
Production test PAY 04 .2
Complete documentation PAY 04 .2

Define PAY 05 (Payroll) .5
Flowchart PAY 05 .2
Code PAY 05 .5
Desk-check, list PAY 05 .1
Test data PAY 05 .2
Test PAY 05 .2
Production test PAY 05 .2
Complete documentation PAY 05 .2

Define PAY 06 (Payroll) 5

Flowchart PAY 06 .2
Code PAY 06 .5
Desk-check, list PAY 06 .1
Test data PAY 06 .2
Test PAY 06 .2
Production test PAY 06 .2
Complete documentation PAY 06 .2

Define PAY 07 (Payroll) 5

Flowchart PAY 07 .2
Code PAY 07 .5
Desk-check, fist PAY 07 .1
Test data PAY 07 .2
Test PAY 07 .2
Production test PAY 07 .2
Complete documentation PAY 07 .2

*Only one start and finish date should be supplied for each program being developed.

Figure 05. 8 (Sheet 1 of 5).

	

Section Subsections
	

Page

05
	

30
	

00
	

03

PROGRAM DEVELOPMENT PLAN

ACTIVITY TIME ESTIMATES

"Must" Original Schedule Revised Rev'sed
Duration Stant (S) or Dates• Dates # l • Dates # 2 •

in Finish IF)
Activity Weeks Date Stant Finish Start Finch Start Finish

Define PAY 08 (Payroll) .5
Flowchart PAY 08 .3
Code PAY 08 .5
Desk-check, list PAY 08 .1
Test data PAY 08 .2
Test PAY 08 .2
Product test PAY 08 .2
Complete documentation PAY 08 .1

Define PLD 01 (Labor Dist.) .8
Flowchart PLD 01 .5
Code PLD 01 .5
Desk-check, list PLD 01 .2
Test data PLD 01 .3
Test PLD 01 .5
Production test PLD 01 .2
Complete documentation PLD 01 .2

Define PLD 02 (Labor Dist.) .5
Flowchart PLD 02 .2
Code PLD 02 .5
Desk-check, list PLD 02 .1
Test data PLD 02 .2
Test PLD 02 .2
Production test PLD 02 .2
Complete documentation PLD 02 .2

Define AR 01 (Accts Rec) .1
Flowchart AR 01 .1
Code AR 01 .1
Desk-check, list AR 01 .1
Test data AR 01 .1
Test AR 01 .2
Production test AR 01 .2
Complete documentation AR 01 .2

Define AR 02 (Accts Rec) .8
Flowchart AR 02 .5
Code AR 02 .5
Desk-check, list AR 02 .2
Test data AR 02 .3
Test AR 02 .5
Production test AR 02 .2
Complete documentation AR 02 .2

Define AR 03 (Accts Rec) 1.0
Flowchart AR 03 1.0
Code AR 03 .7
Desk-check, list AR 03 .2
Test data AR 03 .2
Test AR 03 1.0
Production test AR 03 1.0
Complete documentation AR 03 .2

Define AR 04 (Accts Red) .5
Flowchart AR 04 .2
Code AR 04 .4
Desk-check, list AR 04 .1
Test data AR 04 .1
Test AR 04 .5
Production test AR 04 .5
Complete documentation AR 04 .2

• Only one start and finish date should be supplied for each program being developed.

Figure 05.8 (Sheet 2 of 5).

Section Subsections Page

05 30 00 04

PROGRAM DEVELOPMENT PLAN

ACTIVITY TIME ESTIMATES

"Must" Original Schedule Revised Revised
Duration Start (S) or Dates* Da es u 1' Dates # 2*

in Finish (F)
Activity Weeks Date Start Finish Start Finish Start Finish

Define AR 05 (Accts Rec) 1.0
Flowchart AR 05 1.0
Code AR 05 .7
Desk-check, list AR 05 .2
Test data AR 05 .2
Test AR 05 1.0
Production test AR 05 1.0
Complete documentation AR 05 .2

Define AR 06 (Accts Rec) .5
Flowchart AR 06 .5
Code AR 06 .2
Desk-check, list AR 06 .1
Test data AR 06 .2
Test AR 06 .4
Production test AR 06 .4
Complete documentation AR 06 .2

Define AP 01 (Accts Pay.) .1
Flowchart AP 01 .1
Code AP 01 .1
Desk-check, list AP 01 .1
Test data AP 01 .1
Test AP 01 .2
Production test AP 01 .2
Complete documentation AP 01 .2

Define AP 02 (Accts Pay.) 5
Flowchart AP 02 3

Code AP 02 .2
Desk-check, list AP 02 .1
Test data AP 02 .1
Test AP 02 .2
Production test AP 02 .2
Complete documentation AP 02 .2

Define AP 03 (Accts Pay.) .4
Flowchart AP 03 .2
Code AP 03 .2
Desk-check, list AP 03 .1
Test data AP 03 .1
Test AP 03 .2
Production test AP 03 .2
Complete documentation AP 03 .2

Define AP 04 (Accts Pay.) .5
Flowchart AP 04 .4
Code AP 04 .2
Desk-check, list AP 04 .1
Test data AP 04 .1
Test AP 04 .2
Production test AP 04 .2
Complete documentation AP 04 .2

Define AP 05 (Accts Pay.) .4
Flowchart AP 05 .2
Code AP 05 .2
Desk-check, list AP 05 .1
Test data AP 05 .1
Test AP 05 .2
Production test AP 05 .2
Complete documentation AP 05 .2

'Only one start and finish date should be supplied for each program being developed.

Figure 05.8 (Sheet 3 of 5).

	

Section Subsections
	

Page

05
	

30
	

00
	

05

PROGRAM DEVELOPMENT PLAN

ACTIVITY TIME ESTIMATES

"Must" Original Schedule Revised Reused
Duration Start (S) or Dates` Dates 4 1" Dates # 2"

in Finish (F) IF
Activity Weeks Date Start Finish Start Finish Start Finish

Define AP 06 (Accts Pay.) .5
Flowchart AP 06 .3
Code AP 06 .5
Desk-check, list AP 06 .1
Test data AP 06 .2
Test AP 06 .4
Production test AP 06 .2
Complete documentation AP 06 .2

Define AP 07 (Accts Pay.) .5
Flowchart AP 07 .4
Code AP 07 .5
Desk-check, list AP 07 .1
Test data AP 07 .1
Test AP 07 .4
Production test AP 07 .2
Complete documentation AP 07 .2

Define INV 01 (Inventory) .1
Flowchart INV 01 .1
Code INV 01 .1
Desk-check, list INV 01 .1
Test data INV 01 .1
Test INV 01 .2
Production test INV 01 .2
Complete documentation INV 01 .2

Define INV 02 (Inventory) .4
Flowchart INV 02 .2
Code INV 02 .2
Desk-check, list INV 02 .1
Test data INV 02 .1
Test INV 02 .2
Production test INV 02 .2
Complete documentation INV 02 .2

Define INV 03 (Inventory) .4
Flowchart INV 03 .4
Code INV 03 .4
Desk-check, list INV 03 .1
Test data INV 03 .1
Test INV 03 .2
Production test INV 03 .4
Complete documentation INV 03 .2

Define INV 04 (Inventory) 5
Flowchart INV 04 .4
Code INV 04 .4
Desk-check, list INV 04 .1
Test data INV 04 .1
Test INV 04 .2
Production test INV 04 .2
Complete documentation INV 04 .2

Define INV 05 (Inventory) 4

Flowchart I N V 05 .2
Code INV 05 .2
Desk-check, list INV 05 .1
Test data INV 05 .1
Test INV 05 .1
Production test INV 05 .2
Complete documentation INV 05 .2

• Only one start and finish date should be supplied for each program being developed.

Figure 05. 8 (Sheet 4 of 5)•

Section Subsections Page

05 30 00 06

PROGRAM DEVELOPMENT PLAN

ACTIVITY TIME ESTIMATES

"Must" Original Schedule Revised Revised

Duration Start (S) or Dates* Dates # 1. Dates # 26

in Finish (F)
Activity Weeks Date Start Finish Start Finish Start Finish

Define INV 06 (Inventory) .4
Flowchart INV 06 .2
Code INV 06 .2
Desk-check, list INV 06 .1
Test data INV 06 .1
Test INV 06 .1
Production test INV 06 .2
Complete documentation INV 06 .2

Define SA 01 (Sales Anal.) .1
Flowchart SA 01 .1
Code SA 01 .1
Desk-check, list SA 01 .1
Test data SA 01 .1
Test SA 01 .2
Production test SA 01 .2
Complete documentation SA 01 .2

Define SA 02 (Sales Anal.) 1.0
Flowchart SA 02 .5
Code SA 02 1.0
Desk-check, list SA 02 .1
Test data SA 02 .1
Test SA 02 .3
Production test SA 02 .4
Complete documentation SA 02 .2

Total, application development 16.0

*Only one start and finish date should be supplied for each program being developed.

Figure 05.8 (Sheet 5 of 5).

PERCENTAGE COMPLETED

Start 11/20

Payroll
Finish 2/3

Start 12/4
A/R

Finish 2/3

S	

All
Applications
Start:
11/20/67
Finish:
3/11/68

40

20

5

5

10

5

10

10'

Activity
PAY
01

PAY
02

PAY
03

PAY
04

5 5
All

Payroll

90

60

20

10

20

10

30

A/R
01

100

100

30

50

S

Si ---5

All
A/R

70

50

30

50

1

5 3---5

Define program

Document logic

Code

Desk-check

Prepare test data

Test

Production test

Complete documentation

100

100

100

100

100

100

90

100

100

70

100

20

100

100

40

20

50

50

20

55

All activities above 85 49 33 15
5 5

31 35

Figure 05. 9. Program development -- progress chart

	

Section Subsections	 Page

10
	

00
	

00
	

01

Section 10: DOCUMENTING CURRENT
APPLICATIONS

CONTENTS

Introduction 	 	 10.01.00
Documentation of Manual Systems 	 10.10.00
Documentation of Punched Card
Systems 	 	 10.20.00
Accounting Controls 	 	 10.30.00
Survey Questionnaires 	 	 10.40.00

Billing 	 	 10.40.10
Accounts Receivable 	 	 10.40.20
Sales Analysis 	 10.40.30
Inventory 	 10.40.40

Accounts Payable 	 10.40.50
Payroll 	 	 10.40.60

Manual System Documentation
Example - Payroll 	 	 10.50.00

Introduction 	 	 10.50.01
Job Description 	 	 10.50.10
Survey Form 	 	 10.50.20
Sample Documents 	 	 10.50.30
Systems Flowchart of Weekly
Procedure 	 	 10.50.40

	

Section Subsections	 Page

10
	

01
	

00
	

01

INTRODUCTION

Since the cornerstone of your installation effort,
planning, is now complete, the time to begin docu-
menting is at hand.

If you were going to remodel a building, it would
be very important to have the plans of the structure
on which you would be working. You could, of
course, do the job without the plans, but much time
would be wasted in trial and error as you proceeded.

The same situation exists when you are convert-
ing an application to the 1130. Proper documenta-
tion of the present system will guide you rapidly and
efficiently into the new solution. Rather than
spending your time "rediscovering" the old proce-
dures, you can spend it in improving them.

Depending on whether you are converting from a

manual system or a punched card system, one of the
following two subsections will help you plan this
phase of your preinstallation effort:

Documentation of Manual
Systems (10.10.00)

Documentation of Punched
Card Systems (10.20.00)

These introductory subsections are followed by a
discussion of the ways in which your current ac-
counting controls can be documented (10.30.00).
Questionnaires used for documenting manual sys-
tems are then illustrated (10.40.00).

A payroll example, which is used also in later
sections, is introduced in 10.50.00. This consists
of:

Job description
Survey forms
Sample documents
Systems flowchart

Section Subsections Page

10 10 00 01

DOCUMENTATION OF MANUAL SYSTEMS

Follow these steps if you currently do not use
punched card equipment, or if you are planning to
put additional applications on the computer that are
not now mechanized:

1. Ask questions about details of the job as it is
being done now.

2. Record the procedure by means of a flow -
chart.

3. Gather samples of all the documents being
used.

Survey Notes. A set of questionnaires
(10.40.00) is included that assists in surveying the
most common data processing procedures: billing,
accounts receivable, sales analysis, inventory,
accounts payable, and payroll. No questionnaire
can cover all the details of, for instance, all billing
procedures, but a start can be made that will lead
you to discover and analyze the unique elements
that have to be accounted for in your own system.
Before starting your survey with a questionnaire,
review the questions and determine which ones you
already know the answers to, those you want to
check out, and those you know are not applicable to
your company. Then add questions of your own.

Where none of these survey questionnaires are
applicable, record on plain paper the important
elements of the system, answering the questions
"who", "what", "when", "why", and "how". Notice
the amount of detail called for by the questionnaires,
and get down to that level in your own surveys.

You will often find that the people most familiar
with the details of the job do not see the forest for
the trees, or --to use a more precise metaphor --
they think they have been looking only at elms when
some of the trees have been maples. Wherever
possible, count the files yourself (rough counts are
usually adequate), look at the completed (not the
blank) documents, and talk to the man who actually
does the work, rather than taking someone else's
word for what he does.

Flowcharts. As an understanding of the proce-
dure is developed, you should draw flowcharts in
which input/output documents are represented by
one kind of block, processing or handling steps by
another, and the flow of work by arrows, as shown
in Figure 10.1.

Other symbols can be used for certain variations
of the basic symbols; these are discussed in
greater detail in the IBM manual Flowcharting
Techniques (C20 - 8152) and illustrated in the man-
ual examples in this section.

Sample Documents. Samples of each document
used in the procedure should be gathered. Where
possible, filled-in documents should be picked up,
as well as blank documents on which the people
closest to the work have made notes explaining how
the documents are completed.

In other words, you should have at least two
samples of each document in the system:

1. A blank document. This should have the
following information written on it:

a. The volume of these documents produced
each day, week, or month -- both maxi-
mum and average.

b. Who produces them.
c. Where they come from, and where they

go, copy by copy.
d. For each different kind of information, or

"field", all possible varieties of infor-
mation that can be entered. State how
long the field must or can be, and whether

Symbols	 Example

Personnel
master
sheet

Emp ogee
Ma ter
Payroll
Cards

Visually
Verify

and File

Figure 10.1.

Prepare
Employee

Master Payroll
Cards

	

Section Subsections	 Page

10	 10
	

00
	 02

each individual "position" or character in
the field is strictly numeric, is some-
times alphabetic, may be blank, may con-
tain special characters $., '*()=+-&/,
or has any other restrictions on it.

e. For each field, whether the information
in it has limits. For instance, a weekly
salary field could go up to $999.99 and
still consist of only five digits, but you
may want to pull out all of those that go
above $500.00 for special handling.

f. For each field, its origin. If it has been
calculated, show the formula. If it came
from another document, state which one,
and whether it has been altered in the
process. Beware of fields that have the
same name but are slightly different,
such as date of receipt, date of entry,
date of transcription, date of processing.

2. At least one filled-in document. The filling -
in should be done by the man who normally per-

forms the job, and he or you should annotate the
reasons for and restrictions on each step of his
work. Make sure that all possible ways of filling in
the document have been illustrated.

Summary. When the documentation of manual
systems has been completed, you should have at
hand:

1. Flowcharts
2. Sample documents
3. Survey notes, including:

a. Complete lists of codes
b. Current standards
c. Procedure descriptions, where the flow-

chart is not self-explanatory
d. Reasons for current methods
e. Accounting control procedures
f. Any other facts they may influence or

cause restrictions on the way an applica-
tion may be designed.

All these survey notes should be cross-refer-
enced to the flowcharts and sample documents.

Section Subsections Page

10 20 00 01

DOCUMENTATION OF PUNCHED CARD SYSTEMS

Follow these steps in documenting your present
punched card applications:

1. Make a list of all your control panels.
2. Arrange the list by job step within applica-

tion. For instance, a payroll application, like the
one in 10.50.00, might consist of panels to perform
the balancing of current earnings cards to time
cards, matching current deductions cards to earn-
ings cards, preparing the deduction register, and
all the remaining job steps.

3. Obtain copies of all the reports that have
been run using these panels.

4. Collect your current spacing charts and card
layouts and make a checklist of them. Use your
list of control panels to make sure that you have
gathered spacing charts and card layouts for all
the operations. If not, put them on your checklist,
and either find them or get them made up.

5. Check your spacing charts against the cur-
rently run copies of your reports, and bring your
spacing charts up to date. Mark them on your
checklist as they are updated.

6. Check your card layouts against your proce-
dures as you run them. This will allow you to up-
date both the card layouts and the written procedures
to conform with your current actual practice. Mark
the card layouts on your checklist as they are up-
dated.

7. Obtain a current schedule of jobs. Use your
list of control panels to verify the schedule.

Having finished these steps, you should have
current and accurate copies of spacing charts and
card layouts. If you do not, your 1130 application
design and program development will suffer, and
you will be forced to retrace your steps to get up-

dated facts. The surveys (in 10.40.00) will either
verify the accuracy of your documentation or in-
dicate discrepancies that need to be checked further.

Next, since you have all the information at hand,
you can develop the following items:

1. Updated flowcharts of your applications
2. Job descriptions
3. Calculation descriptions and formulas
These items, if prepared thoroughly (and this is

a very important "if'), can serve as the basis for
your entire 1130 application design effort.

Summary. The important thing in documenting
any procedure is that all the information be made
available to the programmer in concise, easily
understood form.

You will find that these documenting methods
will be very useful in analyzing all the procedures
in your business. By pinpointing bottlenecks, areas
of duplication, etc. , they can provide a means of
improving those procedures that you do not plan to
convert immediately to the new system.

Once a program has been completed for an appli-
cation, the documentation will become a permanent
record of the procedure. It can be used, for
example, as:

1. A source of information for implementing
future changes.

2. An education device for familiarizing new
operators and management personnel with the pro-
cedures.

3. A source of information for your auditors,
who must be familiar with your procedures.

Start documenting your present applications now.
Once the application is documented, programmed,
and operating on your new system, keep the docu-
mentation up to date. It will contribute toward an
efficient and productive data processing installation.

	

Section Subsections	 Page

10
	

30
	

00
	

01

ACCOUNTING CONTROLS

Understanding your present controls will help you
design practical and effective controls for your new
system.

Control procedures can be documented in two
places:

1. On your flowcharts, where, for instance,
control tapes are balanced to accounting machine
totals.

2. With the survey questionnaires or informal
narratives.

For a discussion of various kinds of accounting
controls that may appear in your system, refer to
section 20.10.00.

Section Subsections Page

10 40 10 01

SURVEY QUESTIONNAIRES

Survey Questionnaire - Billing

PROCEDURES

1. Bill before shipment or after?

2. Reasons

3. Is completion billing used?

4. Optimum time from order to shipment

5. Are shipments from stock? What percent?

(a) Buy outside %

(b) Manufacture? Drop Ship?

6. Do you send confirmation of order to customer? When?

7. Sold-to and ship-to information required on invoices? % of invoices?

TERMS

1. Standard by customer, variable by customer, or other

2. Do salesmen have protected customers?

3. Pricing flexible - changed to meet competition in field?

4. How many must be acknowledged?

5. Cash sales - volume and how handled?

ITEM QUANTITIES

1. Whole numbers, fractions, or decimals?

2. Will you print quantity ordered, quantity shipped, back ordered?

3. Largest quantity sold (include decimals)

4. Unit of issue

PRICES

1. Standard, volume determines, customer class, variable? How many prices?

2. Percent of billing lines with variable pricing daily

Section Subsections Page

10 40 10 02

Billing Questionnaire (cont'd)

3. Variable pricing authorized by?

4. Per CM, dz, gross, bd ft, other?

5. Largest unit price

6. Fractional prices

DISCOUNTS

1. Line item only? Variable or standard?

2. What governs discounts to customers?

(a) Customer

(b) Type of merchandise

(c) Quantity of merchandise

(d) Salesman's quoted price

(e) Total of invoice

(f) Combination of above

(g) Other

3. Group discounts

4. Discounts on total invoice?

(a) Standard by customer

(b) Variable

5. Should discount amount print on invoice?

6. Chain discounts?

(a) Line items

(b) Groups

(c) Invoice totals

7. Chain discount examples

8. Terms or cash discount. Should it be calculated?

Section Subsections Page

10 40 10 03

Billing Questionnaire (contid)

COSTING

1. Standard, percent, other?

2. Any lot or job costs?

TAXES

1. How many states?

2. What % of items taxable?

3. Are selected items on an invoice taxable?

4. Other taxes - excise, etc.

5. Whole percents, fractional?

FREIGHT

1. Based upon weight? Volume? Explain

2. Examples of computation

3. Prepaid percent - collect percent

4. Is freight cost known at billing time?

5. At prebilling time?

6. Allowances - examples. How computed?

7. Flat rates ?

8. Minimums?

9. Do items have standard weights?

COMMISSIONS

1. Paid on:

(a) Gross profit

(b) Gross invoice

(c) Variable each line

	

Section Subsections	 Page

10
	

40
	

10
	

04

Billing Questionnaire (c ont'd)

(d) Total customer purchase

(e) Other

2. Percentage fixed by:

(a) Product?

(b) Salesman?

(c) Customer?

(d) Volume?

3. If volume, what are the breaks in computing rate?

FORMS INFORMATION

1. Use of copies	 1
2
3
4
5
6
7
8
9

10

2. If you prebill, could invoice serve as picking document? As bill of lading?

3. Average number of body lines

4. Minimum depth of form

5. Preprint invoice number? Why?

6. Are back orders noted on invoice?

7. What is the length of item descriptions?

(a) Number and type of special characters included in descriptions?

(b) Can description be conveniently abbreviated?

8. Discount on line item?

9. Largest quantity shipped? Largest unit price? Largest extension?

Section Subsections Page

10 40 10 05

Billing Questionnaire (conttd)

10. Cash discount printed on invoice? Terms?

11. Length of ship-to/sold-to lines

12. Cost extended - line items?

13. Do credit memos and invoices use same format?

14. Are contractual notes typed on invoice or credit memo?

(a) If yes, what is longest note?

(b) What is the incidence of use (percent) of total invoices per day?

15. Multi-page invoice? Frequency

16. What class of products is most active? At what time of the year?

17. Are the products of a seasonal nature? When? What is increase in orders?

18. What items make up largest percentage of total sales volume?

19. How much item information is needed on the order? On the invoice? Can it be typed later?

20. How are items coded?

(a) What is the length of part number or code?

(b) Numeric or alphameric?

21. What procedure is being followed as to partial shipments?

(a) How prevalent are they?

(b) Are shipments made daily to all areas? If not, what is the policy regarding shipments?

(c) Is warehouse sequence of items on the order important?

22. Describe miscellaneous data required.

	

Section Subsections	 Page

10
	

40
	

10
	

06

Billing Questionnaire (cont'd)

ANALYSIS

1. Time from receipt of order to billing of customer

2. Number and jobs of people performing order writing and billing

3. Type of machines and equipment presently being used

CONTROL AND EDITING INFORMATION

1. What is the editing procedure for invoicing? Who is responsible for final approval of invoice?

2. What controls are now established for accuracy?

3. Do you have subsidiary branch locations?

(a) If so, what accounting functions are they performing?

(b) How many invoices is each branch preparing?

(c) Would it be more advantageous to centralize accounting operations, especially billing?

Section Subsections Page

10 40 20 01

Survey Questionnaire - Accounts Receivable

PROCEDURES: CASH

1. List all cash credit posting media

2. What discounts are offered? How are they handled?

3. Cash receipts and deposit slip prepared:

(a) Separately

(b) Simultaneously

4. How often do payments include copy of invoice or statement or identification?

5. What percentage of payments are nonstandard?

6. What is policy on overpayments?

7. Can cash be applied to oldest balance or must it be selective?

8. What accounts are involved?

9. Can distribution be made at cash posting time?

10. How many ledger controls are carried?

(a) How are control groups determined?

(b) Illustrate divisions

11. How often is a trial balance taken?

(a) Can trial balance be alternated by control?

(b) Could trial balance, aging, and customer purchasing analysis be prepared simultaneously?

12. When are statements mailed?

13. Attach samples of accounting (A/C) journal used, revised to include additional information you require.

14. Volume and reasons for credit memos

	

Section Subsections	 Page

10
	

40
	

20
	

02

Accounts Receivable Questionnaire (cont'd)

FORMS CONSIDERATIONS - STATEMENTS

1. How many accounts in ledgers?

(a) Total active

(b) Total inactive

(c) Does total fluctuate or remain static?

(d) How are they coded?

2. Open item or balance forward?

3. What percent of customers pay by:

(a) Statement?

(b) Invoice?

(c) Time pay?

4. How many statements mailed?

(a) Total

(b) Weekly

(c) Monthly

(d) Are they mailed to all accounts?

5. If time pay is allowed, explain circumstances.

6. Do statements show:

(a) All transactions for the month?

(b) Open items only?

(c) Aged balances only?

(d) Aged transactions?

7. Any objection to aged balances only, with no reference?

8. What description shows on statement?

Section Subsections Page

10 40 20 03

Accounts Receivable Questionnaire (contyd)

9. Daily inquiries into customer records?

10. Extent of bad debts

11. Attach a sample statement, complete with various postings.

LEDGER RECORDS

1. What description is shown on ledgers?

2. Credit limit on each card?

3. Purchases to date? Is this desirable?

4. Is aging by invoice? Oldest dollar amount?

5. Attach a sample card, complete with typical postings.

CREDIT REFERENCE

1. Does credit department refer to ledgers? How often?

2. Is a credit record other than ledger kept? If so, attach a sample.

3. When does an account become delinquent?

4. How are delinquents followed?

5. Do you suspend credit buying of delinquent accounts? If so, how is it restored?

6. Are accounts aged?

(a) What breakdowns?

(b) When?

(c) How often?

ANALYSIS

1. Number of people involved

2. Type of equipment involved

■

	Section Subsections	 Page

10
	

40
	

30
	

01

Survey Questionnaire - Sales Analysis

1. Information required by:

(a) Customer

(b) Item

(c) Area

(d) Salesman

(e) Class of trade

2. What reports should management be receiving that they are not now getting?

3. Report information

(a) What information is required on each report?

(1) What records or registers are used to substantiate reports?

(2) What can be added to present reports to make them more meaningful?

(b) Who receives each report?

(c) By what priorities are reports prepared?

(d) Are cost analysis reports generated?

(1) How often?

(2) To whom?

(3) What information?

(4) By what classification?

(e) Are gross reports prepared?

(1) By what classification?

(f) Are comparative sales analysis reports generated?

(1) What period are the results based on?

(g) Are salesman commission statements prepared?

(1) How many salesmen?

Section Subsections Page

10 40 30 02

Sales Analysis Questionnaire (cont'd)

4. Control information

(a) What are controls and editing procedures for above reports?

5. What is present cost to derive these reports?

Section Subsections Page

10 40 40 01

Survey Questionnaire - Inventory

1. What percentage of inventory items account for:

(a) High activity?

(b) Medium activity?

(c) Low activity?

2. Does the present coding structure have any real significance, such as block code, significant digit, etc. ?

(a) Give example

(b) Are bin locations assigned in sequence by part number?

3. How many transactions are there of each type?

(a) Receipts and returns

(b) Issues

(c) Miscellaneous

4. Are standard or economic order quantities used? If so, how are they determined?

(a) Do you order by vendor group or as required?

5. Does the inventory record reflect planned requirements, such as:

(a) On-hand balance

(b) On-order balance

(c) Reserved balance

(d) Available balance

(e) Minimum balance

(f) Usage data, etc.

(g) Maximum balance

6. What inventory costing method is used?

(a) Average

(b) Last in, first out (LIFO)

Section Subsections Page

10 40 40 02

Inventory Questionnaire (cont'd)

(c) First in, first out (FIFO)

(d) Standard

7. What is the frequency of inventory cost changes? What is the frequency of inventory sales price
changes?

(a) How often are price changes of finished goods made?

(b) Are they made by product line or by item?

8. If partial shipments are made, what is the procedure for handling them?

9. Is there a back-order problem? If so, how is it controlled?

(a) What percentage of orders have items back-ordered, substituted or canceled?

(b) How much $ volume do you lose?

10. How and when is a physical inventory taken? By whom?

11. What controls are set up and maintained on the inventory system?

12. What is the cost of inventory maintenance?

13. What are the present costs of keeping inventory records?

14. What are the types of inventory records and reports?

(a) Do they result in a stock status summary report?

(b) How often are inventory reports prepared?

(c) Who receives them?

15. What is the origin and layout of source documents and what controls are used?

16. How often are inquiries made into inventory records? What are their nature? Who makes them?

17. How are present inventory recordkeeping functions correlated with purchasing, billing, sales,
manufacturing, etc. ?

Section Subsections Page

10 40 40 03

Inventory Questionnaire (cont'd)

18. What comparative information do you need?

(a) Month-to-date

(b) Year-to-date

(c) Same period last year

(d) Percent of comparisons

19. Where must current inventory records be physically located?

Section Subsections Page

10 40 50 01

Survey Questionnaire - Accounts Payable

REPORT INFORMATION

1. Is a cash requirement register being prepared?

(a) What is the average daily cash requirement to meet payables?

(b) How often is this register prepared?

2. Are amounts being distributed and charged to job orders and expense accounts?

(a) What is the procedure for each of the above?

(1) Number of open job orders

(2) Number of expense accounts

(b) Are departments budgeted?

(1) How often are budgets depleted and how often are analysis reports submitted?

CONTROLS AND EDITING PROCEDURES

1. How are payable accounts reconciled?

2. Who is responsible for editing before releasing checks, and what is the procedure?

3. How often are payable accounts reviewed?

4. What controls are in effect?

PURCHASES

1. Number of vendors active and inactive. What are criteria for active?

2. Are orders placed verbally, by requisition, by purchase order, or other?

3. Is blanket order placed for staggered shipments?

4. How are incoming goods accounted for?

5. How are partial shipments handled?

6. What method is used to notify Accounts Payable regarding overs, shorts, or damaged goods?

Section Subsections Page

10 40 50 02

Accounts Payable Questionnaire (cont'd)

7. Are purchase orders (P. 0. 's) coded by Accounting when written?

(a) If not, when and how are codes assigned?

INCOMING INVOICES

1. Is an invoice register maintained? If not, how are invoices controlled?

2. Pay by statement?

(a) Is early-pay discount given?

3. When is liability recognized?

(a) Receipt of goods

(h) Receipt of invoice

4. Are invoices matched to P. O. 's?

5. Are invoices received from same vendor with different discount dates? How are they handled?

6. Are any invoices paid before arrival of goods?

7. Can one invoice be charged to two or more accounts?

PROCEDURE

1. Is a voucher system presently in use? Ledger system? Other?

2. How are invoices or vouchers filed to ensure that discounts will be taken?

3. Are incoming invoices numbered consecutively?

(a) Upon receipt?

(b) Other?

CHECK WRITING

1. How many banks are checks drawn against?

2. If more than one, can the bank be determined before the voucher is opened?

3. Are checks prenumbered?

4. What accounting (A/C) distribution is required? Attach sample.

Section Subsections Page

10 40 50 03

Accounts Payable Questionnaire (cont'd)

5. How often are checks written?

6. What is present form of checks, voucher, and remittance advice? Attach sample..

7. Are discounts computed at check-writing time? If not, when?

8. Is a check register required?

9. Are certain checks written daily? If so, estimate number.

DISTRIBUTION

1. Which accounts receive greatest number of distributions?

2. How many income and expense accounts are kept? How many divisions are used?

3. How many controlling accounts? Identify each.

4. What department or person is responsible for A/C distribution of invoice?

5. Is apron or rubber stamp used?

6. What percent of invoices contain items chargeable to different income and expense accounts?

7. Is distribution made directly from invoice? At checkwriting time?

8. How much detail in distribution record?

9. How many items other than invoices (e. g. , journal vouchers) are distributed each month?

10. What is cutoff date?

11. When is trial balance secured?

12. How is trial balance secured ?

MISCELLANEOUS

1. Is obligation record required?

2. Is purchase journal available? How prepared?

3. Is vendor control card required?

4. Total purchases-to-date by vendor required?

5. Do you, or will you, use group processing method?

6. Do you, or will you, use balance-forward method?

7. Are expenditures compared against budget?

	

Section Subsections 	 Page

10	 40	 60
	

01

Survey Questionnaire - Payroll

1. How is time figured?

(a) Tenths of hours

(b) Hundredths of hours

(c) Hours and minutes

(d) Other (nearest half or quarter hour)

(e) Incentive or price rates

2. What is overtime?

(a) Over 40 hours

(b) Over 8 hours

(c) Other

3. How prevalent are rate changes? Temporary or permanent?

(a) How many can a man have?

(b) When?

(c) Does job carry a rate?

4. How many shifts are there?

(a) What kind of bonus is there?

(b) How is it calculated?

5. What is employee turnover?

6. What YTD information will appear on check stub?

7. How many timekeepers?

8. Are timeclocks used? Is time recorded in tenths or hundredths of hours?

9. Is there labor distribution?

(a) By job? Department? Operation? Machine?

(b) Is average labor cost used?

Section Subsections Page

10 40 60 02

Payroll Questionnaire (cont'd)

(c) Actual labor cost?

(d) How is overtime handled?

PREPARATION DATA

1. What are pay periods?

2. When does pay period close?

3. What is paying date? Preparation time?

4. How are employees paid?

(a) Check, cash?

(b) Is envelope used?

5. How many copies of journals?

6. Any objection to the use of spot carbon on check?

7. Should check amount be protected?

8. Is check signer used?

9. Do you write payroll checks on more than one bank?

10. How and when are vacation checks written?

11. How are advances handled?

12. How are terminations handled?

13. How is sick pay handled?

14. How is holiday pay handled?

INCENTIVES, SHIFTS, ETC.

1. How many shifts?

2. What is incentive formula?

3. Are rates for various jobs known by employees?

4. How often is it necessary to pay "make-up" pay?

5. List indirect labor categories

Payroll Questionnaire (cont'd)

6. Are efficiency standards established?

(a) By machine?

(b) By employee?

DEDUCTIONS

1. Voluntary	 1
2
3
4
5
6

2. Involuntary	 7
8
9

10
11
12

3. Average deduction amount
(a) Voluntary	 1

2
3
4
5
6

(b) Involuntary	 7
8
9

10
11
12

4. Percentage of activity
(a) Voluntary	 1

2
3
4
5
6

(b) Involuntary	 7
8
9

10
11
12

	

Section Subsections
	

Page

10
	

40
	

60
	

03

Section Subsections Page

10 40 60 04

Payroll Questionnaire (cont'd)

5. Largest month total ($)
(a) Voluntary

(b) Involuntary

6. List the posting media for each
of the above

7. What reports must be furnished?

8. How are salesmen paid?

(a) Salary or standard commission

(b) Explain other

1
2
3
4
5
6
7
8
9

10
11
12

1
2
3
4
5
6
7
8
9

10
11
12

1
2
3
4
5
6
7
8
9

10
11
12

Section Subsections 	 Page

10
	

40
	

60
	

05

Payroll Questionnaire (cont'd)

9. Reports (payroll and labor distribution)

(a) Form (sequence of information)

(b) Content (size of fields, number of classifications)

(c) Frequency (Presently? With IBM approach to application?)

(d) Distribution

10. Schedule requirements

(a) Length of pay period

(b) When are source documents available for processing?

(c) When does pay period close?

(d) How soon after pay period closes must checks be available?

(e) How long does it take for changes to clear through the personnel department?

11. Reporting

(a) Who reports payroll source data? Employees? Timekeeper? Foreman?

(b) What degree of control does the accounting department have over the people who report data?

12. Management requirements

(a) Who gets the reports?

(b) What would they like that their present system doesn't give them?

13. Miscellaneous

(a) In what states do you pay payroll?

(b) What special deduction considerations are there?

(c) Is state or city income tax deducted?

Section Subsections Page

10 50 I	 01 01

MANUAL SYSTEM DOCUMENTATION EXAMPLE --
PAYROLL

Introduction

This example of a typical manual application con-
sists of the following items:

Job Description -- Payroll
Survey Form - filled in for payroll

Samples of all documents being used
Flowchart -- all of payroll procedure

Notice that the illustrations are shown in the
order in which they are ordinarily developed. After
the job description is written, the survey is com-
pleted, and all sample documents are gathered.
Then the procedure that produces the reports, using
the information from the survey form, is drawn in
flowchart form.

	

Section Subsections	 Page

10
	

50
	

10
	

01

Job Description

A job description is not always necessary, but is
useful when new people are introduced to an applica-
tion, or when presentations are made for manage-

ment or visitors. Both of these situations occur
frequently during the conversion process.

The following is a typical job description. Note
that it is short, describes objectives, and provides
a summary of the procedure.

Payroll -- Job Description

The objectives of the payroll procedure are:

1. To record earnings, deductions, and taxes for historical purposes.

2. To provide state and federal governments, unions, and other agencies with a record of
moneys collected for them.

3. To furnish employees with a personal record of earnings, deductions, and taxes.

4. To write and reconcile paychecks.

5. To provide entries to labor statistics and miscellaneous reports.

To accomplish the above, current period time cards, containing hours worked, are matched to the
production report, and gross earnings are calculated and posted to the payroll register. Then, de-
ductions and net pay are calculated and posted to the payroll register, paychecks are written, and
earnings records are updated. Miscellaneous reports are produced from earnings records, and
quarter-to-date information is prepared for 941 and W-2 forms preparation.

Section Subsections Page

10 50 20 01

Survey Form

The following is a typical completed survey form.
Note that the answers are short and descriptive.

The survey form is always necessary.

	

Section Subsections
	

Page

10
	

50
	

20
	

02

FACTORY PAYROLL

Survey Questionnaire - Payroll

1. How is time figured?

(a) Tenths of hours

(b) Hundredths of hours X

(c) Hours and minutes

(d) Other (nearest half or quarter hour)

(e) Incentive or price rates

2. What is overtime?

(a) Over 40 hours X

(b) Over 8 hours	 X

(c) Other

3. How prevalent are rate changes? 6emporaror permanent?

(a))(1kVi:How many can a man have?	 irntkiNU lo

(b) When? Ck,A.	 ColAThAtt nntik lIVtAAket-e-v-.6

(c) Does job carry a rate?

4. How many shifts are there? 1 1 m, 3) ,La,

(a) What kind of bonus is there? .2,vu1, 5'.0(, O(,
h..6L	 a

6 ut,93a f,	 ImAta o.)14-Q-(b) How is it calculated?

5. What is employee turnover? 0Z5 C/ 	 cruutAia, tOxvut6

6. What YTD information will appear on check stub?

7. How many timekeepers?	 0-e,Akt

8. Are timeclocks used?
	

Is time recorded in tenths or hundredths of hours? ae_AAiciuu

9. Is there labor distribution? AL1'

(a) By job? Department Operation? Machine?

(b) Is average labor cost used?

Section Subsections Page

10 50 20 03

(c) Actual labor cost? -U-

(d) How is overtime handled?

PREPARATION DATA

1. What are pay periods? 1A4seitat

2. When does pay period close? 	 to-L,
aue.w.4.

33. What is paying date?, Pr paratift time? t	 thet

4. How are employees paid?

(a) cash?

(b) Is envelope used? \..)0&LA L. ra.„,,,t
5. How many copies of journals?

6. Any objection to the use of spot carbon on check? 1Ler-

7. Should check amount be protected? yl..)

8. Is check signer used?

9. Do you write payroll checks on more than one bank?

10. How and when are vacation checks written? (),(A_AL-k_)14a-kiz,	 dut,42,4
t
e,„ vat,-,)

11. How are advances handled?

12. How are terminations handled? 09-k-4-‘)'-A-4 fie- /4--Na cub -ytibu,DR-et,	 Antu.
41_,N-kh.(),A,\-tsz- 12 . .x.A 'IA 1:)&laiLek 0-6 "9-Aattil-A-P., S.-lahm lo-156-4-,

13. How is sick pay handled? 1\.t..-

14. How is holiday pay handled? ai it)--CtAL.. yuth) ._,0-4VIA.L.ek.. A,41)-A-k--akZ. P-Akit. kaut ket12-)u.

INCENTIVES, SHIFTS, ETC.

1. How many shifts?	 ■ 1 Z) /5-'1,)	 kt 12,k-CLAA

2. What is incentive formula? (1,	 e-k ,:k_Lt..c..„,c.,,6t, e-t-\,vokl.foctrc-ei., C-u-C1/4, iLittx.wW-cb

3. Are rates for various jobs known by employees? 	 Li;

4. How often is it necessary to pay "make-up" pay? --)15-u-t.A,

5. List indirect labor categories Q,..1.:::,,..-G,L1 (ate ,1/4,..tveriA.k_ C

Akklz-A:
)W-ci kk-AAA-4-4-L 1)

..0.-A,-I_Ly 1 /1 eLLA.,	 -WaSAA:AA
I.	

).--1M_L-vvt-reA414.)

viEtAft

	

Section Subsections 	 Page

10	 50	 20	 04

6. Are efficiency standards established?

(a)	 By machine?	 X

(b)	 By employee?

DEDUCTIONS

1. Voluntary 1 Wx7tei-‘,43
2 0-ka-N .Are-V5.- 0.45-NAIS:OpALe-x.4
3 kt-e-t-h)
4
5
6

2. Involuntary 7 1AA3Le-‘4., ctu-e..4
8
9

10
11 4-e-t_at
12

3. Average deduction amount
(a)	 Voluntary 1 ii)	 t.t

3
0.ifs 0.7170

4
5
6

(b)	 Involuntary 7 11.50
8 15.c-C
9

10 *	 erti
11 t	 I, Die
12

4. Percentage of activity
(a)	 Voluntary 1 2.5

2 90
3 Z
4
5
6

(b)	 Involuntary 7 'ICI
8 j c
9 ►5

10 lop
11 450
12

toz, oAs_t_A-6

ke,).
ut,u,ckz,

)

4 Wei) uut,i2!

etcLa,.
AR_ 4t Ciku.k
ilk) e_tu_t)a),
ft WaJi Q_bak-E

Q5Lc

ciaLua
6_ &TA,

4
5
6
7
8

9

10

11
12

1	 L l t9t-t"
2
3 11, i Sc
4
5
6
7 ft -3)tO
8	 5tcr
9 4	 I CSC

IC *	 t■--t-tr
11 $ 1) C-1r
12

Section Subsections Page

10 50 20 05

5. Largest month total ($)
(a) Voluntary

(b) Involuntary

6. List the posting media for each
of the above

7. What reports must be furnished?

8. How are salesmen paid?

(a) Salary or standard commission

(b) Explain other

	

Section Subsections 	 Page

10
	

50
	

20
	

06

9. Reports (payroll and labor distribution)

(a) Form (sequence of information) Ckt naxti3OnkAnit-

Content (size of fields, number of classifications)

"1/1144-vAAw C Ika	 Pei M A-.4 3 titam..kim..L (x A x x , x) ()t e tis,c} cxx.)

(x)	 Jo A:x.4,-A, (xxxA,x) can, E-tt-t-CY,i)
Ih'k hit atu“, -401, G<)0<. x) 3 t) '-1A.64,0,-&-tc-ce. --Vu. (3e x ,x ex J iaz(xxx•X)

Wit. L5(-62-4, (x x x X , X) -Mau. ,44•LtA4 Cx X x X . x) Cucto-tj_ VCL.LQ&AA 6XXXX,)(x)

(c) Frequency (Presently? With IBM approach to application?)	 .LIA,Q-k- Ct-tuct flw1 .54/.,

(d) Distribution 6..c.k..e)*Lotut–i.1 ,, _.etAk..t ,A.,u•-ex;.."..t.A,vutkua

W

vs,c3.4■-)c cy_ ,,,, •),4,,,

"t4--le (vvi-o-u,nt wiAA-t-

U3i_0(0.t

(b) When are source documents available for processing? 'N\LO-ix.ck.n.

(c) When does pay period close?

(d) How soon after pay period closes must checks be available? 5 (Lei

(e) How long does it take for changes to clear through the personnel department? 1 keut

11. Reporting

(a) Who reports payroll source data? Employees? Timekeeper? Foreman?

(b) What degree of control does the accounting department have over the people who report data?
JuiCcILTA 430,0 vokt-cluOLL-e-vJ 0-10

12. Management Management requirements

(a) Who gets the reports? QNRALALA. I q-kk-e6-7,Am----- L 4,3kt_	 f	 (\kaA6- '`A,CtAA-ta-T-4-

(b) What would they like that their present system doesn't give them? ►. 	 wso.,

13. Miscellaneous	 UU
eluva:LeE	 eacillk-"AHti

(a) In what-states do you pay payroll? 	 ath •	 .\\)00, 312,4

(b) What special deduction considerations are there?

Is state or city income tax deducted? 1

(b)

10. Schedule requirements

(a) Length of pay period

Section Subsections Page

10 50 20 07

ADMINISTRATIVE PAYROLL

Survey Questionnaire - Payroll

1. How is time figured?

(a) Tenths of hours X

(b) Hundredths of hours

(c) Hours and minutes

(d) Other (nearest half or quarter hour)

(e) Incentive or price rates

2. What is overtime?

(a) Over 40 hours

(b) Over 8 hours

(c) Other

3. How prevalent are rate changes? r permanent?

(a) How many can a man have? lilkolf,/ sAAAAAA.0) fum, /too

(b) When? A)CM:1-12.A1--

(c) Does job carry a rate? QtAine_.

4. How many shifts are there? 6"vuL

(a) What kind of bonus is there? 1,49-wp.-

(b) How is it calculated?

5. What is employee turnover? 16 b/0	 ov-tk, Oat

6. What YTD information will appear on check stub? nke-vtiz_.

7. How many timekeepers? OnAL

16 I
8. Are timeclocks used 9 s time recorded in tenths or hundredths of hours?•A

9. Is there labor distribution?

(a) By job?	 Operation? Machine?

(b) Is average labor cost used?

Section Subsections Page

10 50 20 08

(c) Actual labor cost? tiff-4.

(d) How is overtime handled?

PREPARATION DATA

1. What are pay periods?

2. When does pay period close? CotNit 6- 0, 3

Ast.m.ke,
33. What is paying date ?A Preparation time? 5 Mkevw-cicLi4)

4. How are employees paid?

(a)(hecl-.) cash?

(b) Is envelope used? UC1)

5. How many copies of journals? &VA-

6. Any objection to the use of spot carbon on check? -11—

7. Should check amount be protected?

8. Is check signer used? *4)

9. Do you write payroll checks on more than one bank? LVAL,

OVEL-6-1,4.) 	 \)o-c.t.iam-IA)10. How and when are vacation checks written? GL-t

11. How are advances handled? 11/4.{s-vu.,

12. How are terminations handl d? Qs	 -6 cuta 	 (Lc

Ai)Le..a,
.emu),13. How is sick pay handled?

14. How is holiday pay handled? C L-6-",-01-11

INCENTIVES, SHIFTS, ETC.

1. How many shifts?

2. What is incentive formula?

3. Are rates for various jobs known by employees?

4. How often is it necessary to pay "make-up" pay?

5. List indirect labor categories
	 to_k,	 IWASat....1/4116.. TA-64-4-A4	

Section Subsections Page

10 50 20 09

6. Are efficiency standards established? 1,tr-

(a)	 By machine?

(b)	 By employee?

DEDUCTIONS

1. Voluntary 1
2 Urvikt/b-aL-E'-t-ui
3
4
5

Aa-c-tt,

6
2. Involuntary 7

10

112-eta)va 912.terwt..e- .194,

Dili-c-t_thiLlrir

11
12

3. Average deduction amount
(a)	 Voluntary 1 lc,o-o--

2 Cy-

3 1,(2719--
4 14.
5
6

(b)	 Involuntary 7 97 40 , IM'
8 It	 I

10
11
12

4. Percentage of activity
(a)	 Voluntary 1 ,?5-

2 0
3 35--
4 I t
5
6

(b)	 Involuntary 7 lb-Cr
8 0
9 ibDr

10
11
12

7. What reports must be furnished?

(44 1
tzt.y, iaiLzAt-

no-e)p._
Q_.6.te_Az

	

Section Subsections 	 Page

10
	

50
	

20
	

10

5.	 Largest month total ($)
(a)	 Voluntary 1

2f re-
3
4 3 50
5
6

(b) Involuntary 7 1 S?)0-tr-tr
8
9

1,
4

rr
3)	 c--D

10
11
12

6. List the posting media for each
of the above

1 Co-utc\z,-Q, IZR_

4
3
2

5
6
7 Oak 	 elta	 A,QA&Q,

9	
4.1-1168

0
h-ea ,tAriA,

1	
eusL._

11
12

it01,) kk-k-ab
Icjkx„.V.

)
)

el-Q-a2;
itc.2

8. How are salesmen paid?

(a) Salary or standard commission

(b) Explain other

Section Subsections Page

10 50 20 11

9. Reports (payroll and labor distribution)

(a) Form (sequence of information)

(b) Content (size of fields, number of classifications)

(c) Frequency (Presently? With IBM approach to application?)

(d) Distribution

10. Schedule requirements

(a) Length of pay period

(b) When are source documents available or processing? 	 klU 4

When does pay period close? (.1.c.(c) -1

(d) How soon after pay period closes must checks be available?
A

(e) How long does it take for changes to clear through the personnel department? E-LQ

11. Reporting

(a) Who reports payroll source data? Employees? Timekeeper? Foreman? 	 \-0k -4-ts-,

(b) What degree of control does the accounting department have over the people who report data?
Crv,-C-tv

12. Management requirements %1

(a) Who gets the reports? 	 (L-C∎-(.7L \ et tt

(b) What would they like that their present system doesn't give them? 	 (10-C'e2 (44-4;tAtbleievs.

13. Miscellaneous	 "	 c'..-k-v1 of	 1,(L at_14_ et-,)

(a) In what states do you pay payroll? C • Ct•	 9-vt t" .4.1=Y
I

lb) What special deduction considerations are there? 1,LeLtk-t_k_

(c) Is state or city income tax deducted? (--\

	

Section Subsections 	 Page

10
	

50
	

30
	

01

SAMPLE DOCUMENTS

The following is a typical collection of sample
documents. Note that both blank and completed
documents are present.

It is always necessary to collect all documents,
both completed and blank, for your current system.

Section Subsections Page

10 50 30 02

ORDER NO. CUSTOMER SQ. FT. NO. OUT S. U. RUN NO. PIECES MAN HRS.
TOTAL SET

MAN HRS. RUN
TOTAL

TOTALS

CLOCK

NO.
NAME START STOP REG. BONUS MACH. DATE

PIECES MACH
HRS

SQ. HRS.

SET UP ALLOW

RUN
MAKE

UP

TOTAL BONUS

Form	 101

	

Section Subsections	 Page

10
	

50
	

30
	

03

ORDER NO. CUSTOMER SO. FT. NO. OUT S. U. RUN NO. PIECES MAN HRS.
TOTAL SET

MAN HRS. RUN
TOTAL

/034 J7A/ES W-4 8000 8000 0 /7/3 345 7 9

TOTALS

CLOCK
NO.

NAME START STOP REG. BONUS MACH. 1/3 DATE /-//-68

40/1 R.BEDAN 8;00 4.'00 8 0
PIECES 34-5 MACH

HRS

SO. 8000 HRS. 9

SET UP 2 ALLOW e

RUN MAKE
UP 0

TOTAL 9 BONUS 0

Form	 101

Section Subsections Page

10 50 30 04

MASTER EMPLOYEE TIME SHEET

NAME MON. TUES. WED. THURS. FRI. SAT. TOTALS

BROOALONA, J.

CLOY, C.

CRASWELT, F.

DAZDEL, M.

DORLIN, J.

FOLLORE, R.

MI ROHOSE, V.

PANUNI, D.

WALLJAMS, J.

	

Section Subsections	 Page

10
	

50
	

30
	

05

MASTER EMPLOYEE TIME SHEET

NAME MON. TUES. WED. THURS. FRI. SAT. TOTALS

BROOALONA, J. e 8 8 8 a 40

CLOY, C. 8 9 e e 9 42

CRASWELT, F. 8 8%2 8 8 9 42

DAZDEL, M. /0 /0 /0 8 8 46

DORLIN, J. 8 8 8 8 8 40

FOLLORE, R. 9 8 8 9 3i/z 4.31/2

MI ROHOSE, V. 8 8 8 8 8 40

PANUNI, D. 8 8 8 8 8 40

WALLJAMS, J. 8 8 8 0 0 24

WEEK

D WEEK

Section Subsections Page

10 50 30 06

TIME SHEET

NAME TWO WEEKS ENDING 	

START—STOP
	

LUNCH
	

HOURS WORKED

SAT.

MON.

TUES.

WED.

THUR.

FRI.

TOTAL FIRST

SAT.

MON.

TUES.

WED.

THUR.

FRI.

TOTAL SECON

TOTAL HOURS

CHECKED BY

APPROVED BY

TIME SHEET

NAME <1.. DOE TWO WEEKS ENDING 	 2/2/68

START—STOP
	

LUNCH
	

HOURS WORKED

.9-12 _3 -

8 -6 /2-/ .9 -

8-6 30 /230../30 63 //2

8-5 /2 30_./ 30 a

8-5 /2-/ 8

8-5 12-1 8

WFFK
*4 //2

SAT.

MON.

TUES.

WED.

THUR.

FRI.

TOTAL FIRST

8-5 /2-1 8

8-5 /2-1 8

8-5 /2-1 5

8-5 /2-1 8

8-.5 /2-1 e

D WEEK
-4.0

SAT.

MON.

TUES.

WED.

THUR.

FRI.

TOTAL SECO

TOTAL HOURS

CHECKED BY

APPROVED BY

64//,2

dA 19

EV'

Section Subsections Page

10 50 30 07

Section Subsections Page

10 50 30 08

PRODUCTION & LABOR REPORT
Week Ending	 Rate	 Machine	 Shift

De MPas,
MSq. Ft.

Standard Hours NonRated
% Delay Time NonRateRate

ActualOvertimeHours
ActualDollars

Set-up Run Total Eff Allow. M/U

M

T

W

T

F

ThisWeek
Prey.Wks.

ir
ToDate

OrA

.

PRODUCTION & LABOR REPORT
Week Ending	 Rate	 Machine	 Shift

Dot MPcs. MSq. Ft.
Standard Hours Non %

Elf
Actual Hours Bonus Delay Time NonRate

ActualOvertimeHours
ActualDollars

Set-up Run Total Rated Mach. Man Hours Allow. M/U Bonus

M

T

W

T

F

S

S „)„,z,,,,-,z,zzz,/i//////////,////�///444/,////////// /

ThisWeek
Prey.Wks.

ToDote
Aar

Section Subsections Page

10 50 30 09

PRODUCTION & LABOR REPORT Week Ending

/-/3- 61

Rate	 Machine	 shift

3.50	 7	 3

Dc M
Pcs.

M
Sq. Ft.

Standard Hours Non	 '	 %
Rated	 Eff

Actual Hours Bonus
Hour s

Delay Time Non
R= iB

ActlActual
Overtime Actua l

Dollars Sot.0 p Run Total Mach. Man	 1 All ow. M/U

/- 9 510 m /0/26 X 0 6.0 70 /0	 2d 4.a. /4.2	 .5 40 x/ . i /276.

1-10 726 T /3502 ,6 4i I Z 4 .6	 j	 93 6.8 /3.8!	 -	 .6 . 5- - -	 /1292.

1-1/ 43/ w 9526 4 0 5.1 6.1 1.2 85 3.8 /0. 9 1	 -	 1.0 /. 2 - -
_

/130.

/-/Z 5-01 T 9972 .3 6.9 72 .1	 90 6.9 /52 X 2	 .3 .4- - /.¢ 792.
/-/3 63/ F /2703 .5 70 75 ..f	 94 ZO /6.1 - .5" .6 - - 997

s

s

week 15129 3.4 32.5 33-:9 4./ 1	 90 3e.5 70.j /• 7 3.4 3„8 - 2.2 5687

Pre" /0750/ 76 63. 3 70.9 2/ 19 67 3 5 /43.0 50 73 6.9 /.7 3.7 /2701
To

Date /63330 /40 93.8 /86.1 /3.2 ip 99.8 2/31 6.7 /0.7 /0.7 /.7 5.9 /8395
Z

PRODUCTION & LABOR REPORT Week Ending	 Rate	 Machine	 Shift

/-/3-68	 3.75-	 8	 /

Date R es.
m

Sq. Ft.ri•	 .
Standard Hours Non

RdRated
%

Eff
Actual Hours Bonus

uHours
Delay Time Non

Rate
Bonus

Actual
Overtime
Hours

Actual
sDollarsDSet-up Run Total mod,. Man Allow. M/U

/-9 606 M /3706 .6 6.5 7/ .9 19	 ' 6.0 /5.7 .7 .6 .7 .9 /375.

/-10 908 T 2/206 .6 6.6 72 .8 90 6.6 /42 - .6 .7 - /0 /696.

/-// 671 w /4/93 40
,6

3:9
6.9

4.9 1/ 16 3.-9 /3.9 .9 /0 Z 1 - - /377

/-/2 43/ T 9/20 75- .5 94 4.9 /41,2 .9 .6 .1 - - 98/.

/-/3 /260 F 28'661 .7 7/ 7? .2 91 7/ /5.- / - .7 .7 - - 2790.
S

s

d' .1
This
	 6890 ! 3.5 330

41/
36.5-
7112

3.5
4.6

9/ 132.5
I	 I94	 44.3

741
03./

2.5
X/

3.5-
73

3.7
77

-
/0

49
3.2

6P/46
i

Prey.
Wks.	 /70483 1 73 /7503
Date	 23-72931 /0.8 /NJ ///. 9 1/ 93	 91'1 2242 76	 /ad' a0 /0 _X/ 25649

Z	 ,

Section Subsections Page

10 50 30 10

NAME	 CLOCK NO.	 TAX CLASSIFICATION
YEAR

REMARKS

ADDRESS ABE	 DEPT Ill	 DEPT. 121
B. B. NO.	 TEL. NO. CONSTANT DEDUCTIONS QUANTA EARNED EGA a SI W" TAX CITY 	 REASONOTHER TAX CODE REASON CODE

CITIZENSHIP	 YEAR FIRST DORIC AVAILABL,Esm,,,,, WA CATASTROPHE C
EMPLOYMENT RECOR .. DATE RATE PER' SECOND CONTINUED

UNAVAILABITITY CA DISCIPLINE 0
IN OUT REASON I THIRD LABOR DISPUTE LO SELF EMPLW SE

tf

12
FOURTH

44 TOTAL

PERIOD
ENDING HOURS RATE

EARNIN GS DEDUCTIONS AMOUNT
OF CHECK

CHECK
NUMBERR O. RATE OVERTIME OTHERS TOTAL F. 0. A. B. WITH	 1H0HTAO,L,0 A	 B C 0

1

2

3

4

5

6

7

8

9

10

11

12

13

OTR.

14

15

16

17

18

19

20

21

22

23

24

25

26

QTR.

W-2

Section Subsections Page

10 50 30 11

NAME	 CLOCK NO.	 TAX CLASSIFICATION

Y E A R /966._

Ilf-g

REMARKS	 /-1738 e / A.600	 -4.-.9.9.0.z
20.00ce/

ADDRESS AGE	 DEPT II/	 DEPT. (2)

S. B. NO.	 TEL. NO.
CONSTANT DEDUCTIONS ouART . R AR	 ED OA 6 SI TA ogrL.RTA	 REASON CODE REASO CODE

CITIZENSHIP	 YEAR
FIRST ADAK AVAILABLE

SICKNESS WA CATASTROPHE C
EMPLOYMENT RECORD it DATE RATE PER SECOND

IN OUT REASON LABOR DISPUTE LD SELF EY PL . 0 SE
ti FOURTH
I-

TOTAL

PERIOD
ENDING HOURS RATE

EARNINGS DEDUCTIONS AMOUNT
0 F CHECK

CHECK
NUMBERREG. RATE OVERTIME OTHERS TOTAL F. 0. A	 B. "7:r G A	 B C D

1

2

3
4

6

7

8

9

0
07
03
0
2/ZS
5A/
3/25

4,* Qt /965 none/.5
7023
/soma
76923
x0923
7023
7023
7023

323/
060
323/
323/
RN
323/
323/

/2500
28500
/2500
/2500
/2500
/2500
/2500

769

a00

769
767
767
769
769

/551

505
/535
-5 -ezi

/3361
501

2000

2000
2000
2000
2000
woo

5685.5
91710
579/5
50E35
579/5
56055
379/5

6166

6220
6253

6514

640

6567
609

10

11
12
13

OTR 59/53 .400R00
14
15
16

17

18
19

20
21
22
23
24
25

26

lot
i,/z2
qis
s/6
.5/20
6/3

6//7
7//

/sr ale Amos /766

76923
76925
/09349

7073
7023
70:5
769:5
76923

63176/

323/
323/
-
-
-
-
—
—

/700
/7500

2//60

/2990
/2990
/2990

/HO
/2990

769
769
/49.3

70
769
769
767

769

531
600

/531
3-01
/535

SOB
/C

?Ma
20620

Moo
2000
2000
zoaa
 200

56115
57123
71/57

59626
1056
59626
6045
59626

WI/
602
6119
70/0
7 3
7115
736/
74/5

QTR. 68162 -o- g30i9e 3/1.0.8 MAO /1510 114-41-ac300.0.1 2,000 02/75

W-2

Section Subsections Page

10 50 30 12

PAYROLL REGISTER	 SHEET

PAY PERIOD ENDING

NO

CLOCKEMPLOYEE RD
OCTAL
ours cm. "... .

"RHIN D• DEDUCTION• AMOUNT
or CRACK

CRICK
.. 'DE 3.T..	 T. . c

2

3

4

5

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

TOTALS THIS SHEET

TOTALS PROM PRECEDING SHEET

NOLIR• WORKED TOTAL
KMIEC . EICIA UTZ ".

A	 DONT
Or CHAO NORM[ARMIN CIE 0	 01./01,0N•

wi

	

Section Subsections
	

Page

10
	

50
	

30
	

13

PAYROLL REGISTER	 SHEET

PAY PERIOD ENDING

NO

EMPLOYEE	 CLOCK
NO.

HaUR• WORKED MAL
Noun

EARNING• DEDUCTtOms Moult/. CNA.

1 „16 660W AN	 753 ,40 55769 55769 - /0.300 558 .1/4 saw 0497 Z976

2 ./. 5/2Z/2128	 754 40 76Y29 74923 - /06./2 667 4.83 449- 7577

3 AIL MANN	 755 0 57492 .574.92 149Z 9/41 593 44497 7578

4 i/ /1577/N6ER	 zsa 40 14539 165.39 - /.542 73/3.3 7579

s R. FER61/60N	 757 4-0 ISM 313.40 1410 51.66 NY' 2485.3 75230

6 re . NoRlaLS 	 758 ie _woo A/4 374/4 126 6 . 8286 435 444 39767 7.58/

7	 d. 44.4777/5144.5	 759 40 43032 63432 1780 20/55 Pa 49587 7582
S 1 432/2265527A2	740 40 51923 37f.'23 240 8467 2000 39/76 7583

22 75:PR.4.446Ye55	 767 40 55769 55769 24.5i 9/37 /I/7 500 42563 7584
10 M. JOYCE:	 742 40 .30 ar 33.507 /472 .3380 1403 //..3:2 24/22 7585
" ,/ REY/VOWS	 76'3 40 3025 .3692-5 /6:76 58.77 6.67 28755 7,59a,

12 ,s(oRzicx	 764 40 26539 265.38 II.70 4219 2//49 7587

PR/ 7C//4220	 76.5 40 ..=, /.•■ v.3iao zao gam 39740 75236

14 V 44' OOZE	 746 40 30/4 aza 404 /776 61/9' 1100 30.3.39 75639

16 .6'...8.44243.4C//eX,	747 40 76923 7492.3 - /74.37 ELSO 2000 64.56 7590

16 /2 i.	 470	 768 40 86539 •	 54539 - /4992 ess itoo Oda? 50562 7597/

17 7 717/55GER	 X9 0 .32343 32343 /422 5//4 9/6 m, 288.56 7-598

18 G.	 €0	 0 40 2.65.18 26538 //727 4253 2//.3.5 7545

18 Z.STUDY	 77/ 40 434/4 634/427800/56 sezg 7g 7594

00 E. 112:40/1/5.4?	 772 40 702397 70842 - I/742 1492 /0 .574.18 7545
21

22

23

24

25

26

27

28

29

30

TOTALS THIS SHEET 800 /Wag WO .3434 10%.5459 30 /13161 61.40 730 42167 /24331 81.0//

TOTALS FROM PRECEDING SHEET 73 471/10 73638 f6r/ .C4,444 4310 2/4507 4864 B364 218/2 232/2 .07/644

2536 ROW NAV 37X66 6697135 7615 30114€7 /Mg 3117.1 MB 352f0 0/51451
Houma TOR 	 0

Mt ::::2 ".... °A.
..,...... ...”.. .,.... •	 ° . • ' ■ A C u AMT

OF O
O

N
U
I
N
OF

c3,..
NumetaEAMMimoe DEOuCTIONS

w.1

THE CONTAINER COMPANY
N?	 8123

COLUMBUS, WASH. 123 -4
567

PAY

TO THE
ORDER OF 	

THE CONTAINER COMPANY
PAYROLL ACCOUNT NO.2

TO THE NATIONAL BANK & TRUST CO.
OF COLUMBUS, WASH.

•
•

Section Subsections Page

10 50 30 14

PERIOD
ENDING HOURS RATE

REG RATE

EARN N OS

OVERTIME OTHERS TOTAL
WITHHOLDING

TAX

DEDUCTIONS

N?	 81

0A C AMOUNT
OF CHECK

23 8123
THE CONTAINER COMPANY

COLUMBUS, WASH.
PLEASE DETACH KEEP THIS STUB FOR YOUR RECORD

A- CITY TAX

D . INS.

C- NIETO.

0- CREDIT UNION

W-1

2-2-68 40 4 50 180 00 0 00 0 00 180 00 7 82 36 00 6 00 00 129 18

PERIOD
ENDING HOURS RATE

REG RATE OVERTIME OTHERS TOTAL
WITHHOLDING

TAX A B C 0 AMOUNT
OF CHECK

EARNIN GB DEDUCTIONS

N?	 8123
THE CONTAINER COMPANY

COLUMBUS, WASH.
PLEASE DETACH

A- CITY TAX	 C- MI80.

13- INS.	 0- CREDIT UNION

KEEP THIS BTUS FOR YOUR RECORD

COLUMBUS, WASH

PAY

TO THE	 6t4	 Jc5,*„.za ORDER OF

THE CONTAINER COMPANY

1 11111.I	 1■

2-2-68

TO THE NATIONAL BANK & TRUST CO.
OF COLUMBUS, WASH.

THE CONTAINER COMPANY
PAYROLL ACCOUNT NO. 2

W-1

i Total
Employee

Hours

	

Section Subsections
	

Page

10
	

50
	

40
	

01

SYSTEMS FLOWCHART OF WEEKLY PROCEDURE

Factory	 Administrative

Production Employee Total
Time Report Time Hours
Cards Sheets

Master
Employee

Time
Sheet

----____-------

Balance

Employee
Time
Sheets

---.____.-------
V V

Machine
Activity
Report

Balance

Post to
Labor and
Production

Report Master
Employee

Time
Sheet

File
Time
Cards

Calculate
Gross
Pay

Post to
Payroll
Register

1

v
Employee
Earnings
Records

Calculate
Statutory

Deductions,
Voluntary Deductions

and Net Pay

Section Subsections Page

10 50 40 02

Employee
Earnings

File

Write Check,
Check Stub, and
Post to Payroll

Register and
Earnings Records

........	 -/-"----

Tote Each
Column of

Payroll
Register

Crossfoot
for

Balance

i

Total Earnings
Records

File
Payroll
Register

Earnings	 Distribute
Records	 Checks

Post Earnings
Records to

General
Ledge

File
E mployee
Earnings
Records

File
General
Ledger

f

941A
File

Prior 941A

Crossfoot
for

Balance

Summarize
Earnings, FICA,

and FIT to
941

/
941 and

94IA Originals
to Federal

Government

Ist Copy
941

Write
W2

(year-end only)

Distribute
Copies as
Prescribed
by Law

Post to
Earnings
Records

Calculate
Year-to-Date

Totals

Post to
Earnings
Records

Crossfoot
Earnings
Records

Type
941A

	

Section Subsections	 Page

10
	

50
	

40
	

03

Quarterly Procedure

Employee
Earnings

File

Total Each 1st Copy 941A
Column of
Earnings

Original
941A

Sent to Local
Government

2nd Copy
941A

Records

	

Section Subsections 	 Page

15
	

00
	

00
	

01

Section 15: SOME PRELIMINARY QUESTIONS
AND ANSWERS REGARDING DATA
STORAGE

CONTENTS

Introduction 	 15.01.00
Data — on Disk or Cards? 	 15.10.00

General Considerations 	 15.10.01
Flexibility in Order of Processing 	 15.10.10
Jobs Involving More Than One File.... 15.10.20
Frequency of Changes to Your File.... 15.10.30
Need for Inquiry into Your File 	 15.10.40
Size of Your Data File 	 15.10.50
Your Backup Requirements 	 15. 10.60
Record Size 	 15.10. 70
Other Considerations 	 15.10. 80
Summary 	 15.10.90

How to Safeguard Your Disk Data Files .. 15.20.00
Introduction 	 15.20.01
Know Your Data 	 15.20.10
Know What Can Happen to Your Data 	 15.20.20
Design an Accident-Insensitive System 15.20.30
Detect Errors Before They Do
Damage 	 15.20.40
Plan Modest-Size, Modular Programs 15. 20. 50
Always Back Up Your Disk Files with a
Duplicate Copy 	 15. 20. 60
Provide Tested and Documented
Recovery Procedures 	 15.20.70

	

Section Subsections	 Page

15
	

01	 00
	

01

INTRODUCTION

Often, before starting the design of a system, there
are many questions regarding data storage. Two of
the more important are:

• Should I use cards or disks for my data files?
• How can I safeguard my data?
This chapter answers these questions on a broad

basis, leaving the details for later chapters.

Section Subsections Page

15 10 01 01

DATA — ON DISK OR CARDS?

General Considerations

Before you get too far into systems design and pro-
gramming, you should ask a basic question about
every data file you intend to use: Should it be stored
on a disk cartridge or in the form of a card deck?

The disk can be an extremely powerful medium
for the storage of your data; however, it can be mis-
used. Some data, if placed on the disk, will cause
your programmer more work in the long run than if
a simple deck-of-cards approach had been used.

In order to lessen the possibility of such a situa-
tion, let us answer some of the questions that arise
when choosing a storage medium for data.

	

Section Subsections	 Page

15
	

1 0 	10
	

01

Flexibility In Order of Processing

In general, your data, whether on disk or cards,
contains some master information (names, rates,
balances, etc.) in some order or sequence. When
you process this information, the transactions may
be in another sequence. For example, your em-
ployee master data file may be in man-number
sequence, while your employee detail cards are
grouped by department.

In this situation, the disk has a distinct advantage
over cards, since it is a direct access storage de-
vice (DASD). This means you can directly access

any record, regardless of which record was proc-
essed last or which record is next. This allows you
complete flexibility in the order of processing.

With your master data on cards, you have to sort
both the master deck and the transaction deck into
the same order, collate them together, and then
process your data in the desired sequence.

Although the disk has a great advantage over
cards, its importance varies with the size of the
file. Are you talking about 100 employees and a
10-minute sorting job, or 1,000 employees and 45
minutes of card handling? In later sections some
other considerations will be discussed that may tip
the scales in favor of cards.

Section Subsections Page

15 10 20 01

Jobs Involving More Than One File

The previous topic can be expanded to consider
more than one file, which is the case in many com-
mercial applications. For example, many payroll
applications involve a job cost file as well as the
employee payroll file. If an employee detail card
says that man 607 worked 12.5 hours on job 70976,
you can find man 607 in the employee file and add
12.5 hours to his weekly total, then find job number
70976 in the job cost file and add 12.5 hours to its
weekly total, all within one program. A card file
system would involve:

1. Sorting and collating the employee detail
cards with the employee master cards

2. Running the program and punching a new up-
dated employee master card

3. Separating the cards
4. Sorting and collating the employee detail

cards again, this time with the job master cards
5. Running a different program, this one punch-

ing a new master job cost card
6. Separating the cards and filing them
Depending on the number of cards involved, this

could be a cumbersome process. But again, some
of the considerations discussed later may override
this one.

Section Subsections Page

15 10 30 01

Frequency of Changes to Your File

A third consideration in deciding on card or disk is
the number of times the data in your file must be
changed, and the difficulty involved in changing it.
Some amount of change is inevitable; in a payroll
file every week will bring raises, new dependents,
changes of address, etc. These minor changes do
not present much of a problem.

With a card file it is very easy; a new card is
punched and substituted for the old card.

With a disk file it is somewhat more involved;
you must run a change program, which reads the
new data from cards or the console keyboard and
inserts it in the proper place on the disk record.

Major changes are another matter — new em-
ployees, a new group of items in stock, etc. Here
again, changing a card file is relatively easy, and
changing a disk file more difficult. It is a simple
matter to punch a master card for new item number
1705 and place it in the card deck between items

1704 and 1800. It is not quite so simple on the disk,
where items 1704 and 1800 are probably adjacent,
with no space between them. Either item 1705 is
placed in a special area, with a special routine to
find it, or the entire file is reorganized, moving
every item after 1704 "down" one position to make
room for item 1705. This also would require a
special program or routine.

If a data file is subject to frequent major (organ-
izational) changes, you may add a few points to the
"card file" side of the balance. These points may
or may not be enough to swing the decision, since
the first two items (processing order and number
of files) are more important, and generally favor
disk use.

Remember, when you change a field on a card,
you still have the old card; when you change some
data on the disk (usually an entire record at a time:),
the old information is gone. Therefore, special
care must be taken to ensure that disk changes are
processed correctly the first time.

Section Subsections Page

15 10 40 01

Need for Inquiry into Your File

In some cases it is very desirable to be able to look
into your data file to get certain current information:
number of pieces of item number 170653 on hand,
year-to-date gross pay of man number 8091, etc.
When your data file is in the form of a card deck,
this is relatively easy, since you merely find the
right card, interpret it, and read the data, much as
you would any other hard-copy file — index cards,
ledger sheets, etc.

People are accustomed to doing this, and often
resist the change to disk-resident files because they
cannot "see" what is on the disk.

It is true that data written on the disk is somewhat
less tangible than if it were on a deck of cards, but
this is not the overriding consideration it is made
out to be.

True, it takes a special program or subprogram
to read and display data on a disk, so demands for
inquiry do add a few points to the "card file" side of
the balance. However, a properly designed system
can lessen or eliminate these points entirely.

If someone within your company requires, say,
the current status of inventory, it may be possible

to replace his 5" x 8" card file with a daily listing
of stock status, or a weekly listing with daily up-
dates. If he insists on immediate response to
up-to-the-minute status, the programmer can build
an inquiry subroutine into every program, calling it
only when some console switch is turned on:

CALL DATSW(7, MM)
GO TO (9,10), MM

9 CALL INQUR
10 CONTINUE

These four statements would be placed at a con-
venient spot in every program. Whenever anyone
wanted to inquire of the disk, he would turn on
switch 7. The subroutine INQUR would soon be
called, and probably request that a part number be
entered through the console keyboard. After the
requested information was looked up on the disk, it
would be typed on the console printer, and the main
program would continue.

Large demands for inquiry sometimes make the
use of card files appear more attractive than disk
files, but proper systems design can often reduce
the importance of this factor. In fact, inquiry into
a disk-resident file is often a plus factor, since the
data obtainedwould have an up-to-the-minute status.

	

Section Subsections	 Page

15	 10
	

50
	

01

Size of Your Data File	 disk is sometimes not worth the extra effort, and
very large data files will not fit on the disk. Most

This item is hard to separate from some of the	 files fall somewhere in between, and some factor
other considerations. However, all other things	 other than size will govern the final card or disk
being equal, puffing very small data files on the 	 decision.

Section Subsections Page

15 10 60 01

Your Backup Requirements

Whenever you work with files containing important
data (payroll, accounting, etc.), you should not
ignore the possibility of accidental destruction of
this information. Many accidents can befall card
decks — card jams in the reader, floods, spilt
coffee, misplacement, etc. Because you can re-
cover from many of these accidents by patching torn
cards, duplicating watersoaked cards, etc. , it is

not too common to find duplicate sets of master
card files maintained.

Data files kept on the disk cartridge are subject
to a similar list of accidents, but with a difference:
it is often impossible to reconstruct the data after
an accident, unless you have planned for just such
an occurrence.

Because of the need for preplanning, the matter
of backup may be considered a disadvantage for the
disk file. In actuality, it may be on the plus side,
since it forces duplicate files.

	

Section Subsections	 Page

15
	

10
	

70
	

01

Record Size

Because of the physical limitations inherent in a
punched card (80 columns), it can be cumbersome
to process long records that are kept in card form.

Each record may require four or five cards, which
must be identified and kept in order. On the other
hand, disk records may be as long as 320 words (640
characters). If long records are required, you have
a few "plus" points for placing the data file on disk.

Section Subsections Page

15 10 80 01

Other Considerations

In addition to the factors noted previously, there may
be others of equal or greater importance — factors
that may be completely unrelated to the particular

data file under study. Some typical factors are the
storage cost of many cards versus one disk, man-
agement's wishes, and the desire to train program-
mers in disk techniques.

	

Section Subsections 	 Page

15	 10
	

90
	

01

Summary

This section has briefly covered some of the disk-
vs-card considerations and attempted to give general
guidelines for making this decision. It would be
ideal if these factors could be presented in the form
of a decision table, score sheet, or other device,
but this is not possible. Lacking such a tool, you
must study each data file, mull over the pros and
cons of disk or cards, and make your own decisions.

Some companies (especially those installing their
first data processing system), realizing that their
files fall on the borderline, decide to start with card
data files. Their reasoning is correct: The system
may be less sophisticated and require more machine
and operator time, but it is easier to program, use,
and understand. Later, if they decide that a certain
file should be placed on the disk, it is relatively
simple to make the change. The bugs in the system
have been ironed out, the programmers are more
experienced and confident, and the general atmos-
phere is more conducive to such a step.

Section Subsections Page

15 20 01 01

HOW TO SAFEGUARD YOUR DISK DATA FILES

Introduction

This section is of particular interest to those using
(or considering) the disk for storage of data files.
Accidents will happen, and you must plan ahead to
minimize their effect. This is especially true in
the case of disk, where data is stored in the form
of magnetized spots, recorded at extremely high
densities, and read/written by a precise mechanism.

On the other hand, hard copy data is relatively
insensitive to accidents. Punched cards can be
folded, spindled, and mutilated (even torn, crum-

pled, splattered with coffee, etc.) without disas-
trous results. A few minutes (or hours) at the
keypunch can remedy all but the most drastic card
mishaps. Other paper documents (ledger book,
index cards, forms and reports) are not too
difficult to duplicate or reconstruct if the original
is destroyed.

The purpose of this section, however, is not to
discourage the use of the disk for data storage; used
properly, the disk offers advantages that over-
shadow the potential hazards. If you follow the
common-sense suggestions in this section, acci-
dents can become rare, improbable events — more
a nuisance than a disaster.

	

Section Subsections 	 Page

15
	

20	 10
	

0 1

Know Your Data

Before starting into a long discussion of how to
protect disk data, let us review the various types
of data fields in your disk records and determine
which, if any, are worth protecting. Naturally,
you don't want any of your data lost, but certain
items are more important than others, since they
are much more difficult to replace.

Take a typical payroll file, where there is a
record for each employee:

1. Employee number
2. Name, address, city and state
3. Indicators — marital status, sex, number

of dependents, etc.
4. Pay rate
5. Year-to-date dollar figures — gross,

taxes, etc.
6. Quarter-to-date dollar figures — gross,

taxes, etc.
7. Miscellaneous cumulative — days vacation,

sick leave taken, etc.

The first four items are comparatively static,
seldom changing, but the latter three probably
change every pay period.

If an accident occurs (you should assume the
worst possible case), the entire record for every
employee is lost. How would you reconstruct your
data file? The first four items are easy — the
latest information probably exists in the form of
a card deck and can simply be reloaded onto the
disk. That is how it got there in the first place.
However, the last three items present a different
picture — they change each pay period. When you
write the updated disk record, this week's total is
written over last week's total, and last week's
total disappears from the disk. Unless you take
definite steps to save it before writing on top of
it, last week's total will completely cease to exist.

Some disk data fields, therefore, are more
critical than others — particularly those that
change often, are modified on the basis of previous
data (for example, year-to-date gross), or are
not kept in duplicate copies.

Section Subsections Page

15 20 20 01

Know What Can Happen To Your Data

Before you can go about safeguarding a disk data
file, you must know what you are safeguarding it
against. Basically, there are three general
classifications of hazards:

1. Physical hazards. Although the disk car-
tridge is in a sturdy container, it is certainly not
immune to careless handling, loss, natural disas-
ter, etc. The cartridge should be stored at
moderate temperatures, (between 60 and 90 degrees
Fahrenheit) and should not be placed on high shelves
or other precarious places. In general, common
sense prevails.

2. Intentional modification. Payroll data and
other confidential information should be kept on
disk cartridges dedicated to that use, and should
be kept in a secure place. As in the case of
physical hazards, there is very little else that can
be said about this sensitive area except that
common sense must be used.

3. Accidental modification. Every program
that writes on the disk should be given very close
scrutiny. Ask yourself: Is there a chance that
wrong information could be written on my disk
file? Nine times out of ten the answer is yes. A/1
you need is one mispunched card column, with the
resulting wrong answers, and you have a disk
record with erroneous data. If the data you are
placing on the disk is of a critical nature (as dis-
cussed in the preceding pages), you may have
problems.

Later sections will discuss some of the ways
you may avoid such accidental modification, and
how you may easily recover from them. Some of
the potential sources of such accidents are:

1. Programming errors (program not com-
pletely debugged, etc.)

2. Errqrs in input data
3. Mistakes by the 1130 operator (running a

program twice, etc.)

	

Section Subsections	 Page

15
	

20
	

30
	

01

Design an Accident-Insensitive System

The safety of disk data should be a constant consid-
eration when designing a system. "An ounce of
prevention is worth a pound of cure" — or, in data
processing terms, a few minutes spent in planning can
save many frantic hours or days in keypunching and

computer reruns. An accident may never occur,
but it would be foolhardy to ignore its possibility.
By following a few basic guidelines, the system
may be designed so as to be relatively insensitive
to accidents; no matter what may happen, recovery
is quick and straightforward.

Section Subsections Page

15 20 40 01

Detect Errors Before They Do Damage

Whenever there is any chance of erroneous data
being written on the disk, you should provide a
series of checks to minimize the damage. If there
is any possibility that input data cards contain bad
data, they should be checked. Your keypunch
operators should be familiar with the business, so
that they can recognize outright mistakes on source
documents. Programmers should be urged to
build reasonableness checks into their programs.

For example, a program that reads employee
labor cards should always check the number of
hours worked and, if the number is questionable,
take appropriate action (such as type a message
and pause).

Program results in the form of printed answers
should be spot-checked before the next processing
phase. Most errors are easily spotted early in
the game, provided someone is there to look for
them.

	

Section Subsections 	 Page

15
	

20	 50
	

01

Plan Modest-Size, Modular Programs

At first thought, it would appear that the best
program is one that does as much as possible. Why
have half a dozen small payroll programs when one
could do everything? Unfortunately, however, a
large program that does many things tends to com-
pound errors rapidly.

Let us look at the typical payroll job steps for
each employee:

1. Read employee's payroll labor card(s)
2. Read his master data from disk
3. Compute gross
4. Compute deductions and net pay
5. Compute all YTD and QTD totals
6. Write his new master disk record
7. Print payroll register
8. Print paycheck
9. Print check register
Suppose you wrote one very large program to do

all nine steps and one of the cards for the 56th man
somehow got mixed in with the cards of the 108th
man. Your programmer has done a good job of
error checking, so the 1130 types CARDS MIXED
UP and pauses. Youhave processed 107 employees
— printed the register, written checks, updated
disk records, etc. — with one man (the 56th)
completely wrong. How do you recover?

Correct the cards and rerun from the beginning?
No. Besides printing duplicate checks, that would
compute and write new YTD and QTD totals for
everyone and completely ruin your disk data
records.

Keep going and fix the 56th man later? Possibly,
but how? This would require a special program
to correct his now-erroneous disk record. It would

also require a handwritten paycheck, a hand
correction to the payroll register, handwritten
totals, and a lot of explaining to the accounting
department.

Reprogram the entire system to be less accident-
prone? Yes, but a little too late. It should never
have been written to do so many things.

This example represents an everyday occurrence.
Programs are written this way and cause great
consternation when the inevitable error in input
data occurs — or when the operator enters the
wrong week-ending date, or when the paper in the
printer jams, etc.

A properly planned payroll system, like the
example used throughout the following chapters,
would consist of four programs, not one:

PAY16	 • Read Input Cards
• Check for Errors

PAY04, Part 1 • Read Input Card
• Find Man Number on Master

Disk File
• Perform Calculations
• Update Disk
• Repeat Steps 1 - 4 for All

Employees
PAY04, Part 2 • When Part 1 Is Finished,

Print Payroll Register Directly
from Master Disk File

PAY05	 • Print Payroll Checks Directly
from Master Disk File

PAY06	 • Print Check Register Directly
from Master Disk File

The advantages of this plan are obvious:
1. The input cards are checked before they

are used to modify the disk records.
2. Payroll checks are printed after the payroll

register has been inspected for errors.

Section Subsections Page

15 20 60 01

Always Back Up Your Disk Files with a Duplicate
Copy

Regardless of how the processing system is de-
signed, there should be a duplicate copy of every
disk data file. If you have multiple disk drives,
you can copy from one disk drive onto another; if
you have one drive, you must dump to cards. The
copying (or dumping) should be on a regular basis,
and should not be left to chance or done whenever
there is nothing else to do. Both copying and dump-
ing may be done easily with the Disk Utility Pro-
gram, as outlined in section 60.

If your 1130 system has only one disk drive, it is
impossible to copy disks, and backup must be in the
form of cards. Either the DUP *DUMPDATA func-
tion may be used, or you may write your own dump
program. With large data files, both dumps take a
significant amount of time. For example, it takes
about three hours to dump a 1000-sector data file.

Because of the time involved, there is a natural
tendency to avoid dumping such files. However, an
analysis of a typical situation shows this to be self-
defeating.

Assume an 800-man employee file, contained in
400 sectors. To dump it with a 1442, Model 6,
takes about 60 minutes.

The weekly processing sequence is as suggested
earlier:

PAY16	 Edit	 30 min.
PAY04	 Calculations, Disk Update	 90 min.

and Payroll Register
PAY05 Payroll Checks 	 60 min.
PAY06	 Check Register	 30 min.
For purposes of analysis, assume the worst pos-

sible case — namely, that somehow during PAY04
the payroll data cartridge is completely destroyed.
(No matter how improbable or infrequent you think
this might be, it can happen.) How do you recover ?

If you dump the data file every week, you must:
Reload the dumped deck	 30 minutes
Rerun PAY16 and PAY04	 2 hours

You have completely recovered in 2-1/2 hours.
If you dump every other week, and you again con-

sider the worst case (your last dump was two weeks
ago), you must get the data cards from last week,
and:

Reload the dumped deck	 30 minutes
Rerun PAY16 and PAY04 with	 2 hours
last week's cards
Rerun PAY16 and PAY04 with	 2 hours
this week's cards

In 4-1/2 hours you have caught up to where you were
before the accident.

If it had been three weeks since your last dump,
the reconstruction time would be 6-1/2 hours; four
weeks, 8-1/2 hours; five weeks, 10-1/2 hours; etc.
Each week adds about 2 hours.

These figures assume that you can immediately
lay your hands on the previous week's data cards in
the proper order. If this is not so, these times
could go up drastically. The figures also assume
that everything goes smoothly during the recovery
phases. This, however, is not a very safe assump-
tion, since the operators will be rushed and unfamil-
iar with the procedures.

Without knowing the probability of such an acci-
dent, it is impossible to compute the optimum dump
frequency. It is probable, however, that you will
not want to be in a 10-1/2-hour recovery position,
no matter how slight the probability, just to save an
hour a week and a few thousand cards.

In this case, the best approach would seem to be
a dump every week for the first few months of the
installation, every other week after everything has
stabilized, and every third week if conditions seem
to warrant it.

	

Section Subsections	 Page

15
	

20
	

70
	

01

Provide Tested and Documented Recovery
Procedures

It does little good to follow the previous advice if
your recovery procedures have not been tested and
documented. Usually, time is of the essence, and
the operator should not have to study program list-
ings to determine what to do when accidents occur.
This is inviting trouble and can turn a minor mis-
take into a disaster.

If a program checks the input data for errors (as
it certainly should), the error messages should be
self-explanatory or be keyed to a document that ex-
plains exactly what to do. For example, a well
written and well documented program will type a
message such as ERROR NO. 6 and pause, waiting
for the operator to take corrective action. The
"run book", or "operation manual", should contain
a complete description of what happened and what to
do about it. Figure 15.1 shows a typical error re-
covery sheet; Figure 15.2 is a blank copy of the
same form.

Section Subsections Page

15 20 70 02

IBM 1130 ERROR RECOVERY SHEET

JOB P4Kec,Z. Z. PROGRAM NAME

PROGRAMMER NAME

PAY .l'

JP

MESSAGE TYPED:
ERRoR

PAUSE - DISPLAYED IN ACCUMULATOR

2	 MA-//14/1-./ %A 33

1 1

AFTER PAUSE, CONTROL TRANSFERS TO STATEMENT /7 AND:,

CLEARS TOTAL AHD GOES To ,FEA0 4 0ET,9/i_ C4,21)?
/9.5.5- UM/A/G / T /5 THE- p/R*57- c.,9eo lc-OR /YEW MAN

DESCRIPTION OF WHAT IS WRONG.

DE- 7,9/L cAet, A44A/ NUMBER L/J.A3 /5 LoW.Se 77./4/t/
LAST c4/2.0, W/-//CH 1/4Z MA-1MM. /7 - Slioc/40 8'' EQUAL
OR HIGHER

PROBABLE CAUSE:

-nz/E 0E7/9/L CARD ■JUST RE -RD 15 /A/ THE- WPOAIG: PL ACE.
IT bez0A/G5 EARL/ER /A/ THE DECK.

RECOVERY PROCEDURES-

,e-. M01/4..,7 0.0 7-- OA-- 5&'QIIEA/CC- C4205 '4AID CCWT/A(6-6.W/7 11 J08. HOLD C4 R0.5 eE AIOVEL) CIA/7 -/L. P.e0c7P-4.41
IS RUN AGA/A/. ADJUS T CON7-,e0.! 7-077,4LS AT ENO
Q, RUN,

COMMENTS'
A.-/4e6-. - cERT-4,/n/ THRT WHOEVER' .30,erE-o

N
7,41E

CA,E.'.0.5 KNOWS 777147 7-115}/ GOOFED!

SCORESHEET
DATE /2/2 3//5-
INITIALS 34/, JAI/

Figure 15.1.

IBM 1130 ERROR RECOVERY SHEET

JOB 	 PROGRAM NAME

PROGRAMMER NAME 	

PAUSE — DISPLAYED IN ACCUMULATOR
MESSAGE TYPED: 	

AFTER PAUSE, CONTROL TRANSFERS TO STATEMENT

DESCRIPTION OF WHAT IS WRONG• 	

PROBABLE CAUSE:

RECOVERY PROCEDURES. 	

COMMENTS' 	

SCORESHEET
DATE

INITIALS

	

Section Subsections 	 Page

15
	

20
	

70
	

03

Figure 15. 2.

Section Subsections Page

20 00 00 01

Section 20: 1130 APPLICATION DESIGN

CONTENTS

Introduction 	 20. 01.00
Accounting Controls 	 20.10. 00

Review of Accounting Control
Principles 	 20.10.10
More Specific Suggestions for Docu-
ment and Accounting Controls 	 20.10.20

Form Design 	 20.20. 00
1130 Considerations 	 20. 20. 10
Form Design Principles 	 20 20 20

Card Design 	 20.30. 00
1130 Considerations 	 20.30. 10
Card Design Principles 	 20.30. 20

Design of Disk Data Files 	 20 40 00
Introduction 	 20. 40. 01
Data 	 20 40 10
Field Size 	 20.40.20
Data Sequence 	 20.40.30
File Organization 	 20.40.40

Record Format and Blocking 	 20. 40. 50
File Processing 	 20. 40. 60
File Control 	 20.40.70

Payroll Example 	 20. 50. 00
Narrative 	 20. 50. 10
Card Forms and Console
Keyboard Input 	 20.50.20
Console Printer and Line Printer
Forms for Output 	 20. 50.30
Disk Record Formats 	 20.50.40
System Flowchart 	 20. 50. 50

Language Selection 	 20. 60. 00
Introduction 	 20. 60. 01
Programming Languages	 20.60.10
Application Programs 	 20. 60.20
Which Programming Language or
Application Program Should
You Use ? 	 20. 60.30

	

Section Subsections	 Page

20
	

01	 00
	

01

INTRODUCTION

Up to this point, you have been concerned mainly
with planning and gathering facts about the way you
are processing your data now. The next step is to
take this information and mold it into application
designs for the 1130. Follow this plan:

1. Be sure your current-system documentation
is complete. This cannot be overemphasized, be-
cause time gained by doing a hasty but poor job in
documentation will be lost later. In fact, it will
probably be lost several times over, because of the
need to sift out errors of omission from other de-
sign and programming errors, research the omitted
facts, then rewrite and retest all affected programs.

2. Design or redesign your reports. This must
be done in detail, and all interested parties should
sign off on the new layouts. The forms layouts
illustrated later in this section are sufficient to
guide data processing personnel in their program-
ming. The people who will use these forms should
be shown samples, as they will actually appear,
with real data hand-printed in the formats that are
planned.

3. Lay out the cards (see 20.30.00).
4. Draw flowcharts of the procedures you will

follow in processing the cards to produce the re-
ports. Decide what programming system or ap-
plication program (such as 1130 Commercial Sub-
routine Package) you will use for each run, and note
it on your flowcharts.

5. Establish procedures for accounting controls
where you need them. They may be different from
those you are using now.
(Steps 2-5 are usually overlapped to a large extent.
Changes in reports usually require changes in card
formats, procedures, and accounting controls.
Similarly, changes in any one of the latter three
elements affect the others.)

6. Hold a management review after the first
application has gone through the steps above.

7. Let each person who is programming carry
one of the programs in this initial application
through Program Development (see section 25) to
completion. By so doing, he will broaden his ex-
perience quickly, develop a more realistic idea of
the amount of time required for application design,
programming, and testing, and get a clearer idea
of the depth of detail needed in your current sys-
tem documentation. After this experience has been
gained, review your activity schedule dates and ad-
just them according to what you have learned.

This section reviews the important considera-
tions of designing accounting controls, forms, and
cards. Then the same payroll example introduced
in 10.50.00 is presented, along with typical form
and card designs and job flowcharts, as well as the
disk record layouts for the programs required to do
this payroll.

To help you decide which language to use for any
given run, this section also covers the considera-
tions that go into language selection. Finally, it
presents an example of a method for estimating the
length of time required to run a program.

Section Subsections Page

20 10 00 01

ACCOUNTING CONTROLS

This section covers the subject of accounting con-
trols at two levels. The first part, "Review of
Accounting Control Principles", points out the types
of control that are required and serves as a review
if you have set up and used controls before. It ends
with a short summary.

The second part, "More Specific Suggestions for
Document and Accounting Controls", deals with
specific examples of control sheets and methods of
control, and can be used as source material for
setting up your own control documents and proce-
dures.

	

Section Subsections 	 Page

20
	

10
	

10
	

01

Review of Accounting Control Principles

Accounting controls are an essential part of your
data processing installation. The inherent accuracy
of data processing equipment and the elimination of
many error-prone clerical steps helps reduce the
number of errors in processing; however, good
accountingpractice requires that you have a precise
procedure available to prove and reconstruct the
basic records of the system. Controls are also
necessary to guard the records of your business
against fraudulent acts.

The accompanying exhibit shows a typical in-
formation flow through a system. Information
from source documents is punched into cards. The
first control (Al) ensures that your information was
transcribed correctly and completely. This can be
determined in one of several ways:

1. The cards can be key-verified.
2. Control totals from the source documents can

be balanced against the card totals. For example,
an adding machine total of the quantities on a batch
(several source documents) can be balanced against
the total of the quantities in the cards created from
the documents., This same technique can be used
to control other numeric fields, such as employee
number, part number, etc. The total is often
called a "hash" total. If an out-of-balance condi-
tion occurs, a listing of the cards provides a means
of comparing the card information with the source
documents, and the error is quickly isolated and
corrected.

3. Document or transaction counts can be used
to ensure that a card document is created for every
transaction.

Since the information in the cards will be used
to update several associated records, accuracy is
of prime importance.

At the time the cards are run through the system
for accumulating control or hash totals, other tests
can be performed.

Fields may be tested for size or reasonableness.
For example, the nature of your business may be
such that the quantities have reasonable limits,
based on the class of an item. Any item exceed-
ing the limit can be so noted for review before
processing. This type of test might keep you,
for instance, from shipping 24 bathtubs to a small
country store as a result of mispunching an item
number for pliers.

Batch size (the number of documents included
in a control group) should be small enough to keep
error tracing from becoming too cumbersome. On

the other hand, it is not reasonable to control each
document separately.

As the documents enter the process (A2), the
same control list above can be used on a cumulative
basis to ensure that all the cards from the several
batches that constitute a processing run are com-
pletely processed.

Card documents being created by the process
can be balanced against your control (A3) totals.

A control should be maintained on all card files
(A4). The total from (A3) will be used to update
this control as cards enter the file. Before proces-
sing a large card file, it is often advisable to run
a trial balance on the file--particularly if the file
is being updated or used as a source of reference
between processing runs. The purpose of this trial
balance is to catch errors in filing, missing cards,
duplicate cards where a change was made but the old
record was not removed, etc.

A control listing of all cards entering and leaving
the file establishes the control total entry and pro-
vides an audit trail if it is necessary to identify
lost or duplicate records.

The accompanying exhibit also shows an example
of a simple control sheet. Each time records enter
the file or are removed, an appropriate entry is
made and the file balance is updated.

It is often possible to provide audit requirements
as a by-product of creating normal reports. For
example, the trial balance of your file might be a
stock status report. The value of separate balancing
runs must be determined by experience for each
application and will vary with the experience and
capability of your operating personnel.

The number and types of controls will depend
a great deal on the application. Your own auditors
should be consulted in determining control proce-
dures. Controls and audit trails should conform
with their requirements and should be established
as an integral part of the data processing proce-
dure. Much of the material in subsection 20.10.20
will help you and your auditors design adequate
control forms.

In setting up controls that will operate success-
fully, the following should be kept in mind:

1. Only those controls that satisfy a need
should be included.

2. The overall system of controls should be
conceived and arranged for when procedures are
being planned. Thus they will be an integral part
of each procedure, and those areas that may have
a tendency to be overcontrolled or undercontrolled
will be spotted.

Balancing

A4

File

t File Entry
Register

	 ..----"----

Fi le Control

Section Subsections Page

20 10 10 02

Con-
trol
Tope

Source
Documents

Has the information on the source documents been
transcribed correctly on the cards?

Transaction
Cords

orl

Does every source document or transaction hove an
associated punched card?

Do figures meet reasonableness tests?

Are oll necessary fields filled with information?

Register provides an audit trail.
Balancing

0

V

Processing
Control

Do the card outputTransaction
Register

records balance to
control?

A2

Processing
Output

If so, post to the
file control.

Cards

Balance

Balance

Output
Documents

A3

on

Regi
audit

prov
trail

This procedure
would be reversed
when removing
cards from the
file.

FILE CONTROL

Date Source DR CR Balance Auth

a 4/6s– 1;_*-ENne Y pi?. 00 P/400 .0

42/145" Fa., I& TR). 422 0 ,44,0 4, . ,,,,, "R

42/s/45"r	 NrR 043- 9-..274 93.2.6,

.2/4/cr TrmA BAL. 792.6 5' 7i)

,----

Trial
Balance

Does file balance
to control?

Typical control of data processing system

	

Section Subsections 	 Page

20
	

10
	

10
	

03

3. Personnel who maintain the controls should be
familiar with machine functions so that they can
locate, determine the cause of, and correct out-of-
balance conditions.

4. Controls should be simple and easy to main-
tain so that workflow is not disrupted.

5. A description of control operations should be
documented and assembled for reference and train-
ing purposes.

6. Whenever possible, control operations should
be mechanized.

7. When documents to be processed are batched,
batch size should be such that work will continue to
flow steadily.

8. Company auditors should agree with the audit
and control procedures.

9. Department controls should always be estab-
lished outside the department, at the source of the data.

Section Subsections Page

20 10 20 01

More Specific Suggestions for Document and
Accounting Controls

The following discussion of accounting controls is
concerned with (1) those controls established and
used outside the data processing installation and
(2) those established and used inside the installation.
Outside controls consist primarily of the initiation,
authorization, and verification of source documents
representing accounting transactions. Inside con-
trols consist of (1) checking operations, in which
transcribed transaction data is verified, and (2)
balancing operations, which ensure the accurate
processing of all transaction data.

Generally, the necessity for accounting control
increases with the volume of transactions or doc-
uments processed and the complexity of operations
performed. A variety of control techniques will be
discussed. The techniques to be employed depend
upon individual conditions within your organization.
It is important that the controls which you use al-
ways provide a proper balance between their cost
and their value. Since a system of accounting con-
trols may be obsoleted by a change in accounting
procedure, company policy, company organization
and/or data processing equipment, controls should
be examined and evaluated periodically. Company
auditors should participate in establishment and
evaluation of a control system.

Outside Controls

Control techniques described in the following text
are not necessarily limited in use to any one appli-
cation; they are easily modified for use with a vari-
ety of applications.

Document register. Control of individual doc-
uments can be maintained effectively by the prepa-
ration of a register on which each document is
listed at the point of receipt or origin. The register
should include either a description that is sufficient
to identify each document quickly, or a serial iden-
tification number. The serial number not only
furnishes positive identification and an effective
method for later reference, but is also most easily
used at the point of entry or origin. When each
document has been completely processed, it is
"checked off" or canceled on the register. Un-
canceled numbers represent documents that either
are in process or have been mislaid. Intermediate
processing operations for each document may be
shown on the register and dated as the document
passes those points in the procedure. The illus-
trated document register for sales orders not only

discloses a missing or misplaced document, but
also indicates any delays in processing--as might
be the case with order 12843, which, several days
after its receipt, has not yet been billed.

Serial numbering and the batch control ticket.
Where serial numbers are printed or stamped on
each document, rearrangement in serial number
order and a check for missing numbers may be
performed during, as well as after, processing to
ensure inclusion of all documents. This plan is
particularly adaptable to documents such as checks
or drafts, where each document must be accounted
for. When the document is an IBM card, the serial
number may be punched into, as well as printed or
interpreted on,' the card; arrangement of the doc-
uments, as well as a count of and sequence check
for missing documents, may then be accomplished
automatically.

Serial numbering may also be used for groups
and batches. If so, the number of documents in
each batch is recorded, together with the batch
serial number, either on the first document or on
a separate form accompanying the batch. For
large-volume operations, batch size should be
predetermined for ease and efficiency in handling.

The illustrated batch control ticket employs a
document count as well as document and batch serial
numbering. By maintaining a file of the batch con-
trol tickets, both the sending and receiving depart-
ments can account for all documents.

Transmittal and route slips. A letter of trans-
mittal describing a group or batch of documents is
frequently employed to establish control and transfer
responsibility when documents move from one depart-
ment or location to another. The transmittal slip,
as shown, is usually a printed form with spaces to
indicate the variable information for the batch.

When the volume of work or the number of
people who may perform any given operation is
large, it may be desirable to fix responsibility for
accounting for documents passed from each opera-
tion to the next as well as from one department to
another. In this case, a route slip is employed,
either in addition to or in combination with the
letter of transmittal. The route slip is similar
to the batch control ticket shown, except that in
this case each department, or operational step
performed, is identified, along with an indication
of the processing time and the operator or clerk
responsible for each job. Responsibility is fixed,
and the means to effect a degree of work control
as well as document control has been incorporated
into the same form.

CARD SHIPMENT TRANSMITTAL

To

Thi404.4•P 	ii/k7

"'"" Al. uDe,e-

F WOG,

lereAdoftvetlir . /WA'
"D. Xoef- ROUTING SLIP

/71

MATCH NO.

,52-//Vg,
r."– 'a 032.	 / 0,2

Sp000rzAda,
AZ6;643.2/

DATE DID.	 INITIALS

/01/6

18\11 T ►A,

REINANKS

.,-/734,f the ,246.1

AAAAA•N• pirrt.101c. 110 GI 	 ttttt rono•.O. •NO

RETURN TO CONTROL CLERK

Ck.e

NUMBERED
734i I 73 8•s
FROM	 TO

/ al/ 4
DATE

Cr
NO. OF DOCUMENTS

	

Section Subsections	 Page

20
	

10
	

20
	

02

ORDER	 REGISTER
MONTH	 49t1444"--

DATE
RECEIVED ORDER NUMBER DATE

AUDITED
DATE

BILLED
DATE

SHIPPED REMARKS

/a //y 12831 ,e//y ,,bir .,i/s,
12832 /o//6 ,..,• //•

, 12833
12834 /4, /..,- /0/.7 /./..p

" 128352835 ,, ,,,v,/ "/" ..,,, /, 7., 12838
12837 . /e/ AC . /o//7.. . .‘,//p

. 12838 /otiri•
12839 /04er • ./0	 /7
12840. ,,	 .
12841 ' /0//4 io//7

/a//5 12842 /a //4- /0/•7 • /alit
12843 /0/4 6,,,,,A44‘,.,..;„4-a.,r-...
12844 /4. //f- id //f

Order register

/
BATCI

4‘
NO

Weee/ In.44.‘,„ --.779°Z-
TO:

/0/
DATE

a/\...-...1 ,..,,. ,,-.
FROM:

37
NO. OF DOCUMENTS

NUMBERED

/.13 6-a.5.-
FROM
 Mild f //

TO
RECEIVED

DATE

ATTACHED DOCUMENTS SPECIFIED ABOVE

SIGNATURE
PLUM SIGN AND FORWARD THE COPT OF THIS MATCH CONTROL

TICKET TO SENDING DEPT. WITHOUT PILOT.

Batch control ticket

Transmittal and route slips

PURCHASE ORDER
NEW MEXICO COMPANY

56
	 HOUSTON. TEXAS

DATE 10/12
TO

=MAL MANUFACTURING cctemly

SNOW OUR ORDER NO. ON ALL INVOICES.
PACKAGES AND SNIPPING 	

1 ORDER No. 311
NAIL INVOICES IN TRIPLICATE UNLESS
OTNERIVISE SPECIFIED.

ENDICOTT, N. Y.
L

SNIP
TO	 ABBE	 VIA	 Emir WAY	 F 0 II

QUANTITY DESCRIPTION Foci

40 SQUARE SHANK SWIVEL 11202
75 FLAT TOP RIGID 13102

5
2
4

KIT SHANK urn BRIO
BOLT MID NUT MARK
RFD SKI RING STEM

17203
32105
44104

a	 x,9	 rnC)m
40 BOLT AND= SHANK 62110 .i.	 5.

=
cr)

a w
4.	 ZI
■I 70ii.	 —.
3 2m
...,	 Z
CO	 —I

OW* .11. I O•o. . O.T.	 I	 DT . TO N.T.	 •MoT•a•TIOIT	 I	 OA.	 I CM

SVOX. TO TOT Tn.s axe tOodomo• OE TOT 11.• MOW
WMKN •N UKO•POO•Tt• .111.01• PAW MM.

IA C. ill.rA-4r-

Section Subsections Page

20 10 20 03

Cancellation and time stamps. As a document
is received at a control point or passed through a
given department, it may be "canceled" by a stamp
to indicate that it has reached or passed through a
certain stage in its processing. Any clerk or oper-
ator handling documents would automatically reject
or return for checking any document not bearing
the correct cancellation. As shown in the accompa-
nying illustration, the use of the time stamp for
cancellation affords, in addition to document control,
a method of achieving work time or production con-
trol, since it furnishes an accurate, unalterable
record of elapsed time for handling.

Matching. The reassembly and matching of
duplicate documents can be used to effect control.
This technique is particularly useful when multiple
copies are prepared, as with carbon copies, and
each copy is then used to prepare records at a
different location, for example, purchasing depart-
ment and receiving department. When all copies
are reassembled and matched at the predetermined
point, the presence of all copies indicates complete
processing. If the documents are punched cards,
matching and checking can be done automatically.

Control of factors subject to change. Factors
used for calculations and processing may be re-
viewed and changed from time to time. Examples
of such factors are discounts, selling prices,
credit limits, commission percentages, and in-
ventory reorder levels.

Controls must be established that allow only
authorized changes to be made. This is accomplished
by requiring a signature with each request for change
(see change authorization exhibit). Changes are
documented by printing a register (see change
register exhibit). A copy of the report is routed
back to the initiating department for review and
approval.

Inside Controls

Controls within the data processing installation
should ensure that all transactions are processed
completely and accurately. The series of checks
and balances that make up these controls must
begin with the entry of transactions into the data
processing installation and continue throughout
processing.

Time stamp cancellation

REGISTIVITIOR OEM FOR
U.S. SAYINGS MONO

EF:gAM

TO OA 40ISTIOLO n rot

Orr Too Tor

• Wig a Dosgr./
r	 Par Aro oar err err olO

12.0 FIELD
A mY wNE-RE

• Ire orome vow. or... 0.1 MAO,

'11.1.11.EFT."V
Truntl
sow OTTOOT•O

DATE
FACTORFACTOR

BEFORE
CHANGE

ITEM CODE DESCRIPTION
CHANGE

CHANGE REGISTER

12 2685 PEA SOUP 5.956 6.001
12	 3074 ORANGE JUICE 3.132 3.857
13	 1111 HAND SOAP 2.253 2.20u
13 2954 CONDENSED MILK 1.652 1.639
13	 4182 TOOTH PICKS .352 .353

11-26

	

Section Subsections
	

Page

2020
	

10
	

20
	

04

Accounting Dept. DATE, 11/25TO: Machine

I	 FROM: Marketing

THE FOLLOWING PRICE CHANGES SHOULD BE MADE:

ITEM NO. DESCRIPTION NEW PRICE

12	 2685 PEA SOUP $	 6.001
12	 3074 ORANGE JUICE 3.857
13	 1111 HAND SOAP 2.200
13	 2954 CONDENSED MILK 1.639
13	 4182 TOOTH PICKS .353

-Fif. g. A4a....agea-

AUTHORI ZED SIGNATURE

Change authorizations

Change register
("‘

Section Subsections Page

20 10 20 05

Control techniques and devices. A list of con-
trol devices and techniques, many of which can be
incorporated into the procedure for any data proc-
essing system, includes:

• Serial numbering. The serial numbering of
orders, invoices, checks, etc., provides control
while the data is in transit. Each item or document
in the series or group is assigned a successive
number; an indication of the beginning and ending
numbers accompanies the group.

• Batching with a document or item count. In
batching data with a document or an item count, the
items or documents are counted instead of numbered;
an indication of the count accompanies the group.
This technique can be used to control data, both
before and after it is punched into cards--for ex-
ample, requisitions, changes, receiving reports,
and punched cards for various analysis reports.

• Batching with a control total. In batching with
a control total, some data field that is common to
all items or documents is accumulated for the con-
trol total, which then becomes the basis for balanc-
ing operations during processing. The control field
may be an amount, a quantity, an item code, an
account number, etc.; totals based on an account
number or code are known as "hash" totals. An
advantage of this technique is that balancing can
often be performed during regular machine proc-
essing operations at no extra cost in time.

• Crossfooting. Crossfooting is the addition
and/or subtraction of factors in a horizontal spread
to prove processing accuracy. It can be used on a
payroll register to prove that the final totals of
net pay and deductions equal the final total earnings;
this provides control on report preparation as well
as calculating and card-punching operations. In
posting transactions to records that are temporarily
stored in a computer (for example, accounts re-
ceivable), crossfooting is used to prove the accu-
racy of posting, either as each transaction is
posted, or collectively at the end of the run, or both.

• Zero balancing. Zero balancing is an effec-
tive method of verification when both detail items
(for example, accounts payable distribution cards
or records) and their summary (for example, an
accounts payable disbursement card or record) are
processed together. Each detail item is accumulated
minus, and the summary plus. The result is a zero
balance if both are correct.

• Negative balance test. It is possible to detect
a change in sign during arithmetic operations and
either stop the machine or signal the condition for
subsequent review. In payroll applications the sign
check is used to indicate the condition in which

deductions exceed gross pay; in accounts receivable,
accounts payable, inventory, and general ledger
applications it can be used to recognize any balance
that becomes negative.

• Blank field test. This means checking any
data field for all blank positions. As a computer
control, it can be used to prevent the destruction
of existing records in storage, indicate when the
last item from a spread card has been processed,
skip calculation if a rate or factor field is blank,
etc.

• Comparing. Comparing, as a control tech-
nique, permits data fields to be machine-checked
against each other to prove the accuracy of match-
ing, merging, coding, balancing, reproducing,
gang punching, and record selection.

• Sequence checking. Sequence checking is used
to prove that a set of data is arranged in either
ascending or descending order before it is proc-
essed. It is generally a mechanized operation and
may be performed in a separate machine run or
simultaneously with another operation in one run.

• Visual comparisons. Comparisons are based
primarily upon experience, past performance, and
a knowledge of trends that have intervened. By
knowing the status as of a certain time and observ-
ing trends since that time, it is possible to deter-
mine to some degree whether present records
represent a complete and accurate picture. For
example, present-period payroll is often compared
against last-period payroll to spot any questionable
variations.

Controls on processing operations. The number
of available techniques indicates the need for a
thorough study of your application and equipmentin
order to come up with a system of controls which
is adequate but which does not overcontrol and delay
processing. In so doing, it is desirable to mechan-
ize as many controls as possible. Mechanized con-
trols are always performed at a constant, rapid
speed; manual ones are not. A study of the appli-
cation will reveal:

1. How closely it is to be controlled.
2. Points in the procedure at which controls

must be placed.
3. The correcting and restart procedures to be

employed at each point, in case the operation does
not balance. If the procedure is a manual one, it
should be clearly documented for operator refer-
ence and training purposes.

4. How accounting control responsibilities are
to be divided.

The basis for control during processing must be
established as data enters your installation. This

	

Section Subsections	 Page

20
	

10
	

20
	

06

is generally done when transactions are edited and
may consist of assigning a system of serial num-
bers or developing a document count, a transaction
count, an item count, a tape listing and total
of some field such as quantity, amount, or code,
etc. , or a combination of these. When these pre-
liminaries are taken care of, your transactions are
ready for processing.

During report preparation, the primary control
objective is to prove that all items (accounts or
transactions, etc.) are included in the processing
and that arithmetic is performed accurately. It
can be assumed that the data itself is correct, since
punching, summary, and posting operations are
proved as they occur.

To ensure the inclusion of all items in the report,
a final control total is developed during processing
and balanced at the end of the run to a predetermined
one. In cycle billing operations, the control may
be an account number hash total of those accounts
that are in the cycle; for other reporting operations
it may be a control total based upon an amount, a
quantity, or another code field. For control of
arithmetic functions that occur during report prep-
aration, the following techniques should be inves-
tigated: crossfooting, total transfer, zero balancing,
parallel balancing, reasonableness test, or a com-
bination of these.

Built-in checks and controls. Built-in checks
should be taken advantage of and not duplicated by
programmed or manual controls. They function as
a result of internal machine circuitry and are there-
fore performed automatically. For example, all
machines have checks which stop the machine for
an operation that is impossible or in conflict with
another.

Computers utilize input/output checks. The
input check ensures that all data is read and coded
correctly. The output check ensures that your out-
put characters are correctly set up for punching
and/or printing.

This discussion does not include all built-in
checks; for more information regarding a specific
piece of equipment, refer to the reference manual
describing the machine.

The audit trail. An audit trail must be in-
corporated into every procedure; you should pro-
vide for it early so that it becomes an integral part.
In creating an audit trail it is necessary to provide:

1. Transaction documentation that is detailed
enough to permit the association of any transaction
with its original source document.

2. A system of accounting controls which proves
that all transactions have been processed and that
accounting records are in balance.

3. Documentation from which any transaction
can easily be recreated and its processing continued,
should that transaction be misplaced or destroyed
at some point in the procedure.

The audit trail shown in the accompanying ex-
hibit might be found in an accounts receivable ap-
plication. The original or entry sales register is
prepared by date of entry immediately after the
cards have been punched or activated from a file.
All punched information is listed on the register
in detail, so that if a transaction has to be recreated
at some later time, reference to the source doc-
ument will not be necessary. To prove the accuracy
of the register's preparation, its final total is
balanced to a predetermined one; if the two are
equal, the final total is also posted to the control
sheet. The sum of these individual totals on the
control sheet establishes the final control total to
which all accounts receivable operations for the
period must balance.

Cards for the cash receipts book are either
punched or activated from a holding file. After
being prepared in detail, the cash receipts book is
balanced to a predetermined total. If it is in bal-
ance, the final total is posted to the control sheet
and the receipts are posted to accounts receivable.

When the aged trial balance is run, the final total
should equal the difference between total debits and
total credits to accounts receivable; this difference
is available from the control sheet. If the totals do
not agree, all the transactions for the accounting
period can be sorted into entry date sequence, sum-
marized, and checked against the daily entry totals
on the control sheet to isolate the entry date that is
out of balance. The transactions for that date are
relisted; an entry-by-entry comparison on the du-
plicate and original entry registers will reveal the
discrepancy so that a correcting entry can be
initiated.

The sales register and cash receipts book pro-
vide documentation that is sufficient for reconstruct-
ing a transaction or associating it with the original
source document. Balancing each register to a
predetermined total proves that all transactions in
the group have been processed through that point.
The entries on your control sheet provide the means
for balancing accounting records at the end of the
accounting period.

Section Subsections Page

20 10 20 07

1 or 2
SALES REGISTER	 Dumber 31

• so

EA, SHANE WIFE BR 72 33 22112345751231 12351
SO SHANK RIGID
DOLT AND NU/ SHANK 21

03	 211123.0791231
03	 22112300751131

12351
12351

RIU SPR RING STEM
FREIGHT

41 07	 221123.3791231
2:1123.375.1231

12351
12351

22112341791231 12351

SO SOCKET RIGID 1	 61 02	 1E3052307 2131 12352
EuSTOA BUILT
RHO GP 	 RING STE •

1 51
6,1 C. 1E305230761231

C. 1630523072211
12352

2352
FLAY	 TOP SWIVEL

FREIGHT
5 32 °a l 3aost,o,

163052776a271
231 12352

12352
163052.7E1M 12352

ExTENSICN 5WANA 02	 17605C0691231 12353
A132ADAPTER ROUND
BOLT AND NUT SHANK

166	 1
05 	 77505064271
IC	 77005=691231

12353
2353

F REIGHT 77005064131
170050691731

12353
1235

O CASH RECEIPTS REGISTER

"
.4vvv.T. v.v..,

0 .v•ANN....3
..	 .31

S •
vevAN•

•	 ..A.
AL...... 0

ve iv.

0 C•STLE	 HARDWARE	 CO 606225 13111150611, 6 •	 93117 •	 92117
CENI,A•L	 up.,45,4	 suPPLY
cHAN,EL	 .VHOLE 5 •1-6.

625 7
2 3•22 1 ,

3•7 11112 300
I 11232412.2

12,2 3
6

)69103
5 0 0 .0 0

36 116 5
•	 9 0,0 0

7
1000

3 a
O COvENT/AY	 0 It

H.3.‘1-	 I AIO	 SUPP	 CO 6 5 12
9205195:111229212,23

"61112310 1 2 1 26
95097
•15133

9 31,95
•	 0 7 1 0 2

1 90
8

2
31

0
cr Lv i NA I RE	 Cow.
MAI EC	 REP INI NG	 GO

5035107•1111606112
60 912279111225,222

3 301166
232156

30	 ,
5 12 A7, o s ()

NEwTON PARW	 •NO CO
NEW	 NAE R I CO	 CO•AP•NY

10	 5
751	 . 116

101111239
7111199 311,30

I	 1 76	 L.3■
100000

76	 ,31
1000'00

N	 V	 OAS	 •ND	 ELEC	 CO
veSTAL	 STEEL	 CO	 • epso

122122.6{11232512'26
, a alllo.sz i a , a

105510 3
1.06 1

1033193
1 4 Ms 1

3110 0

W1NTERDALE	 R•ILWAv 7652 167611 9562 3 1 6501.60 6 5 01.0
O

6 97 50 7 6 90 R
IIO 1 70 56

A	 I .

RI ANGLE HEAD A 02	 16305413,662,4, 12354 20 40 one 17'60
SID PIPE STEM
:uS/06. BUILT

17
51

03 1.05417763.1
12	 163054,576,,,,

17,54
12350	 21192

.7
SC

11,3i50, 10200
89350

ISiYO

F REIGHT 1E305.131612
1E305413706271

RI 12156
1235,

134,6 101	 90..

E
93e

V38
135145

• Incoming transactions
FLAT	 TCP RIGID
CuST0. BUILT

1	 31
1	 51

02 21,3557.3641231
02 237355 n4. 231

12355
12355	 101

164	 5
'5

6YPO
9375

8
.0 9q 5 listed in detail for permanent

FLAT	 TOP SplvEL
CUST

TOP RIGID
OM BuILI

32
6)1

51
03 237355/3641431
Oa 25.735513640731
10	 25.7355156412,11

12355	 485
12355	 040
12355	 117/

95
35
45

21 ^25

52*5
16,313
196)5
4243♦

261100
52165

audit reference
.4E16,11 25715573.10131

2t735573441
12355
12355

Ima
116493

116+5• 907.5• E :	 •
ELI S460K ml/H B.(2 03 2234910561231 12356	 102 121:50 9.20• 12450
SJ SOC6LT SWIVEL
FLAT TOP SWIVEL

2 63
3 32

02 2016010511131
05 24109105 zai

12356	 2559
12355

65 121105
116,00

8660
a9m0

12105
OLD SPA RING STEW
CUSTOm BUILT

AI
6 51

06 2216910571231
10 221•910541731

12355
12356	 11177 5

La4ao
°ears 706:73 OBB75

FREIGHT 221A9105
2219910561.1

Al2131 12,56
12356

• 152
123.412

14331000 112 •
774123 590 ITA1r7646

0

0

ACCOUNTS RECEIVABLE
CONTROL SHEET	 .AINTv A.	 /962414141.-

••••• ..r...	•	,....
	 ..,.	,	 ,.....	,		 ,.	 ...v.

:::1: 62 65 16
I.	 / /0 • •	 41 i9 0 V/

stirmirtmerffirawrimmmErn■
/2 61 0

34 69 4•3514 3333e 1550 AN	30 96133 Se 1/
2. 5 061 ilo	 2 41/3 97	 2 3S8 4,5 55
I f
f S 2 .2 . 30

/9 '	 i /2 7 Sii 65
/.3 , 26117
/ ,

IIIIII ■SRNU $
22nonffrimmrimirrammira'

II
97lilt

44,/ 11

2J
"'RIligi	 ME.1.1: 1 0 1NI

• •	 2 ' • -1:2
•

IIP4

Trial Balanc

v
Cneck to

Audit trial

	

Section Subsections	 Page

20
	

20
	

00
	

01

FORM DESIGN

The first part of this section, written for persons
familiar with punched card processing, deals with
1130 considerations only.

The second portion is more detailed and serves
as an introduction to the subject for those who are
new to automated data processing.

Section Subsections Page

20 20 10 01

1130 Considerations

1. The ability of both FORTRAN and the 1130
Commercial Subroutine Package to provide heading
information can greatly reduce the cost of forms.
Standard stock forms can be used for all internal
reports, and appropriate headings can be provided
at the time the report is prepared. Setup time can
be significantly reduced by eliminating the need to
change forms in the printer.

2. The 120-character print line is probably at
least equal to your present capacity. Consider
printing narrow forms two-up --that is, two pages
side by side (on special paper for splitting), printed
at the same time. This technique can double your

output or can avoid the need for extra runs or extra
carbon copies where the number of required copies
is large.

3. The extra speed of your printer (1403) may
allow you to make some short runs twice instead of
buying expensive multiple-part paper just for those
runs.

4. Interchangeable chain cartridges for the 1403
allow you to improve the appearance of certain
reports by providing a variety of special characters.
Also, printing speed can be considerably improved
by selecting a character set containing only the
characters you need.

5. The ability to have both the 1403 and 1132 on
line can save time, in some cases, by eliminating
the need for rerunning cards to produce a second,
different report.

	

Section Subsections 	 Page

20
	

20
	

20
	

01

Form Design Principles

The design of effective, economical forms reqires a
certain amount of preparatory evaluation and
analysis. The major objectives are legibility,
simplicity, economy, and efficient preparation.
Local IBM representatives should be consulted
early; their guidance and reference materials may
help avoid costly mistakes. Steps to be taken in
forms design are:

1. Establish the need for the new form. Sim-
ilar forms may exist which, with minor changes,
will satisfy the new requirements.

2. Study the machine to be used for printing.
In so doing, use the reference manual for that
machine; most manuals have at least one section
devoted to the tape-controlled carriage and/or form
design. These sections contain valuable information
about forms specifications as well as different
printer characteristics and operation.

3. List all types of information to be recorded
and the number of positions that will be allotted for
printing each. In doing this, assemble and study
past and present statistics. These can be evaluated
in light of future plans and then used as an indi-
cation of probable needs. One of the greatest
weaknesses in forms design is the tendency to
burden a form with unnecessary information. Since
entire data processing procedures may be geared
to the preparation of a certain report, extraneous
information can be costly.

4. Lay out the form on a printer spacing chart.
(See Figure 20.17.) In using the spacing chart the
following tips will be helpful (some will be dis-
cussed in greater detail later):

• Use bold type to make special information or
headings stand out.

• In columns for figures allow sufficient space
for the largest amount plus punctuation.

• Place filing information near the top of the
form.

• Title the form.
• Include form number, date, and page number.
• Keep headings small, to allow room for

written data.
• Consider total headings at the bottom of the

form.
• Use different-colored copies as an aid in

routing.
• Use double-ruled lines to set off sections.
• Avoid horizontal rulings as much as possible.
• Consider guide marks for names, addresses

and folding.

• If possible, choose a standard form width.
• Make certain that the form length is compatible

with the spacing to be used.
• Include a guide for forms alignment in the

printer.
5. Make a test using a copy of the proposed form.

Examine the report carefully to make certain that
zeros are printing properly and that amount fields
are large enough.

During the creation of a form the designer should
understand and keep in mind the following:

Form width. The overall width of a form is
important in determining printing space. Although
the IBM form-feeding devices available will handle
a great variety of document sizes, certain practical
aspects should be observed.

Form costs can be reduced by confining widths
to the standard sizes of paper stock used by business
forms companies. (These sizes can obtained from
the companies; reference to the individual machine
manual will indicate which are acceptable.)

In addition, width standardization permits (1) pur-
chase of report binding and filing supplies in fewer
sizes and greater quantities at reduced cost, (2)
more convenient forms handling, and (3) a reduction
in the setup time of form-feeding devices.

Form length. The total number of body lines in a
form (regardless of whether six-or eight-lines-per-
inch spacing is employed) can be any whole number,
up to 132. It should be evenly divisible by two in the
case of double spacing, and by three in the case of
triple spacing.

Horizontal spacing. All printing is ten characters
per inch. Vertical lines separating fields and
decimal positions should be drawn so that each splits
a printing position. If they are drawn between adj-
cent positions, paper shrinkage, variations in form
insertion and alignment, as well as other variables,
may prevent satisfactory registration during print-
ing.

Vertical spacing. The vertical spacing of the
printers is under operator control and can be set
for six or eight lines per inch. The importance of
this is that double spacing at eight lines per inch
permits 33-1/3% more lines to be listed on a page
than double spacing at six lines per inch. While it is
true that six lines per inch at single spacing gives
more items than eight lines per inch at double
spacing, the latter offers increased legibility.

Form skipping. The maximum distance that can
be skipped without losing machine time is not the
same for all printers. The individual machine or
systems reference manual should be read so that
little or no processing time is lost.

Section Subsections Page

20 20 20 02

Form alignment guide. If possible, a guide for
form alignment should be determined and preprinted
on each form to facilitate machine setup operations.
It is important that a description of the form align-
ment guide and its use be included in the operation
manuals. A delay in machine setup will create a
delay in processing.

Numeric amounts. In determining the number of
print positions needed for numeric fields, the size
of the total must be provided for, rather than the
size of the detail amounts. If marks of punctuation
are to be machine-printed, the size of the field
should be checked to make certain that printing
positions have been allotted.

Printable characters. The standard printable
characters are:

A — Z
0— 9

More information may be found 	 a appropriate
machine reference manual.

Marginal perforations. Most forms have a ver-
tical perforation 1/2" from each side. Sometimes,
however, forms are designed with dissimilar
margin widths. For example, a form with an over-
all width of 9-7/8" may be perforated 1/2" on the
left and 7/8" on the right, to leave an 8-1/2" x 11"
letter-size report after the marginal strips are re-
moved. Many such variations in margin size are
used. At least one unused printing position should
be left between a machine-printed character and a
perforation.

Since some report binders utilize the form-feed-
ing holes for binding, many reports are set up with
no perforation on the binding side. The practice of
eliminating perforations and letting the form-feeding
holes remain on both sides of the finished reports is
being followed more and more, particularly with
internal reports.

Binding. In most cases, it is desirable to min-
imize binding space in order to reduce form cost.
Therefore, information that will be referred to
least should be placed nearest the margin, since it
becomes more difficult to read information near the
binder posts as sheets are added to a binder.

Because of the amount of space required for
headings, many forms can be bound at the top, with
no sacrifice in readability. If it is desirable to bind
continuous forms without bursting them or binding
them on the side, binding holes can be punched in

both the top and bottom of the forms.
Carbon copies. Substantial savings can be real-

ized by mininizing the number of carbon copies.
Some techniques that are effective in doing this are:

1. Side-by-side duplicate reports
2. Consolidation of reports for multiple use
3. Sequence-routing of reports to different de-

partment's, instead of simultaneous distribution
4. Mechanical or photographic reproduction
Any report that is subject to constant usage, such

as a weekly timesheet, should be prepared on a dur-
able grade of paper. For most multiple-copy work,
the first, or original copy and the last copy are
heavier in weight than the intermediate copies.
Lighter weights of paper have less cushioning effect
on the printing impact, and therefore permit more
legible printing on multiple copies. On the other
hand, the paper must be of sufficient weight and
strength to prevent tearing while feeding or ejecting
forms.

The carbon paper used should produce the re-
quired number of legible copies without excessive
smudging. Various carbon forms in use include:

1. One-time carbon. This is used once and dis-
carded.

2. Carbon-backing paper. The carbon surface is
on all or part of the reverse side of the original.

3. Chemical-coated paper. The chemical coating
on the back on one sheet reacts with the coating on
the face of the next, under the impact of the printing
mechanism.

Type style is also an important consideration for
multiple carbon copies. Standard type gives max-
imum legibility. A smaller type style tends to "fill
in" when printed through several sheets of paper;
with a bolder type style the force of the hammer
blow is spread so that sharpness and density are
decreased.

The legibility of some special-purpose type is
limited. Since it is fixed in size, the more char-
acters that are crowded within the area, the smaller
each character becomes. Therefore, as the number
of carbon copies increases, the difinitive lines of
each character seem to become broader. The result
is a character that is difficult to read.

In some cases carbon paper is narrower than the
form. It may be held in place by a fastening tech-
nique at the horizontal perforations between forms,
or by some other method such as stitching, gluing,
or marginal perforations.

	

Section Subsections	 Page

20
	

20
	

20
	

03

The recommended maximum distances between
fastenings are:

Maximum Distance
Form Length	 between Fastenings

1 to 5 inches	 5 inches

5-1/2 to 11 inches 	 11 inches

11 to 14 inches	 7 inches

14 to 17 inches	 8-1/2 inches

For forms more than 17" in length, the max-
imum distance between stitches should be deter-
mined by actual test.

If staples are used, they must:
• Be located out of the printing area.
• Be properly crimped so they won't catch on

guide edges or staples in succeeding forms.
• Not cause excessive bulging during feeding,

particularly at the out-fold.
Form types. Depending on its purpose and des-

tination, the form on which a report is printed may
range from the least expensive blank stock to cus-
tom design. Imprinted stock forms are standard-
size forms which are stocked in large quantities
and upon which lines, headings, markings and some
designs are printed as desired. Custom forms are
those designed to fill special needs of size, com-
plexity, and design. Although more expensive, they
can be used advantageously to "sell" your company.

Section Subsections Page

20 30 00 01

CARD DESIGN

This section is divided into two parts. The
first provides information that will be useful to a
person who has had punched card experience but

wants to become familiar with the considerations
unique to the 1130. The second deals with more
basic card design principles. A more extensive
coverage of the subject is contained in the IBM
manual Form and Card Design (C20-8078).

	

Section Subsections 	 Page

20
	

30
	

10
	

01

1130 Considerations

1. Lining up similar fields between cards is
desirable for ease of recognition, for offline
punched card processing, and for ease of card
handling. A program can as easily define a field in
one set of columns as in another.

2. The results of calculations often do not have
to be punched into cards. It takes but a few milli-
seconds for the computer to recalculate the same
figure the next time it needs it.

3. The EBCDIC character set contains 256
possible codes. However, many of them cannot be
handled by standard FORTRAN programs. Only 53
characters are permitted in card input (see the
FORTRAN manual, C26-3715); of these, only 48
may be printed by the 1132 Printer.

4. Normally, an 11-punch over the units posi-
tion of a field indicates to the 1130 Commercial
Subroutine Package that a field is negative, while
a 12-punch or no-zone indicates that it is positive.
The combinations (11-0) and (12-0) are not valid
FORTRAN codes. However, the 1130 Commercial
Subroutine Overlapped I/O Package can handle them.

5. Punching speed for serial punches (1442)
varies with the last column punched. For example,
if the card is to be punched in cc 1-10, 176 cards
per minute can be punched on a 1442, Model 6. The
same data can be punched in cc 71-80 at only 49
cards per minute. Therefore, fields to be punched
should be placed close to column 1. Fields to be
read can then be placed anywhere to the right of
fields to be punched, with no effect on card reading
speed.

Section Subsections Page

20 30 20 01

Card Design Principles

Determining Card Data

The first step in card design requires a study
of the final report that is to be printed from the
card and a listing of data needed for it. Next the
procedure is studied, and any data needed for proc-
essing but not for the, report is added to the same
listing. Every item is recorded on a worksheet.
Provision must be made for recording in the card
all data that is listed, unless it is calculated or
otherwise generated.

A check should be made that the necessary
reference data is included. Reference data should
be sufficient to:

1. Identify the transaction with the original
source document from which it was created.

2. Indicate the date on which the transaction
occurred.

3. Establish some reference, such as invoice
number, batch number, account number, or
salesman number.

Care should be taken to avoid duplicate or un-
necessary reference data.

Determining Field Size

The number of positions required to record each
type of information should be determined.

The size of the field for card codes, invoice
number, and account number is determined by the
largest single number to be recorded. With
quantity and amount fields, the largest amount
that will occur on a reasonably frequent basis must
be determined, rather than the largest it could
ever be. If the largest possible amount is known
and its chances of occurring are rare, multiple
cards may be punched for the transaction.

After all card data is listed, the number of
columns required should be added. If this is
between 80 and 100, it may be possible to reduce
it to 80. If it is over 100, an additional card is
evidently required. At this point a check should
be made to see whether the fields can be rear-
ranged so that all transactions need not have
multiple cards, but could have if necessary.
Master information can be punched in one card and
variable information in the other. Sufficient refer-
ence information must be included in the second
card if sorting is required.

Some techniques to be considered for reducing
the number of card columns are:

• Reduce the size of reference fields by repeat-
ing the numbering series more frequently. For ex-
ample, invoice number may start with 1 each quar-
ter instead of each year.

• Record in the eleventh and twelfth punching
positions various codes that may be using a sepa-
rate punching position.

• Avoid unnecessary data: for example, the use
of both an order number and an invoice number may
not be necessary if one will provide adequate ref-
erence to the other.

• Reduce the size of reference fields by recod-
ing. It may be possible to eliminate several posi-
tions.

• Reduce the number of columns required for
recording reference data by ignoring positions that
are not essential for this purpose.

If more than one card is to be used to hold a
"record", the division of information between the
cards can be made on the following bases:

1. Place constant information in one card
(master) and temporary information in the second
card (detail).

2. If more than one source document is used,
place the information of each document on a sepa-
rate card and code the cards.

3. When one transaction affects two different
accounts, design a card for each account with
differing degrees of detail as required by each
account.

4. For printing a bill, order, or other notice,
design a card for each section of the form. Some
of these cards (for example, name and address
cards, constant data cards) can be reused.

Determining the Sequence of Fields

Four basic factors are involved in determining
field sequence:

1. Sequence of data on the source document
from which the new card will be punched

2. Machines and programs used to process the
new cards

3. Manual operations in which the new card will
be used

4. Location of identical data in other cards with
which the new one will be processed

Keeping the sequence of fields similar to the
order in which the data is read from the source
document will make the keypunching operation
faster and more accurate. This is especially
important since keypunching is a manual operation
and therfore subject to far greater fluctuation in

	

Section Subsections	 Page

20	 30
	

20
	

02

speed and accuracy than the subsequent mechanized
operations. The sequence of fields can be arranged
to take maximum advantage of machine character-
istics. Specifically, field sequence can be designed
to maximize the usage of card punches, sorters,
computers (see 20.30. 10), control panel wiring, or
the manual handling of cards. Placing data in the
same columns of the new cards as used in other
cards ensures that sorting and controlling the data
can be speedily performed when the cards are proc-
essed together. It also simplifies control panel
wiring where cards are processed by standard
punched card machines. If data on the new card is
to be checked visually by manually fanning a deck of
cards, the fields for that data should be located at
either the left or right end of the card.

Using a Card Layout Form

A multiple-card layout form (X24-6599) should be
used when planning several cards simultaneously
or when planning a new card that will be used with
existing cards. The use of this form makes it easy
to align those fields that are common to more than
one card, where this is desirable. It also makes
working with the formats easier, since they are on
one sheet of paper and can be compared with one
another.

Designing the Card Form

After field size and sequence are established, the
design of the card itself can be done. This is
usually drawn on a special form considerably larger
than the punched card. Photographic reduction is
used to create the proper-size print plate (called an
"electroplate", or "electro").

It is not always necessary to design a card form
for each card used in an application. Where the
cards are used only within your data processing
department, are interpreted, and are needed only
in small quantities, it may be advantageous to use
a standard card form, such as the IBM 5081.

Certain principles in the design of card forms
should be kept in mind:

1. Field and box headings should be explicit and
force writing into desired locations.

2. Adequate space should be allowed for accom-
modating written information..

3. The right-hand side of a box containing hand-
written information should be at least five columns
to the left of the columns in which it is to be
punched. This is so that the data will not be ob-
scured by the punch station of the card punch
machine when it is time to punch it.

4. Information to be punched should not be hand-
written along the bottom edge of a card, since the
shield on the IBM card punch obscures the lower
1/8" of the card.

5. Field headings should be above the zero row
of a card unless interpretation or printing of
punches prevents it.

6. Headings and interpreted data should be kept
between rows, so that punches will not obliterate
them.

7. Preprinted decimals and commas should be
placed where dollar amounts will be interpreted.

8. Colored cards, colored stripes, and corner
cuts may be used for visible distinction between
cards. Also, an identifying punch (called a "key")
may be used.

9. Card column numbers should be preprinted
where possible and digits should be placed where
the numbers can be punched. These aid in reading
the punches in a column.

10. Mark-sensing fields should be placed on the
right-hand side of a card, so that the card can be
easily held and marked.

11. Card or company names should be printed on
the ends of a card.

12. When coded punches are used, decoding
abbreviations should be preprinted on the card.

13. Where no more than 40 columns are needed,
a sectional or "tumble" card may be designed in
which the layout in columns 1-40 is duplicated
upside-down in columns 41-80. This allows the
card to be used twice and cuts card costs in half.

Testing the Card Layout

After the card layout is developed, the fourth and
final step in card design is performed — namely,
testing the card for its effectiveness. For the test,
the new design must be laid out on several cards
and the cards must be used in their designated
procedure.

Section Subsections Page

20 40 01 01

DESIGN OF DISK DATA FILES

Introduction

The formats of cards and forms are the tangible
types of input/output. You still must design the in-
tangible record formats.

Your 1130 Computing System is concerned with
two different intangible records: those in core

storage and those on the disk cartridge. Although
the storage media are different, the design consid-
erations are the same.

The items discussed in this section concern the
components of disk records, the order of the com-
ponents, and groups of records. Considerations
covered include growth, organization, and content.

More detailed information on many of the topics
covered here may be found in section 80.

StartedFILE DESIGN WORKSHEET
Date

File Name

Completed 	

Designer 	

Process Cycle Record Characteristics Fi e Dynamics File Media Requirements
DA	 MO Type: Character Site NO. REC. YRLY % YRLY SO' 5 YR % TOT NO. TYPE AMOUNT
WK	 YR Fixed MIN	 MAX	 AV ADD DROP GROWTH REC

Var A B C D E

5(B-C) =D A+AD=E
Information Required for Processing and Type of Information Field Size Sequence
Reporting Required IN IN IN REMARKS

TRIAL TRIAL TRIAL FINAL SOURCE RECORD RELATED
DOC FILES

	

Section Subsections
	

Page

20
	

40
	

10
	

01

Data

The first step in file design requires a study of all
procedures that utilize the file. On the basis of
these studies, record each necessary item on a
worksheet like the one illustrated in Figure 20.1.
Indicate the type of information, the frequency of
occurrence, and the sequence in the source docu-
ment, if applicable. The following should be done:

• Check that the necessary reference data is in-
cluded, if this is a source file.

• Weigh the effects of media storage costs vs
program execution time for constant-type data, such
as tax-exempt dollars in payroll.

• Include fields obtained by processing, if the
results must be recaptured later.

• Examine all applications that utilize the file,
in order to prevent omission of necessary data.

• Explore future requirements of the current
procedures. For example, it might be judicious to

include an additional deduction field in your payroll
application.

• Determine any additional information needed
for planned applications. It may be more practical
to include an extra field now than to reorganize your
files later.

• Study the feasibility of consolidating existing
data files into a single data file to eliminate dupli-
cation of common information, if such a combined
record would not too adversely affect the running
time.

• Ascertain whether material needed in a new
application, for which the data file is to be designed,
is available already in an existing data file.

• Verify that the data file, when set up, will
contain all the basic information to meet the re-
quirements of all persons who will be using the pro-
ducts resulting from the file processing.

• Consider file maintenance and audit control.

Figure 20, 1. File design worksheet

Section Subsections Page

20 40 20 01

Field Size

The number of positions required to record each item
of information should be determined and entered on
a form similar to that shown in Figure 20.1.

Type of Field

Control and indicative data field size should equal
the total number of digits in the largest single item
to be recorded in the particular field. Occasionally,
to conserve storage, the high-order digits may be
disregarded for a field such as order number.

Quantitative data field size may equal the total
number of digits in the largest amount to be recorded,
or the number of digits that will occur with reason-
able frequency. Procedures can be developed to
handle the rare exceptions.

Recording Medium

Since some media, such as cards and disks, contain
a fixed number of positions per unit of storage (card
field or disk sector or track, etc.), it is essential
to consider this overall limit in order to design
efficient and practical records.

Example:

On the 1130, your disk records are automatically
"blocked" within 320-word sectors. A 55-word
record will be blocked 5 records to the sector
with 320-(5x55) or 45 words unused. Rather than
waste these 45 words, you might as well increase
the size of the record to 64 words, which will
still allow 5 per sector (5x64 320) with no
waste. Or, if possible, reduce the record size
to 53 words, which permits 6 records per sector.

File Size (Total Number of Records)

Since the field size affects the total record size, all
unnecessary positions should be eliminated to de-
crease I/O time and storage media requirements.

Future Requirements

If the demands to be placed on the information indi-
cate an impending need for another position, it
would be easier to incorporate the additional charac-
ter in the design phase so as to avoid reprogramming
and a patched-up record layout.

Field Compaction Techniques

Because a reduction in the length of a record pro-
, duces such positive results as an increase in DASD

packing and a decrease in time to read and/or write,
field compaction techniques should be investigated
and the cost of the technique evaluated as each file
is designed. Some methods to consider for reducing
the number of positions are found in 80.60.00.

A given compaction technique must be evaluated
for:

1. Amount of core storage required to hold the
encode-decode instructions

2. Encode-decode subroutine timing requirements
3. Compaction percentage achieved
4. Compatibility with programming systems
5. Retention of collating sequence
6. Retention of fixed field length
7. Effect on the overall system, including re-

lated clerical functions
Some of these methods are discussed in detail in

section 80. For a discussion in depth of compaction
techniques see Record Compaction Techniques
(E20-8252).

	

Section Subsections	 Page

20
	

40
	

30
	

01

Data Sequence

Data sequence is most critical for those files that
work with source documents. Card punching, term-
inal operations, etc. , being manual operations, are
subject to the greatest variation in rate of production.
Anything that simplifies these functions tends to en-
sure a faster and more accurate operation. The fol-
lowing are points to bear in mind:

• Recording of data in the same order as that in
which it is normally read. If the data sequence is
considerably different from that on the source docu-
ment, it may be necessary to redesign the source
document and retrain personnel. If the file is to be
used as input to a serial I/O unit, such as disk to
card, the sequence is dictated mainly by the se-
quence desired on the output unit.

• Location of like fields in the same relative
record positions in files that work together. This

ensures that sorting and controlling can be ac-
complished if the file is contained in cards; it also
facilitates programming.

• Placement of sorting fields adjacent to one
another, with the minor code on the right and each
progressively higher code to the left. Although sort
programs can operate on multiple-control fields,
time is used to extract and combine fields into a
single key.

• Compatibility with computer characteristics
so that data sequence does not affect processing
speed.

• Arrangement of alphabetic/alphameric data in
one area of the record. This facilitates handling of
data, particularly in fixed-word-length machines,
such as the 1130, and permits minimum core and
media requirements.

• Adherence to requirements of programming
systems.

Section Subsections Page

20 40 40 01

File Organization

For strictly card- and/or paper-tape-oriented
systems, file organization normally is sequential.
Therefore, the following discussion of indexed se-
quential (as in an encyclopedia) vs random organi-
zation (as in shuffled playing cards) is oriented
mainly toward the design of disk data files.

Indexed Sequential Advantages

• Both sequential and random transactions can
be handled effectively in most cases.

• Reports arranged in data file sequence can be
obtained without sorting.

• Control over both the processing and the stored
file can be more positive.

• Less storage space is required.
• Frequently the entire file need not be online

simultaneously.

Indexed Sequential Disadvantages

• More core storage may be required because
of index handling routines.

• Process time is greater for random input
because of index file seeking and processing.

Random Advantages

• Less core storage is required normally.
• Process time is less for random input.

Random Disadvantages

• To maintain access requirements, frequent
reorganization may be necessary if the file is dynamic.

• Extensive key analysis and development of
address conversion routines probably are required
for implementation.

A detailed description of these techniques may be
found in section 85.

	

Section Subsections	 Page

20
	

40
	

50
	

01

Record Format and Blocking

To select the record format and blocking, each of
the following factors must be considered:

1. File boundaries. Cards are limited to 80
columns of punched data, while the disk has 320
words that may be recorded on each sector.

2. Core storage requirements. Since IOCS
handles physical records for I/O operations and con-
tains a core storage area large enough to accommo-
date the physical record, you must supply a core
storage area for a logical record. In addition, for
efficient operation, multiple I/O areas may be re-
quired for the I/O devices.

Section Subsections Page

20 40 60 01

File Processing

Before the file design is finally determined, the run
time and associated costs should be calculated for
the entire system. The results must be evaluated
to determine whether the original design objectives
have been met. If the system is I/O-limited (that
is, if I/O time exceeds process time), the following
approaches may be considered:

• Create a second master file splitting away from
the main master file those fields not required on the
primary runs. For example, name and address
records could be kept in a separate name and address
file. This new file would be used perhaps only as
output documents are printed.

• Extract from the master file the active records
for processing. This method is useful if the ratio of
active master records to total master records is
very low.

• Increase the number of input buffers. If the
activity rate is low and processing time per hit is
high, more process time can be overlapped if the
input is queued in additional buffers. Ifprocess time
requires 250 milliseconds while an input area can
be filled in 50 milliseconds, there will be 200 milli-
seconds of unoverlapped process time per hit, with
two input areas. If the number of input areas were
increased to four, only 100 milliseconds would not
be overlapped.

Section Subsections	 Page

20
	

40
	

70
	 01

File Control

The design of a data file connot be divorced from
the environment in which the file must function.
Some of the considerations of file control and mainte-
nance are now discussed.

Data Validation

The entry of incorrect data into a file should be pre-
vented. The following techniques may be used to
control the accuracy of input data:

1. Precoded forms, or standardized and simpli-
fied forms, which reduce the possibility of error at
the point of origin of the data.

2. Batch controls that establish totals for a
given group of records to detect the loss or dis-
tortion of data during intermediate handling. A
batch may consist of a fixed number of items or the
transactions that occurred in a given period of time.
Typical batch totals are record counts, dollar or
quantity amounts, and "hash" totals of significant
data, such as wage rates. Frequently, batch totals
are recorded in a trailer record to provide auto-
matic zero-balance checking.

3. Turnaround documents, such as prepunched
remittance forms, which require little or no extra
recording and a minimum of handling.

4. Character checking, which determines
whether the data in given positions of the record
contain permissible characters. This type of check
can be used to ensure that the proper algebraic
sign is present for the type of transaction or that
alphabetic data is not included in numeric fields,
and vice versa, or that data is present where re-
quired (not blank).

5. Field checks that examine the content of a
field for certain characteristics. These include:

• Limit checks, which determine whether data
is within a prescribed range. Such checks can apply
to fields such as employee's wage rate, amount of
gross pay, etc.

• Historical checks, which use prior experience
as a basis of validation. The public utility industry
often compares, for reasonableness, prior con-
sumption for a year or more against current usage.

• Validity checks, which compare the content
of a field against a list of existing "good" numbers.
This prevents posting to nonexistent account numbers.
Matching by control key against a master file indi-
cates duplicate and missing numbers.

• Logical relationships, which determine whether
the items of input data have a logical relationship to
one another or to the file they affect. For example,

if an employee adds a bond deduction, a bond denomi-
nation is also required.

• Self-checking numbers, which detect incorrect
identification numbers (such as account number,
employee number, etc.) by performing certain
mathematical calculations on the base number and
comparing the resulting digit against a check digit
appended to the base number.

Operating Controls

The following controls are common methods used to
detect errors caused by poor operator performance,
equipment failure, or malfunctioning programs:

1. Disk cartridge ID checking, which verifies
that the proper cartridge is online before any proc-
essing can take place.

2. Record counts, which check that the numbers
of records before and after processing are the same,
in order to guard against accidental loss of a record.

3. File totals, which ensure that the file is in
balance in light of the transactions just processed.
For example, the previous file total for a given
field plus the net change represented in the trans-
actions should be equal to the sum of the individual
record fields after the transactions are processed.

4. Intervention logging, which records through
the console printer any intervention by the operator.

Error Analysis

The file control techniques suggested above indicate
the wide variety of methods available. Selection of
the specific control procedures depends on such
factors as the frequency of possible occurrence, the
results if the error were allowed to enter the system,
and the chance that the error might remain unde-
tected even through later operations. All errors
should be logged indicating the nature and the cause.
A review of these error logs can serve as a guide
to management to increase or decrease error
control.

When errors are detected, any of the following
procedures can be used:

1. Programmed halts, where the computer is
halted by detection of certain conditions, and the
operator follows prescribed steps dependent upon
the nature of the halt. The trend is away from pro-
grammed halts to eliminate operator intervention.

2. Bypass procedures, where the error con-
dition is recorded on some output medium, such as
paper tape or console printer, for later analysis,
and the computer continues without stopping.

Section Subsections Page

20 40 70 02

3. Suspense accounts, where totals are posted
for invalid records in order to keep in a single
account all items requiring analysis.

Audit Trail

An audit trail may be defined as the means whereby
the source transaction and its corresponding sup-
porting documentation can be related to processed
data. Although the audit trail may be a by-product
of normal processing, it may sometimes be addi-
tional. The requirements of the auditor should be
discussed to provide the necessary historical infor-
mation trail.

Reconstruction

If the information on a file is mutilated, the need for
reconstruction arises. The method selected depends
upon such factors as job priority, the time and cost
required to provide reconstruction data, and the
time and cost required to perform the reconstruction.
Listed below are several approaches:

1. Periodically, a dynamic disk file should be
copied (dumped) on paper tape, on cards, or on
another disk. Often, the copy can be made as a
by-product of a periodic run. All transactions since
the last dump must be retained to update the copy to
current status.

2. To avoid reprocessing of all transactions
since the last dump, write the updated records on
paper tape or cards as the transactions are processed
against the file. In sequential processing, only one
paper tape or card record per active disk record is
written. In case of reconstruction, the record with
the most recent status can be used to replace the
corresponding record on the dumped file.

3. If no output unit is available to record the
updated records, as suggested above, the master
can be flagged, and on a later run the flag can signal
a copy operation for a given record. This technique
requires a rewrite to the file for removal of the flag.

4. The contents of a static file should be available
either by copying to another disk or by dumping onto
paper tape or cards that may be used later to reload
the mutilated file.

	

Section Subsections	 Page

20
	

50
	

10
	

01

PAYROLL EXAMPLE

Narrative

Note: All of the pages in the following example
represent material that you should have developed
by this point in the installation of your system.
When completed, the material becomes a part of
your system documentation (see section 35).

* * *

The corporation consists of six manufacturing
plants, engaged in the fabrication of Liquid Dairy
Product Packaging in Ohio, Indiana, West
Virginia, and Texas. The payroll system was
designed to accommodate all six plants, which
have separate bookkeeping records. However,
the accounting functions are centralized in one
location. Communication is by phone and mail.

The system consists of 16 programs.
The files creation program is first. Data decks

are keypunched for each individual, in sets, by
plant. The data is edited and, when correct, is
loaded on the disk by PAY01. Three files are
created: a master file, an index file, and a plant
information file. A second data deck with employee
clock number and name is loaded onto the master
file by PAY02.

Changes to the disk information are made by
PAY03. Documents, received from personnel de-
partments at the individual plants, are checked,

summarized, keypunched, and verified. Time
sheets, submitted by the plant payroll departments,
are keypunched and verified. All these cards are
processed by PAY16, which edits and generates
control totals. PAY04 then processes these cards,
performing all payroll calculations. Cards are read,
pay is computed, disk files are updated, and cards
are extended with current pay figures. After all
cards are processed, a payroll register is printed.

Checks are printed by PAY05. A header card is
read and the checks are printed from the disk file.
PAY06 lists the check register from the disk file.
If an error is made in computing pay, PAY11 pro-
vides the means of voiding checks. The extended
time cards from PAY04 are read in and the affected
employee records are reset. The above are
weekly runs.

At month end, registers are prepared showing
each individual's deductions for the month:

PAY13 writes union dues register.
PAY14 writes credit union register.
PAY15 writes stock deductions register.
PAY12 resets charity deductions code.
At the end of the quarter and at the end of the

year, PAY07 and PAY08 are used to balance the
disk files to control totals.

PAY09 produces the 941 tax report.
PAY10 produces a tax worksheet used to deter-

mine tax liability.

Section Subsections Page

20 50 20 01

Card Forms and Console Keyboard Input

PAY01	 Plant no. - 1 digit - keyboard
Week no. of month - 1 digit - keyboard
Check no. - 2 digits - keyboard
Name - 18 blanks - keyboard
Plant name - 32 characters maximum - keyboard
Figure 20.3 - card

PAY02	 Plant no. - 1 digit - keyboard
Figure 20.4 - card

PAY03	 Plant no. - 1 digit - keyboard
Figure 20.2 - card
Social Security Number, if changed - keyboard
Figure 20.5 - card
Figure 20.6 - card

PAY04	 Figure 20.7 - card
Check no. - 5 digits - keyboard
Week no. of month - 1 digit - keyboard
Maximum check amount allowed - 5 digits - keyboard
Figure 20.8 - card

PAY05	 Figure 20.7 - card
Check no. - 5 digits - keyboard
Check maximum amount - 5 digits - keyboard
Clock no. (if requested) - 4 digits - keyboard

PAY06	 Figure 20.7 - card
PAY07	 Plant no. - 1 digit - keyboard
PAY08 Figure 20.10 - card

Figure 20.11 - card
Figure 20.6 - card

PAY09 Figure 20.12 - card
Figure 20.13 - card
Figure 20.14 - card
Figure 20.15 - card
Figure 20.16 - card

PAY10	 Figure 20.10 - card
Figure 20.6 - card

PAY11	 Figure 20.7 - card
Figure 20.9 - card
Figure 20.6 - card

If requested:
Insurance deduction - 4 digits - keyboard
Stock deduction - 4 digits - keyboard
Charity deduction - 4 digits - keyboard
Miscellaneous deduction - 4 digits - keyboard

PAY12	 Plant no. - 1 digit - keyboard
PAY13	 Plant no. - 1 digit - keyboard

Individual amount for a plant - 4 digits - keyboard
PA Y14	 Plant no. - 1 digit - keyboard
PAY15	 Plant no. - 1 digit - keyboard
PAY16	 Figure 20.7 - card

Figure 20.8 - card

•£ 'oe aznsId

086L9LLL9L5Lnuetto6L69e9t99e59v9nn19096595LS9SSSI ,StSZSIS9S6P9 LP9PS1HODIP0YBESEtte£SEKSEZEIC0M9 U8ZSZI,ZUZCIZOMIlliteltliltlii40113 9 9 999 1
66

99999988999989998999898999999899999998999989998989898999999999998889999898819999

LLILLILLILLILLLLILLLULLULLILLLILLULLLLLLLLLLWILLULLI.LIILLLILLILLILLLILLILL

99

g o ggSGGSGSGSGSSGSGGSGS0900999000000000000000000000006000009090009000900000GCMG

t444tttt17444ttittitttttt4tt4t4P4Mttilitittt4tttttittttlittUtti7MtitttttiqtotiltttPti74

Ce£CCEMECCUEEECCEECEECECCEEMECUCECCECCECECEECECEEMECCUCCEMECCUCUEEE

1111111111111M11

111111,11.111.111,11111111.11.1.111.111111111111111111111111111111111111111-1111111111111.
086L9LLL9LSL,LUZLIL0L6969/99901,944i9190985955955SKETZSESOGB1, 11,L 91 gr ptEt2 ltiri6ESCa9 STKETZCICOMULL9 SinagliOi9I9ILI9ISI1ICIZtl in9 99 296 1

0 00 0 0 000 0 0 00 0000 0 000 000 000 00 00000 0 00000 0 00 00 0000 00 0 000 000 000 00 00000000 000 0 00 000 0

I n.,4,
- .:::,9, 'ii?1 .t. .2 p7

E..
F i
F. 1

'"07 9,
1,4a.,3

C1,̂.
1001

°1-1 , 16', 1; s .„(124
i.

1 5 A
'ON

!Ames
,epos

g, mu
0	 Aed
i

',,N1
,7013

1'

y

'z 'oz aal2Id

OBSLILLL9/5/PLELZLILOL8989L999 g9t9C9I8190913;65LSOSCSNESZSISOS146109,51HDri,ltiNGEKLEKSti,ettalEOC6ZULZSZSZPLUZZ120i1414L114S111C1,I140111 9 L 9 9 9	 2	 2	 1

66

99899899899989999899899999899989988998989998999999999999999998899989889989999899

LLL1.1.111111LLLLLLLLLILLLLLLLILLULLLILLILLILLILLLILLLILLLLILLLLULLL1111LLILLILL

99

GGSGMCgSVISGSGSSCGSSGSGSSSGSGGSGSGSSSCSGSGSGSGGSGSGSGG5GGSGSGSGSGSGGSCSEGSGSgS

44tttitttt4444tt4ttittttiittitttt4ttintttiqttti7444tUtttlittttiqttttttlitttitttttilttt4t

ECEECECCEEMEEMEEECCEEEEMEEEECCEEMEEEECCEMECECECCEECEEECCCEECCECEEECECE

ZiZZZZZZZZZZZZZUZZZZZZZZMZZZZZZZZZZZZZZZZZZZEZZZZZUZZZZZUZZZZZZZZZZZZZUZZZ

lill111111111111111.1.11.1.1.111111lillitillilltillIll1111111.1111l11111111111.11.11.1111
088LIILLUILSLYLUZLIL0/69119L9995911E8L9190913S1431155SISCSZSI OCOStL19151,tteta, ltOtURLE9ESEKESUICOCSZULZSZUKUZZILOM9ILI8ISIPIELII40111 9 L 9 9 4 9 2	 1

00

7
g
4

51u.18 '6'-'43 i ,..:,,N,

/
ZO

abed

OZ 09 OZ

uogoessuopesqns

Section Subsections Page

20 50 20 03

/
Clock
No.

1	 2	 3	 4

1	 2 3 4

Name

5	 6	 7	 8	 910 11 12 13 14 15 1611 18 192921 2223

5	 5	 7	 8	 9 /0 11 12 13 14 15 1611 18 19 20 21 22

00

11

22

33

44

55

666.666666666666666

77

88

99

Blank

24252627 28 2930 31 32 33 343536 31 38 39 40414243 4445 464748 4950 51 52 53 5455 5617513 59 6061 5263 6465666168 69 10 71 12 13 14 15 7671 7829$3

23 2425 2627 282930 31 32 33 3435 36 31 38 39 404142 43 4445 46 47 48 49 50 51 52 53 54 55 56 57 58 5960 61 62 63 646566 61 66 69 10 71 12 73 74 15 76 71 18 7980

V 12
3 3
0

Figure 20. 4.

/
Clock

Social
Security

litli
5 «I

4,'
8	 Pay

,5
45 .5

1.2-
''

O
4- i.i

No. No.
69, ci	 Rate c,1; <-7 I 1 Blank

00.0000
1	 2	 3	 4 5	 6	 7	 8	 910 /1 12 13 14 15 16 11 /8 192021n23 24E28 27 28 29 30 31 32 33 34 35 3631 38 39 40 41 42 43 44 45 46 47 46 49 50 51 52 53 54 55565753 59 60 61 62 83 64 65 66 67 68 69 10 11 12 73 14 75 16 71 78 19 80
11

22

33

44

55

66

77

88

99
823458 7	 8	 910 11 12 13 1415 16 17 18 192021n23 242526 2726 2933 313233 3435 36313839 404142 43 444546 41 484950 5152 535455 5651 58 59 60 61 626364 65 66 67 6859 70 11 12 73 7475 16 77 16 70 60

Figure 20. S.

	

Section Subsections	 Page

20
	

50
	

20
	

04

Blank

0 00 00 0 00 000 0 00 0 0 0 0 0 0 0 0000 000 0 0 0 0 0 000 0 00 000 000 000 00 0 0 . 0 00 0 00 00 0 0 000 0 00 0 000 00 0 0 0 0 0 0
1 2 3 4 5 8 7 8 9 10 11 12 13 14 15 18 17 18 19 20 21 22 23 24 25 X 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 424344454847 48 49 50 51 5253545556575859606162636465686768697071 72 73 74 75 78 77 78 79

111

222 2

333 3

444 4

555 5

6666666666666666666666666666866 6

1117111117117111111111711171111111717117717117171117111717711711717111771111177

888 8

999 9
1 2 3 4 5 5 7 8 9 10 11121314257817 1819202122232425 28 21 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 48 47 48495051525354555857585960818283646566V 686970717273 7475787718 79 80

Figure 20. 6.

Plant
No.

1
00

Check
Date

00 00 0
2	 3 4 5 8 7

/
Total

Earnings
Date

000 0 000
5	 8 10 11121314151817

Clock
Numbers

00 0 0 000
18 19 20

Total
Regular
Hours

0 0000 000
21222324 75252728

Total
Overtime
Hours

00 00 0000
29 30 31 32 33343535373839404142434445

Total
Bonus
Hours

00 0 0000

Total
Special
Earnings

0 00 0
48 47 48

Blank

00 0 00 0 000 0 0 0 000000000 0 0 0 000 0 0 0 0 0
49 50 51 52 53 54 55 56 57 58 59 60 61628364 OM 67 68 69 70 71 72 73 14 75 78 77 78 79 80

11

22

33

44

55

6666666666666866)6666666666666666666666

77

88

99
1 2 3 4 5 6 7 8	 9 10 11 12 13 14 15 18 17 18 18 20 21 22 23 24 25 26 27 282930313233343538 37 38 39 40 41 42 43 4445 46 47 48 49 50 51 52 53 54 55 58 57 585960816263648586876389707172737475 76 77 78 79 50

Figure 20. 7.

Section Subsections Page

20 50 20 05

/
Clock
No.

1	 2	 3 4

Regular
Hours

5 8 7 8	 9

Overtime
Hours

10 11121314151817

Bonus
Hours

18

1111111111111111111111111111111111111

"ii	 Special
8	 Earnings

9 202122 23 2425

-8	 Special
8	 Earnings

2827 2828 30 3132

-8	 Special
8	 Earnings

33 34 35 36 37
00000000.00

Blank

38 39 404142 43 44 4546 47 48 49 50 5152 535455 56 57 58 5960 6162 6364 85 66 67 68 69 70 7172 7374 75 78 77 78 79

11

13
a

80

22

333,i3333333333333333333333333333

44

55

66

77111171111177711711177111111111171771117111111771711111171177711111111111111177

88

99
1	 2	 3	 4 5	 6	 7	 8	 8 10 11 12 13 14 15 18 17 18 18 20 21 22 23 24 25 28 27 28 29 30 31 32 33 34. 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 58 60 81 62 63 64 55 68 67 68 69 70 71 72 73 74 75 76 77 78 79 80

Figure 20.8.

Clock
No.

Regular
Hours

Overtime
Hours

Bonus
Hours

-8	 Special
8	 Earnings

41	 Special
3	 Earnings

/ Total
43	 Special
8	 Earnings

Pay
Rate Gross Net FIT FICA

Local
Tax

Credit
Union

Union
Dues

All
Other
Deductions

i l2A

g	 a 	 '''
ii,	 en

00
1	 2	 3 4 5 8	 7 8	 9 011121314151617181920212223242526272829303 3	 3334353637383940414243444546 7484950515 5354555657585960616263648566876869 071727 747578777819193

11

22

33

44

555555555555555555555555555555555-555

66

11777111771171117117717171711117771711771111171117111117177177771111111177117177

88

99
1	 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 16 20 21 22 23 24 25 28 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 48 47 48 49 50	 52 53 54 55 56 51 58 58 60 6182 63 64 65 66 67 88 69 70 71 72 7 74 75 76 77 7819 80

Figure 20.9.

Clock
No.	 Blank

0 0
1	 2	 3 4 5 5	 7 5	 9 10111213141515171815202122232425N2725283031323334353537383940414243444548474845505152535455555758592+36182836465688788897071727374757677757850

11

22.222222

33

44

55

66

77

88

9999999999999999999999999999999999999-199
1 2 3 4 5 8 7 8 9 /01/12131415181718192021222324252527282930313233343538373839404142434445464745495051525354555657585960131528324858813768697071721374757577757980

Section Subsections Page

20 50 20 06

Plant
No.	 Blank

0 000
2 3 4 5 8 7 8 9101112131415181718192021n23242528272829303132333435383738394041424344454847484950515253545556575559606152636465686758691071727374757877787980

1 111

2 222

3 333

4 444

5 555

6 666

777

8 888

9 999.99999999999999999999
2 3 4 5 6 7 8 610111213141518171119202122 23242528272829303132333435383738334041424344454647484550515253545556575859608182636465586761697071727374757877787110

Figure 20, 10,

Figure 20, 11.

Company Name Blank

00
1 2 3 45 8 7 9 91011121314151817181820212223242528272828303122333435383738394041424344
11.

22

33

44

55

66

77

88

99
I 2 3 4 5 8 7 8 910111213141518171819202122 232425262728283031323334353537383944141424344

000000000000000000000000000000000000
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 50 61 62 63 54 85 68 87 178 88 70 11 72 73 74 75 18 77 78 79 80
111111111111111111111111111111111111

222222222222222222222222222222222222

333333333333333333333333333333333333

444444444444444444444444444444444444

555555555555555555555555555555555555

666666666666666666666666666666666666

171171711111117171111171711117711117

888888888888888888888888888888888888

999999999999999999999999999999999999
45 46 47 48 49 50 51 52 53 54 55 56 57 55 59 60 61 82 63 64 65 lie 61 88 69 70 71 12 73 74 75 16 77 78 79 80

Section Subsections Page

20 50 .20 07

i

Date for
Reporting
Period

2
e
E

Blank

00
12 345 6 7 8	 13 101112131415161718192021222324252527282930313233343538373839404142434445484748495051525354555657585960818283134851338788697071727374757877781980
11

22

33

44

55

66

11117111111777711711111717171111111111711111111111117111117111111111111711111117

88

99
1 2 3 4 5 5 7 8	 9 10 11 12 13 14 15 18 17 18 18 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 38 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 58 57 58 59 60 81 S2 63 84 65 68 87 68 69 70 71 72 73 74 75 76 77 78 79 80

Figure 20. 12.

Figure 20. 13.

Street Address Blank

00 000000000000000000000000000000000000
2 3 4 5 8 7 8 810111213141518171811120212223242528272829303132333435363738394041424344 454547484950515253545555575859606162638465 218756591011727374757517757850

11' 111111111111111111111111111111111111

22 2222.22222222222222222222222222222222

33 333333333333333333333333333333333333

44 444444444444444444444444444444444444

55 555555555555555555555555555555555555

66 666666666666666666666666666666666666

11711171111111111111711771117171711171111717 111111117171711711171171777117777711

88 888888888888888888888888888888888888

99 999999999999999999999999999999999999
I 2 3 4 5 5 7 I 9 1011121314151817111111202122232425X272828303132333435353738394041424344 45 48 41 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 68 67 68 69 70 71 72 73 74 75 16 17 78 79 80

City and Zip Code Blank

00 000000000000000000000000000000000000
2 3 4 5 5 7 8 91011121314151617181920212223242528272829303132333435383135394041424344 4545474841505152535455545158591215182536465666760697011121314757617187880

11 111111111111111111111111111111111111

22 222222222222222222222222222222222222

33 333333333333333333333333333333333333

44 444444444444444444444444444444444444

55 555555555555555555555555555555555555

66666666666668666666668666666666666666666666 666666666666666666666666666666666666

11111111111111177111711117111111171111171111 7

88 888888888888888888888888888888888888

99 999999999999999999999999999999999999
1 2 3 4 5 5 7 8 9 10 11 12 13 14 15 16 171111520 2122232425 2827282330 31 32 33 343536 37 3539 40 41 42 4344 454847454950515253545556575859606162636465656768697071727374757677187980

Section Subsections
	

Page

20
	

50
	

20
	

08

Figure 20. 14.

Figure 20, 15,

Section Subsections Page

20 50 20 09

/ State
Account

Federal
Account

No. Blank No. Blank

0 0
1	 2	 3	 4	 5	 6	 7	 8	 9101112131415181118192021222 242526272829303132333435363738394041424344454647484950515253545556575869608162638465566768697071727374757877787993

11

22

33

44

55

66

77

68886868888888888888888888888888888888888688888888888888888888888888888868888888

99
1	 2 3 4	 5	 6	 7 8	 9 10111213141516171819202122232425M272829363132333435363738394041424344454641484950515253545558575859606162836465566768687071727374757677787963

Figure 20.16.

	

Section Subsections	 Page

20
	

50
	

30
	

01

Console Printer and Line Printer Forms for Output

PAY01 None
PAY02 None
PAY03 None
PAY04	 Figure 20.18

Figure 20.19
PA Y05	 Figure 20.19
PA Y06 Figure 20.20
PAY07 Figure 20.21
PA Y08 Figure 20.17
PAY09	 Figure 20.22
PAY10	 Figure 20.23
PA Y11	 Figure 20.18
PAY12 None
PAY13	 Figure 20.24
PAY14 Figure 20.25
PAY15	 Figure 20.26
PAY16	 Figure 20.27

iiiiiiiiiiiiiiiiiiiiklbe--.	 NI
_ _..,,,,,,n.... siMiniell121101---- --iiiironnimb.—.Nu

	

m Immo Immommiiiiiiiiiiiiiimillilliiiir	 Elmo. in B3• MiiiMirmilanliMMIEB -------iE:-
____.-,,,.■■l1=,--

rIMMMIIIIIIIIIIIIIMMIIIMIIIIIIIIIhillillMMM1U11MUMIIIIIIIIIIII	 MU	 MINIIIIIIIIIIISIMIIIIIIIIIMMIUMM11111111101IMINONNIIIIIIIIIIIIIIIIIIIIMMIII1103 	 ••-i-11—
61111111•11•11.11111MINEN•nomMENEMIIIMMENIMIU111=110•111111UNI MI 	 El 1111111111■UMNIMMIIIIMINIIIIIIIMMINNIIIIIIIIIIIIIMINNUMIIMMIIIIIIIIIIIIIIIIIIIIIIMEMIIIIME13	 IIIIIIIMINIIIMIUM11111
MMIIIIIMIIMIIIMMIIIIIIUIIMMMIIMIIINIIIIIIIIIII 	

L:L:	

,

	WIMIIBIMIIIIIIIIIIIIMMIIIIMMMIIIOMIMIIIUIIMHMIIIIOOIIIIMMIIIIIMIIMIIIIMMMIIIIOIIMOMIIIIMIIIIMIIIOMUIIIIIMMIMCB	 111111111i4ME.

	

IIIIMMOMMEM 1111iiiMMEMMEMIMIIINMENIIIIIIMUIMIMMINIIIIIIIIIMMENIIIII••=11111MMINIIIILMONZIMMINNESIMMIIMENIMMUMMEMIIMUNNEMESIMMIZIE 	 mammon.nNm
IIIIMMIIIIII	 ■ •ffalEMEEFn	 ININERSOVIVAIVIMINENLIPS11111111E1■■■1111.111.111	 1111■■1001111111111111110111111IIMMIIIIIIIIM	 IIIIMMIUMMIONIIIIININIIIIIMMEMEIMUME	 III

	

.4/ LLASAKE110.17AKWL7rinr1L.44 r.IVAL PPE, f ILIKIIKIEVLUL:10:4:INKOILFALrli.Clf :1111RION2LA4/ 41mKIVI 4 D: 00..411E61 111'. IIP I ■ 11,1■1 irt,r MED	 mammon.EMIIMINE
MNIMIELKLYKILAL .11 AL,)	

111111110111,11MILB

iltallla■an	
IMIIIILLUINIII
HUI ill III. IIEMNIMMUNEIMMUMEINIUMUttliniallMiNglalliiiirlIMIIIIIIM IrilniZIIIMEM■1 MIT° Ti

SIMINIIIIIIMIrsiaLapin•:• • Ws Ilil • r.., IVA ■HEIbli ■II ■MIIIItla. 011•111,% 4liffin •1 nui•nl ONIMML;1141..);,, -: uz.	 sigginrg......imignyx,RIN.v.?, 1 91 = mu Daum0 mmil ■•	 ■	 MI	 IIMI	 IIIMMUMi 1111■11H	 !=t;T	
mm l":111, MM •

HIM .*Emq...•••••••••Alimmml. siom ■ , s. 11 •	 Alp. •4,,,:qii=ippipprumiq* . CO• •• ..b• I	 LIN ,•,,.. mn	 'Ulfil ii d At iiiIIAS,,,LL•L1411•171	 111111111941IM
II NMLke AMI1:1 '	 11,111101RM% RI	 otlf.	 • 411.	 IV	 Cli	 IIIIIIIIIMMII

1:41:Iiill'AVALANIIVAIIII.laniiii01 	LA. /I MIA in L'Allt All.t.41.4 11).0. .III _. "1' _ . (.Aalijaym i DA ■mo.moirorir.41.11.1111111...11.1 OM , AU* /Ill ■*11 .1 'Ir . /L.Loi'lL11.LI	 10.111111111111111•MIIIII 	 Ill	 1111111104111111111
IIIIIIMMIN

11 11.11	

- , 1-m mil	 III-iyi-1-1.	 *	 . Ppfl	 prip PP 1111.. .	 01,111111111111111111111Ell 	 1111104•1111111111111M111111111 AVY Wtttp1,-.1.	 w4110.441.44MCW7A0AN 41Avagse4*Fs
no mimmumismummommilimmumommum ormummlimints■I11.11111111r■W111 	 AIIMMOTFIM	 ,,,	 IIIIIIN.V11•111,111,$112 IC lo:illifil zurriva INK(ri4 NV iil■Illf iAltl) fLFIIIMV■A

li
tIRINlipICI	 111111111111INIMIll

WiziC ia ElWILCIIMII ■∎WI P • IWO'. 'IA; !LAI. kilo • AllIZL, - = Mr=11 • 'ITEM!!	 :1cL.Ipt;!..t...,N•ilp.t ...,,,t.;, Bat L IMMINmigallnigo i 0,1■11 1k. i . L , I,	 11111111141111111immummummummummun mem	 imi	 INIIIIIMIIIIIIIIIIIIIIIIIIIIMINIMINIIMIIMIIIIIIIMIMMINIMINMERICI 	 11111111,41MII
milimmumimmummormilm mumi li■i■■• 	 semi...11Mir

	

mrommummumommummummommilimmimm OMOOMONIOOMOOMOMONMS2 	 111104111111111IIIINIMIIIIIIIIHWAVAIL.1 mow: NOME 111E010 CV.011 I/AWE,	 r.viommscwori•••••morAgvvxmw.oli.0;.•••••••••••••••mmumtm 	 ■10111111111111111
■ MIIMMEMEIMMIIII II 11111•11111	 MEMBIMMIIII	 IIEMBIIIIIIIMIII■■■■■■■■■IIIIIIIIIIIUEIII■■■■■IIII■■M ■■IIII■■■II■■■H■■■M■■EEN	 IIIM14111111
■■■■■■■I■■IIMIIIIM■IIIIIIIIMMIill■11=111111NMINIMIIIIIMIIIIMMI11111	 IIIIMMEMIWEI11111•1111111MINMEROMMEM111111111•111011111111111MINIIIIIME111111111.111111•111111111111111111.1111ANNIMMINIMMIN
CIUMEIDEIGOCIOCI Z MEW 1 1:1M131g1313131311C113131%11=10110 618 L'`Zi .TE: MIME

I 	 1	 , 	 ;

MI	 MI IIIIIIIIIMIIIIMIIIIIIIMOMMONIIIIIIIIHUIIIIIMINEMINEEI
on	 MEarirluarien el El	 1311721EZI 	 BBCIDOBE1130B T	 1111111111411111

 0	

1113111:1711
- -

Ot	 :	 6	 8	 L	 9MEMMOMMOMMOMMEMMEM■IIMEMO■MOMMEMOMEMMEMMOMMEMEMOMMOOMMEMUMMISM ■■■■■MO■■■■■ME■■■
MIIIMIIIMM1111M1111

IMMEMENI011 NM II ■■■■■■■■■■M1 	 ■■II■I■■■11111•11111111■■
I I D LI

P 	 l• 	 s la P oW COP W91
L.Pd EOZZ Pup £tit' l 'PM. 'Can "6017 "80t, 'LOP Wel

121VHD ONIDVdS 2131N121d
NOLIV80,1/10D S3NIHDVW SS3NISMI IVNOI1VN831N1

'ad
sauri 8 SMNVW 080M/SON10 H 01311 NOI1dIZIDS30 3N11

Nai

IIIIN

1012111111111111
W I 1 _LLLI

LI MI 1111M11111111111INI	 MIIIMIII NM

LUT
1..L1	 LL

81• 'OZ a all2I3

LT• 'OZ an2T

NOM i
I 1
Ii	

1

916.;.0

LL LLL1.1tIL	 1.1. L. [Li ITTITLi_1 LI	 I I ■ LL
PON P.. IN 'S 'C "6	 SOLI W91	 1	 1

	

I.L.1,11H7 , I1LL	 	 jittli

	

90P 'L07 W91 ,

	

Lti_ill_L_11 I	 ! I l
▪ l eP ow COP'. we! 	 --o-

	

COEZ P" "CPt7	 'COP I. '60v '80P 'LOP W81
ISVFID ONIDVdS s3INI8d

N011n0eN0) S3N1H3VW SS3NISO9 1Y1,1011VNi131N1

h 17----T7--

W111111111111111111111111MMI
1- I 	 i

MINEMONUMENNIUMMOSIIll
MMINMEIMIMMVAUMEWCWDMOVAA. 	 .64.9..MIUMMOMMUMMEMENSIMMEMmmummiligammonimmmilANIIMMONIMMUMMENAMMOMMOMEIN

MEMMEMMUNIMMOMMIIMIMMEMMEMEMI■■■■■■■■INI■MSN■EMMEN■■■E■■■INIIM■NIONIMMONIMCIDDEMBOBEIDOULIBUIEIMMI!0Ban
if	 it	 0 I.	 6
1111•001111111111•11111111Z11111	 MEN■M

/MIIBM M■■■III■1111=111111111■1211
L pul3 9 I . P.W

COZZ P.. IN I s l . P.Vy CPP	 1

COP I FRI 0

: utocls lutLd

'604

rii F T I 1- 1 17 jr-L 17IliE
t

	

ITL IF 	I	 1,11:11.1	 L-1	 I I 1 1 : i_t ,-; ,	 ;	 ci D 11 , 	 I	 	 -I- 	=
' '	 - 	 ' ,	 ' '	 I I 1 	 1.-kt_

1 1	 i,i iiriti ' ' '',! VIII 1.11 ' !.I Oh
-1r4	 '	 I	 :1.11.12/.1..0E11: bilh.11:th:11:1L.9t1

	

..31:1PILME	 UPALIAII1E.0
. 41:14:corax ICIELIA1,24.!1:1V
.4 .1u:Icevolu.i1:41:•:	 1'11;:

i	 1.Ii	 ,	 I	 ' 	
•:
t	 _	 II 	 ,ilt1	 1	 1 	 It:ii	 1, HIrr ,	 1 . ,Th r-,	 .1	 ■I I 1_-__ Li F ' 1	 I II I 	 TIL

Ti	 l r-rri	 L'1	 1 1 , 1	 Li I 1 LI_J : 1 ,, Lo _	 I I	 iii-L,

	

I,,Isdi, t.7 52, 4,3 .:■■:, :ILL LT. ..:•.19.F.i2 	 2s1:,,,:z IC

	 F	 v	 E

=_I	 II_Li .thii_Illi l l . ,_L__i_L	 ■ 	 I '_LIIII'LJ_	 i_t_l_l_LLTh_l_L

'IF
!fi

■
■ .141

►o: II

bLI

4	
Enignillitn.	 111

II	 pH	 ipiposimis 1111•1:11
Agi ffili',41, Oh, 024,14:40 PA Wi11:!VEIALIAP2P:1111111

i	 ' . EL1111111.4.91111,1:11iirtinLEALEKIIIIINESAJO:11:0:1J ,11. 	 IINVAti:CIPTAIIIYA1/20121:11.111110:1WIIECIElkMA; ' .1 NALOIIIIIIPOItinlitM1111111:9:9:10i1KILDIIIIIIPMA2V:V.KAV A . :•:9: :4L 1.0:4 ,117divauiviaimilqvii-invill,■111);4:4:1:■•
 ai ••••in:	 .MI11

11111111111■1111111 MIIHINMIIIIMIJIMM 11111111=11121:3 CIEIBEIEISIB

Jed saun 8	 01130W OZIOM/SONI0V31 .1 01314

	 IN	 SIEMENS •1•1111115111■

49 11'V

3n -ID

NO1 dItlDS30 3N1

win

IBM
INE DESCRIPTION FIELD HEADINGS 'WORD MARKS B Lines Per Inch

INTERNATIONAL BUSINESS MACHINES COR=GRAGON

PRINTER SPACING CHART
IBM 407, 408, 409, 1403, 1404, 1443, and 2203 Print Soon :

•	 ,	 I	 ITTT r-1.F!'' : TT , 1403 Models 1	 &
,	 :	 TTI	 r	 1	 f	 I	 I	 I	 T	 ' 	 I	 i - 1 - ,	 i	 I—1-7 - 1

IBM
I TIT 1-TI,	 'FT,	 ' •r•T ,	 r-	 -T-TT;yr	 i -E ill	 II I fl--'Hfl- -1- •MIME

7IBM 407, 40E,	 409, and	 1403 Models 6 and
III:•	 , 1, , 7, 111	 r	 1 , r-T-r-T-- Eli'	 7	 1 I irr- 1-7	 rri; 1-I!!	 1 ''	 •	 •--1 UM mu so

IBM 1403 Models 2, 	 3, 5, N1	 and 1404
, , . ,	 Inn EFT, 1	 , [77 MEW Illl 1 1 FT7-1 —ri •	 ,	 T	 :	 1	 .	 ,	 -	 , I , ,	 -	 ,	 •	 I	 I	 I	 [! - 7, II MI

IBM 1	 43 Models	 1, NI,	 nd 22031 .,.1	 I I	 , MUM
1	 2

II MI 1..-T-TT	 ',	 ;;;;;. !; — ;1: , NEN ••n= ••••••••1111
11GL UE E	 0 3 4 5	 6 7 8	 9	 :	 10

A	 2	 [n 1:11.2707,31;1a1.2 3 45,6E18 9 0:1 2 3 4 5 6.. ler! a 1 , 2 3 4 6 7 8 20021 5 6	 .9 0 , 11 3!4 5 6 , 7 • 2 9 3A 6 7 9 a2 , 3 1 4 5 617 n120EIME1061:11011111111.4•11111 •011••••••••• .	 • WIIMMIN ,	 I-1- •	 •10I 11111MOMMAIIII ,	 1 ,	 ,	 • ,0T-2 3 4 5 6 7.8 .012 ,	 ,	 •5i6 , 7 8 912,3 4 5
, 1 INEMIIIIIIIIIIIMMINIIIIIMIUM immummum77	 : miummiumm , --Tri '	 ' '	 ! ! :	 : T • 111MNIIMEIMIMIIM1111111114111111111 "	 •	 1 	 , NIIIIIMIIIM•1111001111111 11.1111•IMIIITIMIMMINIIWw•1111••111111111111MM	 111•11MMIMIW•111•1 . •Il•1 •	 INMIETRIIII"Off"="11. .	 , ,

.	 U - - I VIIIWIIIMINIM111•110111111•11 •	 4tel	 ' OW K 1111••••11•1111•••111111•MIE	 MOW= a ., on traisw.m
11111111MMINUMMIUMM	 1110111110110111100.11, li t 'Illoom I rl Y 	—

..0111	 , Mo. 7, .,M14111:MOM
111E•11•1,17, : • 1:411	 %b.MU :	 i , • 	 .

1 7 ,,v
— ii IIII21 1" , 0inn11•11111111•M 0,110 0111010100•01001010100000-	 1111111111111111111 a; . 1 .-- 1IX 1,1 Es 0	 KM. dr.;:inivirs .,Ille ; a R;:110	 IIIKIhull	 IMMIIII:•	 'Er10.11M 7,1itillfi■ir.11.1•01 111111• VA CIIIIIIMIUMstr•

gell!,_, V;1111•11 ,._. :,,L:41=;•41 ! I :::_:ie i',11:i4•11111111111Z111111MINIIIIMIll_111* lel IV 1.1111 :, ■ ,z1MININID1•1111,	 IIIIIMIIIIII MENNINSEM ' MENIMENNOMINansimmomianismumumminummoino"f, r.ww.o.E4WITUT•imP,v-mirlf,11,!, ,	 012(1■1:4)womnAKIY.11 immummul I 1	 ,	 ,01) ,	 flmosommfilimmip „ . _!.. immummumme- - IIIINDUEUI WeenallniliWIVIT1■44417.4'ierfritrArirdreAIM:CO:010A
irlarlrir

44
I sr 4i .•WOW 0 •	 ■•• •,ii• -r-.1 •••41010:0•J•.4I I"ME . ::410: : .

II
. 4 Co 11VV.411•1'.4M4111:1 .1m ■•.■■.. ivolWI•M101011-	 •••••II••••111111411111 MilIBIUMMIMMOMirmilEll-.4.15:4:.:LT 	 sill' !II 15:1•1= trilliiiiiir0000MIMI• Mi. !	 _• .	 . , .	 _, .	 _ L. •	 •:_il ! III M 0 I111119411111111 g e	 •	 010,41 •NMEN•11[111E• MIK . s0 r MIIIINIrrers001 s 11011:417:11Vi■ • mi 4 m	 emoismils IR [. ,,,m lowittS.•	 Ks _ _i	 1 • A1 . 	11, •,..	 !, ogre	 gg.•

1111111040101 110111100000111111101111100 II111001110111111511unnimmo IIMMIIIIII••••11•11111101•111 	 IIINUMI•1101111111111i•Mirl•IIIM
in:Immz-s	 1:mmtli t.'011m,e;116L•OrraMME-1-AtT•1011111OEM IIIIMINE	 MO	 Ell	 BOIMMIENNINIMON11111111•••

•1•;a1111111111•1116:11=11011 r:; =ION ANNlitg4mby.‘miarmil417,vil !Immo	 fl-RISW0104ir 00F4P.11111111: :14110010110111s ME AllailM•M111.='!"1!Pr.t1111M ■ j ,	 linrn111111HIMMIIIIII_L IIIMMUIIIIMMMMEMIIIMMIIIIIIen* s HMI IR el IIINDIIIIII111111041111111•IIIINIIIIIII Illiz11011171	 OiliiirPlur,0:4):4 ,:	 ■AmIN■w,/,'Ar. i,4,:i v11114,'.0 1111101100111111010110110100111111101001100110001001011010100111001111111011011011MIM'Arg.0.7 Pv.110: MN r. r.47.4C4P1741711K 14740.4: s.. 1.1011111110100111Thm0 	 salsomilliM•11•1110111111•111M11114'	 ■; Now
111101011111111111•	 111011,410111111 11111111M11111111111111111.11M111111MIMIIIIIIMWM01111111000001111011111011110011100MMEMIMIWIMMIalmo110011 i 171/1■70:40wocr,cor	 sviow.to;,:ii,A4),40.4 .40.u. w,

mulmismillimirmmumi	 limpunimmummommum
I. .0.0.!.4110.1.41111B

1 IIIIIMMUMENUNIENEMMIMIIII 11111111MMIKUNIMMUIMMIII11111M1111•111 IIIIMIMOMIIIIIIIIIIMMUMMILIMEMIMMOMM111111111111 IIIIIIIMEIMUMUIRMIMINIIIIIMMIIIIMMOUMMINIII- 0	 01111119411111101 •	101110mmommimmommomwwW•00001100010•00•01110 MUMMEMNIMMINIIIIIMINEEMMINEIIIIMMIIIIIIII••••=111111111•11•EM
--	 1110,1111111 IMINIIIMMIMMUMIIIMMIIMIBBIONIMMIOMIN1001001010100000010110011100000111100211111101000100111000111111101011001111100g	 11111)01111111 000001100000111M00001•000110010000100000W00000W1001M111111110000W1111110111010111101111011111111100000000000MMEMMIIIIIIMIMM11111)1111111 0 M001001101100000MMEMMIMOMMIIMMUMMMIMMIMMIIMIEMM111111110011111110111111111M0010100000111011000III 	 — 27 MUMS	 MEM IMMINI	 M MIIIIIMMIWN • 11•111BEIN I 11111•101111111	 g	 in.r.,-, 	- --Tim •0:1•000•0111um r---,--- -=!milimmm mummommul omminsmamilmip.--

-mmoms■ 	 MUMMOOMme_–=

Figure 20.	 (Cont)

IBM
LINE DESCRIPTION FIELD HEADINGS/ WORD MARKS 	 8 Lines Per

INTERNATIONAL BUSINESS

PRINTER SPACING
Inch	 IBM 407, 408, 409, 1403,

MACHINES CORPORATION

CHART
1404,

	 ,I
1

1443, and	 2203	 Print Span :	 I
IBM 1403 Models 1 & 4 	 IEs■om■umnillOili■OB■ ■■M■ENO•IN■•nn •••■••■ME■E r WI Nairn • II	 MB	 iliallilli■ IIM■111111M1
IBM 407, 408, 409, and 1403 Models 6 and 7	 MNM ■ UMW ■■I■■W■ ■■■	 III	 ■	 Min!	 ■ •• 1- n- III 1	 I	 MN	 ■lliffilliMM■■IIIIIIM■I91
IBM 1403 Models 2, 3, 5, NI and 1404 	 	 =IMMO M■R■ ■■■■MEM■■■■MMEMM ■■■■■■■■■■OM M■RMOMM■MM BOOM MN OM - 1	 ■ MI	 IN ■	 I M MIL
IBM 1443 Models 1, NI, and 2203	 	 a

al■■MM■ MOMRO■■ i■smm■n■■■m■VSMm ■■mm■■m■■■■m■m■■■■■■MM■■■■■I ■■ OM	 ■■sa■■■m■■■■■■■■■■■■■■
GLUE I	 0	 1 2 3	 4	 5 6 7 8	 9	 '	 ' 10	 11	 II

A GEIEIGIEICIEIDEIDEIER313012EM 01 1E1E14 OM 8E10 / ElE313130CICIEKIE16 CMG 1 2 314 5 67 8 912MM 1213E10IIIIIMMIIII •MlliIMMIIIIIIIMIIIIIIIIIIIIIIIIIIIIIMMMIMIMMNIMEIMMNIMIMIIII I El 1 2 monnunammirnmeseggpicanknomp000nseongencmMOB	 WM	 •••110111••••1111111M1111.1111111111M111•1111011111111111611111111 MIIIMMIIIIMMEHMIIMMIIIIIIMIIIIIIMBIN•11MBIll m MIX	 Mg	 =111111111111•11.111111111•M01111111111111IMMIMEN111•0411111111 II MI Milin••••111•110•11•IMINIMIIMIIIIIMIIIIIMMIII1110111111111 IMOMIIIIIMMENIMMIIIMUNIHNIMINIUMUNIIIIMI•••MIMII NMI MI MII•IIMIIIIIIIMMINIMIIIIIIIIIII MIONIIMERIM■11111111141111111111
•MINIUmmillnumiimMIIIIMIMIUMMIIIIIMMIIIIIIIIMM111111M••=1
•IMMIIIIMMIIMEEMMINIMMINIIIWOMMENIIIIMMERIMNIII II ,	 1	 I NalMonsoUll•milimmiliMillinlignalinillinillinin1111111,411111111 w ar ■70:r■mr, r!11 EIY.11,1rIll:IT: F ,V, /1111,11:•	 1111111KCO: /.1/1D:11:474: F. 0 rAr. MM.'. F. k: I. F.1■:1■: 0:4■: i • r. MIMIIIIMMENIMMIIIIIIMIIIIMIIIIMMIIIIMMIIIMIIIMAIE1 .

.	 n1111111111411111111 NIIIIIIIMIIIIIIMM11111111111111M111111111•11111111111111EISMNIII 1111111111111IMIIIIMIN UMNIMINIIIMMIIIIIIIM IIIIMIIIIIIIIMIIIIIIMIIIMMI1111111111114111111111 nummummummummisminummummum nammummmummin IIIMIIIIIRMINIMIIIIMEM INIENIMMIUMENIIMMIIMMI111111P4111111 MOMIIIIMIMINIEMIIIIMIIIIIMINIIIIIIIIIIIIIIIMMIUMMEMIlli1110041111111.4lin104111111111 ow
niummummumummummummummompou
∎■.. ■: L■:1■:4117.40:13■7 I: I:4: WI: :€111F14:a:INO:IF : nr:4TV. l% 171: r Iv Fe. •Np: r, cog'

milirsimummum
now, ',yr,

mu
Evyyryyy,

mu

111111111INIMMEINIMMIMIMIMINHIMEMIIMMIIIIIMMIllInirp,. T. pr.v, ENNE1 1,1,219111117191111111MMIIIMIONM:10:4,: Ki■:111
1111041111I1111111111411111111 MIMIIIIMMIIIIIMINWM11M1111111MINMOMIMMIMIIIIMMildilnHIIIIIIIIIIMIThil as

MI NISEI ligallIMEIMENINEMIUMMINN■ME	 11011111111111111111111M 	 11111111111111111MUNIMMI MNIMINIMIE U.C1):1■7 C NIAIF:1■A AS VA ',1■: sr MEI VIDVAI.IINO■74):11:IN Arm MI IMII■ MI IR ars 111WCIIMITIIIIIMMINIIMP 4134'd111101114111111111 mmummummummummummommommummimmor 1	 ! us MU 	 • •11111.11.11	 IIIIINEWINIIIIIIMINSII MEIOIMIIIIIIIIIUMIIMM111•00M11 RIIIIMIIMIUMMIIIIIIIIIIIIIIMMOMINIMIMIIIIIIIIMM= 1 I	 .	 I	 1 EMMEN	 MIII•WIM•1111111111MR111111011111111 IIIMIIIIIIIIIMMIIIIMMMONMOMMUMM••••••••••• I 1111M9MIMEMMMUMMIEMMIMIIIIIIIHMIL II 14 444° WV ■:0:1:1111:104:1W F. FV741111111111111•1111111111111111111111111111111•1111111MI IVIE=• •11•NIIMIIIIIMMEMIIMMIIIIIIMM4IIIII1111111114111•11111HUIIIII M MEMIMIIIMMEIMMIIIIIIIMMEMONIMMOOMMENIMIIIIMII111111111MNIIIIIMMIIIIIMIIMIIIIIIIIMMIUMIMMIIIIIIIIIMINIMIIIIIIMMOMMIIIIMN • EMMEN MIMMIIIIMIMMIMINEMIIMMIIMIIIIIIMINEMOMI11111111111111MIIIIIMEM11111111111111MUMME•1111111411111111 • IIIIIMMIIIIIMMINIMMIMMIMMEMMOWEIMOMII MI i IIIMIMAIIIMMINIIMI•1111111111•11111111111.111011111111M11111111111111111111111IIIIIMIIIIII ••••11•11111MOIWIIMIIIIMEN••••MMMMM111111•11•1111111=••••••••••••••U lill•11••••••••••••••••••••11111111•11111•••••••111111•11•••111•111111•11•••••••1111111111114111111111 •mom= MIME/ / I elra/ FA= 411 IV•	/ •' I • imumminummanno ImaimmMINEMI•11111111•011011MAIIN I VW PAM IIII•IMME B•Minillarn al11111111141111111 0MIIM1111111MITiq millnAIIIMPItill /I ItlIIMMIIIIIIMMIIMIIIIMIIIIIIIIIMMIIMIIIIIMNIIIIIIIIIIIIIIIIIIIIIrl A11.117/1 ■■■■■I■I■■■11111111►11111111 II IIIMINIMMUMMIIMIIIIIIMIMMIIMIIIIIIIIIIMIIIIIIIIIMMINMIMI II ■ 111M111111=11 1111111M■IIIIIII•■MONI■■■II■■IIII■I1■4IIII►IIII■I ••MMMnM•M•MMM••MinilliMM•OMM•MllMIUIZMIIIIIIIIIIIIIIIIIII II 11111M11111.1111•1111M11111111111011111111111111MMONIIMMMUMm• al111111411111111 1111111111111MMIIMMIIIIIIIIIIIIIIINIMMEIMMIIIIIIIIIIIMIIMMMI MENIIMMIIIIIMMEINIMIMINIIIIIIIIIIIIMMIIIIINIIIIIIIIIIIIIIIII.IRIIIIIIIIIIII M■■■■I■■■M■MMIIIIIMMII■■MINIIIMMIIMIM■I■ NUM I SIIIIIMMENWINI•usilanill•11111111111111•111111M111110111•1111MIIIIIIIIIIMBIMIMI11111111b4M11111 MN I IMMIIIIIIIMMINNIMMII•MIEMMINIIIIIIIMIIIIWIIM•lim umummumummummoummummusr•	•MMIIIIIIII•W•01M•IMMIIIMMIMEMB•M•11
E

M•11ImmummumpuriummuummunumuuMIDUMIN • IMIIIMIIIIIMIN MIIIIMMEMIIIIIIIMMIIMMINWM imuOM MOM	 IIIIIMINE•1111•MMIIIMEIMMENEMINIIIIIMEMOMMOMMI
IIIIIHIMIN •MIIIIIIMIIMMIIIIIMINIMMIIMMIIMINMIIMMIIM MIME MIIIIIIIIIMIIIIMEIROMIIIIMIIIIIIMMEIMMINIMINIMIMILI1111111111111ifil M MOMOMMIIIIIIIIIIIIMOMMINIIIMMIIIIIMMUNIMMUMIIIIIMMMIIIIMMOIMIMIIMIMMIIIIINMOMIMINIONNEIIIIDUIfill IMMMIMIIHIIIIMIIIIIIMIIMIIIIMIUIIIIIIIIMMIMIIIMOIINIIIMMMIIIIIIIMMMIINIIIMIINIMIIIMMMHINIMMIIIIIMIMMMMMMMMIIMMIIIEMII' IIIIMMIIIIIM ••••••••••111M1•1110M•M••••1111111•1115•11111•11•11•1111111•••••11111•11•111111111111•11•11•1111111•11••••11•11111•0111M•11•111•11•••11110•0•111•11•111111•••••••11•1111,L HIMPIIMM 111111111111111MIMMIIIIIMMINIMMIIIIMIMMIUMMIUNINUMMIIIIIIIIMMIOMMMUMMUMWIMMOMMUL,- = -- •NITIllim ••

,MMOOPP"-='11111111111111151111111MMIIIIIMIIIIIMS/Sr
===timmumummr,

.0.--- - --- TRUIIIIIIIIIMPP- --MIIMMIIMMIII•MMINNIIIIIIMINIMMIIIMIRIMMIBMIltiaMIIIMINIIMMENIMIIIIIMORMEmilifilliIMMIEMMEIIIIMINIMME111-5_1111110MMINIIIMPillm -	 ---TNIIMOMMOMMEMMOMMEMOpr!	 --	 T!--=!!!!_mmummume- - ; !In--- ----.,.• .T.•

Figure 20. 19.

IBM
INE DESCRIPTION FIELD HEADINGS/WORD MARKS 8 Lines Per Inch

INTERNATIONAL BUSINESS MACHINES CORPORATIONPRINTER SPACING CHARTIBM 407, 408, 409, 1403, 1404, 1443, and 2203 Print Span
IIIIIIBM 1403 Models 1 & 4•tutu....utu.Iuu.u•.u.u...1.1uuuuu..u..uu.. ■_n.U•I000I.IUW

..I-uIIIHHiiUUUU-....-tutu- ... flu-. ..^ .>-

•.I.Iu.Iuu t.Uu.t.ul....t.tlu..........ut
71 nnuu111u•utuuuuuu •UUI•UUIUUInUUIUU•I000UUUIIUI

IBM 407, 408, 409, and 1403 Models 6 and 7■ UUUUtttl •1IIUIUIIIIUUIUIUI000IInU•1
IBM 1403 Models 2, 3, 5, N1 and 1404••tt•lu•t •tutllnt •it.tt•tttttltt•tuu

GL UE
IIIIDIIIIIIIIIIl1►l.III11IIIII►IIIIIIIIIIII►lhllIIIIIIIINIIII•:IIIIIHIIIIIIIIIIIUIIIIIIUIIIIHIIIIIIIIIIINIIIIIIIIIIIHIIIIIIIIIIIHIIIIIIIIIIIHIIIIIIIUIIHIIIIIIIIIIDIIIIIIIIIIII►OIIIIIIIIIIHIIIIIIIIIIDOlI111
°OI► 'UI' IIIIIIIIII►III. ►..IIIIIIII. NIIIIIIIIIIIHIIIIIIIIIIIHIIII11III11MIII11III111►IIIIIIIIIIIIHIIIIIIIIIIIHIII111■ IIHIIIIII
IIIIIHu
II.•

IBM 1443 Models 1, N1, and 2203lt.Iltll.u..III.I....II...ii.........tl.....t .I.utullul.Il
'	 10

©:::.:::uuu.0 :::uu:: u: '::: 't::uu.u.n:: u.C: u^::. u.:u::::: U:::::^ s.: :::::::: '::5: :
U uuUUUuUuuIIuuUUUuuuuuiUUuUuiuUuu •uuiuuUuIIuuiCiiitiii iiI U

uuUUUUU iUUI.I..UIUn UUUIUUUUUUUuiU•i UuUuuRuUuUUUUUntnt■ot.ttttttt=tttt.tttttn.t^^tt^l^^^ttuttt^t^tttttttttttiiimli'^tit.W ttutnttt^tttttttuttttttrtttttntttt.tttttttttttt
aU UUiIltl Iltt1t000hI'sill) U./' .{I111ns:.rL	 U 111.1.2 II 112 1.11 UIBIIUUISriht I mi l 177111'!tltutl.ttlt.CIIIIUIU.tltttt.tltllt^...III..1t.W1nt.1.1IItIt..I..n.nt..Il.ttI.11 t.tt.ttltllll^..III...I..tlltt^ttlrlll.I.It.t.1. ■InII.II..t.I.ttlttt

JUC.l' d'I dl! HlnI1l:	
^^.r..v

I .17.1=InttllltU1IUU'a!a11^11ty: ^^:/t::^!,!UP :I'1',(-	 ■.■ II IUIIi_7 "^.1^Ilt^ r^.^l;t^.1.tlttttl:'e!'-IIIttltlltlttt r_'' 1':fu...Ira"1^1r1• i1'^4^1.^ r. iv" rr iv" TV•I• e11V_ &104 	.ruin: PEE^1^1 67.11	 .rv'i r v"'V r.r.T',•r4II:^ cUuUTi4.651161'.'11.!.111llnr.,7 r. 1 11 11 , ,,. I ."VI? UI i 't:,lT^ UL ;o t-;r,;lrrll.'irIr nr:va,riv_mnr.11r11	 o, ttr4VI;n^^F ^v .virvv rinnnnnnnnnnrintl^^1^ TUUU 444 Mfr;.4 4U9. r ry nr:nnnnm:nnnnrtr; I: K i®^It11^1°I ;^.It1^^U.i;4.1.r_lcl!1n/,nrnnnnnmrint'/r.0 r. r. t'1 i^.1.4.1bu77i r/1^n11M7nr1r1ninnmurL.b.U1r7 .11ttLIr.1^r.i''0.ltnr_viviv nrnnrnnnntr.r. 111.1'uiur.431.13tt3. 11.4. WIT m nnr ivarmnmrrr_nnuC 4r:4:r 	1.117.1°r5i4	 nnnrnntnneflnrnnnnnb:/4:Ar :tt.Er^rb:A=1 TW 4UmnrP7 r'r'urinr'_I4v:I?I_Itr:13: N nlUIEi 3^3If3IAi3_Iillfhn,Ir:<rnnrmm^n rlpnnl:^:14M'ir 11x41 44iaUEu:4 4 irv1G1 `^1^51TV141nIVI!1n^ 1^ur N v.I1111.1:1:11:^I^71Vfl 4nnnnrvy:lnnr_lrnIInnnti.' N:1:1IIIIlr4A:'/.1II:U:Ir:4:/1.'ev_ iv y:r y i i r:V:v:r_vir_vivIl:11:4: 1:r •UU 4 4:/:tru774 t4r cr'r'ri nr:GV:r:rere pr y_tr:cGQ1'/^attti..:ITo'4U 11 .4trylrIr•nnnrvv'v:ii n51'rc/_U r N31.1r_iUUIil 11ir4.nri 111.rinnnnnm9N:lnnn1?Ir11at1:1 13Mr: j aub:1o7:t 4U'4 /1147UrV_VII ivrr^'r^rv:r rv irrv'v r t:r:4:a:rtttl:l:ii.i.l:tr37i:4 iw riry ncr r'rr:`IrnrI n'lU 4::11: 7

®ttlttltlllllllll^IttII..II.I..tttt^ttlttlltltt IIUIIUt.II.It^...nI.II^IWIItttttllllllllltlllttt.nln.I...tItItIIIItu^IIIIIIIIIIIIIIIIIIIIInIltttttttntlllllllllllllnllllllllllllll..tutu■ ttlttltttlllllllllllllllllYtl.ttttlttlllllllltl.l®.I.tt..tttttt.tltlttt.11l.Il...1I.I .I.IIIII.tI.ntttttt.t11t1II.I.IIWI.tt.. I..n..IIl.t.t.nnl.I.I.I.t.I.t...1tM^ttlttttttlltttlt.ttt.t.tltttttttt ttultttl^^ttttlttlt.tl.t.1.I.1tt....u.nl^tttltlttl ttlttlttlttllt.ttt1t1t1t1^^11^I11
®Ill1:/E4:4) U i.:44i Il reV!i V V 11111' rlr r r'.1! I: r:'_1 :4:4: IU: L4U11r:.11: r:: tl' 1. X4: I rav lri' I:'V, r: r 5 r 4111 Ie I, 7.11 IE44):IM .1tt74r:4:*::4 ^.I^. I: I:I:^II r,vv r_'e 11rv_v_ I,1_V_ 7 rViS111.1. E Il. laiieIlll r J'Ili7lAPIu UrVV.NIr1•IM.V.1nr11. pnr.V . IV 1''AI's Itt.t.tttln.IIIIIIIIII11.tt.t..tt.nl.tttlttlt. IIIIIIIttltttttttt^iltttttutlH]IIIIIIUIIIII•uUIIIUIIIIUIIII•It ■It= I II ■ 	 ■ IIIII■ ■ IIUIIIUIIIIIIIIIIIIIII IUIIIIIIIIIIII IUIIIIIIIIIIIIIIIIII

^i^^iG^ii^^i^^ ^^i^CCC:C^®̂IIIIIIIIIIIIIII1tIIt.Ip^Illttt ..111.1!=-----_=--^■I1^^^1r!!=- -==`!■Ittntttllllr■•---- 	 _ =-!•It1IlIIIIIIIIIItIn^^;.n^ltttttn^---	 _ ve!^^^^n•--	 _`-----	 ---=^-----	 -^~`•■I^tltlttttr_^

•Iu•Iltutu•tlllu.ui.I.Iu..IIIII.IIIIIIIIIu•I
6 8 9 11

Figure 20. 20.

EnCDL3	 n
o

w0

vmCD
0Vl

IBM
LINE DESCRIPTION	 FIELD HEADINGS/WORD MARKS	 B Lines Per Inch

INTERNATIONAL BUSINESS MACHINES CORPORATION IPRINTER SPACING CHAR"' IIBM 407, 408, 409,	 1403, 1404,	 1443, and 2203	 Print Span :	 I
IBM 1403 Models 1 840•1111111111010MIIIMMIIMMOMMOIMMIIMII MIME ;	 1 TY I MEM MMINIIIMMIMMMWM11110011•11
IBM 407, 408, 409, and 1403 Models 6 and 7

0	 110001111 011MMIIIMMIM 0 7 1-I !	 EN	 I"	 [I	 r	 ! 1	 1	 11 IM	 OM MIIIIIIMMUMMIMMI I
2, 3, 5,	 W

1lMrAPPPM I•P.M-. 01M11lM MIMMI••OMM
IBM 1403 Models	 NI and 1404	 W•MMO••MO MO MO •111011•00111MOOMMOMMUOMOMMIMMIMO 7	 ME
IBM 1443 Models 1, NI, and 2203

•	 -	 ,	 . 	 I M	 111110110111111110•11•1•1111Mm000000MMIIal•l••••••••••••001011100111000 71 MI• IUIUWI =I
0 1	 2 3 4 5	 6 7 8	 9	 '	 10	 11	 li

ElE1131321811:101:1138E1EIMEIDEICINE114E1C151 8 9 °UMW= 89 8 1 018 4 5 6 0E1E1 0 1 2 1 3 1 3 1 5 7 89 0 1 2 .3,,,, ,>! 7,, 9 0E212 i 4, 5 67 89 OBEE10013000120E1E1000000thIEEICE10000000E100000001IllIlpIllUlIll	 10101111011111MUIRMEMIUMMISMIAMI 11111110111111L_ , r I	 I	 '	 '	 '	 ; 1	 1	 ; IMMMIIIIMMIMMIMIMIIIIIIIIIMMIM1111041111111 MFMNIM III IMMIMM11111011111111110111110MIIMMOMMOM11101111104011111 101111MMIMUMMIMIIIMMI111181•0110111011MMMEMMEMmuma I	 L , i	 '	 i I	 '	 ■	 '	 ;	 ' 1111111MENIMMEMIMEMOMMIIMIMMWIMMI1111104111111 MMOMMOMMEMOMMOMMOMO IIIAM11111OMMME 010MMEM ,	 ,,,, II 10011111111111111MMIMMINIIIIMIIMMEW1111104111111111•MMEMMIMMIIIIMMIIMIIIIMMIMIIMME110. MIMI '	 '	 1	 '	 ' ••ENI••I•IUM•INI•••••MI1	 1 L ,	 '	 F	 i IIMMINIMEMMIIMMIMMIIIMINI0111M0111• •111104111111111111041111111
11110411111101•11111MMMEMIIMMMIMMENWIMMIMMIMMUIUM MONIIIIIIMIMMIM1110011MIMIIIIIMINIMMMM111101111 BEIMMIIII•MIIMMIIIIIMEMIIMMEMI ;	 L 1 !	 ' ..11..L111.........1111...11.11..11.........1•MIM••NO•NIIIIIIMIUMMIMMIUMMI;	 '	 '	 I I	 I	 I• 011114111111111 UM MK FA K Komprir, MN MIBIEMMOMIMMIMIll L 4 i. I li	 I...LI I	 '	 i id 1111010111111.0111111111111MMIMMOMMIIIM

• 111110401111 113anr.T.Ir.-:;:(iwriammi IMIIIIIIMMINIMMINUM9M1111 _ L.L Li	 :	 I 1 MI111111100•111111101101MMIMMIMMMJ• 111111104111111 mu i m my 1 	 I 	 • 	 I

'

I 	 I 1 IMIMMEMMOMMIMMIMIIIIMMEMM11
•

11111111011111111104111111 MI IIIE ■:0:007.4110,7001111 NMI 0 M _110 . , I'	 '	 L •	 11	 ,	 1 I MIMMIIMMINIMINIMMEMMMINlEIROMFN, I: F. rfi.i:'
ummonruimAmmirommumilli011110=4

nu MI 1M
mim

Eft MEI ', I 1	 I1 1 UM	 ;I IIIMMUMMEMMIMMIEMMIMI
• 111104111111 manna ix7.4ar. Pra7. 1100 1MMMII M	 111110 0111101	 : i ' LLI.4. 1011 / ' 1 I0004000 ion •04: -. 7.4rAN-671•101Emp illIMM 0 UM 111001M/ P.M 11	 LLL_ •	 Li	 HIM COMEMIMMIIMMMIIIIMMOOMIE L	 MIIIIIMMIIIIMIIMINIMMIIMMIIM0• 1111101111111111 pm =Ea ■, pir mourisiv- worry., Kojor riv-w I rav :111111/4Wal 'A	 ,	 In 11 I	 111111 ' MI OM IIIMMIUMEMMIMMINIMMIIMM1• 1111114111111 LEE WU 7. 7.7. ; PIK 7. MN 11111111111M11011M11.011111MMIN 1_1	 I BliMMMNNIMIIMIMMIM0MMM00000001• 11101041111111 in• 0F17 F r r 7 NKr r OM 01001111111111M0EMM0111110.0110=r11 I	 I	 1 momIlmMIMMIIIMMIIIMMMMOMMI11111111M110111111 LUMP-PM aiwonnon 1111MOMMIMMINIMMIMINIUMMIIMIE1 MAMMIONMOMMIIIIIIM10111011101001MEHIMIMMIM110111111 I	 t IN IMMMIIMMIIMMEIMIMMMIMIN MUM= El• 111194111111 III iv ;: i7a■74111Zii: MN 111111111111111110MOMMMIEMOOMTEUOM EFAUFFORNEMONIMMIIMMMIMMEMMOMM MI , M MEM MVIIIIMMINIMIUMMOMMOMMIIIIMMINIMIMI111111011MM 1III) ■ F Ii anr 7. MIIIMMIIIMMEIIMMEIMIMM 110010111111111111101111011111111111111111MMIIIMIIMMIIMUMMEMI1111104111111 EMMOMIUMMINIMINIMIIMMLIMIMIIIIIIIIMINITh011MMINIIIIIIIIIMMMIIMM1010000111111101011111100111Mumw
• 1111041M11 ECMIIIMIOMMIIIMMIUMMIIIMMIMMMME011011011MIMMIMMUMEMIMMMINIMMOMIIIMMIIMM11

1111104111111 EEMAIIIIIMEMMINIMMENIMMUMMIIMILIMMIIIMMUMMIIIIMMEMEMMIMIMMEMMINEIMIMMIElli
-- Enoommommimm-....t.,-- _______1101111MMIMIMMMEMIMMEMIIMMIIMMIIMMUMMIIMMIMEMMEMPIlm_twummmmnmmmm■-----IPOMMMMMMMMMMMMMMMMMMMOMMM!-inommim--- --,-.1mnigpmmisomprr-

111111111MMEIMMIIIIMMILI--■01110.011100010	 ---m--.11.111mumpp_m--

Figure 20. 21.

–..0111IUMMLE.	 _-Eom■ilimm.t..,1.---	 ...iiiiimMEMEMEMMEMMI:-,_ 	 _...immummumilaimmaimmillumummiLl. _ ____,=a,:aiiiiimiiiial, = 	 „__,.■•••1	 -----..--

	

iiiffilinummunTrimiii ...-. _,:-..-iiimrs 111111MEMEMMEMEMMIUMUMUMUEIMplIMMoullmm=11110111111011111=muUmEMIME111 	 11111*---	.1111104111111EIMEMILMENUM11101111 • ■11=4•1111=MEMEEMME IIIM	 MIMWM1h111E■1111:11:4111:1MMEUMMIIMM 1111111111111:401400111111111111111111■===■■■■■■■■■■•immuummummum m mommummommimm ■ mimmum mommiummmummum Immuummumm■m■■■■am■ummommumm
■

illimmill11■■11■■111111M1=====UNIU■U■EMM=MINUM IIMMEMME111011 111110000001101111111101111MBIEMUMMEL111111111111011110111111111111111111MME

	

01111111111•MUUMMUMMM1010111111111.111101======M0:1:4):41:4r:WMMIIMKIKIMEMEMEMMIUML IA7417/MalINAMEIWAWEIHM110111:01.410:0:10.9:11•11	 1111111011111111====111111111111111111=MMEMMIMMIMMTM Op===p1MUMMEMMMUMNSM=10====.11111111111U111111=111111101001MMEME1001111111IUMMU111111011===1111111=11= ME	 Allullim MOW IMEMIUMMUUM/ IMUMEMEMIMMIUMIUM/ 11101===111101111111111101/ IMMO 	 DEED1 1110411111

	

inmommummmulmmismosim wommum• MIIIMMUM111.1111111111111 IMMEMIMUIIIMEMIIIMIUMEW110011111111111111111111111111•11= MI WWII= 	 1111111104110E

	

11====111====11•111111•=11111111104010 amMINUMMIWIUME amEllamI 1•UMMUMMINEMEMMUMMEMEELM110111001111111101111====111111E111010141 	 0101041111111111111010=UNMEMEMIUMMUMIMI ommummunimmoraimisismompimmniummummuumummumlinumm	E=MMEE MMONEMEMMIEllmmUll mmillIMEEMMEIMMMEMMUMMEMMEMBE=111111011111111111=== 	 111110411M111104111111111MUMINIIIMIMINME=141=101611 101101116 Anu NurilillIMMEU MEMMME1111===11111111111100010011111=01111=11111101111111MM141101111111U1UMMIMMLEUMIMMUMUM11101001111	 NEEMEMIUME=1111111======11111111111110111MMEMIUMMEIMEINIEMUMM 	 11110411101111104111111
1111111111111100111101====1111MUM mquism miam mrimuslersinno rmorimimmiummus MEMOimmounnummunimum IN unimpi II I. rigo • EM, mmUll00101111111 EMEEMMEILIIIIIMMEM

	

UMMIUMMI11111111110=======• EEM EMEEE 	 0 • MI Eiji i mum swimilMININ UMEME1101111011===M
∎

111110411111
11004111111111111104111111

111111=1====101111110011111111111110M110110101 MIR 	 11111 NMI MI M/4•11•EmmmlItum Mummm=101101=1 111101111=11114110111=EMEM■ 111110411111IMMENIMIUM1111101111=1=====HEEMUMEMEM=MEMII 	 MEMEMIUMMUUMMUMEMILIMINIMUMIUMEITAMEMEMMIMMEMEMMINI1111110011111 	 111111101111

	

IIMUMMUM====110110111111111111•0110111011111111114WWIMMIIIM_MIIMMLIMMEMMEIMIUMMEMEIMIUMIIIMMEMIIIMEMMEM0101011 	 01110411111

	

11011111010111111111=====UME=========MmumMmMMEEIM 00111111010011111MEMENUMMIMME===111011111,111 	 110111101111IMEMMEMEMEME10111110101011111111UUME=11011111=1011MUUMIUMESIMMIEMIUMMIIIMMEMEMEMEMEENAMMIUMMEMEEMMME10161011 111111141111111111041111111011111110411101111110411111111111114111111111111411111munann111111011111111111111041111111111041111111111111041011101110411111VIZXCDnumann111111101111111111011111M1110411111

	

11111111==111===r111011EMMIUMUMUMUMME1101.1111111111MIIMMIUMMEMUMME=1=1======111011111=011111111100110111111111111111•11111 	 1111111011M

	

011UMMIMIIUIIUIUMI===IMUEIEMIMI==EM=MEIMMUEIMMMMMMEMMMMMMMM=M=MMMMIIMIMI•MMMIUIMIMIIMUMIMMIMMIMMMEMII=M==11 	 M1111411111111

	

IIMEMMEEMMUIMMUMMUMUME=111=========WEEMIREMEMEMEEMMIUM=1011111101111111111111110111111MUMINIUMUMMEMEMILIM 	 111M00111MIMMEMIIIMIIIIMMEMEMEMIMUMMUMMII ivIIMEIIMIUME111111111111====1111111111111=10 	 EMENIMEMME IMIUM1=11=11=111M	 NIMMUMI01 11•1111111/111E110111M=101111111111/1EMEMMO1111111111=MMEM=1==1011111Z
111101111111MUTIMIEMIMMIIMINENUMMEMIUMMIIMIMIE=MMIUMMEMEMMEEMEMII 10010411111111111110411111

	

MMUMM=M=M UKT.VMARBFAMMAKIMMEMIViail -IVIVAVIVAWAVVIVAAVAVAMEMMAILIAEM	 111111104111111101111110011111111111111111=======rn M MEEMEMMUME 1:16iiiii• M=04:411:10:10:4===11111=9641'600.17401,/lWaAW/fill11111111111M1:0:110:41E:1):411411EM==========1MUMUUMII	 IMUMEMME	 1100000101411101011001=010 MUU■■■UMMINIUM■EMINIMM■■■■■■11■0 	 Q111111411111110010110NI UMEMINE111011= 01 11111111=912110=9=0 1=11111011111100101
11111111111MMIUMAIIMEMILIAMIMMEEMIUMEN 	 MIIME =111111011 11111011•11111111111111W=101101.1.11MMOMmUMIMMEMMM

	

MFEMEMMIMEMEMEMEMEMEIMIIIMMEIMUMMENIUMIMMEIMUMEMMEM 	 11111041110memann

	

PI IMMUMMUMMEMEUMMEIMMUM11110101MUMIEMEM ME / M imilimummmpi; we ji to 6 ; TIMEMMUMMEMP: ZIP It•TAMI IE:M.	 1111110111U

	

momamimummunimmiggig •wmfineinuimummung 	 1111104111111111114111111kumampommiqua• CHIMI,11111•MEMLIMUM=1111 0111111111•1111 Ham ..•••••••••••umw	 mosuss•• 1--- ... 	 giox•ritAw i vir muiseui.o: i:co nsorms••••• Immo • am •••••••••••••••ma	 wrormi• En al NiiiiiiiilligimmommummummummummillimplommunMin	 MUM= --Z. ----	 - Izi:1: I ; li I JAM% F': Ilnr-41■ Vi■l'iltRIIIIIIN	 111111041111111

	

E110111011111111MUM=1111111=====EMEMIEW =WM Nomumemisgmmuninumpuimmommummon	 101111411111'11111104111111111111411111
1111110011111111111.4111111111111411111111040111111110411111Nusbaum

3n 10IMII01111=111111111====01111111=MMMUIIMIUmm01111111•=0111111

POP I Pur> IN '3 'C	 £071 -WEII
11111=■■■■■■■■■

L P.° 9 fl ePOW COP 1 P.. '607 '807 'LOP W81
MUUMM■MIUM

P '3 1 siapow 0071 W91

IMMIUM M UIME1=========111111M11111101111111=mumMIKUMMUIMMEMIIME111111=1111111111111=1111111=1=M=MMUMUMOMMUMMIIIIMEIIMMIUUMMUUMU0110111101EMMUMMIMEMMUMMEMEMEMEMEEMEMMMNIUMEMIUMEIMULUMINUMIEMMEIMMUMEMEll11====1111111111UMENUIMMUUMMIIIMMEMMIMMUUNIMUIMEMIMIENUMEMUMMUUM0=101111111011===1111===•=111111=1011101=11MIMMUM===========1111110111111111111111111111111111111011MMIEMEMEMIUMILIMMUAMMEMMUMMUMMIUMIUME=1111010101=11111111111110111EMUMMEMUMME0=======MIUMUMEMEMINEEMININMMEIMIUMMEMEMINEMIUMMEMEMBIUMEE=1=111====EIMUMIEUMMUMMUMM
immulE0M0========mmommummummummummmmumummuni

m
ummmummummummummumm ummmaimmMumummlumumminEIM MUMMIUUMUMEMM EMEMMEEUMMEMEMEMEE IUMMMMIMEMMEMmuEHMIUUMMIIIMUNIMIUMMIUM BIUMMUMMEEMEMEMEMIMMEMMEMmummummummummommummommummoEMEm MmummommumuMMmmummumummummummummammummum

111111========l1===11111111111111111011011111111111111====	
1

=======MUMMIIIMUMMUUMEUMMUMMUMIMEIMENIUMMUMMEIIMIUMUUMMIEEMEMMUMMEMEMEMMEr======111101111111101111111111111111011111=111011=11=1=========MMEMIME1001001111=101111011111110101111=111111111011111===MU MUMEMEM111111111111101.111111WEEM101====111111111111=01111,11=11110011101011011111111111111111111=11110111•000=010001111141EMMEMIUMM ENEMM=0111111111014=1011101111111101100111111•11==111============11111110=Mummmmomm•mm=====UM•010000MEEMM000001=ME10000mummummummummummumummummumiliMUMIIIMMUMMIMUNIUMMEMEMMMEMMEEMMMMEMMIMMEMEMEMEMEM OOMMMEMEMMEM EEMMEMMEINMEMEMEMEMEMMUMUMMEMEMMU MMEEMEMEMEMEIMMEEMEMMEIMMEMMEMEMEEE=01=1101110== E
==

EM MMIIIIIIIMIEUMMEMMIEMMIIMEMEM11110•0111=MMEMERMEMMI===========1111=1111110111111111MIMMUMMIEMIEEMMEM111111011================m====MEMMUMUMUMEMIUMMIIMMIMIMUMNIMMIMMIMIUMMUM1=11111111111111111111111011/1===111

AMEEMM■MEMMEMMEMMEMMO■MEMMEMMEMMEMMUMEEMMEMMEMMEMOIMMEMEM MMMMEMEMMII ---" "-"---- 	 :=E•E:■IFITENEURVail$X0MMummummummummummum mmomommomummuummil:111111 mommmommimmliii	 umammmmummuommommummommommommummummommummu mmmummsellImmmi	 mammummumommoimllimmommommomummmiumlimummummillgu mmmmomms41111MiummmEMIUMIMUMMIUMMUMMIIIIME1111100 Mg= immummumm. MMEMMIIMMOMMMEEMMEMMEEEEMMUMMMEMMmmummmuummummommummummommummummonsollimmommsmommommommommulillmommulinlimommummammummommumummulumm•••••••••••••••••••=ammummiummommummummosswinommiummmummummommsI Emmimmunnommosimmummommommommommoimmommommommmummummannommilliimmimmummummimommommimmommaimumummum
I
mmummummumummommsmommisommummommummilimummimmumummiummumm	 =MU mEMEMIIMMUMIEMMEMMEMMEEMMEMEMMOMMIMMEMEMEMMEMEMMEMMOMMIM

1000190001112000013000B9000019m00014000m000000001E0000 0 	 M0000 ummomumno MEMO OMMENEEMICM BM BRODOCEOUOMMU000BOOMEAV
ll	 11	 01	 '1	 6	 1	 0IMMIIIIMINIUMMIIIMMEMMIUMEIMUIIIMmilLIEMMIIMUMMIll= IMEIMIMUIMINIMrsis	 C066 O. ' LN '1 I.P.VY 0771 W91
IIMMIMMEM MUMMEMIIIMMUU 10 III 11	 111111=111111 III MEIIIIMEUUMMIIIIIMIUMMINIIMMUMENIIIMM=11111111111111111111MMEMM=MUMMIMMIM
ril

I IMME10111111111011111101
IIIIIMM1101■111110=10

■■EMMUMEME■■MM■■O■MIIMM MEMMUMMOMMMUMMOMEMMOOMMUMMMEMMEMM MMUMMEME
11.11.1111111110111111==== =MUUMUUS= MIUMIMIMIUMMEMMEMMEMM

'zz 'oz aziki

: uods u EAU Pup 'EPP l 'POP L "COP I '60P '80P 'LOP W91
/EVHD ONIDVdS 2131NIEd

NOI1VHOdbOD S3NINDVW ss3Nisn8 1VNOIIVNaINI

,ad saul1 8 SUNW 0710M/SONICIY3H 0131 NO1141217530 3NII

Wax

IBM
LINE DESCRIPTION

INTERNATIONAL BUSINESS MACHINES CORPORATION

PRINTER SPACING CHART
MARKSHEADINGS/ WORDELD 8 Lines Per Inch	 IBM 407, 408, 409, 1403, 1404, 1443, 443, and nd 2203	 Print Span:FI

IBM 1403 Models 1 & 4
■■■u■■■um■■■■■■■■■■■■■■■■■■■■■■■■■■ MOOS ME ■■■■■■■■O■■■■■■■■■■M■M■■■■■OM■■■■■■■■■■■■■■■II

IBM 407,IIIIIIIIIMM	 ■ II■■■■■U■■■■MUMMO MOO MUM MIUMEMMEMOMEM MO • 	 •	 MEMMUMOMMEMEMMUMMIOMUMMEOMMMM■MIIIMMIIMMOMMUMMOMMUMEMMEM
■mo■SImommummummummumminnummisimmumummummummummumummommummom

Beriamouogammocupoopem EOM WM 0E1E10 118180 BOWES= 001111111M1111008E10012151000100E1000000DUEECODBOODUEEDOWOOMMummommummommummummumulimuummummummumummummummummummumummumummumIMMONUMMEMOMMOMIUMMEMOMOMMIIMOMMEMMINUMEMOMMEMEMOMMOMMINUMMOMMIMMOMMOMEMOMMEMOMMUMMEMOOMOMOMMOMMOMMEMENNEMMEMINOMMOMMOMMIMMOMMEMMONIMMOMMEMINIMMOMOMOMUMMENIUMMENOMEMOMMUmmmUMMInommOMMEMEMMOMMOMOMMEMMOMMOMMEMMOMMINIMMMUMMEMOMINUMMOMMEMOMMOMMMEMMUMMEMEMMOMEMOMMEMAMMOMMORMOMMEMOMMOMMMOMMOMMIMMIUMMOMMOMMUMMOMMIMMOMMOMMEMONWErfnlo:VM:a!LOIMMIIANNOWaolimlv.qmsnmermssmammiximminiumminummiummumummummummummommumummommonomimilimmummimmummummummummummummummlimumminnumnimmummumummmummommumummumimme . :111111211WATAIAIMMOOMO VinallipMIROOKUP'AAPPWce X:10.3:11c.ATCOIMI 1.0.14WAMMEr:,AM:MWIEMENNOMMUMMIMMIMOMMEM

1!
■■7 767 74iNV A:WU 7. NZio7■7.1117011T+717i-Ar ■"4 :41: 41174W17.474 ■:07.4■.! ■: PE i:4117.4•3;74747.0NVE4■747 .417i,"4:07.41:111,1■: 11:+741,: ■: . nF3PE :Ifili:o:1:44Azonro■ ■NI■IIIMMINIM■M■M■IIIII vir iv T OW 7. 7 . ;.4". 111070747Virlq17 f Mr 7.4:171r 7. N WINI7C01716■W PEI■lin7f17. :C. 7 !mow r. '.017. 'KW NW.751i7 TAW PITSIIMMUMMONIMMINIAMEregf7. 'J.■71 . & MO 17 0.4717r1 W. r.1I w i!. I. !lir : itai7VIt ;:' r.4,',. PO. MII,Mr fiK i:4-60.1C 6 ort■ 47431".47. AIN Nu r. 70!47.61011747. 11:9790;40'4117.14ME MUM= IIIIIIIIIMM LIlig illimrarri.71w6girliRciViymriArwmirrliri!riveziwompuTfrxmilKowriv'A.ruir , ..Allr ' MUM MsuwooiquiAlMor-J 7,1Alivm&WiDoMmiT4t7iNwili:610DNIlivlirnmmivorNmiwooli7OufillirmoryWoliNilAiMmumummommummommumminiVr.uoiniArrilliawumwmiwEVOwcinciviva7-AmernmilTrAwmvirmnumuirdiftvcorNamoinrommummommummommommmummummuimmusummusummis nummummummummommummusummunnumummummommummummumMMimmoilingammumMilmommiSIMMUmmommonammommilinummmomMimummommoMMIUMMEMEMENIMMENEEENNEMENEEMEMMUMMENNUMMOMENEMEMmsmmmummmmmmmmmummmmuummummmmmmmmmmmmmummummmmmummmmummmmmmmmmmmmgmmm..mmmmmmmmmmmummmummmmmmmmmmmMIUMMIN	 MUMMUMMOMENUM	 umm■mmummummummummummummum. -	 - --FAmmuummumm	 mom
mi im.	 ------ mmmmm w—r------	 -74.1rommummulim mm .111OMIMMEMOMMEMEPP,-___-	 --,m11111AMP...-	 --,-.51m4....._

■■■■■I■■■■M IMMOMMUMMONOMMOMMUMUMMEMMUMUMMOMMIMMUMMOMMUMMUMMEMMUMMUMMOMMOMME
■■mm■■■■■■■■■■■■■■■■■■■■■■

IBM 1443 Models 1, NI, and 2203

0 1 8 9 10 11

Figure 20. 23.

O

C'S
O

O co
co

LINE

IBM
DESCRIPTION FIELD HEADINGS/WORD MARYS	 8 Lines Per

INTERNATIONAL BUSINESS n I ACHINFS CORPORATION

PRINTER SPACING CHART
Inch	 IBM 407, 408	 409,	 1403,	 1404,	 1443, and 2203	 Print Span :

-4,

I
i1

1

1403	 Aodels	 1	 &	 4	 --1 I..
•

IBM
117-Fmn-FT I-T- I I	 :	 I IIIT :	 I I :T7-17-1-1 T I T' 1 1	 1,1	 17T1 r	 I' I '_, F711	 11 1—I	 1 1 1 1 II	 ,T;	 '- 1-I T11 1 11111	 I

IBM 407, 406, 409	 and	 1403 Model	 6 and 7
1	 pIII I , L7	 l u, i- I u,„ u ri – ,Il ii. 	 '111 ,	 111'1	 ,_I__' ',I ' 1 1', II- 1	 iLf -±TrITI'	 '11 -11 i

1 i 403 Models 2, 3, 5, NI and	 1404 I
.	 '	 ii	 T

IBM
TIT171	 i	 11111	 11111'	 1	 , ji .;	 ,I1,	 lij ____1 _Ir	 ,,	 Hi] .	 71 i11 -1 ` 117,111	 FI'l	 :JIM F	 11

I 6	 4,'3 Models	 I, NI, and	 2203
-f	 I	 1

7
IB

TIi i	 – 1	 1	 i TT- 1 I 	 Er–r '	 • 'i !	 '	 ll'i
I

'	 ' 1 1

0
1-1 I- ,
8 9dii 1'11-1111,,iiiiII

(.77Mliaq.1 .±'iLLI5j7
' 	 I10	 11GL LIE-	 n •	 ,, -

t, , t ,..,
5'	 ,'S (':,7 -S 7 ' ,	 7 5 •":1 5IIII p 1 ,It-if	 I	 1	 ,	 r	 ,i	 1	 1 i	 I	 ,___ I 	,1	 1

,	 _711
 . .._LLi _J_J__. I , 1	 untigermarlI	 MOEIII D i 	 i_j_l_L 	 , i	 1 i I	 ,	 ,	 I	 I	 : .1 II	 I LI _I . _ MINIMUM_i	 11,'.	 1	 ,	 i	 1	 1 j 1_1 _I	 ,	 ,	 1

2 Mil
'ii1

1	 '-	 -2:-	 1 	 H	 Iloisij
b 1

Hon

,
,

i	 ,	 	 	 11
i

I
i

--

J I
-LI

I , __, CIIIIIIIIIIII•	 01111111111•fflipiiiiiillH	
-11

_1c
1	 ID	 ucill*
Um iiitsh	 PAINT!o '	 '

-g	 BIN'	 IM 1 111-
J

o
I	 I_

J:	 I	 ,j	 1 ' L 1 I I L
111 Ili I	 'I

_II III MOIMONIMHMIIIIIIIIIMNosolIMIIIIII__,__ II' ,
1	 , ,- --	 : 17 THIII—	 11	 .-11- I-	 12 re 	 lAA4A0 • A . A • • AAAAAA	 EA 1 • AO.	 A Z. , ' i1 I 1 1 :iiiliC !	 .	 1 EMINUM

uin •	 7 13
14

1	 oir	 AAA AA	 • ,,r1
4	 #0 	 A 	 ,T, r 1	 A 99)x(x.:,YAi T-

I 1	 i NiIIIIIIII
TIT_ I 1	 . MEMN ON'MIu 11 1--- L, 	1 ,

__.

.16 A 4d	 • Try- At z .rottratt .. AXxx L:7	 1 -1 , I -
FI_l_L_ ,__ _1- - - —	 .NQ:IMmll

1111
i hu
soonsumIIIIIHMIIIII

-1
PO

:TI1 '17
■Plug z ARIVIIIIVIIIITz.1

I,

il:
1 II

,

xx

] 1
,	 4.,_, 1

'
lI ___.

1

I

nil	 .• 111
1- - - -- I MEI18 PE4i:rEr r/

I

19
L1 	 I h,

I lar11111.11.111111pmimlimits
IMIIIIIIIIIL

mm h
20
2, f1

11
Mil 111111111011

...opt.
11 IIMME22 ' T	 I i1 I	 7- i-1- --h	 i

- 1 i	 I--1-123	 1111111114111111 24 I I r- I	 7 ,	 , 1 , NM MOOMMOMIIIIINIIIMIMIIIMIMEMIIIIMI1
1 ,

TT 11111.1.111
III HI

11,11.11.1r11
I IM 11_	 , -	 J-,--H-•,--h -- _

i

_	 III ii.+1_ I1 Li i _L iliiriplillii
El'II 1101111111q COMM MB it r 1	 '	 ' I/ i IE _ Li -

_	 MENifligliql._i_ IIIi0■1111111111111IIIIIMIIIII WA I	 1 	 A .7 1	 1.1.1..urniiii 	 ilhi limplillIIIIIIIIIIMMILOOMOMOOMMI11141111.11MI	 1
nuipaum-	 	54mang._,...

B3111111soul. 	 . O	 1	 1	 Nu III I I 1	 1 P.-- — -------vmmmourmnsposumunniI"-""11MOMMIONMORPP
■ ■ -- -M11111111111.1

111111111111111Essoulionnumumumuummimmo k I 1	 ,	 I	 LI _ _ I	 I
■

..._..,II'

Figure 20. 24.

IBM
LINE DESCRIPTION FIELD HEADINGS, WORD

---	 -	 -- -------- -	 -
INTERNATIONAL BUSINESS MACHINES CORPORATION	 I

IPRINTER SPACING CHART
MARKS	 8 Lines Per Inch	 ISM 407, 408, 409,	 1403,	 1404,	 1443, and	 2203	 Print Span :

IBM 1403 Models 1 & 4
llI■U■MU■■■MEMEW■■ ■■■■■■■■ 1117-TT-FT1 7 M 1 1 I ■ -'1	 TT FT- 	 1 1 11	 71- 1 1 1 1	 1	 .1 II I	 MENNEN.' I

IBM 407, 408, 409, and 1403 Models 6 and 71	 I	 , 1'171 1 ■ 7-71--ri rT-17111111-1 11-1111 1 1 7.1	 11 : 1 1111- 1 11 11 1 1 1 1n 11	 1	 I	 1'1	 111 1 	1 1111l 1111-FT	 i
Models	 2,	 3,

N-- 7 I NM I ■■.,■.11
IBM	 1403i I	 ;TT - T-I-ril i -', I -1

5, NI and 1404
'	 11111111111111S 111111111■NR■ -r	 IIII TTI .!! 1 -ir,L	 1 HI- 1117T 'F -FTTT -171- i I	 ■	 Ilf	 1 =i1

	 	 - IBM 1443 Models	 1, NI and 2203miamminismigumnimming Tial -17	 1,1,11-1 1:11-1II	 I	 :,, I-T11 1'11,11	 I -17117: 11- 117 7 111 -1 1 1711a-I 1177► mu ■■■01•■■=11■111■1
GL UE 0 1	 2 3 4 5 6 7 8 9	 10 11- - 3

111111114111111111111P(1111111111111111111)411111P11111111411111111111011M11111

.	 ..,, -

1

4
1

Ei -Tiro 21 ELI] 6T -frT4-TO.CJIMIN 9 011-1-1,22774:5:612151-: 0 I12 1 2145115 171-67119 21 12.2;41515'7:59 01 1 2131 , 5 6:/1179 II 2134:6:6;7169 011:2F_II	 7 I	 34pmcm

■■■1111111
1__IIIIMENIM1.11•ESINIIIIMI1

ili!,a_--1- •	 i	 ,	 ,	 ,	 . -7-r, 7 1!	 -7,17	 ,
14.jr-1 I	 ' - : nj-I-__J !r -ri : .. 1:.,11:j 3i9 Ip12151Z -151771-2719 ra121314 Tre,1715'-	 . 	 	 i	 111 .11!	 !	 ::!:	 171,1,1;1	 ;	 ''',.,,2II1■11MICIERNMEMINIIII■E1EMENNIIIIIlii:

1	 IIIIIIIIIL

=11111•13111111111IMMIIIVIIMMIIIIIIIIM
7 IEN110■!,

"	 MIIIIIIMME•' M1111111121

.t.rn1

!II
1g1111

WI!

IIIMMWEIM11111•1111
Ii■ tonl

Y,I;111 'Alga

11 •
' i 	 ,	 :	 '	 , 	 H I	 '; .- 1,11''	 '	 .	 '	 '	 I ,	 LT	 ,--LT 1	 .;	 ;	 .---i; j ;1	 .1 . H	 1• , 7-
,	 I	 1	 -	 ,	 ;1

"TF-r•	 '	 :i71,	 ,	 .	 ,	 :1

.
L.,,7,	 ' -I,'1,1.	 4_,	 .

'';.
1:,1	 ,	 .

,	 l•	 __,
:	 ,	 :	 ..H . :.

'7 :	 „I	 •	 ,	 I	 ,	 ,;	 1 -77F, :
I	 ,,,	 ,

••	 •	 •	 '	 ' :
))11)	 11

:It IVII111.14V
i :

-•I	 1-,.; ,,,	 11, .	 •	 '	 ,	 : IIII1Er•	 ,	 ,	 , L:111_1_ 1,•1,.,:;	 .	 .,	 1	 ,	 ,	 , 	 .	 ,	 .	 ,II	 1 , :,	 ;;
,	 1	 •	 •	 ,

Ellitiiilill
!I	 ,

.	 '
I 1 	 -,r

1 11In
:	 ,,,,,,TT,
,	 IHL.,:,.	 ;•	 :

L

l. I	 ,•, ,4111111■11MILIIIIIMEMIIIIM 111•1111111111•11111111E .	 .	 -7-7, 1 . 1 1 	,	 ,•	 I	 7	 ;	 .	 ;	 :	 '1 ,	 I	 :	 I 1 	 . 	 1 	 : !II!' i	 111' MEMO M IEN1111111 ■ 111 9 IIIIIMMI11WIEN 1, 1,1:. mg.MM.' L'IM1 1	 ,, , OA
,	 1 !	 !T1 1
1 	 1	 1	 1

•	 •	 '	 •r,	 !	 1	 -	 .	 '	 '	 1	 .
•	 1

L 	 /	 ,
,,,	 ,,-;:	 1 ' ; Hi	 '';H: !	 11•11

'	 ;,!1; '	 I BEINfflMEWLi	 1swum 111 111111111WiN■:■ 1 , FITTPV1IVVIII , ,I, _
1	 0-41.4.74■ I	 11	 ! ''' , ''1 FL ti	 ,	 ' 	 :	 • 7-1	 1	 '	 1 : 	 l Li.,	 ,	 I	 1	 ,. IIIIIIIIIM1111114111110411111111III LEIN

n3minc;52rx ryyr,pry,r,Ellynyir.myl -1, -1 '	 4+4,,r,440 i	 1	 !ilTI	 ,	 I 11 -7.,• 7 :!,	 1	 r,	 .	 ,. I- 1 	:	 :-
.1	 .1:

-	 1	 i	 •	 ,	 ,	 :
7	 ,!!!

H i l,	 •
Mit!

.	 1 1 1:!	 ,
:	 l'!,!. 1,1	 Li fNonzi7. nurirrInnorY3fmnrYnn. j 4.-4M it. 71 ■,1-!,'!1 nInsiban 14 mt.22Y.	 Elggr,V3MIT, 91.1r.:iryim..Tyr1	 T

' 142):V)	 21: :1 Fr	 r 1.	 '	 '	 :	 _,'1 	 I]	I	 ; 	 '	 ` :
;	 -I	 '	 ,

'	 T	 '	 1	 '
,	 I	 ;	 •	 LH	 -. :11,14 • ' :	 11 : i ! ! !,	 ' !!1 1111 111111111110111111M■MINIMonion 111 nals-lwr.4i:1 9r.rolurlr,r,nr,Irnr-,In/i,911.1•In ;f4-66--	 AP:N. l in 11 ''	 '1 1 II	 -I	 ,!!1-1-7.-1-!•::, :, i	 •	 . M•11•1111111111,41. HI 11311111111■■ 11111■111111BIONIMIIIIIIIIIIIINEE7 I III ! -r i 	 !, 1 11 I ":	 .1 . LH--; L1 •,,	 II ! , '	 1111111111111014, 111194111111111111111 ,411111111

111111,111101•MINIMICEINIMIMMIN
19

11111111W111111111111 1	 71 ! [!!!!!I	 1	 1	 1	 1 11 -7. 1 .11: :1	 ,	 ,	 !	 .	 ,	 !	 !	 ;.iiILLH.
!	 ;	 I„„

lit	 •,II.
'	 '	 1:'	 •	 .	 '	 I,.

.1,1',
1 14 1 	''

11_, 1 I■■MIN■■■■EMIIIIIIIIIINKIN••11111111111101111111111M Fr !. 117'-1.! IMILVERRIIIINN.NMI	 011111111111111111 120	 mo:c. 	, . 2romr, 1. r; ury,v,v,1, MI . IFS	 -4):c o' Tn I	 ,	 LT-	 '	 '	 ,	 ,	 :	 . 1 .	 ,	 ,	 , :	 1	 i	 , III■IIII■■■IIIIIII1111■1■111111111111P1111111■11111,11111111
EU■■■■■■EMIIIIME
2311I, pm

Oludim■■■uomm■■pulaMMONIIAIVIIIIII0:47.4. I.	 Co:	 -1 T
SKIIIMEMEMPBE	 , 1 -7- 1-1- 1

T	 1	 IA_fIll, ,	 I ,	 I

1 _	 1-1.,,__•,; ,,,	 ••• II . 	• I-	 111F-1 IIMEMIBMINEMEMONmeli•INNIMIIIIIIIIMIll
MIZINIIISIMME-L	 I	 ,	 :	 ,

I	 '	 '	 ,	 1	 ;	 7 17,_pi , Li 	1	 :71 	 ,	 :	 •	 ' il	
1

,	 11,
I -1711 17 IIIIIIIIM1In ■111111D111110111111P1111111111-.1.Rin

24	 i ■■1111•111M■II	 I ! ' 1	 • 1 I	 II I	 I I
00111•11=1.01.4 I	 II

---'4"--11111_ I=I 1 EHMEME1111111•01111110114NIMINIMM■IN■
Illitio•

■■■■■■I1
--- --PORI---=

25ECIplow.-------= --Imissogw"...,Ps.=---! immumgmlnossolummumin---. 	 _
I	 I	

N,,_,_,.. ___. .•••_in___ .0---

Figure 20. 25.

IBM	 INTERNATIONAL BUSINESS MACHINES CORPORATION
PRINTER . SPACING CHART	 I

L INE DESCRIPTION	 FIELD HEADINGS/WORD MARKS	 8 Lines Per Inch	 IBM 407,	 408,	 409,	 1403,	 1404,	 1443, and	 2203	 Print Span :	 11
4	IBM 1403 Models 1 & 1■ EMI= ■■1111■■■ MN ■■■■NI■■■■■■■■■■■1■■■0.■11111■■■ M1■■■■■■■■111111.11111■■■■■■ ■■ ■NNI■■■■■■■

IBM 407, 408, 409, and 1403 Models 6 and 7mm innummum um MOMOMMOMOMMEMMOMMOMMM ONOMMUMEMMOMMOMMOSOMM II	 ! MMEMMUMMEXMOMMOMMUMMOMMEME
IBM	 1403 Models 2, 3, 5, N1 and 1404 iiiMAIMMOMMEMMOM=MUM MM. EMMOMMOMMEMEMEMMEMOMMEMEMM 	 RUM MOMEMMENOMME MIMEO MONO MEMO
IBM 1443 Models	 and 220

I MOM OMNI.,.1,	 NI,
1111■11•1■■111111■111111■111■■■■■■■■■■■■■■•1■■■■■■■■■■■■XI■■■=■■ ■■MMIIIXIMINNI■■■M■ ■■■■■■■111111••••111111•0•011•1111111111•■■11MM

GLUE 0 1	 2	 3	 4	 5	 6 7 8	 9	 ;	 10	 11	 II
A T ElE1131111013000EIEKIEMEE1001113E1 4 E3 7 5 9 0 1 EBEIE1151E19 0' 11EIE110 5 6 7 ago110w13 7 5 9 EMBEIBEE 7 0 9 011 2 1E1021 6 7 5.91311BEILM31510CEMEIE113130000011E1E101308112013EROMME300111111111114111111 MMIIIMIMPIIMMIMIIIIMIMIIIIMEIMMIMMMI 11111•MMIIII 11111111MW1111111111011111.1111111111IIMM11111111•1111MMEM IUMMIMBI1111111011111111 E111111111111111111MIMMIIIMMIIIMINIIIIIMMI IUMMEMIIIIMMOMMIMMUMMIHmMIIE1IIIIIMIIMMUMMINIIIIM■■IIINIU■■ nIMIIIIIIIIIIIIIIIIIIIMIMIMIIIIIMIIIBIMZMBIUIMMEMIIIMIIIIIIIIIMIEMIIIMIMIMMI•MMMINEESIMIIEMMMMIIIIIEMIIImmINDIUM EMEMMIIIM1111111111111111M1111111MHIIIIMUMMEMMIIIIMMIllwidIMMIISIM11111111111MILINIMUMMEMMEEMIMEMINIMMOU11111■4111111" •	 IIIIIMMA WO Mil el .1111V; WIIIIIIIIIIIIIIMMIIIIIMIMMIIIIN WIIMIIMEMINIIIIIIMMEMENNIMIIIIMIIMME11111.11•11111111111111111Thn1111111141111111 •MI MIIIMMINNIIIIIIIIIIM111111111111112111MEMINIMIMIMMEMMEW1E1.4 7,W !ZI■ 9Y,	 n 	 A!

WEIMMINwommomM■MINM■■M■MM■M111•1111111111111111111111111111MMIIIIIIIINIIIIII Itmt-Ahtimm:	 1: lmummu simum muummuno MINIMUM • MEIMIEIIMMMIIIIIIIIIXIIIMXIIIIXMIIIIIIIIIIIIIIIM•M•MM•M•rn MMEMEMMENIMMENEMMMEMIIIIMMINIMIIMMIBMOMMIIMI
8 -g	 Hillii1■11■■■■B	 - ■11111111■411■■■11■ sou I, - IIMIIIMIL I . , I.	 1111111111,17, a I■ 1111111111111111111111.111111111MIMMINIMMOMMOMMUMENUMBOMMUMMEMEMMIEMMMIIMIMIIMMIIMMIUMIli■111•1111111MIMMIMMUSWEIMEHMIMMINIMMIOXIIMEMEJ.	 11111111141111111111111 IMF c*IIIN FIT. Y, ?MT. PrIFIKIEILVTA FAr:.r, r3	 MCIMNLIVEN	 ■E■E■EIMMEN19111111111111111111111111111111 MEMMINIIIIIIIIIIHMINIIIMINMELEMMIIIIIIIMMIMMIMMI111111111.411M ■11111.11111111111111MMOMMIIMMEMIMMUMMIIIMIIIIIIMMIll111194111111

,	 IIIIIIMAIIIII- 	 muumuu'

mmvocupnrvirArniry-ffir_rErrmr:	 wigs' 1111111111111111111111111Two-on
rizrnsmrrrinnrwrirrrir•Immin 11111111r"74011•MMINI MEM MEM MMINXIMM ETIMIMENNIMMEMMUMMIIIIImccirmonnminnwinnwInnTrim matitdeawmummuum num N__I

snow r rUHVIMMirr Fir, rmxprin • • Ir. WM! iX4:11K NIIIIIMMIMMIMMIII•11111111 ■■MII■IIMIM■■■■■■II■■■IIIIII■IIIIIIII■■■■IMIMIMIMIIII■■■IIIIIIII■MO41111111 111111111MMEMENIIIIIMMEININIMMUMEMINIMEMIMMEMMEMMOMMINIIMMIIIM11111111111111111111MIIMMIIMMEMOMMIllini1111111111111IIIIIHNIIIII NUMIMMIIIIIN IMOMMOOMMUIIIIMINIIIIIIIIIIWINMEAMMIIMIlirMIMMONIMINMEMUMMIIIIIIIIMMIll•	EMMEN MIIIMIIIIIIIMINIMMIXEMMUM•••••••••••••••••MEMME NI IIIMIIIMIMIMIMI•MMIIIIII•MM•NXIIIIIIIIEMMIIIIIIIIIMI•N••msiIIIIIIHIIIIII MIKKN-Mr, TT, WWI* MUM, I, tvrromwel71111PMEMINEMEMMIMINIMIM NIMIMMUMMMINIMMIUMMMINIIMIllNIIIINIIIIII1111041111Mi _	 Ili
0 MIIIIMIIIIMEMIIIIIIIIIIIIITTUIMMINMMEMNIMMUMMIIIIMMUNIIIIIIMINIIIMIEMIIMMIIMMUMIIIIIIIIMMEM11111111MMIEW VA UMW Wr.r.r.■ :1■:	 MMIIIIIM111111•1111110•MMEINIMUM•11111111111111111111111111111MINIMMEMIIIIMMINEMBIIMMINIMEMIIsummum■■mmu■ ill immummummommummommummummummummommonmomplummummummomm.......m...........................p.	 --	 -!0111114MMEMMOMPR	 ---!■OMEMMEMEMMEMOMOWer	 ---"'-'-TPORIMMINIMMOMMEMMEMEMOMM-- immommilm■--- --------MMOIMMMO00"-- ==m2memmilmm= -	 ---‘',45..g1111M1111111111•11111011M,,-----■---- - --------

Figure 20. 26.

IBM
LINE DESCRIPTION

INTERNATIONAL BUSINESS MACHINES
PRINTER SPACING

FIELD HEADINGS/ WORD MARKS 	 8 Lines Per Inch	 IBM 407,	 408,	 409,	 1403,

CORPORATION
CHART

1404,	 1443,

--.

I
Iand	 2203	 Print Span :

••=1111•1111111111•11•••• MENOMONEE NOMMENEENNEMENE•IMMI•MME•ME IBM 1403 Models 1 & 4 M■■■■■■■■■1
7

I7T m	 I NMI ■■■■■■■ ■ MI Tr ON ■■■■■■■■■■
IBM 407, 408, 409, and 1403 Models 6 and

MI	 1111111111111111111M X M11111111111111111111111■11=111111MMINE MINIM IN !1111fril 1	 'II	 1 ■	 ■	 111111INIMINIEBESOMIIMMEMEMBENNI
IBM	 1403 Models 2, 3, 5, N1 and	 1404

InoalM••••••1111•1111•111111111•111110 111111•111111MENOMMOMMOOMO ■■■NIMINI■ I	 MI FT11 7	 . ■■ll	 NI	 BIN	 NO MENNEN.'IBM 1443 Models 1, N1, and 2203 NI

' T 17 1
is,IIIIIIMIX■■II■■■••••11■■■■II■1111■11111111111111■MI■■■■■111■■111■■■■■IMMIIIII■BI■IMMII■■ TT	 II■■■NIII■■■■■■MI■■■M■■■11111111111111111 7 IO

GL UE I	 0	 1	 2	 3	 4	 5 7 8	 9 	 1 0 11	 II
A MOOMEMEMBOMMEEMB2340471800123451WOUOUNROM60000121eTC789 1 07213:4 5 6 , [i379 0 1 2 ElnEtNocommunmgoari TEEKIBC11/0000E1E101301200I:111111111111411111111 MIONIIIIIIIMIIIIIIIIIIIIIIMIIIIIIIMINIMIMIMEINEM_IMMINNIIIIIIIIIIMIN M ITIHI I	 MENIIIMMEINEMINNEINIMIIIIIIIIIIIIIMIIIIIIIIIIIIIIIIIDIIIIIII IIIIIIIIMMMIIIMIMMMMMMMMMNMIMMMuErIIIMIMIMIIIIMEIIIIIIIIIIIIIIIIIMIIMIIIIIIII 1	 t	 1' Ill	 I 11111.111•111111UNIEMINIMMONIIIIIIIIIIIIIMINIIIIMENIIIIIIPOINIIII1111110011111111111111,41111111 rIIIIIMIIIIII
MINNEMENNEMINIIII•111111111111111111111111111111111•IMIMMEMMEMOOMMENEMONIIIIMIININ 1._ ' T7_k_iI	 ,	 I .1 irrn1111111111111111111111111111111111•11111121111111111111111111iliMEMENLI

n_ ,	 n? T,' Ilri111111110O1r.irtIr7AFEArIMPr.a.,w641PiAV!bl'AAP6NOYVIV,!!MOMMINIM■■■riminnuporrAmmar■inormr
IMINNIM

■■■■■■■m
MENIIMINEIMIIIIMIEHMENIMEME11•10•111M11111111111111111111111MINEMIENIMMENEIIMEN7.1•	 onrumummummossmortiW ZkV4 PI):4i: E4■Arcootrosvire. ■AN Iiiikercor r, RN AWAT47,11:141:11110.4././■ismai■■■ili■mu■mum■ -, t.-1I,•	 ■1111111N■■1111muoupignon111111111Pallill
ni.......nummommoserniumunimmunessummoosswirso-owoir,r4rordr IV.W1rfo:4:42 .■"*".6".§:*1179-Jiir(r MU COY:0117.4*111

wooroForon070:474/:4741:11 .:Nr.4r. w.r.iw '.1■-2111):411 	 ' I	 L i	 '
■1	 !I: !e INV' A 17 7 e Art , Tditv7.7 r r non ..Y.,/ Aniummii

;	 I
muirmstriormommumrAmmorm............m■►f,77%7.01V17,741r1TWA■EIZIIAIIIIIIIIIIII■■■■IIIIIIPUI11111 1.11FACrATAINOW4inr.C.Ii.mommium I	 I I	 i ■M■■III■■■■IIIIIE■■WA■EW1■■11■MINIMI■Ini

2 .r	 im1110111111111111 ■ilmommenummiiiimisim 	 nu	 ■illilmsNI MINNIEN1 NalINIEMIUMMEMIN	 •••	 MEMENNII	 7 .I1' I ingemiligernalsr•Bolossomossummor-	 ..a.. minulognielimmirim	 ili . 4.111111111111-14J"."	 '1 '	 	 	 H1 --I -_ _
-7.nummimmilow-
0

- ---4!IIIIIIIIIIIIIIIIIIIIIIIM"'"'''	—............a..e.r....--,..., -

Figure 20, 27,

Section Subsections Page

20 50 40 01

Disk Record Formats

Employee File - Figure 20.28
Index to Employee File - Figure 20.29
Company Record in the Corporation File - Figure 20.30

Year-to-Date Information

	

Section Subsections	 Page

20
	

50
	

40
	

02

EMPLOYEE information record
starting at 109 and continuing
thru 156 is current information.

6
Z_v
020

I I I

Name

I	 1	 . 1 1

>.
'7
3&J,
cot,
7013.17,	 Eo 3In Z

i	 1

,?,
a.
co

..n8

•E
7
ow

-g
>/3a
E
.
t

-o.-
0

-.fi,
gro,

.c,
P -A

`â
x
E

LL
5,‘,

‘4O.

x
E
2,,
t/).

g
co

el,.1
c

7,c›12

1
	 5 6	 10 11	 15 16	 20 21

25 26	 30 31	 35 36	 40 41	 45 46	 50 51	 55 56	 60 61

113;
Q

CD80
a x

a,80
6t•

Quarter-to-Date
Information

ri
0
I—>-

c.0
E
D
...z.

-2,

.,
co
2
c
.2

6,
—.,e
al
.c
°

=E
0

:4:
-o
2

tm0
..y
cao...
'''

.6.0
•

"'c—

-g
''
z

-ci,21,

200

-F.,
g

2
-c;
0

Previous 13 weeks Overtime
Rate

._
c

a..a... .0 0

C.) CO

IIIIIIIIIIIM	 I IIIIIII III'.
65 66	 70 71	 75 76	 80 81	 85 86	 90 91	 95 96	 100 101	 105 106

cxc
I
6:o°

-,?3"
00

16a'
8
2
co

I I

?E':
cc

0
•

._•
g'
<

.
.5cc
i•-o

.
'5O
I,_
L..
g'cc

1 I

Cc
I
1-0
o

1 1

Ec
i
gco
cm

O

I i

anamC_
..03
Lai
it
m
g'
=

II

G'E
'a

0

to

W
I—

II

'E
co
w

co

p,
c

com
.
o

II II

.g

au
ti;_c
5

&

-o
00

>

X

CO
a
>
CO
.0
-6

I I

>
CO
0.

. 0
t

co
>

I I

>

. .
45
O

II

>.
e_

a>
Z

I I

.:(
C.)
LL

110 111	 115 116	 120 121	 125 126	 130 131	 135 136	 140 141	 145 146

L.

x
L,

Ti,
3

a—r—D.0c

.1

AI
-g6

17,

c...)

>Do
2

.
•?
7—

.

.3

.

Zo

to
g For Growth

of Record

I	 I

150 151	 155 156	 160

Figure 20, 28,

Available for	 Expansion

ill	 1	 I	 1	 till	 I	 I	 1	 ti	 I	 III	 II	 it	 I	 I	 1	 1	 1	 1	 I	 I	 1	 I	 I	 I	 1	 I	 1I

Section Subsections Page

20 50 40 03

Each record is composed of 1 word.
The number of records in the file is

	 0
the number of employees in the
plant plus 25%. The last entry is 	 0
the record number of the last clock
number entered.

1

Figure 20. 29.

This is the plant information record.

III III

Plant Name

I	 II III II)

0Z"
,ii.c0

it

6
Z
_y.

1

I
1	 5 6
	 10 11	 15 16

I

4,,, t I i 1 i I I	 i

Trade Association Information

i	 i	 i	 I	 i	 J	 i	 I II I	 . I I 1 1 1

General Ledger
Account Numbers

for Posting

I	 i	 i	 I	 i	 I 1 i

-6,v	 'E'..	 .0 o
E

co <

i	 I

a
Si	 a

0
TO o
15i—

i	 i

>
_e
g

4,z
Tv
tiI

I	 1

ci
Z
...yg.c0
To
.8.LL

20 21
	 25 26	 30 31

	
35 36
	 40 41	 45 46

	 50 51	 55 56
	

60 61

65 66	 70 71	 75 76	 80 81	 85 86	 90 91	 95 96	 100 101	 105 106

Figure 20. 30.

This page intentionally left blank.

Totals on
Adding
Machine

TAPE

Keypunch &
Key-Verify

Control
Totals

Control
Totals

Section Subsections Page

20 50 50 01

System Flowchart

Employee
Earnings
Record

Zero Balance
Totals

PAY 16
INPUT
EDIT

Balance to
Totals &

Correct as
Necessary

O .K.

Control Totals

All but
Name

Out of Balance

PAY 01

Control Totals
File
APAY 02 Disk

Payroll
File

All but
Name

FILE
CREATEADD NAMES

File create (initially and as necessary)

Disk
Payroll

File
Clock No.

and
Name

File
B

Keypunch &
Key Verify
Clock No.
and Name

Clock No.
and

Name

Control
Total

PAY 16
INPUT
EDIT

Zerq
Balance
Total

Section Subsections
	

Page

20
	

50
	

50
	

02

Employee
Payroll Change
Authorizations

Total on
Adding
Machine

TAPE

Keypunch &
Key-Verify
Clock No.,

Change Code,
and Changes

(Keypunch &
Key-Verify

Control
Total

Changes

Balance to
Total and
Correct as
N ecessary

O .K.

Control
Total

From
Storage Changes

Control
Total

Out of Balance

Changes
PAY 03
FILE

CHANGES

Disk
Payroll

File

File
C

File changes (weekly)

Weekly
Time
Sheets

Zero Balance
Totals

Control
Totals

PAY 16
INPUT
EDIT

Totals on
Adding

Machine
	1■• TAPE

Keypunch &
Key-Verify

Details ■ Keypunch &
Key-Verify

Control
Totals

Details

Balance to
Totals &

Out of Balance

Correct as
Necessary

O.K.

Control Totals

Disk
Payroll

File

Details

Payroll
Register CALCULATION

Balance to
Totals; If

Zero Balance
Totals

Incorrect,
Go to E

Details

Section Subsections Page

20 50 50 03

Payroll calculations and register (weekly)

Section Subsections Page

20 50 50 04

Disk
Payroll	 Control

File Totals

C

Calculated PAY 05 Pay Checks Total on
Control PAYROLL and Stubs Adding
Totals CHECKS Machine

Balance to
Totals; If
Incorrect,
Go to D

Only When Totals Balance

TAPE

Burst, Sign
and Distribute

Paychecks
and Stubs

Disk
Payroll

File

Control
Totals

PAY 06
CHECK

REGISTER
Check

Register

Balance to
Totals; If
Incorrect,
Go to E

Distribute
Check

Register

Disk
Payroll

File

/ Control
Totals

Print paychecks (weekly)

Section Subsections Page

20 50 50 05

D

Only When Totals Do Not Balance

/ Disk
Payroll

File

Control
Totals

File
D

PAY 11
VOID

CHECKS

(iDisk
Payroll

FileFile
\	

Details

Control
Totals Details

To

V

F ile
D

Payroll check voiding (as necessary)

Balance to
Totals; If
Incorrect,
Go to E

Distribute
Credit
	 Disk

Union
	 Payroll

Register
	 File

Enter Plant
Number

Stock
Deduction

Register

PAY 15
STOCK

DEDUCTION
Enter Plant

Number

	

Section Subsections	 Page

20
	

50
	

50
	

06

General
Ledger

Disk
Payroll

File

E nter Plant
Number

Tote s on
Adding
Machine

Union
Dues

Register
PAY 13
UNION
DUES

Balance to
Totals; If	 	
Incorrect,
Go to E

Distribute DiskUnion	 Payroll
Dues

Register File

Credit
Union

Register

PAY 14
CREDIT
UNION

Enter Plant
Number

PAY 12
Distribute Balance to Disk DiskRESET

Stock Totals; If Payroll MONTHLY Payroll
FileDeduction

Register
Incorrect,
Go to E

TOTALS File

Payroll deduction registers (monthly)

From
Storage

TAPE

Store

Section Subsections Page

20 50 50 07

General
Ledger

•

PAY 07 Enter Plant Totals on
Totals AUDIT FILE Number AddingBY COMPANY Machine\	 /

to
Totals; If TAPE/ Balance
Incorrect,
Go to E

File
E

Disk
Payroll

File

Plant
Numbers

Calculated PAY 09
Control 941
Totals REPORT 941

Report

Balance to
Totals; If
Incorrect,
Go to E

Distribute
941

Report

Disk
Payroll

File
Plant

Numbers

Tax
Worksheet

PAY 10 Disk StoreTAX
WORKSHEET

Payroll
File

Disk
Payroll

File

Balance to
Totals; If
Incorrect,
Go to E

Plant
Numbers

Payroll file audit, 941, and tax worksheet (quarterly)

File
E

W-2
Reports

PAYnn
W-2

REPORTS

Print W-2 reports (annually)

Subsections PageSection

08505020

Balance to
Totals; If
Incorrect,
Go to E

11111 TAPE

Distribute
W-2

Reports

V
Disk	 /

Payroll
File

General
Ledger

From
Storage

Disk	 /
Payroll

File

FileE

Plant
Numbers

Totals on
Adding
Machine

Plant
Numbers

PAY 08
INQUIRY

Individual
Payroll
Record

Last Week's
Payroll
Register

Balance to
Totals; If
Correct,
Go to E

Weekly
Time
Sheets

Section
	

Subsections
	

Page

20
	

50
	

50
	

09

/ Select Desired
Clock Number

Card

Clock
Number

Disk
Payroll

File

Determine
Change

Required

Use PAY 16
& PAY 03

to Change the
Disk Payroll

Record

/ Does this
correct original
error? If not,

Go to E

Return to
Print Where

Error
Occurred

Only when
entire original
error has been
corrected

Error detection and correction (as necessary)

	

Section Subsections 	 Page

20
	

50
	

50
	

10

Remember, all of these pages are developed by now become a part of your system documentation
this point in your system design. In addition, they 	 (see Section 35).

Section Subsections Page

20 60 01 01

LANGUAGE SELECTION

Introduction

Now that your system has been specified, the im-
plementation of the design must be considered.
Since you will be writing a program, the logical
question is "What language shall I use ?"

IBM supplies and supports a wide variety of
programming languages and application programs
for the 1130 Computing System. Among the
programming languages (Type I programs) are:

1130 Assembler Language
1130 FORTRAN

Some of the application programs (Type II pro-
grams) are:

• Continuous System Modeling Program (CSMP)
• Data Presentation System (DPS)
• Linear Programming - Mathematical Optimi-

zation Subroutine System (LPMOSS)
• Mechanism Design System - Gears and

Springs
• Civil Engineering Coordinate Geometry

(COGO)
• Numerical Surface Techniques and Contour

Map Plotting
• Programs for Optical System Design (POSD)
• Programs for Petroleum Engineering and

Exploration
• Project Control System (PCS)
• Route Accounting for Dairies and Bakeries
• Scientific Subroutine Package (SSP)

• Statistical System
• Structural Engineering Systems Solver

(STRESS)
• Type Composition
• Work Measurement Aids
• Commercial Subroutine Package (CSP)
Your IBM representative can help you determine

which programming language or application program
should be used to implement your system.

In addition to these two types of programs, IBM's
Program Information Department maintains a
library of contributed programs and distributes
these programs to interested parties. These are
contributed to the library by:

1. IBM employees (Type III programs)
2. IBM customers (Type IV programs)
Type II and type IV programs have been submit-

ted to the Program Information Department for
general distribution in the expectation that they
may prove useful to other members of the data
processing community. The programs and docu-
mentation are, essentially, in the author's original
form and have not been subjected to any formal
testing. IBM serves only as the distribution agent.
It is your responsibility to determine the usefulness
and technical accuracy of the programs in your
own environment. Unlike programming systems
(Type I) and application programs (Type II), these
programs are not part of the IBM support package.

The remainder of this section elaborates on
each of the programming languages and application
programs and discusses some of the considerations
in answering "Which do I use ?"

	

Section Subsections	 Page

20
	

60
	

10
	

01

Programming Languages

Assembler Language

The IBM 1130 Assembler Language, while similar
in structure to machine language, replaces binary
instruction codes with symbols and uses labels for
other fields of an instruction. Other features,
such as pseudo operations, expand the programming
facilities of machine language. Thus, the program-
mer has available, through an assembler language,
all the flexibility and versatility of machine lan-
guage, plus facilities that greatly reduce the ma-
chine language programming effort.

The IBM 1130 Assembler Language has two
parts: the symbolic language used in writing a
program and the assembler program that converts
the symbolic language into machine language. An
additional component is a library of relocatable I/O,
arithmetic, and functional subroutines.

Symbolic language is the notation used by the
programmer to write (code) the program. A pro-
gram written in symbolic language is called a
source program. It consists of systematically
arranged mnemonic operation codes, special char-
acters, addresses, and data, which symbolically
describe the problem to be solved by the computer.

The use of symbolic language:
1. Makes a program independent of actual ma-

chine locations, thus allowing programs and routines
to be relocated and combined as desired.

2. Allows routines within a program to be
written independently and causes no loss of
efficiency in the final program.

3. Permits instructions to be added to or
deleted from a source program without the user
having to reassign storage addresses.

The assembler program (processor), supplied
to the user by IBM, operates from paper tape, from
punched cards, or under control of the 1130 Disk
Monitor Systems. It converts (assembles) a
symbolic-language source program into a machine-
language (object) program.

The conversion is one for one-- that is, the
assembler produces one machine-language instruc-
tion for each symbolic-language instruction.

The IBM 1130 Assembler is a two-pass program.
The processor is loaded into the computer and is
followed by the first pass of the source program.
During the first pass, source statements are read
and a symbol table is generated. During the sec-
ond pass, the source program is read again and
the object program and/or error indications are

punched into the first 20 columns of each source
card. If paper tape is used, the second pass results
in the punching of a new tape that contains both
source statements and corresponding object informa-
tion. If disk is used, this becomes a one-pass
procedure, the disk being used for intermediate
storage. Both card and tape object programs must
be compressed (via a Compressor Program supplied
with the assembler) into a relocatable binary deck
(or tape) before they can be loaded into core stor-
age for execution.

The output from the second pass is called the
list deck (or tape) and can be used to obtain a pro-
gram listing of source statements and corresponding
ing object statements. Use of disk automatically
compresses the object program into relocatable
(loadable) form. A program listing is an option if
the one-pass disk procedure is used.

A library of I/O, arithmetic, and functional
subroutines is available for use with the IBM 1130
Assembler.

The user can incorporate any subroutine into his
program by simply writing a statement referring
to the subroutine name. The assembler generates
the linkage necessary to provide a path to the
subroutine and a return path to the user's program.
The ability to use subroutines simplifies program-
ming and reduces the time required to write a
program.

A description of available subroutines is con-
tained in the IBM 1130 Subroutine Library (C26-5929).

FORTRAN Language

FORTRAN (FORmula TRANslation) is a coding
system with a language that closely resembles the
language of mathematics. It is a system designed
primarily for scientific and engineering computa-
tions. Since this system is essentially problem-
oriented rather than machine-oriented, it provides
scientists and engineers with a method of communi-
cation that is more familiar, easier to learn, and
easier to use than actual computer language.

The IBM 1130 Basic FORTRAN IV Programming
System consists of two parts: the language and the
compiler. The language is a set of statements,
composed of expressions and operators, that are
used in writing the source program. The 1130
FORTRAN compiler, provided by IBM, is a pro-
gram that translates the source program statements
into a form suitable for execution on the IBM 1130
Computing System. The translated statements are
known as the object program. The compiler detects

Section Subsections Page

20 60 10 02

certain errors in the source program and writes
appropriate messages on the console printer, 1132

Printer, or 1403 Printer. At the user's option, the
compiler also produces a listing of the source pro-
gram and storage allocation.

	

Section Subsections 	 Page

20
	

60
	

20
	

01

Application Programs

Continuous System Modeling Program

This program provides engineers and scientists
with a simple but versatile tool for solving dynamic
system simulation problems. For many problems,
this program obviates the need to use an analog
computer facility.

CSMP is a "digital analog simulator" program
using a block-oriented input language in which the
functional blocks represent the elements and organi-
zation of an analog computer. A total of 25 stan-
dard functional blocks plus the ability to define
special functions are provided. The continuous sys-
tem model may be developed and tested, and results
observed in an online interactive mode by means of
the console keyboard and output devices. The sim-
plicity of the language statements enables a user to
rapidly gain proficiency with the program and facil-
itates modification of the model via the console. In
addition, via the console printer, the beginner is
provided instructional comments that can be sup-
pressed as experience is gained. Simplicity and
flexibility are the foremost characteristics of the
program.

Data Presentation System

This program can present a large variety of data in
plotted forms such as graphs, charts, schematics,
and modified drawings. It supplies high-quality,
hard-copy, graphic output at exceptionally low cost.
The system can be used independently as a Graphic
Report Generator, or the user can choose one or
two levels of subroutines from the system for in-
clusion in his own graphic output programs. These
three levels of access are made even more flexible
by several system modification and expansion
features. The scope and flexibility of DPS make it
valuable in almost every application of the IBM
1130 Computing System.

Linear Programming -- Mathematical Optimiza-
tion Subroutine System

LP-MOSS provides the 1130 disk user with a simple,
efficient means of solving linear programming
problems and a means for implementing a variety
of mathematical optimization applications.

Mathematical optimization is any mathematical
technique for determining the optimum use of var-
ious resources such as capital, raw materials,
manpower, and plant or other facilities. The

technique seeks to attain a particular objective
(for example, minimum costs or maximum profit)
when there are alternate uses for the resources.
Linear programming is the most widely used of
these techniques, and has been used to allocate, as-
sign, schedule, select, or evaluate the uses of
limited resources for various jobs, such as blending,
mixing, bidding, cutting, trimming, pricing, pur-
chasing, planning, and the transportation and dis-
tribution of raw materials and finished products.

Mechanism Design System -- Gears and Springs

This program provides design and analysis for five
distinct mechanical components used in a wide
variety of machines in all industries. Spur and
helical gears, compression, extension, and torsion
springs are the components covered. The program
provides the mechanical engineer and mechanism
designer with a low-cost, flexible, easy-to-use
program set which will design new parts or analyze
existing parts.

The engineer is expected to furnish the problem
description in terms of design restrictions and
material parameters. This description is in a
flexible problem language format which greatly
simplifies man-machine communication. Operation
can be either by a batch card input mode or in a
conversational typewriter input mode. In the latter
case, an engineer can readily evaluate parametric
changes and truly use the computer as a design
tool.

Civil Engineering Coordinate Geometry

COGO is a simple, efficient tool designed especially
to assist the civil engineer with a wide variety of
geometric calculations. With COGO, the engineer
can state his problems using familiar terminology
common to the engineering field. No knowledge of
traditional programming is necessary.

The civil engineer requires a simple but efficient
means to solve geometric problems now being done
laboriously by hand. 1130 COGO provides the
solution to his problem by allowing the engineer to
(1) enter the data for the job into the computer by
typewriter or punched cards, using a language with
which he is familiar, and (2) to have solutions
automatically printed out. COGO is especially use-
ful because it provides the facility for the engineer
to try many different methods of solving a problem.

COGO can be used for many different types of jobs,
e.g. , control surveys, highway design, right-of-way

Section Subsections Page

20 60 20 02

surveys, bridge geometry, subdivision calculations,
land surveying, construction layout.

COGO can, in fact, be used wherever geometric
calculation is required.

Numerical Surface Techniques and Contour Map
Plotting

This program provides a variety of techniques for
describing and operating on surfaces. Surfaces
may be described analytically by equations or nu-
merically by sets of data points. In addition, var-
ious arithmetic and logical operations may be per-
formed on these surfaces. These techniques may
be carried out individually or in various combina-
tions by storing intermediate data in the online
disk storage. Final output is commonly in the form
of maps drawn by the 1627 Plotter, but may option-
ally be in card form.

Optical System Design

POSD provides the optical designer with a conven-
ient, efficient design tool. It is in the Computer
Aided Design (CAD) category of programs, thus
exhibiting a close man-machine relationship through-
out the design task. The 1130 Computing System is
ideal for this interaction, because it is fast, con-
venient, and inexpensive to use.

POSD removes the drudgery and error-proneness
from the innumerable calculations required in the
optical design and evaluation process and allows
the designer to spend his time exercising creative
and critical judgments. The program gives the
designer step-by-step assistance from the very
early stages of the design through to the final opti-
mization process. In addition, the designer may
evaluate the quality of his design at any time he
chooses through many data plot or printout routines
or both. Using this program, the optical designer
can tackle virtually any lens system, including
those requiring a high degree of sophistication, with
the assurance that the lens performance will meet
specifications in modeling and manufacture.

Programs for Petroleum Engineering and Explora-
tion

Economic Evaluation of Petroleum Projects Pro-
gram can be used to screen drilling proposals and
rank them according to their profitability. Given
the investment schedule and production forecast for

an exploration and drilling prospect, the programs
compute the payout period and rate of return using
the discounted cash flow method.

Casing Design Program allows the user to design
the most economical combination casing string, in
terms of grade and weight, that will meet the re-
quirements of a given well.

Decline Curve Analysis Program computes the
coefficients in the equation best fitting past produc-
tion data and the reserves associated with these
data.

Tamer Material Balance Program is an aid in
predicting the performance of a reservoir.

Schilthuis Material Balance Program for a res-
ervoir that is subject to water influx, is evaluated
at each past production data point (for up to 28
points). These values are weighted according to
oil production and subjected to a least-squares
solution to compute a most probable value of the
original oil in place.

Two-Dimensional Waterflooding Program allows
the user to determine the pressure distribution
throughout a reservoir, taking into consideration
the effect of water injection.

Gas Deliverability Program allows the user to
project the annual rate at which volumes of gas
reserves may be received into gathering systems.

Multi-State Flash Calculation Program is a
general purpose flash claculation program that can
be used for a variety of the computations made by
the petroleum engineer. The program may be used
to design surface separators or to determine the
physical properties of the oil and gas from a sur-
face facility. A laboratory differential liberation
may be simulated.

Velocity Functions from Time-Depth Data Pro-
gram permits a geophysicist to derive a velocity
function and to prepare a tabulated time-depth chart
from well velocity data.

Wave-Front Ray-Path Determination Program
provides a flexible method to compute and tabulate
a seismic wave-front ray-path chart; the geophys-
icist uses such a chart to restore seismic reflec-
tions to their true subsurface position.

Synthetic Seismogram Program computes and
plots a one-dimensional seismic model from well
log data.

Gravity and Magnetics Continuations, Deriva-
tives, and Residual Program provides a method for
computing (1) upward and downward continuations of
gravity and magnetic fields, (2) first and second
derivatives of these fields, (3) residuals of arbitrary
type for gravity and magnetic values.

Section Subsections Page

20 60 20 03

Theoretical Gravity of a 3-D Mass Program
allows the user to establish a synthetic gravity
anomaly by computing the theoretical gravity of an
assumed mass.

Quantitive Log Analysis Program permits the
user to compute the porosity and water saturation
on prospective hydrocarbon zones in a well, using
data from several log combinations.

Dipmeter Program is designed to assist in the
analysis of the continuous dipmeter log by calculating
the true dip of intervals in a well.

Project Control System

This program provides a basic tool needed by
management to fulfill its responsibilities in the
planning, supervising, and controlling of project-
oriented work. In addition to critical path analysis,
the system provides the capability for summarizing
externally prepared resource and cost information.

For critical path networks, the 1130 PCS will
process 2,000 activities either in the form of
precedence lists or in ij/PERT/CPM notation. Its
design allows for a simple approach to networking,
but also offers many of the features normally found
only in programs designed for large computers.

Route Accounting for Dairies and Bakeries

This is a set of programs offering the functions of
route settlement and associated report preparation
as required in the dairy and baking industry. Out-
put includes order listings, production requirements,
load listings, product load strips, route settlement,
and statistical reports.

Scientific Subroutine Package

SSP is a collection of FORTRAN subroutines that
provide a major addition to those built into
FORTRAN. They are input/output-free, computa-
tional building blocks that can be combined with a
user's input, output, or computational routines to
meet his individual needs. The package has wide-
spread application to the solution of problems in re-
search, development, and design, in both science
and engineering, wherever FORTRAN is used.

Statistical System

This is a collection of four major tools: stepwise
regression analysis, factor analysis, analysis of var-
iance, and orthogonal polynomial curve fitting. This
flexible system accepts user-supplied control cards
(and data) that instruct the system to perform one or
more of the above analyses.

Structural Engineering Systems Solver

STRESS is a powerful tool for solving structural
engineering problems. It is a problem-oriented
language that enables the engineer to communicate
with the computer even though he has had no previous
programming experience.

This program covers many application areas in
the field of structural analysis. Most buildings
and bridges are designed by consulting engineers
or government agencies, but many other types of
structures in other industries can also be designed
using 1130 STRESS. Some of the other industries
and typical applications for each are:

Industry
	

Typical Application
Aerospace	 Wing members
Manufacturing	 Conveyor framing, plant design
Process	 Supporting towers
Utilities	 Transmission towers, culvert

sections
Federal
	

Dam design, ship design

Type Composition

This program extends the speed and flexibility of a
digital computer into the composing rooms of the
printing industry. Type compositors can use this
program to provide significant time savings in
transcribing textual material into a form required
by linecasting machines for setting type.

The program is designed to allow computer
acceptance of perforated paper tape containing
(1) the copy that is to appear in print and (2) instruc-
tions pertaining to a desired printing format.
From the paper tape, a tape suitable for controlling
the operations of a linecasting machine is produced
and allocated to the proper point in the composing
room. The output tape contains the original copy in
the form of properly justified lines arranged accord-
ing to the stylistic and graphic requirements described
by the user with the format instructions. The pro-
grams are capable of producing justified lines in
any format within the inherent limitations of the
linecasting machine.

Section Subsections Page

20 60 20 04

Work Measurement Aids

This program aids manufacturers who need to
know the time it should take to manufacture a pro-
duct. This task, often referred to as work measure-
ment, has traditionally been very time-consuming
and expensive. Work Measurement Aids provides
two programs to assist in setting time standards.
This information also forms the foundation for labor
standards, cost estimates, machine operation
instructions, and scheduling input. The two pro-
grams are:

Machinability, which determines optimum ma-
chine tool parameters such as speed, feed, horsepower,
tool life, and process time for machining operations.

Work Measurement Sampling, which determines
job standards for long cycle operations (over 15
minutes) and the distribution of time to job activities
(conventional work sampling).

Commercial Subroutine Package

This program provides the scientific and engineering
user with added capabilities for handling functions
and techniques common to commercial programming.
It is a set of 28 subroutines callable by the
FORTRAN programmer in a similar manner to such
standard functions as sine, cosine, square root,
etc. The subroutines enable the 1130 user to add
commercial applications such as payroll, cost ac-
counting, and many others.

The additional functions supplied are variable
length alphameric move, variable length alphameric
compare, variable length alphameric edit, variable
length conversion from EBCDIC to floating-point,
variable length conversion from floating-point to
EBCDIC, zone manipulation, fill an area with a
specified character, stacker select, variable length
decimal add, variable length decimal subtract,
variable length decimal multiply, variable length
decimal divide, variable length decimal compare,
sign manipulation, overlapping printing and carriage
control, overlapped reading of cards with conver-
sion of card codes, overlapped printing on the
console printer, and conversion from one charac-
ter per word to two characters per word.

	

Section Subsections 	 Page

20
	

60
	

30
	

01

Which Programming Language or Application
Program Should You Use?

In terms of coding ease and elapsed time from
problem definition to operating program, the pro-
gramming techniques available to you will generally
rank as follows:

1. Application programs (except Commercial
Subroutine Package and Scientific Subroutine Pack-
age)

2. FORTRAN, Commercial Subroutine Package,
and Scientific Subroutine Package

3. Assembler Language
The Assembler Language is rarely used, be-

cause FORTRAN, augmented by the Commercial

Subroutine Package and Scientific Subroutine Pack-
age, is more than capable of handling almost all
applications, is easier to code, and produces
efficient programs.

The brief descriptions given earlier will help
you to select the best language in which to program
your applications. A preview of the payroll pro-
grams given in Sections 25 and 35 will give you a
clearer picture of the kind and amount of writing
required to code some typical commercial jobs.

In addition, Section 70 discusses FORTRAN,
the Commercial Subroutine Package, and how to
use these two tools in implementing your system
design.

	

Section Subsections	 Page

25
	

00
	

00
	

01

Section 25: PROGRAM DEVELOPMENT

CONTENTS

Introduction 	 25. 01. 00
Programming and Documentation
Standards 	 25. 10. 00
Program Change Authorization 	 25.20. 00
Programming Aids 	 25.30.00

Documenting Variable Usage 	 25.30.10
Modular Programming 	 25.30.20

Programming Examples 	 25.40.00
Introduction 	 25.40.01

Example 1: File Creation 	 25.40.10
Example 2: Add Name to the File	 25.40.20
Example 3: Changes to the

File 	 25.40.30
Example 4: Calculations and

Payroll Register 	 25. 40. 40
Example 5: Check Writing 	 25.40. 50
Example 6: Check Register 	 25. 40. 60
Example 7: 941 Report 	 25.40.70

)

	

Section Subsections	 Page

25	 01
	

00
	

01

IN T ROD UC TION

This section is a workbook for the programmer.
Primarily by example, and to some extent by nar-
rative, he is furnished with a guide to coding.

First, suggestions are made for the adoption of
certain standard practices that will make the pro-
gramming job easier and the results more uniform.
Then follows a series of programming aids.

The bulk of this section is occupied by the final
part, a group of examples of coding required to

implement a significant part of the payroll system
discussed earlier. They will prove useful in pro-
viding a starting point for the programmer and il-
lustrating proven programming techniques, rather
than in being usable without change for any given
installation's system. Note that programs are
written at this point in the installation of your sys-
tem. Also, Variable Summary Sheets are filled in
and flowcharts are drawn. These last two items
now become a part of your documentation (note
references to Section 35).

Section Subsections Page

25 10 00 01

PROGRAMMING AND DOCUMENTATION
STANDARDS

For a discussion of the documentation that you
should have upon completion of a program, see
Section 35.

It is advisable to decide on and write down, per-
haps following this page, your own standard proce-
dures for handling the situations below. You should
have some knowledge of programming before at-
tempting to do this.

1. Alternative methods of handling standard
types of errors (for example, missing date card):

a. Assign a standard halt number.
b. Assign a standard halt number and error

message.
c. Assign a standard error stacker; do not

halt.
2. Standard error messages:

a. Establish a log of error messages and
halt numbers and their meaning.

b. Standardize spacing, skipping, location,
and whether to halt for each standard er-
ror message.

3. Standard FORTRAN labels:
a. Assign a standard symbolic name for

each I/O device.
b. Assign standard field names for fields

used frequently.
c. Assign standard subroutine names for

routines used frequently.
4. Record layout conventions:

a. Define standard heading (for example,
date to left, title in center, report num-
ber and page number to right).

b. Define spacing (for example, when listing,
single-space detail, double after minor,
triple after intermediate and up; when tab-
bing, single-space after minor, double after
intermediate, triple after major and up) .

c. Define how totals are to be indicated
(with asterisks or message).

d. Define how final totals and control totals
are to be printed (for example, at bottom
of page, on next page).

5. Specify when flowcharts are required for pro-
gram logic:

a. When a significant number of GO TO or
IF statements are used.

b. When a complex table lookup is per-
formed.

c. Whenever the logic of the computation is
so complex that another person would
have difficulty following it without the aid
of a chart (decision tables may be best).

6. Describe how program changes are to be
made:

a. Require changes to be authorized.
b. Assign all changes to a programmer

through the manager of data processing.
c. Keep track of time spent making program

changes by application and by initiator of
change.

d. Require that all necessary documentation
be brought up to date.

7. Outline methods of testing programs:
a. Define conditions in which a test deck is

sufficient.
b. Define conditions in which a program

must be production-tested before instal-
lation.

8. Standardize writing of specifications:
a. Establish a standard identification (see the

accompanying FORTRAN coding form).
b. Use a standard form of program identifi-

cation, such as a three-character appli-
cation code followed by a two-digit
program number (for instance, PAY10,
PAY20, BIL10).

Section Subsections Page

25 20 00 01

PROGRAM CHANGE AUTHORIZATION

All changes to an operating program should be
controlled in order to avoid confusion and

unauthorized changes. The following sheet is
suggested as a means of maintaining control.

PROGRAM CHANGE AUTHORIZATION

Application Program

Requested by• Date / /

Description of the Change

Change Authorized by Date Authorized	 / /

Dote Change to be Effective	 /	 / Actual Effective Date /	 /

Programmer:

Original Assigned for Change

Date Assigned	 /	 / Date Completed	 / /

Systems Design Hours Required

Coding/Debugging Hours Required

Section Subsections Page

25 20 00 02

IBM FORTRAN CODING FORM

Fortn X2-7327-

Printed In U.S.A.

Punching	 Instructions Page	 of
Program Graphic Card Form ii Identif icotio

'Dote Punch •Programmer 73	 80

C FOR COMMENT

STATEMENT
NUMBER

I	 5

i:r.
6	 7	 10	 15

FORTRAN STATEMENT
20	 25	 30	 35	 40	 45	 50	 55 60 65	 70	 72

e.-.-.-.- -	 To 81 NA MEI I	 I	 I	 I	 I / I

6.--.-- -	 TO 8/1	 a u m 815 iz i	 I	 I	 I	 I	 1	 I i

i	 I I	 I	 I	 I	 I	 t .

C.-.-.-.- -	 .F.R.016.R.A mMtE.R.	 .	 . i-.-. .	 .	 .	 ,	 1	 I	 1	 .	 I

C.-.--.-.- -	 .D,A.TIE.,	 .e.o.DIE.D.	 .. .--.-.	 ..	 1	 1.

—,— —1	 I I	 I	 I	 I	 1

.	 .	 .	 .	 1	 , 	 .F.111.,E.	 ,	 ,	 I	 .	 .	 .	 ,	 I	 ,F,I,L,E1	 ,	 ,R,E,C10,12..b.	 IM.o. • . .0[F. „	 .RiE.c.o.A.ms.

.	 .	 1	 ,	 .N.littg.E•	 ,	 ,	 I	 ,	 .	 INum,8,EIR,	 •L•E.A4G.T.H. 	 .R,E.e.oft,b Is. ,p ,6 - dt ,	 ,S,E,C,rio,K.

I	 I i 1
1	 I 1	 11	 1 	 1	 .	 i

C —	 — — —	 0 .U.ri P. U.T.	 . RI. L.E.S, 1 — . —	 .	 .13..1	 1	 /	 I . .
i	 .	 i

.— .— —	 1	 . 1	 .

1	 I	 5,.	 1
IS. 	SC 	 ,I, 	 ofi.!-

•	 '	 0- •
.	 .L .

4'7 	f2s)	

$tA

.• 4,), 	 _	 .	 ..	 /	 i	 elr.02..9	 to	 /6g.
'	 •	 •	 Y	 t	 I l,A"	 S,

Nr*	 N'
v

.	 1	 I
* A standard card form, IBM electro 888157, is available for punching source statements from this form.

	

Section Subsections	 Page

25
	

30
	

10
	

0 1

PROGRAMMING AIDS

Documenting Variable Usage

Especially when writing a large program in
FORTRAN, it is difficult to remember the functions
for which the variables have been used. This prob-
lem may arise during testing, particularly when
several programs are being tested at one time.
Again, program revision at a later date can be

difficult, and the problem is intensified if the revi-
sion is being done by someone other than the origi-
nal programmer.

The Variable Summary Sheet is a suggested form
for recording the usage of variables.

The sample shown here is related to PAY01
shown later in this section. Both the variables used
and the type (I, R, D, A) are indicated in the columns
to the left of the form.

Section Subsections Page

25 30 10 02

VARIABLES IBM I	 1130 COMPUTING SYSTEM

SUMMARY SHEETVARIABLE

NAME *La,
o
2

t.
-9-
48
ci
z

ci-
w2 F-
I— —-... LI-15 S
CL 0

MAX.
VALUE

MIN.
VALUE

Date

Program Name	 No. Programmer

FUNCTION OF VARIABLES

* Mode:	 I = integer, R = real, D = decimal, A = alphabetic

	

Section Subsections	 Page

25	 30	 10	 03

VARIABLES IBM 1130 COMPUTING SYSTEM

SUMMARY SHEETVARIABLE

NAME .
t0

i

4-06
z

II–
t 2
DI– b
a. 0
z

MAX.
VALUE

MIN.
VALUE

Application ,z7,4y,pozz .5.y.57-44-A7	 Date 645/67
A-..Program Name	 l7/6> c,,,elaile	 NoAry0/ Programmer

FUNCTION OF VARIABLES

c kw/Ix R 16 7 /#00,1 001 /ilax/n/u,77 oec4onior.miA/^a4/e,

CoA4i9 12 /61;O - - Comio,a,ly /7.0:97e:

,z/6wz-- R &t 0 0.0 0010 7-,r-,0,...f..5:5-cocial/O.-, re.,eor./..s.

I Z / r Used / . /2 00 Apo/0

IC I / 4/ - - Efv,;,,a4w7Z to Z/Vi

ic,z/c/ z / r eSaZA‘ ',''e.//7 4gegii;r7/.4,50 cAeC4. /74/e)ge,e--P, 41Aew .zu,'/ 7z; N9Cd'e'45.
enleribeve 4-7 5:4),e, 4,94,.. e „4:,./e 5.,, ,re-, 74 ,..70 6,y2_,,..74,z 1 / r 2.5-0 y ..41::cr.),,e1

,z,Z4,,,‘
_z-/fw _z'" / 7 /4,6 /0/ fiZe pu....n6,-,ape,',.),,,,,,,,e ,00,-.2"0/0„7/tiz,#_,,./e0

_INDEX Z 2-"Z 7- xx)ex /AO .7:valex. zio ,c)/44/ /yew 6e..41., ,oelcyce,ssez,
2-A/17 I / 0 0 0 C//no., /4/.1.4,/...-7 ,i'ee

_z-A././ I / 7" 250 1 Peco,..-",744,0,66,,-, ..,2 1:70/exes b44.0-pedoyee/Ch
2 - A/ e Z / A/ - - .1-fa/V a/e,p, e /.0 22V1
1N3 1. / ,'/ - - liPai3a/e,,,i /0 2-A/1
14/4 1 / A/ - - Z-fie./;va/e.7.74 A; 2,v1

.2.1/ 5 Z / - - Egu.s.,0Z-,,274 /a .2-4/../

Z>t/ Z / A/ - - fguiv4/g.2,` 14 f4/1

.1"/"..0 Z / O 0 CZ5 1.44/.4-ailes skileis of/ecorzi.n ,oreeessm,. ,,,cy4/e

23 ::/P1 I
T

/3 C.2 0 2:5 ,..5-2;Peo/&,,,,,,,171.41/ s'/C.E- Awy
27-67- /1 7.- /723 0 Acor/,r,'',74/ent4e.e. 4,--poshog ito 42. Se;en7//e4e,

i,o,e,ie of me frle,..,7e4
Iglet, i 7- ,5- y

*Mode:	 I = integer, R = real, D = decimal, A = alphabetic

Section Subsections Page

25 30 20 01

Modular Programming

General

Modular programming is used to divide your problem
solution into its logical parts or routines so that
each routine may be programmed independently. It
enables your complex problems to be divided into
many simple sections. A building block program is
thereby created that is controlled by a single routine
commonly known as the "main line".

A modular program utilizes the same communi-
cation system as established by an organization
chart. Work assignment decisions are made by the
main line routine, which is not concerned with the
functions of the processing routines. If for some
reason a routine is revised or eliminated, other
processing routines within the program are not
affected. However, a segment of the main line
might be changed.

There are three primary design criteria of mod-
ular programming: ease of understanding, ease of
program modification, standardization of program
construction.

To prepare and use an operational program
effectively and efficiently, you must be able to
understand the content of the program readily. Ease
of understanding is provided in the following three
ways:

1. Modular flowcharts. A modular system flow-
chart gives an overall picture of the major compo-
nents and structure of the routine; program flow-
charts then progress to any desired level of detail,
depending on the complexity of the routine. The
program coding is referenced throughout.

2. Detailed narrative of each routine. The nar-
rative of each routine states the purpose of the
routine, describes the data processed by the routine,
and explains each step of the program logic as por-
trayed by the modular flowchart of the routine.

3. Programming conventions. The use of stand-
ard labeling conventions and standard program docu-
mentation techniques enables a person unfamiliar
with the program to readily understand the program
content.

Years of experience have shown that, with 98%
assurance, all of your operational programs will
require modification and change during their useful
life. Ease of program modification is of cardinal
importance when your program must be converted to
fit a specific new situation. This may be because of
changing company policy, varied environmental
parameters or different management objectives.

Your programmer, then, has the problem of crea-
ting a program that can be adjusted to each specific
situation. There are two ways of handling this
problem.

One is to try to anticipate every type of special
situation that might be encountered and write a set
of routines to handle each situation. This would
require a fantastic ability to forecast the future and
would lead to slow, cumbersome programs.

The other alternative is to create a program that
can be quickly understood and easily modified to re-
flect changing conditions. Modular programming
aims to accomplish the latter alternative.

Once again, you may more readily prepare and
more quickly implement an operational program if
all the runs (programs) within your application ad-
here to a standardized construction. As indicated
above, the logical structure of your program must
be such that modifications and additions can be
easily made.

Consider the problem of multiple routines - for
instance, three economic order quantity routines.
The normal method of lumping these three routines
into a program necessitates setting switches to tell
the program which routine to excute at a given time.
Any attempt to modify one of the existing routines
necessitates trying to extract the routine, patching
up the holes in the flow of the program created by
the changes, and then fitting the modified routine
back in. Anyone who has ever tried to modify a
program written by someone else knows how difficult
it is to dissect and patch another person's logic if
the 'routines are intertwined.

Using modular programming, each routine is a
separate entity. Your main line routine provides
the master control that ties all of your individual
processing routines together and coordinates their
activity.

Modification of routines is simplified. Further-
more, new routines may be added by simply expand-
ing the main line routine to transfer control to the
new routine in the proper sequence.

Modular Programming Conventions

Modularity is accomplished by employing the
following conventions:

1. The main line
a. The main line routine makes all decisions

governing the flow of data to the proper
processing routines.

b. No processing routine can direct data flow
to another processing routine.

	

Section Subsections	 Page

25
	

30
	

20
	

02

c. Input and output functions that are common
to more than one processing routine are
controlled by the main line routine.

2. Processing routines
a. A separate processing routine is created

for each logical segment of the program.
It should accomplish one task in its total-
ity.

b. Each processing routine is complete with-
in itself, with its own defined areas, when
such areas are for the exclusive use of
that routine. No decision made outside
the segment should determine the proc-
essing within a segment, and likewise, no
decision within a segment should determine
the processing outside the segment.

c. Each routine is designed so that it is, in
effect, an out-of-line subroutine. Control
is transferred to the processing routine
from the main line routine, and when
the routine has performed its function, it
sends control back to the mainline routine.
Entrance to and exit from the routine
never depends on a particular preceding
or trailing segment.

d. A processing routine may transfer control
to a multiple-use subroutine. When that
routine has performed its function, it
transfers control back to the processing
routine.

e. Input or output functions that affect only
one processing routine may be performed
by that routine. All segments should
contain their own initialization to ensure
noninterference with other segments.

f. A debugging aid that is sometimes useful
is the inclusion of pauses at the exit of
processing routines. During testing, the
pause indicates that a particular proc-
essing routine has been executed. After
the routine is checked out, the pause is
removed. The insertion of GO TOs into
the program at strategic points may also
be used to bypass the testing of particular
routines. Action to be taken regarding
such PAUSES and GO TOs must be known
and documented before the testing session.
This technique tends to make good use of
test time.

3. Multiple-use subroutines
a. If the same sequence of statements is used

by two or more processing routines, these
statements should be established as a
multiple-use out-of-line subroutine.

b. A multiple-use subroutine must be well
documented for the purpose of program
modification. Comments cards should be
used to indicate which processing routines
call upon each multiple-use routine and to
document the linkage established.

Designing a Run

To design a modular program, determine the pro-
gram variables. List the requirements, elements,
and functions of the program as they come to mind,
giving no attention to logical order.

Once the variables have been set down, reviewed,
and revised, determine the logical order of the proc-
essing routines, and design the main line of your
program. Construct your main line so that the
largest volume of data is processed by the lowest
number of instructions - that is, in the fastest
possible way. A speedy main line contributes
greatly to the throughput capabilities of your pro-
gram.

Once you have established the logic of your main
line, draw the overall, big-picture, system flow-
chart. Give careful attention to this diagram be-
cause it will tend to reveal most errors in logic.

The following components are generally found to
be present in the main line of typical programs:

1. Beginning of item. Before obtaining a record,
it is often necessary to initialize certain switches,
counters, and areas. Generally, fewer instructions
are required to initialize before entering a routine
than after exiting from it, since routines commonly
have several exits.

2. Obtain the item. This segment of the run
retrieves the record, sequence-checks the file, and
updates the input control.

3. Process the item. The processing of the
record is accomplished. The main line transfers
control to the proper processing routines in the
proper sequence.

4. End of item. Generally, there are a few in-
structions to be executed just before disposing of a
record. The instructions associated with the clean-
up work for the present record should not be con-
fused with initialization for the next record.

5. Dispose of the item. This segment of your
run generally puts the record in an output file, up-
dates the output controls, and transfers the program
to the beginning-of-item routine to start the loop
again.

Use the modular technique with a block wherever
it simplifies the logic of the processing routine.
Each routine should be as efficient as possible.

Section Subsections Page

25 30 20 03

Look for opportunities to consolidate several in-line
routines into one multiple-use subroutine. While
sophisticatedprogramming techniques are acceptable,
the particular degree of skill and knowledge avail-
able to maintain and modify the program should be
kept in mind.

The following suggestions may help when pro-
gramming and documenting:

1. List the functions of your routine.
2. Plan the logic of your routine and sketch a

flowchart.
3. Program your routine.
4. Draw the final modular flowcharts of your

routine, shown to the necessary levels of detail.
5. Create the test data so that every leg of your

routine will be thoroughly tested.
6. Write the detailed narrative of your routine.

It is easier to document your routine when the
information is fresh in your mind; furthermore, the
documentation thus produced is more meaningful
and more comprehensive.

Summary

It has been found that programs employing the
modular technique are efficient from the standpoint
of both core storage utilization and program execu-
tion time. Section 90 illustrates the importance of
these techniques.

Furthermore, extremely comprehensive and
detailed applications, designed and documented
with the use of modular techniques, may be readily
understood by non-program-oriented personnel,
ranging from company executives to novice pro-
grammers.

	

Section Subsections	 Page

25
	

40
	

01
	

01

PROGRAMMING EXAMPLES

Introduction

The examples in this section show various basic
programs in the payroll system. Note that these

examples are programming illustrations and there-
fore may not be considered as complete, usable
programs.

The programs are arranged in the order of their
complexity, progressing from the simplest to a
complex file-update run with exception reporting.

Section	 Subsections	 Page

25
	

40
	

10
	

01

Example 1: File Creation

This program reads cards containing employee
earnings information. The information is edited
for reasonableness and then written onto the disk.

The program illustrates a simple single-file at a
time run, with a minimum of calculations. The fol-
lowing programming techniques have been used:

1. Documenting with comments. Comment
cards have been used to document the program
logic. The program name and other indicative in-
formation are documented at the beginning of the
program. Comment cards describing the process-
ing to be performed are placed before each logical
section of the program.

2. One-at-a-time input from the console key-
board. Data items to be read from the console key-
board are requested one at a time (statements 69+1,
69+2, and 69+3). This technique will reduce console
input errors and will notify the operator when a re-
quested field has been completed (the keyboard re-
quest light will go out).

3. Entering a partial record. Since the com-
plete employee record requires more than 80 card
columns, it cannot be punched in one card. The
name, which requires 18 card columns, is punched
on a second card. However, to prevent a name
card and its associated employee record card from
becoming separated, the employee name is stored
on the disk by PAY02.

4. Editing for reasonableness. Fields on a
card which have limits, or a range of values, are
checked to ensure that they fall within the range
(statements 100 through 109). This provides an

effective control of the information being stored on
the disk.

5. Program identification numb ring. The pro-
gram identification for the File Creation Program
in the Payroll System is PAY01. This method of
identification uses a three-character alphameric
abbreviation of the application, followed by the two-
digit run number in the application. • Identifying
programs and documentation in this manner facili-
tates an efficient system of organizing and filing the
documentation and the various decks pertaining to
each computer run.

6. Using packed data. To take full advantage of
the disk storage available, as much information as
possible is packed. This includes the employee and
plant name fields. In addition, where possible,
some values are compressed by storing them as
integers rather than real numbers.

7. Setting up for future reference to the file.
The file organization scheme to be used in the pay-
roll system is indexed sequential. This program
must create the index, in addition to creating the
file. Notice that there is an index entry for each
employee. Later programs will be able to locate
any employee by simply searching the index in core
storage and then reading the employee record. The
relative position of the employee number in the in-
dex is the record number of the employee in the
file.

8. Variable Summary Sheets. These very im-
portant forms are present in the following pages.
They have been prepared for this program and all
other programs in the system.

Write the
Record to
Disk for

This Plant

Stop

Yes

Setup
Name
Field

Retrieve
Company

Name

Read All
Information

for One
Employee

Setup
Quarter-
to-Date

Information

Check the
Data for

Reasonableness

Write Disk
Record of

All Informa-
tion for

Employee

Initialize
Trade

Association
Information

Write to
Disk the
Index of

Employees

	

Section Subsections
	

Page

25
	

40
	

10
	

02

Start

Initialize
Variables

Read
Plant No.
Week No.
Check No.

Section Subsections Page

25 40 10 03

4

g

Clock
No.

Pay
Rate

LI,	 Social
,	 Security
s	 No.

2.s.
.,,-E t
51 g

Gross
Earnings
YTD

FICA
YTD

FIT
YTD

Local
Ten
YTD

Credit
Union
Deduction

8 f.% 'g
"j t
Ea

,e g5
8 -g

i VI C:I

 .5z- g
.12 -La

0 0
Union
Dues Blank

il 1
g in Blank

AA
en

00
1 2 3 4 5 8 7 8 111011121314151617111920212233242528272820303132333435363/38394041424344454647484950515253545556575859606162638465666768697071727374757877787980

11

22

33

44

55

666.66666666666666666666666666666

777177777777777777777777

88

99
1 2 3 4 5 6 7 8 91011121314151817181020212223241526272$21130313233343536311839404142434445484148050515253545556575859606162636465666768697071727374757677787980

	

Section Subsections	 Page

25
	

40
	

10
	

04

VARIABLES IBM	 I 1130 COMPUTING SYSTEM

SUMMARY SHEETVARIABLE

NAME «ow
0

12'
°
-0
6z

0.
2I-iu ,I---. E
is 5
;t- °

MAX.MAX
VALUE

MIN.
VALUE

Application RA y;e60)1L Sys .71X7	 Date 6V/447
A-Vi.E.Program Name .,4776::, neseat,le	 No./3"ye/ Programmer

FUNCTION OF VARIABLES

ck-A44x ,E7 I 3 7 /#004" 004e .tidA-1/4)-74.47 c4e.e4 a,,,,,,,,I4 A,-.0 47e,

CoA4.0 12 /t .4•D - - Camloawsy /10.9-76,,

/4--/Z5WE. R 2¢ 0 00'0 0.010(Troop P.07_ 6,' ,SS-C)C/.:77/0/7 e•&;ppev7fs.

7 I / r CAred / ./2 00 A,47/0

1-C r / W — — 6-eve,/,...a16,.2/ 71-o _TAX(
1C#CIG j / r e644% ,;:0,-4/,', 48e!lie,/ 7 /4.3 cAeoc.b... //ziew6e0P'41Aeon iu,77Cni..9	 C'46'e45.

17 4,..av 6eve .;-;c'',.--",,,/, . / � , ye. e F•/e s. SE, 74 e...;/0 .6....v
ICOZ 7 /

26-'0 1 "PE:'et.)/4.471
"Law,-

..7-/f/v 7 / 7 /06 /05/ File Alumbe,/, are' index Poe" a/0/4..,/. /0.46 74/0e2

INDEX z T xxxx MO 1-,,,deice /0 /0/44/ mow6c0.419 /0,-.4:7CeS•Sek/

Z/V-Z7 r / 0 0 0 Ch/o., ..7;71/obe' ,-, ,eee
ZA /1 1 / 7- 2.3-,0 21 Cd.ce," - / 'Jamie", /., 1.9dexes 76 Fm

Tit/ e I / /V - - fie...,,, 04...2,71 /.2 ..rit/i

2"/V8 7 / 4/ - - ii,a/v.34/4.07/ /0 Z/Ve

1 A/4 2. / A/ - 4"--12a; v-P/e/774 7c.3 17-,ve

..1/145 .1. / A/ – — Lcor//,.. 4,/.w7‘ /a 7141

I/t/a z / A/ - — Ege./.",/Q4wr 7`o Ii4/1

i-PD Z / 6 as Adec:-49/95 3/4/as 01(2WrigleY1,0,11Ce.SS/e0,94 Cy4/G"

2:5e46%° , I /3 0 0 Si.//0/3/e,,,,,,,,714/ s•c4 iewy
.1.76:)7 Z // /723 0 ile-cor., r .2e*rit4e..- 4.-ficsslimg,44:2Senenr//e4e,
Ifree,e / T -5- f m-ee of IA r frier, li

* Mode:	 I = integer, R = real, D = decimal, A = alphabetic

i

Section Subsections Page

25 40 10 05

VARIABLES IBM I	 1130 COMPUTING SYSTEM
SUMMARY SHEETVARIABLE

NAME •

02

el
°
5
dz

Lo n1-- –--- E.15 b
,°- °=

MAX.
VALUE

MIN.
VALUE

Application p4Y,e0LL 6->"*._57-,e7r1	 Date 4 //, 5.-A 7
Kk

Prdgram Name ,,,C2le C."'"e"Wie'	 No.R4)/0/ Prog/icrammer

FUNCTION OF VARIABLES

2:R/14.4 2- / A/ - - /o..2-Ce:)Z
/-s' / T 9 ,{0 Z,1 G4.--d')1,1=t5-1

LIST Z / 7 XXX 44571 ■-&-co.-e, / .74.,-,-/.6e.r. 4-7 14.

'80 Z / A/ - - _e-ev/i.4./e.w," fa .2-CD2

2 8T Z / 4/ - - if-la,* x0/,..1>i/ 7`6, _I-CDZ

Z /fIC I / A/ - eiee/giAgre 40 _.TCOZ
Z. 5-7" Z / T 250 2.50 Las-71 recor.,44,m66P." ir; a "<%/e
zy,(...,././R.,_ / 0 ,;2,d(774 I's yene's accid4-7,../oho,-2 are heve,0-s 444veske9/

	 .."76,/^ frecosivew p4,,y

e/,s-ed //7 00 t 0 ofi/Pt I / T

/WAS I / 4,61 0 / /Pliei/ct l ,r/474.05-- 0- si;ig/e..).)K v.. ,,,,,-7.9,9/..)

/Wi/A/C A/ - 49ein, dr/ewiz /40 _ 2 " -CC,Z
4/4avez/Z / 0 0 0 4de///i..0•70/ edrislhAokii?	 efo-Iozo/27
//we 42 9 4.4 - - ...e/oo,riy Orev1.4) AA; el:0 ii•e/ .5;aace .A.- ,14.,,,e
4/0/CM 2- / 0 0 c4e,c„e rpe.",-,746,,-- z",s-ezy, Kw., /AA; ,,,,,„„/„.,,,,,
4/67j 7- z2, xx•xx e Cee,./...,	 e..0.1.e, 7 ,-/,,,-,/,,..47/;k),-,
4/6-eta / D 0 al *kw/Ay creel// e/4/.1 e/r4...e . ;ions	 04;rles)
A/DeigS z- / 2-,)06)0(0=5 avDel 4Ives dedac,/or7
47/44C 1 2 xx.)0(0 .Lisaelowce dee-11..-//e),-7
A/0/56, 1. / .0 0 off 41/see//0,7e.aas sleek is /,',c2,-,s-
&DR/ 7 Z / 7- Pe / 0 /2 14 of-, 40.r", hea'.1-•

'Mode:	 I = integer, R = real, D = decimal, A = alphabetic

•

	

Section Subsections
	 Page

25	 40
	

10
	

06

VARIABLES IBM I	 1130 COMPUTING SYSTEM
SUMMARY SHEETVARIABLE

NAM .wo
o
2

-El
-06z

I I -LU___I– E

a- O

MAX.
VALUE

MIN.
VALUE

Application ,z7.4 >%e0L Z --5-- ><_5-7Z-41	 Date eV/57a 7
,	 .4--/i/c.Program Name ,C,/,0/6. Cre,f774e	 No..,74,Y1W Programmer

FUNCTION OF VARIABLES

4//f747-n" 1 / 40 .391 /25- z-,-2„,7/oyes 	.. y ./- 1-7//''
4/-5.-EX 2- I:,:. 3 / ,s-ex -(/-A-ma/e);(2-/ia/e);(.3-711-eAc-keri)
/Vs's:VA/ 1 3 4-044,4y5 9,h:9/Y5 5-0 C;e7/ ,5-6-..Cti,,',.	 IG//-)r7'

6.7;47 .7/v 2- / ...) 6-- /

0

,&:1-3/)./4 yd- 	 sla 1 as -(/- 46,7,,o.2..1., (2-2`1^ack. e9/3_,/f,„.,"„;0„)
	 Ad/ 71,,G7e),L4-rloe,- an /on, po..1 r'//91e),(S. terw-) , .7 a ta')

S /e,c k el&vrilvc 4 'Dr:/5-7-c.k- Z / .1.,- V X)C.xX

/1/57ii'D I/ 0 0 0 4//:°,27//y .5,10c 4 ieduc/..;7.-75-

/t/U,4 I / 7.,e) XX. XX e ch-,,./e,-I a.,4 0e2/ deele...c/Ao pis

/va/w z / ID XX'XX Meal Clack. /7 e//,.746E'e-7

441/A/b/o° 1- / 0 0 0 /1.4/#16eiv erl et, e4'	 x/7,17-9/47,16240/
/04/4"/9.4) 2/ 0 c' 0 4/4,416e,-, ore tve•er4s 720/..d

4/x3fPf- 7 /1;0 /7 Of /4-6,e/era/ ex torn,v1i.o /7s
/1/X/i1i. .r / 0 / 7 0 6-fail& EXE:'/W 74: 0 /25-
gier D R 643 0 XxXX)0(0)5” si"

Ocior.fer- fil-arafe .:21:o.^m a /A?: v-; Ngt-oss,(2),17;(3)FICA,
64),oc: Aix, (S) A•76-4 a/ages, 6.).s-,A-,04,y. Ye,of, -7io-dole. ..i/Oev"vhor,()9,ness,.) " :7C4,(3 A-2.6/)	 Ce)69 #7C/9 wages (s)sick ,oay, re) spec. A (7) -s/oec. 5y ro 47 21 .1...0 k wo c.x< 000
27)ie c. 71-a x,(9) "lei. hes.., (i 40) Or he.sA) bonus h r's,72) tnel . ei'wg (/3) 0 7 e,v7s., (/4) bonds er. el. s. .

* Mode:	 I = integer, R = real, D = decimal, A = alphabetic

Section Subsections Page

25 40 10 07

IB FORTRAN CODING FORM
Form 828-7327-4
Prinbd in I I.S,A.

Punching	 Instructions Page of
Program PAYROLL.	 SYSTEM Graphic 0 o I I 2. Card Form* Identification

IIPAY97.1.	 .	 .Programmer riLE	 CREATION Dote Punch 0 L I .i ; 73	 80

1.— C FOR COMMENT
STATEmENT

NUATBER
1	 5

i6
6	 7	 10	 15

FORTRAN STATEMENT
20	 25	 30	 35	 40	 45	 50 55 60 65	 70	 72

C.-.-.-,-- To Dl	 n./ A m El I – –	 R Ail" R 0 L Li	 S V S TIEPI	 - 1 F _1 I- E	 !CR r A Ti 4 ON I 1 1

C — — — — —	 JO BI	 pio.,96,61g 1- -	 e AO 1 i .	 1	 1 1

...	 I I	 I	 I 1	 I	 I	 I

-	 -- -	 .9 .R.oic,-,4 A .m.miel zo	 .	 . i-.-.	 .c... g ..*.c.ric.K.	 .	 . 1	 .	 . 1

.— ,— —	 .b.A.riE,	 .C.o.DIE.A.	 .	 . 1 -,-.	 3,21/ 23./.6[7,	 . 1

C . — , — .—. — —	 ./:).4,r1E.	 .u.P,Ditkr,E-..b.	 ■ -.-.	 .	 I

,	 ,	 1,x1 t..E„	 , 1	 ,	 .	 .	 1	 .F.L.L,E1	 „,e,E,C..441e.fa .	 itio,•,	 .01r.	 . .	 ,eiec.a.R-.A:;,
tg. RAE I	 aV.v.m.13.Eo2	 ./.,C/IATii RIE,c.o.k.171,5. 	 . PERI	 ..5,c.c,riode

-.-- -	 I.N.P.u.T.	 .F.iii...E.S..	 1 .-,--.	 ,r4o.N.E.

1	 I	 I . . i
C.-,-,-,- -	 .o.u.T1 P. u. T.	 .F,r.L.e.s. ,-.-.	 .	 .14..	 ,C.0•1,F.P.	 , 1	 I	 it	 1,1,1.	 . . as4

it..	 34 V.10. P. . I,	 24	 Lite .ri A		 i

.	 31,	 .m.dc,F P .	 . t	 .	 ,	 _3 1 	.	 /1 6 fi.	 . -1/1/i.
.	 ,	 . .	 q i.	 t-.6.o,FP .	 .#1	 .	 .14 1 I ..C.6f.	 I I	 .

,	 .51..	 .1-6...rpr.	s",	 iii.p.	 . I /.Cps.	 I	 .

.41. .	 . /..m.c, FP. 1	 .	 /I 1f	 . I 30	 I . i

C __ _ - .71,	 ?SW ' F.o	 .• ..z..5-1	 .	 .	 ./0".6.	 . I 6	 I.
.	 .21..	 .,T•N,Dix,i.	 . I .	 I/. /I .	 I .l. .„ .	 I .2,6771.	 . .	 1•,...1,11	 1	 .

- -	 1		 I	 .	 II.,	 .1",w,Dix.2., 1	 I	 I st 11	 1	 1 9, ,3.2/.	 ,
. I	 .	 .	 . 1 , 01. .	 .r./4/Dix.3.	 .	 . 1	 .	 /.4.5,	V.4.	 I	 . .	 1 3 .9.	 .	 I	 ,

* A standard card form, IBM elects.° 888157, is available for punching source statements from this form.

IBM FORTRAN CODING FORM

Fom X28-7327-4
Printed in U.S.A.

Punching	 Instructions Page	 of
Program PAYROLL S	 mYStE Graphic 0 0 '

ard Form 0
* Identification

Programmer pFILE, CREA TION Dote punch ,w x6 ,9 4 IPA.Y10.1.	 "80173
C FOR COMMENT

; STATEMENT
NWADER

1	 5
j
6	 7 10 15 20 25

FORTRAN STATEMENT
30	 35	 40	 45 50 55 60 65 70 71

I I .	 1.. . 1/1, ft.r.p/Dix ft 	I	 I	 / o, ■ I i SSO i 13 a. 0 0 ,
I /7i. .7://Dix.5.	 i	 I	 Los; I / i LT 0 [,	 ,32..,o ,

I . .i.;4. INnix 6	 1	 1	 1 661 1 / 1 .	 3.o.	 1 13.2.0 .	 I

	

Section Subsections
	

Page

25
	

40
	

10
	

08

IBM	 FORTRAN CODING FORM	

form X28-7327-4

Punching	 Instructions Page	 of
Progra PAY Rot.SYstEM Grophic 15 0 I r s Cord Form # Identification

if? &Vs. t.	 .	 .	 IDoteProgrammer	 -1:11.E.	 ceekr 1D NI Punch t, 2, i 9 C 'Bo73
C FOR COMMENT

5TATEmENT
NUMBER

155

•E'tf,	 FORTRAN STATEMENT
6	 7	 10	 20	 25	 30	 35	 40	 45	 50	 55	 60	 65	 70 72

- ,- -	 11I	 I	 1	 I	 1

C. — — -- —	 R /. I. I o c R r a	 itatieillY	 .5 r ohe A G. ,E	 I	 I	 II. I

I	 i	 II	 I	 II	 I

z a.r.EIG.E.R.	 .c.do.m.P.l..,16).	 .	 .	 1	 .	 I

D.z.m.Evi.s..r.o.m	 .F..z,a.RIE.0 .8.) .1	 intb.6X(.2.6-.10).	 . z...swP.P.Ci 1.1). . Iiro r(Ili).	 .	 WANE. (.1) 1.

I	 .	 i	 .	 .	 i	 .a.SSAina...3).) 1 	.Q,R,T.111(.0.).), 	 i Y. T.D(.iiil.).	 .	 .	 1		 i	 .	 ■

- -	 .Dr Fl.r.N.E. .-nii E.	 FrILES	 .F.o,e. .rilas. ,P,koAR.h./41 As ..b.as.c,R,x1S.E.1), 	 dliA,e),VE,	 a.m. a	 1

C.,-.--.-

y

-	 .r.q.Uir. 3A.1...EiAl.c.E .ri&E .VAR.ZA&L,E.s„F,DIR, .A.(Ex,r, ..egc,o,R.b. ,410,frid.E,4 ,

DE FsuvE.	 • Fri e..E.	 ,	 ,	 h. (.a..s.cii „. 1.60 5 10 1 x:e.oll.).	 .	 2.4(10 $ /16 0 , u) iXIWV 4.), 	 .	 ,
I	 .	 i	3.(.20 , /64.54. 5 ,tu.nic),,	 4,(.s:91)./ i4.0 ►Q,,z-.13.0).5,

,s-(1.5.4) /. 4.54, u	 L RT)	 6 (30	 L6, 2. 114.LLtic), 	 Ls: (45■/$6.(,,,,.0■9.mt) .

Q., zn/a)	 1/O.3 6100,1 3 10. 31-A131),,3	 1/ .4.i .(Ais-ch. / . 1 . u pr Iv 1 i))	 ./04-(90,./,
If	 . LI Oh, (SW ,./...ui, I ast.)i,.	 / 0,51(/.,s795)1 /3 u.	 I / fi G (3I 	 5 / 3 Li, z/v4.),I).xpvs-).5.

3

E.9.011V.A.L.ENICE . (.ric 0 L	 LAI.G)	 i5.21k/t/A...././41up/c"tisn"./.13.-r, 3

1	 IIi	 1	 1	 (IINI I	 IN12.	 rtJ 11	 =a 1+ lids"	 mt.I6)	 1 1 	 1

1•	 .	 1

I	 I	 I	 I	 I	 I	 I

i
* A standard card form, IBM electro 888157, is available for punching source statements from this form.

Section	 Subsections
	 Page

25
	 40
	

10
	 09

IBM FORTRAN CODING FORM

Form X28-73274

Punching	 Instructions Page	 of

Program PAYRot.t_	 S Ys reit') Graphic 0 I I Z. Cord Form Identification

IPA.Y95.1.	 .Programmer	 Dote
I ECREATION

Puncn .x6)
it.
7

0
9 73

.
80

C FOR COMMENT
STATEmENT

NUMBER
1	 5

FORTRAN STATEMENT
6	 7	 10	 15	 20	 25	 30	 35	 40	 45	 50 55 60	 65 70 72

I	 1	 1I	 I	 I	 I I I	 1 I

-	 x 14 IIT 'AA_ zi7 P	 1,/ AI Rs A B 1.4 E-S	 1	 I	 I	 I	 1 I I I

.	 .—— —	 I	 1	 1	 1	 11	 I	 I	 1

C .K.m.Alx...a.s.043.#...	 .	 I

=,C. =.11 ,	 1

r.C,0.1-1=.1.	 ..	 I	 I	 I	 1	 I	 1 I l	 I I

. 14 , z , Ti .., 56,	 ..	 i	 1	 1	 1	 1t

Z .A1, I . .u i 	i,	 ...	 I	 i	 .

I. P,b , u., 0.	 1•	 •1	 1	 1	 1	 .

D.o.	 .6iFi,	 .i.,.. I I s , 1 .3,	 ,	 1

..	 .6.8 I.S.u.PiP.(.m.) ..I	 I0	 . 1

Z. T 0 T i (I)	 u / 1 1 /	 t I I

X "r.o.'n (.2.),:,C, 2,13, 1 	1 	 1	 1	 1.	 t

IT.O.r1(.3.).=.412.95.	 ..	 1	 1

1.T:o.Ti (.5-.).=.61A.S": 	 ..	 i	 I

I,TATI (.6.),= 4 12,6.,,
1	 IT .n:ri (.7.) .,-.... 61.2-1	 I I

: 1-.0.1-1 (_R.) .=.41.t g.I	 1	 11	 I1

• T.o7r1(.9.)....,i1	 I	 I	 I	 I	 1	 1	 i .	 .

on(/ I) .14.3.5-.S.	 1	 .	 I.T . I	 I	 . I

1-.Y.R.HIR=.54
* A standard card form, IBM electro 888157, is available for punching source statements from this form.

	

Section Subsections	 Page

25
	

40
	

10
	

10

IB FORTRAN CODING FORM

Fon. X28-7327-

Pr inted in U.S.A

Punching	 Instructions Page	 of
Program	 PAYROLL	 SYsTEAT Graphic 4, 0 / E Cord Form # Identification

IPAY4.1. . .	 IProgrammer	
FI LE	 CQEAT/ON

Dot x
6

0
9 73 80

C FOR COMMENT
i SZTi EzEEr

1	 5

i

6	 7	 10	 LS	 20 25
FORTRAN STATEMENT

30-	 35	 40	 45	 50	 55 60	 65 70 72

NA *Wm:	 I	 I I I	 1 I i t
NC N Cik: .0 . 1	 I I I I	 I	 I	 t 1 I	 I
NC u Di p . f	 I	 I i I I	 1	 1	 1 .	 1 .	 ,

W.M.3.5)C.:-.4	 .I 1	 I	 . .	 I
nts:rxit4=4	 1 I I 1	 1	 1	 1 1 1•
et Pik,f4P. t.0, . .	 i	 .t
iv ki.k.PIP.z th•	 . " . I

9 KT, bi (S.) ,---,C1),	 1 I	 1	 1	 .	 I

.T.Di (6.) ., ..9.2	 =-16

00.	 .619.	 .ht .---. /1	 J.Y.	 ,	 i I I 1	 1	 1

.6.9 Y.T.11(im.).= 4/4..1 1..	 1	 I	 1 1 1	 1 1 .

—	 _ .—

IB FORTRAN CODING FORM

Perm X28-7327-I
Printed in U.S.A.

Punching	 Instructions Poge	 of

Program PAYROLL	 SYSTEM Graphic Card Form # Identification
1 P. A.Y146.) .	 .	 • IDoteProgrammer	 FILE	 C RE- AT /0/i Punch X(o

it
9 9 73 80

C FOR COMMENT
STATEMENT

NUMBER

i	 5
i
,5

6	 7	 10	 15	 20	 25
FORTRAN STATEMENT

30	 35	 40	 45	 50	 55 60	 65 70 72

I	 I	 I	 I I	 I	 I	 I	 I I	 I i

C------ REAtt,	 P/IA Nr	 Mum a e R, % WEB t	 ././.1/141 &ER.	 101- Mt)	 CR E.0 k i Mum . 8 .E1 R I	 I 1
I	 1	 I	 I

,,
I	 1	 t	 1	 I	 I I	 I

R.E.A.G &et .5 4.)1	 .047.P.LI r	 .	 .	 .	 I	 . .	 .	 1 I
E A ..41“.) Cl)i	 .2.■./.E.EIK. 	 .	 .

...---
R,E,i.p1(.6.5.5.)1	 ,I.C../.1.c.ilr. 	 .	 1 1	 1•	 .

it F.o R.t4A.T.(.1',11),	 I	 1 1•

. F-1- 7 R filtA.r.(I.2.1) ,	 .

Section Subsections Page

25 40 10 11

IBM FORTRAN CODING FORM

room X 78- 7327-4

Punching	 Instructions Page	 of
Program	 PAYROLL.	)`/STEA1 G raphic 0 0 i r Z Caro Form # • 10entificotion

IP.A.Y4.1.	 .Programmer	
FILE	 CREAT/Onl	

Dote Punch X
6 /

it.
9

as
9 73 .B0en

r-- C FOR COMMENT
STATEMENTNUMBERNUmBER

5
6	 FORTRAN STATEMENT
6	 7	 10	 15	 20	 25	 30	 35	 40	 45	 50 55	 60	 65 70 72

I	 1	 I	 1	 I 1	 1	 I 1

C, — — — — —	 CA L iC01 AT I E 	 rg Ei	 P r i_ al	 /11..)./4316.2	 Ot t 	r /4 F	 liNhE XI	 FOR	 1r/4E CIURRE MT	 PL AINT. I
C— — --- F 1- A4 r 5 ki	 'IN r r T Ai L 1 2 'NU;	 V A Rix A S L EIS	 —	 .1170 r- (41)	 t nor (1 01). 5	LAT	 I I

I	 I	 1 I	 I

I F./ b =1/ 0 0	 4.1	 t/0 ei..177 .

&o.	 Tin	 . (.5711,..C2.,,,513.5.575z,11.r.s:,,s-,t1),,,,Y.o.PILT. 	 . 1 ■

_5 / L 5.T..12 5756.	 I	 I	 1 1

4,0.	 .no.	 .577	 1	 .

,..5.,z L 5 ,T=190

I 7.0.71(./ .0.).=10	 .	 1

6-.o.	 :no,	 .58	 1 I 	.I	 I i	 i

5-.3 L 5 r=iz056

1	 ■	 I

578 T.o.Ti (#.).-..4a /	 .	 .	 11	 I	 I	 I,..r 1 1

(r 0	 TIO	 . 6.0.	 iI 	 I	 1 I	 1

Srii L . 5.T.:15:05.	 ,1 	 I I	 1	 1

G'0	 TIO	 .5:7	 I 1

SS L s T r-o .5-93„I	 I	 I	 i I	 I	 t

/.70.7-1(.4.):=01. 1 ,

CT O.	 .T10.	 ..C'Q	 1I I	 1	 1 I	 1
SG L 5T=1.3 0	 I	 1	 I	 I	 I	 1	 I	 I I	 1	 I .	 i

*	 A standard card form, IB	 electro 888157, is available for punching source statements from this form.

IBM FORTRAN CODING FORM

Form x29-7317-4
Pt int. ;o1 U. 5.,

Punching	 Instructions Page	 of
Program PAYROLL SYSTEM GrophiC 4) 0 I i Z

Cord Form # Identification
.P.A Y/ .:)).1	 . IProgrammer FIL E CREA riot,/ Dote Punch X4 i I L

'I 1z1
1 73 80

i— C FOR CO

i,57,47.fmtN7
NumBER

,f1

1	 5 6

ENT

7

FORTRAN STATEMENT
20	 25	 30	 35	 40 50	 55	 60	 65	 70	 7

IT° Ti(*) •=0
	

	.1—	 I 	 L.	 1 	

r-rrsTI((05) 	 	_L 	 f

1	 I— — — 1 — — 1— — — 1 — _1:_.— — —_1_ 	 	 — 1 — --

5-9

	

Section Subsections	 Page

25
	

40	 10
	

12

IB FORTRAN CODING FORM
fo,m	 %2B-7327-4

Punching	 Instructions Poge	 of
Program

PA YR o L i-	 5 YS T E M Grophic (I)

0

- Cord Farm # identification
I RA X 1;, II. 	 1Programme

XL-E	 CREA Tr On/ Dote Punch 73	 80
r-- C FOR COMMENT

■;$ 74•TEmENTNumBER
I	 5

3
6	 7	 10	 15	 20 25

FORTRAN STATEMENT
30	 35	 40	 45	 50 55 60	 65	 70 72

_ __ I	 1	 I I I	 I	 I ._.-1

E	 1C0

I ___t_ I __1_____1

e- - - - -	 S ETIU P	 T HIG."	 /JAMIE F S E IL .P A NO	 A C TI/ZI E V EI	 r y b1P Ift WY ,V 4IM E I	 I

I	 I	 i1	 I	 I I I	 I	 t I

40 RE A.M(.b, 3)1	 N.A.M. El 1 I	 1	 1

Fo R I4I4 r.(9 Fla.) . I	 I	 1 I I	 1

g E A DI (.6 , 1) 1	C OM Pi I I	 1 I	 f

F 0 IR Aia.r.(. /. e1A.2..) , 	 I I	 I	 I I 1	 .	 2

- .-. .-. _

IBM	 FORTRAN CODING FORM
	 028-732,

Punching	 Instructions Page	 of
Progra P Y Ysr 4) 0 I IZ Card Form Identification

i P.A.Y16. / .	 .Programmer CREATi oN
Date Punch e, I 1-1 09 73 80

C FOR COMMENT

"STATEMENT
NUMBER

I	 5

''	 FORTRAN STATEMENT
6	 7	 10	 i5	 20	 25	 30	 35	 40	 45	 50	 55	 60 65 70	 72

I	 I	 I	 I	 I	 —1_	 —I_	 J	 1_	 I	 I I I

C- -- .- -	 RE AID	 A 1.. Li	 x typ oiRmAT rio Al	 P nik	 c dEi	 E eiP Lie YEE	 40/ b . ,C114 E c K	 !Felt	 L.111 ,S T CARD

1

i

1I	 I	 1	 I	 1	 1	 1	 I	 i___2_	 _I_

6.0 0 R1E A D2(2 > a.) 1	 14 UM. v	 ,N R A TrE S a .11LIC9,_ A/i5 S A n1 p	 nix mPIF	 .1_. 1:a.b (i)	 f	 Y r .0 (I2-) 1171) (‘

6•EX j 2 Z

)t.,

■

3	 ,)

II	 I	 Y.T.D.(4).mC I))	 JA 1- 14',S	 in/s -rc,KI	 .A1 UA L	,A1 b AL	 ,t1 i'

2
).))).

FOR141.4.7.(1)(if.X1.1.) I.1	 ii3.„ ,I.ZI, if.) 	 l IX	 /1.	 F7 . 0	 F.S-. 0,	 IS- 	211 ti	 I	 1	 .1" ,/; 23i	 ,)

1	 i	 i	 ?Xi	 I	 I	 1„.1.1).

I	__i_

C- - - - -	 I,s.	 IT,O.z S	 IT.H.E,	 .1- 1 A,s,T.	 ,c,A.R.D.?.	 1	 I	 .	 I.	 J___	 1	 2 I

C,-.-	 - -	 .Y.E,Si	 -	 6.62	 .T.o,	 .60.0.	 .	 I	 I	 I	 ,

C.-	 -.- -	 .No.	 1	 -.	 .G.:21	 .7,o,	 ./i%.	 I	 I	 I	 1	 2	 i I	 .

I	 i

X F (ICI- 9.)	 i i0s 6. 10 s (0	 I	 I	 I	 I	 t	 I I f

I I	 I	 I	 I	 — I.

Section	 Subsections
	

Page

25
	

40
	

10
	

13

IB FORTRAN CODING FORM

fem. X28-7327-4
Nimrod in U.S.,

Punching	 Instructions Poge of

Program
PA Yi Rol. t.	 SYS TEM Graphic 40 0 I 1 E Gard Form it • Identification

1 RA:(14.1.	 . .	 I
Programmer	 l-2-LE	 C R EA rTc ,./ Dote Punch

iy.
9 73 130

r--- C FOR COMMENT

STATEmENT
NUMBER

I	 5

6
6	 7	 10	 15	 20 25

FORTRAN STATEMENT
30	 35	 40	 45	 50 55 60 65 70	 72

I I i 1	 I	 1	 I 1 1 1 1

–	 SE nu 1, 	EA. P I. 0 y E -.E s TAIT Vs go DE, Z. riv.rri	 EkEmIPT.T.0 MS	 A Mb Q–Ti– D I NI F o Rif AirN

. _ I I

j

I	 I	 1	 I

N.'s .T.A IS. -=. t .	 .	 I 1 1 [1 1

N',X.I.11:15.r.N.X.14P.F,	 .

Q.R.T. Mt. i .1. = .Yir.b (1)1 I I I	 1	 I	 1 I i 1

9.R.r..b1d..z..=,Yir. el.3.), 1 1 II I

Q.R.T..bI (.3.) , o.YI T.b.(. 2,); .

Q R T III(q .)...Yir b (8,)!	 •

--

Section Subsections Page

25 40 10 14

IBM FORTRAN CODING FORM

Form X2B-7327-4

Punching	 Instructions Page	 of

Prograrn	 hi YKO	 L.	 S y 5 TEN1 Graphic 0 I I e. Card Form # Identif icotion
14;:?A.Ni 4. I .	 • ...IDoteProgrammer	 Fa L	 ce,,,,T. 1 0 Ai Punch 7t

4 I
17-
1

le
9

F-- C FOR COMMENT

STATEmENF
NUMBER

I	 5
it 	 STATEMENT

156	 7	 10	 20	 25	 30	 35	 40	 45	 50 55	 60	 65 70	 72

I	 II	 I	 I I	 I I

C------ E-T)Tir	 MA PIT rA i.	 Is r,47%/1.5	 L .1 11.11.roni	 151 VE S	 NED u c. T1 roN..	 I s EX C I O A E	 vi i . / b	 _tic

C- -- ..-
)	 0"

-	 n, / 1=- c l 	 C C A- RIY	 .1,1 bio.z F.Y _LE M to t- a 1Y E E	 sc r 11. r List	 c OD C.	 I

3

15
I

:F.(141A.R.).	 3115. /.5./.561/.s./.95$6
.	 tric.Ø xi--	 l.m14.a.-.2,)1	 . /.0.2. 5 ,/.0.2. 1 10./.	 .	 ,	 1.

/46'/ .	 1tv.A.k.,t	 .	 .	 .	 1 I

C.A.L.LI	 ..5.r.A.clk,	 1	 1	 1,

1 0,2. I T (AL) 0.E.S)k	 /.05.3,3 1/ flit .s./10,d.	 ,	 .	 I	 .

I 03 f/ D.ti .E1S.=.0	 .	 I	 .
CAL- L

1
 ...C.r.A.CIK„

. J0.11 NSTAL5...X.l.	 •
/ 0.56 IF (AliO P L. T-13) 	 / 210	 1 / .57	 / .2,0.	 I	 1	 1	 I	 1 I

//S

5	 9

NAUE15=0	 tI	 I	 I	 I I

I70 IFCMS.E.)0•10.9 1 1459,10	 I7 	.
/917 TF(Asex-1)	 //0 /0f d09	 I

1	 I	 .	 .	 1	 IN.S •T A NS. =.. a.	 .	 1	 .	 I 1	 1	 I ./ OR

INS E.X1 .. Z. 	 .	 .	 1	 .	 1 I	 I

61 .n.	 .71n	 J.1.0
1 0 N s.fx,=.z.	 I.	 I	 I 1	 I	 I

CA.1-14	 57".A.Cik	 I	 I	 I	 11	 1	 I	 ' I
* A standard card form, IBM electro 888157, is available for punching source statements from this form.

Section Subsections Page

25 40 10 15

IBM FORTRAN CODING FORM	

Fenn %28-7327-4

Punching	 Instructions Poge	 of
Program 	 vt., 0 r L.,	 ...% '..e.'7.--,:,,,, Graphic 0 I T- Z Cord Form # Identification

I	 IIPP-'?I 	 .	 .DoteProgrammer	 palc.	 c...g ..E A 1...L.. 0 ti Punch 1 1. 1 1. 1 73	 80

(---- C FOR COMMENT
STATEMENT

NUMBER

1 5

C
,5	 FORTRAN STATEMENT
6	 7	 10	 20	 25	 30	 35	 40	 45	 50	 55	 60	 65	 7015 72

— I	 —	 I	 I

— — 	 — .—	 11	 1	 1	 11	 I	 II	 I

(2 —.—	 — —	 CREIA-TE	 TINE	 2- Mb G.X	 EvvrRY ' FOP,	 Ti '4 TS	 EIM P 1- e : 0,1... e	 AMh	 Wig IIT.r	 ./4...ris.	 .R.C.cio.g .1:4 .	 i .

C- - - - -	 0 a 710	 TM- El	 hr 5K1	 r h' e:1//	 4-0 IP A '' ; I rn	 r ME	 RE AA	 .5. TA rE.NE Nir	 To	 'GE T 	 I

C. -,-,-,-- -	 .-riv.no.e.A.A.ra-,0",	 .ow.	 .7"./4 ei	 A/C x 7)	 .E14ptiol-"P_I	 I	 I	 I

1

I JO TN.b.EX.(.3-,eni-) = N IAM

C,- , - ,-,- -	 ,W,RI I TIE„-r ,01	 M.H C	 1.D I .5. K. •)

_	 _ _

w.g,i.-nE.(wo.ea.._r, ', Ter aL.) .	 No) A/	 MA ME,,	 1MS S A A 5 	 Ats rIAS	 Ail b UEs	 M.VV.k JvhP	 .N.WIK.P.1)	 13 .	 ,	I I	 ".	 ; .

1	 .111A- R	 NIX m Pk-,,	 N x m pis	 Az.siE K.	 aiRA.r.r.,,	 .Y.T,A.,,	 9 R.r.r), .,,	 7	 7 .	 ,
2	 1	 I	 I-, Y R I I R ...,1 14/ e cl	 . A/ CO 0 ■D 	 d INCA", IA/A D WM	 A/ 5 ilck.	 1..7../s/s.	 ■)1	 3	 ,	 .7	 5 .

3	 .del.r.s c...	 11.0 A-	 .N.J.T.xlh.,.	 .2-.50 P.P	 a.N,2-.7-1 1	 1 l 	 b.	 i	 .	 .

G---._

y) 1	 3 .

- II	 I I	 I	 1

_— , c,o ,	 IBA.c,k.	 i p .o P.	 Aid oro 6e	 .in.Pli-a .,l .E.E,' s	 T.NIFO R /4041-r in A/

II	 1	 i	 ,

IGo.	 TIC).	 6-74c6	 .	 .1 	 .I	 ,	 ,

-.- -
I	 I	 .I	 I	 I	 I	 I

* A standard card form, IBM electro 888157, is available for punching source statements from this form.

Section Subsections Page

25 40 10 16

IBM FORTRAN CODING FORM

Form 708-7377-4
Printed ∎ 11 U.5.4.

Punching	 Instructions Page	 of
Program p4,(904,_ SYSTEM Graphic cb 1 T Card Form # Identification

1P.A.V1 I ' • '	 IProgrammer Fx.tt ca.sA_rx.0A1 Dote Punch 0 'It:) 1;- 9 73 80
C FOR COMMENT

STATEMENT
NUMBER

1	 5
,13	 FORTRAN STATEMENT
6	 7	 10	 15	 20	 25	 30	 35	 40	 45	 50 55 60 65 70	 72

I	 1	 1	 I I	 1	 1 I I I I

C-- - - - --	 4 4 .517	 < ARIA	 11 A Si	 a	 Ene■	 R F fl. 	.	 1 I	 I	 1 I i I I

- –	 Titixt T I A Grit 5	 rhIE	 r g Al /YE	 A ns oC 1 Air ..! n V II ti F 0 Rim A -r-, oIN . I I I

I	 11 1 I I

.	 1,,,in D.O.	 .c.s.d,	 x., l., .O.	 .	 ,	 I

. .4,54 E.t.a .1zIE. (Z)..10..

-- -I	 -

---1.-t-t-"-----------------1='"--6---

IBM	 FORTRAN CODING FORM

tom X28-7327-4

Punching	 Instructions Page	 a s- of	 /6

Program	 pAsia ott.	 SYSTEM Graphic oc,,za Card Form # Identification
tP.A.Y10. 1 .	 . .	 1Programmer FT Lt	 (2. AT ON	

Dote Punch 0)41; 17i
73 80

C FOR COMMENT
STATEmENT

NUMBER
I	 5

,51 	 FORTRAN STATEMENT
156	 7	 10	 20	 25	 30	 35	 40	 45	 50 55 60	 65 70 72

1	 I	 1	 1	 I	 I	 i	 1 I I	 I t

C.- - - - -	 viRriT,F	 rstE	 1- a DIE x	 0 ri	 E ii P LtnY E.E St 	 P oie	 I ra?s	 1 AL AM. Ti ro. //IX'S K ..	 1	 I

I	 I	 1	 I	 1	 I	 1	 I	 I 1 1

L A.s.n ...r.c.o.s.,	 –	 ./	 I	 I	 II	 I	 I	 I	 I I I	 I i

W iz. i, TIE. (.2.N hi 1 , I.).	 . (i IN,A,E. X (Z.)	 Z .7 . /	 LAST,),	 .	 I.	 . 1-9 .3'
-

Section Subsections Page

25 40 10 17

IB
Form X28-7327-4

FORTRAN CODING FORM	
Prin., in U.S.A.

Punching	 Instructions Page	 of
Program PR yitoci_	 SYSTEM Graphi (I) 0 I i Gard Form # Identification

1P.A.Y10/.	 .	 .	 IProgrammer	 FILE	 CREAr_r on/	 Dote Punch 0 i
/2..
9 9 73	 80

i-- C FOR COMMENT
STATEmEN

NUMBER ?
1	 5

6
6	 7	 10	 15	 20	 25

FORTRAN STATEMENT
30	 35	 40	 45	 50	 55	 60	 65	 70 72

1	 I	 1 I	 1	 "	 1	 1	 1	 1	 I

C— --- — —	 VvarrrE.	 rthE	 REcloiz 11	 rio R r mr.s.	 PLIANT	 no	 DI.Sik.	 TiiIE	 ./110 ABER .oir	 em PIL 0 yE.E.LS

C.-,- --- IN IT H- E	 PILAA tr. IT a	 TRIE IIVIWG'k	 A A.4.6	 S T a P .	 1	 1	 .	 . 	 . 	 I .	 .	 I	 I

1	 I	 I

w iz. / ne (kz-, 1 1 A40,P.L.,11).	 ,C,c) "LP 7-CaN.C.14,. t .W.E.Ekt,.	 .F.r.t.R.E.	 mr.o.r	 ickm.Ax■..,'	 /
.

IA/Rzn g.(.rm,p1 ,./....s.r.),	 L..A.S.-n .	 1

.	 .	 . 1.	 I	 I

,	 , C.A,44,Li	 ,E:X.x. 7i	 .

El`i. D.	 i	 I	 i	 I 1	 I	 1	 I	 1	 I	 I	 I	 1

	

Section Subsections	 Page

25
	 40
	

20
	

01

Example 2: Add Name to the File

This program is an extension of PAY01, File Cre-
ation. Because the employee record contains more
than 80 characters, one card is not sufficient. The
name field for each employee appears on a second
card which is processed by this program.

The dummy name field, set up in the disk record
by PAY 01, is filled in with the actual name on the
card.

The program illustrates a simple single-file up-
date with no calculations. The following program-
ming techniques have been used (see Section 35 for
a listing of this program):

1. Updating masters. The master file is updated
by changing the name field in the master record.
Note that only the variable name in the output list
has been changed.

2. Searching an Index. The index to the file
contains an entry for each employee. The clock
number is placed in the index at a location corre-
sponding to the record number for the employee.
Each index entry is examined to find a match with
the clock number on the card (statements 120-125).
When a match is found, the location of the match in
the index is the employee record number in the disk
file.

3. Indicating exceptional conditions. When the
index is searched, it is possible that the clock
number on the card will not match any index entry.
If this occurs, the clock number is printed in the
following message:

CLOCK NO X:500(NOT IN FILE.

Section	 Subsections	 Page

25
	

40
	

30
	 01

Example 3: Changes to the File

This program illustrates a complex single-file up-
date procedure. Any one of 16 different changes can
be performed.

The master file is the file created by PAY01 and
PAY02. The transaction file is on cards, where
each card contains the clock number, a code indi-
cating where the change should be applied, and the
new or changed information.

The one important change this program will not
perform is deletions from the file. However, this
may be accomplished by changing the pay rate to
zero.

The following programming techniques should be
noted in this program (see Section 35 for a listing
of this program):

1. Setting a switch rather than testing. The
change code is a two-digit number form 01 to 16
(statements 105+1 and 106). When it has been vali-
dated, proven greater than zero and less than 16,

the code is used as the index for a computed GO TO
statement (statement 140). This saves the program
a set of IF statements, each statement testing the
code and deciding on an action.

2. Detailed data validation. Since PAY01 and
PAY02 were so careful about building the file and
making sure the data was correct, common sense
indicates that the same care should be extended to
any changes to it. This is done through checks,
not only on the change code, but on the plant number,
the clock number, and, where applicable, the
change itself. Note that the addition to the file of a
new employee causes a check to see whether that
employee clock number is already in the index.

3. Use of the alternate stacker. Any time an
error is detected, the card involved in the error is
selected to the alternate stacker of the IBM 1442
(statements 3 + 1, 8 + 1, 5 + 1, and 7 + 1). This
will save the operator the task of picking out those
cards with errors.

	

Section Subsections	 Page

25	 40
	

40
	

01

Example 4: Calculations and Payroll Register

This program consists of extensive calculations and
report writing. Payroll calculations are performed,
including calculations of gross pay, taxes, voluntary
deductions, and net pay. The report shown is the
payroll register.

In addition, the calculations are balanced to con-
trol totals and each disk record is extended with the
current period's calculations.

The following programming techniques have been
used (see Section 35 for program listing):

1. Arithmetic Statement Function. Since the
1130 is a binary computer, decimal fractions may
not be expressed exactly in binary. This inaccuracy
may be avoided by performing all calculations with
whole numbers. (See Section 70. 10.20.) When
calculations are complete, the result must be half-
adjusted and the decimal point placed. Since there
are many calculations in this program, it makes
sense that the rounding procedure should be set up
only once and accessed from many different places.
The Arithmetic Statement Function, PHIL, will be
used to do this.

2. Use of data switches. Since the check number,
week number, and maximum check amount are not
permanent, a facility must be built into the system
to change them. By setting the console data switches
appropriately (statements 3 + 5 and 71), each or all
of these numbers can be changed. A hard-copy
record of any changes is produced on the console
printer.

3. Zero balance test. The control totals are
compared with accumulations produced during the

processing of the file. The original control totals,
the accumulated totals, and the differences are
printed. If the differences are not zero, the oper-
ator knows that further examination of the output is
necessary. (See statements 15-18.)

4. A variety of calculations. The calculations
performed with this program are more extensive
than the other sample programs. The first set of
calculations is used to initialize the program vari-
ables, while the second set initializes the plant
variables. The third set initializes the variables
for an individual.

The remaining detail calculations pertain to
regular, overtime, and bonus earnings, taxes (in-
cluding federal, state, and local), and voluntary
deductions. Finally, the net amount is calculated
and plant totals are accumulated.

5. Backup is built into the system. To provide
a means of recovery when an error condition or an
out-of-balance condition occurs, the calculated
information (gross, net, tax, etc.) is punched into
the employee's weekly card (see statement 9). A
simple list of these cards will thus supply sufficient
information to check or reconstruct portions of the
file.

6. Another type of half-adjusting. In printing
the payroll register the dollar and cents figures
should appear with decimal points. To round off,
reposition the decimal point, and clear fractions,
the WHOLE Function (from the Commercial
Subroutine Package) is used (see statements 515-
515 + 11).
AMT = WHOLE (AMT + (AMT/ABS(AMT))*0. 5)/100.

Section	 Subsections	 Page

25
	

40
	

50
	

01

Example 5: Check Writing

This program demonstrates the use of the Com-
mercial Subroutine Package (CSP) in preparing a
report--namely, the check and check stub.

In this example, the employee file is accessed
sequentially. If the paid indicator is set appropri-
ately, a check is written. In either case, the next
employee record is read.

Control totals are carried, and a zero-balance
check is performed.

The following programming techniques should be
noted in this program (see Section 35):

1. The use of subroutines. There are three
specific operations which are used many times (see
statements 91 + 9 - 95 + 5). These are PUT, MOVE,
and EDIT. PUT converts from real format to Al
format, MOVE moves information, and EDIT inserts

and removes characters. Rather than repeating the
statements that perform these three operations each
time, it is much simpler and shorter to make sub-
routines out of the statements. This, in addition to
saving core storage, is much easier to test and
document. All three subroutines are supplied with
the 1130 Commercial Subroutine Package.

2. Editing data for output. The use of the EDIT
subroutine is a very powerful technique. It requires
two kinds of data. The first is the data to be edited,
and the second is a description of the result, the edit
mask. As can be seen, the edit mask is treated as
a constant and is initialized at the beginning of the
program (see statement 4). The result of editing
can be seen in the amount field of the check spectra=
shown.

Section Subsections Page

25 40 60 01

Example 6: Check Register

This program illustrates a report in which detailed
items are written, three up, (three items per line).
A plant file is accessed for each employee (see
statement 655), and a line containing check number,
employee clock number, employee name, and net

check amount is composed. When three employees
have been placed on one line, the line is printed.

This technique will produce a very concise report,
easily read, filed, and used. The technique also
decreases printer time to produce the report by
decreasing the number of lines to be printed.

Section Subsections Page

25 40 70 01

Example 7: 941 Report

This program will process multiple files to produce
the 941 report. One report is produced for each
plant.

Note that a count of the lines printed on each page
is kept (see statements 195 + 5 and 150). In this

way, headings can be and are printed at the top of
each page in the report.

Also, notice that the plant totals are reset only
when a new plant is to be processed (see statements
2 + 1 thru 3 - 2), while page totals are reset when
a new page is to be printed (see statements 4 + 4,
4 + 5).

	

Section Subsections	 Page

30
	

00
	

00
	

01

Section 30: TESTING EFFECTIVELY

CONTENTS

Introduction 	 30. 01. 00	 Testing Hints 	 30. 30. 00
Testing Strategy 	 30. 10. 00	 Summary 	 30. 40. 00
Testing Tactics 	 30. 20. 00

	

Section Subsections 	 Page

30	 01
	

00	 01

INTRODUCTION

Now that programming is "finished", it is time to
evaluate what you have in relation to your objectives.
Do your programs and systems produce the results
you want? To find this out you must test the pro-
grams -- but not until you have a plan.

Experience has shown that more time can be
wasted in testing than has originally been allotted
to testing.

In other words, testing must be performed ef-
fectively.

* * * * *

There is a great temptation to get a newly writ-
ten program on a machine and see it run. A little
extra effort before going to the machine can save a
great deal of time and effort in the long run. If you
must travel some distance to test a program before
the installation of your own machine, it also means
real money saving.

The chances are very good (99.99%) that your
program contains errors of various types:

1. Programmer clerical errors. It is easy to
make minor clerical errors when filling out the
coding sheets. Although they are minor, the pro-
gram will not work properly until they are corrected.

2. Programmer procedural errors. The number
of procedural errors will depend on the experience
and proficiency of the programmer. These are
caused by not adhering to the programming rules as
outlined in the language manuals.

3. Card punch errors. Errors may be intro-
duced when the program is punched into cards.
Punching programs into cards is very exacting, and
the keypunch operator must be very careful. Be-
cause of the nature of the information on the pro-
gram sheets, it is difficult to achieve speed and
accuracy in punching.

4. Program logic errors. Logic errors may be
caused by poor or incomplete analysis of the problem
prior to programming, or by incorrect programming
after correct analysis. In any event the program
must be able to either process, or properly reject,
all the various pieces of information that will be
given. Someone who is intimately familiar with the
procedure, as it is now being done, should review
the logic of the program for completeness.

Most clerical errors, both programming and
card punching, can be detected by a careful review
of the material. Key verification should always be
done, and it is essential to proofread coding sheets
before they are punched. The most common errors
occur in the use of 0 and 0, 1 and I, 2 and Z.
Standards should be adopted in which, for instance,
alphabetic 0 is written 0, zero is 0, Z as	 I as a
printed capital (I), and 1 as a straight line (I). It
is wise to formally familiarize your keypunch oper-
ators with the adopted conventions.

Program procedural errors can often be detected
by having someone other than the original pro-
grammer review the programming sheets. Even
where the programmers are relatively inexperienced,
they will often catch errors in syntax (grammar of
forming statements). This review can also serve as
an excellent way to improve programmer knowledge.

During a review of the program, program logic
errors are more difficult to catch. This is particu-
larly true when the person who is familiar with the
procedure is not also familiar with programming.
Logic errors are generally caught during testing
when sample data is processed by the program. The
sample data must be prepared so that all of the vari-
ous exceptions, combinations, and ranges of infor-
mation are introduced to the program, insofar as
it is practical to do so. It should be remembered
that any element or combination of elements that is
not tested is very likely to appear eventually; if it
can happen, it will.

At the time that your program is assembled or
compiled on the system you are installing, a series
of diagnostic tests is also made to detect many of
the potential errors, and these errors are noted.

By properly prechecking your programs, you can
materially reduce the amount of time to get a pro-
gram compiled and tested successfully. Care in
the preparation of test data will also detect logic
errors so that they can be corrected before the proc-
essing of actual data.

The final test of any program is the successful
processing of "live" data, after which the results
can be compared against those obtained by the pre-
vious system.

Note: If the results of this last test do not agree
with previous results, check again to be sure what
the right answers should be. Sometimes the old
system has not produced the correct solutions.

Section Subsections Page

30 10 00 01

TESTING STRATEGY

Any good system is like a successful athletic team.
Each member must do his job well, and all members
must work together. These two things are what
you must accomplish with your testing strategy.
Each individual program is tested. When all pro-
grams give correct results, pairs are tested. When
the first pair gives correct results, another run is
added to the system. Finally, all runs are tested
together, and the entire system is checked out.

The individual tests are the foundation of the
system's test. A deck of test cards should be made
up for each program (or subprogram) and kept for
use in testing the program again in the future.

The ideal rule to follow in deciding what test data
to include is this: include every field at least once
under every condition in which it can occur, not
only by itself, but with every possible combination
of conditions in which all the other fields can occur.
With a simple program this is easy enough to do,
but where many fields appear under many conditions,
the number of possible combinations can become
enormous. Then your programmer must use his
judgment in making up a limited set of test cards
that covers the possibilities adaquately.

The test cards should be created, then listed.
For each set of test data, a "prediction" of the re-
sults that will appear on the output forms or cards

should be made. Then, when actual testing is per-
formed, your programmer cannot be easily misled
into believing that his output is correct when it is
not.

The first data in the test deck should test only the
ordinary, easiest, most straightforward conditions.
Next, multiple conditions can be combined on one
card or record. Finally, error conditions can be
tried. The reason for this careful progression is
that unless the simple situations are proved first, it
is possible to spend many hours trying to determine
which of several possible causes for a "bug" is the
true one.

Avoid setting up your tests in such a way that you
count on the output of one program to act as input to
another. Have at least one independent set of test
data for each program you are testing. "Merged"
or "linked" testing is a valuable means of proving a
system's overall validity, but it should not be done
until each program is individually tested.

After a successful test, both the test input and
output should be retained, as part of program docu-
mentation, to make future testing easier. Also,
when testing program modifications, test not only the
modifications but the entire program. In other words,
your sample test data should expand with each modi-
fication, so that the entire system may be tested at
any time.

	

Section Subsections	 Page

30
	

20
	

00
	

01

TESTING TACTICS

Many techniques exist to assist your programmer
during the checkout phase of a program. Each has
its own advantages and disadvantages. The one to
be used for a particular problem will depend on
your programmer's thoughts as to what area of his
program is in error. Some very useful techniques
are:

1. Core Storage Dump. This is a printout of the
contents of core storage. There are two methods of
producing it.

The first is with one of the utility programs sup-
plied with the 1130 Programming Systems. These
utilities will produce a core storage dump in hexa-
decimal.

Since manual hexadecimal-to-decimal conversion
is very tedious and time-consuming, this method is
not recommended.

The recommended method of dumping core storage
is with the dynamic DUMP facilities of FORTRAN
and the Assembler Language. The information
dumped with this method can appear in hexadecimal,
integer, or real format.

In FORTRAN, the DUMP facility is accessed
through use of the PDUMP subroutine. You would
write CALL PDUMP (Al, Bl, Fl, 	 , An, Bn, Fn).

Blocks of core storage are dumped. Al and B1
are variable data names, subscripted or nonsub-
scripted, indicating the inclusive limits of the first
block of storage to be dumped. Similarly, An and
Bn indicate the inclusive limits of the nth block of
storage to be dumped.

The format of a block is determined by the Fx
associated with that block. Fl through Fn are in-
tegers and are assigned in the following manner:

0 = Hexadecimal
4 = Integer
5 = Real

The Assembler Language dump facilities, DUMP
and PDMP, are used in a similar fashion.

All of the core storage dump facilities will pro-
duce a printout of core storage, by address. You
should use these facilities when a program "bug"
requires, in the judgment of your programmer, an
examination of all or part of core storage.

2. Arithmetic Trace. The use of this technique
involves subroutines that are executed whenever a
value is assigned to a variable on the left of an equal
sign. If Console Entry Switch 15 is turned on at
execution time, and the *ARITHMETIC TRACE
FORTRAN control record is used, the value of the
assigned variable is printed, as it is calculated, with
one leading asterisk.

As an optional use, you can elect to trace only
selected parts of the program by placing statements
in the source program to start and stop tracing.
This is done as follows:

CALL TSTOP (to stop tracing)
CALL TSTRT (to start tracing)

Thus, tracing occurs only if:
• The trace control record is compiled with the

source program.
• Console Entry Switch 15 is on (can be turned

off at any time).
• A CALL TSTOP has not been executed, or a

CALL TSTRT has been, executed since the last CALL
TSTOP.

If tracing is requested, an *IOCS control record
must also be present to indicate that either type-
writer or printer is needed. If both typewriter and
printer are indicated in the *IOCS record, the printer
is used for tracing.

Use of this facility will increase execution time
considerably. The trace facility should not be pres-
ent in a production program; if it is, you should
recompile the production program after testing is
complete, leaving out the trace.

3. Transfer Trace. In this case, the FORTRAN
compiler generates linkage to trace routines which
are executed whenever an IF statement or Computed
GO TO statement is encountered. If Console Entry
Switch 15 is turned on at execution time and the
*TRANSFER TRACE FORTRAN control record is
used, the value of the IF expression or the value of
the Computed GO TO index is printed. For the
expression of an IF statement, the traced value is
printed with two leading asterisks. The traced
value for the index of a Computed GO TO statement
is printed with three leading asterisks.

The optional use of trace explained under Arithme-
tic Trace also applies to Transfer Trace (use of
TSTOP and TSTRT), as does the information follow-
ing optional use.

4. Extensive Use of PAUSE. It may turn out that
some parts of your program execute correctly and
some incorrectly. What you would like to do is to
check the progress of the program while it is run-
ning. A very useful technique is to place PAUSE s
at strategic places throughout your program. In
order to know where the program is at any point in
time, number the PAUSEs consecutively:

C 	 READ INPUT
PAUSE 1
CALL READ(IN, 1, 80, N)

C 	 IDENTIFY INPUT
PAUSE 2

Section	 Subsections	 Page

30
	

20
	

00
	

02

IF(IN(22)-1) 3,4,5
3	 CALL MOVE (IN, 1,27, IWK, 1)
C 	 TYPE ZERO CARD

PAUSE 3
etc.

The PAUSE number will be displayed in the
accumulator. Use of this technique will let you fol-
low the logic of the program (IFs and GO TOs) with-
out severely slowing its execution.

5. Additional Print Lines. This technique is
sometimes called "selective tracing". Again, rather
than severely slowing the execution of a program and
printing the result of every replacement operation,

only selected variables and/or fields will be printed.
Use of the FORTRAN WRITE statement or the 1130
Commercial Subroutine Package PRINT subroutine
will allow you to follow the progress of variables
and/or fields as their contents change during pro-
gram execution.

6. Console Debugging. This technique should be
used only as a last resort. It involves manual in-
quiry into the system via the console switches, dials,
and keys. In most cases, the previously mentioned
techniques will provide you with all the information
necessary to debug.

	

Section Subsections 	 Page

30
	

30
	

00
	

01

TESTING HINTS

1. To test the logic in a program that uses
Commercial Subroutine Package I/O, use standard
FORTRAN READ and WRITE for I/O. This makes
the trace facility available. When finished, use
Commercial Subroutines READ and PRINT for
overlapped I/O.

2. Ask yourself: What must be done to re-
create information if the disk cartridge is lost?
How long will it take?

3. Keep testing in mind when planning the
development of various runs. That is, write the
file creation and maintenance programs before the
report programs that use the files.

Section Subsections Page

30 40 00 01

SUMMARY

If program testing techniques are properly planned,
a minimum amount of machine time is consumed
during program checkout. Manual inquiry into a
system via the console is extremely expensive in
machine and operator cost; little is learned in re-
turn for dollars expended. Time spent desk
checking is well invested, since most of the logical
errors may be detected before the program actually
enters the computer testing phase.

In trying to make the maximum number of runs
during a test session, your programmer may be
tempted to make rapid patches without pausing to
annotate such changes thoroughly. Such urgency is
seldom fruitful in the end.

The program testing phase should be carefully
and thoroughly planned, executed, and documented.
The following checklist should be used as a guide to
ensure maximum productivity for program testing.

After coding the program and preparing revised
flowcharts and other supporting documentation, the
testing procedure begins.

1. Prepare test data and precalculate results.
2. Punch and verify program cards.
3. List program cards.
4. Desk-check the program. Look for:

a. Errors in logic
b. Endless loops
c. Incorrect use of program switches
d. Unsatisfied or incomplete coding for

the problem definition
e. Inefficient program (time and storage)
f. Incorrect data field lengths
g. Improperly signed fields
h. A name for each variable
i. Improper indexing
j. Initialization of routines and storage
k. Duplicate names
1. Misspelling and punching errors
m. Invalid operations
n. Necessary control cards
o. Improper alignment of card columns

5. Manually simulate the computer process
using test data.

6. Compile the program.
7. Perform error analysis with error listing

and program printout.

8. Correct the program.
a. Card programs. Correct the source

deck and recompile the program. To
facilitate card handling with object
decks, label the object deck with a
marking pen. The first and last card
of the object deck should be so labeled.
The top edge of all such cards may also
be marked.

b. Disk programs. When the program is
prepared on disk, corrections are made
to the source deck. This is accom-
plished by placing the corrections in the
source deck and then recompiling and
restoring the program. Alter the pro-
gram listing and update the program
flowchart to reflect source deck
corrections.

9. Prepare detailed instructions for machine
operation during the test session.

10. Pre-test-session familiarization.
a. Console operation
b. Input/output devices
c. IOCS
d. Utility routines such as clear storage

and load programs, file generators,
trace programs, storage and disk print
programs, sort and merge programs,
and check point and restart programs.

11. Test documentation and materials. To re-
duce confusion, all materials should be clearly
labeled with the name of your organization, program
name, content, and date. Each person should have
a list of items for which he is responsible:

a. Program flowcharts
b. Compiled program listings
c. Test data decks and disks with test data

listing (a duplicate copy may be
desirable)

d. Precalculated results of test data and
listing of expected output with each test
case

e. Card and disk record layouts
f. Internal storage map
g. Printer carriage control tape
h. Operator checklist, providing all the

information the operator needs to set
up the data processing system for the
running of each program:

Subsections

30 40 00 Pagel02
Section

(1) Job or program name
(2) Operation name
(3) Machine setup

(a) Disk cartridge assignment
(b) Input cards or tapes
(c) Output cards or tapes
(d) Carriage tape
(e) Sense switch settings

(4) The sequence of events to run the
test

(5) Listing of all possible messages
and halts

(6) Switch and index listings
(7) List of paper forms or card stock

for auxiliary equipment
Object deck or disk cartridge

j. Blank forms, cards, disks
k. Source deck and listings

12. The test session
a. Plan the test session in advance. De-

cide upon the sequence in which pro-
grams shall be tested. Programs
should take precedence in testing
according to their importance, and the
most important programs should be re-
tested as often as possible until they are
completely debugged. Schedule a work-
load greater than can be accomplished
in the allotted test time. Assign duties
(such as handling the card reader,
punch, printer, disk cartridges, and
console) to each person attending.

b. Arrive early. Confirm the testing
schedule that was established in advance
of actual testing. This schedule may
best be laid out as a series of half-hour
to full-hour sessions with one- to two-
hour breaks in between.

c. Be familiar with the latest versions of
all programming systems to be used.

d. Make certain that the test packet is
organized properly. Test the higher-
priority and larger programs first.
Each program should have its own input
test data; one program should not be
dependent on another program that was
run earlier in the same session.

e. Make sure that all units are in the
proper initial status--for example,
printer restored, disk units ready, no
leftover cards in the reader or punch.

f. Debugging at the console is time-
consuming, error-prone, and generally
nonproductive. When the program hangs
up, the following steps should be taken
immediately:
(1) Note the console status--indicators,

lights and registers.
(2) Take core storage dumps.
(3) Take disk dumps.
(4) Go on to next program or cease

work.
Even if a program goes to end-of-job
and appears correct, the above steps
should be taken in order to simplify
correcting errors discovered later.
When a program hangs up, do not force
it to continue without taking down status
information, since the conditions caus-
ing the original hangup would then be
destroyed.

g • Label all core storage dumps, disk
dumps, console sheets, etc. , with date,
time, and program identification.

h. Debug off the console with deliberate
speed. With the above items, there is
more information to aid in locating the
reason for the hangup than is available
at the console. Do not make hurried
corrections to a program in a false
effort to maximize usage of test time.
Do not, however, spend three hours at
a desk to save five minutes on the
system. Strive for a reasonable cost
balance.

Before testing the program again,
find all possible bugs, not just the one
that caused the hangup. Step further
through the program after each test to
ensure that the program will not hang up
on the next instruction or routine.
Correct all errors in output content and
format. Strive for perfect output from
each test.

i. Note all corrections on the program
listing. Corrections that affect the halt,
switch, or index listings should be up-
dated accordingly.

J .• Note the reason for the correction
adjacent to the card itself. Be sure to
include number and date. A post-test
listing of cards is desirable for refer-
ence when correcting the source deck.

Section Subsections Page

30 40 00 03

k. Generate a new program listing after an
appropriate number of cards have been
added to the program. Update the pro-
gram flowchart to reflect the current
status of the program.

1. Keep documentation current. This
eliminates the waste of time and effort
trying to pick up changes during testing
or debugging.

13. Post-test evaluation. Every test session
should be followed by a thorough evaluation:

a. Was the pretest preparation adequate?
b. Were there any areas of preparation

that could be improved to yield a more
effective test?

c. Were there areas of preparation in
which you spent too little?

d. Did the test point up any areas of weak-
ness inthe coding? If so, are these types
of errors documented so that stronger
emphasis can be placed on them during
future coding and desk checking?

e. Was each machine session used
effectively?

f. Are there any corrections to the testing
techniques that would make the next test
more fruitful?

g. What is the status of each program
tested?
(1) Is it completely tested? That is,

has every program loop been
tested, and do you have any res-
ervations about calling this program
complete?

(2) Is it tested to the stage where the
only changes left are in spacing and
editing of the output data?

(3) Are there logic errors left in this
program?

h. Did the test session achieve its objec-
tives ? If not, what adjustments in
present scheduling are necessary?

	

Section Subsections	 Page

35
	

00
	

00
	

01

Section 35: PROGRAM DOCUMENTATION

CONTENTS

Introduction 	
Installation Manuals 	

Program Information Manual 	
Operation Manual 	

	

35.01.00	 Documentation Examples 	 35.20.00

	

35.10.00	 Payroll System — Program

	

35.10.10	 Information Manual 	 	 35.20.10

	

35.10.20	 Payroll System — Operation
Manual 	 35.20.20

Section Subsections Page

35 01 00 01

INTRODUCTION

The final step in your installation program is to
document everything you have done. Let us quickly
review the importance of adequate documentation
before discussing the form that your documentation
may take.

The package of materials describing each pro-
gram will become:

1. A source of information for implementing
future changes.

2. An education device for familiarizing new
operators and management personnel with the pro-
cedures.

3. A means of describing control procedures to
your auditors.

It is a modern but well proven adage that a well
documented installation is a sure sign of a smooth-
running operation.

You should develop two manuals: the program
information manual and the operation manual. Your
basic library will consist of these two manuals to-
gether with this 1130 User's Guide, physical plan-
ning manual, the 1130 functional characteristics
manual, the programming system reference
manuals for FORTRAN and Assembler Language,
the machine reference manuals for the I/O units
you have ordered, and operating procedures manual
for FORTRAN, Assembler Language, and Disk
Monitor System. If you use the Commercial Sub-
routine Package, you will also want reference
manuals and operating procedures manuals for that
system. Consult the 1130 SRL Bibliography for
descriptions and form numbers of the manuals, and
for information about other IBM publications that
provide further details on the subjects covered in
this guide.

Section Subsections Page

35 10 10 01

INSTALLATION MANUALS

Program Information Manual

Each application should have its own binder, which
will be used by management, systems analyst, or
programmer, and will contain:

1. Job description. This is the same for all
programs with a job or application. It is a brief
abstract.

2. System flowchart. This is also the same for
all programs within an application, and shows how
each program fits into the larger picture.

3. Record layouts. All record formats for the
application are shown.

The three items above appear once for the appli-
cation, whereas the items below are necessary for
each program (you may want to place dividers,
labeled with the program names, in front of each
group of these):

1. Form layout.
2. Variable Summary Sheet. The purpose for

which program variables are used is apparent at
the time of writing, but again, as with program
logic (of which variables are an integral part), the
programmer rapidly forgets how he used them. The
Variable Summary Sheet (see Section 25) will serve
as a testing and program modification aid.

3. Program flowchart. Experience has proved
that logic which is clear to the programmer at the
time of writing is difficult to recall a short time
later. The logic must, therefore, be documented
in such a manner that testing will be accomplished

in a minimum amount of machine time. Well docu-
mented logic is also valuable when the program is
changed from time to time, either by the author or
by another programmer who may be completely un-
familiar with it.

4. Coding sheets or program listing. To avoid
confusion, the coding sheets should be discarded
after the program listing is produced.

5. Test data listing. Test data should be listed
and retained. As changes to the program are made,
they may unintentionally affect parts of the original
program. All original test data, therefore, along
with any additional test data necessary for the
change, should be processed to ensure that the pro-
gram is operating properly.

6. Test output. This includes sample reports
or cards, as produced by the test data.

7. Machine setup sheet. This is a guide to the
operator, describing machine setup, source of input,
disposition of output, and actions to be taken at
machine halts.

8. Detailed program flowcharts. These must
be included if the programmer is using Assembler
Language. Since programs written in Assembler
Language are not as easily read, or as clearly re-
lated to the job as FORTRAN programs, it is vital
that your programmer draw a detailed program
flowchart that carefully documents the program
steps he has taken. Each block should cover only a
few program steps, and should be cross-referenced
to the program. It is advisable in most cases to in-
clude a general program flowchart, which provides
a quick means of introduction to the logic and is ex-
ploded by the detailed flowchart.

	

Section Subsections	 Page

35
	 1 0
	

20
	

01

Operation Manual

Intended for use by the operator, the operation
manual is arranged so that each application has its
own section. Usually, these materials are all kept
in one book, at the 1130 console. In addition to the
materials suggested below, the operation manual
should include a copy of the operating procedures
manuals supplied by IBM for the programming
system being used.

Dividers of two kinds should be used: one for
applications and one for programs within applica-
tions.

Behind each application divider should be a job
description followed by a system flowchart of the
entire application.

Behind each program divider should be all in-
structions to the operator. These may include (1)
procedures to be followed to accomplish accounting
controls, such as recording totals on a control
sheet, checking critical items, and noting cross-
footing messages, (2) recovery procedures -- that
is, procedures for reconstructing or continuing a
run that has been interrupted as a result of an oper-
ator, machine, or program error, (3) initial switch
settings and their meaning, (4) halts, error messages
and their meaning, and (5) I/0 considerations.

Section Subsections Page

35 20 00 01

DOCUMENTATION EXAMPLES

The examples in this section show the necessary
documentation for those runs in the Payroll System

which were coded under Section 25. Note that these
examples are illustrations and, therefore, may not
be considered complete, usable programs.

	

Section Subsections
	

Page

35
	

20
	

10
	

01

PAYROLL SYSTEM

Program Information Manual

Section
	

Subsections
	

Page

35
	

20
	

10
	

02

Section Subsections Page

35 20 10 03

CONTENTS

Payroll Application 	 	 1
Job Description 	 	 1
System Flowchart 	 	 1

Narrative 	 	 1
Payroll File Create (PAY01, PAY02, PAY16) 	 	 2
Payroll File Changes (PAY03, PAY16) 	 	 3
Payroll Calculations and Register (PAY04, PAY16) 	 	 4
Print Payroll Checks (PAY05, PAY06) 	 	 5
Payroll Check Voiding (PAY11) 	 	 6
Payroll Deduction Registers (PAY12 thru PAY15) 	 	 7
Payroll File Audit, 941, and Tax (PAY07, PAY09, PAY10) 	 	 8
Print W-2 Reports (PAYnn) 	 	 9
Error Detection and Correction (PAY09) 	 10

Payroll Record Layouts 	 11
Card Forms and Console Keyboard Input 	 11
Console Printer and Line Printer Forms for Output 	 12
Disk Record Formats 	 12

Payroll Programs 	 34
PAY01: Payroll File Create 	 34

Variable Summary Sheet 	 34
PAY01 General Program Flowchart 	 37
Program Listing 	 38
Test Data Listing 	 43
Test Output 	 44
Machine Setup Sheet 	 45

PAY02: Add Names to the File 	 47
Variable Summary Sheet 	 47
PAY02 General Program Flowchart 	 50
Program Listing 	 51
Test Data Listing 	 55
Test Output 	 55
Machine Setup Sheet 	 56

PAY03: Changes to the File 	 57
Variable Summary Sheet 	 57
PAY03 General Program Flowchart 	 60
Program Listing 	 61
Test Data Listing 	 67
Test Output 	 68
Machine Setup Sheet 	 69

PAY04: Calculations and Payroll Register 	 70
Sample Payroll Register 	 70
Variable Summary Sheet 	 71
PAY04 General Program Flowchart 	 77
Program Listing 	 78
Test Data Listing 	 92
Test Output 	 93
Machine Setup Sheet 	 95

Section Subsections Page

35 20 10 04

PAY05: Check Writing 	 96
Sample Check 	 96
Variable Summary Sheet 	 97
PAY05 General Program Flowchart 	 103
Program Listing 	 104
Test Data Listing 	 111
Test Output 	 112
Machine Setup Sheet 	 113

PAY06: Check Register 	 114
Sample Check Register 	 114
Variable Summary Sheet 	 115
PAY06 General Program Flowchart 	 121
Program Listing 	 122
Test Data Listing 	 126
Test Output 	 126
Machine Setup Sheet 	 127

PAY09: 941 Report 	 128
Sample 941 Report 	 128
Variable Summary Sheet 	 129
PAY09 General Program Flowchart 	 133
Program Listing 	 139
Test Data Listing 	 140
Test Output 	 140
Machine Setup Sheet 	 141

ii

	

Section Subsections	 Page

35
	

20
	

10
	

05

PAYROLL APPLICATION

JOB DESCRIPTION

The Payroll System is composed of 16 different runs. From the source documents, produced
at the six plant sites, cards are punched. These cards are used to store the payroll informa-
tion on the disk cartridge.

At this point the system uses cards only for transition between jobs. The input data,
employee records, is read from the disk and updated before being written back. This gives a
highly flexible system, in which I/O, because of the disk, is very fast.

The system produces the following reports:
• Checks and check stubs
• Check register
• Payroll register
• Deduction registers for

1. Union dues
2. Credit union
3. Stock

• 941 quarterly report

SYSTEM FLOWCHART

Narrative

The system consists of 16 programs.
The Files Creation program is first. Data decks are keypunched for each individual, in sets,

by plant. The data is edited and, when correct, loaded on the disk by PAY01. Three files are
created: a master file, an index file, and a plant information file. A second data deck with
employee clock number and name is loaded onto the master file by PAY02.

Changes to the disk information are made by PAY03. Documents, received from personnel
departments at the individual plants, are checked, summarized, keypunched, and verified.
Time sheets, submitted by the plant payroll departments, are keypunched and verified. All
of these cards are processed by PAY16, which edits and generates control totals. PAY04
then processes these cards, performing all payroll calculations. Cards are read, pay com-
puted, disk files updated, and cards extended with current pay figures. After all cards are
processed, a payroll register is printed.

Checks are printed by PAY05. A header card is read and the checks are printed from the
disk file. PAY06 lists the check register from the disk file. In the event of an error in
computing pay, PAY11 provides the means of voiding checks. The extended time cards from
PAY04 are read in and the affected employee records are reset. The above are weekly runs.

At month end, registers are prepared showing each individual's deductions for the month:
PAY13 writes union dues register.
PAY14 writes credit union register.
PAY15 writes stock deductions register.
PAY12 resets charity deductions code.
At the end of the quarter and at the end of the year PAY07 and PAY08 are used to balance

the disk files to control totals.
PAY09 produces the 941 tax report.
PAY10 produces a tax worksheet used to determine tax reliability.
At the present time the program for W2 reports has not been written.

1

All but
Name

Keypunch &
Key-Verify

Control
Totals

PAY 1q.
INPUT
EDIT

Zero Balance
Totals

Out of BalanceBalance to
Totals-&

Correct as
Necessary

Employee
Earnings
Record

Control
Totals

Keypunch &
Key-Verify
Clock No.
and Name

V

■ Keypunch &
Key-Verify

All but
Name / \

Totals on
Adding
Machine TAPE

2

File
B

Disk
Payroll

File
Clock No.

and
Name

Control Totals
File
AAll but

Name

Section Subsections Page

35 20 10 06

Subsections PageSection

07102035
1

PAY 16
INPUT
EDIT

Zero
Balance
Total

Changes

Control
Total

Balance to
Total and
Correct as
Necessary

Out of Balance

Employee
Payroll Change
Authorizations

Total on
Adding
Machine

TAPE	01.

Keypunch &
Key-Verify
Clock No.,

Change Code,
and Changes

Keypunch &
Key-Verify

Control
Total

O.K.

Control
Total

From
Storage Changes

Control
Total

PAY 03
FILE

CHANGES

Disk
Payroll

File

Changes

3

Payroll
Register PAY 04

CALCULATION

Weekly
Time
Sheets

Totals on
Adding
Machine

Keypunch &
Key-Verify

Details

Details

TAPE

Keypunch &
Key-Verify

Control
Totals

PAY 16
	

Control
INPUT
	

Totals
EDIT

Zero Balance
Totals

Balance to	 Out of Balance
Totals &

Correct as
Necessary

A O .K.

Control Totals

Disk
Payroll

File

Details

Balance to
Totals; If
Incorrect,
Go to E

Zero Balance
Totals

Details

Distribute
Payroll

Disk Control
Totals To

C
ToPayroll

Register File

4

Section Subsections Page

35 20 10 08

Disk
Payroll

File
Control
Totals

Calculated PAY 05 Pay Checks /	 Total on
Control and StubsPAY ROLL Adding
Totals CHECKS Machine

Balance to
Totals; If
Incorrect,
Go to D

TAPE

5

C

Balance to
Totals; If
Incorrect,
Go to E

Only When Totals Balance

Check
Register

Burst, Sign
and Distribute

Paychecks
and Stubs

Disk
Payroll

File

	

Section Subsections
	

Page

35
	

20
	

10
	

09

(
Control
TotalsDestroy

Checks

Disk
Payroll

File

DetailsControl
Totals

PAY 11
VOID

CHECKS

7iDisk
Payroll

File

Details

D

Only When Totals Do Not Balance

File
D

6

Section Subsections Page

35 20 10 10

Distribute
Credit
Union

Register

General
Ledger

Disk
Payroll

File

Enter Plant
Number

Totals on
Adding
Machine

Union
Dues

Register
PAY 13
UNION
DUES

Balance to
Totals; If	 	
Incorrect,
Go to E

Distribute
Union
Dues

Register

Credit
Union

Register

PAY 14
CREDIT
UNION

Enter Plant
Number

From
Storage

TAPE

V

Disk
Payroll
File

(

Balance to
Totals; If
Incorrect,
Go to E

Disk
Payroll

File

Enter Plant
Number

Stock PAY 15
Deduction STOCK
Register DEDUCTION

Enter Plant Store

Number

Balance to
Totals; If

Disk
Payroll

PAY 12
Disk

Payroll
File

RESET
MONTHLY
TOTALS

Incorrect,
Go to E

File

7

Distribute
Stock

Deduction
Register

	

Section Subsections
	

Page

35
	

20
	

10
	

11

Totals
Enter Plant

Number
PAY 07

AUDIT FILE
BY COMPANY

941
Report

PAY 09
941

REPORT

Calculated
Control
totals

Totals on
Adding

Machine
	 /

•

Disk
Payroll

File

Balance to
Totals; If
Incorrect,
Go to E

Distribute
941

Report

Disk
Payroll

File
Plant

Numbers

TAPE

/
Balance to
Totals; If
Incorrect,
Go to E

File

Plant
Numbers

Section Subsections Page

35 20 10 12

From
Storage

Disk
Payroll

File

General
Ledger

8

Disk
Payroll

File
Plant

Numbers

V

Disk
Payroll

File

Store

Distribute
W-2

Reports

From
Storage

File
E

Incorrect,
Go to E

Plant
Numbers

File
E

W-2
Reports

PAYnn
W-2

REPORTS

Balance to
Totals; If

	

Section Subsections
	

Page

35
	

20
	

10
	

13

PAY 08
INQUIRY

Last Week's
Payroll
Register

Disk
Payroll

File
/ Select Desired

Clock Number
Card

Clock
Number

Individual
Payroll
Record

Balance to
Totals; If
Correct,
Go to E

Determine
Change

Required

Use PAY 16
& PAY 03

to Change the
Disk Payroll

Record

/ Does this
correct original
error? If not,

Go to E

Weekly
Time

Sheets

Return to
Print Where

Error
Occurred

Only when
entire original
error has been
corrected

10

Section Subsections Page

35 20 10 14

	

Section Subsections	 Page

35
	

20
	

10
	

15

PAYROLL RECORD LAYOUTS

Card Forms and Console Keyboard Input

PAY01
Plant no. — 1 digit — keyboard
Week no. of month — 1 digit — keyboard
Check no. — 2 digits — keyboard
Name — 18 blanks — keyboard
Plant name — 32 characters maximum — keyboard
Figure 2 — card

PAY02
Plant no. — 1 digit — keyboard
Figure 3 — card

PAY03
Plant no. — 1 digit — keyboard
figure 1 — card
Social Security Number, if changed — keyboard
Figure 4 — card
Figure 5 — card

PAY04
Figure 6 — card
Check no. — 5 digits — keyboard
Week no. of month — 1 digit — keyboard
Maximum check amount allowed — 5 digits — keyboard
Figure 7 — card

PAY05
Figure 6 — card
Check no. — 5 digits — keyboard
Check maximum amount — 5 digits — keyboard
Clock no. (if requested) — 4 digits — keyboard

PAY06
Figure 6 — card

PAY07
Plant no. — 1 digit — keyboard

PAY08
Figure 9 — card
Figure 10 — card
Figure 5 — card

PAY09
Figure 11 — card
Figure 12 — card
Figure 13 — card
Figure 14 — card
Figure 15 — card

PAY10
Figure 9 — card
Figure 5 — card

11

Section Subsections Page

35 20 10 16

PAY11
Figure 6 — card
Figure 8 — card
Figure 5 — card
If requested:
Insurance deduction — 4 digits — keyboard
Stock deduction — 4 digits — keyboard
Charity deduction — 4 digits — keyboard
Miscellaneous deduction — 4 digits — keyboard

PA Y12
Plant no. — 1 digit — keyboard

PAY13
Plant no. — 1 digit — keyboard
Individual amount for a plant — 4 digits — keyboard

PAY14
Plant no. — 1 digit — keyboard

PAY15
Plant no. — 1 digit — keyboard

PAY16
Figure 6 — card
Figure 7 — card

Console Printer and Line Printer Forms for Output

PAY01 — None
PAY02 — None
PAY03 — None
PAY04 — Figure 17

Figure 8
PAY05 — Figure 18
PAY06 — Figure 19
PAY07 — Figure 20
PAY08 — Figure 16
PAY09 — Figure 21
PAY10 — Figure 22
PAY11 — Figure 17
PAY12 — None
PAY13 — Figure 23
PAY14 — Figure 24
PAY15 — Figure 25
PAY16 — Figure 26

Disk Record Formats

Employee File — Figure 27
Index to Employee File — Figure 28
Company Record in the Corporation File — Figure 29

12

	

Section Subsections
	

Page

35
	

20
	

10
	

17

/
Clock .
No. Change Blank

00
1	 2	 3	 4 5	 6 7	 8	 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 11 42 43 44 45 46 47 40 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 23 74 75 76 77 78 79 60
11

22

33

44

55

66

777177777777777777777117711177111117

888888 88

99
1	 2	 3	 4 5 6 7	 8	 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 ZS 27 28 29 30 31 32 33 34 35 34 37 38 39 46 41 42 43 41 45 44 47 48 49 50 51 52 53 54 55 56 57 50 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

Figure 1,

4.

I
1

Clock

2	 3	 4	 5
1	 1	 1	 1

OBI

5	 7	 8
1	 1	 1

9	 10 11 12
1	 1	 1	 1

 Social
Securi
No.

13 14
1	 1

y

15 16 17 18
1	 1	 1	 1

19 26 21
1	 1	 1

Gross
Earnings
YTD

22 23 24 25 26 27 28
1	 1	 1	 1	 1	 1	 1

FICA
YTD

29 33 31 32 33
1	 1	 1	 1	 1

FIT
YTD

34 35 36 37 38
1	 1	 1	 1	 1

00

Local
Tax
YTD

39 40 41 42 43
1	 1	 1	 1	 1

Credit
Union
Deduction

44 05 46 47 48
1	 1	 1	 1	 1

P„ in
5 'A'

49 50 51 52
1	 1	 1	 1

.

5 o

53 54 55 SS
1	 1	 1	 1

.

v o

57 59 59
1	 1	 1

Union
Dues

60 61 62 63
1	 1	 1	 1

Blank

64 65 66 67 68 59
1	 1	 1	 1	 1	 1

70 71
1	 1

Blank

72 73 74 75 76 77 78 79
1	 1	 1	 1	 1	 1	 1	 1

il 3

or

60
1

22

33

44

55

66

7177117777777777777777117777717177

88

99
1 2 3 4 5 6	 7	 8 9	 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 26 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 45 49 50 51 52 53 54 55 56 57 58 I9 60 61 62 53 64 65 66 67 68 69 70 71 72 73 74 75 76 77 75 75 BO

Figure 2,

13

T7 I

•T7 azn2I a

os 6E 15 II 9L Si 15 El IL IL OL 69 99 L9 99 69 99 69 Z91909 65 66 LS 95 55 95 ES ZGIS05 60 e9 LI 99 St Pt Et Zt 11, 13;66 BE LE9E561566 Z6 1E Ot 6Z8ZLZ 9Z 3Z 9Z CZ zzau el 81 LI 91 SI 11 El ZI 11 01 68695 EZI
66

99888888898898888988889888888998888898880888988888888889898889888899889888889989

LLLILLLL LLL LLILLULLLLL LLILL LULLLLLL UHL LULLULLLLULLULLILLULLLIAILLILLL LI

99

G6666666666666666666466666606666666666666660466066666666060666666666666666666660

ttOtt744174417444174p4444417174174p4417404401744tpttptttp4417444444174444417444444411tt444t4t

EEEEEtEEECEMEMECCECCEEECCEECEECCEECCEEECEEEEEECEEEEECCEECCEECCEECCEEECCUECE

111 1111111111111111

11111	 III	 IIIILIIILLIILIIIIILIILIILIllllll1111111LIILIILILIIIILLIIIIIILILIIIILLILL
09 6L (IL IL SL EL 91. EL Z6 IL OL 69 69 L9 99 69 09 C9 Z9 19 09 65 BS L5 9S ssescs ZS IS OS 60 89 a 99 St 09 Et Z0 ft 1/9 66 BE LE 9C SC It EC ZEMOE 6Z BZ LZ9Z3Z tZ EZ ZZ IZEIZ61 81 LI 91 SI 91 El ZI 11 01 6	 96959E01

00

51,161
g

!_ ! 'AZ i ,
'1015

...,
'ON,0,0

'Epos

•E a xn.21,4

09 6E ft LL 9L GL ,I. EL ZL IL OL 69 89 L9 99 69 99 69 Z9 19 09 66 95 LS 95 56 96 ES Z5 IS 06 60990 99 69 94 Et it It 01 60 BELL 96 SCIIEC ZEMOC 6Z 81 LL 9Z 52 92 CZ ZZ le OZ 61 81 L191 SI tl El ZI II 016	 869506Z1
66

88888888889999998888888989888889888888988988888888889888888888888808899988889988

LULLILLILLLLLLLLLL L11.111LLILL11.111111LLLILLILLLILL LULL CLULLIALLILLLLLULLULL

99

666666666666666666666664666666G 4664666666466666666646466666666663666S66666666666

44ttt4t4t4t4tt44444ttUttP44t4tUtt4W4tPtttt174ttitt44t4tt41,17444t4tttt4t0t4t4444

CEMECCEEEMECCEMECCEEECCEMECCECCEEECEEEEECUMEECCECCECEEEECCEECCEECECEE

ZZUZZZZZUZZZZZZZZUZZZZZZZUZZ1ZZZZZZZZUZUZZZZZUZZUZZZZZZZZZUZZUZZUZZZZ

IIIILIIIIILLIIIIMIllillillill111111.1111111l1111.111.111MILIIIIIMILIIIMILII
MI 6L 61 II 9/ SL IL EL LIIIP1 69 89 19 99 59 09 69 09 19 09 66 86 LC 9S SS t6 ES ZS 15 06 60 Bt 19 99 St 91 Ct 09 19 09 60 BE LE 9C SE tE EC 001606 el BZ LZ 9Z SZ tZ EZ ZZ 10 OZ CA 81 LI 91 GI tl CI ZI 11 01 6 	 81960EZI

00

1 .910 aweN 'ON
5.13

:17 i

8T 0Z 0Z 9£

36ed suopasq ns uo pas

gi

OS 6/ 6/ II 91 St 92 EL Zt 12 01 69 29 L9 99 59 99 ES Z919E9 6S 86 LS 95 SS 96 E6 Z61606 69 13, MI 01 St 91 Et Zt It 09 SE 9E a 9E SE tt EC ZEMOC 6Z 84 L2 9Z SZ 11 CZ Z2 12 OZ 61 El L1 91 61 91 tl ZI 11 0168L959001

66

898888998980899888813888988898888888888888888988988881388998138888888899889980813899

LUILLILLILLILLLLUILLLILLIILLMILILLILLLLLILLILLLILLLLILLLLLILLILLLLLULLLULL

99

SESSSGSSSSSSSGSSSSGSS5CSSGSCSGSSGESGSSESSSSGSSGSMSSSGSGMSGSGSSSGSGSMSSGS444

4444444444444444444444444441,4444444444444444444444444444444440444444444444 494499

EE

ZZZZZZZZZZZZZUZZUZZZZZZZZZZZZZLZ

11111111111111111111.11
09 61 9/ II 9/ 51 91 El ZL IL 01 69 89 20 99 59 19 E9 29 19 09 65 85 LS 95 66 IS CS ZS IS OS 69 Bt a 9/ St 11 CO Zt 1909 6C 9C LE 9E GC tE EC ZE 1E OE 6Z 11Z LZ 9Z SZ tZ CZ ZZ IZ DZ 61 61 LI 91 61 91 CI ZI II GI	 60/958EZI

00

SuS10 /6t0u/03 1,0111 smOH smo14 111010^N MO 1.00 ../B
lepad

,,,,„,
5 nuog
1..1

.1197.0

WW1
Jein5aH

101oi
1/1110
WW1

,L,!U.. 3 1/B,ID ..Id

os 61 BL LL SI SI 1L EL ELUOL 69 69 19 99 69 99 E9 Z9 19 09 65 BS LS 95 SS9SES Z9 15 GS 61 89	 9/ St Mr Et 29 19 99 fit BC LC St SC K CC ZE U Or 6I BZ LZ 9Z 5Z OE LIZZLZ OZ 61 81 LI 91 SI tI CI ZI II 01 6 6/96 8E01

6 666

8888888889888888888888898988888898888988898899888888888888889988888889998888889

LLLULLULLLULLLULLULLLLLLULLLULLILLLLLLLULLLLILLI.LLULLULLLULLLLLLLILL

9 999

9994S94499994999494999994494999999999944944944444999449999994999999994444494999

44449944449449444

LEE CELL LEE L CE EL CL LEE CE CCL CELL CELL CELL ELI LEE C CCCL EL CELL EL CCCL CCL LELECLEL CELL CCCL

ZUZZUZZUZZZZZZZZZZUZZZZZZUZZZZZUZZUZZZZZZZZUZZZZZZUZZZUZZZZZZUZZZZZZ

ill 1111111111111111111111111.11.111111111
SI SI LL 9L SI IL EL ZLILOL 69 89 l9 99 69 99 09Z9 19 09 66 89 LS 95 56 96 ES LS IS 09 6V 89 LO 99 59 14 Et it 10 09 6C BE LE 9C SEKEE ZE IC Of 6Z BZ IL 9Z SZ 8E OZ ZZ IZ OZ 61 91 L191 S191 El ZI II 01 6 89998001

000

nr

/

61
	

01
	

OZ
	

gE

86Bd	 suopasqns uoRoas

Section Subsections Page

35 20 10 20

/ f.,6 ,63

Clock Regular Overtime Bonus	 -8 Special	 t Special t	 Special
No. Hours Hours Hours	 3 Earnings	 8 Earnings 6	 Earnings Blank

00
1	 2	 3	 4 5	 6	 7	 8	 9 10 11	 12 13 14 15 16 17 16 18202122232425262728293031323334 35 36 37 38 39 40 41 42 43 44 45 447494950515253545556575659606162635465665168697071727374757677787950

11
22
33
444444444444444444i444
55555555555555555555555555555555555555 5 555
66
77771777777777777777777777777777177177177777777777777777777777177711777111777777
88
99999999999999999999999999999999999999 9 999
1	 2	 3	 4 5	 8	 7	 8	 9 10 11 12 13 14 15 16 17 16 18 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 66 69 707132 73 74 75 16 77 76 79613

Figure 7.

/ — 7
Clock Regular Overtime Bonus 3	 Special	 919 Special -`8	 Special Pay Local Credit Union

Total All
Other

1 3

No. Hours Hours Hours 3	 Earnings 8	 Earnings 3	 Earnings Bate Gross Net FIT FICA Tax Union Dues Deductions m 09

00
1	 2	 3	 4 5	 6	 7	 8	 9 10 111213141516171619202122232425262728293031323334 35 36 37 38 39 40 41 42 43 44 45 46 47 49 49 50 515253 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 7671721374257677U 79 50

11
22
33
44
55
66
77777777771717777777777777777771717717171171117777171171717777771717711777171777
88888888888888888888888888888888888888E1888

1	 2	 3	 4 5	 6	 7	 8	 9 10 11 12 13 14 15 4 17 18 19 20 21 22 23 24 25 26 27 NI 29 30 31 32 33 34 35 36 37 38 39 40
99

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 53 59 60 61 62 63 64 65 56 67 68 59 70 71 72 73 74 75 76 77 78 79 so

Figure 8,

16

Plant
No

0

2

3

4

5

6

7

8

9

Blank

000000000000000000 `1.26. noo00
2 3 4 5 6 7 9 9 10 II 12 13 14 15 16 17 18 19 20 21 	 23 24 '5 36 27 29 29 30 31 32 33 34 35 36 37 30 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

11111111111111111111i'111

222

333

444.444444444444444444444444444444444444

555

666

7777177777777777777777771117717771111111777771777771777777777777777777777777777

8888888888888888888888888880888

999
2 3 4 5 6 7 8 9 10 11 12 13 14 15 18 17 W 19 26 21 22 23 24 25 26 27 78 29 38 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 16 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 65 67 60 69 70 71 72 73 74 75 76 77 78 79 80

	

Section Subsections	 Page

35
	

20
	

10
	

21

Figure 9,

Clock
No.	 Blank

0000 00
1 2 3 4 5 6 7 9 9 10 II 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 36 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

11

22

33

44

55

66

77

8888888888138888888888888888888888888888888881388888888888888888888888888888888888

99
I 2 3 4 5 6 7 9 9 ID 11 12 13 14 15 16 17 10 1S 10 27 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 56 67 68 69 70 71 72 73 74 75 76 77 78 79 BC

Figure 10,

17

Section Subsections Page

35 20 10 22

4,e Date for
Reporting
Period

Blank

00
1 2	 3	 4	 5	 6	 7 6	 9 10111213141516171619202122232425262725293031323334352637383940414243444546474349505152535455513575559606162636465656768697071727374757677757930

11

22

33

44

55

66

7717777777777777777777777777717777777777

88888888888888888888880888

99
1 2 3 4 5 6 7 8	 91011121314151617181920212223242525272629303132333435363735394041424344454647413495051525354555657565960615263646566676869 /0 71 72 33747576777E17960

F igur e 11.

/
Company Name Blank

00
1	 2	 3	 4	 5	 6	 7	 6	 9 10 111213 74151617181929212223242526272629303132333435363736394041424344454647464950515253545556575559606152636465566760697071727374757677787980

11

22

33

44

55

66

777777777777777777777777777717777777777177

88

99
I	 2	 3	 4	 5	 8	 7	 8	 9 101112131415161715192921222324252627752930313233343536373839404142434445454748495051525354555657511596061525364656667613697071727374157677 78 /960

Figure 12.

18

Street Address Blank

00
1 2 3 4 5 6 7 8 9 10 II 12 13 11 15 16 17 I9 19 20 21 22 23 24 25 21 27 28 39 30 31 32 33 34 35 36 31 38 39 40 41 42 43 44

11

22

33

44

55

66

77777777777777717777777777777717777777777777

88

99
1 2 3 4 5 6 7 8 9 10 11 12 13 11 15 16 17 le 19 20 21 22 23 21 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

000000000000000000000000000000000000
4546474949565I 5253545556515859606162636465666769697071121374757677767980

111111111111111111111111111111111111

222222222222222222222222222222222222

333333333333333333333333333333333333

444444444444444444444444444444444444

555555555555555555555555555555555555

666666666666666666666666666666666666

777777777777777777777777777777777777

888888888'8888888813888888888888888888

999999999999999999999999999999999999
45 46 47 48 49 5051 52 53 54 55 56 57 58 59 60 61626364 65 66 67 68 69 7071 72 73 74 15 76 77 76 79 82

City end Zip Code Blank

00
1 2 3 4 5 6 7 8 9 1011121314151817181920212223212526272829333132333435363738394341424344

1 1

22

33

44

55

66

77771777711177777777777777777777717777777777

88888888888888888886888888888888888888888888

99
1 2 3 4 5 6 1 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 21 28 29 30 31 32 33 34 35 36 31 38 39 10 41 42 43 44

000000000000000000000000000000000000
54647484950515253545556575859606162636465666760691011727374757677787980

1 1

222222222222222222222222222222222222

333333333333333333333333333333333333

444444444444444444444444444444444444

555555555555555555555555555555555555

666666666666666666666666666666666666

777777177777777777777777777777777777

88888888888888888888881388888888888138

999999999999999999999999999999999999
45 46 47 18 19 50 51 52 53 54 55 5657 58 59 60 6162 63 64 65 66 87 68 69 707172 73 74 75 76 17 78 79 80

	

Section Subsections
	

Page

35
	

20
	

10
	

23

Figure 13.

Figure 14,

19

Section Subsections Page

35 20 10 24

/
State
Account Acs un1
No. Blank

00
1	 2	 3	 4	 5	 6	 1	 8	 9 10111213141516111819202122232425262728293631323334353631383945414i43 44 45 464148495651525354555557585950 61626364656661606910111213 74 15 16 7141980

11
22
33
44
55
66
777777777777777777777777777777777777111777
88888888888808888881313881388138888 0088888888888881388 0888888888888888888888888888888
99
1	 2	 3	 4	 5	 6	 7 8	 9 10 11 12 13 14 15 16 11 18 19 20 21 22 23 24 25 28 21 78 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 41 48 49 50 51 52 53 54 55 55 51 58 59 60 61 62 63 64 65 66 61 66 69 10 1112 13 74 15 16 7116 79 80

Figure 15.

20

LINE
IBM

DESCRIPTION FIELD HEADINGS-WORD MARKS 	 8 Lines Per Inch IBM 407,
INTERNATIONAL BUSINESS

PRINTER
408, 409,

MACHINES CORPORATION
SPACING CHART

1403, 1404, 1443, and 2203 Print Span :

MOM
I	 I- Trr1-il f

I I I ••••••11111.1111111•••••1••••••••••■••111
I I 11-71-1T	 I1-111-17-1 J T111

■•••••11111W0111 ■■11111■ ■ IBM 1403 Models 1 8 4 LMN	 r ■ 17	 ••■	 ■	 Emil	 11■■111 ■■■■■■■■■ ■111
I	 I	 r TIT- 2721 IMITTri 11	 I	 I T I	 III r I n 1IIIIIIITIIIIIII! ,ii,HUM. WI MEW .51111111••• ••■•1 MMOMMOMII11••••••• •••••••■•••111111111111111•111111.110 • 11111111111111 	 111••••••••••• NM ■

IBM 1443 Models L N1, and 2203 up
••111111111 ■ ■ 11111.1111111	 OBESE •11111111111 M••••••••• Mull ■ 77-1 EMMUTT annu■■e ■■■mmummu■mumuumummummtGL UE 0	 1111111111	 2	 1111E11111EILIEIEUXICIPREIGIEMIXIME115080 	 8 9 171111:111131ZIPB6 . 700011EMIE1

4 5
6 71I1

6
0	 -27T761-21 2 3 9 1318818E11313102 0=MIIIMN111111111:=M11111M1

ommuuum1111111194.111111
1111111111.1mmutiluiu .

•	 unimum =NM INNENENNEul I 2i3LEIMEICEIME101210121:1111211EEICIERIFIERIOLIEEIVIMEMEINommomumnuiEumummunEumum 14•	 ••111111111••••••••••••••••••1111111•11•111111111111••••••••••••11•1111111•11. 1111•••ossu•••••••••••••111.
ii2

urinumENNENNNENIummunimmisioNNEENNEN111•11.1111• •••••IMM •••••1111•01110111•111111 •3
1•••••••1111.15•1•111111•11111••••••••1•••1111111111•u

1•111111111••••111111MHOMM.11111111111111111111111•••••••••••••1111111151111111.15•11111.11111.W4 NE Ninuommu•prummuThislisummThEN•umoniummuummannummil ENNINEMINININNNINNE NN•NmmuliumNuanq u II: 11111■111.:41: KI.1•1111. f.! f: IIIAI: /*I . ?! r! I: III1/0 !I:lill 04 ,...4•1. r r .4•114.0.11111:41E+.4. ■:114.111:1■:40'1AD: r. pr.rur y. • . r r roNEMIN ••••111= •••••••••••■ sENNO•11•111111•111111111111.111111.01111111■111113111WiriloWiN.1111ENNNUwisammur I rVili' ri,' I NOVirr NWr..7 r.- mawr NW NNW r.4011111:41741V.if	 Ill i. r.. ■Ar.4114111.1111K NT iv.,* r' /WC 01111110Nr. T. VV. ■II. ir. i. 7.114"41'.. ,'.11111111111.1111.11111111r ■•••11111•111 •11111111111•11111111•••••••••••••••••••••11
lu 111414 r 43r. y. arum Nrenr. mariVAVAIFia■lrounr.1.4giNTolrlmuirvirNNi. ,:rou ", NI:40:1*. NT 111111i7119141r 1113rAriTtl r 5•••••••••TN : PIE:II:IT ■11rinmonriiesmunnommomisossomossonmossismossinsossommisin•■•••••••111111111111111.111111111111•••••■•••••••••••••11

aumul

1.11111141111111111
11111■ 1111■1111 ■11.1•147.41w:4:tommuunrusuummumniingumusidemenoNNONE	 141110■11: 7./F.B.N6:±Iror.ca :7447400CfrA Ff. 'Ars IVA I I: pMiNarilillr KINIVUII r. •VAII : INNIAIMIKEINNE11.1 r I: ■.. IM:0:0:11'.41/.41:1:41:11/: IAIHIIIKI 'ACME I:4:0:11•11•1•11111111.1i111111111111.11.1111111111111111111111111•WW••••••••••••••■•••'ANT.1111 411 m 111Nun_ • .rnolormsgun

.4011mmummowlim-
MI1111•111111 MIMNIIIIIIIIMIE1111111:116191111101111111111111111 1111111.1••••■••111mull!....------- -,ummomM•	 I mill

"4"4.1.1.1_1151m--1-'=-•	 I

iiii••••uniii
miliiiiireFUN. mil

111111111EINNINFN11m*-
■III'	 ----..140MOMMEMIOMMOMMEMMIMIESMOMMOMONmomma mum--- --'1,!!!!MOMM.____I NNso

Figure 16.

IBM
INTERNATIONAL

PRINTER
BUSINESS MACHINES CORPORATION

SPACING CHART I
ND LINE DESCRIPTION FIELD HEADINGS/WORD MARKS	 8 Lines Per Inch IBM 407, 408, 409, 1403, 1404,	 1443; and 2203	 Print Spon :
1-1 IBM 1403 Models 1 8 4	 I

■■ommommumwom MM MOM MMMMMMMMM WommlOMMOMM 1■111111■ ■■■1R. NOMM■■MO MN	 I	 MOM I■■■	 ■	 ■■■	 ■	 MOM. T	 ■111■11■■
TTI ■■■■ II	 IMO012111111. 1.111. MOM. 1111111111•11•••••• NOM 7 ••••••• III III II	 T II	 IT1	 I I F 11111

IBM 1403 Models 2, 3, 5, N1 and 1404
111••••••••••••••11111110••••111111111111111111•••••■••••••••••••••••••••••••••11MMIMMINIIIIIM MI 111111111 	

II
	 TT I	 III

1111111111 1443 Models L N1, and 2203IBM
1111 0 ■■11111. ■EMM■■■■OMOSalOOROMM.11■11.111ME■■OE■IM■IXEM■IOMOMEMOMI ■ ■■■■MOM ■ ■■ ■■■ ■■■■■■■■■■■ ■111111 1111.111■O■MEMIUMI■■GL UE 0	 1111111111 2 1111E11111 4 5 6 7 M110111111111111.111.1 : 	 10 Mt=

A 1E118135171128 9 0061:113173111300013112011315 LIONIEIENOSIESSE100 I HEIM 6 61E1 9 0 I HEM 6 71:1111:1BORMOO 7. 81;113119 3 47-81-6-mum 11111 1111111•••••••••••••••111111111••••1111111111111111111111•••1111•••••••••••111111111111111111•••=1•1111••••• MB7 890131MEXIMOBEEE11.1501DEMUAL5,20111MCICINI	 ••111.••■•1111511••••••M1111 111.1111111. 11111 1.115.11•1•1111111•111151•111111111111111111•••••••••••••••••••••••••••1111111111111.1111111.1.11111111.1.1.1111111111 OMB MI 11,11111. •11.=11.1 •	 M BMWIEMOMMOMINIMMISMOOMMIONOWIMMO■M■ ■MISM■ MOIMMOMMOBOOMMEMOOMMOI MOMMOMMXIIMUMNIMMOillint ilin ICIEMMEM.111.1115.111111.111.115BOMEMOBM 0 Nuns11111505,N5111115,.I. M..11.1,	 imummuNINTIEUOral II,	 11.11111111.1117 iniiiiiriq MIMI! Arl."4141.0. lialtiq11110IITONI me
WEE1111111um IAN

11.111.1••••111111.11••••••••11114..1411.4.1%
■ 41,', ' OINIIIIII■ ,17,;ummismuummu;U•••••11111111MMEMENW111111111WIMMOIMMIIIIIMIEWM1111111111511•11111111111.

lett'i:/.:11..1
„ ,
I:

..I	 L..	 -
:■C'E; Y": MII;! -I'I'Se !=N•NENENIN•

Ailail 11.1112r4
.

'swil■•1 EmmuummuulW1111O:
arAKI:r4_	 IIIIKI

• ,'	 'M
MI ,

'1.	 ;	 "t„	 .
•_71•111MOe,; •IR • 1111 lb 1111 turtaAmmift..EltiAluoulutEcommoun..Arzt..:11,wiAmmurrrx Kai mammmi mli NI • Num Num

° 11111XIII IIIL 115.47toNcr#441,111,11. EE's M.RITITTIMI!!.
74	 -7.04707440.1- r.I.I!...11.11

4W77777	 r.4.d.111.IT!IP111:1PK. k.
.11

7-,
m	 . 4
.

,	 ' ! j•
11

ITU_ ;m_	 .	 ,i
_Li_N , _ ,	 136c!	 111118111' '. .	 0 r I Om,iii...o

IIIIIt 1111 , L- al!! cs
.
go, I .

 I[.	 .;	 ..	 9	 4 LI .,-	 1 _9 •E. I •	 0' - _L •	 a•. • I	 i 	 ;
.00 	 7; . . . a •

1111111 11111 I.	 1wintlikl,r-.A.	 Y-..	 1.7... -. . .1	 • M	 AI, [I _._. . i . f .'	 I ' _ i— ill
:Gil ifill 1.4 MER, Pillnmufe

■
_,A, _	 /:.	 1141„141.
 111c:XtEl: .-.111

■1•z, - III	 • ■	a	 •••:, .,	 —I I
1	 .

I 32,,i,I Lit ..	 '	 •* 1 1 ri ----il- ■-:Jc.•ismen••	 • silNio oilUri 1 8 •Er.
•
	 Ills ... Hrl ,. .', 1	 H

'
[I
I	 1.-.16(. : .

.	 . 1
.

I _IJJ1 -1`jek	 • w ■ •
lin!.11111	 11 i11111110.	 MI

,24
11111111	 lino 11.1 111.4.0. '.4.# -_ °

griffinIsm ivii•	 .	 I it, :.	 r. r Ct. Ni.	 14

millimm um	 •	 MOEN:::Im	 •1111111:N

T

iii
4144. i	 ■ 41,9 ,emu	 ; 1 , .I,

, '	 1Jv I •	 ± 7 a 11 u■ l_u_a-12.-I_j_i_u j_ j_
`11
iii	 ...II IWO IMO	 ,' __L 1	 I ••••111111u Nu arm11 WS ■ 1111	 m•Illur

11 igli III,- MUNI.
1

Piluis	 ri ■
••umouummumou••=1M1E1uNicur1Ems ;	 • ;	 I	 I '	 ' ,	 ; j	 . 1 ,.	 .._11..' .	 _:._1_,_1_1_'	 !	 I	 '	 : _ •111111•1111••••••;	 • ;

5101911110	 24 WM•	 X	 • • 11 il
II 115•11111••••=5.11•••••••••••1••••1111.1111

-1111-_,Tp_ _i_l__, --
I

OM
II, . – -1--:11 , , I ' ;	 1	 1	 ' MIN •1111111111111

liolp1-r-	 1 LI I 'i	 1 !	 I _L.L.Ii	 p_ ;_ 	 1 1_11j] ..L! i1 I	 I	 1
 i. A	 I HH 1	 ill 1 1111111!!_■.•-• 	 a.1111111 1 111	 mo.nrighihmiiENNUI	 i

r -
ili! '	 . i r 11_,_-__L4 ,	 ..L...._4_	 _I in •

FigMre 17

IBM
INE DESCRIPTION	 EIELD HEADINGS/WORD MARKS 	 8

INTERNATIONAL BUSINESS MACHINES CORPORATION

PRINTER SPACING CHART
Lines Per Inch	 IBM 407, 408, 409,	 1403,	 1404,	 1443, and 2203	 Print Span :

■■■■■■■■■■ ..mmummummmu■■mummam ■mu■■■mum■
IBM 1403 Models 1 & 4 Elammummsomminumm. mmammummilmmummossm... •	 ■■■■■■■■mu■■■■■ ■■■■■■■■■■■i

••••M■INE•• EMI 1111•••MEINENII MIMI•11•••MMIIIMIMOIMMENNEMI••=11111111•11 IBM 407, 408, 409. and 1403 Models 6 and 7	 ri
-FT 1 r 1 MIIMMEMINIMIIIIMMI IMENEMMEMMIMIIMIMMIIII

IP

MM MIM
••••••111■8••■■■■■U■

OOIIMIMMIMMININ•111111111MIMIMIMMII
■■ ■■■IM

II NIMIN
■■■■■■■••■■■■■■■

IMIMIUMNIIMBEEMMINIMMMINEMIN IBM 1403 Models 2, 3, 5, NI and 1404 a,

■■MM■M■■■I
1.1111111111/1

MIMI ■ MIMI	 nu I 11111111MINIMIIMMIMMIll
==E=IIMINIMME,	 ■■■■■

7
IMIIMMIIMIIMINIM■■■■■ ■■■■■■■■■■■■■■■■

IlliallEMEIMP	 10
I MINIMIMINIMM■■UIMMIMMENI■■IMIIMM■M4.56709012134.512000OBES00050001011000M0ODUSE00013000

k	 ,,2
i 3 :

1
. .111■114■111111

GL UE

IIIIIMIIIII11111111PM1111MIIIIIMIIIII
IIIIMMINIM',IIIIIPIIIIIIII■II■IPIIIIIMI11111101111111
7 IIIIPIIIIMII1111111111•111111111941 Ink•1011111,11 MEI

-gm

Ellitv:
111117i7
11:111Eir.UM
113MV7.474707.1111111q47

togarammummummintimgmMEMIMMINIMINEME•MIMMIWIN

1111311111111111111mappap00mmemap000omp

i.8:1111:v: rmr: !:I I:1 If ! Ur: 01: Ftlh Ur:
V UV MOE Krli:

KirE417171 ASV X171NrAV :INK rt71 1:17
r. ■130)71AP111767 iNr. rircr HMV V t11TM onus 7071NR: noir. ,'' r. MK r r.

liliniMIMIIIIMMIMIIIIIIMMIIMIMIIIMMUMIIMOMIIIIMI

1111111111011111■MLIMMENNEMMINMNIMININIMEIMINIMMEMMIIMINIMIRMOIMIMENNIIMMINIMMODIMMUMINUMMINIMIN
IIIMMIIIIIMONIBMIMMOIESIMEMMEEMBOMBEIMENEIMIIMMINEMISMINEIMMIMIIIIIIIMIMMEMINEMBEIMIIMIIIII•MMIMIMMEMENSIMMIIMM

2

'F. T: RI

7. ■70:1177111111V7V
Mrir.

IIIINIMUMMIIMMEM•••••1110•••MIMMIMIIMMIIMIMMIMMINIMMIIMEINIMIMIMIMMIIIIIMIN•
m080onegognigoomown6mp0121456712008834567ao0l21

III A ' AVIIIK01■:1111:1
NM PIENNEig

mmosiummmimmis

1111E11111	 4	 5	 6
=MEW

:0: rm:1:111:1:4■: ■:cm •0: No : 4,A.:0 :46 lowomccommliN
K r:4:1": r111474111111PRTACFA 'St! MI:)'.1■' ooriooptwin ". Te.01,701101011fill1111

rAilr.4 -7411111r Kir.r.4T4 'ARNOW rirflarANNIKII1TV MM
MK ■1174■74111r. 	 ', r.7111F.1.17+74111■7071: or. or. rtliAlli7ir. I: MiliirAtAIN171:44:1W:glimmingsmo mmumumomII MilErIMM	 MIMINEMIll	 1. II	 g

IIMMIONOMMENIN

• MI■ME■■■MI■■MMI■■■■■MIN■MINIMMI■II

ril: NV :mow i.4Ki):411V07 PM :INT r. l'EMIIIIIMIMMIMIUMIUM•••IIIMINIM•••••••111••••••••MMINIM••••••••1NIM
IIIIIIIIIME•W•

FUW111111111111111111111111111.1111111111111111111111EImunimmommisamin. issumimmomoni
111111111111MIIMIIMMENNIMINI11.111111111111111MIIIIIIIIMENIIEIB■■■MII■■■■■■■■■NINIMMENIII■IIIIIIIII■■■■■■■I1

I:1: I: 01:11:4I: ■71111:111: IA: Mt 1'. I: I:111: 7.11:1KINI: VA KIIIMINIMIMMIliommummummommommumumnsimum............mMIN•MMEMOMMIIMEMMEINIMMINEBOMINIMIHMENIEllIIIIIIIIIIMIE•p•MOMMUIIMINIMUIMMMIMMMINEMENI
1.	 -'m-NIIIMIIIIMINIMMIIMMIMMINIMMINNIMM011i--,.....Imommolowl.--	 -RIP"

MIEMEN•IMMIMIRMENINIMMInMIIIIIMINIMIIMffi•MNIN--mums....	 - 5	 •-	 --,IlmommummommluMmll
<1:"..14111111111111.."

11M	 rIMIMIIIIIIIMIRMIUMMIIIIMMINIMMIIMIMEMNBIPI
R ImmoullummommEMP"'".--'41-mmomommom...T,-- _.•.....L

Figure 17. (Cont)

IBM

TINE DESCRIPTION FIELD HEADINGS/WORD MARKS 8 Lines Per Inch

INTERNATIONAL BUSINESS MACHINES CORPORATION
PRINTER SPACING CHART

IBM 407, 408, 409, 1403, 1404, 1443, and 2203 Print Span :

IBM 1403 Models 1 & 4
mumummammummommumminumumummommummummonummum ammumm■m■u■m■■■ ■■m■■mulim■■■■■■■■■■■m
MEMO OMIMMUIMMUMMIUMEMMOMMIOMMEMMOMMEMMEMMEMMUMEIIIIIIIIIiiiiiiii ERMO MMEMMEMMONOMMEMMEMENOMMUMMIMMUNC

IBM 407, 408, 409, and 1403 Models 6 and 7

IN 119,11.11ENL
M

I

	

IBM 1403 Models 2, 3, 5, NI and 1404 	
MM■IIMI■NI	 1111I

=131813M11111111PIMMEMEMMEMMEMMEMMEMMEMMERNMEMEMEMBOIMMINIMMEMEMMEMOMMEMMEMOMEMOMMUMMEMBEIMMEMMERMUMMEMINMROMMENSEMINIMMOMMOMMEMMOIRO011
moo 1 , 10 111100111111

1111613120511:10111113EICIEICIODUBEICIEMEHILEMBEZIMIREIMMEEMOUIDIEMMIZIOCIBEIEILM1010006111013019130061110001100001EIMODOEDOMmmummummummommammemmummummummommommummummumummummumummommumnsommummummSUMEMIMERMEMOMMOMOOMERIMMUMMMERIMMEMMOOMMOMMOMMEMMEMMESIMOMMEMEMMUMMERIMMEMMEMBERIMMEMEMMOMMOMOSOMMORMOMMMOROMMEMEMENmmmmmmmmmmmmmmsmmmmmmmmmmgmmngmmmmmmmmmmmmmmmmmmmmmmsmmsmmmmmmmmmmmmmmmmmummmmmmmmummmmmmmmmmmmmmmmmmmmmmmmmmwammummommommommummommommommumummummommuummumummumamannommummummommumrommummummuouniumumummummommommommonwinemammonsunnommunsumum
WOBWIWIWIWW.W4SREMMJY4 1,,TVLt,IIILUYIEW.O:CAIWWWIRREMMUIRMIROMMUMMEMOOMMMERMEMMEMMIMMEMMOMMEMMEMEMCW.riCiAREMEMM
IMMUMNIMMIRAIMMERMEMBEREMOMORRORMOMMEMMUMMEMEMRIMMEMERMENIIMEMMIRERINOMUMMINIMMIIMIRMOMOMMOORMOMMOONOMMONOMIOMMUNIUM
BOOOMMIORROMUMMORMEMONMEMBREMOMMUMENMOROMMOMMOONISENROMBUIMEMMINERNMSSMERIMMIMMOMMEMORMIMIMMOVIMINIMMORNIMIMIROMISMr	 ∎'/IE ■'.A:(11' 4:01F .4:411:441 :6:	 a:1■1111`1'.• 	 Er	 CIQIIMIMM/t	 1:11: FM: ',9111L !3.I / lt ■M■ENIL	 '.	 ALrummummummummummummummummummummummussummummommummummummommumummummomminmmmumuummmmmnmmmmmmmmmmmmmrmmmmmunmmmmmmmmmmmmmmmumnmummmmmnmummmmsmmmmmmnmmmmmmumummmnmmmsmmnsmmummommommumisammun mmnmmmsmmmmmmmmmummmummmmmlirumsuummmuammmmmmmnmmmmmmgmmmmmmmmmmpmmmrm
minrilowwwciiimiNlAu4Aiminowrcomwmilumwalwrougimm mimmumommummummumummummummul v(1mulimmummimmummarumummumminnummommammumumma IIIMINEMIIMIIIIIIIIIIMMIIIIMIIIIIMIM1111111111111111101211•111110111111 mmamilmmummumummummummusummummummommummommummummummummommummommommummummmumummommunummummummummommommonnSIOOMIIMMUMMINIOMMMOMSOMMIMMlimmullomMillnummUMOIMIONOIIVEmr4rwmumwc,'4ElreAlmmommummunumummummommummummummummummummumummummommommummommommommonsw
OMMISMIUMMEMOMMOMMOMOMMINIMMINUMMOMOMERMOMMONUROMMORMENIUMMUNROMMOMMOMERMERMOMMOMOMMOOMMOUNOMMOMMOMMUMIOSMUROMCIMMEMMEMOMMIERMOOMMEMOMMOMMONOMMOMMOMMOMMOMMOMMOMMOMONOMMEMINIROMOMMERNMEMORMOMUMMOOORREMMEMMEMEMOMMOMMOMMIOMMEMMOMMIUMMMOMMEMEMMUMMUMMUMMIUMMEMOMMOMMIMEMMIIROMMIUMMUMMEMMUMMIIIMMOMMEIMMUMMEMMEMMEMOMMOROOMMMOMMOMMIMININOMMEMMIMIUMMOURI
MOOMMOXIMMUMMEMOMMOMMINOMM MMMMM OMOMMEMMEMMEMMEMMOMMOMOMOOMMIUMMEMSOMMOOMMUMMOIMMOMEMORM MMMMMMM OM MMMMMMMMMMMMMMMMMMMMMEMMEMEMOMMOMMIVALECNE,AVAMIAMNIWAMMOMMOOMMMEMMEMMENEMMOONOMMEMOMMOMMOMMIMMOMMUMMOWAINVYWAVAMOMMMOMOOOMMEMMOSMOMM
MMOOMMOMMINUMMAIWOMNIMIMMUWAIMMINIMMOOMMEMBOMMOOMMINUMMOMMUMNIMMOMMUMMOMMISMATWITAIMMIONOMMOMMONIMIOMMIMMMOMOMMUMMOMMOMMOMMOMMUMMUMMOMMUMMOMMOMMOMOMMEMEMMOMMIIIMMEMEMMEMEMOMMEMMOMMUMMEMOMMEMUMMOMMOMMIUMMOMMUMMEMOMMil
MINOMMIMMEMOMMEMOMMINUMMIUMMOOMMOMMUMMINIUMMOMMEMOMOINMEMMEMMUMMOMMUMMEMOVEMMEMOINUMMOMMOMMUMMOMMOMMINISIMMELmmmmmmmmmsmsmmmmmmmmuummmuummmmmmmmmmummummmmmmpmmmmmmummmmmmmmmmmmmmmmmmmmmmmmmmmmmnmmummmmnmmmmmIIMMOMMEMMOMMEMMEMMOOMMOMMEM MMMMMMMM MOMOMMOM MMMMMMMMilimmummommiummumummummuummommummommommummimmummilmmummummummummommommomummunummummommummumummanummummumummummummummummommummummummummuummummMMIIMMMINIIMMUMEMOMMORMINOMMIONROMMOROMMOSOMMOMMERN MIMOOMMEMIMMOMMUMMOMMEMMEMOMMUMMOOMMUMMOMMEMINSOMMMOOMMUNIUMMMINSMNmmummummumummummumumummommumunummummommummummommummmumennummusumuummummum
MERIMMUMIIRMOMMINRIMMEMOSIMMUMMIUMMINNOMMOMOMMEMIMIMERIROMMIVINNOMMEMORMORMOIMOOMONOMMIUMMIVIMOMRSOMOMIMIOMMOIMM
MEMOMMOMMERNIMMOMMOMMOMMOMOMMUMBIONNUMNIMUMMERMUMOMMEMOVERROMMERMERIMMOOMMIRMOMONSOMMUOMMOMMEMONIMOMINIMMOOMMIMUMMUMMEMMEMOMOMMIMMIUMMOMMEMEMMOMMIUM MMMMM MOOMMIIMMOMMEMOMMUMMOMMOUmmmmnmmnmmummummmm	 mmmmmmuumun mmmmmmmm mmmnmummmmssnnmmmmnmmmmmmm gmmlmm mmumu mmmmmmmmmmmmmmswmommummannummmmummummummummommommummpummommommimpe MMMMMMM
OMMONOMOOMOMMEMIENNOMEMMORMONW,' MM = M MM RINOMMOMOMPT MMMMMMM -TlimummomMIP T - M	 -_mmommommommumum- MMMMMmommi= M --____- MM	 –=111111114111.010--MMMMMM

IIIIDMIIIIII
IIIIDMIIIIIIU1111111111111111111,1101111111
II11IH11III:I
11111141111111111111111.4111111IIIIDOIIIII111111■411111'!
IMIDOMMI
11111W11111111111111,41111101
11110111111:
1111101111111111111
111111111M111'■
111ID411101111

RIMPIIMM
IMW111111111
1111100111111111111111101111
111111041111M

Cr=

111111111111111
1111101111011
11111111111111111

GL UE
7, a a

—	 . ,:4::!!!!111

Figure 18.

IBM
LINE DESCRIPTION FIELD HEADINGS/WORD MARKS 8 Lines Per Inch

INTERNATIONAL BUSINESS MACHINES CORPORATION
PRINTER SPACING CHART

IBM 407, 408, 409, 1403, 1404, 1443, and 2203 Print Span

IBM 1403 Models 1 & 4
SMOMMOMMUROMOMMUMMEMEMMIMOMMUMMEMSOMUMMEMEMOMMEMMIMMISMOOMMI ME

MM 407,408, 409, and 1403 Models 6 and 7Minsumun mammummummemn MMUMMEMMEMMEMOM MEM ■■■■■■■■ ME■■■■■■■■■■■■■■■■M
OMMEMMEMMEMMERMEMMISIMMUMMEMMEMMEMMEMEMMOMMOMMUMERMEMMOMMUMOOMMORMOMMOMOMMUMMUMS ■IMME■■■M■■■■■■U■■■■■■■■■U■M

MEMEMMEMEMMEMIMMEMMEMMOSEMMEMEMEMMIMEMEMMEMMUMMEMBEMMIMMIMEMEMEMMOMENMEMEMEMMIMUMMEMUMMIOMENNEMEMMEMMEMEMEMEMMMEM
GL

IIIINIIIIII

UE IIIMM•111111M1111i ng3rJEIDEEEIDOBEILIENICKICHUBEILIERMIWOUIREMMEMMIMM EICHMEECICIISEICILIMILIMMEMINIOLIDEBTIODEMMBEIEEICIOCEINEWREEMMOMMINOMOMMIMMUMMEMMUMOMMIMMOMMOMMUMMOMMIUMMOMMUMMONMEMMOMMEMMUMMOMMEMMOMMOMMOMOMMINOMMUMMOMMONOMMOMMCIU
1111111011111■11111P4IMIN mummommummommmmummummummummenummummommummuummummummummmom

MOOMMOMMEMOOMMEMEMOMMOMMOMMUMMEMMOMMOMMOMMENOMMEMMOMMOMMEMMOMMIUMEMOMMOMMOMMUMMIMMUMMINIMMOMMOMENUMOMMOMM
MUMMEMMUMNISOMOMMOMMUMMOOMMOMOMMONOM1111111111111111:, MIMMEMUMMEMMEMMUMMUMMMEMMUMMUMMOMEMMENNEMOMMEMOW.1051:1dM #1.1110111MMEMEMME MEMMEMOMMOMMEMMEMMIKINEMMEMIMMOMMENEEMM1111111111111111 IMMUMMMINIUNIMMINIMMOMMUUMNIMMEMIMEIMMIUMMEINIMIMMIMMIIMIWIEMISMIMMMEMIEMMISIMM

el IS Zivill:411:1,411.14.97,.:': !a:	 !,1:1111A VNI I. II: &CI,: :1111111111MICh zU

TIWI

ommummommummminimmommummummmumumummimmmimmummommummommumummw

VA>M4i: IMMUMMOMMISIMMEMINUM111101111111 MAMOMMIMMEMMENEEMOMMMENIMMOMERMEMEMMEMIUMMEMOMMEMENUOMMIMMAZIMMOMOMMEMMUMMESIMMOMMEMMUMEMMEMOMMOMMINUMMEMw L•mimmic Tun■■m■n■u r! Or; !Arai! simmun MINNEIMEMMY Y. ;II IN
11111041111111
NIHNIUMUllIMPUNIMI

IIIIIIIIIRMIillrl:o
MMWONNNOWCOMTWFMAYIV,WW, ,,WYAKMAMINIMWMPAUAANXi7VAMOYWAIMPIUWIFYITYMENOWNEMIGTOMMPANN

1"1:41: ,11111117	 1:11.91rINIMINI■n■ I i 11*:
M
ZITYr2,22F2YOYI,YY1IPOWAMOOMU.011WOUIPAT,WJ4WHLUY.T.1110M7N74V4.12MAOPVTAPTMMIONWAMOMIONMAIMWUM9LarTVPUVEIDOUVOMMOM

VANDAADIWATCmaintweallursnmporlrirnmqualicvmmosimmAmulwormommangnrwrInnowmaimmomillmiTarryilummomumummr;IlmWrnaVOVEIVITODPIZTIN17014AWNWANWWWWITLTUUMWITIMIWNUMOIONOWN7WATIMINITIVALaPIMMUCWNW
iiiinaIIIII IMMIE

MUSTAWAIIFFKOrMLIT,
s: SA: 1,11f: La v:

LIMMCIETIMOTY29:1FM
/c9c r, ic9:1	 icV. FY: 71:41116:74PE47.1747.4:71r4ZiNNINIIISToT	 707 ry,v,	 F A,:	 TAT 72/c I t r:	 Ms7(7	 117. S:s•Mr.■7471,741111T: 	 ry 1r,	 r	 ow. przimmAr i: r r,r7v., MOM,: r, r,w Nay,	 r?r, 1,1r1r,V3f,	 rr.

PliAs:111

OSIMMUROOMMUMMEMONIMMOMMOMMOMMOOMMUMINIMUNIMMIIMUMMIMMOIMINUMBOIMOMMISMOISMOMMEMIUMBEIVISIMMOIMMINIMIMMIMMEWWIMUTHIN AMMEMEMINEMMOMMINIVIMENOMMONOMMOMOMMOOMMOMMOMMEMIMMEMISSIMEMMOMMUMMOMMEMMIUMMEMMEMINUMMEMEMMOMMMOMMEMMEMMEMOMMINOMOMMIMMMUM III MINIMMINUMMINUMMIMMIUMMIIMMUMMINUMMIMMININIMMIUMMUMMEMEMOMMINIMIMMIHEMMEN. OMMOMMNOMONOMMOMMOOMMOOMMENIMISOMMOMOMMOMMOOMMEMMEMOMMEMMOMMOMMEMMOMMEMOMEMMEMOMMOMMEMEMUMUSOMMEMMOMMISMIMOMOMMIMIIIINIIIIII MEMOMMIMMUMMEMMUMMINMEMENIMMIUMMUMMUMMOMMOMUMMOMMOMMOMIMMOMORMOMMINEMMUMIMMEMEMOMMOMOMMMUMBOOMMIUMIMMOMMUMMSMOMMOMMUMMEMIMMIUMMOMMUMMEMMIMUNOMMUNOMMUMMEMMIUMMUMMEMOMMUMMOMMOMMOMMOMUMMEMOMMMOMMOMMOMMEMOMMEMMUMMIIIINIIIIII111■1■1POIIIII AMMEMEMERIMMOIMMUNIMMUMNIMMEMOMMUMMOMOMBOOMOMMOMMUMUMMIMMUMMOMMIMMOMMOMOMMEMMINOMMOMMOMMEMEMIUMMUMMOMMUMMIOMMIMMEMEMENNOMMEMMIMOMMOMMOMEMMEMEMOMMIMEMEMUMMUMMENNEMMOOREMINSMEMOMMENUMMENNEMEMMEMEMMEMEMOMMIMMOOMOOMMIMMEEMMEMMINOMOMOMM
11111111,01111111 AMMEMMEMMOMMEMEMOMMIMMOMMUMMENUMEMMEMMEMENOMUMMINSOMMEMMUMMBEINERMEMMERMMEMEMEMMEMONEMOMOMMEMMUMMEMINUMOMMUMM

II 1111141111111
MOMMUNOMMINIMUMMIUMEMOMMOWur.umwomwmwrywpmmumY7PWAIMOAAVArKiWIEVMU,AMOWAVAIMIINi7NU.■-rwrammummummmommonsminmsommomminammummummMMIEFFUWWITUUYI9ITVYAMEMOMWitalVV4INJJ1/44JM4J1w Irlin immummimmuminammiummulOMMOONOMMVIIMOMMIMMIUMMUMMOUIMMOMENIROMN MMIMMOMOOM MIMMOMMOOMMMEEMMEMMEMEMMOMMOMMEMOMMENOMMOMMMM	 MEMOMMEMEMMOMMEMOMMEEMMOMMUMM

pn MEMMOMMOSIMOMMENNEMMEME MMUMMOMMEMMOMMEMEM In	 MMONNMMOOOM:::::::::::■■MMMMMMMMMMMMMMMMMMMM MOMMMMMMM	 MMomm
---1m	 -----emilmumm-=-----=2.-Tummommusomm m==-	 ----mmommumminummum

:

.2.1MMEMINFr -'''..4■11111MMOMMOMPIE

■MMISIIME■■■IS ■■E■M■■■OOM■INE■■OM■ESEM■■MME■■■■II■M

Figure 19.

111111411111M

INTERNATIONAL BUSINESS MACHINES CORPORATION
PRINTER SPACING CHART

LINE DESCRIPTION	 FIELD HEADINGS/WORD MARKS 	 8 Lines Per Inch	 IBM 407, 408, 409,	 1403,	 1404,	 1443, and	 2203	 Print Span

IBM 1403 Models 1 8 4
EMMEEMEMEMMEBOMOMMOMEMMOMOOOMMIUMMOMMOOMMEMOMMUMEMEMOMMEMEM ■■••OM•EME• •MM•EM•E••I••••EM•••••ME••••MI•••ME•••INI

II IBM 407, 408, 409, and 1403 Models 6 and 7
11••MI1•••MM•II•MIIIIM••I•1••1•IIIIIIIIII•••MllE•el••MMIIIIIIIIIIIIIIIIIIIIIIIIIMIM•ZN •• 	 EMEMENIMMEMMEMEMEMMIUMMUMME

111111111111:::::::: 	 MM 1403 Models 2, 3, 5, N1 end 1404 ■1111■•11=1.1

GL
MINIMUM111111111111111

A
. - IMMEMOMMIUMMUOMEMEMNIMUMUMMUMMWMOMIMMEMUMMEMMEEMOOMMEMMOMMEMMEMMUMMOMMONOMOMMUMMONMEMOMOMMOMOMM

MMEMMUMEMOMMEMMEMEMEMMEMSMINIMMEMESMEMMEMEEMMOMMEROMMOMMUMOMMMOMMEEMMEMMUMMIMUMEMMEMMEMMEMEMEMEMOMOMEMEIMISOOMEMUMMI
I•E•OMM•MMMIIIIIIINIMIEMINIIIIIMI====

000
MAIMME1111111MINMIIIIIIIIENIIIIAnoonnammocummanommesomouuonsommouRIERRIMPlonmonnumonsmommonnomoonuocommonnuonmencononommongsnom11=1•11•1111E11111111111:1=11111EMIOMMIIIIIIMEIMII

MMOMMIUMMOOMMIMMOMMEMMIUMMUMOMMOMMMOMMOMMOMMOMMOMMIMMUMMUNIUMMOMOMMUMMOMMIMMOMMOMMUMMOMMUMMEMMIMMOMMUMMOOMMEVIMMUMMOOMMEROMMEMMUMMEMEMMUMMEMMEMOMEMMIEEMORREMIMUMMOOMINIMOMMIMMEMOSEMEMBEMOMMUMMEMOOMMOVIMEMON
IIIIINIIIIII MMIMMOMMEMEMMEMEMMIMOMISMUMMOOMMEMEMMOMEMEMEMNIMIUMMEMMUMENIMMEMEMMEMEMIUMEEMMOOMMOMMOMMEMOMMEMEMMUMOMMOMM
111111.1111111 MEMMOMUMMUMOMMEMMUMMEMMUMMOOMMOOMMOMMUMMUMUMMUUMMEMEMOMMIMMEMMONOMOMMUMOMMMOMMOIMIMMINOMMEMMEMMUMMOOMMfflEMMOMMUMMOMMEMMEMOOMBEMOMMMUOMMEMMUMMINIMUMMOMMOMMUMMEMEMEMMEMMEMMEMMINIMMEMMEMUMMEMMOMMEMOMMEMEMENMEEMEm1111D4111111 EMMEMOOMMUMMEMMEMMINDEMMIMMOMMEMEMOMMOMMEMOMMOMMIUMMOMENIMMIMOMMEMEMMOMMUMMEMOMOMOMMOMMOMOMMOMMEMMUMMIMOMMOMMOM

Off•OMMUOIIUUIIUMIUMMONEMOOMMOMMUMMOMMOMMOMMOMMEMOMMOOMMOOMMOOMMOMOMMUMMUMMEMEMMILMEMOMMOMMUMMEMEMBEMEMMEMMEMOMMEMMEMOMM11111114111111 MIWKWOOVAIRMIMEINIMMOMMOMMEMUMMEMMIUMMEMMIMMUMMIMMIMMIIIMOMMOOMMUMEIMIIMMEMMUNOOMMOMOOMIMIOMMOMIMMOUNION_11111■11111111 RE-I M111111,4•11111 1111W4 VOIMMOOMPEIHMOMMEMOOMOMMINUMMIOMMUMMOMOTIMINOMMEAMMEMOINMIROUMMIMMIMEMOMMUMMEMOMMOMMEMMOMMEMMUOMIIIIIIIMITIMMONEMMOMEMMOMMUMMEMEMOMMOMMOOMOMMUNUMMUMM
• =EMMEN IMMIMMUMOMMIUMMOMMIUMMEMMUMMEMMEMMEMOMMUNVIMMIIIMM6C■NNWRWAMMIIMMOMMOMMEMOMIMMIMEMMUMMEMMOMMUMMOMMMWOWWORUMMOMIMIMEMEMMIMMOOMMEMMUMMEMOMMOMMENB 1111111141111111111111111111111 MMOMO	 '411WAIRIMINMOMOMBIONIMMIIMMUNUMONMIMMEMIM MINIMME mliMmilmummommumniumummummummummosumm

I
11111111151111M1111D41111111111191111111

MK,IWOsmou
ORTMEMEN - Y. --- MMEAMMUMMONEOMOMMOMNAUMMOMMEMMEEMMUMMUMMEMMIMMUMMEMINIMUMMEMEMMEMOMMEMMEMOMMEMMOMME41..,CMINFAMAV:47../UOVVrIrKrWfAIVANUIVAMMIEMOMOMMOMMIUMINUMMONIMEMOOMMOMOIMMOOOMMOMMOOMMOMMNOMMEIMMERMOMUMmwmmolummummumummummummumulimplimmUmmillIflIONNOONNIMONIOMMUM OIMINOINIMINimummumm

IIIIIMIIIIII EM067■ ORNMEMMIMMOMMEMMOMMUMEMMOMMEMMOMMIUMOWIRMEMMENINIME 	 memmEMOIMMEMOMMIMMOOMMM MONEMEMEMMEMMEMEIMMOMMIN1111D4111111 MENNM 'A. ;7416VMMOMIMMOMMOMMUMINOMMINIMMUMOMMEMOMMINUMMINOMMOMMUMMMUMMMOMMIUMEMMUMMEMOMMEMMUMMEMMIMIMMMUMMOOM
unnamn mosuro

OMM0576
wiwunommummumummummummummum MOOMMUMMENIMMINIMMUMUMMUOMMIMMOMOMMOMMOOMMIMMEMMUMMIMOMMEMMOMM.111,,..MMIUMMOMMIUMMIUMMOMMOMOMOMEMOMMUMM IMMEMBISMIUMMOMMEMOMMEMOMMOMMUMMUMMENSIMUMMOMMOMOMMIMEMMOMMOMM

IIIIII04111111 MIIIKKURNIMMOBIONVOINIONNIMMIMUMOMMIMMOMMOVIMMOOIMMMIMINEMMMIIMMOMMIMEMMEMEMOMMUMMEMOMORMIMIUMMINOMMIMEMIMMOMMW•••••••••••••••••••••••••••11111112•••••••11111MIE•111111111•111MUI•M•11•111•M•IIMMLIIMINIMIIIIIIIIII•MIMMIIIIMMIIIIIIMIMMIMIII1
00000EZllusimmommumummommummummommommummummommemmummumumminummummutignummmummummummummummwOMMEMMUMMUMMOMMINVOMMINTIMMUMMOMUMMEMOMOMEMOOMMUMMOMIMMOOMMEMOMMOMMIMMI -- NMOMMUMMOMMUMMUMMIMMEMM.11111MMEMMEMMIMOMMOOMMOR0 -	 --TRimumwm.

	

--...,...-.	 -

	

—	 -,PMEMEMOMMUMMEMEROMOIMMIMMIMOMMEMMONEMOMP.

	

-	 '7`11111MMOW.'	 --TmOMMONMEMOWT -	 ■	 .

Figure 20,

IBM

CAD

G71

O

MMM _
-iiiimommompqmommommumummummummumiimmitimilimmummiiiimmummum	 ----"4.11111111:	 	

111M11111111111111MMMEMIIIIINEMMIIIIIIIIIIIIMMA1,15:1:IMMEDIIIIMWOMMIEMIIIIM,VIIIIIIMMOMMEMEM1111111M1/11	 Kmmummonsommummumnimmummommummemisimimilimmummummummummommummummummommummumm
11114■
111111/411111
11111114111111

'TZ anISTA

MUMMONIMUMMOMMIMOMEMIUMMOMIUMMOMMIMMINOMMINERINIONMIUMMUNIONIMMONIMIONIMMOMMOMMUMMOMMIVIMMEMPOIVIMMOMMEMMAmummommemmummummammimmmonsammwwwyNAlumpAwom■Anumma&mhmillummorJowomilow■Amm 1111119411111
11111194 111Hmsmmmmmmmmmmmmmmmmmummmummmmmmmmmmmmmgpmmgmimrvpmmsumummlmmmpmsmmgmmmmmmnummmmmmmnmmmmmmmmmmrmmomm

MUMOMMEM
mm

MIUMMEMMOMMOOMMOINIMMOMMOMMOSIONNOMEAMMENWIMIMINIONOOMIAMMINIMMIMINOMMOINOWIMMUMMEMBOMMEMMOMMIMIIIMMUMB
ClICCD
1111111411111

MMEMOMMEMMEMOMMUMUMMIUMMOMMEMMOMMIMOOMMOMMEMUMMIIMUMMOOMMOMMIIMMOMMEMMOMMOMMOOMMOVOMMOMOMMOMMOMOMMOMMIMMEMMOMMnmmmmmmmummmmmummmmmmmmmmmmmmmsmmmmuummmmmmmmmmmmouuummummmssmmmmmmmmmmmmmummmmsmmsmmmmmmumsmmmmmmmm
1111111411111
1111111,411111

MIINUOMOMIMOMMEMOMMI	 MUMOMMAMMUMMUMMUMMEMEMONNOMMOMIMMONOMMIMUMMIMMIMMOMMEMIMIONIMIMMOMMIMUMMUMMUMMUMN 	 M	 MANummmmmmmmmmmmmmmmmmumsimmmmmmmmmmnmmmummmmmmmmmmmnmmmmmmmmmmmummmmummmmumsmmmummmmumsmummuummmmmmmm 11111114111111111111411111
MMOMMUMMUMMOMMMEMEMMOMMEMEMEMMUMMMOMMEMOO MMUOMMOOMOMMEMMEMEMEMMUNOMMOMOMOMMEMNIMEMOOMASOMMOM.
MMUMMIMMIMM	

MEMOM
EMOMMUMMUMOSMOMMOMMOM

MO
OMMOOMMOOMMOMMEMSMOMMOMMIMMOOMMOMOOMOMMUMMOMMEAMMINVOOMMOMMOMMEMEMMAIMMEMEM

1111111411111
1111111411111

NIBIIIIIIIIIMI11111111111MIMMI1111mummumminnommommummumommommimmimuN mmommonammommummoommommummommummummommomm 111111941111111111111411111
MMOMMEMMOMMOMMEMMOMMOMMOMMIMEMOMMOMMOMMOMMOMMOMEMO IAMMEMEIMMEMMOMMEMNIMOMMINUMUMMMOMMESEMOUVOMMUMOMMOMMOMM	 OMMMMMMMMMMMMOMMMMMIOOOOMIMMMOMMMMMMMMMMMMMMMMMMMMMII MO 	 MMMUMOMMOMM/MMEMEM	 ONMMENWEINVIMMMAEMEMEMMENIMMIMMOSOMMIAMMUMM

OOMMOOMMUMMOMIMMEMOMOMM

11111111111111111111MUMIMMIINIMIIIIIIMIUMEMIUMMIMMMIIMUMMUMMMINIMIll
111111,4111111111111411111

MMUMMUMMEMIUM OMMOMMEMMOMM EMMUMMUMMEIMMOMMOMMOMMUMMOMMEOMMIMOMMUMMUMMEMOMMUMMIIMMUMM 1111111411111
1111111411111

IIMMIIIIIIIIMIIIIIMMIIIMMOMIIIIMMIIIIIIIIIIIIMINIIIIIIIMMIIIM111111111111111111101111111111111111111111111111111111111101111111MMUMBEIMMIIM 1111119411111
OMMOMMUMMUMMOMMOMUMMOMMOMMUMMUMMONIMMUMMUMMAMMUMUMMINIMMINUMBOMMOMMUMEMEMMUMMEMMOMMIMOMMOMMUMMUIMMEMOM 111111/411111IMMESUMMUMMOOMEMMUmmommommalMUMMOMMEMMOmmommummommenVEMMOMMUISMOMMOMOWAMOMmumMUMMOmmommmumEMOm 1111119411111MMUMMOMMOMMOMOMMUMMUMMIMUMMIIMMIUMMOMMOMMUMMINOMOMMUMMEMAMMEMOMMEMMUMUMMOMOMMUMMOMMEMMIMMIMMUMMOSIIMMOOMM 1111111411111
Neeeeeeeeeeeeeleeeeeleleeeeeeeeeeeeeeeeeeeeeeeeeeeeeeel/IIIIIIeeeeeeelleeeeeeeeeeeeeeeeeeeeeelleeeeeeeeeeeeeeeeeeeeelleeeee•U I 1111.11,411111MMOMMOMMOMMEMOMMOMUMMIMMOMMEMMEMOMMUMMOMMMAMMOMMEMUMMOMMEMMENAMOMMOMOMEMMEMMEMMOMMUMMEMEMOMIMMIMEMEMOMMAIMMOMMS 11111111411111
MINOMMIMIIMMIMEMIMIMINIVIIMMENOMMIMIMMIMUMMUMNIUMMUNIMMOIIMMUMIMMIMOMINUMIIMMIAMMIIMMOMMIIMIMEMMOIMIUMMIMM 1111111411111mm MMMMM MEMNON= MMMMMMMM mumminiMEMEMMEMEMMUMMIMMIMMOOMMIUMOMMEIMEMMEMEMMEMMEMOMMOOOMMIMMMEMEMMMEMEMMEMEmmummomms 11111110411111WMMUMMIUMIUMMOMMOMMOMMUMMEMMUMMUMMUMMMOMENOWNEMOMIMMEMMIIMMEMOMMMOMMUMMOMMOMIVIMINIMMIMMEMOMMEMMAIMMUMM 11111141411111
LIMUMMOMIMINOMMOMMOMMUMMUMMUMMUMMIUMIUMMIMMIMIMINUMMUIMEMMIAMOMOIMMIMINIMUMINOMINMOMIMMOMIIIMOMOMMIIIIMIMIUM 1111119411111
MOOMMEMMIOMMEMMUMOMOMMOMMOOMMUMNIMUMMUMMEMOMMOOMMOMMOMMUMMOOMMOMMUMMONIMMOMMAIMMIMMUMMOMEMMEMMEVIMUMOM 1111110411111NIMMINEMMIUMMEMMEMMOMMOMMOOMMOMEMMOOMMOOMMEMMOMMIMMISIMMUMUMMEMOMMMOMMOMMOMIMMOMMOMMAMMUMMIMMUMMEMMEMMOOMMMIMO 1111.0411111111
MMUOMMOIMMENOMMOMOMONOMMIMOMMUMMUROMMOMOMMOOMMOOMMUMMOMONIAMMUMMMONMUMMUMWMOMOOMMEMOMMIMMOMMEMOMMOMMS 1111119411111MMOOMMOMMEMMEMMUOMOMMOOMMOMMUMMUMMOMMUMMOMMIMOMOMMEMOMMUUMEMOMMMOMMMOMMOMMONEMMOMMOMMOMMOMMONOMMANUMUM COXEDMMOMMOMMOMMEMMOMMUMMOMMMUMMUMMOMMIUMMIMMMIMMOMMUMMOMMEMMEMIMMOMMEMUMUMMINEMMAINUMMUNIMMUMMUOMMIUMNIMME 11111D411111
MMEMOOMMIUMMOMMUMNIMMUMMOOUMNUOMOMM	 MINIMONOMMONNOMMONNUMMUMMOIVOMOMMOMMIIIMIMOMMIUMMIMMMV
MOMMOMMMINIMMOMMUMMOMMMOMOMM

M
UMM

MI
UMMUU

IMI
MMU

MMMMOM
UMMOMMUNU	

ONV
MMUMMUMMOMMEMORMOMMIMMIRMOMMOMMINUMMMUMMUMM 	

OO
OMMUMM

111111411111
111111,411111MBSOMMOMMEMOMMUMMEMMOMEMEMIUMMIMMMMUMMOMMAMOOMMMINAMMOMMOMMEMOMDMIMOMOMMOOMMMOMMEMMOIMMOMMUMMEMMEMINEMUMEmmom 1111111411111

MMIIMeeee1e1e1e1eleeelelellleleeellelel0elleNelleee111leeeleeeeee1e7l1ee1elel1e11e1eeeeMOIONMIe1INIIIIeeeeeIIIIMMlleeei•L 111110411111MMMEMMEMMUMMEMMEMMOMMEMMOOMMEMMEMMISIMEMOMMUMMEMEMUMMEMSEMMENIMMIMMOMMUMMOMMEMMEMIMMEMEMEMMEMMOMMEMEMOMAMMOOMMA 111110411111MeeeeeeeeeeeeeeeeeeueeeeeeeeeeeeeeeeeeeeUeWeeeeeeelleeeeeeeeeeeeelleeeeeeeeeeeeeeeeeeeeeelleeeeee0
WOOMMOOMOMMOMMOMMOMMEMUMMUMMOOMMOMMOOMOMMOOMMOMMEMAMMOMMISIMMOMMIMMOMMINIMMUMUMMEMOMMEMOMMOMMOMMONOOMUMMOMOMI 1111111411111

111110411111WMUMMOMMEMMEMOMMOMMUMMOMEMMEMEMMUMOMMOMMEMNIMMEMMOMMEMEMOMMUMMEMEMEMOMMEMMINOMMOMEMMOMMOMMOOMMOMOSSOMMOMMIESSOMM 1111110411111MMUMMOMMOMMMOMMEMEMMOMMOMMEMMUMMUMMOMMOMMUMMEMIUMMOMOMMOMMEMMOMMIAWC6001111.1MMMYSWMMOM 011111411111MOOMMOOMMNIMENOMOMMOMMEMSEMEMMEMMOMMEIMMOSEMMIWYMOMOMOWAMMEMEMMEMMaladirMOviffkdi0001,4111111MOMINEOPAYAWA91. Q111111411111
MMUMMINIMMOMMUMMUMMOOIMUMMOSMIMMIMMOOMMONMEMOMMIUMMUMBOOMIMMUNNUMMUOMMEMMOMMONOUeIMMOMMOBOOMMIMMIMIOMMUMM2 1111111411111

1111151411111WOMMEMOMMUMOMMONMEMMUMMEMMEMEMMUMOMMOOMMOMUMMUMSOMMOMMIEMOMMEMMOOMMEMMOMMOMMOMOMMOMMOMEMMEMMUMMOMMIMIOMMOMMIUMMMWINOMMOMEMMMOMMEMMEMMINOMMEMOMMOMMOMMOMMEMOMMMUSEMEMMUMMMOMMEMMEMEMMEMMEMMEMMEIMMIUMMEMMIMEMMEMOMMEMMOMEMOMMOMOMO IIIIIIHIIIII
MOOMMINUOMMOOMMEMMINESMOMMUMMOIMMIMMIMMOMMOMMUMIUMIMMOMMIMMEIMMOMMIMIUMWA(46FIMMINOMMUMMOIMMAPAAliMMOM
MMOOMMIMIUMMOOMMOMMOMMOMMOMMOMMUMMOMMOMOSIMMISIMMEMMIMMEMOMMOMMOMMOMMOMMOVIMMUMMEMOMMOMMUMMOMMOMMOOMMEMOOM 1111111411111mmummummennumummommummommummummuummannnummummum	 avrckwur4Diimoump1m1mmommummummommuummummumminummumummummommummummummummontOmummummommumm IIIII►UMION

111111►411111MMIUMMOOMMEMEMEMMEMMOMOMMOMMUOMMUOVEMMOMMORMEMOMMOMMUMMIMMOOMMOMMOM 	 34,1:1;Romitviulmu;lommi 111111,4111111imommummummommummummumummummunsummummuminummummummummumnimumummemumumm 1111111411111AMMOMMUMMUMMUMMUMMEMOOMMOMMEMMUMMUMMOMMEMMOMMOAMEMMOMMEMMMMCQYAM 	 	 :791WHIMACiieWMOM MIII►411111wommummummummummummumummumumummumummummummummummommummummiiiiiiiimmumumimm 111111411111MMUMMUMMUMMEMMOMMEMMOMMUMEMMEMUMMOMMUMMOMMUMMUMMUMMEMEMOMMEMMUMMUMMOMMOOMMEMOMMOMMUMMEMEMOROOMMOMMOUS 11111111411111wmomMIMMUMMMOMMOMMOMMEEMMIUMOMMEMMEMMEMENMEMMUMEMEMMOMMIMMMOMMEMMOMMMOMMEMUMOMMOMMMOOMMEMMOMOMOMMEMOIMMUMMEMMO 111111,411111MUMMUMMUMMUMMEMOINOMMIUMOMMUMMEMMOMMOMMEMUMMINUMMOMMOMMEMMIMMUMUMUMMOMMEMOMMOMMOMMENOOMMOMMINMOIMOMMOM 1111111411111MMUMMEMMOMOMMOOMMEMEMEEMMUMMEMMOMMIMMEMOOMOMMOMMEUMMOMMEMMMEMMOMMIMMEMMUMOMMOMMOMMOMMOMMEMMINIMMMUMMONOMOMOM 111111►411111HIMMOOMMOMMIMMEMUMMOMMOMMOMMUMMEMOIMMEMOMMOMMEMMUMMOMOMMEMMEMMOMMOMMOMMOMMOMMOMMOMMMOMMOOMMUMMINUMMUMMOMOMOR 111111,411111MEMENUMMIEMMOMMOMMUMOMMUMMIMMUMMUMMUMMIUMMUMMIOMOOMOOMMUMMEMEMEMMUMUMMOMOMMIMOMMOMOMOOMOMMOMMEMMIMMUNOMM. 11111114111111000MOUHMODOMOUMBOODOODUMB00001200012010n01200103130000NUEMB0003 UODEIBUDOLIE amanononuommonancoommononommonanonommug.	 .2-L.
MEMENIMINIMMANINKEN	 3n 19

1111111111immommummummommommoommommummummummum 	 mmummummommommummummommummummommemmummommumummuumme

	

L P E'. 9 1. 1.°W COP!	 '609 'BOP 'LOP W91	 11............

	

	 .m...

	

-	 .. VV1 • 1.P.W EOP1 W81

ponommonsmsonmsumnimmonsummtnumemummumemmommummummommommessomma
ECIZZ 16u. 'EN 't s l.PoW E991 WEII

MOMOOMMOMIUMM OM OOMMOOMOMMOMMOMM MOOMOMMOMOMMEMOMMEMMOMMEMOMMIMMOMMMOMMOMMEMMEMMOMMOMOMMOVIMEMOMMEMMIMMOMMOMM•MO,
901,1	 1.N	 'E 'E	 E091 W81

C•1

Eut318 Upd COZZ pus, 'EPP '40171 'COSI. '601, '80P 'LOP W9I
121VHD ONDVdS 2131NI21d

NOIlVa0003 SaNIHDVW SI3NIS118

q31.11 Jed Sault 8 SNHVW CINOM/SONIa0114 °1311	 NOIldltDS30 3,111

C

O
1-1

C
O
7:

IBM
Print SpanINK DESCRIPTIO LD HEADINGS/WORD MARKS	 8 Lines Per Inch

INTERNATIONAL BUSINESS MACHINES CORPORATION

PRINTER SPACING CHART
IBM 407, 408, 409, 1403, 1404, 1443, and 2203

IBM 1403 Models 2, 3, 5, N1 and 1404

Figure 22,

IBM 1403 Models 1 & 4
MOSEMINNEMEMMEMMEMMEMMEMMEMMINAMMOMOMMUMMMOMMUMMINSMENSUMMEMOS BM MMEMMOMMEMMINWOMMMEMUMMOSOMMEMOMMOMMUMMOMMOMMEI

IBM 407, 408,. 409, and 1403 Models 6 and 7
111111111=M111MMEMME111 IMMEMMENSUMMEMMIMMEMM OM ME MEMMIMMONOMMOMMMOMMEMOIMMUMMUMOMIMOMMUMMill

GL UE

1111104111111
1111114111111
11111/41111111

11111194111111
11111145111E
111104111111
1111114111111
111104111111
11110411111
111M4111111
1111114111111
111111411111
111111411111111
nummum
WID4111111
MI1141111111

°WI

O

O

cn
CD

IBM	 INTERNATIONAL BUSINESS MACHINES CORPORATIONPRINTER SPACING CHART
LINE DESCRIPTION	 FIELD HEADINGS/ WORD MARK5	 8 Lines Per Inch	 IBM 407, 408, 409,	 1403,	 1404,	 1443, and	 2203	 Print Span :

I
1
i

i■■■■■ u■■niniiM■■■ ■■■■■■■

ninilinlin NI nolimmininnounimmillim
IBM 1403 Models 1 8 4 I■iiiiiiim■ ■in■■■■■

molIOM■MIMMIEW
■■ 	 ■■■■■m■■■■■■■..■■■■■■■■■■■■■■■.■■■■ ■■■■■■■■■■.1

7 Mi
W

IBM 407, 408, 409, and 1403 Models 6 and
O li BM	 IlOOOMM	 WOOMOMBIoo

IBM 1403 Models 2, 3, 5, N1 and 1404IIME■IIIM■■■ 	ummininguninnonannenin inininninin EnnininnninlinnEn ■ ■■■■■■■■■■■ MOO MOO UMW
limminlowniuma■insmiliso sniumnon n =EMEEEIMIZEICEIMECE= amou■.......................................E

GL UE 0	 1.1111111111 2 MMI 4 5 6	 =1211111111=11111111111111110131•10MC=IIIIIIIME
cr.	 0	 0	 .111111041111111111111111114111111111

8, ElE101305113P/OURECIEMIEEICEEIE1 4 MEI 8 9IMMINIIIMIIIIIIMMannIMIMMIIIIIHMMInnlonnillinnninlin•nnlinininnanninilini
CILIEFKIIMICJOURE1121612017CREIE1135 , 7 ODnillinnn NMnonnininiiii

DEEM 7 8 CICIME113121061MOINIEILEMIX/INIEWIDEIMETIOBEEICIFICIEHMIDOMICIMEEMICI11111EMMMEnnanlinnnlinnilinninilinilillinninnlininniillinlinanninninillinionnnillininilininninnnninnonlin oi
limillinnill lainininInWillinmannainliniummunionnilinnuminno muninimintimilmmillimilinimmmilinnowinnomminini11111411111 ■111111IninnininliniliniiiiiiinnEMIMMIIIIIIIIIMIMMillninnillinninWEIMEIMinlilinillinInlionlininillnInfininilinnninillinnnillinnunntuni: .,Unlininn ■ Ili I» 1 r..MP. 1,	 Me , . lininillinninninillioninlinill1111111111 Minim nininiiinommoiniluilmnonnimillmninPanill ii■uumminnIermujimmommumnfflammemannousim mom	 ninnEnnniiillinninininnniiiiininnonillMILOMMMUMMUNIVOIMMUMMIMEMMINUMOONOMMIMIMMEMIIMM111111111aMill SAW 0):,,1:72 ! Van?: ..150111 .:1111.41Mr.d:1 I! 11:11: •IMMILIM■IMMW■ illinilliallinnnnlinlinnniiiiiiininlinilininlinlinlillinn9. 1	 nionanill millinilionninnillanillin*Mininillinnillinimillinnunlnininin II2 ,	 llinInnInn INIM■LIMMIIIIMIMINIMIMMInillninlinnillinninnW11111111111111MME 11•111111MMIMMUNIMMMIMMIBINIMInInM111111111111112 1	 1111111111Panill IciM10:1.! :Mann !i , v :11111111illinninow ,v, • »;InillIl EN morning linlinininirlillinnillinniiiiinMillinnMninnininilnilliininfinill Oil	 A.?AfIrAll Iiimm. 11,1f . 1.2,!: ilinr:067111Mr,IIIIIMIM WIMMILEMOVYAORMIF,KTIVV.IPFKIn MOW t2 .AllHUT ni	 IIII BMWI WM. •	 •11•MMENMMEMMIIMEMONIMMIIIIIMMIIIMII DEIMMOWFAMEArAMMUIWOUIIVIT: MMIMV. NrAM Il Mi 111

rill rIMMINIUMIMIMIIMMINIIMIIMMIIMIll
11111111111111111111 ULIOW0OLMONEUtTIVIIOTTTTM	 OBOSJOOKINOI winos I	 IIMITIMIIIIIIIIIMOMMIMIMOMOI
MINI111411111111111 IMIIIIME r MENIArY MINN. I. I, IT: 9IINIIIM IIIMIIIIMW V piriK am o numunimoon Moos000somoo9 MOOMMUMM MINIM MMOMIMMONNOOMMIUMMUMMMOMOMMONEU IN
11111141111111111111 monwro, no wrir 111,1911Ilt Of. F . r flr M Mismorr. Ni7Olinillninnomillillinlinlinillimininninillinilloinininnlinnnlinilimmininnilinionnilifinninlin ■Imun■■or r. NW Prilinc1/1171 21TIT: rim r: i IIIMIWTOmoomomoommooloo mu■ummiumnummum■mumniumminIIINIMIIIIIIInignanin EIMMEr.WAIMMUMWMIDEUMMIMMOWNWOMMIIMMOMIMMMOMO m IMMEMMEMOmmomMOMMEMMEEMMOMBOOMMEOMMEMENOMMIOMMOMMOOMMIMMIIIIIIIIMMOIMMOommoolownwoommomoom1111114111111111 mosow Auvrlor:wvirvrv•v:nrinnnr inMOMmawr mix siormernummolino IIIMMIONOWlimosoolmoommoomooMIEMI Wu mgolOWN IlonolMIOMMOWNIIIIIIIIIWMOImmunoMIIIIImmuoi111111111anin ElininilinnnalminWin 11•••• nuillonnino nniiiiillinnillumnUMIIINIIIIIIIIIIIMMIIIMMInnillinni
111111111111111111111111 nIilliiiiiillillinninnlinnillin

IInionanlin EE111.11MInnElitlinnlinMINIIMIIIMIAM11111111111111111111111111111110111111nnnnnnalM11111111111MINIMMIMMI1111111111111111111n11111111MMEnnlininlini■Einilinillininiimmomminsonnonmniniiino•milluillilliinnimilinliiiiillinlimilinini11111111111115mimillilininilioniIMMINnlin EallinnnWIMI11111111111111MnnIUMIMINIMISMMIIIIINWINHInnnunnlInIMMUM11111111111111111nnninnnInnilinIMMInlinni
1\3co

IIIIIIIIIIIIIminimum
1111111411011I

EENowsoniumwmffliiminiinnonnimilinnin•Ennommummommennummummeni
II

milluilimmuniMIIIIMIIIMMEM	 II

lismimmonlinniiiiimmilmillinininsinuniniiiminininsiMIIIIMOOMIIMMOONIONIIIIIIIIMISIMMOMOOMIJ
n minim ENIIIIIIMIWIThillitrrillEnn111111111111111111111MIMM MiniMini 1

ninnnWn1111111MIHMMEMMINENNISIMMInnillinmioninilinnomminiiiiiiiiiiiMilininownilinimonini
7

Ellionsninfluirin nnwomninimmEmnin ■11 1E II IIIIIMIIIIIIMMINIMIMMIummounilEmosnaliniiii
1111 INOIMIUIIIIII EIMIIM6■74..10:11•111r,vAr, TA.	 Ilf: F . I.II, r . INIT . r. 1111M. ,' I:	 win.ElOWINIMMOIMMIIINSOMOMMIN FM I MO WO i ■r011onoMMUOMMOMMIIIKUMMOWIIMIMIIIIOonlinall11111

1111111111,4111111111111
EtionlinnimiliminionimmillinitA 1 r II I V ■ II 	 , oloomoEasiiiiiinninni1111111111111nnMnillinillin	 NinnnWEI Mu mg MEMinns= INV

loogimemamoomoomommommoomoloolmomoiNon1111111111111111•111111111nlinlinillinnnnnilninnlinini
–MIM--- ESIMMIll MMM EP M IOIMMIIIIIIMIDEillinim--	 =!!INIMm■ni.- —__.—

■MO■■■MMIIIIMM■MMIUOIROMMW■■MP----71411IMMUMIIIII!!!!!!!!!01111MINIMMW11".----milminTv5,-- ---z.misimmium.!,---
- T-mill■MIUMUN■M■■IMM■r--7.1■MMIMOMMONW- -,

Figure 23.

IBM

L INE DESCRIPT 0 FIELD HEADINGS/WORD MARKS 8 Lines Per Inch

INTERNATIONAL BUSINESS MACHINES CORPORATION

PRINTER SPACING CHART
IBM 407, 408, 409, 1403, 1404, 1443, and 2203 Print Span :

BM 1403 Models 1 8 4
OOMOOROMMOOROMOOMMOOMOOMMOOOMOMOMOOMMOOMOOMOOMOOOMMOORMINOOMMO ■■■■■RO■■■■ ■■■■■■■■■■■■■■■■■■ ■OOS■■■■ ■■■■■■■■OM

IBM 407, 408, 409, and 1403 Models 6 and
■■■■■■■■■■■■OV■■■■■■■■■■■■■■■11

7
11111111111 MOOMOOMOOMOOMOOMMOMOOMOMOMOOMOMMOOMMO■■■■■ ■■■ BO MUM
mininImimmommummommanommommommmummimmommummilmnsummummumninimmon

11111111■111111=11111111111111=11=111111111■11=
MOOMOOMOOMOMMOO OR

11•1121111•MIENIIMIEMIM]=MIMIIK

O 011
mmmmmmmmmmmmmmmmmmmmmmmmimmmmmmmmmsmmmmmmummmmmmmmmmmmmmnmmmmmmmummmmmmmmmmmmmmmmmmmmsnmmmmmmmmmmmmmmmmm

ommonommonommumanowommuummunnuouRIBILIMMEmonnannommennamommenononcomonomounammoommosonagnonm
GL UE

111101111111
11111H111111 MOOMONOMOOMEMOOMOOMOOMOOMOOROOONOMONNOMOOMOMOONOMOMOONOOMOSOOMOOMOOMOOOMOOMODOOMOOMOOMOONOONOOMMOOMMMOOMMOOOMmommummummumummonmommummommummammummumummummummummummummummommammummumm111111■01111111111110.111111111 MOOMOOMOOMOMOMOOMMOOMOOMOMOOMIXIMONMONIOOMMOOMOOMONOMOOSOMOKOONOOMMOOSOOMOOMMOOMOVEMOOMOMMOOMMOOMMOOMMMOOMOOMOMMOOLInumumilimmumumnummumimmommummummminsnummommummummmenmom111111411111F - mmilinlinoontrmiNmplcumillummommininummmummommummmummommommummumumminnimmaimmommomminsm1111I1r111111 MOSOOMOOMOMMOOMOMOOMOOMOOMOONOOMOOMIONNOOSOMONOMEMONOOMOROMOOMMOODONOOMMOOOMOBWOOMOOMOOSIOOMOOMOMOOMOOMOONOM
111111114111111 mmix!v,m1m.a111,111wOMMIVRIVIWAVaIMUMOMMUNMOMMUMMIMMIMMUMMOOMMOMMIMIMMOIMMOMMIMOMMOMMINIIMMEMONNIMMOMMUNOM1111114111111 immomOOMMUMMOMMEMOMOMMUMMOnlammummommommommummummummummommusimmimmommomMOMISMOMMUMM11111M11111
IIIIIIPaillu Milvo‘uANOMMOOMMMT::OOMMEMIMMOMMW7,WIMMOOMMOmmommionsmoommummommumummummimmommummommummommummmI11111,1111111
1111111111111 minm;wimir.W.mtrrPrTrILVIMMINW3m1VainimMOMMOMMINUMMOMMEMMOSIMMEIMMIUMMOMMMUMMOMMOXIMEMEMOMMUMMOMMOMMUMSOMOM
11111P1111111 ...05xlmuln:PuIrmiriqrwrvflrmummorKuimimummurromommommunuummummummom

MMOW;70MEMPOW,TinnVITITTIMMIONITrWilMOMMEMMEMMIMIOVIOO LIMMUMMUMMIUMEMOOMMEMEMMUMMOMMUMMOMMEMOMM
11111141111111011D11111111 mmIUMMIIMOUNIONOMMEMMIMMIMISOMMOOMMONONOMMEMMOU

r	 r, r.... r.	 r. I I wommerinzonro:ImsmnismummonwommumtummommommommommiMWOMOMITIT377,1T=UMTIMUMMECWOOKIMMIMENINUMOMMOIMM
1111114111111 MMIMMUMMUMMOMMISMENEMOMMEMOMMOMMENMEMSUmnImilimmUMMUMMUMMIMMIMMEMOMMOOmmimummiummonnini
111■1)11■11■11 OOMMOOMOMOUNIMIONOMMUMMIIMOOMMIMUNIMMIMINOSIOOMOIOIMEMMOMIUMMOOMOOIMMONNIMMIMMUNIMMOMIOMMIONMOBOOMMONIMUIMMINOM11111,4111111 OMOMIONOMMOODOOMOIONOOMMOONOOMOOMMOMOOMMMOOMMMOOMMOOODONOMONOPOOMMONOMOMMOOMOOMMOOMMOOMOON1111114111111 WOOMMOSOMOOONOMOOMOOONOOMOOOMOOMOOTIOOOMOSIONOOMOOMOMOOMMOOMOONNONOOOMMOOONOOMOONOMMISOMOOMOOMMOOMOOOMOOL

NOONWOMOWN!,,V,VIII,WAIONSOWCI:4: :KOOMMOOMOOMOOMOONOOMOOMONOMOOMOOMOOMOOMOOMOOMOMOOOMOOONIOOMOOMOONOOMOOMOOM1111111111111
11111P1111111
1111114111111 OOMMOOMONOOMOOOMOOMOOMMOOOMOONON MONSOMOOMMOOOMINOONOOMIONSIOOMOMEMOMONOMOONOMOSOMOOMOOSOMMONOMIONONOOMOOM

MOMMOMMINIMMOUNIMIMMIMW:UANU 	 IIIIMENUMMUMMIMMONOMMOOMMUNIMOIMMUMOMMOOMMEIMOMMOMMIUMMEMEMMIMOMMEMOOMM11111114111111 miummimmumummommummommiumum mummommomminummumummommummommommimmumminummommemmonnimummommummummummummummossummonimmummummommummummummummommummummummummonsm11110■1111111lllll 14111111---- BM"'
OOMOOMIOOMOOMOOMOOMOOMMOMOIONOMOOMONIONONONOOMOONSIONOOOMOONOONONOOMOOMMOONOMO 	 	--- FIVI■MO■MIMMI

-
LWOm■olli■■uninnimp■m,

■■■■■■■■■■■■■■■■■■■■li■al
zmompumummlipp_ ----

'41OOMOMOOMOOM--=--==-VIOONOOOMOIOPM

Figure 24,

IBM
INE D ESCRIPTION

INTERNATIONAL BUSINESS MACHINES CORPORATION

PRINTER SPACING CHART

MELD HEADINGS /WORD MARKS	 8 Lines Per Inch	 IBM 407, 408, 409,	 1403,	 1404,	 1443, and 2203	 Print Span :

I
I
I

UMMEM	 MMEIONMENIIIMMOMEMMMEMMEMEMMEMAMMEMEMOMMEMMEEMMEMOSENO MITT.
IBM 1403 Models 1 8 4 In,	 , .7TTT I ■MI■■■ 	 ■ MMOMMIIIMOMMUMNOMMEIMMEMMEMMEM

and 7mm 407,408,409, and /403 Modek 6
IMO	 1111011111•11 ■■ ■ EINIMEMI• ■MEE 	 In 1111ENEW1 INIIIMM If.1 !	 f	 ,	 I	 1 - no	 IIIIIMIIIINIMI111111111111•111112111111111•M•111

11111111111 IBM 1403 Models 2, 3, 5, N/ and 1404 ;
AN••••■• 1	 IIMEM1121111111111111111■111■■■■■111111111111■■■• -r	 17 ■I■■■MI■ ' I	 7 T UM ■EM ■ ME	 7' In ■ ■■I

.......smamminia................... mmummimmesse amaimmimmummum....................................m&
GL UE 0 1111111111	 2	 1111E11111 4	 5 6 =E:=1111111111 '	 10 MIME

ElE1130171EIEICIODEEIMCISOUCILIEIE141113 7 8 9 orisommicup 3 4 5 6 2 314,5 . 617,819 of 112 145 aposaannuounnanongoomilEmonnanuommagenom
1111111041111111111

7 8 911112■3!4,5 6;7 8.901
DM I	 I I !j,LL 1	 1 IIIIIMM•IIIM•••••111111100•01EINESMINIMEN•11111•111

1111119011111111111
NOMMIIIIIIIIMIIIIIIINUIMMIEMMIEMIIIIIMMIIIIMMpli

11•111111111MLIIMIIIIIIIMMEMENNIMMEMOMMEMINI NMI III MUM I i .	 •	 ,	 • NM= 11111110•11E•IMMINEMINE112111111•1•MINUMESIMIIIIIMINI111111111111111MM 111.111•111••••••••••••••••••MIUMMINIMIIMI 111•••••••••••IMEMIEN I •••••••• •IM11•11111111•11MI•M••••••••••••••11111111111MINI nn IMMENNIBMENNIMENEMINIIIIIIIIIIIIIIIIIIIIIIIIIIINEMUMMIIIINIMM1111,1111111111 OM IIII■IIII■■MB■I■■MIIIIII■MEINIEIHRIME■E1111111111/411111" NM UM MUNE II	 IIMMIMIIIIIIII111•110111111111•0•0••••1111•MENI•111EmIIIII■4111111111 111111•Iff,z1 WO: • P./1 el 'I 11E: :MENEM:MEI
VMERL

0 MIMI 111111•1111111 MEM■ 0•110•••••111111111MINIIIIIMENIMIIIIIIIMMEBORI
El• I ffillaiMMO11•11MBEIMBIMMIIIIMMIIM•111IIIIDIIIIIHIIIIIMI1111 1•1111111111•1111•1111111•111111111W■MINIIIIIIIIIII•

:,,I:A. IL,111■19;r1:1111:1101•11M1:11.11111!I:1 	 MN	 ...Zinnia
111•1121111111111 I INE•••••1111111•111111111111111111MIMIUMEMEMIII1III11111

11110041111111111 9 111■11111111.11FIENZ■■11111.1BROMISIMINIME01 ; II117, ;	 vh in II■■IM
7 .1	 I il•MOINNEM11••■■■MMEMillIMINIMM■•••4

■OMMINIMINIIIIInOMMIE 	 1 011•11111111111111•1110.1MIIIIIIII
11111114111111 —

MELROMWOMMIIII.Fm.mr*OWNTI,Tmmlmu	 ••Illr‘	ANIIIIIIII111,111111111111,17:6,V IORMINPOal 11=111•1111—T
,..

. 1,_L_LL 1	 ![- . pm	 11111111111■NIMIN 	 ■WIIIII■■■■MEN111111
MID4111111 II isin . 	 .,-.1.wirlrv,IrlY:v: I, F:1 ,APTVITIPFP F: ■ 	 olee.4,74,i.41,. ZO O FT •	 •	 1] ■ 	 =NOMMEN	 1111111111111111MMINII
11111111101111111111111 011110nrONWITIPPITITIROVLIMMOO woNNIKNIN fr .1 . 11 1 .,4i,li H J NENIMIll 1	 1;	

,
I■IIIII■IIIIII■II

IIIIIIMIIIIIII •OMM: ■■TIMPFITQWNWITIN■M ■st2teptom i i• % a.,11, .. , I.._; ,	 I I	 inSIMENIN	 IIMINIENNIIIIMUMIll11110411111111 ammominprIntnirmrnmornAmmillwa.cormil insmom■ uj_;_ _, , 1	 1 , ••••••••11••111111111.11N•11•••••11
1■110411111111

11111111■41111111
111111111 MIffill•IIIMOUNIIIINIIIIIIIMINIIIIIMMINNIMMENNIIIIIIIIIIIIIIIEN

syrommunamormiummommumminnum...
•••111111111MEMIIIMMININIMMIIIIIIM••••••••1111••!••••

maim	 ! 1 , 1 moms
-

H , ,-1 	 -: Immiumminnsummumummummisommillm
illiffnil111=1111=11119111111111111111ILI i I .pill

NIIID411■11111■111111411111111111 MME103:11MMUIWIIIII,K L ,IUMUOM9TOMMEMBOKEINNKAMOMMONO 11111111111111111 tH I m 0 0	 UMIIIIIIIIIMMENIIIIIIIMIUMINIIIMIIIIIIMEll
IMIIIIIIMIIIIMUMMOMMEN•11•111111111•111111111

IMIEMBIIIITIMEMENNIIMM■NIIIIIII•MUNII•1•111111■MOIME1

-

BIIII,411111111 IIIIIIIIMINNItipl

MOMMEMBOOPP, -	 ----!!!Imminummum.----,.=r.-,-

nOOMMOIMMOOOMMOMMIUMNIMMommommummummommiummummummompom
simmumommumiumimminsmrsimmommmimmillumummommommumuling'LI IIIMIl'Ar. ■0:0:47	 19 ■IIIMIEIONIMINIMI■IMM■NI■ME■EMMEN••••

MM Imminsimmommommummummumimm
-	 --.„- ,Tmlimmmommomm,---- ,	 ------

1 ,	 ,	 M■III

—_ii........ong.-rgrolrninlog.-----	 -
so■morm■ssmuminnons..■.....■■.........mossai--	 ---Tmummommommommmenommou

....'47..111111......11111.1115r-!—
m	 Iml
-	 _,

-....,......
_

-- ---—
GO
CD

Figure 25.

IBM
INTERNATIONAL BUSINESS MACHINES CORPORATION

PRINTER SPACING CHART
I
I
I

LINE DESCRIPTION	 FIELD HEADINGS/ WORD MARKS 	 8 Line	 Per Inch	 IBM 407, 408, 409,	 1403,	 1404,	 1443, and	 2203	 Print Span :

IBM 1403 Models 1 8 4 I
11111■11111MININIUMIZEMEMMEM•011111•111111111111111110111•EN ME 111•111111■1•MOI■NEM IIIIIIIIIMIEMEN•MUMMINIMME•MEMINEMERMENNEI I

IBM 407,408,409, and 1403 Models6 and 7 Z
IUTII1111 I 1111 n'Ti 111•111•11I 11111U	 In	 W' I IT , 7 1 	 I	 I	 I •	 •MIIIIIIIIIIIII 1111111•0•111I

111111111 IBM 1403 Models 2, 3, 5, N1 and 1404 m
EINNIIIIIIIMII■MIENNIIIIIIMENEMONIIIIIIIIIIMM•111111 IIBIMMIONMIIIIIIIIMIUMMIll 	 1111111.11111111115 -1 ■ ■	 IIMMINEM■NIIMMO MN III■■IMII

MI1.1111MINIMMEMI IBM 1443 Models 1, NI, and 2203 W
immommoMMENIMMIMMEMMUPOMEMORMEMEMOMMUMMMOMEMESOOMMUMEINIMMS MIIIHN IIMMIIM MMEMINIMEMENNEMEMOMMEMEMMEMMWSMIMMEMMEMMEm

GL UE	 1111E11111111111111 2	 3	 4	 5	 6	 7 INIIIIMINEMICIIIIIIIIIIIIIMINIIIMM II
..—	 .A nomannum0onamanan00uno48u uolommummennwpaumonono67monem45.67.89002314.567ou BEUBOUCEICEIBEDO• 1100000 ECODECOOUBE01 •	 ECM

1111041.1111 IMIIIIIMIIMMINNIIIIIIIIIIIIMIMIIIIIIIIIMENIIIIMINNISNOMMIIMEININIMMEMEMINNIMINIIIIIIIII ,	 I MIMM11110111111MIN IMBIll IIIIIIIIMIIMINIIIN IIMMII
111111411111111 IIIIIIIIMMINEMISIIIII111111111111.1111MENNEMMINI.11.111111111111•111MMO•111•11E11111111111111EIN•1111111MM

EMINEN•INEMENS1111111111111110111111111MMENNIIIIIIIIMMOINIIIIII•M•1111111111111111••••11•1111•111••••••••11M11111111•111111111•11111111111100•••••••••••••PIWINIUMMENNIII
IIIIHNI11111 .111MMEMBINIIIIIIIIMMENIIIMENNIMINIMIUMMINIIIMIIIIMMENW,••••••••••••••1101111111111M=

0111IUMMENNEMBEINIIIIIIIIMEMILIMI■NNOOMIBMIONI

I mrrigtir, 11/011111ENIWY5/11/14Prirl r 'MINION
II1111111■411111111

11. ■.,....4,4m/.0.11■. r.4,A,..1.11114.4M.1.11..A0.411). V.III...o.o. ■d, pp, .0,4,1L4,0.0(pp,o N•••1111•5•111	 MI111r. rimrfir,,w; 0, ,, 71,1•7,ir?.'47.IFITY:01,./::!, e.e..r..••MMENIunneunr:
IMINIMMEll 1111•001111111111111111111111111•11111111111111110111MIIIIMEMMIMMINNIIIIMMESIMIHMIIMMINEM immomm nuarrimunr■mpournimmrArwrormrsommo■m
1111111114111M11 ongswo: .7 oirjr, gr,e,4070K1101:111N,:o: r.4,:,/".111,: caws., r.,-. ■ IVAIIANIN,P1r.0:11111MMIll	 MEMMIMUIll INV !All!. e an.-1-Jstv77.rrn•Jr .■,:v/Lugging'
mInfinIn mommommiumem..............mmuumomissomummommumummumi NIMIIIIIIIMIIIIIIII•INI r•dr11111,1•5•11M1/1111111•111•111111111111111W11111111111
111111110 111111111 ff■st.0:4', :1■.47.4Fir.4.7. ■ff 	 i'.■■••011174:40.". ■:4:9-fix•rioNcoy.o.,72.,1,Arg r,rKciirs:	 MIN	 NM ••••••••••••••••Prt,7-,77Arrirrrarmzsig.r72nammumoni
nMillu ion...	 Imo MIMI 11•0111111M

OMB OHM
NIMINIIIII•111111111111111111151111•11%1•

lMO	
,,A•111111111110000111111111.1

IN IMIAIIIIIIIIBOd MIMI •••••••••••1•11111141111lllM sounuommossmiummumiumnumnimuniur
•11011111111MMIIMMEENIIIIIMMIONIIIMNIIMMI IN In MEMNON BENUE

- OMSOMIONAMIRmommall4111111,,,,..,,	 -----'–........M
Mum

4 OMMINIII1"-
--111 1.-- ------ !MOM MINIM----i4,	 nEMI....-2ouISOMOUIBITII!!!!-J

-"••=,.......---7--

mumommumm
-

- minaMMOMmosim_...,..---	 -EMMOOMIMMIONMEMMOMENSIMEMOMMIllgonmpppm_ff-!P
1111111MINIIIgulpw -- --_, --__-

Figure 26.

ca
rr

C/3
CD
C)

0▪

lo
co	 cu
,41,	 CO

CD

Section Subsections Page

35 20 10 35

EMPLOYEE information record
starting at 109 and continuing

information.thru 156 is current 	 .

Oz
f.,a
c.)

Name

IIIIIIII

7.i
.to .1-.0E

Utn z

I	 i

g«
:I
co

s'
06
Z
0
olu-Y

.0

9-
.

3

.>--0
'aa'.

3

A
2°'-n

K
EX.
6
I'.

E
x

a
vi
,iiitn

x.
.'
g•0.

1	 5 6	 10 11	 15 16	 20 21

Year-to-Date Information

I	 III	 III	 II	 I	 I
25 26	 30 31	 35 36	 40 41	 45 46	 50 51	 55 56	 60 61

I 1 I 1

Quarter-to-Date
Information

i	 I	 t	 i	 i	 .	 I I 1 1 I I	 .

x

>
RD

t
°
..2

o
la,
U

cc

t0
41
«
gz

.

...,
.P_
0

d

Uu
cli«.e.ia

x
3
'6'

m
71

—E•
D

2
u)

a.

E

taciti. t

2(..)

0
6
f

t,
_le

9
cn

I

Previous 13 weeks

I	 I	 I	 i	 I I

Overtime
Rate

i	 i	 I I

Eu.
..:E
c

-2
D

65 66	 70 71	 75 76	 80 81	 85 86	 90 91	 95 96	 100 101	 105 106

1

g
g
–

,2'
o

1

-t
8

•
.0
C3

s
(3

I I

1
cc
›
12

•
?
Q

.
r,
cc
I-
0

e
g
i
's
3
IT
cc

■ I

e
8=
i-
o

, I

e
3
x

Iom

I I

a
.g-
w
3
g

cc

1 .1

P
'Esw
1.-
o

1 I

P
.a'
ii,
.
c.
co

I I

P
.E
3u.,...f,
e)

I 1

.E
c.)

1-
>0

73
x

I 1

E
c

.13
0
>

I I

E

g

1 1

>
ri

z

I I

<0

110 111	 115 116	 120 121	 125 126	 130 131	 135 136	 140 141	 145 146

LL

Ip

O

D

2

S
0

C
For Growth
of Record

I	 I	 I
150 151	 155 156	 160

Figure 27.

31

Each record is composed of 1 word.
The number of records in the file is
the number of employees in the
plant plus 25%. The last entry is
the record number of the last clock
number entered.

0
z

OC.3

Year-to-Date I nformation

I	 I	 I	 I	 I	 I	 1	 1	 I	 I	 I	 I	 I	 I	 I	 I	 I	 itaiIII	 1	 1	 I

Section Subsections Page

35 20 10 36

25 26	 30 31	 35 36	 40 41	 45 46	 50 51	 55 56	 60 61

lilt

Quarter-to-Date
Information

Ili	 [III		 I	 .

•
.'

2
°F>-

1?:

0c.0ED.,_,.-
- gU

s'

O
.43,
f.c02
g.-
7,«
la
U

ci
z

-r,
o
..
u

I

s
=

—•tt-6
71

to....
(6

O-D•05
,g

z

 7,
0
,:
o.c
Q

v.,

'CI
6

z
o

•1:,
.1=1

s'.,o(73
I

Previous 13 weeks

I	 I	 i	 ill 1

Overtime
Rate

1	 I	 ,

..:'2
,gE

65 66	 70 71	 75 76	 80 81	 85 86	 90 91	 95 96	 100 101	 105 106

Li
E.

■2'a.

-E
8

.

°

g
2
C9

I I

`2
g•P
<

›i
ccI—0

1
i
t-5
2'
cc

1 I

e.o
F0

ti

e=oi

oco

I I i

g,
.E

T,
LIJ

g
CC

,

cn1
ill
,-0

.	 .

§
.8
,..
2'oco

I I

.g

t.d
5

. 1

.
0o

>-
o.
.:0
-aI

1 i

t
0.c
..9
i'l

1 I

,.,-

g

1 1

g-
4.5
Z

I 1

<(..)u:
(

110 111	 115 116	 120 121	 125 126	 130 131	 135 136	 140 141	 145 146

0
J 0

0
2

•0 For Growth
of Record

-J

.«.

150 151	 155 156	 160

Figure 28.

32

	

Section Subsections
	

Page

3 5
	

20
	

10
	

37

This is the plant information record.

,	 i 1

Plant Name

. I m I I , .	 1

0z
.
2.cU
P.
u-

d
Z_,ce
i

5 6	 10 11	 15 16

r•

,	 I ■ .	 1 ■ I

Trade Association Information

III	 1	 I	 t _.a_i	 1	 I ■ I ■ 1 I II 1 1

General Ledger
Account Numbers

for Posting

111	 i	 1	 i	 I 1 i

.1 t0 o
•	 Ex ,

g

i	 I

>

I a
2

.o'I–

1	 I

e ' tc,z

Ig–

I	 i

1.

OZ
5

-o
72
it

20 21	 25 26	 30 31	 35 36	 40 41	 45 46	 50 51	 55 56	 60 61

	

Available	 for	 Expansion

1 1111 1 111 1 1111	 I	 III	 I	 I	 I	 II	 I	 I	 I	 I	 I I 	 I	 I I I	 II	 I I I	 II	 I	 I

65 66	 70 71	 75 76	 80 81	 85 86	 90 91	 95 96	 100 101	 105 106

Figure 29,

33

Section Subsections Page

35 20 10 38

PAYROLL PROGRAMS

CREATEPAY01: PAYROLL FILE

VARIABLES IBM	 1 1130 COMPUTING SYSTEM

SUMMARY SHEETVARIABLE

NAME .L "q
0
2

1:1
-c,ci
z

0_
2 --ILu ,L- E
D-- '
ci- 0
z

MAX.
VALUE

MIN.
VALUE

Application p4 >.--;,ep , z ,5- y.5 - 77443y7	 Date cgA6/67
A--/iek–

Program Name ,L-7/&) c-,,,,ea,4	 Novei,'rr23/ Programmer

FUNCTION OF VARIABLES

CX-WAX R I/3 / /000100.0(/fia,r/;,-;‘,.77 c 4 ecz. .a,,,,,,,,,,, 7*,-, a 44.,

Co/HP 12 /6 2;0 - - Comiaa.,,y 4,,,a-,---/e.,

A2g Z'' Ac' 24 0 000 Or. aV T a/,p,i_ e. ass-ocia4a ,e? ra7",0,-1.5-.
.7 I / T (i-ced ,., Op /a„,,

_IC I / W - - e--fe,/,..4a4=.77‘ 7,--o .Z7V1

2-c#c/e r / r ac ','-e.fr-7 ..e9eg.',,r7/,49 cAec.C. /744.")/ i)ey-e-, it/e",7 .a.,..-/74; /ii,	 c,4eces,
2,-coz 1 r 2.570 .ie ,Pe.evrel enderge5ev• /;-7 .67,7,:p/tr ,5.,.149e ,,--,,Yes,, ,FE-. 74 cro Sy"'Lae?"'
..r/f/ / 7 /06 /01/ 'rile ruernbe.-^ 0/'/.74814 PO"' el /0/47,v/t /Iv* -,./Do

INDEX I 2..- T xxkx /1040 .7:1,/eie zi, /0/44/ /204f-1 6e,/:-,,g ,01^,C,Cd'S•rec/
.2-/V2-7- I / 0 0 0 6.47/D.01	 //2 / .1., Gibe, ■-) 1,5ee

"WI 1 / r 2567 .1 PeCerV / /7 Gl P,46 0,-1 //2 Ye, dex es hErtp4yeeA.A.
_TA/ e I / A/ — 44-10.,..., a /e/p/ /.9 _rit/i

1A/8 2 / /t/ - - eg,v/344,02/ 7‘a z/vi

1 V4 i / A/ — — ---ipe./,'„-a/e,,,,74 42A&

..TA/5 I / A/ — — Ehee,,,,,o/ew/ "0.2-/vi

z.t/a 1 / It/ Fea/Va/&'/?7` /e_r/t/.1

..77".0 2. / 0 0 c2 .7;ki/e'v/es skilas eviitoconv6vi "vreee-ssieo,..9 cyc/e

1:5?//)1:2 1- /3 0 0 0 ,5-2/,,,/c-,,,,,,,70/ 5-;,-.4. i24,1
.Z7- 7- I // T /723 • Wecoe„,r/wene.4er. l0P770.511/03 /.0 4,2 Seoner0/44e,

/.,(7e',* of ,.e r /14,,,14,ffrvefx X/ T s- 1

Mode:	 I = integer, R = real, D = decimal, A --, alphabetic

34

	

Section Subsections	 Page

35	 20	 10	 39

VARIABLES IBM 1130 COMPUTING SYSTEM
SUMMARY SHEETVARIABLE

NAME .It0
-E'
°.6
a
z

I I-w----- f Dl-IS D
CL 0
..

MAX.'
VALUE

MIN.
VALUE

Application /34 Y/e4.9ZZ ,.`.:-Xf;-,--/W	 Date 4//,3767
i\--//c.e

Program Name /6-//e	 .,•-e::,;.;,-4,	 No./	 /Q/ Programmer

FUNCTION OF VARIABLES

.7-ii/1/,4 _Z 1 /V - - e-ta/r,e-1/.-:•/0/ ,71.0 1C-6Z
/,-- 2- / r 9 0 z,-_,.--77,,,-„/ /PS/

Z,457 Z / T XxX 0 Z,7,5-11 ,-,--c-o/-4 - 7 / .74/,-,-/66--. id-7 4/e
r.g, 2- / A/ - - _E-fa/i..e/e'',27/ 71, e 2 . l-C‘2/

Z 87- / 4/ — — 2:fia/.1.,7/..---.7/ /a ...2-642Z

Z 41C 2- / A/ - - .t-z//i/o/;--'',,-/ /=, _Za:�2/
/ 5-7" 1- / T 2..-V „5,--:',_.6-0/ Zast//-e-c-c2.-d/24/m.6.1?/- / 	 c 2. ii/e
Z YX:',17/R1- / 0 co' This yevi ," ',..0 OcC a . , -7c., 4:7 /th,--, of h„,,,,,-,5. ai,,,-..e.e,/

..77,-9,- frocovvo,-; pay

C./s&d //7 1.90 /00/,/W % / T
/1.1/4/ Z / 46 2 / -,/Way.//a / .57"94....s- - 0- ..5-.;,9/4.., Kv- ,,a,-,-...94/)
/1i//i/C 7 / - - Ziwi,/ 0/9,,,z /e) _Z-C:OZ

/1/Inv!/ -z- / o 0 y 4e/e/ -7././ �2 /20/ cf.) "Pli.> /ea/475 A "PA: vef/7 /

//4/1//e- 42 9 01;e) - ..e//po.-//.7 ae-ero A a/4,4,4,-1 5/vac& /a,- ,70,,,e
/1/0-/C& z- / O 0 Of CXec.	 /2‘..e,771e=• e.,,sc-/ K,/ 7 .;/,E. e,,,,,/ely.ec

/1./GL/ r / Ifr-e) XX•XX 0(co-o///:	 tie,/ e >14.-Je-/-i---•c //;:, ,-*2

4/ce/2),5 / / D 0 /go-9/A y ceedw a/1/i2 r; dove- /ions /ions	 (/';1E s)
A/DVES .I- / 1;0)06)0(e/4/Del dves ,,/,..4"a,--)4/on
/17/445- 7 / .1;6 XX.A9C ft 7.2sang/2ce dee-kei/or,

/1/0/52 7 / 0 0 41/-sr'e/47,-/eveis e/e.,k.tc- 7‘;‘,...-n-
A/DP/7 I/ 7- 6 / PAP,'" /7 ,....) .6e,"---

"Mode:	 I = integer, R = real, D = decimal, A = alphabetic

35

Section Subsections Page

35 20 10 40

VARIABLES IBM I	 1130 COMPUTING SYSTEM

SUMMARY SHEETVARIABLE

NAME .
La'
o

12

45
d
z

cL
L.,	 I–
L– 2
15 15
°-, °

MAX.
VALUE

MIN.
VALUE

Application ,e4)%eDL Z .--5-Y-5-7-Z:V	 Date e//5-/a 7
,	 . - - - ,•-./c

Program Name ,4->/e Creo/e	 NO./17,4)1:2/ Programmer

FUNCTION OF VARIABLES

4//e47E 1 / .4.6, .3011 /23- z---,?,/,/,,ye, 	 "oay , k--,/.'
44!,-,e-..><- Z / j-/.2 3 / .5-ex -(/-7,--,--i-AQ/e),(2-.)4/e), (3- 71.-ucker)
4/5-5.52.1./ Z 2 40 &pays 9,741/s So c i .e:7/ Z.-6c (../,-, ; 6,	 /-?‘../., /.,..-:-,
/1/6-7-/"--' Z / 5 /)444::/r =j *?-444:: oa:..,,-. (:;.01/: / Z ;v,,,-. 4•; fehj,k(Z);1,-3„--4„°,7riale,r7 5' 21
/1/57-c, / 4 xx. XX S/oc 4 ,77‘.,71,c1,,,.0.7

/t/sTA--,0 I/ 0 0 Alo/2 //y -5-1/42 c 4 a/e.e/eic-vi,%'.7.5.
/t/U/4 Z / 4D)(XX af a-2,/e,e7- .,4",e-a/ dede„,1/4. „.5.

A /a4 i f / 40 A'A/XX /0(0‘, Clock. f; 419v 2.6e','
4/14/A'440 X / 0 Or A/a.pv6e-", ele a. e.-.64-'s	 -',,-/,,-..vey.,,/

444/4;z7s, f / 0 0 ft Wan-Ade..., 0, tvie'e94.sa/..=7/
44(4,/0,-- Z / p /7 Or /4-67dePv/ ex t'Wl/S/o "'s
/1/x/WP.5 I / 0 / 7 0 .574,16. 6;x9.w74 .6,-is-
9,(37,131 R ts? 0 xxxx)ot 0.00 Quar.le.-- i'd -awe ,:7,,,,,,,,,,,,,,evgross,(2),77;(3)Fic-4

(41.)toc./27x.., (s) '7C4 wages, 4).sick pay.
Yea", - AO 'OW& ,,,libevrzaticwr/.19 no s s,(2) e--/C4i (-V 14:16(4) #7C4 wages,(5)sick pay, ().;040c.4(7) s-7ec.8,y717 4) /ffk-1,.0k)ocxxase 000

(B)/o C . ter x)(5),16,.9. hes." (i a) Or he's,4 .0,74.4s A c's.)72)/'e5. 5 . 69%, (/3) °Teens ("4) 60enis e" " 7 S •

* Mode:	 I = integer, R = real, D = decimal, A = alphabetic

36

Write the
Record to
Disk for

This Plant

Stop

Yes

Read All
I nformation

for One
Employee

0

Setup
Quarter-
to-Date

I nformation

Check the
Data for

Reasonableness

Write Disk
Record of

All Informa-
tion for

Employee

I nitialize
Trade

Association
I nformation

Write to
Disk the
Index of

Employees

Start

I nitialize
Variables

Read
Plant No.
Week No.
Check No.

Setup
Name
Field

Retrieve
Company

Name

37

	

Section Subsections
	

Page

35
	

20
	

10
	

41

PAY01
KEYBOARD PAY01

PAY01
PAY01
PAY01
PAY01
PAY01

PAYROLL SYSTEM	 FILE CREATION
	

PAY01

PAY01
	

PAY01
PAY01

C.R.KLICK
	

PAY01

12/23/67 PAY01
PAY01
PAY01

FILE RECORD NO. OF	 RECORDS PAY01
NUMBER LENGTH RECORDS PER SECTORPAY01

PAY01
PAY01

	

1	 160	 250	 2	 PAY01

	

2	 160	 90	 2	 PAY01

	

3	 160	 200	 2	 PAY01

	

4	 160	 50	 2	 PAY01

	

5	 160	 150	 2	 PAY01

	

6	 160	 30	 2	 PAY01

	

25	 106	 6	 3	 PAY01

	

101	 1	 250	 320	 PAY01

	

102	 1	 90	 320	 PAY01

	

103	 1	 200	 320	 PAY01

	

104	 1	 50	 320	 PAY01

	

105	 1	 150	 320	 PAY01

	

106	 1	 30	 320	 PAY01
PAY01

C 	 	 PAY01

IV	 C 	 ALLOCATE ARRAY STORAGE 	 PAY01

C 	 	 PAY01

INTEGER COMP(16)	 PAY01

II	 DIMENSICN FIBRE(8), INDEX(250)11 ISUPP(13)# ITOT(11)+ NAME(9), 	 PAY01

1	 NSSAN(3), ORTD(6)+ YTD(14)	 PAY01

C 	 	 PAY01

II	 C 	 DEFINE THE FILES FOR THIS PROGRAM AS DESCRIBED ABOVE, AND	 PAY01

C 	 EQUIVALENCE THE VARIABLES FOR NEXT RECORD NUMBER 	 PAY01

C 	 	 PAY01

• DEFINE FILE	 1(250.160,U.ICOL), 2(909160,U9IWVA).	 PAY01

1	 3(2001116011UsMUNC), 4(50,160pU,LB0),	 PAY01

2	 5(150,160,U,LBT), 6(30•160,U,LMC), 25(6,106 g UrIC).	 PAY01

• 3	 101(250.1,UtIN1)1 102(90.1,U,IN2). 103(200s1oUsIN3),PAY01
4	 104(50.1sUoIN4), 105(150$1.UPIN5). 106(30,10U,IN6)	 PAY01
EQUIVALENCE (ICOL,IWVAIIMUNC.LBO,LBT,LMC), 	 PAY01

• 1	 (IN1IDIN2,IN3,IN4IIN5,IN6)	 PAY01

C	 PAY01

C 	 	 PAY01

•

// FOR
* IOCS(CARD.
** PAY01 PROGRAM

• * NAME PAY01
* ONE WORD INTEGERS
* EXTENDED PRECISION

• * LIST ALL

	

C 	 JOB NAME
	 JOB NUMBER --

•
	C 	 PROGRAMMER	 --

	

C 	 DATE CODED
	 DATE UPDATED --

	

C 	

41
	C 	 INPUT FILES -

	

C 	

	

ID C 	 OUTPUT FILES

	

C 	

IP

• 	 	

	C 	

• 	

FILE
NAME

— NONE

— 1. COLFP
2. WVAFP
3. MNCFP
4. LBOFP
5. LBTFP
6. LMCFP
7. PINFO
8. INDX1
9. INDX2

10. INDX3
11. INDX4
12. INDXS
13. INDX6

Section Subsections Page

35 20 10 42

38

C 	 INITIALIZE VARIABLES

II	 C 	
CKMAX=25000.
IC•1

• ICOLml
INITm0
INlml

IP	 IPD■0
DO 68 Im1,13

68 ISUPP(I)=0

• ITOTI1I=111
ITOT(2).620
ITOTI3/=620

• ITOTI51.625
ITOT)6)-626
'T01171=627

• ITOT(8)=628
ITOT(9)•0
1101(11)■635

• LYRHRm0
NADWH=0
NCHCK=0

• NCUDD=0
NMISC=0
NSTKO=0

• NWKMPm0
NWKPD=O
ORTD(5).0.

• ORTD(6)=0.
DO 69 M=1,14

69 YTD(M)m0.

• C 	
C 	

READ(6,4) NOPLT
READ(6.4) IWEEK

• READ(6,5) ICHCK
4 FORMAT(I1)
5 FORMAT(I2)

• C	 .
C 	
C 	 CALCULATE THE FILE NUMBER OF THE INDEX FOR THE CURRENT PLANT.

• C 	 FINISH INITIALIZING VARIABLES .- ITOT(4). ITOTI10/, LST

C 	
INDm100 + NOPLT

• GO TO IC1.52,53.54.55,56/0NOPLT
51 LST=250

GO TO 57

PAY01
PAY01
PAY01
PAY01
PAY01
PAY01
PAY01
PAY01
PAY01
PAY01
PAY01
PAY01
PAY01
PAY01
PAY01
PAY01
PAY01
PAY01
PAY01
PAY01
PAY01
PAY01
PAY01
PAY01
PAY01
PAY01
PAY01
PAY01
PAY01
PAY01
PAY01
PAY01
PAY01
PAY01
PAY01
PAY01
PAY01
PAY01
PAY01
PAY01
	 PAY01
PAY01
PAY01
PAY01
PAY01
PAY01
PAY01
PAY01
PAY01

C 	 READ PLANT NUMBER, WEEK NUMBER, AND CHECK NUMBER
• C

PAGE 02

\

\

1

/

PAY01 PROGRAM

39

	

Section Subsections
	

Page

35
	

20
	

10
	

43

Section Subsections Page

35 20 10 44

PAY01 PROGRAM PAGE 03

52 LST=90

• 1TOT(10)=0
GO TO 58

53 LST=200

• 1707(10)=1723
58 ITOT(4)=621

GO TO 60

• 54 LST=50
GO TO 57

55 LST=150

• ITOT(4)=0
GO TO 59

56 LST=30
57 ITOT(4)=622
59 ITOT(10)=0

11
C 	 SETUP THE AAME FIELD AND RETRIEVE THE COMPANY NAME.

	 READ ALL INFORMATION FOR ONE EMPLOYEE AND CHECK FOR LAST CARD. 	 PAY01
PAY01

500 READ(2.2) NUM. NRATE, NSEX, NSSAN, NXMPF, YTD(1), YTD(2), YTD(3), PAY01

• 1	 YTD(8), NCU, NINS, NSTCK, NUA, NDUES, MAR, K 	 PAY01

2 FORMAT(1X.14,13.11,13.12.14,1X,12,F7.0,3F5.0,15,214,13,14.6Xt12, 	 PAY01

1	 8X,I1)	 PAY01

11	 C 	 	 PAY01

C 	 IS THIS THE LAST CARD	 PAY01

C 	 YES - GO TO 600	 PAY01

• C 	 NO - GO TO 10	 PAY01
C 	 	 PAY01

1F(K ..1) 10,600,10	 PAY01

11	 c 	 PAY01

c 	 	 PAY01

C 	 SETUP EMPLOYEE STATUS CODE. STATE EXEMPTIONS, AND Q-T-D INFORMATNPAY01

11	 c 	 	 PAY01

10 NSTAS=1	 PAY01

NXMPS=NXMPF	 PAY01

• ORTD(1)=YTD(1)	 PAY01

ORTD(2)=YTD(3)	 PAY01

QRTD(3)=YTD(2)	 PAY01

• QRTD(4)=YTD(8)	 PAY01
C	 PAY01
C 	 	 PAY01

40

• C 	
 60 READ(64) NAME
3 FORMAT(9A2)
READ(601) COMP

• 1 FORMAT(16A2)
C
C

•
C

PAY01
PAY01
PAY01
PAY01
PAY01
PAY01
PAY01
PAY01
PAY01
PAY01
PAY01
PAY01
PAY01
PAY01
PAY01

	 PAY01
PAY01
PAY01
PAY01
PAY01
PAY01
PAY01
PAY01
	 PAY01
PAY01

	

Section Subsections
	

Page

35
	

20
	

10
	

45

PAY01 PROGRAM	 PAGE 04

C 	 EDIT MARITAL STATUS, UNION DUES DEDUCTION, SEX CODE. AND IF	 PAY01

• C 	 NECESSARY. MODIFY EMPLOYEE STATUS CODE. 	 PAY01

C 	 	 PAY01

IF(MAR) 101.101.100 	 PAY01

• 100 IF(MAR-2) 102,102+101	 PAY01

101 MAR=1	 PAY01

CALL STACK	 PAY01

• 102 IFINDUES) 103.104.106 	 PAY01

103 NDUES=0	 PAY01

CALL STACK	 PAY01

• 104 NSTAS=3	 PAY01

106 IF(NOPLT.. 31 120.115.120	 PAY01

115 NDUES=0	 PAY01

• 120 IF(NSEX) 109,109,107 	 PAY01

107 IF(NSEX-3) 110.108.109 	 PAY01

108 NSTAS=2	 PAY01

II	 NSEX=2	 PAY01

GO TO 110	 PAY01

109 NSEX=2	 PAY01

• CALL STACK	 PAY01

C	 PAY01

C 	 	 PAY01

• C 	 CREATE THE INDEX ENTRY FOR THIS EMPLOYEE AND WRITE HIS RECORD 	 PAY01

C 	 ONTO THE DISK. THEN GO BACK TO THE READ STATEMENT TO GET	 PAY01

C 	 INFORMATION ON THE NEXT EMPLOYEE. 	 PAY01

41	 C 	 	 PAY01

110 INDEX(ICOL)=NUM	 PAY01

C 	 	 PAY01

• C 	 WRITE TO THE DISK.	 PAY01
C 	 	 PAY01

WRITE(NOPLT'ICOL) NUM. NAME. NSSAN, NSTAS+ NDUES, NWKMP, NWKPD, 	 PAY01

• 1	 MAR. NXMPF. NXMPS, NSEX, NRATE, YTD, ORTD, 	 PAY01

2	 LYRHR, NCU. NCUDD. NCHCK, NADWH, NSTCK+ NINS, 	 PAY01

3	 NMISC, NUA, NSTKDo ISUPP. INIT, IPD	 PAY01

• C 	 	 PAY01

C 	 GO BACK FOR ANOTHER EMPLOYEE'S INFORMATION	 PAY01
C 	 	 PAY01

• GO TO 500	 PAY01

C	 PAY01

C 	 	 PAY01

• C 	 LAST CARD HAS BEEN READ.	 PAY01

C 	 INITIALIZE THE TRADE ASSOCIATION INFORMATION. 	 PAY01

C 	 	 PAY01

• 600 DO 650 1=1.8	 PAY01

650 FIBRE(I)=0.	 PAY01
C 	 PAY01

• C 	 	 PAY01

C 	 WRITE THE INDEX OF EMPLOYEES FOR THIS PLANT TO DISK. 	 PAY01

C 	 	 PAY01

41

41

PAY01 PROGRAM	 PAGE 05

LAST • ICOL . 1	 PAY01

11	 WRITECIND.1) IINDEX(11.1.11pLAST)	 PAY01
C----- - - - - - - -	 -------------------- PAY01
C 	 	 PAY01

40	 C 	 WRITE iiE RECORD FOR THIS PLANT TO DISK, THE NUMBER OF EMPLOYEES PAY01
C 	 IN THE PLANT TO THE INDEX AND STOP.	 PAY01
C 	 	 PAY01

11	 WRITE125'NOPLT) COMP, ICHCK. (WEEK. FIBRE. ITOTo CKMAX 	 PAY01
PAY01

WRITEIINWLST) LAST
	

PAY01
40	 C 	
	

PAY01
PAY01

C 	 STOP
	

PAY01
4p	 C 	
	

PAY01
CALL EXIT
	

PAY01
END
	

PAY01

VARIABLE ALLOCATIONS
ICOL .0058 IWVA .0058 MUNC .0058 LBO .0058 LBT .0058 LMC .0058 INS =005C

• INS .005C IN6 .005C FIRRE.0072 ORTD .0084 YTD .00AE CKMAX.001111 INDEX.01AD
NSSAN.01D1 COMP .01E1 IC	 .01E2 INIT •01E3 IPD .01E4 I	 .01E5 LYRHR.01E6
NMISC.01EA NSTXD.01EB NWKMP.01EC NWKPD•01ED M 	 NOPLT.01EF IWEEK.01F0

▪ NUM .01F4 NRATE=01F5 NSEX •01F6 NXMPF*01F7 NCU .01F8 NINS .01F9 NSTCK.O1FA
K	 .01FE NSTAS.01FF NSMPS.0200 LAST .0201

• STATEMENT ALLOCATIONS
4	 .022F 5	 .0231 3	 .0233 1	 .0236 2	 .0239 68	 .0280 69	 •02F7
58	 .0343 54	 =0348 55	 .0351 56	 .0350 57	 •0361 59	 .0367 60	 .0360

11	 101 .0308 102 •09E1 103 =03E7 104 .03ED 106 =03F1 115 .03F7 120 .03F8
110 =0417 600 =0461 650 .0465

40 FEATURES SUPPORTED
ONE WORD INTEGERS
EXTENDED PRECISION

• IOCS

CALLED SUBPROGRAMS
STACK	 ELD	 ELDX	 ESTO	 ESTOX	 TYPEZ	 SRED	 SFIO	 SIOAI	 SIOFX	 5101	 SUBSC	 CARDZ	 SDFIO	 SDWNT
SOCOM	 SDAI	 SDAF	 SDIX	 SOF	 SDI

• REAL CONSTANTS

	

.250000000E 05.020E 	 .000000000E 00.0211

11	 INTEGER CONSTOITS
1.0214	 0.0215

14.021E	 6.021F
• 30.0228	 622.0229

13=0216 111.0217
100.0220 250=0221
2.022A 9.0228

	

620.0218	 625.0219	 626.02/A	 627.0218	 628.021C	 635.021D

	

90.0222	 200.0223	 1723=0224	 621.0225	 50.0226	 150.0227

	

3.022C	 8.022D	 25.022E

CORE REQUIREMENTS FOR PAY01

11	 COMMON	 0 VARIABLES	 526 PROGRAM	 672

END OF COMPILATION

•

42

182	 .005C IN3	 .0050 IN4 .005C
ISUPP•01BA ITOT .0105 NAME .010E
NADWH.01E7 NCHCK.01E8 NCUDD=01E9
ICHCK.01F1 IND	 .01F2 LST *01F3
NUA	 .01FB NDUE5.01FC MAR .01FD

51 .0327 52 =032D 53 .0339
500 .0379 10 .03A8 10G .0305

107 =03FF 108 •0407 109 .0411

Section Subsections Page

35 20 10 46

	

Section Subsections
	

Page

35
	

20
	

10
	

47

•
// JOB
// XE0 PAY01	 3

• *FILES(1.COLFP)11(2,WVAFP)*(3,MNCFP),(4,LBOFP)1(5,LBTFP)11(6oLMCFP),

*FILES(25,PINFO)s
*FILE5(10101NOX1),(10211INDX2)+1103t1NOX3).(104,INDX4)1(105oINDX5),(1060INDX6)

• 10012142013323060	 02

	

10022613083284339	 02

	

10032142712982119	 01

• 1004261303224,378	 02

	

10053722614638734	 02

	

10162801541032308	 01

• 11072613213710014	 02

	

12182142782927112	 01

	

13471711194511234	 01

• 16033722822445678	 02

Listing of input cards

1
• 1

01
THE CONTAINER CORP.

• THE CONTAINER CORP.
THE CONTAINER CORP.

Console Printer input and output

43

// JOB
// XEQ PAY01	 3
*FILES(111COLFP).(2oWVAFP),(3,MNCFP),(4oLBOFP),(5,LBTFP)o(6,LMCFP).

*FILES(25.PIN))),
*FILE5(101,INDX1)9(102+INDX2),(103,INDX3),(104,INDX4).1105,INDX5)0(106,INDX6)

•

Section Subsections Page

35 20 10 48

Output on printer

44

IBM 1130 MACHINE SETUP SHEET

PROGRAM	 PROGRAM
NAME:	 NUMBER:

PROGRAM	 APPROXIMATE
DESCRIPTION:	 RUNNING TIME:

PRINTER

TYPE OF PAPER NO. OF COPIES CARRIAGE TAPE

DISKS

DRIVE NUMBER: 0 1 2 3 4

CARTRIDGE
ID:

SWITCH
SETTINGS

SWITCH SWITCH
UP
DOWN

UP
SWITCH

UP
DOWN DOWN

INPUT
CARDS

SOURCE OF

DISPOSITION

INPUT:

OF OUTPUT:

FOR PAUSES AND ERROR MESSAGES SEE ERROR RECOVERY SHEETS

45

Section Subsections
	

Page

35
	

20
	

10
	

49

Section Subsections Page

35 20 10 50

IBM 1130 MACHINE SETUP SHEET

PROGRAM pile 6...iv:we	 PROGRAM	
le704,Y0/NAME:	 NUMBER:

PROGRAM	 APPROXIMATE
DESCRIPTION:	 RUNNING TIME:

PRINTER

TYPE OF PAPER NO. OF COPIES CARRIAGE TAPE

Sy4R/Age07ti ../ 571010414i'd

DISKS

DRIVE NUMBER: 0 1 2.	 3	 4

CARTRIDGE
ID:

/tiro&
...

SWITCH
SETTINGS

SWITCH NO/!4 SWITCH
UP
DOWN

SWITCH
UP UP
DOWN DOWN

INPUT
CARDS

i , „ 2: / .„, xe /

/

PETAIL CARD5

/// XECt R,Y01

//1402)

SOURCE OF INPUT:

DISPOSITION OF OUTPUT:

/ Ca,a14.74.,‘ Aram a sacceSsieed laAY:26 ed/ti
/2,..7

2.0is* rfraris7 he yzay,,e// disk e‘idA .:7,-,z7.c. AI"
each	 /Or,, 0//aca744/. .

1,..2,4274/./ cords ore /4./.....d.:7 717.- A.
2../ks-A- i be used "ii fl.10<02, daA/ch -1-Aeti4e
k" ,14,17 /2117-

FOR PAUSES AND ERROR MESSAGES SEE ERROR RECOVERY SHEETS

46

	

Section Subsections	 Page

35
	

20
	

10
	

51

PAY02: ADD NAMES TO THE FILE

VARIABLES IBM 1130 COMPUTING SYSTEM

SUMMARY SHEETVARIABLE

NAME .
wo
0
2

2
°

-.6
c;
z

1 l—
i-- —---- E
DI— 5
0 0-
?..

AX.
VALUE

MIN.
VALUE

Application PAYROLL	 Date 8/22/67
Chic.<

Program Name Add /lames	 No.PAYO2 Programmer

FUNCTION OF VARIABLES

I I 1 I 250 / Used in DO Coop
ICLCK I 1 1 XXXX 1 oda ClocK plumber

ICOL I 1 T 250 1 Record number

IWO I I 7 260 I Record number of an individual employee

INDEX 250 I xXxX /000 Index to p/ant now bein? processed

INIT I 1 7 i600 0 Union	 initiearion.f'ee

IAJOX I 1 7 106 101 Index lode number(p/ant* number liqoo)

IN1 I 1 7 250 .2 Record number in indexes to employee	 lles

IN/2 I 1 1.1 – – Equi3a.../ent	 to -TAI 1

IA/3 z I Al — — Equivalent	 to IA/2
IAI4 I / Al — — Equivalent to D41

IA/5 I / Al – – Equivalent' to IA/1

1A/6 I I Ai – – Etuivatent to TA/1

ISUPP I /3 7 500 0 Supplemental sic< pay

Tv/VA I / A/ — — Equivalent to izot..

K I/ T 9 0 Last - Card reSr

LAST I / r 2595 0 Last record number in -File
L80 I 1 Al – – Equivalent' to IcoL
Lar I / nl – – Equivalent to IcOL
LA4G I I /./ – – Equivalent to re.04

'Mode:	 I = integer, R = real, D = decimal, A = alphabetic

47

Section Subsections Page

35 20 10 52

VARIABLES IBM I	 1130 COMPUTING SYSTEM
SUMMARY SHEETVARIABLE

NAME .
i-t i z,

6z

1 ,_
F---- °-
15 5
,°- 0=

MAX.
VALUE

MIN.
VALUE

Application PAYROLL.	 Date 8/22/67
CK

Program Name Add	 'James	 No.pAy 02 Progra
ICL

mmer

FUNCTION OF VARIABLES

LsT I I T 250 30 Last record number in cz -Pile
LYRI-IR I I 7- 3000 A

`r
This year's . accumolation 01 hOvr5 WOrKed
-for 3a.cap/0/7 pay

MAR I / 7 2 / Marita/ status -(/- 5/09/e), (2-married)

MUNG Z I A/ — — EquiVak fir r0 ICOL

A/A0W14 I / T XZX>e 0 Additional withholdihg amount
NAME A2 9 T — — &Dummy area to allocated space ,tor name

AICHCK I / T X600(0 ChecKed number used for this employee
A/CU r I T)000(0 Credit union deduction amount

A/cup° r / T x>c.>0(0 Monthly credit union deductions (incimies)
A/O(/E5 X I T xxXX 0 Union dues deduction amount
/./INS I / T koex 0 insurance deduction amount
AIA425C I I T XX•XX 0 Miscellaneous deductions amount'
NOPLT I I I 6 I Plant* ?lumber

A/RATE 1 / 7 3.00 1.25 Emp/oyee pay rate
NSEX I I 7 3 1 5eX-(2- Female)) (2-Male), (3-Truc. Kee)
NSSAV L 3 r /ways 9d/fits Social

Employee
0-4en-u41;21)7e1d/

stock

Security number
status -(2- cm10/)),TrucKer)	 ,

time)1 0-w-union, 	 tIme);(5-terirmardb)IV5TA s I 1 7 5 ,

AISTCK I / 7 xx.XX 0 deduction amount
NS TKO I / 7)0(.)0(13 Month ly stoo< deductions
/VOA I / T XX.)0< 0 United appeal deduction amount

'Mode:	 I = integer, R = real, D = decimal, A = alphabetic

48

	

Section Subsections	 Page

35	 20	 10	 53

VARIABLES IBM I	 1130 COMPUTING SYSTEM

SUMMARY SHEETVARIABLE

NAME .
oLU
0

°
.6

6
z

a.
I—

i-- eLn
15 Di-

- 0

MAX.
VALUE

MIN.
VALUE

Application PAy'ROLL	 Date 8/22/67

/C
CgProgram Name Add NamesNo.pAyoz Programmer

FUNCTION OF VARIABLES

MJM 1 I ZO >(xX)(/ 000 Cicn< number in disK record
Al ciA46 A2 , 7 — – Ery,/oyee.	 oez3ne 7 t-tvin card
AAV<MP 1 I T V >0(0 ,I\/ Ur r ; be 1^ DI: w e 	 eir2p/oyed
t3 vt/KPo T I T 50 $ Numb e,-c* we e les ?aid
Al>;MPir r 1 T 17 0 Federal exemptions

A'x'm	 '=';', I / T 17 0 State exemptions
.1gcc.'iCr.x741) act.r4drZac);/"Erl(e?)1;(;ic i' ssp)(4"77 °AT"'(-
Year to date ifi.formar104.0),ross)(2)Fio6(3)grr))
5'-') A-lc/4 ttjeves, (5) sick' Pty, (6.) spec. 4.)

OR 7-C R % T)0(4<w 0. 00
Y7 C..) P /44- T xx4x4 i, 0 0

(7) spe 	 8) (6) /cam ret4e .) (9) re7 hours)
(,,c) pr. hevrs) (1/) bonus Ar,:a-s,(a)fro7 erfisj
(i3) or en/s; (14) bolnis erns

* Mode:	 I = integer. R = real, D = decimal, A = alphabetic

49

Start

Initialize
Variablesi

\ Plant
Read

lr

No.

i
/

Read

This
Plant /

NO

Locate
Employee
Record No.

in Index

Read Employee
Record from

Disk /

Insert Name
in Employee

Record

Write Employee
Record Back

to Disk /

YES
SW
	 Stop

50

Section Subsections Page

35 20 10 54

// FOR	 PAY02
* IOCS(CARD,TYPEWRITER,KEYBOARD	 'DISK)	 PAY02
** PAY02 PROGPAM	 PAY02
* NAME PAY02	 PAY02
* ONE WORD INTEGERS	 PAY02
* EXTENDED PRECISION	 PAY02

II	 * LIST ALL	 PAY02
C 	 JOB NAME	 -- PAYROLL SYSTEM .• ADD NAMES TO FILE	 PAY02
C 	 JOB NUMBER	 -- PAY02	 PAY02

IP	 C 	 	 PAY02
C 	 PROGRAMMER	 -- C.R.KLICK	 PAY02
C 	 DATE CODED	 -- 12/30/67	 PAY02

ID	 C 	 DATE UPDATED --	 PAY02
C 	 	 PAY02
C 	 	 FILE	 FILE RECORD NO. OF	 RECORDS PAY02

II	 C 	 	 NAME	 NUMBER LENGTH RECORDS PER SECTORPAY02
C 	 INPUT FILES -- 1. INDX1	 101	 1	 250	 320	 PAY02
C 	 	 2. INDX2	 102	 1	 90	 320	 PAY02

IP	 C 	 	 3. INDX3	 103	 1	 200	 320	 PAY02
C 	 	 4. INDX4	 104	 1	 50	 320	 PAY02
C 	 	 5. INDX5	 105	 1	 150	 320	 PAY02

II	 C 	 	 6. INDX6	 106	 1	 30	 320	 PAY02
C 	 	 7. COLFP	 1	 160	 250	 2	 PAY02
C 	 	 8. WVAFP	 2	 160	 90	 2	 PAY02

• C 	 	 9. MNCFP	 3	 160	 200	 2	 PAY02
C 	 	 10. LBOFP	 4	 160	 50	 2	 PAY02
C 	 	 11. LBTFP	 5	 160	 150	 2	 PAY02

ID	 C 	 	 12. LMCFP	 6	 160	 30	 2	 PAY02
C 	 	 PAY02

C 	 OUTPUT FILES '-. 1. COLFP	 1	 160	 250	 2	 PAY02

ID	 C 	 	 2. WVAFP	 2	 160	 90	 2	 PAY02
C 	 	 3. MNCFP	 3	 160	 200	 2	 PAY02
C 	 	 4. LBOFP	 4	 160	 50	 2	 PAY02

• C 	 	 5. LBTFP	 5	 160	 150	 2	 PAY02

C 	 	 6. LMCFP	 6	 160	 30	 2	 PAY02
C 	 PAY02

• C 	 	 PAY02

C 	 ALLOCATE ARRAY STORAGE	 PAY02
C 	 	 PAY02

•
DIMENSION INDEX(250). ISUPP(13). NAME(9), NSSANt3), NUMB(9), 	 PAY02

1	 ORTD(6), YTD(14)	 PAY02
C 	 	 PAY02

• C 	 DEFINE THE FILES FOR THIS PROGRAM AS DESCRIBED ABOVE, AND	 PAY02

C 	 EQUIVALENCE THE VARIABLES FOR THE NEXT RECORD NUMBER. 	 PAY02
C 	 	 PAY02

• DEFINE FILE	 1(250,160,UtICOL), 2(90,1600U,IWVA),	 PAY02

1	 3(200,160,U,MUNC), 4(50,16011U,LB0).	 PAY02

2	 5(150,160.U.LBT). 6(30,160.U.LMC). 101(25001o0IN1),PAY02

• 3	 102(90.1oUtIN2). 103(200,1,U,IN3), 104(50,10U,IN4), PAY02
4	 105(150.111U.IN5), 106(30.1,U,IN6) 	 PAY02
EQUIVALENCE (ICOL,IWVAIIMUNC.LBOILBT.LMC). 	 PAY02

Section Subsections
	

Page

35
	

20
	

10
	

55

51

1	 (IN1rIN2.IN3.IN4tIN5.IN5) 	 PAY02

41	
C 	 PAY02
C 	 	 PAY02

C 	 INITIALIZE VARIABLES	 PAY02

40	 C 	 	 PAY02
PAY02
PAY02

40	 C 	 PAY02

C 	 	 PAY02

C 	 READ PLANT NUMBERS CALCULATE THE FILE NUMBER OF THE INDEX FOR 	 PAY02

• C 	 THE CURRENT PLANT. FINISH INITIALIZING VARIABLES. 	 PAY02

C 	 	 PAY02

READ(60) NOPLT	 PAY02

• 1 FORMAT(11)	 PAY02

C

	

	 	 PAY02
PAY02

41	 C 	 	 PAY02

GO TO (80.81.82,83.84,85),NOPLI	 PAY02

80 LST=250	 PAY02

• GO TO 90	 PAY02

81 LST=90	 PAY02

GO TO 90	 PAY02

• 82 LST=200	 PAY02

GO TO 90	 PAY02

83 LST=50	 PAY02

• GO TO 90	 PAY02

84 LST=150	 PAY02

GO TO 90	 PAY02

• 65 LST=30	 PAY02

C 	 PAY02

C 	 	 PAY02

• C 	 READ THE EMPLOYEE INDEX FOR THIS PLANT 	 PAY02

C 	 	 PAY02

90 READ(INDX'LST) LAST	 PAY02

• READ(INDX11) (INDEX(I),I=1.LAST)	 PAY02

C 	 - - .. .•	 ... - -. '" .. - - - -------------------- PAY02
C 	 	 PAY02

• C 	 READ EMPLOYEE CLOCK NUMBER AND NAME AND CHECK FOR LAST CARD. 	 PAY02

C 	 	 PAY02

100 READ(2,2) ICLCK, NUMB. K	 PAY02

• 2 FORMAT(I4,9A2.57X,I1)	 PAY02

C 	 	 PAY02

C 	 IS THIS LAST CARD	 PAY02

• C 	 YES -. GO TO 99	 PAY02

C 	 NO •• GO TO 120	 PAY02

C 	 	 PAY02

• IF(K9) 120.99,120	 PAY02

C	 PAY02
c 	 	 PAY02

ICOL=1
IN1=1

INDX=100 + NOPLT

•

Section Subsections Page

35 20 10 56

PAY02 PROGRAM	 PAGE 02

52

	

Section Subsections
	

Page

35
	

20
	

10
	

57

PAY02 PROGRAM
	

PAGE 03

C 	 SEARCH INDEX FOR EMPLOYEE NUMBER 	 PAY02

• C 	 	 PAY02

120 DO 125 I=1.LA5T	 PAY02

IF(INDEX(I) -, ICLCK/ 125,130.125	 PAY02

• 125 CONTINUE	 PAY02

C 	 	 PAY02

C 	 IF THE PROGRAM COMES THRU HERE, THE CLOCK NO. IS NOT IN THE INDEXPAY02
• C 	 	 PAY02

WRITE(1.4) ICLCK	 PAY02
4 FORMAT('CLOCK NO '14' NOT IN FILE') 	 PAY02

• GO TO 100	 PAY02

C	 PAY02

C 	 	 PAY02

• C 	 READ EMPLOYEE RECORD FROM DISK AND VALIDATE CLOCK NUMBERS 	 PAY02
C 	 	 PAY02

130 1ND=I	 PAY02

• READ(NOPLT'IND) NUM, NAME. NSSAN. NSTAS. MOUES. NWKMP, NWKPD, MAR,PAY02

	

1	 NXMPF, NXMPS, NSEX, NRATE. Mt ORTDo LYRHR. NCU. PAY02

	

2	 NCUDD, NCHCK, NADWH. NSTCK. NINS, NMISCII NUA. 	 PAY02

• 3	 NSTKD. ISUPP, INIT	 PAY02

C 	 	 PAY02

C 	 VALIDATE	 PAY02• C 	 MATCH	 — 140	 PAY02

C 	 NO MATCH — 135	 PAY02

C 	 	 PAY02

• IF(NUM • ICLCK) 135.140.135 	 PAY02

135 WRITE(1,5) NUM. ICLCK	 PAY02
5 FORMAT('CLOCK NO '14' IN FILE DOES NOT AGREE WITH CLOCK NUMBER '14PAY02

• 1	 ' IN CARD')	 PAY02

GO TO 100	 PAY02

C 	 PAY02

• C 	 	 PAY02

C 	 UPDATE THE EMPLOYEE NAME FIELD. WRITE HIS RECORD BACK TO THE DISKPAY02

C 	 AND THEN GO BACK TO THE READ STATEMENT TO GET THE NAME OF THE 	 PAY02

• C 	 NEXT EMPLOYEE.	 PAY02

C 	 	 PAY02
140 WRITE(NOPLT'IND) NUM. NUMB. NSSAN, NSTAS, NDUES. NWKMP, NWKPD, 	 PAY02

• 1	 MAR. NAMPF, NXMPS. NSEX. NRATE, YID. ORTD, LYRHRipPAY02

	

2	 NCO NCUDD, NCHCK. NADWH. NSTCK. NINS. NMISC, 	 PAY02

	

3	 NUA, NSTKD. ISUPP, INIT	 PAY02

• C 	 	 PAY02

C 	 GO BACK FOR ANOTHER EMPLOYEE'S NAME. 	 PAY02

C 	 	 PAY02

• GO TO 100	 PAY02

C •	
PAY02

C 	 	 PAY02

• C 	 LAST CARD HAS BEEN READ. STOP. 	 PAY02
C 	 	 PAY02

99 CALL EXIT	 PAY02

•

53

C PAY02
PAY02 • END

VARIABLE ALLOCATIONS
• /COL .0054 IWVA .0054 MUNC .0054 LBO .0054 LBT =0054 LMC .0054 INS .0055 IN2 .0055 IN3 .0055 184 .0055

INS .0055 INS =0055 ORTD .0065 YTD .008F INDEX.018B ISUPP.0198 NAME .0/A/ NSSAN.01A4 NUMB •01AD NOPLT.01AE
INDX =O1AF LST =0180 LAST .0181 I	 .0182 ICLCK.0183 K	 .0184 IND .0185 NUM .0186 NSTAS.01B7 NDUES.0188

• NWKMP.0189 NwKPD=01BA MAR .0108 NXMPF.01BC NxMPS.01130 NSEX ..018E NRATE•0113F LYFIHR•01C0 NCU .01C1 NCUDD.01C2
NCMCK.01C3 NADWm.01C4 NSTCK.01C5 NINS .0106 NM/SC.01C7 NUA .01C8 NSTKD.01C9 INIT .01CA

• STATEMENT ALLOCATIONS
1	 =0107	 2	 =0109 4 .010F 5 .01EE 80
90	 =0266	 100	 =0281 120 =0291 125 ..02A0 130•

FEATURES SUPPORTED
ONE WORD INTEGERS

• EXTENDED PRECISION
IOCS

0 CALLED SUBPROGRAMS
ELD	 ESTO	 TYPEZ SRED SWRT SCOMP SF10
SDAI	 SDAF	 SDIX SDI

•0244 81	 .024A 82	 .0250 83	 .0256 84	 .025C 85	 .0262

	

=0280 135 .02F6 140 .0300 99 	 .033F

SIOAI	 5101	 SUBSC	 CAROZ	 SDFIO	 GORED	 SDWRT	 SDCOM

INTEGER CONSTANTS
1=01CC	 6.0/C0	 100.O10E	 250.01CF	 90=0100	 200.0101	 50.0102	 150.0103	 30.0104	 2.0105
9.0106

CORE REQUIREMENTS FOR PAY02
• COMMON	 0 VARIABLES	 460 PROGRAM	 372

END OF COMPILATION

•

Section Subsections Page

35 20 10 58

PAY02 PROGRAI	 PAGE 04

54

// JOB
// XEO PAY02	 2
*FILES(1,COLFP/.1211WVAFP).(30MNCFP).t4,LBOFP/.15,LBTFP/s(60LMCFP1,

40	 *FILES(101tINDX1)9(102.INDX2).(103,INDX3/.(104.INDX4).(1050INDX5),(106,INDX6/

013 32 3060	 ROBT 8 BADEN	 1831.01	 1831.01
083 28 4339	 JOHN A HORN	 2202.84	 2202.84

II	 712 98 2119	 ROBT L SHORES	 1906.65	 1906.65
032 24 4378	 JOHN W CUSSEN	 2286.25	 2286.25
614 63 8734	 JOSEPH MONTANO	 3176.73	 3176.73

IP	 541 03 2308	 DONALD MILLER	 1342.00	 1346.00
213 71 0014	 A E TAYLOR	 2233.03	 2241.03
782 92 7112	 DAVID A HLBBARD	 1923.58	 1923.58

II	 194 51 1234	 FRANK T DOLEN	 1475.89	 1475.89
822 44 5678	 AL REYNOLDS	 3142.25	 3142.25

•

•

// JOB
• // XEO PAY02	 2

*FILES(11COLFP),(2,WVAFP)11(3,MNCFF),(40LBOFP).(5.LBTFP),(61oLMCFP),
FILES(101,INDX1)11(102.INDX2),(103,INDX3),(104+INDX4)11(105.INDX5)(106.INDX6)

40	 1001ROBT B BADEN
1002JOHN A HORN
1003ROBT L SHORES
1004JOHN W CUSSEN
1005JOSEPH MONTANO
1009THISISA MISTAKE
1016D0NALD MILLER
1107A E TAYLOR
1218DAVID A HUBBARD
1347FRANK I DOLEN
1603AL REYNOLDS

9

•
1
CLOCK NO 1009 NOT IN FILE

• CLOCK NO 1017 NOT IN FILE

•

Section Subsections Page

35 20 10 59

Printer output

Input cards

Console Printer output

55

Section Subsections Page

35 20 10 60

IBM 1130 MACHINE SETUP SHEET
PROGRAM	 /3.4 y.02PROGRAM ,4 de I /2,0wyes 74,2 Me ,erNAME:	 NUMBER:

PROGRAM	 APPROXIMATE
DESCRIPTION:	 RUNNING TIME:

PRINTER

TYPE OF PAPER NO. OF COPIES CARRIAGE TAPE

6.-/amia.,,a• / SA0',/aara/

DISKS

DRIVE NUMBER:

CARTRIDGE
ID: Pay/^0//

SWITCH
SETTINGS

SWITCH //OA///OA/E SWITCH
UP
DOWN

4/0./1/--
UP
SWITCH NONE

UP
DOWN DOWN

INPUT
CARDS

/pop .o.,,e0/0,M

NA M E IN.A E ?CLOCK
NO. CARD /

• /r x EQ PAY02

/// J o a

SOURCE OF INPUT:

DISPOSITION OF OUTPUT:

/ G—OP:e//i7pei, fa r- a .s-access/u/ PA Y/6 6, d// rum,
2. .0/...5 'A- /m.es/ e 2 e	 7 // disk 1k9,-,-, P4 Y-0//?..5,■-•::

/ /1,/a,,)d-- ‘9,-2 ,1 C/o c 4 NO. cav-a5 are ,e,/ek://;2 lik n.
2 .a:..s.;	 7€0 6e ,r-s-e,e/ 47 A4V03, 4,,h/ch .5*,,,.//a'

69 ..--,,,-, ,-- , e ,efi.

FOR PAUSES AND ERROR MESSAGES SEE ERROR RECOVERY SHEETS

56

Section Subsections Page

35 20 10 61

PAY03: CHANGES TO THE FILE

VARIABLES IBM 1130 COMPUTING SYSTEM

SUMMARY SHEETVARIABLE

NAME .Lu0
0

3
§
.-o6,

Fu,....i– LI
/–D D
0- 0z

MAX.
VALUE

MIN.
VALUE

Application	 PAYROLL	 Date 8/2 5/6 7
, 2	 C.R.I(//cAProgram Name Chonges /o /he ./47/e.	 No. PAY i,... Programmer

FUNCTION OF VARIABLES

I I / r 250 / f/sed 1/7 DO /oop
ICHNG I / I /6 / Chonge	 code.
ZCLCK I / I 6 / fr'7,-5 71 06:5 > / , ol. c/ock number
ICOL Z / T 250 / Record number In a mp/oyee Ci/es,se7 1 a, 6y,o/o/77`
IND I / 7 250 / Record number 0(on 1/7d/video/ employ e.

INDEX I ?5C 7 XXXX /000 Index /a p/oS /70 al being processed
INIT I / T /6 0 0 Union	 //7/7‘io/ion	 7tee.

INOX I I T / 6 / 0 / Index 'Ci/e number (plan?' no. 4./oo)

ZNI I / 7 250 / Record number in indexes /0 emlo/oyee Ci/es
IN 2 Z I N - - £g•uivoien71. 7to IN/
1N3 I I N - - Egu/fro/en/ 7lo IN/
I Nil. I / N - - fui vale/7/ fo IN/

IN5 I I N - - 4-gait/a/er' /o IN/

IN6 I / N - - Egaiva/er/74 /o IN/
ZPO Z / 7 0 Indico/es .s7477‘us 07(record, pocessiny cyc/a

2:5 3PP .1 /3 T 0 5a/op/eine/I/a/ sick flay
ZWVA I / N - LL-e.//./o/e/77' /0	 ICOL

K I / 7 0 Los/- cord lee/
LA57 I / T 0 Los" record/ number /i7 (de.

LBO I / N - 4 aivo/e/17‘ 740 ICOL

* Mode:	 I = integer, R = real, D = decimal, A = alphabetic

57

Section Subsections Page

35 20 10 62

VARIABLES IBM I	 1130 COMPUTING SYSTEM
SUMMARY SHEETVARIABLE

NAM
.,1!
02

720
-6
Oz

0_
2 l-W D
t a-15 IS
,°- °=

MAX.
VALUE

MIN.
VALUE

Application	 ,,,l4 Y R 0 L Z.	 Date 8/25/a7

Program Name C/70/785S Ao 7C4e 7.(V 	 CRe	 No. PAYS 	 Programmer

FUNCTION OF VARIABLES

LEST X / N -- Eg ai veilen1 740 _IC OZ.

Z -4 4 C 2" / N - - Egei/3o/e.7/ r`o ZCOZ.

L ST I/ 7 250 3 0 Max./mum mi/n6er al records / ./7 a yf•le

ZYR#A? 1 1 T 3000 This fears occu.nv/o/ior, of hours worked for %V coNor, Pay

kfAk I / 7 2 / Mar/ /a/ 57Iolas — Ci- 5/i79k), (2- mar"; eq')

/1/11/NC I / N - - Egaivoien, 7‘c, ICOZ.

NADWN I / r xxxx 0 Add/II/or/a/ wiTho/e///7.9 arnouns'

NAME AZ 9 T - - E-inio/oyee	 /tevve

NC.A/CK I / T XXXXX 0 Chec/-)/umber used (or /his e/n/o/oyee

/I/CV I / T xx,xx 0 Cred/ 74 Union deduc//a /7 0/7700/771

NCl/DU I / y XXX.XX 0 MornWy cred/7` unior, cleduc7 4/o/7s (in dimes)

Nours I / T XX ,XX 0 (/)/ion does dea/aS/0/7s	 c7/7704/"74
NEW I / I XXX.XX 0 New ;,.7 forme:7 ,4 ion used M change s,oecified by code(ICHN6)

NI/VS I / T XX.XX 0 Insurance cieduclior, adnou.7/

A/4415C I / T XX X X 0 3 isce/foi7eous	 oie a/ao lions	 ovnoe.m7
n/opzr 1 / 1 6 / /a/a/771 fiei/776e/-

NA'Arz- I I j 3,04 0 1.25 Ern/o/oye a ,00y r-Se

N5EX I / T 3 / Sex— (/--femcie), (2- mak) ; (3 - /packer)

NSSAN I 3 T Alevays S dig; / 715 Soc/a/	 Sec4,,,-/ly	 n.urr/be/-

NSTAS I / T 5 i/ Emeil°Pee -5A1'''"-s,(1- anion)) (2- 7`rac,keP), (3-000- (//7/0/ 7)
7a// // 7‘/* /rte.), (4-0on-w7i0,7,,oep-1 ,,ime), (5- 7‘errnirlo,,,ed)

"Mode: I = integer, R = real, D = decimal, A = alphabetic

58

Section Subsections Page

35 20 10 63

VARIABLES IBM I	 1130 COMPUTING SYSTEM

SUMMARY SHEETVARIABLE

NAME .
11_
°

ci
Z

ct_
LTJ ,I--
I—--
/5 b
°- °

MAX.
VALUE

MIN.
VALUE

Application	 PAYROLL	 Date 6/2567

c,	 ick
Program Name Cho/79es /o //	 A-//e	 No. PAY,,.,	 PCrog

,2
 ram
Kl

mer

FUNCTION OF VARIABLES

N57CK 2- / 7 XX.x)! 96 Stock deduclicw a/770 C//77'

NSTKD I T)(X.XX 0 Mo/r/h/y 57lock dedeic/i'oils

NUA I / T XX , XX 0 C/r/i/ed °filo e o/ deduction amount

NUM I / 7- Xx.XX i 0 � 0 C/ock /7 vo76e,- i/7 disk record

Numb I 1 7 XXX Y XX Zosi Mree diji/s of c/ock naririer

NPI/KMP I / 7 XXXX 0 gam6er of aiee,f-s ern/ /Dyed

4/100 2.0 I / T 50 0 A/umber of a.,eeks	 fioici

NXMPA- I / 7 /7 0 /eciero/ exe/77/074;o/7s

Al X A / 1 ,4 0 5 Z / 7 / 7 0 SAn'e	 e X e /77101/ 0 fi 5

C,, 1;rD i.R.
6
,7 7 XXXX.XX

,
AO

Quor7'er- to - dote	 //77cormc774 ion. (I) .voss, (2) A.--r r,
(3) FICA,(4)/oc.7`c7x, (5) FICA	 uiages, (6) sick ',ay

YTD R
/4p 7 *XV .X..Y. 0 . � 0 Year- 7' 0 . c/a 71e	 //77corrY7a7i lo/7 — (/) g,-oss,(2) "icA,

(3) FIT, (4) PICA wages) (5) sick Pay, (6) spec. A,

(7) spec. B, (8) /oc. ihox y (9) reg. hoeri-5,(/o) or

hoard, (N) boiuis hou/-s, (/2) reg. eri75) (is) or

err' s , (/4) Gnus	 erns,

* Mode:	 I = integer, R = real, D = decimal, A = alphabetic

59

Write to
Disk Employee

Index for
This
Plant

Write
Employee

Record
Back to

Disk

Section Subsections Page

35 20 10 64

	

Section Subsections
	

Page

35
	

20
	

10
	

65

// FOR	 PAY03
* IOCS(CARD.TYPEWRITER.KEYBOARD 	 +DISK)	 PAY03
* NAME PAY03	 PAY03• * ONE WORD INTEGERS	 PAY03
* EXTENDED PRECISION	 PAY03

* LIST ALL	 PAY03

• C 	 JOB NAME	 -- PAYROLL SYSTEM	 CHANGES TO THE FILE	 PAY03
C 	 JOB NUMBER	 -- PAY03	 PAY03
C 	 	 PAY03

• C 	 PROGRAMMER	 -- C.R.KLICK	 PAY03

C 	 DATE CODED	 -- 01/06/68	 PAY03

C 	 DATE UPDATED ■■ 	 PAY03
• C 	 	 PAY03

C 	 	 FILE	 FILE RECORD NO. OF	 RECORDS PAY03
C 	 	 NAME	 NUMBER LENGTH RECORDS PER SECTORPAY03

• C 	 INPUT FILES -- 1. COLFP	 1	 160	 250	 2	 PAY03
C 	 	 2. WVAFP	 2	 160	 90	 2	 PAY03

C 	 	 3. MNCFP	 3	 160	 200	 2	 PAY03
• C 	 	 4. LBOFP	 4	 160	 50	 2	 PAY03

C 	 	 5. LBTFP	 5	 160	 150	 2	 PAY03
C 	 	 6. LMCFP	 6	 160	 30	 2	 PAY03

• C 	 	 7. INDX1	 101	 1	 250	 320	 PAY03
C 	 	 8. INDX2	 102	 1	 90	 320	 PAY03

C 	 	 9. INDX3	 103	 1	 200	 320	 PAY03

• C 	 	 10. INDX4	 104	 1	 50	 320	 PAY03
C 	 	 11. INDX5	 105	 1	 150	 320	 PAY03

C 	 	 12. INDX6	 106	 1	 30	 320	 PAY03
• C 	 	 PAY03

C 	 OUTPUT FILES -- 1. COLFP	 1	 160	 250	 2	 PAY03

C 	 	 2. WVAFP	 2	 160	 90	 2	 PAY03

• C 	 	 3. MNCFP	 3	 160	 200	 2	 PAY03

C 	 	 4. LBOFP	 4	 160	 50	 2	 PAY03

C 	 	 5. LBTFP	 5	 160	 150	 2	 PAY03

• C 	 	 6. LMCFP	 6	 160	 30	 2	 PAY03

C 	 	 7. INDX1	 101	 1	 250	 320	 PAY03

C 	 	 8. INDX2	 102	 1	 90	 320	 PAY03

• C 	 	 9. INDX3	 103	 1	 200	 320	 PAY03

C 	 	 10. INDX4	 104	 1	 50	 320	 PAY03

C 	 	 11. INDX5	 105	 1	 150	 320	 PAY03

• C 	 	 12. INDX6	 106	 1	 30	 320	 PAY03

C 	 PAY03
C 	 	 PAY03

• C 	 ALLOCATE ARRAY STORAGE 	 PAY03
C 	 	 PAY03

DIMENSION INDEX(250)10 ISUPP(13). NAME(9)0 NSSAN(3). QRTD(6).	 PAY03

• 1	 YTD(14)	 PAY03
C 	 	 PAY03

C 	 DEFINE THE FILES FOR THIS PROGRAM AS DESCRIBED ABOVE, AND	
PAY03

• C 	 EQUIVALENCE THE VARIABLES FOR THE NEXT RECORD NUMBER.	 PAY03

C 	 	
PAY03

DEFINE FILE	 1(250,160W.ICOL), 2(90.160.U,IWVA),	 PAY03

/

61

1	 3(200,160,U,MUNC), 4(50,1160.U.LB0).	 PAY03

2	 5(150.160.U.LBT). 6(30.160,UoLMC), 101(250,1,U,IN1),PAY03
3	 102(90.1.01N2). 103(200.1.11111N3), 104(50,1,0IN4), PAY03
4	 105(150.1.U.IN5). 106(30.11,U,IN6)	 PAY03

10	 EQUIVALENCE (ICOL,IWVA.MUNC.LBO.LBT.LMC).	 PAY03
1	 (IN1IIIN2,IN3,1N4.IN511IN6)	 PAY03

C 	 PAY03

40	 C 	 	 PAY03

C 	 INITIALIZE VARIABLES 	 PAY03
C 	 	 PAY03

II	 1000 ICOL=1	 PAY03
IN1=1	 PAY03

C 	 PAY03

40	 C 	 	 PAY03
C 	 READ PLANT NUMBER. CALCULATE THE FILE NUMBER OF THE INDEX FOR	 PAY03
C 	 THE CURRENT PLANT. FINISH INITIALIZING VARIABLES. 	 PAY03

II	 C 	 	 PAY03
READ(2,1) NOPLT	 PAY03

PAY031 FORMAT(I1)

40	 C 	 	 PAY03
INDX=100 + NOPLT	 PAY03

C 	 	 PAY03
GO TO (80.81,82,83.84.85),NOPLT 	 PAY03

80 LST=250	 PAY03
GO TO 90	 PAY03

40	 81 L5T*90	 PAY03
GO TO 90	 PAY03

82 LST=200	 PAY03

40	 GO TO 90	 PAY03
83 LST=50	 PAY03

GO TO 90	 PAY03

40	 84 LST=150	 PAY03
GO TO 90	 PAY03

85 LST=30	 PAY03

40	 C 	 PAY03
C-----	 PAY03
C 	 READ THE EMPLOYEE INDEX FOR THIS PLANT. READ A CHANGE CARD. 	 PAY03

40	 C 	 CHECK FOR LAST CHANGE CARD. AND VALIDATE PLANT NUMBERS. CHANGE	 PAY03
C 	 CODE AND FIND CLOCK NUMBER IN INDEX. 	 PAY03
C 	 	 PAY03

40	 90 READ(INDX I LST) LAST	 PAY03
READ(INDX 1 1) (INDEX(1),I=1,LAST)	 PAY03

C 	 	 PAY03

40	 100 READ(202) ICLCK. NUMB. ICHNG. NEW. K 	 PAY03
2 FORMAT(11,I3,12,15,68X,I1)	 PAY03

C 	 	 PAY03

40	 C 	 IS THII LAST CARD 	 PAY03
C 	 YES — GO TO 99	 PAY03
C 	 NO -• GO TO 101	 PAY03•

Section Subsections Page

35 20 10 66

PAGE 02

62

	

Section Subsections
	

Page

35
	

20
	

10
	

67

PAGE 03

C 	 	 PAY03

II	 IF(K-9) 101,990101	 PAY03
C 	 	 PAY03
C 	 DO PLANT NUMBERS AGREE 	 PAY03

• C 	 YES - GO TO Ins	 PAY03
C	 NO .• GO TO 95	 PAY03
C 	 	 PAY03

ID	 101 IF(NOPLTICLCK) 951105,95	 PAY03
C 	 	 PAY03

C 	 IF THE PROGRAM COMES THRU HERE. THE PLANT NUMBERS DO NOT AGREE. PAY03

• C 	 	 PAY03
95 WRITE(1.3) ICLCK. NUMB	 PAY03
3 FORMATI'PLANT NOS DISAGREE FOR CLOCK NUMBER '11.131	 PAY03

• CALL STACK	 PAY03
GO TO 100	 PAY03

C 	 	 PAY03

• C 	 PUT PARTS OF CLOCK NUMBER TOGETHER AND CHECK CHANGE CODE	 PAY03

C 	 	 PAY03
105 ICLCK■ICLCK • 1000 + NUMB	 PAY03

• C 	 	 PAY03

C 	 ICHNG MUST BE BETWEEN 1 AND 16.	 PAY03

C 	 IF NOT GO TO 104	 PAY03

• C 	 IF O.K. GO TO APPROPRIATE CHANGE ROUTINE. 	 PAY03
C 	 	 PAY03

IFIICHNG) 104.104,106 	 PAY03

II	 106 IF(ICHNG	 16) 110,1201104	 PAY03

C 	 	 PAY03

C 	 CODE 14 INDICATES NEW EMPLOYEE. IF SO, GO TO 500. 	 PAY03

• C 	 	 PAY03

110 IFIICHNG14) 120.500,120	 PAY03

C 	 	 PAY03

• C 	 IF THE PROGRAM COMES THRU HERE, THE CHANGE CODE IS INVALID. 	 PAY03
C 	 	 PAY03

104 WRITE(1.8) ICLCK	 PAY03

• 8 FORMAWINVALID CHANGE CODE FOR '14) 	 PAY03

CALL STACK	 PAY03

GO TO 100	 PAY03

• C 	 	 PAY03

C 	 LOCATE CLOCK NUMBER IN INDEX.	 PAY03

C 	 	 PAY03

• 120 DO 125 I*1,LAST	 PAY03

IFCINDEX(I) .q CLCK) 125,130,125	 PAY03

C 	 	 PAY03

• C 	 GO TO 125 IF MO MATCH, 130 IF FOUND.	 PAY03
C 	 	 PAY03

125 CONTINUE	 PAY03

• C 	 	 PAY03

C 	 IF THE PROGRAM COMES THRU HERE. THE CLOCK NO. IS NOT IN THE INDEXPAY03
C 	 	 PAY03

•

■

63

Section
	

Subsections
	 Page

35
	

20
	

10
	

68

PAGE 04

WRITE(1.41 ICLCK	 PAY03

• 4 FORMATI I CLOCK NO 'II.' NOT IN FILE')	 PAY03

	

GO TO 100	 PAY03

C 	 PAY03

40	 c 	 	
PAY03

C 	 READ EMPLOYEE RECORD FROM DISK AND VALIDATE CLOCK NUMBERS.	 PAY03

C 	 	 PAY03

• 130 IND=1 PAY03
READ(NOPLT'IND) NUM. NAME. NSSAN. NSTAS. NDUES, NWKMP, NWKPD. MAR.PAY03

1	 NXMPF. NXMPS. NSEX, NRATEr MI GRID. LYRHR, NCU, PAY03

• 2	 NCUDD. NCHCK. NADWH, NSTCK, NINS, NMISC, NUA, 	 PAY03

3	 NSTKD. ISUPP. INIT	 PAY03

C 	 	 PAY03

• C 	 VALIDATE	 PAY03

C 	 MATCH	 - 140	 PAY03

C 	 NO MATCH - 135	 PAY03

40	 C 	 	 PAY03

IFINUM - ICLCK) 135.140,135 	 PAY03

135 WRITE(1.5) ICLCK	 PAY03

• 5 FORMAT('CLOCK NUMBERS DO NOT AGREE FOR '14) 	 PAY03

CALL STACK	 PAY03

	

GO TO 100	 PAY03

41	 C 	 PAY03

C 	 GO TO THE APPROPIATE CHANGE ROUTINE.	 PAY03

C 	 NRATE - 141	 NXMPF - 146	 NSTCK - 150	 NSSAN - 156	 PAY03

• C 	 NCU	 .• 142	 NXMPS - 146	 NINS - 151	 NEW EMPLOYEE - 500	 PAY03

C 	 NDUES - 143	 NXMPS - 147	 NMISC - 152	 PAY03

C 	 NSTAS - 144	 NSEX - 148	 NUA	 - 153	 PAY03

• C 	 MAR	 - 145	 NADWH - 149	 INIT - 155	 PAY03

C 	 	 PAY03

140 GO TO (141.142,143,144►145,146.147.148.149.150.151.152.153.104 .	PAY03

• 1	 :55.156).ICHNG	 PAY03

	

141 NRATE=NEW	 PAY03

	

GO TO 550	 PAY03

• 142 NCU=NEW	 PAY03

	

GO TO 550	 PAY03

	

143 NDUES=NEW	 PAY03

• GO TO 550	 PAY03

	

144 NSTAS=NEW	 PAY03

	

GO TO 550	 PAY03

• 145 MAR=NEW	 PAY03

	

GO TO 550	 PAY03

	

146 NXMPF=NEW	 PAY03

• 147 NXMPS=NEW	 PAY03

	

GO TO 550	 PAY03

	

148 NSEX=NEW	 PAY03

• GO TO 550	 PAY03

	

149 NADWH=NEW	 PAY03

	

GO TO 550	 PAY03

.....1.-,

64

150 NSTCK=NEW
GO TO 550

151 NINS=NEW
GO TO 550

• 152 NMISC=NI4
GO TO 550

153 NUA=NEW

• GO TO 550
155 INIT=NEW

NSTAS=1

• GO TO 550
156 WRITE(1.11) NUM
11 FORMAT('ENTER SSAN FOR '14)

IP	 READ(6.10) NSSAN
10 FORMAT) 13,12,14)

GO TO 550

•
500 READ(2.6) NUM. NAME. NSSAN. NSTAS. MAR. NXMPF. NXMPS. NSEXt NRATE.PAYO3

1	 NCU. NADWH, NSTCK, NINS. NMISCr NUA 	 PAY03

6 FORMATI140A2.13.12.14.511.13.514,13) 	 PAY03

40	 C 	 	 PAY03

C 	 IS THIS NUMBER. NUM. ALREADY IN INDEX 	 PAY03

C 	 YES - 513	 PAY03

• C 	 NO •• SET UP DISK RECORD 	 PAY03

C 	 	 PAY03

DO 504 1=1.LAST	 PAY03

•
IF(INDEXIIINUM) 504.513.504	 PAY03

513 WRITE(1.7) NUM	 PAY03

7 FORMATI'CLOCK NUMBER '14' IS DUPLICATED') 	 PAY03

• CALL STACK	 PAY03

GO TO 100	 PAY03

504 CONTINUE	 PAY03

40	 C 	 	 PAY03

C 	 O.K. SET UP DISK RECORD AND CREATE INDEX ENTRY. 	 PAY03

C 	 	 PAY03

40	 IPD=0	 PAY03

NSTKD=0	 PAY03

INIT=0	 PAY03

• NDUES=0	 PAY03

NWKMP=0	 PAY03

NWKPD=0	 PAY03

• DO 501 1=1.14	
PAY03

501 YTDII)=0.	
PAY03

DO 502 1=1.6	
PAY03

502 'ORTD11/1).	
PAY03

DO 503 1=1.13	
PAY03

503 ISUPPII)=0	
PAY03

ID	 LYRHR=0	
PAY03

NCUDD=0	
PAY03

NCHCK=0	 PAY03

PAY03
PAY03
PAY03
PAY03
PAY03
PAY03
PAY03
PAY03
PAY03
PAY03
PAY03
PAY03
PAY03
PAY03
PAY03
PAY03

	

Section Subsections
	

Page

35
	

20
	

10
	

69

PAGE 05

65

PAGE 06
LAST.LAST • 1 PAYO3

• IND.LAST PAY03
INDEX(LAST).NUMC 	

PAYO3
PAY03

• C 	 PAY03
C 	 WRITE THE EMPLOYEE RECORD TO THE DISK. PAY03
C 	 GO BACK TO THE READ STATEMENT TO GET ANOTHER CHANGE FOR THIS PAY03

• C 	 PLANT. PAY03
C 	 PAY03

550 WRITEINOPLPIND) NUM. NAME, NSSAN. NSTAS. NDUES. NWKMP. NWKPD. PAY03
• 1	 MAR, NXMPF. NXMPS. NSEX, NRATE, YTD. ORTD. LYRHR,PAY03

2	 NCU, NCUDD. NCHCK, NADWHo NSTCK. NINS. NMISC. 	 PAY03
3	 NSA, NSTKDo	 ISUPP,	 INIT.	 IPD

C 	
PAY03

• C 	 GO BACK TO READ
PAY03
PAY03

•
C 	

GO TO 1(7
PAY03
PAY03

	 PAY03
C	 PAY03

• C 	 WRITE BACK TO DISK THE EMPLOYEE INDEX FOR THIS PLANT. PAYO3
C 	 PAY03

99 WRITEIINDX)LSTI 	 LAST PAYO3
• WRITE)IND!)1) .. (INDE!(!):1:1:LAST) Mg:

C 	 PAY03
• C 	 READ A CARD. IF K IS NOT 9 THERE ARE CHANGES TO ANOTHER PLANT. Mg:

READ(2.9)	 K PAY03
• 9 FORMAT(79)011)C 	

PAY03
PAY03

C 	 K NOT 9 MEANS MORE CHANGES. GO TO 1000. PAYO3
• C 	 K EQUAL TO 9 MEANS END OF RUN. GO TO 1001. P0703

C 	 PAY03
IFIK - 9)	 1000,1001,1000 P0703

• C 	 PAY03
THIS IS END OF RUN. STOP.C 	

PAY03
PAY03

• 1001 CALL EXIT PAY03
C 	 PAY03

END PAY03
• VARIABLE ALLOCATIONS

ICOL .0054	 IWVA =0054	 MUNC =0054	 LBO	 .0054	 LBT	 .0054	 LMC	 .0054 151	 =0055 IN2 =0055 153	 =0055 IN4 =0055
• INS	 =0055	 INS	 .0055	 ORTD .0065	 YTD	 .008F	 INDEX=0188	 ISUPP.0198 NAME .01A1 NSSAN.01A4 NOPLT.01A5 INDX .0106

LOT	 .01A7	 LAST .01A8	 I	 .0309	 ICLCK.01AA	 NUMB =01AB	 ICHNG.01AC NEW	 .01AD K =01AE IND	 .U1AF NUM =01E10
NSTAS.0181	 NDUES.0182	 NWKMP.011:13	 NWKPD=0184	 MAR	 =0185	 NXMPF.0186 NXMPS.0187 NSEX .0188 NRATE.0189 LYRHR=01BA

• NCU	 .0188	 NCUDD.01BC	 NCHCK.01BD	 NADWH=01BE	 NSTCK=018F	 SINS .01C0 NMISC.01C1 NUA .01C2 NSTI(D.U1C3 INIT .01C4
IPD	 .0105

• STATEMENT ALLOCATIONS
1	 .01DB	 2	 .0100	 3	 .01E4	 8	 .01FA	 4	 =0209	 5	 =0218 11	 .02213 10 =0236 6	 =0230 7 .0247
9	 .0259	 1000 .0271	 80	 .028E	 81	 =0294	 82	 .029A	 83	 =0200 84	 =02A6 85 .02AC 90	 .6280 106 .62CB
101	 . 020E	 95	 =02E4	 105	 .02F0	 106	 =02FD	 110	 .0305	 104	 .0300 120	 =0317 125 .0326 130	 .U336 135 =0370
140	 .0386	 141	 .039A	 142	 =03A0	 143	 =03A6	 144	 =035C	 145	 =0382 146	 =0388 147 .038C 140	 -03C2 149 =03C=
150	 .03CE	 151	 =03D4	 152	 •0300	 153	 =03E0	 155	 .03E6	 156	 .03F0 500	 =03FE 513 .0430 504	 .043A 501 =045E
502	 •0473	 503	 =0488	 550	 =04E18	 99	 =04F9	 1001 .0521

FEATURES SUPPORTED
ONE WORD INTEGERS

• EXTENDED PRECISION
IOCS

• CALLED SUBPROGRAMS
STACK	 ELD	 ESTO	 ESTOX	 TYPEZ	 SRED	 SWRT	 SCOMP	 SFIO	 5I001	 5101	 SUBSC	 CAROL	 SDFIO	 SORED
SOWRT	 SDCOM	 SDAI	 SDAF	 SDI%	 SDI

41 REAL CONSTANTS
.000000000E 00..01C8

ID INTEGER CONSTANTS
1.01CB	 2.01CC	 100.01CD	 250=010E	 90.01CF	 200.0100	 50.0101	 150=0102	 30.0103	 9.0104

• 1000.0105	 16.0106	 14.0107	 6.0108	 0.0109	 13.01DA
CORE REQUIREMENTS FOR PAY03

• COMMON	 0 VARIABLES	 456 PROGRAM	 858
END OF COMPILATION

•

Section
	

Subsections
	

Page

35
	

20
	

10
	

70

66

	

Section Subsections
	

Page

35
	

20
	

10
	

71

/1 JOB
// XEQ PAY03	 2
*F/LE5(1+COLFP)1.(214VAFP),,(31,MNCFPJ,(4.LBOFP)$(59LBTFP),(6•LMCFP),

IP	 *FILES(101,INDX1).(102eINDX21,(10391NDX3),(104,INDX4),(105,INDX5),(106,INDX6/

10010100261

10040600004

10160500002
10170100261

9

Input cards

67

Section Subsections Page

35 20 10 72

// JOB
// XE0 PAY03	 2
PILEB(loCOLFP),(201VAPPI0(31MNCFP)o(AILBOFP)9(5,LBTFP)(6.LMCFP)I0	 *FILES(101,INDX1),(102tINDX2).(10311INDX3),(1041INDX41.1105,INDX5),(1066INDX6)

.---------

Printer output

68

Section Subsections Page

35 20 10 73

IBM 1130 MACHINE SETUP SHEET
PROGRAM 6-4,7/7,	 ,,t /he	 /e,
NAME:	 ..7—

PROGRAM
NUMBER:	 "t7AYe7,3

PROGRAM
DESCRIPTION:

APPROXIMATE
RUNNING TIME:

PRINTER

TYPE OF PAPER NO. OF COPIES CARRIAGE TAPE

6-iiareAd4,-,,21 / .5)147,2 d4,-q/

DISKS

DRIVE NUMBER: 0	 1	 2 3	 4

CARTRIDGE
ID:

pa y,.ev#	 Pil Fr. F4 r I . I r -

SWITCH
SETTINGS

SWITCH
UP
DOWN

/t/owe SWITCH
UP
DOWN

A/.0,07 e SWITCH
UP
DOWN

A/o/9e

INPUT
CARDS

/4-4." c'ach
4.///h cAir7,3e.s-

/1:7/A,27‘

(MORE

(
For

n4.
CHANGE
CARDS

q

/=-0,--
/%7■774

op., e

/

/_
CHANGE
CARDS

(# X EQ PAY° 3

/ii J 015

SOURCE OF INPUT:

DISPOSITION OF OUTPUT:

/ CA.-4/ / ./9/7/114 .4.0..r2 A . Ceire"eSSAii RA y/a eA//71 run.
2. 2)/sk "1 7 usf-ee	 4://:5-4. A-o,2.-2 "'A.'s ./cat7.,,,^0//

/Chore .00/4 ai-e ///e. = I / /2 I/. /e' (7.
e "Dzs.t• .s ,e/c.,	 i .', fee, .s-/or-•.#90.• 740/s /ISE' Ge.//146
/CM Y.,of

FOR PAUSES AND ERROR MESSAGES SEE ERROR RECOVERY SHEETS

6 9

0

/—■

O

alNo•••mlillainillirmililialliEllin MIIIMIMMIIIIIIM IMII 	 MON MIMIIIIIMNIMM	 •• ••• •	 • MII
= C•••••••••••••••••••11mWMINIMINIIIM•11•111111111••••••••••MW•••••••••••••••1111111•11111111MMEW•IIIM•••••11•11WINM•11=UM	 IIIIIIEMMIMEMIIMIIIIIEIIIEIIMIIIIIIIHBEIEIC11115RIIILIGHEICONIEICICIE 0 EIFICEI a GIBMIEF:"913-VICEE [WMCICIBEIEKIIMIKICICHIEMECEECICIIIEWIDIZIORIXICIIMREIMMIOCIOUEIELIKEICIDDIEMINIE151111M1111111111111111UMEMMIIIIIIIITIMINI101 IIMMMIUMUMMMIIMMISMIIIIMMEINIIMIIIIIIIMMEMMI111811•IMMNIIIIIIIIMMINIMIIIIIMBEHIMIII•I IIIIIM••• ••••••••••••••••••••••NOMMIMINNIMNIIIIIIIIMMINIMMIIIIIII•MM51NEN••••111111MWMIIIII•ummilmillin 51111•11IIIMMIMEIMMIIIMMIIMENIMMIThommIllimm•Milini••••11111mannillini1111111•0151101111111110MMIIIIM1111111.111111WIIMMMUNIMIIIIMNIMmINIMMUMMIIIIIIMMIUMIIMEMINIIMMIIIIIII5MMINIIIIIIIIIIIIIIV•••••••11115Milamou VilEC: 611 WIVilYs IIIIMEM•10 ! VI ■ Ira l'.!!Tall11-11.1:•11:11:011:11,:, lIl	 OW.TIlis:*:■:zeo:•••••5•51511!.`e.411*. 1,0monalliall11•11MIIIMMIIIIIMIIIUMNIIIIIMMIWII•MIELIMMINIMMEINNINKIMINIMEIMI 1111111•15MIIMMIIIIIMMIIIIM11110125111IMIlinisnIBMINIIIIMINIMIIIIIIIIMMINOMMINIM1111111111MMIMIMM••••••••••11•11•1111111MMUIMMIIIIMINUMMIIMIMMUNI1••••••••111155111•151•1101°.,0:411W00:4070:4WWILINIOMIMMOOMMININIIMIWIIMMMEENNIM•115•11•Wini•51111Miliiimu•IMMINIMINIIIII1105151111111MNIMMIIIMMIMIIMMINIMMINIIITIIIMMIMMNITIMMIMMIIIIIIMIMMMUMEMINSIIIIMMINIUMMO11514••••••••MIM5111111110:0:o711M5NO:4.:0w0:4Ing UM Ingsgsmin•--.-• mmaimiiimilmummilillillinin5•11111ThEIOMNIIIMInl1115111111115IUMMINIMMEM11101111111IIMEIM 1111 IIIIIMMIII MEMEINM• nim•551111MEMIBMIIIIIMIIIIIMMEMMIIMIIIIIIIIMIUMMIMMUMIO:0:4,:111111!:00:Kkql .:0:455511. IIII IIIIIIIIMMIEWEINIMIIIIMEM•511MMMINIMIIIIIIMINIMIIIIIIIIMII• MMIIIIMMIIIIIMMTMIIIIMINIIMIN• MU Eli 5MEMIONIMMENIIMEOCCI 11111,:i0:1 ,3 ,:4■AVOn55110IM En IN 11 MIIMINIMMOINOMMUMMIUMEIMIIIIMMENNINIMIIMIni11115MIMMOWIIIIIIIMIIIIIIIIMMIUMNIIIIIIIIIINNO51

••••••immoliMME•• IIMMISIMmuillnimmu••••••••swommiiiiimmmllimmilim•••m•••••••••••••mommilinii••••••••••1111MINIM:470Aillimr.40:40:~11111ENINIMIMM•••••••••••21.•••••milmininimmilimmilimilIMMEM•••••11181•11111111MIN11•511•111111MMUM•••••••••••••1•10111MBOOMMINIIIMMIMMIMMMIIMMUMMIUMIUMMIMMWHIM•IMIliim••••••••••■yomill00:9:q: *won UlligNIMEWINEIMEM•••••••••••••••••••••••11M•0•51111111115•M••••••15•11111154BEINNIMIIMMENNIMIIIMME5115•111111salliMMOIThilmainilmonlIMMIIMMNIIMIIIIMIMMONSMIMMIIIMMIIMEMOIMEimmilifilliMIMIIIIIK0:4•11MIIIcli:■:0:919:1MIIIIMMIIIIIIIMIMMIIINEMIIIIIIIIIIBMIIMISIIMInimilMIN•••••••••••••••111111MMIIIIIINIMMIIIIIIIIIIIMMUMIIIIIMIEMMINSIMMEIMBEIMI•immi•millimilniuMMEWNIMIWIIIIMIMOMILIMIIMM5111511IMM•immin••••).orsilln11110:4:0:41:4WOMINIIMINUM•••••••111NMENIIIIIIIIIIIMM5111151WOOMEINIIIIIMIIIIIMBIOMMIINO51mammmmkmmmmmmummsmmnmmmuapmmmnsm•mmmmmmmmmmmmmmmmmmmmmmmmmmmmnmnmm.mmmsmmmmmssmmmmmmmmmmmmmmmmmmmlummulammunvorxmlumpormummummunimmummmummommommummommummumumummummiumm
••••1111111111111MMWMIMIIIIMISMIEWINIMEMMUMMEIMINIMIIIMMEM•••••••OMMOINNIMEIMIIMMEMEMIIIIN liNIMMIIMmum•••••vr2■A5151c1:9;b:c4ove455111=111111111111MOMININUIMMIMMIZIMMMIIIMMIIIIIMIIMIMMONOINMEN RImmommuummummilmommummummusummummummumummommummumummumummumummummummumommRENNEMIMMIIIIIIIIIINOWIlligOiCiWo•IIIIIIIMWMINEMMOIMINMONIIIIMINIEW•MMIll•IIMININEMMIE1•11111MIONIMMINIMIIMENNEMIIIIMEIMMIIIIIIIIIIIMEMOIM 1111•1111111111111§W•M•MMIIIIIIIIIMMIIMMEWOMMEMWM•1101111111M1111111111111111101MMBIll11111111111111111111110MMIMIMMIWINI• IMMINWHIIIMIMIIIMMOMMIIIIIIMINOMMIWN1111111111•111111111MIIIMMINIIIIIIIIIIIIMIImommummuomme.mummummummi	 mommimmommommommomummummommommommosmammilmm.--	 ----ttligi..... -t,	 --.4,11monsmusumm ====== muummonumprr-- 	Immummongs mmmmm m

---,Lquommomm.-----.:•_. MMMMMM I!, ---,---	 - -.141:t41110....

1-a	 0

0

Co5

In
CD
0

IBM INTERNATIONAL BUSINESS MACHINES CORPORATION

PRINTER SPACING CHART
CJ1

5
7

LINE DESCRIPTION

I g

••■••■■•1	 Um mu	 ■in■ MUM 1-Ti	 MN	 ■■ 1 MO MO NM E
	 ME MilliEll IMN Ennui SU En	 111111111 I- I I	

IBM 407408, 409, and 1403 Models 6 and 7IT-	 - 1 T	 T	 -
ilm	 IBM 1403 Models 2, 3, 5, N1 and 1404 	

Min BM I I

=MUM	 111101111151110111 MI5	 -7 I I l	 I M	 MIMMIEI
11111111111111111111	 ylitA 1443 Models 1, NI, and 2203MEMIUMEMOMMEMMEREMMUMMOMERERMOMMEMMUM MUM KM F.TT-T1 111=1111111111111 mu mu ■ ■ommum■ommommummt

1111E11111	 56	 7	 8	 9	 liEirmmumegrommism 151 	 emm mum ©Q au • 01234517 0/24561-789CIDI lir45 :678401:i5 1 4547812107/34511107120 noc EIEUMNIODDM■MUIll 	 IIIMEMMIIII■WIIII■MEIMME■ • ■ MIIIIMMEI■Ill	 F i : I i ..M. : r r I_ 1 Tr- r- r- 7	 t_111111•1111111 	 1111•■■111111111111111111111111MWEIMINIMI•	 ■MI5M11151111•I M	 II IIIMMIIIIII111155 BM
IIIIIIIHM11111	 IIIIIIIIIIMME5M•1111•ElammilanlirEWININNIMEM	 MIIIMWMINNI ■	IM11115MIL.M111•111111•1511•11•14191•111W•M ai111151 pallin 	 1211515MMIMMINNIIIMIMMIEMMIN 511111115O11111MEMEll 	 NiMIIMMINE•MIN• M	 0 IMIMINIIIII ONIIIIMEN1111110MINE∎EIREN11•1111 ••••11•11111111111v ,T.srzivaiiNt::ci IMMO Ks' 7,ILTINdt; ,,Iy,i .:4111 14ju••••••lisur4ark:MVAat MN WINCLIel M. [er:011111 11•1111•••• II1111Thillill ■1:111511111111111•0 NIIIMM 	 0	 IN 111•MINOWINI•1111111111111••••• MU OHMIIIIIIIMIIIIIIIII11111•111111111MUD MI	 11511111111'1•1•II 	 ;W. 111511111 ■IMMI11111:43 et nizin•IIN:i:,',t1;:` :=S:1:4I ' 12't *V; 0191111!.:;.: ;1!,::11m:.:;ft....:1 .• AliN :LC t■ iirv,0 . rift !IIMI,:11*K.ORIM:,!e:c:111Rump_ I ■•50-51-pirliiiiM7A M18003 . 1•1 iiiiiIITIVE5tarAisin 1:ti onv riiiiiiiII■IIZWEIIIII■ISIIII■IIIM■ 11111511■1■111101MM■I minrni ■■inimiliaininii■rMIDI I	 ummithninsommummumuommumunommummiummuniimmmommo ■■nummommu■memi
MIDI1111111)011 I MINKIOXIIII : /,711 ,.. 1.2/4,1h1/10 FMOrY:11fNI:ONNKIKINEK 0:10:0:41111FIKIqPIINEINWAIIMINEV.bAlp.41:4■W4011111,:11:41.1111i0111YEEM■ANNEIEWAPov4PW0101100:41110:1MMITINVONIIKKCIPE4.1.1WIBM."0111111NCV.47.4W4rnwmroircircargwr, MgrwAL'447117■074TKTMVA411111111111 1111115MINNIMMIIIIMEIlligiligilIMIMMINUIIIMOMMONOW51IIIIIII olummimmummormilW111111 •111011•MEN•11•ON trill OPITIMINIMIll IMEMEIIIMIIIIIIMMUMNIIINIIMMIMMIllIOW	 ,r	 7,3 ll •-.4s.nn.zio!,4;■Acil. Dna.;	 mia liA,'	 ,,INC.mitcp[om k ove : 1" 'Alum c Imielit• to Milliell e. earn • IIE•IM IBIWGIUMOI:C•111111•10'Ne.+.M11511111	 4 K nommwrommigAlip:Ino ■millimillitantemitimmOom m gums ummummummuummmommummummumwIIMIDUIll	 Is iiiii•Millimommulmmgm•mialinillinimimmlummilimmimmilimmanumwilimmufflimmIlliMmiii•iiimmalimuilniallillIIIIIIIIII I	 16 1,.7 .,:ill ibYl1Y111111UNIV7,1WIIMMIll e.iAn =I III::• Wirt pirt.".11111;!eilK• NM II EWA INIV:IRt%1111111n1U1s1:1111•••• 41141:11•111I/APIIIrAMeni:*1=11• N C• 1111'441 in .1 I IliIMIPIIII II	 111WHI:..,:CET:111 0 r-..lpilgly: .:AMIll'ellillAMIII411111111•INI. MU ,: I•WIIMEMINUMMUOMBIMUMMEMONIUMMIMOMMIIlinleinffi	 mommommormiumnowniummumummummu EmmiummommommummommummummunnummummilmommommommumIIIIIIIIIIIII	 IECIEIVIIKAW11111•101111r.41AI:LIMPINI1 7.4/101:4,:4riPINAIII.C4/14171,:117tIVONNI:6711:0:4■70:011/071/K4a74t,INtnt/411w4,1,70■:4U1K1:40,:41VAt:(0:4No:owy.4//:U4417AAID7All:7.0:4wAI:o:c0:4■:(owi,:■111M111UIninguini	 Frilirilimffilinuillifiniillingml 1111111111151111.1111111111ililmThimminifilliIONMEIIIIIINIEUMNIMIIIII MM IIIIII1121111M MIIII11111104111	 Ell•WIMINIIIIIIIII•IEMIIIMIIIIIIMMIIIMMINIUftMimM••••• 	 II11110111111111	 EaMIMMM5MMNII•MMMWIIMMMIIIMIHMMIMIM•MMMIMIEIIIIIn•Ir111EIIIINIMMIIIIIMMIIM 5M1M5MMIMIIINIH1 immIIIIIII 	 amism•ams••••••••mimimomilli•IUMIlliommiiii••••••••••••••••••••••=•mmilinniinimmomENMEMMIL'llimmumm •■•••3••••••MMUMBIBIOMMINIMIUNIMMIONIEMEMMMUMMININIMIUMIENIMIIMIUMINMIMMUNIMMEMMNIMO•1111111_1111::!:	 EEMENTIMU ■ II•MIIMMM•EMIII•IMIMIIIMIMIMNIII•EMIMMIIIIII•1l••IUHUIIIM•EMMIWUIIIMMIIIMIIIII•MM•Z•M•MMMIMIII•W11111101111111111111 	 2011OMM ■MO M	 NW IUMMOMMINIMMINIMMIMMMIIIIMIMIIMIIIMMUMMIIMMIIIMENIMINIMMIIIMIMINIIINIMIIMEM 11	 ••	 HINIMINIO•••••=11111111111111111MIIIIMUMMMONNUMMIMINIIIIM--' 	 --"-41.1111MINEM111111111M111111•1•11'.--s.0 .111E13•1•11•M	 	 eF-Tr-'-- ----ROMMEMEMIMOROMmilmillOMEMOMOMOMMEMOMMOPPr 	--=.7TMOROMMOMMEORTr-

---7-111141rum,- --- -- ,T,Iliummilimm., -

GL UE
£1112

FIELD HEADINGS/WORD MARKS 	 8 Li nes Per Inch IBM 407, 408, 409, 1403, 1404, 1443, and 2203

Trl Tr NM
Print Span :

IBM 1403 Models 1 & 4
- T-

O
IBM
LINE DESCRIPTION SD HEA DINGS 0 D 8 Lines Per Inch

INTERNATIONAL BUSINESS MACHINES CORPORATION

PRINTER SPACING CHART
IBM 407, 408, 409, 1403, 1404, 1443, and 2203 Print Span :

IBM 1403 Models1 & 4Amu Ism I	 sumnummo■mse■••••ffi■	 ■111111111■■ 1 •11111•1111111•■■■■■1111■ ■ 7■M■■■■■11111■•11■■■■MI■■■11
■■■■■11 111111,11•■■•1111

GL UE
;.a..

IIIIDOIIIuIIIIIHiIIIII

111111,1111111
11111 IIII1111111D411111m■mmin1111111111111'minnfillnu111110111•111111111191111111111111111■41•111ft1111150•111111MIDUIIIM
11111111PU1IM111111111141111M
IMPUIEM
IIIIIIIIIIIII
IIIIIIIIIIIII104HIIII
1111111/011114

	

Section Subsections
	

Page

35
	

20
	

10
	

75

VARIABLES IBM 1	 1130 COMPUTING SYSTEM

SUMMARY SHEETVARIABLE

NAME •18
0

.
1,2,§.6
6
Z

a-
2 I–LU
1 . - E„._ .

15 b
,°- °=

MAX.
VALUE

MIN.
VALUE

Application PArAoLL S YS rem Date 8/29/67
Program Nameeernuket,..04.4. p/RNo. pAyo4prOggrfintr

FUNCTION OF VARIABLES

A R 3 a 0.00 0.00 Wei for zero 6d/once cXeck
AD it 3 T xxx.xx 0.10 Used to cd/cadte overtime rette
ADRea R 3 T xxx 04'O Ured to cd/cu/ole cwer-time rdY-e
ATAX R 3 T xxxx.0 O. 00 A eter-tetx incept-le
B R 3 r $.00 0.00 Used Afr. zero A /-c t, 4i/we check
40VERN R 3 0 XXX.XX 040 Bonus ectrainos
eAIHRZ R 3 40 xxx,v); 0.00 emu.r, .50(irs
(' k 3 0 04(0040 Use,/ A r- zero-bat /cince check
ClrAIAX k i 7 00000,00 hictximunt c4ack chnotmt for d ,f,ie
cN6- 7- R 3 0 xxxx.xx 0 . 0 0 it/e 7` a ttlomt e;174 14cilvidtddl check
ceiteP A2/61,0 - - Co #41'04 r	 f '#Ve

p R 3 0 0.00 0.00 Used/ lot- zero-.6a Mice check
i'RIAIS R 3 7 xxx. xx 0-00 Acd 7Lex(14/e wdfes
/98 R g R 0 xxxxvo. 0 , 00 Te, j'd at' cis-roc id Y.; On rerortS
'ROSS 1:i 3 0 XXX.4(0.001 Gross dreounr 074 t'nellvio iod l ceck
H(74 a Y R 3 0 XX.YX 0 . 00 Inal iVic/vd/ 14- 40/1 .1dy Pd y
I .7 I 7" Used In DO /00/,
Ire .1" I N — — ErvivellenD 7'-o .ZW1
ICHCI•C .Z. I — ;V.-4 ;...e'tirn ge514?,7,,,I, c Aeci. nv,),Ave w,46,4 cyriti;i9, decks-
ICLC/C 1 / r 6 / Fe;^,r1" 0/19-.7` 0. 1	 c lock	 Aciolher.

"Mode:	 I = integer, R = real, D = decimal, A = alphabetic

71

Section Subsections Page

35 20 10 76

VARIABLES IBM I	 1130 COMPUTING SYSTEM
SUMMARY SHEETVARIABLE

NAME .O
02

i3.
'D

*0
6z

2 I--
t 2
6— DI —
a-, °—

MAX.
VALUE

MIN.
VALUE

„., , s , e wil Date gg/2 07Application PAYROLL SYSTEM
Program Name 	 h. 4, ht 71; ,a /1 j. 4 f://f No. "Rip; Peggiirtaer

FUNCTION OF VARIABLES

I eNr 1 / 0 wx" 0
.

serl s-47focve/or (7,4-tr-ei;;;I::.00/1.;-:/-1,/#)
ILE' C 0; .04;:;1.1•11*umber /;•7 40 41/./oyee •01' Apr j sey- viz,ICOL 1 1 7 e50 I

lc V I / 0 KY XXX 0 rnaliviciv di(crecilt V41.0/7	 c/eciucti.n
.7-0,4m- 13 1,0 Aor 0/cite

IDED .7 I 0 XXXXX 0 7o,1/ of /■.'"Ijtoi viY"4 / 4 fved^ ce „ S * to , i : , cA or 1 tydud en/Sc .	 e.gcr ions,j ,Ø4y period
IFIcA I / 0 xXXXX Ge 2.74vieitid4S-	 70;c4	 td,c
'FILL I I T 7 0 2-41;cd7`es deltiction '707' indde
TINS I / o xx 0 inell 'i,;(11/ 116-	 /4. S vr d nce iechic'i-ion
ILGT I / r z50 c La's-�- recoi-d ,nimber. indIC;le

IWTSC I/ 0 xxx xx 0 Ini;viducil's /n.'sc. decit,ction
IA/ 40 I / I /14 /0/ irWe "'amber oie 4dex Ar d ihmt:P�Y.loo
INDEX I 210 T xxxx /of 00 Index to f id 47‘ how Ae,',79, poresrei

I/1/OX 1 / T "/4 /C01 7",ciek Ale 4andei- (/74'47`40.4-1640)

2-Ayr / 7- /00 # VtI;OPI	 III% t' /47. 7ioey	 fee
1N1 1 I 1r 26-0 1 Record . v (in, be r in iiiderres),.. eAle/o/ed,

.INZ I / N - - h-re,:vok47.- 7-0 IN1

IN3 f / N - - e-f",„.,,t/ent 7'o z/vi

?NO I / N – – Efe,;-vd /en?' to py.2

IA/5 / N - ere'ivalent to Z/Y I

ZN 6 .1. I N - - (r•ied /e4t 7 j-/Vi
*Mode: I = integer, R = real, D = decimal, A = alphabetic

72

	

Section Subsections	 Page

35
	

20
	

10
	

77

VARIABLES IBM I	 1130 COMPUTING SYSTEM

SUMMARY SHEETVARIABLE

NAME *Lai
o

.
'2

.6
6
z

a
I-

F-Ili 2
1.--.,-- IS
0- 0
z

MAX.
VALUE

MIN.
VALUE

Application pAYR 01... 1... sys TE Al Date8/2ils 7
Program Name6 0,, , 4 7,40,4 s J , ,,e7A N o . M 1.. e 2	 rogrammer

FUNCTION OF VARIABLES

rorRT I I T 5400 0 Ove,-/-yrne 	 /0 c e r ev-te

ZP4GE" I 1 0 20 / /qty.?	 nv,,,,66.,—

I PO 1 1 0 0 0 2i)11cci7"es	 srd V' vs c:$4" record /.7
process /01f	 ././e

is7eik- 7 / 0 2 000 0 .1.,.,v,..4,2/1,	 s to c A'	 ciecAic 74/ael
Zsupp I /30 xxxxx St/ pp id erf en 711 i / S ■C ik	 /04:i y

IAC,,°1:1-//7`;';'!";.-;,_.74,- iPds r/of 7`o ii!
1,7 1,.y/itid/1 	exa.-7. 7,- cf:?,/uct/on

1707 I II T /723 0
PM 7 I 0 300 0
IUD j / 0 1500 0 .7;1 / v i e/cd ti/'s	 Vili 0 4	 Clae S	 Cleckc,71-; o r7

11//RAT 7 0 500 0 Averdft	 pd y /^ d te
rld/5E1(I r 5 2 h/eek ,,, monlA
IWVA I 1 N - - Z),Adie el /c.-...' 4 7"	 74-e,	 1C 01.-

X I I T 9 0 z ds-t- Cdr' �-e 4-7'
KARD / 7 9 0 re. 8; 	 4- tdLi-7= c,i/^2 re. s7`

i< 0 AI 1 0 5 0 ,r;pec,d/	 :. ci,-,7/ nie 1	 C 6 c/e,

1(0i.E- 13 I 9 0 Si;o:..c/c,/	 (901,-.4/4,,vs	 c cd Vic:

KPLNT I I I a 0 r//r7" 41/miei-
LAsT 1 1 T xxx 0 / (est /-eceri 17uinAlet.	/:,7 7rde
/ SO I i N- - Zko/kce /e A.7 . 	7.0 ,1"coL
43r T I N - - Eive./k4/eAl 71-	 7"'	 .7004

I- IN E 7 1 T 50 0 Z/4e	 couh7"

` Mode:	 I = integer, R = real, D = decimal, A = alphabetic

73

Section Subsections Page

35 20 10 78

VARIABLES IBM I	 1130 COMPUTING SYSTEM
SUMMARY SHEETVARIABLE

NAME ii1-,15,
-P_

'..6
I, I–

et
IS 15

0z

MAX.
VALUE

MIN.
VALUE

Application PAYROLL SYSTEM	 Date 8/29/6 7
,	 *Vick

Program Name 644,/c , ietiodli d ly,te No./7474Programmer

FUNCTION OF VARIABLES

h/VC I / N - - i-Fee,/i/ ct itt 4 74 	7` cp 	%C Oh.

.4.0CAIL : / 0 X XXX 9 Loco/ 7`<o>c

4 YRNR I / 0 0 0 71ils	 yeo-'..s-	 d cc://,-; y/d7";o,-..	 ..,74'	 Avars	 worke
Cor	 y 4,c q t.: .:,...,	 pay

MAR 1 I 40 2 / Addtv.fdl StirtilS-(1-6- 1 .115//e),	 (2 - /7, dry- I ed)

,Eiecii.v<4?4 7' to	 !COLMWVC 7 I Al — —.

N4PAVH I I 0 xxxx (11 Aoldifrio/74/ iv/ 7t4 A a /di/7y C/MOUnt

NAME A2 9 r,0 - - Em/o /or ee elcirrie

,veN.:ik 1 1 0 xxxxx 0 C%eck ne.476ei- vs- ea/ "ol" 7Àis e Aipioree

N CU 7 / 40 Xx . x x 0 c.-e ell 74-	 vfr1;002	 0/eduction

/VC &DO I I 0 Xxx. x 0 Ale,,7`4/1 ce• e0/17` union leo/uctians	 Cr4; C/I'MeS)

Noves I I 2,0 xx.xx 0 Union ci tie s	 de oleic 74/on

NOW< 42 3 – Ay iael-ioci aid'`e
NINs I / 40xx.xx 40 Insvrdnce deduction
NM?SC r 1 0 xxx•xx 0 I19i'sce4ietheovr dedveti.ors

C/0/01.7. 7/ r 6 I el/d 47" nvrn4ep,

/'/RATE 1 1 1,03.00 /. 25 4. ..n,loyee	 /47 ctr	 0- .:e to
NsEx I 1 1,0 3 I Sex (2- ,0901d/e), (2- /214) le) , (3 - 7 r̀ vc Ire 0-1
/YSSAN em1 3w 1CAI4 j■ ...ways ;sl its Social	 ..Ce c,:, Ur; 76,,y•	 ,lve,,,4e,-

NS TA S I I 0 S I
Efr'frifiloYe e .5 to tus - (/-60ilon), (e-to-a cice r), (3-non-
or); on,Aliktiene),(4-Non-union,,Part-Vme), (s-termini dtd,i)
Stock deoloction/VSTCK I / zo xx.xx 0

*Mode:	 I = integer, R = real, D = decimal, A = alphabetic

74

	

Section Subsections
	 Page

35
	

20
	

10
	

79

VARIABLES IBM 1	 1130 COMPUTING SYSTEM

SUMMARY SHEETVARIABLE

NAME +.LLI
0

"El
4"0d
z

° I-
I--W
---. EL
/-D Ro_ v

MAX.
'VALUE

MIN 'VALUE
I-2 Application PA y'R 0 1..	 5 Y S 74-4,7 	 Date8/2 9/4 7

it"// ckProgram Name C4/c, cdpft/0,94. ,,:	 /Y	 No.e	 pAregProgrammer

FUNCTION OF VARIABLES

NS 7./C Z.) I / 0 XX•Xx CI:1 MontA/y	 stock deduct/04s.
NUA 1 / 1,0 xX.xx 0 Unite,/ 4 /9pcz)/	 cleicict100.7
NUM 1 / 1,0xxxx 1000 C/ock ntio-nAer
NWKMP I / 0 x x � Number if,'' oceks	 ‹..1?9/e/e/
NWK?D I/ 0 xx 0 /1/://nber 0-1. weeks-	 /74;c/
NxMPF I / 1,0 /7 0 Feclerci/ cc,xenytions
A/X/VPS I / 0 /7 0 51-47te	 ,:?..veo rriPtia ,-, s-
07:FR /V 0 xxx.xx 0. 00 Overt>eie	 edrni 49's

OTHER R 3 0 xxx.xx 0. 00 Spec #'a /	 ecirm . 4 cis

OTHRS R 3 1,0 xx.xx 0. 0 0 Over-74;'ene	 400,-L-
0 ,R740 R 1,;,8 xxxu, xx 0, 00 0 tid /or. Yc 'e./.0-4-4to -cd;;;7,,c-4/9,00

wager,
7 ct 	 (.(ysireokrs,(24,2- .7; (3) ric,t,

R.; RN R 3 0 xxxooe 0.00 Rtvivicie	 edr-#7;47s

RGI-IRS R 3 1,0 xxx.:rx 0.00 Regula r Aoars
$7:::k R 3 0 XXY.Xk Of. 0 0 Sir. kiver
$ PA R 3 T „c.c. 0410 Spec // ea./..);4gs	 occvnit 1,c),-.	 ;nci,

SPB R 3 7)ftx ,x)4Q21(1 5ftecieli edrninfs dccum/	 ,e/"	 //id,
sp.Fc.t, R

R

f
3

I
0

XXX.Vf

'mxxxxx

0.001
O.10

Sfiec/ci/ err
(iSei fe 7 4i 0 71" ci , / j'ec/d/ dc;)/-4/.4fs7

TAX 1 1 0 xxxxx 0.950 /cd ,/e r a / /1/4. 7`4$0///49, 74,1%y
rAXAIL R 3 T xxx.xx 0.00 7—„,. ect 44,/e	 e dr4;e; 515

"Mode:	 I = integer, R = real, D = decimal, A = alphabetic

75

Section Subsections Page
35 20 10 80

VARIABLES IBM I	 1130 COMPUTING SYSTEM

SUMMARY SHEETVARIABLE

NAME .ii!I
o2

3
§15
6z

a
Lo2 ,1–..t E_—

j
°- °Z

MAX.
VALUE

MIN.
VALU

Application RA KR 0 i _ 1._ s y 5 re. 0 Date 6/2 0 7
,e/ic kProgram Name 	 (W4) 74/04 _ ce /26? No./52,04 Programmer

FUNCTION OF VARIABLES

r 4R.S" R 3 7- 1,,(Kx‘"' 0(,	 0 re' t d /1 .5*-0 sSs

7-"NET M 3 T K.,e)CxX x"xk. 0. 00 7.07,,v/ 4,7,-
Toy- R 21Ta 0 Yx7-0-0.05 r,1"d / drrd

roreN k 3 I '''. 0•0 0v ‘904 PS X0eie t 0 744 / 4'0 114 sourc e cloc •

Toro T P 3 I ""wew ,O. (t e or X oar fota / /ro.r. orr, SO ti r C e car....
70TR 61' R ..? 1 xxxxv,y , 0, 0 0 Re f, Aoufr. tord/ :0/rent ,:evrre ,/,,c,

rorsp R 3 r xxx,exim 0,00 .5pecid / eart7/6y.s 746, �e / 7r-o~ source loc.

VA CA A 3 0 XXX.XX Of. 0 0 Icie. 7:0)1	 , 4 7
eki 6 N A 3 0 XXX.XX 0,00 goneis	 /c)c)rs	 error-	 742, 74�2 /

A'0 7- k 3 Q xxx.xx 0.00 Over 7̀ ■/-7...	 e	 k; uP S Error 7i-orci /

kRE‘ K 3 0 xxx.xx 0.00 Rey', Ao 3rs- &,-,-,, fo III /

),' S P R a 0 xxx.xx CM 0 Siaec4/ ectrm'nfr
y r D f ../3.„.s..2,0 xxxicx.xx 0'

*4cor/.77a r/04. (/)f' °SS	 be; f (3)P/C ARr–il*Co4-dci :yee i	 i) s ick 	()	 j
Ca

e4) 	/A•	 es,	 .5 sic	 pdy,	 6 s'ec.	 2

(7) spec, 8;	 (8) /cc. y-4,,, (9)■-ei. A,s,(/o) OT 4,--s,
(a) ,:bon 3i Xr.r, </z)reg', errs)	 (/3) or erns,
(/1) bona., c.9.,,,

'Mode:	 I = integer, R = real, D = decimal, A = alphabetic

76

0 Initialize
Individual
Variables

Update Past
Quarter's
Earnings

Update Quarter-
to-Date

Information

Update
Plant
Totals

Calculate
Federal
Income

Tax

Setup
Control

Information

Write Updated

Record Back
Employee

to Disk

If applicable,
calculate
voluntary

deductions

\ Read Max./

Amount
Check

Read
Week
No.

Calculate
Local Tax,

If Any

Calculate
Net

Earnings

'11!\End en dthe

Weekly
Card

Calculate
FICA

Write the
Payroll
Register

Yes

Locate
Employee
in Index

Read the
Employee

Record
from
Disk

Calculate
Regular
Earnings

Calculate
Bonus

Earnings

Initialize Calculate Calculate
Plant Any Net

Start Variables Special
Earnings

Earnings

Read the
Initialize Employee Calculate Check Net
Variables Index for Overtime Against Max.

This Plant Earnings Check Amt.

O
Read

Plant No.,
Date and
Control
Totals

Read a
Weekly

Employee
Record

Sum Regular,
OT and Bonus

Earnings to
Earnings

Update
Year-to-Date
Information

77

Section Subsections Page

35 20 10 81

Section	 Subsections
	

Page

35
	

20
	

10
	

82

// FOR	 PAYO4

* IOCSICARD.TYPEWRITERtKEYBOARD,1132 PRINTER.DISK) 	 PAY04

* LIST ALL	 PAY04

• ** PAY04 PROGRAM	 PAY04

* NAME PAY04	 PAY04

* ONE WORD INTEGERS	 PAY04

• * EXTENDED PRECISION	 PAY04

C 	 JOB NAME	 .--. PAYROLL SYSTEM 	 CALCULATIONS + PAYROLL REGISTER PAY04

C 	 JOB NUMBER	 -- PAY04	 PAY04
• C 	 	 PAY04

C 	 PROGRAMMER	 --. C.R.KLICK	 PAY04

C 	 DATE CODED	 -- 01/13/68	 PAY04

• C 	 DATE UPDATED	 PAYO4
C 	 	 PAY04

C 	 	 FILE	 FILE RECORD NO. OF	 RECORDS PAY04

• C 	 	 NAME	 NUMBER LENGTH RECORDS PER SECTORPAY04

C 	 INPUT FILES	 1. COLFP	 1	 160	 250	 2	 PAY04

C 	 	 2. WVAFP	 2	 160	 90	 2	 PAY04

• C 	 	 3. MNCFP	 3	 160	 200	 2	 PAY04

C 	 	 4. LBOFP	 4	 160	 50	 2	 PAY04

C 	 	 5. LBTFP	 5	 160	 150	 2	 PAY04

• C 	 	 6. LMCFP	 6	 160	 30	 2	 PAY04

C 	 	 7. PINFO	 25	 106	 6	 3	 PAY04

C 	 	 8. INDX1	 101	 1	 250	 320	 PAY04

• C 	 	 9. INDX2	 102	 1	 90	 320	 PAY04

C 	 	 10. INDX3	 103	 1	 200	 320	 PAY04

C 	 	 11. INDX4	 104	 1	 50	 320	 PAY04

• C 	 	 12. INDXS	 105	 1	 150	 320	 PAY04

C 	 	 13. INDX6	 106	 1	 30	 320	 PAY04

C 	 	 PAY04

• C 	 OUTPUT FILES	 1. COLFP	 1	 160	 250	 2	 PAY04

C 	 	 2. WVAFP	 2	 160	 90	 2	 PAY04

C 	 	 3. MNCFP	 3	 160	 200	 2	 PAY04
• C 	 	 4. LBOFP	 4	 160	 50	 2	 PAY04

C 	 	 5. LBTFP	 5	 160	 150	 2	 PAY04

C 	 	 6. LMCFP	 6	 160	 30	 2	 PAY04

• C 	 	 7. PINFO	 25	 106	 6	 3	 PAY04

C 	 PAY04
C 	 	 PAY04

• C 	 ALLOCATE ARRAY STORAGE.	 PAY04

C 	 	 PAY04
INTEGER COMP(16), TAX 	 PAY04

• DIMENSION FIBRE(8), IDATE(3), INDEX(250). ISUPP(13), ITOT(11), 	 PAY04

1	 KODE(3), NAME(9), NDWK(3), NSSAN(3), QRTD(6), SPECL(3), PAY04
2	 TOT(21), YTD(14)	 PAY04

• C 	 	 PAY04

C 	 DEFINE THE FILES FOR THIS PROGRAM AS DESCRIBED ABOVE, AND	 PAY04

C 	 EQUIVALENCE THE VARIABLES FOR NEXT RECORD NUMBER. 	 PAY04
• C 	 	 PAY04

DEFINE FILE	 1(250.160,UtICOL), 2(90,160,U,IWVA). 	 PAY04

1	 3(200,1601U,MUNC), 4C50,160,U,LB0),	 PAY04

78

2	 5(150,160.U.LBT). 6(30.160tUILMC). 25(6,106,UtIC). PAY04

3	 101(250t1tUtIN1). 102(90t1tUoIN2). 103(200.1tUtIN3),PAY04

4	 104(50.1tUtIN4). 105(150.1.U.IN5). 106(30.1sUtIN6) 	 PAY04

EQUIVALENCE (ICOL.IWVA.MUNC.LBOILBT.LMC). 	 PAY04

1	 (IN1tIN2tIN3tIN4tIN5tIN61	 PAY04

C 	
PAY04

C 	 	 PAY04

• C 	 DEFINE 4N ARITHMETIC STATEMENT FOR HALF ADJUSTING. 	 PAY04

C 	 	 PAY04

PHIL(BET)=WHOLE((BET + 5.) / 100.1	 PAY04

40	 C 	 — — -• — — — — ————— — — ••• —————————————————— PAY04

C 	 	 PAY04

C 	 INITIALIZE VARIABLES	 PAY04

40	 C 	 	 PAY04

ICOL=1	 PAY04

IN1=1	 PAY04

• T=0.	 PAY04

XTOT=0.	 PAY04

XBN=0.	 PAY04

• XREG=0.	 PAY04

XSP=0.	 PAY04

DO 50 1=1.21	 PAY04

• 50 TOT(I)=0.	 PAY04

IPAGE=0	 PAY04

L/NE=50	 PAY04

• C 	 PAY04

C 	 	 PAY04

C 	 READ PLANT NUMBER. DATE. AND CONTROL TOTALS 	 PAY04

40	 C 	 	 PAY04
99999 READ(2,1) NOPLT. IDATE. NOWK. TOTRG. TOTOT. TOTBN. TOTSP, KARD 	 PAY04

1 FORMATII1t6A20)(1.4F7.0.31X.I13 	 PAY04

f0	 C 	 	 PAY04

C 	 VALIDATE KARD AND NOPLT. 	 PAY04

C 	 IF VALID	 — 60	 PAY04

• C 	 IF INVALID — 55	 PAY04

C 	 	 PAY04

IFIKARDI 55.51.55	 PAY04

• 51 IF(NOPLT) 55.55.52	 PAY04

52 IF(NOPLT-6) 60060.55	 PAY04

C 	 	 PAY04

• C 	 FIRST CARD IS INVALID.	 PAY04C 	 	 PAY04

55 WRITE(1.2)	 PAY04

• 2 FORMAT('CHECK CC 1 AND 80 ON FIRST CARD')	 PAY04

PAUSE 1	 PAY04

GO TO 99999	 PAY04• C	 - - - • 	 PAY04

C 	 	 PAY04

C 	 READ THE PLANT INFORMATION RECORD FROM DISK.	 PAY04•
______-------

•

\

	

Section Subsections	 Page

35
	

20
	

10
	

83

PAY04 PROGRAM
	

PAGE 02

79

Section Subsections Page

35 20 10 84

PAY04 PROGRAM	 PAGE 03

C 	 	 PAY04

11	 60 READ(25'NOPLT) COMP* ICHCK. IWEEK. FIBRE, ITOTt CKMAX 	 PAY04
C 	 - - - - - - ----- - - - - - - - - - - - ... - --------- PAY04
C 	 	 PAY04

11	 C 	 WRITE THE PLANT INFORMATION FOR CONTROL PURPOSES AND ACCEPT ANY PAY04
C 	 CHANGES TO IT THRU DATA SWITCH SETTINGS.	 PAY04
C 	 	 PAY04

11	 62 WRITEI1.3) COMP. IDATE. ICHCK. IWEEK. NDWK. CKMAX	 PAY04
3 FORMAT(//16A2.3A2/'CHECK NO 'I5/'WEEK NO 'Il/'W/E '3A2/'NET MAX' PAY04
1	 F6.0//'MAXIMUM CHECK AMOUNT MAY BE CHANGED BY SWITCH 14. 'PAY04

41	 2	 / 'SWITCH 15 WILL CHANGE THE CHECK NO AND THE WEEK NO. SET ' PAY04
3	 'SWITCHES'/'REQUESTED AND PRESS START')	 PAY04
PAUSE 1111	 PAY04

11	 CALL DATSW(15.I)	 PAY04
GO TO (70.71).I	 PAY04

70 WRITE(1041	 PAY04

11	 4 FORMAT('ENTER CHECK NO. FIVE DIGITS') 	 PAY04
READ(6.22) ICHCK	 PAY04

22 FORMAT(75)	 PAY04

11	 WRITE(1$23)	 PAY04
23 FORMAT('ENTER WEEK NO. ONE DIGIT') 	 PAY04

READ(6t24) IWEEK	 PAY04

11	 24 FORMAT(I1)	 PAY04
GO TO 62	 PAY04

71 CALL DATSW(14tI)	 PAY04

11	 GO TO (72.75)1I	 PAY04
72 WRITE(1,25)	 PAY04
25 FORMAT('ENTER MAXIMUM CHECK AMOUNT. FIVE DIGITS')	 PAY04

11	 READ(6.21) CKMAX	 PAY04
21 FORMAT(F5.0)	 PAY04

GO TO 62	 PAY04

41	 C 	 PAY04

C 	 	 PAY04

C 	 INITIALIZE PLANT VARIABLES 	 PAY04

11	 C 	 	 PAY04
75 INDX.NOPLT + 100 	 PAY04

GO TO (76.77.78079.80.81).NOPLT	 PAY04

11	 76 ILST=250	 PAY04
GO TO 83	 PAY04

77 ILST=90	 PAY04

41	 GO TO 83	 PAY04

78 ILST . 200	 PAY04

GO TO 83	 PAY04

11	 79 ILST . 50	 PAY04

GO TO 83	 PAY04

80 ILST=150	 PAY04

11	 GO TO 83	 PAY04

81 ILST.30	 PAY04

C 	 PAY04• 	

80

	

Section Subsections
	

Page

35
	

20
	

10
	

85

PAY04 PROGRAM	 PAGE 04

C 	

• C 	 READ THE EMPLOYEE INDEX FOR THIS PLANT.
C 	

83 READ(INDPILST) LAST	 PAY04

• READ(INDX11) (INDEX(I).I 0 1.LAST)	 PAY04
c----- — — — —	 .. — — — — ————————————————————PAY04
C 	 	 PAY04

• C 	 READ A WEEKLY EMPLOYEE RECORD. 	 PAY04
C 	 	 PAY04

90 READ(2.5) KPLNT. ICLCK, RGHRS. OTHRS. BNHRS. (KODEII/oSPECLI/), 	 PAY04

• 1	 I=113). KARD	 PAY04
5 FORMAT(11,130F5.3,F4.01F5.0.11,F6.0.2(I1,F5.0).42X.11) 	 PAY04

C 	 — — — — -• — — — — -• — — — — — — — — — — — — — — ————————— PAY04
• C 	 	 PAY04

C 	 INITIALIZE INDIVIDUAL VARIABLES	 PAY04

C 	 	 PAY04

• ADREG=0.	 PAY04

AD=0.	 PAY04

HOLDY=0.	 PAY04

• IFILL=0	 PAY04

KO=16448	 PAY04

OTHER=0.	 PAY04

• SICK=0.	 PAY04

SPA=0.	 PAY04

SPB=0.	 PAY04

• TAX=0.	 PAY04

VACA=0.	 PAY04
C 	 PAY04

40	 C 	 	 PAY04

C 	 LAST CARD CHECK AND VALIDATE PLANT NUMBER	 PAY04

C 	 IF KARD EQUALS 6, PROCESS IT. 	 PAY04

• C 	 IF KARI EQUALS 9. LAST CARD	
PAY04

C 	 OTHERWISE. ERROR	
PAY04

C 	 	
PAY04

•
IFIKARD — 6) 100,110.103	 PAY04

103 IFIKARD — 9) 1001500.100	 PAY04
C 	
	

PAY04

• C 	 PLANT NUMBER	 PAY04
C 	
	

PAY04

110 IFIKPLNT — NOPLT) 100,105.100	 PAY04

•
100 WRITE(1,6) KPLNT. ICLCK	 PAY04

6 FORMAT('CHECK CARD WITH CLOCK NUMBER '11.13)	 PAY04

PAUSE 100	
PAY04

GO TO 90	
PAY04

C
--	

PAY04

C 	 	
PAY04

• C 	 LOCATE EMPLOYEE IN INDEX 	
PAY04

C 	 	
PAY04

105 ICLCK=ICLCK + KPLNT * 1000	 PAY04

	--------	 _..---------

81

PAY04
PAY04
PAY04

Section Subsections Page

35
	

20
	

10
	

86

PAY04 PROGRAM	 PAGE 05

DO 115 IND=1,LAST	 PAY04

• IFIINDEX(IND) — ICLCK) 115.125.115	 PAY04

115 CONTINUE	 PAY04
C

C 	 PROGRAt COMES THRU HERE ONLY WHEN NO MATCH FOUND. 	
PAY04
PAY04• C

	

	
	

PAY04
PAY04

• 7 FORMAT('CLOCK NO 'I4' IS NOT IN THE FILE') 	 PAY04

c 	 	 PAY04

C 	 UPDATE ERROR TOTALS	
PAY04

1,	 c 	 	 PAY04

120 XREG=XREG + RGHRS	 PAY04

XTOT.XTOT + OTHRS	 PAY04

• XBN.XBN + BNHRS	 PAY04

XSP.XSP + SPECL(1) + SPECL(2) + SPECL(3) 	 PAY04

CALL STACK	 PAY04

• GO TO 90	 PAY04
C	 PAY04
C 	 	 PAY04

• C 	 READ THE EMPLOYEE RECORD FROM DISK AND VALIDATE CLOCK NUMBER. 	 PAY04
C

	

	 	 PAY04

125 READ(NOPLT'IND) NUM, NAME. NSSANt NSTAS. NDUES, NWKMPt NWKPD. MARtPAY04

• 1	 NXMPF. NXMPS. NSEX, NRATE. YID. ORTDt LYRHR. NCU. PAY04

2	 NCUDDt NCHCK. NADWH. NSTCK. NINS. NMISC, NUAt	 PAY04

3	 NSTKDo ISUPP. INIT	 PAY04

• C 	 	 PAY04

C 	 VALIDATE CLOCK NUMBER 	 PAY04

C 	 VALID	 — 136	 PAY04

• C 	 INVALID .. 135	 PAY04

C 	 	 PAY04
IF(NUM .. ICLCK) 135.1361135 	 PAY04

ID	 135 WRITE1118) NUM. ICLCK	 PAY04
8 FORMAT('FILE NO '14' AND INDEX NO 'I4' DO NOT AGREE') 	 PAY04

GO TO 120	 PAY04

• c 	 PAY04

c 	 	 PAY04

C 	 CALCULATE REGULAR EARNINGS AND HALF ADJUST 	 PAY04
• C 	 	 PAY04

136 RGERN=PHILIRGHRS * NRATE)	 PAY04
C 	 PAY04

• C 	 	 PAY04

C 	 CALCULATE BONUS EARNINGS AND HALF ADJUST 	 PAY04

C--`..■	 PAY04

• BNERN.P1IL1BNHRS * NRATE) 	 PAY04

c	 PAY04
C 	 	 PAY04

• C 	 CALCULATE ANY SPECIAL EARNINGS. USE CODE TO DETERMINE TYPE OF 	 PAY04

C 	 EARNINGS.	 KODE	 TYPE	 KODE	 TYPE	 PAY04

C 	 	 1	 SPA	 5	 SPB*NRATE	 PAY04

•

WRITE(1.7) ICLCK

82

C 	 	 2	 SPB	 6	 VACA	 PAY04

• C 	 	 3	 SPB*NRATE	 7	 SICK	 PAY04

C 	 	 4	 SPB*NRATE	 8	 HOLD?	 PAY04
C 	 	 9	 HOLDY * 2	 PAY04

• C 	 	 PAY04

DO 139 1=1.3	 PAY04

K=KODE(I)	 PAY04
IF(K) 100.139,600	 PAY04

600 GO TO (601,602.603.604,605.606.607.608.609),K	 PAY04

601 AD=SPECL(I)	 PAY04

OTHER=OTHER + AD	 PAY04

SPA=SPA + AD	 PAY04

K0=-3776	 PAY04

GO TO 139	 PAY04

602 OTHER=OTHER + SPECL(I)	 PAY04

SPB=SPA + SPECL(I)	 PAY04

K0=-352(PAY04

GO TO 139	 PAY04

603 K0=-3264	 PAY04

• 610 OTHER=PHIL(SPECL(I) * NRATE) 	 PAY04
SPB=SPB + SPECL(I)	 PAY04

GO TO 139	 PAY04

• 604 KO...3008	 PAY04

GO TO 610	 PAY04

605 K0=-2752	 PAY04

• GO TO 610	 PAY04

606 VACA=SPECL(I)	 PAY04

SPB=SPB + VACA	 PAY04

• GO TO 139	 PAY04

607 SICK=SPECL(I)	 PAY04

GO TO 139	 PAY04

608 HOLDY=8. * NRATE 	 PAY04

AD=AD + HOLD?	 PAY04
611 SPB=SPB + MOLDY	 PAY04

• ADREG=800.	 PAY04

GO TO 139	 PAY04

609 HOLDY=16. * NRATE	 PAY04

• AD=AD + MOLDY / 2.	 PAY04

GO TO 611	 PAY04

139 CONTINUE	 PAY04

• c 	 PAY04

C 	 	 PAY04

C 	 CALCULATE OVERTIME EARNINGS IF APPLICABLE. USE STATUS AND HOURS PAY04
• C 	 TO DETERMINE APPLICABILITY. 	 PAY04

C 	 	 PAY04
IF(NSTAS-2) 141,137.141	 PAY04

• C 	 	 PAY04

C 	 NOT APPLICABLE. USE STANDARD RATE.	 PAY04

C 	 	 PAY04

II

•

	

Section Subsections
	

Page

35
	

20
	

10
	

87

PAY04 PROGRAM
	

PAGE 06

83

137 IOTRT=NRATE	 PAY04

GO TO 150	 PAY04

C

	

	 	 PAY04
PAY04

• C 	 	 PAY04.

C 	 OVERTIME APPLIES. CALCULATE OVERTIME RATE. 	 PAY04

C 	 	 PAY04

• 142 IOTRT=(RGERN + BNERN + AD) * 100. / (RGHRS + ADREG) + 0.5 	 PAY04

C 	 	 PAY04

C 	 CALCULATE OVERTIME PAY	 PAY04

• c 	 	 PAY04
PAY04

c 	 PAY04
• C 	 	 PAY04

C 	 SUM REGULAR, O.T., AND BONUS EARNINGS	 PAY04
C 	 	 PAY04

• ERNGS=RGERN + BNERN + OTERN 	 PAY04

C 	 - •• - - •• - - - - - - ---------------------- PAY04
C 	 	 PAY04

• C 	 CALCULATE AVERAGE RATE AND UPDATE LAST QUARTER AVERAGES. 	 PAY04

C 	 	 PAY04
IFIRGHRS1 143,143,144	 PAY04

• 143 IVRAT=NRATE	 PAY04

GO TO 160	 PAY04
144 IVRAT=ERNGS * 100. / RGHRS	 PAY04

• 160 DO 165 1=1,12	 PAY04

165 ISUPP(I)=ISUPP(I+1)	 PAY04

ISUPP(13)=IOTRT	 PAY04

• C	 	 PAY04

C 	 	 PAY04

C 	 CALCULATE FICA TAXABLE EARNINGS	 PAY04
• C 	 	 PAY04

ERNGS=ERNGS + VACA + HOLDY + OTHER 	 PAY04

C 	 PAY04
• C 	 	 PAY04

C 	 CALCULATE FICA AND GROSS PAY AND TAXABLE PAY	 PAY04

C 	 	 PAY04

• IFICA=0.044 * ERNGS + 0.5	 PAY04
IF(IFICA + YTD(2) - 29040.)18501800180 	 PAY04

180 IFICA=29040. .• YTD(2)	 PAY04
• C 	 	 PAY04

185 GROSS=ERNGS + SICK 	 PAY04
C 	 	 PAY04

• TAXBL=GROS5 .• NXMPF * 1350.	 PAY04

c 	 - - - - - - - - - - - ----------------------PAY04
C 	 	 PAY04

• C 	 CALCULATE FEDERAL INCOME TAX	 PAY04

C 	 	 PAY04
CALL IT(TAX8L,MAR,TAX)	 PAY04

141 IFIRGHRS1 1370137,142

150 OTERN=PHIL(OTHRS * IOTRT)

Section Subsections Page

35 20 10 88

PAY04 PROGRAM	 PAGE 07

84

TAX=TAX + NADWH	 PAY04

• c-----	 	 PAY04

C 	 	 PAY04

C 	 COMPUTE LOCAL TAX BY PLANT LOCATION 	 PAY04

• c 	 	 PAY04
GO TO (230.235,240.230.246,230),NOPLT 	 PAY04

230 LOCAL=PHIL(GROSS)	 PAY04
GO TO 250	 PAY04

235 I=1280. * NXMPS + O..5 	 PAY04

LOCAL=0.0108 * (GROSS-I)	 PAY04
GO TO 250	 PAY04

240 IF(NXMPS) 241,241.242	 PAY04
241 LOCAL=0.02 * GROSS	 PAY04

GO TO 250	 PAY04
242 I=NXMPS * 1538.5 + 961.5	 PAY04

LOCAL=(GROSS - I) * 0.02	 PAY04

• 250 IF(LOCAL) 246,2471247	 PAY04

246 LOCAL=0	 PAY04

C 	 PAY04
• C 	 	 PAY04

C 	 CALCULATE NET EARNINGS	 PAY04

C 	 	 PAY04

• 247 ATAX=GROSS -. TAX .- LOCAL	 IFICA	 PAY04

C 	 PAY04

C 	 	 PAY04

• C 	 CALCULATE VOLUNTARY DEDUCTIONS. 	 PAY04

C 	 INITIALIZE.	 PAY04

C 	 	 PAY04

• IUD=0	 PAY04

IUA=0	 PAY04

15%00	 PAY04

• !INS.°	 PAY04

ICU=0	 PAY04

IMISC=0	 PAY04
• C 	 	 PAY04

C 	 IF THE EMPLOYEE RECEIVES SICK PAY, VOLUNTARY DEDUCTIONS ARE NOT PAY04

C 	 TAKEN.	 PAY04

• C 	 	 PAY04

IF(SICK) 2520253,252	 PAY04

252 CNET=ATAX	 PAY04

GO TO 3(5	 PAY04

C 	 	 PAY04

C 	 OTHERWISE. DEDUCTIONS NECESSARY ARE TAKEN. 	 PAY04

• C 	 TAKE UNION DUES ACCORDING TO PLANT	 PAY04

C 	 	 PAY04

253 IF(IWEEK - 3) 255.255.251	 PAY04

251 IF(NOPLT •• 3) 280.255,280	 PAY04

255 IF(NSTAS •. 2) 260.260,282 	 PAY04

260 IF(GROSS	 VACA) 261.2951261	 PAY04

•

•

•

Section Subsections Page

35 20 10 89

PAY04 PROGRAM
	

PAGE 0

85

261 GO TO (265►265►275,265►26510280),NOPLT
	

PAY04

265 IF(NDUES - 10000) 270.270,280
	

PAY04

270 IUD=NDUES + INIT
	

PAY04

NDUES=NDUES + INIT + 10000
	

PAY04

INIT=0
	

PAY04

GO TO 290
	

PAY04

275 IUD=PHIL(GROSS - VACA) + INIT
	

PAY04
NDUES=NDUES + IUD
	

PAY04

INIT=0
	

PAY04

GO TO 282
	

PAY04

280 IUD=0
	

PAY04

C 	
	

PAY04

C 	 CHARITABLE CONTRIBUTIONS
	

PAY04• C	 	 PAY04
282 IF(.WEEK - 2) 290,285.285	 PAY04

285 IF(NUA - 10000) 286,290.290 	 PAY04

• 286 IUA=NUA	 PAY04

NUA=NUA + 10000	 PAY04

GO TO 295	 PAY04

II	 290 lUA=0	 PAY04

C 	 	 PAY04

C 	 TAKE STOCK. INSURANCE. CREDIT UNION. AND MISCELLANEOUS DEDUCTIONSPAY04

ID	 C 	 	 PAY04
295 ISTCK=NSTCK	 PAY04

IINS=NINS	 PAY04

• ICU=NCU	 PAY04
IMISC=NMISC	 PAY04

C 	 PAY04

• C 	 	 PAY04
C 	 CALCULATE NET. AT ALL TIMES CHECKING THAT NET IS NOT NEGATIVE. 	 PAY04
C 	 	 PAY04

II	 IF(ATAX - IUD) 300,310,310	 PAY04
300 IF(NOPLT - 3) 305.301,305 	 PAY04
301 NDUES= NDUES - IUD	 PAY04

• GO TO 309	 PAY04
305 NDUES=NDUES - 10000	 PAY04
309 IUD=0	 PAY04

• IFILL=1	 PAY04
310 CNET=ATAX - IUD	 PAY04

IF(CNET - IINS) 320025,325	 PAY04
• 320 1INS=0	 PAY04

IFILL=2	 PAY04
325 CNET=CNET	 IINS	 PAY04

• IF(CNET -. ISTCK) 330.335.335 	 PAY04
330 ISTCK=0	 PAY04

IFILL=3	 PAY04
• 335 CNET=CNET - ISTCK	 PAY04

NSTKD=NSTKD + ISTCK	 PAY04
IF(CNET - ICU) 3400345,345	 PAY04

•
•
•

Section Subsections Page

35 20 10 90

PAY04 PROGRAM	 PAGE 09

86

340 ICU.°	 PAY04

• IFILL=4	 PAY04

345 CNET=CNET -, ICU 	 PAY04

NCUDD=NCUDD + (ICU / 10)	 PAY04

• IF(CNET - IUA) 35093559355	 PAY04

350 IUAs0	 PAY04

IFILL=5	 PAY04

• NUA=NUA .. 10000	 PAY04

355 CNET=CNET - IUA	 PAY04

IF(CNET -. IMISC) 360.365.365 	 PAY04

• 360 IMISC00	 PAY04

IFILL=6	 PAY04

365 CNET=CNET • IMISC	 PAY04
• C 	 PAY04

C 	 	 PAY04

C 	 CHECK NET AGAINST MAXIMUM CHECK AMOUNT AND AGAINST A MINIMUM OF PAY04

• C 	 ONE DOLLAR	 PAY04

C 	 	 PAY04

366 IFtCKMAX - CNET) 367,368,368 	 PAY04

• 367 WRITE(1912) CNET. ICLCK	 PAY04

12 FORMAT('NET OF ' F7.0' FOR CLOCK NO '14)	 PAY04

GO TO 120	 PAY04

• 368 IF(CNET - 100) 37093759375	 PAY04

370 TAX=TAX + CNET	 PAY04

CNET=0	 PAY04

•
IFILL=7	 PAY04

C	 PAY04

C 	 	 PAY04

• C 	 UPDATE YEAR-TO-DATE INFORMATION 	 PAY04
C 	 	 PAY04

•
•
•

375 YTD(1)=YTD(1)
YTD(2)=YTD(2)
YTD(3)=YTD(3)
YTD(4)=YTD(4)
YTD(5)=YTD(5)
YTD(6)=YTO(6)
YTD(7)=YTD(7)
YTD(8)=YTD(8)
YTD(9)=YTD(9)

+
+
+
+
+
+
+
+
+

GROSS
IFICA
TAX
ERNGS
SICK
SPA
SPB
LOCAL
RGHRS

YTD(10)=YTD(10)	 + OTHRS•	 YTD(11)=YTD(11)	 + BNHRS
YTD(12)=YTD(12)	 + RGERN
YTD(13)=YTD(13)	 + OTERN

PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04

• PAY04
PAY04
PAY04

C-----
C 	 	 PAY04

• C 	 UPDATE OUARTER .-70.-DATE INFORMATION	 PAY04

GRTD(1)=ORTD(1) + GROSS	 PAY04

GRTD(2)=ORTD(2) + TAX	 PAY04

• YTD(14)=YTD(14) + BNERN-

	

Section Subsections
	

Page

35
	

20
	

10
	

91

PAY04 PROGRAM	 PAGE 10

87

ORTDI3f .ORTDI3f + (FICA
ORTD(41 .ORTDI4) + LOCAL
ORTD(5)=ORTD(51 + ERNGS
ORTD(6)=ORTD(6) + SICK

TOTI1)=TOTI1f + RGHRS
T0TI2).TOTI2f + RGERN

• TOT(3) = TOT(3) + OTHRS
TOT(4)=TOT(4) + OTERN
TOT(5)=TOT(5) + BNHRS

• TOT(61.TOT(6) + BNERN
TOT(7)=TOT(7) + OTHER
TOT(8)..TOTI8I + MOLDY

• TOT(9).TOTt9) + VACA
TOT(10)=TOT(10) + SICK
T0T(11)=T0Tf11f + CNET

• TOT(12)=TOT(12) + TAX
TOTI13f.T0T(13) + IFICA
TOTI144=TOT(14) + LOCAL

• T01(151=707(151 + ICU
TOT(16)=TOT(16) + IUD
TOT(17)=TOT(17) + IUA

• TOT(181..TOTI1ef + ISTCK
TOT(19).TOT(191 + IMISC
TOTI20)■TOT(20) + IINS	 PAY04

• TOT(21).TOTI211 + GROSS PAY04
C----- - - - - - - - - - ------------------------ PAY04
C 	 	 PAY04

• C 	 SUM SPECIAL EARNINGS, SUM DEDUCTIONS, AND EXTEND THE EMPLOYEE	 PAY04

C 	 WEEKLY CARD	 PAY04C 	 	 PAY04

• T.T + SPECLIlf + SPECLf2f + SPECL(3) 	 PAY04

IDED.IINS + (SICK + IUA + IMISC	 PAY04

WRITE(299) NRATE. GROSS. CNET, TAX, (FICA. LOCAL, ICU. IUD. IDED PAY04

• 9 FORMAT(17X,I3,2F6.0,15,414,I5) 	 PAY04

C 	 - - - - - .. - - - - ..- - --------------------- PAY04
c 	 	 PAY04

• C 	 SETUP CONTROL INFORMATION. AND WRITE UPDATED EMPLOYEE RECORD BACKPAY04

C 	 TO THE DISK.	 PAY04

C 	 	 PAY04

• LYRHR=LYRMR + RGHRS	 PAY04

NWKPD.NWKPD + 1	 PAY04

IPD.1	 PAY04• C 	 	 PAY04

WRITEINOPLT 1 INDf NUM, NAME, NSSAN, NSTAS. NDUES, NWKMP. NWKPD,	 PAY04

1	 MAR. NXMPF, NXMPS. NSEX. NRATE, YID. GRID. LYRHR, NCUr NCUDD. PAY04

•

PAY04

PAY04
PAY04

PAY04

PAY04

PAY04

PAY04

PAY04

PAY04

PAY04

PAY04
PAY04

PAY04
PAY04

PAY04

PAY04
PAY04

PAY04
PAY04

PAY04

PAY04
PAY04

PAY04

PAY04
PAY04
PAY04
PAY04

•
•

C 	 UPDATE PLANT TOTALS

40

Section Subsections Page

35 20 10 92

PAY04 PROGRAf	 PAGE 11

88

Section

35

Subsections Page

9320	 1 10

PAY04 PROGRAM PAGE 12

2	 NCHCK. NADWH. NSTCK. NINS. NMISC. NUA, NSTKD. 	 ISUPP.	 INIT. PAY04

• 3	 IPD.	 IFILL. GROSS.	 IVRAT.	 IOTRT. RGHRS. OTHRS. BNHRS. RGERN,
4	 OTERN.	 BNERN. OTHER. KO. HOLDY. VACA. SICK. (NET. 	 IFICAs TAX.

PAY04
PAY04

5	 LOCAL.	 ICU.	 IUAt	 IUD.	 IINS.	 ISTCK.	 IMISC PAY04• C PAY04

C GO BACK FOR ANOTHER WEEKLY EMPLOYEE CHECK. PAY04C PAY04

•
C

GO TO 90 PAY04
PAY04

C PAY04

• C
C

WRITE 1-IE PAYROLL REGISTER. PAY04
PAY04

500 ICNT=ICHCK PAY04

• DO 510	 I=1.LAST
READ(NOPLT'I) NUM. NAME. NSSAN. NSTAS. NDUESt NWKMP. NWKPD. MAR.

PAY04
PAY04

1	 NXMPF. NXMPS. NSEX. NRATE. YID. GRID. LYRHR. NCU. NCUDD. PAY04

• 2	 NCHCK. NADWH. NSTCK. NINS. NMISC. NUA. NSTKD. 	 ISUPP.	 INIT.

3	 IPD.	 IFILL. GROSS.	 IVRAT.	 IOTRT. RGHRS. OTHRS. BNHRS. RGERN.
PAY04
PAY04

4	 OTERN.	 BNERN. OTHER. KO. HCLDY. VACA.	 SICK. CNET.	 IFICA.	 TAX. PAY04

• C 5	 LOCAL.	 ICU.	 lUA►	 IUD.	 IINS.	 ISTCK.	 IMISC PAY04
PAY04

C CHECK PAID INDICATOR TO SEE IF COMPUTATIONS WERE PERFORMED. PAY04• C
IF(IPD -,	 1)	 510.515.510

PAY04
PAY04

515 ROHRS=WHOLE(RGHRS +	 (RGHRS / ABS(RGHRS))	 * 0.5)	 / 100. PAY04

• OTHRS=WHOLE(OTHRS +	 (OTHRS / ABS(OTHRS))	 * 0.5)	 /	 100.

BNHRS=WHOLE(BNHRS + 	 (BNHRS / ABS(BNHRS)1 	 • 0.5)	 /	 100.
PAY04
PAY04

RGERN=WHOLE(RGERN + 	 (RGERN / ABS(RGERN)) 	 • 0.5)	 /	 100. PAY04

• OTERN=WHCLE(OTERN +	 (OTERN / ABS(OTERN)) 	 * 0.5)	 /	 100.

BNERN=WHCLE(RNERN +	 (BNERN / ABS(BNERN)) 	 • 0.5)	 /	 100.
PAY04
PAY04

OTHER=WHOLE(OTHER + 	 (OTHER / ABS(OTHER)) 	 • 0.5)	 /	 100. PAY04

• HOLDY=WHOLE(HOLDY + 	 (HOLDY / ABS(HOLDY)) 	 * 0.5)	 /	 100.

VACA=WHOLE(VACA +	 (VACA / ABS(VACA)) • 0.51 	 / 100.
PAY04
PAY04

SICK=WHOLE(SICK +	 (SICK / ABS(SICK))	 • 0.5)	 / 100. PAY04

• GROSS=WHOLE(GR(1SS +	 (GROSS / ABS(GROSS1)	 * 0.51	 /	 100.

CNET=WHOLE(CNET +	 (CNET / ABS(CNET))	 • 0.51	 /	 100.
PAY04
PAY04

IF(LINE —	 50)	 385.380.380 PAY04

• 380	 IPAGE=IPAGE + 1
WRITE(3.19)	 COMP. NDWK.	 !PAGE

PAY04
PAY04

19 FORMAT(11120X0FACTORY PAYROLL I OX.16A2.5X0W/E	 loA2.2("".A2). PAY04

• 1	 10X0PAGE NO '012/1
WRITE(3.10)

PAY04
PAY04

10 FORMAT(' NUMBR'5XONAME 1 17X0REG HRS	 OT HRS BNS HRS REG ERN	 OT PAY04

• 1ERN BNS ERN	 SPECIAL HOLDAY VACATION	 SICK	 GROSS')

WRITE(3.201

PAY04
PAY04

20 FORMAT('	 FICA	 FWT LOCAL C.U. U/D 	 U/A	 INS STCK MISC	 NET') PAY04

• LINE=0
385 WRITE(3.11)	 NUM. NAME.	 ICNT►	 RGHRS. OTHRS. BNHRS. RGERN. OTERN.

PAY04
PAY04

1	 BNERN. KO. OTHER. HOLDY. VACA. SICK. GROSS.	 IFICAs PAY04

89

	

Section Subsections	 Page

35	 20	 10	 94

PAY04 PROGRAM	 PAGE	 13

2	 TAX, LOCAL, ICU. IUD. IUA, IINS, ISTCK, MSC, CNET	 PAY04

11 FORMAT(/01X.I4,2X19A2,I506(2X,F6.2),1X,A1,5(2X,F6.2)/1X,I5,2X18I5oPAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04

C 	 	 PAY04

C 	 WRITE CONTROL TOTALS 	 PAY04

C 	 	 PAY04

TGRS=TOT(21)	 PAY04

TNET=TOT(11)	 PAY04

WRITE(1.151 TOTRG, TOTOTt TOTBN, TOTSP 	 PAY04

15 FORMAT('INPUT TOTALS	 ',4(3X,F8.0))	 PAY04

WRITE(1,16) TOT(1), TOT(3). TOT(5), T 	 PAY04

16 FORMAT('PROCESSED TOTALS ',4(F8.0,3X)) 	 PAY04

WRITE(1,17) XREG, XTOT,X8No XSP 	 PAY04

17 FORMAT('ERROR TOTALS 	 1,4(3X,F8.01)	 PAY04

A=TOTRG - TOT(1) -. XREG	 PAY04

8=TOTOT .• T0T(3) -. XTOT 	 PAY04

C=TOTBN - TOT(5) -• XBN	 PAY04

D=TOTSP .• T .. XSP	 PAY04

WRITE(1,18) At B, C, D 	 PAY04

18 FORMAT('THE DIFFERENCES's4(3X,F8.0)) 	 PAY04

C 	 4* - ■ • w' - ". - - - - 	 .. ------------------ PAY04
C 	 	 PAY04

C 	 WRITE THE PLANT GENERAL LEDGER INFORMATION AFTER THE TOTAL LINE PAY04

C 	 	 PAY04

FIBRE(3)=FIBRE(3) + TOT(1) 	 PAY04

FIBRE(4)=FIBRE(4) + TOT(2)	 PAY04

FIBRE(5)=FIBRE(5) + TOT(3) 	 PAY04

FIBRE(6)=FIBRE(6) + TOT(4)	 PAY04

FIBRE(7)=FIBRE(7) + T0T(9) 	 PAY04

FIBRE(8)=FIBRE(8) + TOT(8)	 PAY04

DO 520 1=1,10	 PAY04

520 TOT(I)=WHOLE(TOT(I) + (TOT(I) / A8S(TOT(I))) * 0.5) / 100. 	 PAY04

WRITE(3,13) (TOT(I)II-1.10) 	 PAY04

13	 FORMAT(/0 '.'FST LINE TOTAL',10F10.2) 	 PAY04

TOT(21)=..707(21)	 PAY04

IPAGE=IPAGE + 1	 PAY04

WRITE(3,19) COMP, NDWK, IPAGE 	 PAY04

DO 550 1=1,11	 PAY04
TOT(I+10)=-WHCLEITOT(I+10) + (TOT(I+10)/A8S(TOT(I+10)))*0.5)/100. PAY04

550 WRITE(3,14) IT0T(1). TOT(I+10) 	 PAY04

14 FORMAT(/020X,I4,5X,F9.2)	 PAY04

C----- - - - -. .- - - - - ------------------------ PAY04

C 	 	 PAY04

C 	 WRITE THE PLANT' INFORMATION BACK TO DISK.	 PAY04

• 1 	 F8.2)
FIBRE(NSEX)=FIBRE(NSEX) +

• LINE=LINE + 3
ICNT=ICNT + 1

510 CONTINUE

•

•

•

•

•

•

•

•

•

•

•

•

•

90

Subsections Page

95

Section

102035

PAGE 14

PAY04

PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04
PAY04

IN' ..0050 IN2	 =005C 163	 . 005C 154	 .005C
YTD .00F6 I	 =00F9 XTOT .00FC XBN	 =DOFF
CKMAX=0114 RGHRS.0117 OTHRS . 011A BNHRS=0110
SPB .0132 VACA =0135 RGERN.0138 BNENN=0138
TGRS .0150 TNET .0153 A	 .0156 8	 =0159
KODE =0282 NAME =0288 NDWK =028E ASSAN=0291
NOPLT=02A7 KARD =02A8 ICHCK .02A9 IWEEK=02AA
KO =0281 IND	 =0282 NUM	 =0283 NSTAS.0284
NSEX =02BB NRATE=02BC LYRHR=0280 NCU	 .02131
NUA =02C5 NSTKD=02C6 INIT	 =02C7 K	 .02C8
ISTCK.02CF TINS . 0200 ICU	 .0201 IMISC=0202

23 .03EA 24	 .03F8 25	 .03FA 21	 .0410
19 =0477 10	 =0499 20	 =0400 11	 =04EE
50 •0589 99999.0562 51	 .0588 52	 .058F
75 =0627 76	 =0637 77	 .0630 78	 .0643
110 =060A 100	 =06E0 105	 =06E0 115	 =0704
602 =0708 603	 . 07F2 610	 •07F7 604	 .0812
139 =0866 137	 =0874 141	 =087A 142	 •087F
185 =0906 230	 . 092A 235	 . 0932 240	 =0948
253 •09A9 251	 =09AF 255	 . 0985 260	 =09138
285 =0AOF 286	 =0A15 290	 =00421 295	 .0A25
325 .0A70 330	 . 0A7F 335	 =0A87 340	 =0A90
367 =OAEF 368	 =0AF9 370	 =0801 375	 =0812
550 2103E

CALLED SUBPROGRAMS
WHOLE	 DATSW	 STACK	 IT	 EABS	 EADD	 EADDX	 ESUB	 ESUBX	 EMPY	 EMPYX	 EDIV	 ELD	 ELDX	 ESTO
ESTOX	 ESBR	 EDVR	 EDVRX	 IFIX	 FLOAT	 TYPEZ	 SRED	 SWRT	 SCOMP	 SF10	 SIOAI	 SIOFX	 SIOIX	 5/OF
5101	 SUBSC	 PAUSE	 SNR	 SUBIN	 CARDZ	 PRNTZ	 5DF10	 SDRED	 SDWRT	 SDCOM	 SDAI	 SDAF	 SDIX	 SOF•	
SDI

REAL CONSTANTS

	

.500000000E 01=02E6	 .100000000E 03.02E9	 .000000000E 00.02EC 	 .8000000001 01=02EF	 .800000000E 03=02F2

	

.160000000E 02=02F5	 .200000000E 01.02F8	 .500000000E 00=02F8 	 .440000000E-01=02FE 	 .290400000E 05=0301
• .135000000E 04=0304	 .128000000E 04.0307	 .108000000E.-01=030A	 02000000001.01=0300	 .153850000E 04=0310

.961500000E 03.0313

INTEGER CONST,475

	

1=0316	 21=0317	 0=0318	 50=0319	 2.031A	 6=03113	 25=0310	 1111=0310	 15.0311	 14=031F

	

100=0320	 250=0321	 90=0322	 200=0323	 150=0324	 30=0325	 3=0326 16448=0327	 9.0328	 1000=0329
• 3776.032A	 3520=0328	 3264=0320	 3008=0320	 2752=032E	 12=032F 10000=0330	 4=0331	 10=0332	 5=0333

	

7=0334	 11=0335	 4369=0336	 256=0337

• CORE REQUIREMENTS FOR PAY04
COMMON	 0 VARIABLES	 742 PROGRAM	 3466

• END OF COMPILATION

PHIL =0338 1	 .034A 2	 =0353 3	 .0365 4	 .0308 22	 =03E8
5	 .0412 6	 .0420 7	 .0433 8	 =0446 12	 .045E 9	 .046E
15	 =0507 16	 .0515 17	 =0524 18	 .0532 13	 =0540 14	 .054E
55	 .0505 60	 =05CD 62	 =05DF 70	 =05FE 71	 =0612 72	 .061C
79	 .0649 80	 =064F 81	 =0655 83	 =0659 90	 .0674 103 =0602
120 .0712 125 =0738 135 =077A 136 =0784 600 .07AF 601 =078C
605 =0819 606 =0820 607 =0831 608 .0830 611 =0849 609 =0855
150 =0894 :43 =08AD 144 =0883 160 =0813C 165 =08C0 180 =08F5
241 =094C 142 =0955 250 =0969 246 =0960 247 =0971 252 =09A3
261 =09(2 265 =09CC 270 =0902 275 =09E6 280 =0A05 282 =0A09
300 =0A3D 301 =0543 305 =0A48 309 =OAS' 310 .0859 320 .0568

• 345 =0AA4 350 =0A80 355 =OACA 360 .0A09 365 =0AE1 366 =0AE8
500 =001E 515 =0D9C 380 =0E7A 385 =0E98 510 =0EE7 520 . 0F9F

• FEATURES SUPPORTED
ONE WORD INTEGERS
EXTENDED PRECISION
IOCS

• STATEMENT ALLOCATIONS

•

•

PAY04 PROGRAM

C 	

KRITE125 1 NOPLT/ COMP, 1CHCK, IWEEK. FIBRE. !TOT. CKMAX. TGRSs
1	 TNET. ICNT

C 	

• C 	
C 	 STOP
C 	

• CALL EXIT

END

41
VARIABLE ALLOCATIONS
ICCL .0058 IWVA =0058 MUNC =0058 LBO .0058 LBT .0058 LMC =00513

• 165 .005C INA .005C FIBRE=0072 GRID .0084 SPECL=0080 TOT =00CC
XREG =0102 XSP =0105 TOTRG=0108 TOTOT .0108 TOTBN=010E TOTSP.0111
ADREG=0120 AO	 =0123 HOLDY=0126 OTHER=0129 SICK .012C SPA .012F

• OTERN=013E ERNGS=0141 GROSS=0144 TAXBL.0147 ATAX =014A CNET .0140
C	 =015C D	 =015F /DATE=0160 INDEX=0267 I5UPP.0274 ITOT =027F
COMP =02A1 TAX =02A2 IC	 =02A3 I	 .02044 IPAGE.02A5 LINE .02A6

• INOX =02A8 ILST =01AC LAST =02AD KPLNT=02AE /CLCK=02AF IF/LL.0280
ADUES=0285 NWKMP=0286 NWKP0 . 0287 MAR =0288 NXMPF=02139 NXMPS.02BA
NCUDD=028F NCHCK=02C0 NADWH=02C1 NSTCK=02C2 NINA =02C3 NMISC.02C4

• IOTRT=02C9 IVRAT=02C A IFICA=02C111 LOCAL=02CC IUD =02CD IUA .02CE
IDED =0203 1PD .0204 ICNT =0205

91

THE CONTAINER CORP.	 022168
CHECK NO	 1
WEEK NO 1

10	 W/E 021568
NET MAX 25000.

• i CHECK CARD WITH
INPUT TOTALS
PROCESSED TOTALS

• ERROR TOTALS
THE DIFFERENCES

•
•

CLOCK NUMBER
44000.
40000.

0.
4000.

1 6
1650.
1650.

0.
0.

1050. 13900.
1050. 12700.

0. 0.
0. 1200.

II	 MAXIMUM CHECK AMOUNT MAY BE CHANGED BY SWITCH 14.
SWITCH 15 WILL CHANGE THE CHECK NO AND THE WEEK NO. SET SWITCHES
REQUESTED AND PRESS START

Section Subsections Page

35 20 10 96

// JOB
// XEQ PAY04	 3
*FILES	 101,INDX1	 102,INDX2	 t	 103tINDX3	 t	 104.INDX4	 t	 105.INDX5	 o	 106tINDX6
*FILES(25oPINFO).
*FILES(101*INDX1)0(102tINDX2),(103,INDX3),(104tINDX4)t(105tINDX5),(106tINDX6)
1022168021568	 0044000000165000010500013900
1001040000000001001000800200400 6
1002040000000000002000800300400 6
1003040000250000003000800400400 6
1005040000300002005000800600300 6
1004040000000000004000800500400 6
1006040000000000004000800500400 8
1016040000500000006001600700400 6
1107040000000002507000800800500 6
1218040000500000008000800900600 6
1347040000000003009000800100700 6
1603040000100002001000400200200 6

9

Input cards

Console Printer output

•

92

	

Section Subsections
	

Page

35
	

20
	

10
	

97

• i/ XE0 PAY04	 3
*FILE3(1.COLFP),(214VAPPio(3,MNCFP),(4,LBOFP10(51LBTFP).(61ILMCFP)e

•FILES(2511PINFO).
*FILES(101,INDX1)0(10211INDX2),(1030INDX3).(1041PINDX4),(105.1NDA5),(106,INDX6)

Test output

NUMBR

FACTORY PAYROLL

NAME	 REG HRS

THE CONTAINER CORP.

OT HRS BNS MRS REG ERN

W/E 02 - 15-68	 PAGE NO

OT	 ERN BNS ERN	 SPECIAL HOLDAY VACATION

1

SICK GROSS
40 FICA FWT LOCAL C.U. U/D U/A INS STCK MISC	 NET

1001 ROOT 8 BADEN 1 40.00 0.00 1.00 104.40 0.00	 2.61 2	 12.00 0.00 0.00 0.00 119.01
II 524 1774	 119	 0	 600 0	 276 0	 0 86.08

1002 JOHN A HORN 2 40.00 0.00 0.00 104.40 0.00	 0.00 3	 10.44 0.00 0.00 0.00 114.84
II 505 1473	 114	 0	 625 0	 412 0	 0 83.55

1003 ROBT L SNORES 3 40.00 2.50 0.00 85.60 5.35	 0.00 4	 8.56 0.00 0.00 0.00 99.51
• 438 658	 99 1000	 600 0	 1012 0	 0 61.44

1004 JOHN W CUSSES 4 40.00 0.00 0.00 104.40 0.00	 0.00 5	 10.44 0.00 0.00 0.00 114.84
• 505 833	 114	 0	 625 0	 581 200	 0 86.26

1005 JOSEPH MONTANO 5 40.00 3.00 2.00 148.80 11.73	 7.44 5	 29.76 0.00 3.00 0.00 200.73
• 883 3258	 200	 750	 0 0	 724 0	 0 142.58

1016 DONALD MILLER 6 40.00 5.00 0.00 112.00 14.00	 0.00 0.00 0.00 16.00 4.00 146.00
625 896	 146	 0	 0 0	 0 0	 0 129.33

1107 A E TAYLOR 7 40.00 0.00 2.50 104.40 0.00	 6.52 0.00 20.88 0.00 8.00 139.80
580 1898	 139	 0	 0 0	 0 0	 0 113.63

1218 DAVID A HUBBARD B 40.00 5.00 0.00 85.60 12.50	 0.00 0.00 34.24 0.00 0.00 132.34
• 582 2276	 132	 500	 600 0	 296 0	 0 88.48

1347 FRANK T DOLES 9 40.00 0.00 3.00 68.40 0.00	 5.13 1	 7.00 27.36 0.00 0.00 107.89
• 475 1030	 107	 0	 400 0	 624 0	 0 81.53

1603 AL REYNOLDS 30 40.00 1.00 2.00 148.80 4.01	 7.44 2	 6.00 0.00 0.00 0.00 166.25
ID 732 1888	 166	 0	 0 0 1142 300	 0 123.97

FST LINE TOTAL	 400.00 1066.80 16.50 47.59 10.50 29.14 84.20 82.48 19.00 12.00
S

Printer output, part 1

93

FACTORY PAYROLL	 THE CONTAINER CORP. 	 W/E 02-15-68
	

PAGE NO 2

	

111	 ..996.85

	

620	 -159.84

	

620	 -58.49

	

622	 -13.36

	

625	 -22.50

	

626	 -34.50

	

627	 0.00

	

628	 -5.00

	

0	 0.00

	

0	 -50.67

	

635	 1341.21

•

•

•

•

•

•

Section Subsections Page

35 20 10 98

Printer output, part 2

94

	

Section Subsections	 Page

35	 20	 10	 99

IBM 1130 MACHINE SETUP SHEET
PROGRAM ,	 ,	 ._
NAME:	 4/c-a/c•-.1.5frdAt9rv// 412'..94:17&P

PROGRAM	 _.	 A
NUMBER:	 ,`A 1 ' "

PROGRAM
DESCRIPTION:

APPROXIMATE
RUNNING TIME:

PRINTER

TYPE OF PAPER NO. OF COPIES CARRIAGE TAPE

...5-40,1 ,7/ 47 ,,, 4,,/ / SY.0.7,0/4.-41

DISKS

DRIVE NUMBER: 0	 1 2	 3	 4

CARTRIDGE
ID:

/Cbfew// Ak•AL...
AC	 SWITCH	 /i/Dr/e

SWITCH
SETTINGS

SWITCH	 /4 SWITCH
UP
DOWN

UP	 0-- &---	 UP
DOWN DOWN

INPUT	 5-ce■ifid-hCARDS
ofle)-744,./ch
(4,/,/ Auer;

/4 f
/6–

elk')

ii,
cAave

cha,,fie
4-7.ax,:m.,,-",

c4ec% e7a-.0-,46
e-Ae..e.A. a.,,,oe....i4 l'-',-74/14...-.7

,' 474d es.■dy e.14.. enersiber"

For ogr
/WO/71'

/

__/
WEEKLY
EMpa)YEEr:AR DS

/CONTROL
TOTALS

r X EQ PA.Y04

1// J o 5

SOURCE OF INPUT:

DISPOSITION OF OUTPUT:

/ Gifele://i/pe,741110epi A Szare-ig,•c.cre,./ PAY/e: e,,,,,,y ,,,,„ .e ,(2i...c4	 df e•	 "26:5..4 24%1.~ /:::/...c..,,,,,,,(4.5-.7‘	 /(7,1),,-,/

/.L2),;,71/1c/ ,1474.ois Ai /../e Z
?. .21.0y/s- /, Ah• 0
..,3.2)...rA yi, Stn/ :aye
4. Rey /'o// // /'SfASY t 70 l'w AO payr-o/Arec,:oel.

FOR PAUSES AND ERROR MESSAGES SEE ERROR RECOVERY SHEETS

95-

ODIOSP lllllll

I 2
:II

124
21

/IIIINIIIIII

IIIIIIOI111[

111111 lllllll

cr,
t'D

0
7

LV
0 cr

ID

01-10

CD▪ 	 CO▪
CD

IBM
tNF DESCRNHON FIELD' HEADINGS/WORD MARKS	 B Lines Per Inch

INTERNATIONAL ROSINESS MACHINES CORPORATION
PRINTER - SPACING CHART

IBM 407, 408, 409, 1403 .; 1404, 1443, and 2203 Print Span :

IBM 1403 Modals 1 P. 4

IBM 407, 408. 409, and 1403 Models 6 and 711111111111

; MM C1=11:1

M■I■MJ

IMMEN11111110111111110111IMMEINEM 	 111112111111117M11110111=113MIIIMINEINIIIMILEIIIIN
BOBEIBOUDOEUBBOODOBODUEECOMMOUOMMUDGEMBOUU UCIODUOB000 MODOOMMOODOODEMODUOMMEEDEMODOMEOCOMOODUEOUBMODEUEDDEUE0051

1E1

ILII 	
Es 	
MOO PSI1] 	KA 	 :41:; ■41: 	 I A All 'A 'AA A It 'A A '1 1111_	 ;Ai:416N Ai11,'A-1:, 	 	 M	 y. 111111 , f 11 A
CU
l 	

11:111):C4 'AL A ALIA 4O	 .4.AICAUNE'l 111,1 1 .1111MEA: .4'A.4•1.4:4:111111111i.C1.1.1:1;14 	 l'Ar.A:■ A Al 	 3;1///////////// /////LIE
l
l 	 IiCEI 	 111111111111111111 lllllllll ION lllllllllll

111111.1 I CP ■ IE 1■ MI • IjmI II •

EU 	

ICE1 	 	 AEI El
MOON. lllll 11111111B	 3J,3 	
E13

Ea 	

=MEM
GL UE

,♦AryAry1	 "Y VI. I., .71110:4'. ICA	 'A 'A ;CO

1■11111E.I1 M
En M
EC1 M

	

ED 	 MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM 11111111111111111111111O1O11111115111511111IIIISIOISIIOORIIIIIIIIIIIIIIIIMIBIOVIONOMIIIIIIII MMMMM"B!!! 	 	Ea	
MM M 	 111111111111ME:0 	

	EC] M 	 	 MM	 MMMMMM 1111111,--!

'AY/ ► bur &Ir.IN AC HT 1111
El
Ii
11

11
II

	

Section Subsections	 Page

35
	

20
	 10
	

101

VARIABLES IBM I	 1130 COMPUTING SYSTEM

SUMMARY SHEETVARIABLE

NAM .
t0
2

46c;
z

1
14

__I— te—
Is
a 0

MAX.
VALUE

MIN.
VALUE

Application/2"i yyptyz ...5-5.-37yAr, Date 9/6/67
_„„ klik..

Program Name 6-7/4e,4...4... je.4.,,,,Xe;,..2.57	 No.,,e4ya.5 Progra
c
mmer

FUNCTION OF VARIABLES

A /2 3 „ef ,of eis-tai izo'r• zero A7/a,-7c. 	 cAd-cA
2 19 3 7- 044(140(4/seal 4” -zero	 a',/,17.0ew' ‘="hec,4.

84 /1/I9/ / f .3 67)904X.Are..0; 80,,,,,- elovw:75,s-
1/4/v/i7w.5. ,e 3 .;evoil, OW g,04as A'aa''s
,g,) 22xyx

x
.xx a4(4„i /1-9/'/;7/e1Q/a/',/zadr,,,07e.i,y7 C'e-,4- " 4erzeue*I4

C/'%111X 6 7- -1,40/b00 Ai*	 ,-,,,,,d,r4„z//7, C'e,c...e .4wek....774 42/7 a ,e/e.
Z■VeI 3 0MA4f;Oc /1/e/d/770z//7/ a P /:za:i>/:,a,a/ cylec,e

.04,fi° 42/6.4 - - Co.,73/0aiye 19 a 19-7 e

1-45/Pt %is Q 400(XX. 00 Tr-waie- as-soc_ /---/°o/-/s-
GiePs'S' ,.< 3 0 XXXXXOAW Gross amoe,,,/ 6.7 ..)62';ride/o/ce.c,e.
//ozz)y ,Q 3 o x)(xx 0- 0 0 (ff-,x>/d1./a/.'s Aa4Ygy joe7y
1 X / T - - C/Sed/,-2 067 /oe9,,e,

.2- :',-7 r / /V — – L-7u/v.alg
Seq/%7,2/,7.

/ fo -ZVI
q CXec.-	 ",e.//7716,/^ z4./Ae,7 4,i.,,,iiiini dedt

•-.f,gzljg."7.b'6c7;61;,)/°'''''°/Kr5-A°41/a/
jaWC A' /

7-
/

5-874
edc

l'o,^
/"U/7

.2- /v7-- I Am ii
..z-coZ I / r gir y)Pe' 	 bye'vl'o° /6Yee 74./ey 	 7Ai	 -efse

ICU .2- / .,= XIX/A/ 0 .Z.,7a%;'/:0E/.1/5'. cre,/ 	 u/0/7 aita'ae-6,0/7
.27)gre 42 % 2:0 - - .6kci dark
I- D 1 . 2 - / 0 &XXX 03 _/-cf cec,	 17 40 /11 a e i''''

102 I / 0 XXXX 0 P? ' c/ocA ,-)6,,,vie

"Mode: I = integer, R = real, D = decimal, A = alphabetic

97

Section Subsections Page

35 20 10 102

VARIABLES IBM (1130 COMPUTING SYSTEM

SUMMARY SHEETVARIABLE

NAME •
ii,s,

12

-6
6z

0.

2 I-iliLj 0.°
IS 5
c1- °,=

MAX.
VALUE

MIN.
VALUE

Application ,,,e240.y/e z2/ 45i,.....5-r,4,,,k,	 Date Va/67
Program Name 6--,4ec 4. /4,/,,,,A.-7,5	 No./30/05-FgerAer

FUNCTION OF VARIABLES

.2-C.IC/9 I / D A/MX 0 _Z;.-2,641./z/d/S ic.1";9 1,fx

Z/JZL Z / 7- 7 -z-;y7k-z7/e-s 47Z-,--/4-4;,-, /2 e-'11 ,;-?./G

_ZIA/5 Z / C XX 0 Z/24//i/a4/..s= ,;754,/ra/26.e ek//ac-74ziw

?L ST r / T 250 .50 Las/ fr.eco,-4,/.9,/,-,6e,-, ,;9,a, ' X/e
TA,Z5C I// C VW 0 1.:2d/17/wZ.5 riv/Se. /,t='e/C7'/ 7i7 5

TA/2X 2 I r 466 0/ Z/2, li4 A-,a,),I,r/-,.,p,/,,...,,‘,7,2. ,L1.
X/t/IT ..2- 0 va.xx 0 (/rile,„, //-7/7,,,,6,,, 76.7e,„

f-A/.1 2- / T 250 f /46-6./w/fiar6,,.-/;2 /dexes7, ‘ e9,1104-e- /4-
1,v2 x / 4/ – – Eiaii/d4v,74 /0 1/1/.i
ZA/..3 1 / A/ - - E9a/a/eF,7/ 14:1i1/1
1Nd I / 4/ - - _eii3a/&°,27 ‘ 7o _r/v_i

.z-A/J Z / A/ - - z-f&J/,/9/).7 1 /o ,f/v.1

1 /1/a Z / A/ - - 11/4/Z-', 4 AZ-47.1
ZO7/e7" Z / T s:00 Dve,://iyie,/,,,,,a7le

2.4e-44.5. Szb/a5 d/Lat".0M//4'poeel /).g cyc4,.Z. '0 I / D 2 0
7/04/7-- r / T 2 / .5-e/y4,50,4‘.-,,ednApziwasesk,4een ,-,i
.2--57- Z / 92//'i 0 7iv4,/,/a/. sifve..4 d6w/ae.71.%.,)
.2:?//7.4? _I /3 o x0.4(>0 s t/h9/e/w/i/la/ ..5.-/-,e ray
17:07- 2" // 7- /723 /1&/7/1 afiiii,/. 74./aAsk, 710, 4;pietd/kfr f'r.
2-(1,4	 ..2" / C Sao 4 ' . A a // .///, '0, df ‘ 47 r?P" de fe '1G1%/7

'Mode: I = integer, R = real, D = decimal, A = alphabetic

98

	

Section Subsections
	

Page

35
	

20
	

10
	

103

VARIABLES IBM I	 1130 COMPUTING SYSTEM

SUMMARY SHEETVARIABLE

NAME .
0
2

z,6
z

0_2 '-LIJ D1--	 a.
I-.- ES
0- °

MAX.
VALUE

MIN.
VALUE

Application p yea//z 5/5724-4,	 Date 9M/62

Program Name e.--4,e,4 irk,-,/,;-,,g.	 No/90/dC fgi/ar.;ter

FUNCTION OF VARIABLES

_la° I / D /50 # "Ads//d/ an/o.> Wye. 5 /4v/eio-ri

/1/g 1T .I / D 4X1 ilerg 47 y■-a4
.7-11/ZZA' I / 7- -5- I if4;:eA .d.7.,-z,..,./.

ZR/1/A f / 4/ - - zpfoviv/e/i/i6 zeZ
1/ 1 / a now if .%•:;<,e.-/r-gge/4,-AdwJ.,-- 4.*?:/464 . /$/:,?,
12 .1" / D AVM .a/2vee/.71 a/er///;72e hwts k/o.,//611/6"1,47,97

th/w/i/i.ozzs iars - ,/,,,/7/2.4'1Z0 , 7,-,,/r3 z / a AV(#
Z-4' i- / a Mx Ø 4Q1/407//L7u/.0.7.euyyn-fir tro/-47.4vVe 6,-,,,,

ir./..7/griley,,,i),7 ,e4,..-//4yz 7-/ol-fi/taX/e 7,-.4.71p 	 .I / A'XXXX 0
_.16 I / D MA Ø /g/7/grid#/iy._c. etplii/z9s. to 1-_->K/24h/e iir,p,„,
27 1 / 0 MO(0` G-iiI/e/71.,/k7.-.,�7,--eit7=95 - tehd.td,-/tritzbi--_ ,4,i-il
le I. / 7 xXpo(.0,..9i/e..-/Apd.o/y/dy /off'- •74.64.- 4,-.F3

6'./ye././..s.-5-A4t.a3 7..-vii/4:14' 144e/w.i- I / e2 am 0
Jv1 7&:;" of/ 7 T am o ":;/-7 ,/avedgrass-
jd&7-7 p _.4-- o vox - ,4;" 4.-d/ea/vd6-.ovirdy

Fr 4.0:a/X,:ifr,s5/,fa/f 4/ 7 D PgAili -
.11/4a 4/6--7)0000(() ,?... wove*, ' vde:dhr;
//I/Q/7 1 / 1 g 0 cc. 814"
/<D 1/ / a .5- 1 .4e,‘/;,/ e40/1/2/.2 fs
L457- I / 7- XXX 0 zo.5-7/".406o.-.4.7,,a7).44

* Mode: I = integer, R = real, D = decimal, A = alphabetic

99

Section ' Subsections Page

35 20 10 104

VARIABLES IBM I	 1130 COMPUTING SYSTEM

SUMMARY SHEETVARIABLE

NAME .
o
02

137

*8c;z

a.
2 I-
Lu mt a.
Di-
LI-

MAX.

VALUE
MIN.
VALUE

Application /0/4/yea/ _5-s/.5744"/W	 Date ,4SA7
Program Name 6.--j,,,, .44/4:,	 No.E.405 Pitigeer

FUNCTION OF VARIABLES

Le, .1 A/ - - tifedithwil 137 fea

In' Z/4/ - - 4vakilevio' * /e2'
lie z / 4/ - rea/ko/emi 4 TeDI
&Kw/ 1 / 0 AV 0(A-a/ /axzzerizezfr ee, 0, Body'saezzhe I / o XXVX 0
ill, z / 4a 2 / 0,;.h.`,/ do/as- (/-.5-..:9946), (z-	 '/''
14,15. il/ 7 T - - i-/ rixis:‘	 sf.)	 .
x1,45,e2 41/ 7 T - - E-7,7 /w.a (zer, sioa,-,5-..5-)
iiaw- ,z- / - - t-ed/iwzo.774 /0 Zz
4/42g/,9 I / o xxxx 51 ii.xxo;,74,/ ‘„,;01.0/4, d47.ago/
44/Pie & 9 4a - - Tito/gee .9.4we-
/1/e/./ae r / O)O(Y)O(0 ad• 	//z/x6e,".se,14,. 7/-is e,/,/,4,3we
,(/6' T /ZO XXXX G/.-40;/an4i/7 a/ev/z/4-1/7.
4/cf/D Z 0 ,YXX•X iiin/1# cliiaai/C/n/e a4/1,GXg5K;7d/;fe.V.

legs 9/401e/ek4f/4/4;c4da/i5 i / 40)(a)(
/1/0it/e	 92 3 1,-D	 - - /0,' 7,,r/;,. , a/i/e
/1/ 7	 4/ 7 0 lizAvat/ ,,aa e-,,/,o,	 e'/

4/Er I I/ 7 0 lale - E;%'/v/ gi.1
A/572	 /I/ 7 0 OM(- . E. aii.e., geii
Or i 4/ 7 MOW ° 11,,g, ire/

* Mode: I = integer, R = real, D = decimal, A = alphabetic

100

	

Section Subsections	 Page

35	 20	 10	 105

VARIABLES IBM I	 1130 COMPUTING SYSTEM
SUMMARY SHEETVARIABLE

NAME .Lc:LI/
2
':'.6ci
z

0.

1-it ' F:
0 n
c‘. 0

MAX.
VALUE

MIN.
VALUE

Application)„,0	 ,	 Date	 A7/1)ZZ .556-7Z7r	 .
Program Name 6.----jecz ii,/,,,,,,,,	 No/0;75 Programmer

FUNCTION OF VARIABLES

4//4/5 Z / 40 X)(11 I Acura/lee ./6-1.0/7
x/Wor 2" / o xxar , 0:s‘-e//,/,z/5 de:a1J6--h;e2,x,--
/f/40//- z / 7- 0 1 ew/ fleirnder-
////0917 2. / 1549 ,3,,, 4 2.5- e/7/Lae/a4y ,-,,i,
4/.07-," Z / 17 400(ic, i7e/,97de.,- 4y- .--glo..aoi,a,7),/5:99

5&A/--&-4,,,,-)z--,,,a/e,-.0_,z,-‘,‘-,e,,,..)
..S;c/W..5,:-Ge..7/// .lu,6Pv
2217:;),51- LILIVV1,1-CZerr:;;,.4f,,,(8,-.4,:tweZn
j-/o,e, .44,,//-4;

A/sex r / 0 ,y /
,V551 t 1 3

/
1)Veidays94/1s

5 i/1/575. -1
Wsre:e .r / /,-D xxxX X
4&7-',<,0 Z / 0)(x.XX A(/14.4/j. 	,546,	 i64.,-/i,?s-
Ak/,.9 _Z: / Z;DOXX C/i7/ice 4€7,0o/ ,/,,,,,,e,c/-;9,-7
/(/l//11 2- / 2-D)(exx /,; --/0,‘-,. ,,,..,,,,,,,,,
eit////o, Z/ o xx 0 /(71&07, oiteveeks e"o/oye,

1/14/e1Z) .2 I 0 XA/ /fi/ri,,,777‘e.e,',--/--s--/o4/"4/
A;:,,&./ ..7-r-e-i-r74/i2,2,5-/a/WA- 2- / 4-(2 /7 i'l

/f/X/M,a..0 1". / 0 /7 / SI-de,ex,.-/-,-?,42/4".7r25.
Dr-Z474/R 3 0)000(X 00(0(Qve.-Vi/rie e..0.-.•-7,:19s
a- /L'W /e 3 0 OM00V L5--/o.cv,/ ear--7•y.5.
aTi-he5 .940XXxXAW

o X0XXX AW
Dreph;i7e hoary
1/7;g2g/-?!.1:4/.3-/75=et:'2e5, CaS/5.-g2rfi)ay rael7:n

* Mode: I = integer, R = real, D = decimal, A = alphabetic

101

Section Subsections Page

35 20 I	 10 106

VARIABLES IBM I	 1130 COMPUTING SYSTEM

SUMMARY SHEETVARIABLE

NAME •
Lai
o
2

0
"E
0

4-0
ci
z

0-
2 I-Lu n
i– –--- Enl– 2–
O. V
E

MAX.
VALUE

MIN.
VALUE

A	 Date 9/6 7pplication Aixeozz ,5x5-7--eAe)6
Ali cProgram Name 6---"Aec•Z if /./1/7. 1.9 No. /J 	 Programmer

FUNCTION OF VARIABLES

/iric:P/V i'V 3 AUKx 11/ Perk tod,w/;ys
COWies P 3 40xrxxx4:10("eep/of, A,e/.:5-
5, ,f s o xv(0/19(,_5-//40,4.9
74 2 0 Algioty 40 76,--/a/yre.s.�- iy co,77p.ii/
TAX Z / 0 Km(1, or0 ,-,,,-aig,a//e/10,40/' 	 7°*,,r

7074/ .e'll 6y 6,,,-)py723 W 3 0 VW 9 sli
i‘,.s /eJ T Wow gi.di 774.a/ 9/-Toss
river if3 r vegooexoo 72'i7/ /s

70725x/ ii 3 1 010(4 410(Jox/crioars44/Ao./7 5,0a/re o/c,
Orhodrx 44/ /1.o../7 avapeew.6c.Tre,7-- R 3 Z)0000. OW

7--‘i-/e6 R 3 .Z. 4004-i-421 44 kz/45- 44/Aer,7 -1v,/v, lae.
707-5.0 .Q g 1 MX 40(,)010/ ..,<A0 4/gdr/,k7f5 / .26./ ii-o/27...seazre e/ec.
/A6' if i o xlia)(glo('hee-,,//,,yay
yz,v/ /9/ 7 T 400oI0ff - /gore/Eros /To
YINe 4/ 7- woo - /14w, , Aa/e/I0/ 1x WV
)0a7 ll 1/ 7 max - z,--9,;./0,,,/5,-4,..5s Y7-..o
&/7--2 /v/ 4, o woo(- .60/,--,ae,,,-,,/ 7. ,-x y7-..

redk'Z;z:/adt.5/./(73-1CS,Va"-Irrsf(24)17-51(2)„Eg
C8) /ac. lax, x, 9)reg• Aoars,Go) 07- 404/,15,04 kvnir hot"
/2) Re .erws 03) 0 Terws tAt.) 6i9/1a5 erv2c.

YrD ,. Vg‘vocxx 1. 46

*Mode: I = integer, R = real, D = decimal, A = alphabetic

102

Write
Control
Totals

Write Update
to Plant
Record

Initialize
Variables

YesRead Plant No.
Date and
Control
Totals

Last Employee

No

Are
cc 80

and Plant
No. Valid

Write Any
Special
Checks

Calculate
Control
Totals

Yes

to
Update

to Employee
Record

Read the
Plant Info,

Record

Write
Control

Information

Read
Check

Number
\Write Second

Line of
Check

\Write Third/
Line of
Check

Read Max
Check
Amt.

\ Read an
Employee

Record
from
Disk

\Write First/
Line of
Check

	

Section Subsections
	

Page

35
	

20
	

10
	

107

103

11	 // FOR
* 10CSICARD,TYPEWRITER.KEYBOARD,1132 PRINTER.DI5KA
*LIST ALL

40	 ** PAY05 PROGRAM
* NAME PAY05
* ONE WORD INTEGERS

40	 * EXTENDED PRI:1510N
C 	 JOB NAME	 -- PAYROLL SYSTEM	 CHECK WRITING
C 	 JOB NUMBER	 PAY05

C
ID C 	
	 PROGRAMMER	 -- C.R.KLICK

C 	 DATE CODED	 01/20/68
C 	 DATE UPDATED --
C
C 	 	 FILE	 FILE RECORD NO. OF	 RECORDS PAY05

40	 C 	 	 NAME	 NUMBER LENGTH RECORDS PER SECTORPAY05
C 	 INPUT FILES --. 1. COLFP	 1	 160	 250	 2	 PAY05
C 	 	 2. WVAFP	 2	 160	 90	 2	 PAY05

IP	 C 	 	 3. MNCFP	 3	 160	 200	 2	 PAY05
C 	 	 4. LBOFP	 4	 160	 50	 2	 PAY05
C 	 	 5. LBTFP	 5	 160	 150	 2	 PAY05

II	 C 	 	 6. LMCFP	 6	 160	 30	 2	 PAY05
C 	 	 7. PINFO	 25	 106	 6	 3	 PAY05
C 	 	 8. INDX1	 101	 1	 250	 320	 PAY05

II	 C 	 	 9. INDX2	 102	 1	 90	 320	 PAY05
C 	 	 10. INDX3	 103	 1	 200	 320	 PAY05
C 	 	 11. INDX4	 104	 1	 50	 320	 PAY05

ID	 C 	 	 12. INDX5	 105	 1	 150	 320	 PAY05
C 	 	 13. INDX6	 106	 1	 30	 320	 PAY05
C 	 	 PAY05

• C 	 OUTPUT FILES -- 1. COLFP	 1	 160	 250	 2	 PAY05
C 	 	 2. WVAFP	 2	 160	 90	 2	 PAY05
C 	 	 3. MNCFP	 3	 160	 200	 2	 PAY05

• C 	 	 4. LBOFP	 4	 160	 50	 2	 PAY05
C 	 	 5. LBTFP	 5	 160	 150	 2	 PAY05
C 	 	 6. LMCFP	 6	 160	 30	 2	 PAY05

40	 C 	 	 7. PINFO	 25	 106	 6	 3	 PAY05
C 	 PAY05
C 	 	 PAY05

40	 C 	 ALLOCATE ARRAY STORAGE 	 PAY05
C 	 	 PAY05

INTEGER COMPI161. TAX. YIN1(7), YIN2(6), YOUT1(7). YOUT2(6) 	 PAY05

40	 DIMENSION FIBRE18/11 IDATE(3). ISUPP(13). ITOT(11), JGRO517). 	 PAY05
1	 JOUT115/, JOUT2(7), JVACA(51, MASK(7), MASK217/, 	 PAY05
2	 NAME(9), NDWK(3), NET017/11 NET1I7I. NET2(7). NET4(7). 	 PAY05

41	 3	 N55ANI3/. QRTD(6), YTD(14)	 PAY05
C 	 	 PAY05
C 	 DEFINE FILES FOR THIS PROGRAM AS DESCRIBED ABOVE. AND EQUIVALENCEPAY05

IP	 C 	 THE VARIABLES FOR THE NEXT RECORD NUMBER. 	 PAY05
C 	 	 PAY05

DEFINE FILE	 1(25011160.U.1C00. 2190,1600UPIWVA/t 	 PAY05•

PAY05
PAY05
PAY05
PAY05
PAY05
PAY05
PAY05
PAY05
PAY05
PAY05
PAY05
PAY05
PAY05
PAY05

Section Subsections Page

35 20 10 108

104

	

Section Subsections
	

Page

35
	

20
	

10
	

109

PAY05 PROGRAM
	

PAGE 02

1	 3(200,160,U,MUNC). 4(50.160,U,LB0), 	 PAY05

• 2	 (150,160,U,LBT). 6130,160,U,LMC), 25(6,106,U,IC), PAY05
3	 101(250.1.UtIN1). 102(90,1oUrIN2). 103(20001.U,IN3),PAY05
4	 104(50,1,U.IN4), 105(150,10U,IN5). 106(30.1,U►IN6) 	 PAY05

• EQUIVALENCE (ICOL,IWVA,MUNC,LBO.LBT,LMC),	 PAY05
1	 (IN1IIN2tIN3tIN4IpIN5oIN61 	 PAY05

C 	 PAY05

• C 	 	 PAY05
C 	 INITIALIZE VARIABLES	 PAY05
C 	 	 PAY05

• DO 4 1=1.7	 PAY05
MASK2(I)=16448	 PAY05

4 MASK(I)=16448	 PAY05

• MASK2(7)=■4032	 PAY05
MASK(4)=23360	 PAY05
MASK(5)=19264	 PAY05

• ICCL.1	 PAY05
IN1=1	 PAY05
TA=0.	 PAY05

• TB=0.	 PAY05
NRITE=0	 PAY05

C 	 PAY05

It	 C 	 	 PAY05
C 	 READ PLANT NO., DATE, AND CONTROL TOTALS, AND VALIDATE CC 80 AND PAY05
C 	 THE PLANT NUMBER.	 PAY05

• C 	 	 PAY05
99999 READ(2,1) NOPLT. MATE, NDWK, TOTRG, TOTOT, TOTBN, TOTSP, KARD 	 PAY05

1 FORMAT(I1o6A2,4F7.0,38X,Il)	 PAY05
• C 	 	 PAY05
	 VALIDATE KARD AND NOPLT 	 PAY05
C 	 IF VALID	 — 60	 PAY05

• C 	 IF INVALID — 55	 PAY05
C 	 	 PAY05

IF(KARD) 55,51.55	 PAY05

• 51 IF(NOPLT) 55.55.52 	 PAY05
52 IF(NOPLT — 6) 60,60.55 	 PAY05

C 	 	 PAY05
• 55 WRITE(1,2)	 PAY05

2 FORMAT('CHECK CC 1 AND CC80 ON FIRST CARD') 	 PAY05
PAUSE 1	 PAY05

• GO TO 99999

	

	 PAY05
PAY05

C 	 	 PAY05

• C 	 READ THE PLANT INFORMATION RECORD FROM DISK.	 PAY05
C

	

	 	 PAY05
60 READ(25'NOPLT) COMP. ICHCK, 'WEEK, FIBRE, ITOT, CKMAX, TGRS, TNET,PAY05

• 1	 ICNT	 PAY05

C 	 	 PAY05
C 	 WRITE THE PLANT INFORMATION FOR CONTROL PURPOSES AND ACCEPT ANY PAY05

105

C 	 CHANGES TO IT THRU DATA SWITCH SETTINGS.	 PAY05• C 	 	 PAY05

62 WRITE(103) COMP. !DATE+ ICHCK. IWEEKt NDWKt CKMAX	 PAY05

3	 FORMAT(/16A2' '3A2/'CHECK NO 'I5/'WEEK NO 'IlPW/E '1A2/t 'CHECK PAY05

•
1MAX'tP8.0/0MAXIMUM CHECK AMOUNT MAY BE CHANGED BY SWITCH 14.'/ 'PAY05
2SWITCH 15 WILL CHANGE THE CHECK NUMBER'/'SET SWITCHES REQUESTED ANPAY05
3D PRESS START')	 PAY05

• PAUSE 1111	 PAY05

BR=WHOLE(CKMAX + (CKMAX / ABS(CKMAX)) * 0.5) / 100. 	 PAY05

CALL DATSW(15,I)	 PAY05

• GO TO (7001).1	 PAY05

7C WRITE(1.21)	 PAY05

21 FORMAWENTER CHECK NO ■ FIVE DIGITS') PAY05
PAY05
PAY05
PAY05
PAY05
PAY05
PAY05
PAY05
PAY05
PAY05
PAY05
PAY05
PAY05
PAY05
PAY05
PAY05
PAY05
PAY05
PAY05
PAY05
PAY05
PAY05
PAY05
PAY05
PAY05
PAY05
PAY05
	 PAY05
PAY05

THE PAID INDICATOR TO PAY05
PAY05

83 READCINDMILST) LAST
ICHCK=ICHCK ■ 1

870 DO 700 I=1.LAST
READ(NOPLT'I) NUM. NAME, NSSAN► NSTAS. NDUES. NWKMPt NWKPD, MAR►

1	 NXMPF. NXMPS. NSEX► NRATEt YTD. GRID. LYRHR. NCU. NCUDD.

•

C.

41
C 	 READ AN EMPLOYEE RECORD FROM DISK. AND USE
C 	 DECIDE IF A CHECK SHOULD BE WRITTEN.

• READ(61122) ICHCK
22 FORMAT(15)

GO TO 62
71 CALL DATSW(140I)

GO TO (7205)11
72 WRITE(1123)

• 23 FORMAWENTER MAXIMUM
READ(6,24) CKMAX

24 FORMAT(F5.0)
GO TO 62

COMPLETE VARIABLE IN

75 INDX=NOPLT + 100
GO TO (7607,7809080

76 ILST=25(
GO TO 83

77 ILST=90

• GO TO 83
78 ILST=200

GO TO 83

• 79 ILST=50
GO TO 83

80 ILST=150

• GO TO 83
81 ILST=30

CHECK AMOUNT ■ FIVE DIGITS')

ITIALIZATION

1181).NOPLT

C
C

•

•

Section Subsections Page

35 20 10 110

PAY05 PROGRAM	 PAGE 03

106

2	 NCHCK. NADWH, NSTCK, NINS, NMISC. NUA, NSTKD. ISUPP, INIT.	 PAY05

II	 3	 IPD. 'FILL, GROSS. IVRAT. 10TRT, RGHRSt OTHRS, BNHRS. RGERN. PAY05

4	 OTERN. BNERN, OTHER, KO. HCLDY. VACA. SICK. CNET, IFICA, TAX, PAY05

5	 LOCAL, ICU, IUA, IUD. IINS. ISTCK. IMISC 	 PAY05
• C 	 	 PAY05

IF(IPG - 1) 700,505,860	 PAY05

860 IF(NRITE .. NUM) 700,875.700	 PAY05

875 WRITE(1,25)	 PAY05

25 FORMAT('ENTER CLOCK NO.')	 PAY05

READ(6,26) NRITE	 PAY05

• 26 FORMAT(141	 PAY05

GO TO 500	 PAY05

C 	 PAY05

II	 C 	 	 PAY05

C 	 CALCULATE CONTROLS 	 PAY05

C 	 	 PAY05

• 505 TA=TA + GROSS	 PAY05

TB=TB + CNET	 PAY05

500 IPD•2	 PAY05

• ICHCK=ICHCK + 1	 PAY05

NCHCK.ICHCK	 PAY05

C 	 PAY05

II	 C 	 	 PAY05

C 	 WRITE UPDATED EMPLOYEE RECORD BACK TO DISK.	 PAY05

C 	 CHECK FOR DEDUCTIONS AND MARITAL STATUS	 PAY05

II	 C 	 	 PAY05
WRITE(NOPLT'I) NUM, NAME, NSSAN, NSTAS, NOUES, NWKMP, NWKPD, MAR. PAY05

1	 NXMPF, NXMPSt NSEX. NRATE, YID. ORTD, LYRHR, NCU. NCUDDil	 PAY05

• 2	 NCHCK, NADWH, NSTCK. NINS. NMISC, NUA. NSTKD, ISUPP. INIT. 	 PAY05

3	 IPD. IFILL, GROSS, IVRAT. IOTRT, RGHRS, OTHRS, BNHRS. RGERN, PAY05

4	 OTERN. 8NERN, OTHER, KO, MOLDY, VACA. SICK. CNET. IFICA. TAX, PAY05

• 5	 LOCAL. ICU, IUA, IUD. IINS, ISTCK. IMISC 	 PAY05

C 	 	 PAY05

IF(IFILL) 550,550.510 	 PAY05

• 510 WRITE(1,20) :FILL. NUM	 PAY05

20 FORMAT('DEDUCTION NO 'Il' NOT MADE FOR '14)	 PAY05

550 IF(MAR .. 1) 5.10.5	 PAY05

II	 10 MAR.-7616	 PAY05

GO TO 15	 PAY05

5 MAR=-11200	 PAY05

II	 C 	 - - -	 	 PAY05
PAY05C 	

C	 WRITE FIRST LINE OF CHECK AND PUT TOGETHER SECOND LINE OF CHECK. PAY05

II	 C 	 	 PAY05

15 WRITE(3,5000) NUM. NDWK, NAME, NSSAN, MAR. NXMPF. NRATE. IOTRT. 	 PAY05

1	 IVRAT. BR	 PAY05

• 5000 FORMAT(3H1	 t 14,1X,3A2,3X.9A2,1X.13,12.14.1X,A1.12.313 , 50X .F6 .2)	PAY05

CALL DATSW)15,IPNT)	 PAY05

GO TO (90.91),IPNT	 PAY05

•

	

Section Subsections
	

Page

35
	

20
	

10
	

111

PAY05 PROGRAM
	 PAGE 04

107

PAY05

• C 	 	 PAY05

91 11=RGHRS / 10. + 0.05	 PAY05
12=0THRS / 10. + 0.05	 PAY05

• I3=BNHRS / 10. + 0.05	 PAY05

14 = RGERN	 PAY05
15=0TERN	 PAY05

• 16=BNERN	 PAY05
17=0THER	 PAY05
I8=HOLDY	 PAY05

• 19=SICK	 PAY05
CALL PUT(JVACA01.5.VACA * 10.115..1/	 PAY05
CALL PUT(JGR05.1.7.GROSS * 10..5.011 	 PAY05

• CALL MO 1)MASK2,307,JOUT1 1111	 PAY05
CALL MOVE(MASK2.1.7,JOUT2,11	 PAY05

CALL EDIT(JVACA,1,511JOUT1.1.5)	 PAY05

• CALL EDIT(JGROSt1,71-1002.107)	 PAY05

c 	 - - - - - - - - - - - - ---------------------PAY05
C 	 	 PAY05

• C 	 WRITE SECOND LINE OF CHECK AND PUT TOGETHER THIRD LINE OF CHECK. PAY05
C 	 	 PAY05

WRITE(3.5001) 110 12, 13. 14. 15. 16. 17. KO. 18. JOUT1, 19.	 PAY05

• 1	 JOUT2, NAME, IDATE. ICHCK	 PAY05
5001 FORMAT(".314,215,1X.215.2X0A1,14.5A1.15,7A1,8X,9A2.BA,3(A2,1X1, PAY05

1	 14)(0151	 PAY05

• C 	 	 PAY05
CALL DATSW(15,IPNT)	 PAY05
GO TO 192,93),IPNT	 PAY05

• 92 PAUSE 3	 PAY05
C 	 	 PAY05

93 CALL PUTINET4.1.70CNET * 10..5..1)	 PAY05
• CALL MOVE(MASK2.1.701E71,1)	 PAY05

C	 PAY05
CALL MOVE(MASK211.71,NET2111) 	 PAY05

• CALL MOVE1MASK.1.71INET0,11	 PAY05
CALL EDIT(NET4.1,7oNET1.1.7)	 PAY05
CALL EDIT(NET4.1.7.NET2.1.7)	 PAY05

• CALL EDIT(NET40,70NETO.1,71	 PAY05
c 	 - - - - - - - - - - - ----------------------PAY05
C 	 	 PAY05

• C 	 WRITE THIRD LINE OF CHECK AND PUT TOGETHER FOURTH LINE OF CHECK. PAY05
C 	 	 PAY05

WRITE(3.5002) IFICA, TAX, LOCAL. ICU, IUD. IUA0 1INS. !SICK, 	 PAY05
• 1	 'MISC. NET1. NET2, NETO	 PAY05

5002 FORMAT(' 1 .2(14,15)1,314,4X.215.6X0A1,19X115A1110X02A1020X17A1/ 	 PAY05
C 	 	 PAY05

• CALL DATSW(15,IPNT)	 PAY05
GO TO (94,95),IPNT	 PAY05

94 PAUSE 4	 PAY05•

90 PAUSE 2

Section Subsections Page

35 20 10 112

PAY05 PROGRAM	 PAGE 05

108

Section Subsections Page

35 20	 I 10 113

PAY05 PROGRAM
	

PAGE 06

C••••••••-••	 PAY05

ID	 95 CALL PUT(YIN1.1.7.YTD11) * 10..5..11	 PAY05
CALL PUT(YIN2.106,YTD(3) • 10..5..1)	 PAY05
CALL MOVE(MASK2.1.71YOUT1.1) 	 PAY05

• CALL MOVE(MASK202,71)YOUT2.1) 	 PAY05
CALL EDIT(YIN1(11,7,YOUT1,1117, 	 PAY05
CALL EDIT(YIN2.196.YOUT2.1.61	 PAY05

• ID1=YTD(2)	 PAY05
ID2*YTD(8)	 PAY05

C 	 PAY05

• C•••••••••	 PAY05
C 	 WRITE FOURTH LINE OF CHECK AND GO BACK FOR ANOTHER EMPLOYEE.	 PAY05

C--.*-	 PAY05

ID	 WRITE(3,5000 YOUT1. YOUT2r ral, 102	 PAY05
5004 FORMAT(' '.13A1.215) 	 PAY05

C 	 	 PAY05

• CALL DATSW(15,IPNT)	 PAY05
GO TO (96.700).IPNT 	 PAY05

96 PAUSE S	 PAY05

• c	 	 PAY05

C•••■••- GO BACK	 PAY05

C•••••••••-	 PAY05

• 700 CONTINUE	 PAY05

C-`•-••• 	 PAY05

C"....	 PAY05• C----- WRITE 44Y SPECIAL CHECKS. SIGNAL THIS CONDITION WITH DATA SWITCHPAY05
C 	 ZERO.	 PAY05

C 	 	 PAY05

• CALL DATSW(0.1)	 PAY05
GO TO (850,855).1	 PAY05

850 WRITE(1.25)	 PAY05

IV	 READI6,26) NRITE	 PAY05

GO TO 870	 PAY05

C 	 - - ----- • 	 PAY05

• C--••••	 PAY05

C•-■.-... WRITE CONTROL TOTALS 	 PAY05

C -.-...-	 PAY05

• 855 ICNT ■ ICNT ••• 1	 PAY05

IF(ICHCK	 ICNT) 8000801.800	 PAY05

800 WRITE(1.100) ICNT, ICHCK 	 PAY05

• 100 FORMAT('REGISTER CHECK NO 'IS' DOES NOT AGREE WITH THIS RUN CHECK PAY05
1NO '15)	 PAY05

GO TO 802	 PAY05

• 801 WRITE(1.101)	 PAY05

101 FORMAT('CHECK NUMBERS AGREE')	 PAY05

802 A*TGRS - TA	 PAY05

ID	 BmTNET - TB	 PAY05
WRITE(1.102) TGRS. TNET, TA. TB. A. 8	 PAY05

102 FORMAT(I REGISTER TOTALS 1 2(3X.F9.01/ . CHECK TOTALS	 '2(3X.F9.0)/	 PAY05

109

• C
1	 'DIFFERENCES	 '213X.F9.0,/ PAY05

PAY05
PAYO5

C 	 WRITE UPDATED PLANT RECORD TO DISK 	 PAY05
• C 	 	 PAY05

IWEEK.IWEEK	 1	 PAY05
WR1TE(25'NOPLT) COMP, ICHCK, IWEEKII FIBRE, ITOT. CKMAX 	 PAY05

• - - - -	 -	 -	 ------------- pAy05
C 	 	 PAY05
STOP PAY05

PAY05
PAY05

C 	 PAY05
PAY05

VARIABLE ALLOCATIONS
ICOL .0058 IWVA •0058 MUNC .0058 LBO =0058 LBT .0058 LMC .005B INS .005C IN2 .005C IN3 .005C IN4 .005C
1145 •005C IN6 •005C FIBRE.0072 ORTD .0084 YTD •00AE TA 	 =00E41 TB	 •0084 TOTRG.0087 70707.008A TOT8S•00BD
TOTSP.00C0 CKMAX.00C3 TORS •0006 TNET •00C9 BR 	 .00CC GROSS•00CF RGHRS.00D2 OTHRS..00D5 BNHRS-0008 RGER10.0008
OTERN.00DE BNERN-00E1 OTHER.00E4 HOLDY.00E7 VACA .00EA SICK .00ED CNET .00F0 A .00F3 B .00F6 1DATE•OUFE
ISUPP.0108 ITOT .0116 JGROS.0110 JOUT1.0122 J0UT2.0129 JVACA.012E MASK .0135 MASK2.013C NAME .0145 NOWK .0148
NETO .014F NET1 .0156 NET2 •0150 NET4 =0164 NSSAN-0167 COMP .0177 TAX •0178 YIN1 .017F Y1N2 .0185 YOUT1.018C
YOUT2=0192 IC	 •0193 I	 .0194 NRITE.0195 NOPLT.0196 KARD .0197 101CK.0198 IWEEK-0199 ICNT •019A 1NDX •0198

•

•
STATEMENT ALLOCATIONS

1	 .01FC 2	 •0204 3	 •0217 21	 •0283 22	 .0293 23	 .0295 24	 .1248 25	 .02AD
5000 =02CC 5001 .02E2 5002 •02FE 5004 •0316 100 .0310 101 .033F 102 •034B 4 	 •0397
52	 •03E9 55	 .03EF 60	 .03F7 62	 .040F 70	 .0440 71	 •044B 72	 .0455 75	 •0460
78	 .047C 79	 .0482 80	 .0488 81	 .048E 83	 .0492 870 •0490 860 •0519 875 •051F

• 510 .0589 550 .05C1 10	 .05C7 5	 •05CE 15	 =0503 90	 .05F8 91	 .05FA 92	 •0690
95	 .0705 96	 =0769 700 .0768 850 .0770 855 .0788 800 .0794 801 .079E 802 •0742

0 FEATURES SUPP(iTED
ONE WORD INTEGERS
EXTENDED PRECISION

• IOCS

CALLED SUBPROGRAMS
• WHOLE	 EABS	 DATSW	 PUT	 MOVE	 EDIT	 EADD	 ESUB	 EMPY	 EDIV	 ELD	 ELDX	 ESTO	 EDVR	 IFIX

TYPEZ	 SRED	 SWRT	 SCOMP	 SFIO	 SIOA1	 SIOF	 SIOI	 SUBSC	 PAUSE	 CAROL	 PRNTZ	 SDFIO	 SORED	 SOSRT
SDCOM	 SDAI	 SDAF	 SDF	 SDI

REAL CONSTANTS

	

.000000000E 00.0100	 .500000000E 00.0103	 .100000000E 03.010/6	 .100000000E 02.0109	 .500000000E-01.010C

• .500000000E 01.01DF

• INTEGER CONSTANTS
1.01E2	 71.01E3 16448.01E4 	 4032.01E5 23360=01E6 19264=01E7 	 0=01E8	 2.01E9	 6.01EA	 25.4)1E8

1111.01E(15.01ED	 14.01EE	 100.01EF	 250.01F0	 90.01F1	 200-01F2	 50.01F3	 150.01F4	 30-01F5
7616.01F6 11200•01F7	 3•01F8	 5.01F9	 0.C1FA	 4369.01FB

CORE REQUIREMENTS FOR PAY050	 COMMON	 0 VARIABLES	 464 PROGRAM	 1544

END OF COMPILATION•

• c	 CALL EXIT

• END

ILST .019C LAST •0190 NUM .019E NSTAS•019F NOUES.01A0 NWKMP.01A1 NWKPD.01A2 MAR .01A3 NXMPF-01A4 NXMPS•01A5
NSEX .01A6 NRATE.01A7 LYRH11.01A8 NCU .01A9 NCUDD.01AA NCHCK.01AB NADWH.01AC NSTCK.01AD NINS 	 NMISC.01AF
NUA .0180 NSTKD.0181 1511 .0182 IPD .0183 IFILL.01134 IVRAT=0185 10/R1. .0186 KO	 .0187 IFICA.01B8 LOCAL.0189
ICU .018A IUA .01118 IUD .01BC IINS .0180 ISTCK=018E IMISC-01BF IPNT .01C0 11 	 .01C1
14	 .01C4 15	 .0105 16	 .0106 17	 .01C7 18	 .01C8 19	 .01C9 101 •01CA 102 •01C8

12 .0102 13 •01C3

26 .02B7 20 •0289
99999.03CC 51 .03E5
76 -0470 77 -0476
505 .052A 50U .0536
93 •069F 94 .0703

Section Subsections Page

35 20 10 114

PAY05 PROGRAI	 PAGE 07

110

	

Section Subsections
	

Page

35
	

20
	

10
	

115

// JOB
// XEO PAY05	 3•	 *FILE5(1,COLFP),(20WVAFP),(3,MNCFP)0(41)LBOFP),(5,LBTFPitl6oLMCFP)11
•FILES(251,PINFO)r
wFILES(101,INDX1),(102tINOX2)o(1030INOX3)r1104,INOX4),(105,INDX5).(106.1NOX6)
1022168021568	 0040000000165000010500012700

9

Input cards

111

Section Subsections Page

35 20 10 116

•
•

•
•
•
•

THE CONTAINER COMPANY •
•
•
•
•

CHECK NO.

CHECK NO.

93
Tu.

1001 02 45,68	 ROBT B BADEN	 113,32,3060 2,61,2801267

/OR 'NM NOulta	 YOU ZAJWIDAND YOUR .1.1102•• PAID 'MU
4cI :V- [MORS".	 oo .m' wArrowei

40,0	 ,0	 ,0 10440	 01	 2,61 12, 00 119,01
AMOUNT

$86.08
WAPALl°,111114.111444.RWIT.

111C■	 	 	 ...„	 nOCK

PAYROLL ACCOUNT 5,24 17 7411,19	 6,00	 ,0	 276 	 °I
FORTHATTAR

86,08
YOUPOJOTOYMAGO EEEEEE
MTAT	 r1CA	 MICAL

3601141 77,791 18,31
TZLIr. •1831 01

THIS !STOUR EARNINGS STATEMENT - DETACH AND RETAIN	 •

THE CONTAINER COMPANY

NOT GOOD
OR OVER

MT TO THE
ORDER OG ROBT B BADEN	 02121168

EXACTLY 86 DOLLARS AND 08 CENTS

TO THE NATIONAL BANK & TRUST CO.
OF COLUMBUS. WASH.

•
•
•
•
•
•

•

0=807 JOHN A HORN

TO THE NATIONAL BANK & TRUST CO.
OF COLUMBUS, WASH.

THE CONTAINER COMPANY

EXACTLY 83 DOLLARS AND 55 CENTS

02121168

NOT GOOD E4: sns50 , 00 CHECK NO.

PAYROLL ACCOUNT

CHECK NO.

$83.55

2

4-}
93

• WI 1. 1113 ■•■11

40,0

5,05

2202,84

1002

14 73_

ICI	 ID

02,21,68

432,331101,78
T1WILMOTOTOLIATOW41114.4.

1,141	 , 0

104,401	 , 0
TITIYWOUTTIOSTALKIWITSNATOU

JOHN A HORN

6,25

22,02

THE CONTAINER COMPANY

Mil.,1111/PORYOUR NNNNN

TAT .Z.LL..."

10.1111•D•110 .011.14111.1. IWO YOu

,0

4121

10,44 13 , 0

183,28,4339

IS

M

•
•
•2,6112,6112,61

•
114,84

•
03,55 •

•
THIS IS TOUR EARWIGS STATEMENT - DETACH AND RETAIN •

Printer output

THE CONTAINER CORP.	 022168
CHECK NO	 1
WEEK NO 1
W/E 021568
CHECK MAX 25000.

MAXIMUM CHECK AMOUNT MAY BE CHANGED BY SWITCH 14.
SWITCH 15 WILL CHANGE THE CHECK NUMBER
SET SWITCHES REQUESTED AND PRESS START
CHECK NUMBERS AGREE
REGISTER TOTALS	 134121.	 99685.
CHECK TOTALS	 134121.	 99685.
DIFFERENCES	 0.	 0.

112

•

•

•

Section Subsections Page

35 20 10 117

IBM 1130 MACHINE SETUP SHEET

PROGRAM	 PROGRAM
NAME:	 ChecA i-1/i,/ .-..	 NUMBER:	 PAY-62S

PROGRAM	 APPROXIMATE
DESCRIPTION:	 RUNNING TIME:

PRINTER

TYPE OF PAPER NO. OF COPIES CARRIAGE TAPE

c---4ec.4s Che•c-4 -5.

DISKS

DRIVE NUMBER: 0 1	 2	 3 4

CARTRIDGE
ID:

/4709/-'0// 4■•■
SWITCH
SETTINGS

SWITCH	 0 SWITCH
UP
DOWN

/4	 SWITCH	 Ar
UP	 le' UP	 3

DOWN DOWN

INPUT 5,4,./ch Ors
CARDS ,70/ C'ev.,',"ec/:

See.//.744-	 14
.5.(4,,,,tch /CA's

coeli "e;

("sea' AP niake c..494-.4-sr e-e/oe,/...ve=

./..1- cAred lo se,/ Me oia,e,..nbeen. c4lec4-
axed le se/ 7'Xze c■46'4"li eueo•g 6ev,

SAja �ie ssysleAn fe, ah9.1 ,€-e /47,,;7,4ey-..

e.e., e.,•P 74e:y. .oee

ar-,142 4,4 is.
/La sfael` eed/;13‘)

(;_04,7-2,21-
(//XEQ PAY05

18 Jot,

SOURCE OF INPUT:

DISPOSITION OF OUTPUT:

/ Ce....1 7i1-0 / 71,o/atr li•on-7 /i/e O.
2......sk. lards/ 6r=7,4yeno//.-i,:sh. ,e 10er, ',Vets.

I iCkbec-lock.s A doev/i2/.4yAwov.5
P.	 A	 c-../..,"■-•")/ 144 /a/c- /4 ,17,-, Ae-5"1 Z4-,/..74	 PAY.6747..1).s. fre

FOR PAUSES AND ERROR MESSAGES SEE ERROR RECOVERY SHEETS

113

IBM 1403 Models 18 4

.1111:=111BEEIEIEVIESIELIFSILIMIEMEIEIBEIEICIFI BommenonuououssmiamonEsioca0DcomminnwomEecnoupumBemouncri

!r.'.
il r y	 r rir, VI . rr r

	 1_ et r. .i,S.,..1,. i 11114.k. .. ,i OW A111:11.d.IL ti: o

	

i	

l!;3; : MMMMMM sza:;r4 1244'ait'M'I■IERIBIRRIIRmil MMMMMMMMMMMM No MMMMMMMMM in1111 M	 II
111ELI:1111;7"IBM Bs,	 ".'1I-1 ,. '6,16 , ri,,I,1 . ,I:, .	 '..1../	 -04.7.r■IIIIM-	 i `7 I.1:1111i .1 3	 111:r11111,1,17.777,SS M '2'. I NiS•.

t `r • .., ,,, ■If.11, ■Ili.''■!•141

iirlmo6! . 	. I Mu I .1 .	 uyyylvmr.Ify7w1flo,	 u :LuuTOITIR,v14wor
ffv.ft,(Ormr,r7ovori

EEINNIF. AA: . 	 .EGIESE.: r.1 .4:_	 i"- '''17.1r..,r;f!' f.lr'(1F-vr. i7. T'	 . ,1111 ,0111111': 	 rr ,'r i. I. T I MrInrarIFIN ,	 fici,iik:„.7,-.7(KI178. ,I,T,,...:,,n,r'f..i'ri,.,,,,f.i.sluill,,.'..!„:1'744,11..i.,..:16u114

MIIIIIE: : .1: AM	 ,..pirr.y.,r.,,r,,,,„	 ir.€411Priv7Ile ' " ."
,,,. ,...,j ,.. ,. f.y.. ,,,,-. ,. :,...	 v.C.14,:,■:411016' 	

'-". ,. r r. 'Y in. 'Air r.
EDO mr:.4i:-4or
m	

,..PLA■AIIIVi. 's 	 : LT: I:Ft i' ,..i. I. T. (.7.1 . ,lr,'_,,6i:j.,,,z,,41 1111 ,. ,,,„-,,., 	 L ny2urLuln ry.rmv nmis'7414 4.411
	 1 MMMMM MINIMMOIMMillimmilliSMOIMISKIWOMMISMOMINIONOMMINOMIMIVIIIIROM

m
IZI9 	 	 alED 	 WI
Ell 	 	 al

N
	 1

	 M
	 m
." MMM - --V4911111211111IPP---==` 	 °-PIIIMIgma MM	 !....-	IS

r rE r r• 1' '4O on	 ril l.P .V.. ' .'" 1 V v , • I	 I/ 0 i 3 3 •	 .1 . 	• A 	 L • 1 lb ■.1.411 m
■All

GL LIE
r..

IBM
L INE DISCIWITION HEW HEADINGS/WORD 8 Lines Per Inch

INTERNATIONAL RUMNESS MACHINES CORPORATION
PRINTER SPACING CHART

IBM 407, 408, 409, 1403, 1404, 1443, and 2203 Print Span:

Section Subsections Page

35 20 10 119

VARIABLES IBM I	 1130 COMPUTING SYSTEM
SUMMARY SHEETVARIABLE

NAME .t
0

15 6 z

0.
I-w n(- E

15 b
0- 0
z

_

MAX.
VALUE

MIN.
VALUE

Application „on y,eoz z SYSTEM	 Date 9//3/6 7

Program Name C/74,4-4., .47e/45tee 	 No./ ,yelp Programm

FUNCTION OF VARIABLES

z34/6 -EN z 3 D xxx.xx pl. Olt 23044.5 6.7.77/.7/.5.

49A/171,es ,e 3 2- 01 A9Xxx 000 Bonus hours

CAW4X ie 4 T /0100000 /-ifox/o7ain check amountfr? a 761e

CNET e 3 0 VA& 00 Net 0/1704/17/ cf inc//y/o/z/a/ chea
CoNio 4 /‘ 1,"d - - Con7,009y nome
/7BRE Al A 0 zw000r, 0,0 7:27de 4550C/47,0/7 Ce/Oarlis
q.eoss 42 3 0 XKX)O 050 li gross 01770/./IVI 0/ N7 oi:v/i/u4a/ 4--4ecAh.
/7/040)/ ,e 3 0 xA/,XX 0)110‘ .7/7dividaa/.. i5o/fdof ,oar
I 2- / 7- Z/sedie7 Do le, o/0
IC 7 / A/ - - 4741/V9/en 71 740 IN1

ZehteK I / T esaect4 7/4/.7/ .7 Berth/pry cAeci i7uoz6er when .14/rimy e4eeks
%CNT I / 0 xxxo 0 Se9aerx-fwameer6e-iew,r4/kAaddicorces,00ni7o4

aioICOL I / 7- 5,9 2 ,ecora' /7y/rIbee- /i2 cavil°, eel. /es, set
„oy.o/c74 T

.reil Z / 0)0000(0 Z.7dividaa/t Cv-ea//1 z./ io/2 c;',/z./c40/.7

IDA77-z- I 4- 0 xxxxx 0 To a/ 0/,;741/4,,daed:1, /71.52./co4CP .5-tocArAchat-//y
s' /771 isc. dedeic/56/7.5-frer per /0' er/a- or

_Z:01 I 0 XXXXX 0(/it cXec na/746e/-

IO2 I / O Ixxx 0 /ill clock num. ber

1-0 3 412 79 0 - - /11` /wine

704 I / 0 xxxxx 0 2e_d ekci number

.705 I 0 XXXX 0 2 12d cive,E.- na/276er

'Mode: I = integer, R = real, D = decimal, A = alphabetic

115

Section Subsections Page

35 20 10 120

VARIABLES IBM	 I	 1130 COMPUTING SYSTEM

NAME .

R 1

f2

6
1. 1—
t 2
'. ,

3
MAX.

 VALUE
MIN.
VALUE

VARIABLE SUMMARY SHEET

Application ,agy,topit .5 y.5 re-frf	 Date yi,,,.07
It-WcAProgram Name 44..4et	 457ir	 No.Ayaa Progrämmer

FUNCTION OF VARIABLES

.T06 A2 ; 0 - - 2!!_d /70/77e

.T.07 I / D xxYxx Of j'---1/ cheLA- /74//77.4er

I0 o I/ ,0 xxA')e 0 3/ e./oe,	 /74//,7,4-/-
Z09 ,42 f 0 - - 3-rd /carne
.7,-.1"c4 _I / 0 &XXX 0 .7,7o/vi ichia/,'s /76,4 fax
Z,ZZZ Z. / 7 7 0 If7d/cale...5 dea&elion not mot/e
TZW5 2. / 0 xX 0 .7/7•1./er/o/...4 /2754/Ca/We de4/clot?
.:7.57 I / 7 250 ..;,0 los/ record /74//27.6ev" .;,7 o /6 je
.IWZ_SC / 0 xxxxX 0 2./20/// 4,6'4 /2745-c. e/edirc/34.,/7
.1-N.0X 7 / T /01(0 /0'1 Index iii /e .1//7764-,- (i0/a4/`/;0. 2, /00)
INZT .1. / 0 XXXXX Pi ///7/0/7 m/1`/eii:0/7 fee
TN1 7 / I 25-0 1 de-cocd/7a/v6er ir2 /ndeA-e5 71,o ef/704,ee //es
74/2 1 / A/ - - I-fan/a/en/ 7'0' 1"/V.1
2-21/3 I I N - fr/Ga/e/77` lo 121/.1
IA/1 .1* / N - - 6-1/iva/e/71". 7O ZA/1
zNi I / /t/ - - 67/e/71` I‘o ZA/Z
Z/t/ I / N - - '74//x7/e/77` t, .7/1/1

1-DTRT I / T 50# Of ,0Per7,rne ,a, cafe
r,42,0 I / 0 2 0 j;70//--a7,:ls 5-44/5 ait record /oAroressi cycle
Is-TCK I / 0 2000 I/7e// vi di/a/4 3-7i764 6/e C7//1 //an

"Mode: I = integer, R = real, D = decimal, A = alphabetic

116

Section Subsections Page

35 20 10 121

VARIABLES IBM	 I 1130 COMPUTING SYSTEM
SUMMARY SHEETVARIABLE

NAME •
aL U
2

-o"
Z
6z

o..2 1_
Lu
I– et
I'D 15

0=

MAX.
VALUE

MIN.
VALUE

Application PAY,POZZ SYSTEM!	 Date 9Ara 7

Program Name 4,4eck A94.9,,,547.	 No.A4yoo Programmer

FUNCTION OF VARIABLES

r54/PP Z /3 0 A'A'A'A' 01 S4/p,o/e/77e/7717/ ...r/e	 /,ay
ZTOr I // 7 /713 0 A-eau/71 /Vaiberfi,r,a57i1 lo // :7 ftwerrd

jr,div/4/q/S- 4,,a,-,4/ ,c7c./z/4-7`iiir,71/A I / 0 gO,‘)e

7/A0 2- / 0 /MI 0 .7/7/v/elva/S- z//7/em idlies c/eduer:O,;
.7".047. Z / 0 JO 0 Avera9e,c2ar rale
.1 14/Elie .I. / T _5" 1 11/eei al /4 e /770/7/A
2-A/4 I / N - - 1-74//:/o4wf /0 ROL

.7" I/ T 9 / Trie/ex for 2,0 4e.,
A-c4,e,0 Z / Z 9 0(C. 	 8/ for /as-,..Qv-,1/ 7§.5 74

frs0 d/ / 0 5 0 ...5'Decia/ ears/r7 9s ea de
I Z / T 750 0 "o ail fcr 7 , access cee-a,a's

L957- Z. / T xxX 0 za5/ fecorg/ /7‘..7,76e.- /.7 7‘.4
/Bo I / A/ - - *viva /e/774 it5 TCOZ

zer I / N - - ,h-y t,/ 	/en 74 716 real

LNG" Z N - - Eya/e/a/e/274 1.a .2-COL

/069Z I / 0 xxxX 0 Loco/ fax
Z Y/elAc) 2- / C /MX/ 7h/ 5 Vear/5 s el‘c-an74/ k 7//0 /7 Of i 4 aarS li/o /We/

lo r Aaca74/0/7/ny

/194 2" / ZO 2 / /7arge4; / 5 fa las. - (/- -5//7y/c) (2- /770/7-/ed)
NaA/C I / N - - Epa/Va/e/774 76 /COL

MWAVI/ I / 0 xxxX # f di/iio4a/ lei/A40/<-//7 a/7,4a/i74
"Mode:	 I = integer, R = real, D = decimal, A = alphabetic

117

Section Subsections Page

35 20 10 122

VARIABLES IBM I	 1130 COMPUTING SYSTEM
SUMMARY SHEETVARIABLE

NAME .

2

-:°:

48
 6

z

1 F
t ct,
j IS"
F..

MAX.
VALUE

MIN.
VALUE

Application figyeaz 5y.sreH	 Date 007
Program Name 4P-#1.(64 ,61/,:s-%r	 No794 y06 Programme

FUNCTION OF VARIABLES

4/4/1E d! 9 lid - - Er77,04ffee Borne

Nei/0(Z / 0)0(xxX of Lied na/776er ii.tedA- A/s e."7,4"ee.
/(1/ I / 1;0 XX.Ix 1 Creel./ anio4 44,e/vc4r7

/f/ 4' I / 0 /xA'x /1/9.7 A /y erea; ./	 i0/2 c/eo/oclii,44-
AWES I / 1,-0 XX. XX , a/7/0/7 alpes alea.c7;/2

/t/D4/A/ 92 i 10 - • Ply	 d i kIver/1
/VI/vs I / -Ca A/XXx 1 Z/zsvcvice Q'Alve-750-4
NA11-5C I / 0 XX4' ///5-ce//ageoas e/e4/actet:ys
/YoNr I / T l0 7 P/.0./77 1 .2a/yder.
/why-6- I / 1;0 30 /25 giva/eyee poi /-.4/
NSIX I 4-0 _I 1 Sex. (.1-frna/e) (I -,'a4) (3- 71-ac.eer

4/.554A/ 1 3 Zo"415 942%/1/' ..10c.:1/ .corny A//77 der'
N5745 I / .' f i 171/Lee ellirm-(;:iiii/C7v714;;Arer) Peae-f,r/77 zio/7.114/

,s/ock dedae/5O/7A/576(' Z / IO XX. XX Pi
N.57;t12 I / 0 xx)(X No,ilvy SocAl 4/4,4c75ers
/1/a4 1" / 40 XX.)0(I i/ai4d 01/yea/ aie../vek,n5
A/0-1 I 4-0)0(X)(/WO C/a 	 /74//7764-/-

N14/X/1/2 2- / 0 XX / A/an-7'er a/ weeks er77,/o,ed
/1/11-469,0 .7 / 0 XX 0 Mamie,- al 4)eeJs Avid
NX/Me r .1;0 /7)0 /";ara/ e1/8/7-71275,4-s-

-Mode:	 I = integer, R = real, D = decimal, A = alphabetic

118

Section Subsections Page

35 20	 I 10 123

VARIABLES IBM I	 1130 COMPUTING SYSTEM

SUMMARY SHEETVARIABLE

NAME •Uia
ci

,,,.138
'.'o

a2 1_
W =
t 1:1-

I– I–p 2
 w

MAX.

VALUE
MIN.
VALUE

Application PAY#OZZ 5)/S TEA,	 Date 03547

Program Name 4--.4eve ISfr:$-X...-	 No.,47,4yoa P‘rairrfreer

FUNCTION OF VARIABLES

/1/10fP.5- 7 / 0 /7 .5'zioi exe/77,15;9/75
are-49A/ A' 3 0 XXXAA 1.0 aierkn e ti;777/795

aPiee ,e 3 0)0000(1.00 Sfecia/ earmiTs

07-14e.5- ,e 5 40 ,W.XX OA Dver75:77e /roarst9E To 4, 724 0 alocoex ,o. ,
wr

,k/ol-fer- to - elite //7frynohoa Nyeass) (2) F/7; 0) <74-,4,'4) fipc,itax, is) 1-ze4 Rives, ra)slck par
,eaz-E/ c g 0 xXxxx 410(Pet earninys

Rf //k°5 de 3 40,000X 000 , T . Xears
,eNETz ,9 .1 0)000W # bs-ir /7e,

,ever2 R 3 0 g,a.xX 0 2 12.91 "milt

,eNeTj 4° 3 0 xxxda 00 5 12d nel

-SICK , 3 0 MOOX 10 ..5/‘4 pay

7 1e 3 0 "412' # 0 ilsegi h /0101 5-10e,-i0/ earmls
7-4x 7 / 0 A/XXXX AO .cdero/ ie7Va/e7:;,/ TX

TV, ,e 1 7 "xxxxxx * 0.000 M4/ ros.5
jNer k' 3 7)6exT4 400 7.7k7 ne74

TorgNR 5 I t'A'Ve, 00‘ar Bows Aovrs %lei / A-0/77 soarre doe.
ro Tar ,e 3 I tr 0,0 OT hours 70 10 //'r-on/ source doe.

7 7-/.1 A) 3 7 x
x

Vx̀ y . W1 fey. % a ws /0 iia / /rein source doc.

"Mode: I = integer, R = real, D = decimal, A = alphabetic

119

. .
Section Subsections Page

35 20 I	 10 124

VARIABLES IBM 1	 1130 COMPUTING SYSTEM
SUMMARY SHEETVARIABLE

NAME .
Ictia

i
3)s
g

..g n
t cl5
t°

MAX.
VALUE

MIN,
VALUE

Application	 ,4xeozz sy:3-re 	 Date 9/4/07

program Name ,,,,ec„ 	 No. Re 04 Programmer477 K xep.STer
FUNCTION OF VARIABLES

707:SA g g r 7,,:f. 41Alf .1)eria/ eacnfr7 s)64/16-0/,7.s.ozare doe.

VAC4 ie 3 0 X*X•XX 4410 ilekl f 4 b4 /049	 ,

YTO A'
/4
4ri 40

)64001,
xg	 ' Ai?,

Year AO- dole Zel7fren701704,04,11014)(2) Are4 (3) "2 7;
/.4) ,47CA kla es (1).s/a/04 .,(6)s ic. A (7JS ec.
(B) /ye. 144x,(9)rev.hrs,1% I ar rS, (.1/ /hoar's hr's
fr2 lit . COAV7.1, (Z9 er er45 (i49 borrys- erns.

'Mode: I = integer, R = real, D = decimal, A = alphabetic

120

•

No

Read the

I nformat.
Record

Plant

Read an
Employee

Record
from
Disk

Write a Line
of Check
Register

3
Employees

Write Last
Line of
Check

Register

Write the
Plant
Total

Initialize
Plant

Variables

Put together
Check Register

Information

Stop

121

Section Subsections Page

35 20	 1 10 125

Section Subsections Page

35 20 10 126

• // FOR	 PAY06
• IOCS(CARD.TYPEWRITER• 	 1132 PRINTEROISK)	 PAY06
• NAME PAY06	 PAY06

• • ONE WORD INTEGERS	 PAY06

• EXTENDED PRECISION	 PAY06
• LIST ALL	 PAY06

• C***** JOB NAME	 -- PAYROLL SYSTEM CHECK REGISTER	 PAY06
C***** J08 NUMBER -- PAY06	 PAY06
C*****	 PAY06

II	 C 	 PROGRAt4ER	 -- C.R.KLICK	 PAY06
C 	 DATE CODED -- 01/27/68	 PAY06
C 	 DATE UPDATED -- 	 PAY06

II	 C 	 	 PAY06
C 	 	 FILE	 FILE RECORD NO. OF	 RECORDS PAY06
C 	 	 NAME	 NUMBER LENGTH RECORDS PER SECTORPAY06

• C***** INPUT FILES -- 1. COLFP	 1	 160	 250	 2	 PAY06
C••••••	 2. WVAFP	 2	 160	 90	 2	 PAY06
C-----	 3. MNCFP	 3	 160	 200	 2	 PAY06

• C 	 	 4. LBOFP	 4	 160	 50	 2	 PAY06
C 	 	 5. LBTFP	 5	 160	 150	 2	 PAY06
C*****	 6. LMCFP	 6	 160	 30	 2	 PAY06

• C 	 	 7. PINFO	 25	 106	 6	 3	 PAY06
C 	 	 8. INDX1	 101	 1	 250	 320	 PAY06
C*****	 9. INDX2	 102	 1	 90	 320	 PAY06

• C*****	 10. INDX3	 103	 1	 200	 320	 PAY06
C*****	 11. INDX4	 104	 1	 50	 320	 PAY06
C 	 	 12. INDX5	 105	 1	 150	 320	 PAY06

• C 	 	 13. INDX6	 106	 1	 30	 320	 PAY06
C 	 	 PAY06
C***** OUTPUT FILES	 NONE	 PAY06

• C''—.'—'
	 PAY06

C	 PAY06
C 	 ALLOCATE ARRAY STORAGE 	 PAY06

• C 	 	 PAY06
INTEGER COMP(16111 TAX	 PAY06
DIMENSION FIBRE(8). IDATE(3), ID3(9). ID6(9), 109(9). ISUPP(13). PAY06

ID	 1	 ITOT(11), NAME(9). NOWK(3), NSSAN(3), ORTD(6). YTD(14) PAY06
C—****	 PAY06
C 	 DEFINE THE FILES FOR THIS PROGRAM AS DESCRIBED ABOVE. AND 	 PAY06

• C*--** EQUIVALENCE THE VARIABLES FOR THE NEXT RECORD NUMBER. 	 PAY06
C 	 	 PAY06

DEFINE FILE	 1(250.160,U,ICOL). 2(90,160.U.IWVA1s	 PAY06

ID	 1	 3(200,1601UoMUNC). 4(50,160,U.LB0), 	 PAY06
2	 5(150,160.U.LBT)e 6(30.160.U.LMC). 25(6,1060U,ICIt PAY06
3	 101(250111oUoIN1), 102(90,1,UP1N2), 103(200.111Ut1N3).PAY06

• 4	 104(5Oo1oUrIN4). 105(150,1,UtIN5), 106(3011,U,IN6) PAY06
EQUIVALENCE (ICOLIIIWVAIIMUNC,LBO,LEITIILMC), 	 PAY06

1	 (INI,IN2.1N3IIIN4rIN5,1N6)	 PAY06
• C 	 	 • 	 PAY06

C 	 	 PAY06
C 	 INITIALIZE VARIABLES	 PAY06

122

C-----	 PAY06

ID	 ICOL•1	 PAY06
IN1 • 1	 PAY06
TA=O.	 PAY06

II 	 TB.O.	 PAY06
C	 PAY06
C 	 	 PAY06

ID	 C 	 READ PLANT NO++ DATE, AND CONTROL TOTALS, AND VALIDATE CC 80 AND PAY06
C+++++ THE PLANT NUMBER.	 PAY06

C+++++	 PAY06

• 99999 REAR(2+1) NOPLT. MATE. NDWK, TOTRG, TOTOT, TOTBN. TOTSP, KARD 	 PAY06
1 FORMATII1s6A2.4F7.008XIII1)	 PAY06

C 	 	 PAY06

• C+++++ VALIDATE KARD AND NOPLT	 PAY06
C 	 IF VALID	 — 60	 PAY06
C 	 IF INVALID — 55	 PAY06

• C+++++	 PAY06
IMAM)) 55.51.55	 PAY06

51 IFINOPLT1 55+55052	 PAY06

II	 52 IF(NOPLt — 6) 60,60155	 PAY06C 	 	 PAY06
55 WRITEI1,2)	 PAY06

II	 2 FORMAT('CHECK CC 1 AND CC 80 ON FIRST CARD') 	 PAY06
PAUSE 1	 PAY06
GO TO 99999	 PAY06

• C++++	 PAY06

C+++++	 PAY06

C 	 READ PLANT INFORMATION RECORD FROM DISK. AND FINISH INITIALIZING.PAY06• C	 	 PAY06
60 READ(25'NOPLT) COMP, ICHCK. IWEEK, FIBRE. 'TOT, CKMAX. TGRS, TNET,PAYO6

1	 ICNT	 PAY06• C 	 	 PAY06

INDX•NOPLT + 100	 PAY06
GO TO (76,77,78,79+80.81),NOPLT	 PAY06

• 76 ILST • 250	 PAY06

GO TO 83	 PAY06

77 ILST-90	 PAY06• C	 PAY06

GO TO 83	 PAY06

78 ILST • 200	 PAY06

• GO TO 83	 PAY06

79 ILST=50	 PAY06

GO TO 83	 PAY06

• 80 ILST • 150	 PAY06
GO TO 83	 PAY06

81 ILST■30	 PAY06• C -	 PAY06

C 	 	 PAY06

C 	 INITIALIZE PLANT VARIABLES AND READ AN EMPLOYEE RECORD FROM DISK.PAY06

Section Subsections Page

35 20 10 127

PAGE 02

123

C 	
	

PAY06

II	 83 READ(INDX'ILST) LAST 	 PAY06

WRITE(3.5) COMP. NDWK	 PAY06

5	 FORMAT(111.50XOCHECK REGISTER'//20X0FACTORY PAYROLL 1 ►16A2.5X. PAY06

II	 1 'W/E ',2(A20•"),A2//31' CHECK NO'7X'NAME'14X'AMOUNT')/)	PAY06

T=0.	
PAY06

L=1	 PAY06

II	 I=0	
PAY06

655 READ(NOPLT'L) NUM. NAME. NSS4N► NSTAS. NDUES. NWKMP. NWKPD. MAR. PAY06

1	 NXMPF. NXMPS. NSEX. NRATE. YTD. ORTD. LYRHR. NCU. NCUDD. 	
PAY06

II	 2	 NCHCK. NADWH. NSTCK. NINS. NMISC, RUA. NSTKD. ISUPP. INIT. 	 PAY06

3	 IPD, IFILL, GROSS. IVRAT. IOTRT. RGHRS. OTHRS. BNHRS. RGERN, PAY06
4	 OTERN, BNERN. OTHER. KO. HOLD'''. VACA. SICK. CNET, IFICAt TAX, PAY06

• 5	 LOCAL. ICU. IUA. IUD. IINS. ISTCK► IMISC	 PAY06

C 	 	
PAY06

C 	 CHECK PAID INDICATOR TO SEE IF CHECK WRITTEN. 	 PAY06

• C 	 	
PAY06

IF(IPD .. 2) 650.651.650	 PAY06

C 	
PAY06

II	 C 	 	 PAY06

C 	 PUT TOGETHER CHECK REGISTER INFORMATION. 	 PAY06
C 	 	 PAY06

• 651 T■T + CNET	 PAY06

1=1+ 1	 PAY06

GO TO (601.602,6031,1 	 PAY06

II	 601 ID1■NCHCK	 PAY06

102=NUM	 PAY06

CALL MOVE(NAME.1.9,103.1)	 PAY06

II	 RNET1=WHOLE1CNET + (CNET / ABS(CNET)) * 0.5) / 100. 	 PAY06

GO TO 650	 PAY06

602 ID4=NCHCK	 PAY06

• 105■NUM	 PAY06

CALL MOVE(NAME.1.9.106.1)	 PAY06

RNET2=WHOLE1CNET + (CNET / ABS(CNET)) * 0.5) / 100. 	 PAY06

• GO TO 650	 PAY06

603 ID7=NCHCK	 PAY06

ID8=NUM	 PAY06

• CALL MOVEINAME.1►9IID9.1)	 PAY06

RNET3=WHOLEICNET + (CNET / ABS1CNET)) * 0.5) / 100. 	 PAY06

C --	 PAY06

• C 	 	 PAY06

C 	 WRITE A LINE OF CHECK REGISTER FOR THREE EMPLOYEES. 	 PAY06

Cm,"	 PAY06

II	 WRITE(3.110) ID1. 102. 103. RNET1, 1040 IDS. 106. RNET2. 107. 108.PAY06

1	 1090 RNET3	 PAY06

110 FORMA71313X.15.1X,15,1X.9A2.1X.F6.2)) 	 PAY06

• 1=0	 PAY06

C -	 PAY06

C 	 	 PAY06•

Section Subsections Page

35 20 10 128

PAGE 03

124

C 	 HAVE WE PROCESSED THE LAST EMPLOYEE RECORD 	 PAY06
• C 	 YES - 657	 PAY06

C.-•••• NO - 655	 PAY06
C 	 	 PAY06

• 650 L.1. + 1	 PAY06
IFIL - LAST1 655.655.657	 PAY06

C --	 PAY06
• C 	 	 PAY06

C...-.... IF THERE IS A PARTIAL LINE TO WRITE 16151. WRITE IT.	 PAY06
C 	 	 PAY06

ID	 657 1F11/ 604.604.615	 PAY06
615 GO TO 1605,6061.1 	 PAY06
605 WRITE13.1101 IN. 102. 103. RNET1	 PAY06

• GO TO 604	 PAY06
606 WRITEt3o110/ Ms ID2o Me RNET1. 104. Mr 106, RNET2	 PAY06

C 	 . - .. - - - - - - - - . - - - - • .. - - - - - - - -------- FIA106
• C 	 	 PAY06

C 	 WRITE THE PLANT TOTAL	 PAY06
C 	 	 PAY06

• 604 T.WMOLE(T + IT / ABSITI/ • 0.5) / 100. 	 PAY06
WRITE13.1111 I	 PAY06

111 FORMAT1//50XOTOTAL , .F9.21	 PAY06
• c 	 - - - .. - - - - - - - ----------------------PAY06

PAY06
C 	 STOP	 PAY06

• C 	 	 PAY06
CALL EXIT	 PAY06

C 	 PAY06
• END	 PATO&

VARIABLE ALLOCATIONS
• (COI .0058 IWVA .0058 MUNC .0058 L80 .0058 LBT .0058 LMC .0058 IN1 .005C ISO .005C IN3 .005C 144 .025C

INS .005C INS .005C FIBRE.0072 ORTD .0084 YID .00AE TA	 .0081 TB	 .0084 TOTRG.00B7 TOTOT.0013A T01.86.0080
TOTSP.00C0 CKMAX=00C3 TGRS .0006 TNET .00C9 T 	 .00CC GROSS.00CF RGHRS.0002 OTHR5.0005 8NHR5=0008 RGERN.,00013

• OTERN.00DE BNERN.00E1 OTHER.00E4 HOLDY.00E7 VACA .00E4 SICK .00ED CNET .00F0 RNET1.00F3 RNET2.00F6 WNET3.00F9
IDATE.0101 103 .010A 106 .0113 109 .011C ISUPP.0129 ITOT .0134 NAME .0130 NDWK .0140 NSSAN.2143 COMP =0153
TAX .0154 IC	 .0155 NOPLT-0156 KARD .0157 ICHCK.0158 IWEEK.0159 ICNT .015A INOX .0158 ILST .U15C LAST .0150

• L .015E I .015F NUM .0160 NSTAS.0161 NOUE$.0162 1VWKMP*0163 NWKPD.0164 MAR =0165 NXMPF.u166 NXMPS.0167
NSEX .0168 NRATE.0169 LYRHR.016A NCU .016B NCUDD-016C NCMCK.0160 NADWH.016E NSTCK.016F 6146 =0170 NMISC.0171
NUA .0172 NS/(0.0173 INIT .0174 IPD =0175 IF1LL.0176 1VRAT.0177 IOTRT.0178 KO 	 .0179 IFICA=017A LOCAL.0175

• ICU .017C IUA .0170 IUD .017E [INS .017F ISTCK.0180 IMISC.0181 101 .0182 ID2 .0183 104 .0184 105 .0185
107 .0186 108 .0187

• STATEMENT ALL) ATIONS
1	 .019F 2	 .0147 5	 .018A 110 .01F3 111 .01FF 99999.0220 51 	 .0246 52	 .024A 55	 .0250 60	 .0252
76	 .0280 77	 .0286 78	 .028C 79	 .0292 80	 .0298 81	 .029E 83	 .02A2 655 . 02BD 651 .u353 601 .0346

• 602 .0369 603 .038C 650 .0300 657 .03DC 615 -03E0 605 .03E6 606 =03E5 604 .0408

FEATURES SUPPORTED

• ONE WORD INTEGERS
EXTENDED PRECISION

• 10CS

CALLED SUBPROGRAMS
• MOVE	 WHOLE	 EABS	 EAU)	 EMPY	 EDIV	 ELD	 ESTO	 EDVR	 WRTYZ SRED	 SWRT	 SCUMP $F10	 SIUA1

SIOF	 5101	 PAUSE	 CARD(PRNTZ	 $DF10	 SORED	 SDA1	 SDAF	 SDF	 SDI

• REAL CONSTANTS
.000000000E 00=0188	 .500000000E 00.0188	 .100000000E 03.018E

• INTEGER CONSTANTS
1+0191	 2.0192	 6.0193	 25.0194	 100.0195	 250.0196	 90.0197	 200.0198	 50.0199	 150.019A

	

30.0198	 3.019C	 0.0190	 9.019E4, CORE REQUIREMENTS FOR PAY06
COMMON	 0 VARIABLES	 392 PROGRAM	 668

40 ENO OF COMPILATION

•

	

Section Subsections
	

Page

35
	

20
	

10
	

129

PAGE 04

125

II	 CHECK REGISTER

FACTORY PAYROLL THE CONTAINER CORP. 	 W/E 02-15-68

CHECK NO	 NAME	 AMOUNT CHECK NO	 NAME	 AMOUNT CHECK NO	 NAME
•

AMOUNT

• 1 1001 ROBT 8 BADEN	 86.08	 2 1002 JOHN A HORN	 83.55
4 1004 JOHN W CUSSEN	 86.26	 5 1005 JOSEPH MONTANO	 142.58
7 1107 A E TAYLOR	 113.63	 8 1218 DAVID A HUBBARD	 88.48

it	 10 1603 4L REYNOLDS	 123.97

• TOTAL	 996.85

3	 1003 ROST L SHORES 61.44
6	 1016 DONALD MILLER 129.33
9	 1347 FRANK T DOLEN 81.53

// JOB
// XE0 PAY06	 3
4FILES11.COLFP/1,12.WVAFP/,(30MNCFP)o(4sLESOFP)1115.LBTFP).(6.LMCFPI.

41	 •F/LESI250INFO).
*FILES(101sINDX1).(102.INDX2).1103.1NDX3).(104.INDX4)01105.1NDX51.(106.1NDX6)

•

Section Subsections Page

35 20 10 130

// JOB

41	 // XEO PAY06	 3
*FILES(1,COLFP),(2,WVAFP),(3.MNCFP),(4,LBOFP),(5,LBTFP),(6,LMCFPIt
*PILE5(25tPINFO),

• IWILES(101,INDX1),(107,INDX2),(103.INDX3)9(10411NOX4),(105,INDX5),(106,INDX6)
1022168021568	 0040000000165000010500012700

Input cards

Output on printer

126

	

Section Subsections
	

Page

35
	

20
	

10
	

131

IBM 1130 MACHINE SETUP SHEET

PROGRAM Check „pvts/te,-•
NAME:

PROGRAM	 A7,47.0a
NUMBER:

PROGRAM
DESCRIPTION:

APPROXIMATE
RUNNING TIME:

PRINTER

TYPE OF PAPER NO. OF COPIES CARRIAGE TAPE

,5-#47 ,.2 4/41,.. 01 I Sisiaeo di.or ••' d

DISKS

DRIVE NUMBER: 0 1	 2	 3	 4

1 I I /'‘ -.1111111../.
CARTRIDGE

ID: AkyeeV/

SWITCH
SETTINGS

SWITCH A/4W e SWITCH
UP
DOWN

SWITCH
UP UP
DOWN DOWN

INPUT
CARDS

/CONTROL
TOTALS

r x EQ PAYC6

/// JO

SOURCE OF INPUT:

DISPOSITION OF OUTPUT:

/..D/ :5 k f r.: nA treil ,s0A,/,.s. 4-0,-,, RA yes-

1 C-AecA. .-'4.1-A.-c/..-, 4, /o.a.. ric 7 // ..."-&=2e1/�...--2
2. P.. :09.0, #I--on/11X7id ZS". /a f/.1	 1.)

.., . 27,.1s A /S .-,.... lz.,-,--1,..,-/ A ,rf0.-wy e ,

FOR PAUSES AND ERROR MESSAGES SEE ERROR RECOVERY SHEETS

127

lomommillimmosionip
44 a • a • na *I la l a ea le oa s• re a ' 	 aa s 	 ao	 a• a a• o•I	 .. au	 si oe • 0•60 .1117,1 ...

.atlo, paw*, top uo p•volu	 auu ato ol	 (yawl■ael Ino) 9) ado; pzitioa.•11,oa ,ono	 •tpury	 null9) pole	 ,
"I. ul /.2^1., ...I .4 *do,	 ,o1.*N1 nugaon of aaoal000.o. ,o4 aiw Polo. ay SO. au,o1 .11 ,Noo,

	

Section Subsections	 Page

35
	 20
	

10
	

132

	

Section Subsections	 Page

35	 20	 10
	 133

VARIABLES IBM I 	 1130 COMPUTING SYSTEM

SUMMARY SHEETVARIABLE

NAME 1-1100
2

"8
8

3
"-0
zc

;

Lll IS

I
CA

1.-	 a-I-oRvCL

F.

MAX.
VALUE

MIN.
VALUE

Application A/ea& 6-y57F/tie 	Date 9/20A 7
A7'ckProgram Name	 9.4t/	 No. "4)/09 Programmer

FUNCTION OF VARIABLES

A I? .3 4 ‘6,1,/,0 0091 ased/o <17/ca4A Daew:;ne r.a.
Fie:X e3 0 V.);)(0.00 ,z-ze,4 taxazWe 4,a9es

z I / 7 &sec //i7 270 /ao,

_re I / T - eyviva/ewl l'a. INZ
zeoz r / I 250 1 "Pec• 0 re/ number //7 er/7/0/0yee 7ri/e set

ar 6y/afar/
.Z.0/17F .2" 3 1-0 - - Ar ,,,,,,4

zw.az 42 22 4-0 - - /42. 47e of head. ;77
Z//02 42 Z24.0 - - 2 ad /;7e of .e-(2.4.:;7y
If/D3 12 221,0 - 3'-d ///7e 61 %eathrif
ZW01 42 221;0 - - ¢ 6 hae a/heao:il
IL 1/ / 0 / $ Carr/aye earde.a/

ZA/DX I / T /04i /0/ Irldex ,e/le	 U/776e/". (,/,,,,, no.,, /00)
_z-NIT r / o ,i zh7/0/.2 ftv7:ai:0,2 7,5
ZN1 I / r 250 2 ,toccara/avader /./7 //7,/exesio ernp/o7celi/es
.1-N2 I / /(/ - - zep/iva/9/7/1 to IN!
ZN3 .1. / /V - - e9o;va/e/2,4 A INI
..744 N - - tyy/i/a/1/71- it .1"/V.1
zw...0 I / N - - 6-",.//ok.7/ 7,`, ZN!
IA/6, I / N - - Eyp/vale.71 A 1.441
-TAW I 20 / Ayr /ivr7-46er-

• Mode: I = integer, R = real, D = decimal, A = alphabetic

129

Section Subsections Page

35 20 10 134

VARIABLES IBM	 1 1130 COMPUTING SYSTEM

SUMMARY SHEETVARIABLE

NAME .
t
o2

'i)
.46
6z

,, I—
iz. .2
15 5
,°- °
—

MAX.
VALUE

MIN.
VALUE

Application pgy,eaz .5-ysTEN	 Date f40,7
Program Name	 9//	 No. /191y09Programmer /CkProgrammer

FUNCTION OF VARIABLES

/PG' z/ao .1;76//co/es ..5-/"./e.5 g reeort/ //7 ,oraeessfty. 	eye-le
I55,1/V 4/ 9 0 lzry,-;:, 5oci a / Seca/-1/7
154/1P .7 45 a 0 0 supo/epnent,"/ .5-/e-i9or
z-13Y1l I / r 250 / hr-9,/vo/c/7/ ig ZeoL
LAST 7 / r XXX 0 LOSE record .7u.776e.- /;7 file
L80 I / A/ - Efuiaa 4", 4 ZeoL
te67- I / A/ - - etV/a0A/771 7t, ICOL
174/e 7 / 7- 5:0 1 Z/f7e coa.),
I MC .1- / /V - - 49a / va 44 7i 1: Zeiaz
zsr I / 7 25O 2.0 Los/ record /7a/-776er /i7 aiti/e

2 Y.,47/7e .1 / 0 Ø , This year's Qc-cv/m/f7nori vie hours
../4.-ke.G1 fbr vace;v2a,7/9<,

Af/ge I / .1,0 2 / Akrdo/.5f4#05-(/ . ..siry e.)0-rna/ried)
Aipe.0 7 / 0 2fi# 0 4/a/7/47- a/ ern,/ofees /-e0,0/-419/,,reoinpopy

Nuffz6er 6/ err/P4yees /-e;o0r/ed,ecioare
*a/yak/7/ ib reaz

/4/.01Y _I / 0 1/ #

AldNe 7 / N - -
N I/ I O / /a/an / /74/464-1-

N,101t//1 I / 0 /odd/ /7040 	 k/i/d4a/a:)7, a/we/file
NAMEd29 40 - - Di/7/7/775/ a/m. 4 a/he-Seel 5/aacehr name
Ne1/6‹ I / 0 0 0` e'Xey, fivn76ep used rem. 4,..s. en30/aTee
/Vac/ 1. 40 IX. X)I 41 Creel,/ 4/0)0/2 c/d• tk e	 4

'Mode: I = integer, R = real, D = decimal, A = alphabetic

130

	

Section Subsections	 Page

35	 20	 10	 135

VARIABLES IBM I	 1130 COMPUTING SYSTEM
SUMMARY SHEETVARIABLE

NAME •
1.J
o
2

-F2
'e)
.6
ciz

o_
W 1—
t E
15 15
,°- °=

MAX.
VALUE

MIN.
VALUE

Application	 ,P,4 y ,e0 z Z SYSTEM	 Date 00/g 7
Program Name	 942	 No. R4Y,09 Programmer

FUNCTION OF VARIABLES

,V&/OD I/ O 0 0 Mon/,/y e-/-eaV
/1// !/ES .7 / 4-40)0a)(Ø ik/o/2 aver aleiaclio. 0
,'Z V5 .1" / .1,'D X,l<XX 1 1.-2sarance a/ealpc75,7

/1/Af..75C I/ 0 0 0 Ni.:54e//a,2eoas de4e7:ews
NA6247-6 r / 4,0 lo /25- zt, 77, /7 e e /oaf fa/a"

(/SEX I / 61 -3 1 Sex-if- lee/vale) 2 - mok) (3- fruckr)
A/554 A/ 13 4-0 wziy.4YsfP/PA 1.77 /0 ee 54/ /s-(- a/7/or, (2-h-acker/477,/,0,,,,fe./77e)/7ts./.70- ("I:az/0%0072 (2,S;;;;V(35-77:24z

ii`ock deciaclib/7
/1/57795 2- / 0 5 I
Nsrc< I / 1;0 A/XxX 0
A/57X-D I / 0 0 0 Haw, .5./ocP de.iacii.as

4//.4 Z' / ID xxa 0 e/ndea / 40/aea/4.aVcivis
e/04-,t /ya/77.6e/•Nilfri f / 1;0 XXXX /00

/MAW,a I / 0 Or 0 A/u/nZec a/ e week e/77,o/opei
A/11/A1/90 I/ 0 0 0 A/8/776e/ I(tdee.es "aid
AN/LfAc I / 1:0 /7 0 Cce/era/ e,f(9/77,075,/7.s
A/XA/A5 Z / 9 /7 01 -^tgfe exerr,,o76vIs
9,e7-0 ,e TB &WO 1.ØP Quorter- to ,Pate //7770.-rnahon oifross,re.Ac/x/eAt

(4)/oc./vx (5)Ficrilwo es (6)sick/pay
TO IA ,e 3 0)xe7).)1,1/ 000 7ta/ F/c/7 ivoyes loer fieye
7-0 re ,e 3 0);,/xxx,IA 000 a	 fTS / tao es	 /pate„per

TOTC 0 xxxx	 4 4x,y. ,yx v.w w 71' /a/ FIcg u/of es per ea/77,4Wr

`Mode: I = integer, R = real, D = decimal, A = alphabetic

131

Section Subsections Page

35 20 10 136

VARIABLES IBM 1	 1130 COMPUTING SYSTEM
SUMMARY SHEETVARIABLE

NAME •L J,E

H

°
.6
6
z

0-
u, n
i— —--- E-/5 5
EL, °
r.

MAX.
VALUE

MIN.
VALUE

Application	 ,45:304(20t 4 sys 7-41-W	 Date .5/20/4 7
 Ki/ek

Program Name	 94/	 No. "Ay' a q Programmer

FUNCTION OF VARIABLES

70 TD A' 3 0
XXX A'
xx,gx

a
,7. 00 75/-7/ 4/4 es ,e, ea/77,w.,

y TO K
/
42 4.°

xxx

xx: X X

4 4
W. PP

year- to- (I le /4,7a../,7e71,0., 	 1/10,04 (2),47‘,7, (3) A-q.,-
(4 .9) /	 9 taa es, (f)s/ekioa g spec% 4	 7 laec .4?

'e
/d.,) /oc, itve, N re4 . hoar/ (/') Orhavr.5,

/ A.o.nds hour./ (i2) re . eras, -.) 0 7 Cr/75
(/4) 60/70S 4","4.3;

"Mode: I = integer, R = real, D = decimal, A = alphabetic

132

Write
Control
Totals

133

No Is
This the

Last Employee

Start

Variables

\Read Plant/
No., Date,
Page No.

Has
Last Plant
Been Proc-

essed

No

Read
Plant
Cards

I nitialize
Remaining
Variables

Read an
Employee

Record from
Disk

C Stop

Write
Plant

Totals

Add to Total
and

Setup Line

Write a
Detail
Line

	

Section Subsections
	

Page

35
	

20
	

10
	

137

•	 // FOR
• 10CSICARD.TYPEWRITER.
• NAME RAY09

• • ONE WORD INTEGERS
• EXTENDED PRECISION
• LIST ALL
C 	 JOB NAME
	 JOB NUMBER	 --

C 	
	 PROGRAMMER
	 DATE CODED	 --

C 	 DATE UPDATED •••••
C

• INPUT I ILES

•
•
•

C•	
OUTPUT FILES

PAY09
1132 PRINTER.DISK) PAY09

PAY09
PAY09
PAY09
PAY09

PAYROLL SYSTEM — 941 REPORT
	

PAY09

PAY09
	

PAY09
PAY09

C.R.KLICK
	

PAY09

02/03/68 PAY09
PAY09
PAY09

FILE
NAME

FILE	 RECURD	 NO. OF	 RECORDS PAY09
NUMBER LENGTH RECORDS PER SECTORPAY09

1. COLFP 1 160 250 2 PAY09

2. WVAFP 2 160 90 2 PAY09

3. MNCFP 3 160 200 2 PAY09

4. LBOFP 4 160 50 2 PAY09

5. LBTFP 5 160 150 2 PAY09
6. LMCFP 6 160 30 2 PAY09
7.	 INDX1 101 1 250 320 PAY09

8.	 INDX2 102 1 90 320 PAY09

9.	 INDX3 103 1 200 320 PAY09

10.	 INDX4 104 1 50 320 PAY09

11.	 INDX5 105 1 150 320 PAY09

12.	 INDX6 106 1 30 320 PAY09
PAY09

NONE PAY09

C 	 PAY09
• C 	 	 PAY09

C 	 ALLOCATE ARRAY STORAGE 	 PAY09

C 	 	 PAY09

• DIMENSION IDATE(3), IHD1(22). IHD2(22). IHD3(22). IHD4(22).	 PAY09

1	 ISSAN(9), ISUPP(13), NAME(9). NSSANI3). ORTD(6). YTD(14)PAY09

C 	 	 PAY09

• C 	 DEFINE THE FILES FOR THIS PROGRAM AS DESCRIBED ABOVE, AND 	 PAY09

C 	 EQUIVALENCE THE VARIABLES FOR THE NEXT RECORD NUMBER. 	 PAY09

C 	 	 PAY09

• DEFINE FILE	 1.(250.160.U.ICOL)1 2(90,160,U,IWVAI, 	 PAY09

1	 3(200.160.U,MUNC). 4I50,160.0LB0), 	 PAY09

2	 51150.160.U.LBTI. 030,160,CoLMC), 	 PAY09

• 3	 101125001,UoIN1/, 102(90,1oUrIN2), 103(200.1.U.IN3).PAY09
4	 104(5011.U.IN4), 105(150.1tUrIN5). 106(30.1,U,IN6) 	 PAYU9
EQUIVALENCE (ICOL,IWVAINUNCILBO,LBT.LMC),	 PAY09

•
1	 (IN1.1N2IIN3.1N4,1N5,1N6)	 PAY09

C	 ' 	 PAY09

C 	 	 PAY09

• C 	 INITIALIZE VARIABLES AND READ PLANT NO., DATE, AND PAGE NO. 	 PAY09

C 	 	 PAY09

IL . 16448	 PAY09

134

Section Subsections Page

35 20 10 138

• C 	
 1000 READ(2,1) N. 'DATE. IPAGE

1 FORMAT(11.412)

C.

11
C 	 IS THIS THE LAST PLANT.
C 	 YES • 99

• C 	 NO + 110
C 	

IFIN) 99999.100

• 100 IFIN - 6) 110.'.10,99
C.	
C 	

• C 	 READ THE PLANT NAME AND ADDRESS. AND INITIALIZE THE REMAINING

C 	 VARIABLES. AND WRITE PLANT INFORMATION UN TOP OF FIRST PAGE.

• C 	
 110 READ(2.2) IHD1. IHD2. IHD3. IHD4
2 FORMAT(22A2)

C 	

• MPC0.0
MPLY.0
TOTA=0.

• TOT8.0.
TOTC.0.
TOTD=0.

• LINE.0
WRITE(313) IL. IHD1. 1DATE. IPAGE. IHD2. IHD3, IHD4

3 FORMATIA102X122A2.2X•2(120+').12,10X,12/(5X.22A21)
• WRITEI3,8)

8 FORMAT('1')
IL=-3776

• IPAGE.IPAGE + 1
INDX . N + 100
GO TO (131.132,1331134.135.136),N

• 131 LST.250
GO TO 140

132 LST.90
• GO TO 140

133 LST.200
GO TO 140

• 134 LST=50
GO TO 140

135 LST=150
• GO TO 140

136 LST.30

• C 	 GET THE NUMBER OF EMPLOYEES

PAGE 02

PAY09
PAY09
PAY09
PAY09
PAY09
PAY09
PAYG9
PAY09
PAYG9
PAY09
PAY09
PAY09
PAY09
PAY09
PAY09
PAY09
PAY09
PAY:19
PAY09
PAY09
PAY09
PAY09
PAY09
PAY09
PAY09
PAY09
PAY09
PAY09
PAY09
PAY09
PAY09
PAY09
PAY09
PAY09
PAY09
PAY09
PAY09
PAY09
PAY09
PAY09
PAY09
PAY09
PAY09
PAYO9
PAY09
PAY09
PAY09
PAY09
PAY09

135

Section Subsections
	 Page

35

C .	 PAY09• C	 	 PAY09

C 	 READ AN EMPLOYEE RECORD FROM DISK. AND DECIDE IF IT COUNTS. 	 PAY09

C 	 	 PAY09

II	 DO 275 I=1.LAST	 PAY09

READIN I I) NUM, NAME, NSSAN, NSTAS, NDUES. NWKMP, NWKPD. MAR. 	 PAYU9

1	 NXMPF, NXMPS, NSEX. NRATE. YTD, ORTD. LYRHR. NCU, NCUDD, 	 PAYO9

II	 2	 NCHCK, NADWHo NSTCK. NINS. NMISC, NUA, NSTKD, ISUPP, INIT. IPDPAY09

c 	 	 PAY09

C 	 IF RECORD COUNTS .• 150	 OTHERWISE — 275	 PAYU9• C	 	 PAYO9
PAY09

C 	 PAYU9• C	 	 PAY09

C 	 THIS ROUTINE CONTROLS THE PAGE FORMAT. IF 40 LINES HAVE BEEN 	 PAY09

C 	 PRINTED PUT HEADINGS AT TOP OF NEXT PAGE. OTHERWISE DO NOTHING. PAY09• C 	 	 PAY09

150 IF(LINE •• 40) 170.170.160 	 PAY09

160 MPCO=MPCO + MPLY	 PAY09

II	 TOTC.TOTC + IOTA	 PAY09

TOTD=TOTD + TOTB	 PAY09

TOTA=WHOLEITOTA + (IOTA / ABS(TOTA)) * 0.5) / 100. 	 PAYU9

• TOTB.WHOLE(TOT9 + ITOTB / ABS(TOTB)) * 0.5) / 100. 	 PAY09C 	 	 PAY09

C 	 WRITE TOTALS AT THE BOTTOM OF THE PAGE. 	 PAYO9

• c 	 	 PAY09

WRITE(3.5) MPLY. MPLY. IOTA. TOTB 	 PAY09

5 FORMAT(111,30X,I2.8X.I217X.F9.2.4X.F9.2)	 PAY09

• MPLY=0	 PAY09C 	 	 PAY09

C 	 NEXT PAGE	 PAYU9• C 	 	 PAY09

WRITE(3.4) IHD1. 'DATE. 'PAGE, IHD2. IHD3, IHD4	 PAY09

4 FORMAT('!	 . .22A2.2X02(I20 .- 1).12.10X0I2/(3X122A2)) 	 PAY09

WRITE(3.8)	 PAY09

LINE.0	 PAY09

IPAGE=IPAGE + 1	 PAY09

TOTA=O.	 PAY09

TOTB.O.	 PAY09

C 	 PAY09

• C 	 	 PAY09

C 	 ADD EMPLOYEE INFORMATION TO TOTAL AND SETUP DETAIL LINE. 	 PAY09

C 	 	 PAY09

• 170 A=NSSAN(1)	 PAY09

CALL PUTIISSAN$1,3,A * 10..5..1) 	 PAY09

A.NSSANI2)	 PAY09

CALL PUT(ISSAN.4.5.A * 10.0.01)	 PAY09

A=NSSAN(3)	 PAY09

CALL PUTIISSANI6,91A * 10..5.11) 	 PAY09

•

IFIORTD(1)1 150.275.150

•

Section Subsections Page

35 20 I	 10 140

PAGE 03

■

136

Section Subsections
	

Page

35
	

20
	

10
	

141

PAGE 04

A=660000. - (YTDI1) -. YTD(5))	 PAY09
IF(A) 180.180,175	 PAYG9

175 FICAmORTD(1) ■ ORTD(6)	 PAY09
GO TO 195	 PAY09

lb	 180 FICA.A + ORTD(1) - ORTD(6) 	 PAY09
IF(FICA) 185.195.195	 PAY09

185 FICA . O.	 PAY09

• 195 TOTA.TOTA + FICA	 PAY09
TOTB=TOTB + ORTD(1) 	 PAY09
FICA=WHOLE(FICA + (FICA / ABS(FICA)) * 0.5) / 100. 	 PAY09

II	 ORTD(1)84HOLE(ORTD(1) + (ORTD(1) / ABS(ORTD(11)) * 0.5) / 100. 	 PAY09
MPLY.MPLY + 1	 PAY09
LINE=LINE + 1	 PAY09• C 	 PAY09

C 	 	 PAY09
C 	 WRITE A DETAIL LINE AND GO BACK FOR ANOTHER EMPLOYEE.	 PAY09• C 	 	 PAY09

WRITE(3.6) ISSAN, NAME, FICA. 01470(1)	 PAY09
6 FORMAT(3)(03A1,1X.2A1,1X,4A1.7X09A21,11X,F9.2.4X,F9.2) 	 PAY09

• C 	 	 PAY09
C 	 GO BACK	 PAY09
C 	 	 PAY09

• 275 CONTINUE	 PAY09
C 	 PAY09
C 	 	 PAY09

• C 	 THE PROGRAM WILL AUTOMATICALLY GO THRU HERE WHEN THE LAST EMPLYEEPAYO9
C 	 HAS BEEN PROCESSED. CREATE AND WRITE PLANT TOTALS ON REPORT. 	 PAY09
C 	 	 PAY09

ID	 TOTC.,TOTC + IOTA	 PAY09
TOTD.,TOTD + TOTB	 PAY09
TOTA.WHOLE(TOTA + (IOTA / ABS(TOTA)) * 0.5) / 100. 	 PAY09

• TOTB.WHOLE(TOTB + (TOTB / ABS(TOTB)) * 0.5) / 100. 	 PAY09

C 	 	 PAY09
C 	 WRITE	 PAY09

• C 	 	 PAY09
WRITE(3,5) MPLY. MPLY, IOTA, TOTB 	 PAY09

C 	 PAY09
• C 	 	 PAY09

C 	 CREATE AND WRITE PLANT CONTROL TOTALS ON CONSOLE AND GO BACK FOR PAY09
C 	 ANOTHER PLANT	 PAY09• C 	 	 PAY09

MPCO=MPCO + MPLY	 PAY09
TOTC.WHOLE(TOTC + (TOTC / ABS(TOTC)I * 0.5) / 100. 	 PAY09

• TOTD=WHOLECTOTD + (TOTD / ABS(TOTD)) * 0.5) / 100. 	 PAY09
C 	 	 PAY09
C 	 WRITE	 PAY09

• C 	 	 PAY09
WRITE(1.9) IH01	 PAY09

9 FORMAT(22A2)	 PAY09

137

Section Subsections Page

35 20 10 142

PAGE 05

WRITEI1.71 MK°, TOTC. TOTO
	

PAY09
7 PoRmAT113$2F12.21
	

PAY09
PAY09

GO BACK
	 PAY09

C■■■■■
	 PAY09
GO TO 1000
	 PAY09

C 	
	 PATO9

0 Cr....	 PAY09
C ..■.•.. THE PROGRAM COMES THIN HERE WHEN THE LAST PLANT HAS BEEN	 PAY09
C.....•". PROCESSED.	 STOP	 PAY09

44	 C•••••	 PAY09
99 CALL EXIT	 PAY09

C....... 	 PAY09
41	 END	 PAY09

S

S

•

•
CORE REQUIREMENTS FOR PAY09

COMMON	 0 VARIABLES	 320 PROGRAM	 826

END OF COMPILATION
S

138

•

VARIABLE ALLOCATIONS
41	 ICOL .0094 IWVA .0054 MUNC .0054 LBO .0064

INS .0055 INS .0055 ORTD .0065 YTD .008F
IOATE.00A9 IMD1 *000F IH62 .0005 1M03 .00E8

41	 N	 •0125 IPAGE•0126 MPCO .0127 MPLY •0128
NSTAS*012F NooEs•lTo NWEMP.0131 NWKP000132
NCU .0139 PCUO0•013A NCHCA•0138 NADWH•013C

41	 OD .0143

STATEMENT ALLOCATIONS
41

FEATURES SUPPORTED
ONE WORD INTEGERS

44	 MENDED PRECISION
10Cs

44	 CALLED SUBPROGRAMS
WHOLE LABS	 PUT	 EADD	 EADDA ESUBA
FLOAT WRTY2 SRED	 SORT	 SCOMP	 SFIO

40	 SOAF	 SDI

REAL CONSTANTS
•

44

LBT .0054	 LMC	 •0054 INI	 .0095	 1N2 .0055 1N3	 .0055	 IN.	 .0055
TOTA .0092	 TOTS .0099 TOTC .0098	 TOTO .0098 A	 .009E	 FICA *00A1
1H04 .0101	 ISSAN.010A ISUPP.0117	 NAME .0120 NSSAN•0123	 IL	 .0124
LINE •0129	 INOX .012A LST	 .0128	 LAST .012C I	 .0120	 NUM	 .012E
MAR .0133	 NXMPF•0134 NXMPS.0136	 HSEX .0136 NRATE•0137	 LYRHR*0138
NSTCK40130	 NINS .013E NMISC.013F	 NUA •0140 NSTA0.0141	 INIT .0142

5 •0188	 4	 .0193 6	 401A6	 9 •0187 7	 .01BA	 1000 .0107
133 .0268	 134	 .025E 135	 .0264	 136 .026A 140	 .0265	 150	 .02B0
Tos .06A0	 195	 103A4 275	 .03FF	 99 80480

EMPY EDIV	 ELO ELM(ESTO ESTOX ESBR	 EDVR	 EDVRX
SIOAI SIOFX	 SIOF 5101	 CARDZ PRNTZ SOF10	 SORED	 SOAI

1 .016C 2 .0170 3 •01/3 8 .0185
100 .01e6 110 •01EB 131 .024C 132 .0252
160 .02C2 170 .0332 175 •0383 180 •0380

.000000000E 00.0148

.660000000E 06.0157
.500000000E 00.0148 .100000000E 03.0145 .100000000E 02.0151 .500000000E 01.0184

INTEGER CONSTANTS
16448 •015A	 2.0158 6.0150 0.0150 3.015E 3776.0151 1.0160 100.0161 250.0162 90.0163

200.0164	 40.0169 190.0166 30.0167 40.0168 4.0169 5.016A 9.016B

	

Section Subsections
	

Page

35
	

20
	

10
	

143

// JOB
• // XE0 PAY09	 2

*PILES(1,COLFP).(2,WVAFP)o(36MNCFP)11(411LBOFP).(51,LBTFP)o(6.LMCFP)o
*FILES(1019INDX1),(102.INDX2),(10311INDX3),(104,INDX4)11(108.INDX81,(106,INDX6)

• 103316801
XYZ MANUFACTURING COMPANY
1642 EAST MIDDLETOWN STREET

• ANYTOWN► SOMESTATE	 99999
013-323060
9

Input cards

139

XYZ MANUFACTURING COMPANY
10	 21520.23	 21532.23

•
•

FORM Ma /Re•. Jon. 19661
U.S. MIMI." DePertmnn	 1 Rennet Service

CONTINUATION SHEET FOR SCHEDULE A OF FORMS , 941, 94141, 94ISS, OR 943
REPORT OF WAGES TAXABLE UNDER THE FEDERAL INSURANCE CONTRIBUTIONS ACT

THE CONTAINER COMPANY
1642 EAST MIDDLETOWN STREET
COLUMBUS, WASHINGTON 99999
013-32-3060

Type or print in WI, mace employer, identification number. name. and addreed
exactly as shown on the return.

Date
Ett d" 3-31-68

If this form is used as a continual on
sheet for Form 943, Employer's An. lipo
nual Tax Return for Agricultural
Employees, please check here.

READ INSTRUCTIONS CAREFULLY
Attach only original continuation sheets to your tax

return. Do not send a carbon copy to the U.S. District
Director of Internal Revenue.

f.tg,„	 1

EMPLOYEES SOCIAL SECURITY
ACCOUNT NUMBER

(If number is unknown, we Circular Ei
woo

NAME OF EMPLOYEE
(Please type or paint)

TAXABLE F.I.C.A. WAGES
Paid =employer in Quarter

(Bann deduction.,
w OeIIs 	 Cann

TAXABLE TIPS REPORTED
(See Instructions
Imo so, ram 94,)

013 32 3060
083 28 4339
712 98 2119
032 24 4378
614 63 8734
541 03 2308
213 71 0014
782 92 7112
194 51 1234
822 44 5678

ROBERT B BADEN
JOHN A HORN
ROBT L SHORES
JOHN W CUSSEN
JOSEPH MONTANO
DONALD MILLER
A E TAYLOR
DAVID A HUBBARD
FRANK T DOLEN
AL REYNOLDS

1831.01
2202.84
1906.65
2286.25
3176.73
1342.00
2233.03
1923.58
1475.89
3142.25

1831.01
2202.84
1906.65
2286.25
3176.73
1346.00
2241.03
1923.58
1475.89
3142.25

TOTALS FOR THIS PAGE
number of employees,
taxable wages and taxable tips

21532.23L1 	 21520.23NUMBER
OF
	

10
	

10
EMPLOYEES

FEDERAL COPY

Et
• 77• 7
• 7
•
• '44"
• 41
• H
• H

1E• T1
•
•

• IE
•
•
•
•
• ti
•
• 4-=
•

•
•

•
•
•
•
•

•

Section Subsections Page

35 20 10 144

	

Section Subsections	 Page

35	 20	 10	 145

IBM 1130 MACHINE SETUP SHEET

PROGRAM
	 94/ A7E-PORT PROGRAM

NUMBER:	 PA Y09
PROGRAM
DESCRIPTION:

APPROXIMATE
RUNNING TIME:

PRINTER

TYPE OF PAPER NO. OF COPIES CARRIAGE TAPE

94 / mods 941 TA PE

DISKS

DRIVE NUMBER: 0 1 2 3 4

CARTRIDGE
ID: PAYROLL

SWITCH
SETTINGS

SWITCH
UP
DOWN

/v°4-'‘ SWITCH
UP
DOWN

UP
SWITCH

DOWN

INPUT
CARDS

•

/COP' ewe /Wan /1

1
(MORE
PLANTS —

CLAM/7
ACCOUNT
CARD

NO, —
(AZ A.17-
c/TY-.srATE-
cARD

IANTPG
ADDRESS
CARP

r
PLANTNAMECRRL)

/ PL ANTHAA DERCARPCARD//
PAYO9

/
// ,/046 —

SOURCE OF INPUT:

DISPOSITION OF OUTPUT:

/— Plant information cards from file E
2- Pctyron dish from stora2e

1 94/ frefrofrt to sovernroent
2-Disk is retury7eP'' to statue
3- Plater enfoi-metion cards io file e

FOR PAUSES AND ERROR MESSAGES SEE ERROR RECOVERY SHEETS

141

_

	

Section Subsections
	

Page

35
	

20
	

20
	

01

PAYROLL SYSTEM

Operation Manual

Section Subsections Page

35 20 20 02

	

Section Subsections	 Page

35	 20
	

20
	

03

CONTENTS

Payroll Application	 	 1
Job Description	 	 1
System Flowchart 	 1

Narrative 	 1
Payroll File Create (PAY01, PAY02, PAY16) 	 2
Payroll File Changes (PAY03, PAY16) 	 3
Payroll Calculations and Register (PAY04, PAY16) 	 4
Print Payroll Checks (PAY05, PAY06) 	 5
Payroll Check Voiding (PAY11) 	 6
Payroll Deduction Registers (PAY12 thru PAY15) 	 7
Payroll File Audit, 941, and Tax (PAY07, PAY09, PAY10)	 	 8
Print W-2 Reports (PAYnn) 	 9
Error Detection and Correction (PAY09) 	 10

Payroll Programs 	 11
PAY01: Payroll File Create 	 11

Accounting Controls 	 11
Error Recovery Sheet 	 12
Machine Setup Sheet 	 13

PAY02: Add Names to the File 	 14
Accounting Controls 	 14
Error Recovery Sheet 	 15
Machine Setup Sheet 	 17

PAY03: Changes to the File 	 18
Accounting Controls 	 18
Error Recovery Sheet 	 19
Machine Setup Sheet 	 25

PAY04:	 Calculations and Payroll Register 	 	 26
Accounting Controls 	 26
Error Recovery Sheet 	 27
Machine Setup Sheet 	 37

PAY05: Check Writing	 	 38
Accounting Controls 	 	 38
Error Recovery Sheet 	 39
Machine Setup Sheet 	 50

PAY06: Check Register 	 51
Accounting Controls	 	 51
Error Recovery Sheet 	 52
Machine Setup Sheet 	 53

PAY09: 941 Report 	 54
Accounting Controls 	 54
Error Recovery Sheet 	 55
Machine Setup Sheet 	 56

	

Section Subsections
	 Page

35
	

20
	

20
	

04

	

Section Subsections 	 Page

35
	

20
	

20
	

05

PAYROLL APPLICATION

JOB DESCRIPTION

The Payroll System is composed of 16 different runs. From the source documents, produced
at the six plant sites, cards are punched. These cards are used to store the payroll informa-
tion on the disk cartridge.

At this point the system uses cards only for transition between jobs. The input data,
employee records, is read from the disk and updated before being written back. This gives a
highly flexible system, in which I/O, because of the disk, is very fast.

The system produces the following reports:
• Checks and check stubs
• Check register
• Payroll register
• Deduction registers for

1. Union dues
2. Credit union
3. Stock

• 941 quarterly report

SYSTEM FLOWCHART

Narrative

The system consists of 16 programs.
The Files Creation program is first. Data decks are keypunched for each individual, in sets,

by plant. The data is edited and, when correct, loaded on the disk by PAY01. Three files are
created: a master file, an index file, and a plant information file. A second data deck with
employee clock number and name is loaded onto the master file by PAY02.

Changes to the disk information are made by PAY03. Documents, received from personnel
departments at the individual plants, are checked, summarized, keypunched, and verified.
Time sheets, submitted by the plant payroll departments, are keypunched and verified. All of
these cards are processed by PAY16, which edits and generates control totals. PAY04 then
processes these cards, performing all payroll calculations. Cards are read, pay computed,
disk files updated, and cards extended with current pay figures. After all cards are processed,
a payroll register is printed.

Checks are printed by PAY05. A header card is read and the checks are printed from the
disk file. PAY06 lists the check register from the disk file. In the event of an error in
computing pay, PAY11 provides the means of voiding checks. The extended time cards from
PAY04 are read in and the affected employee records are reset. The above are weekly runs.

At month end, registers are prepared showing each individual's deductions for the month:
PAY13 writes union dues register.
PAY14 writes credit union register.
PAY15 writes stock deductions register.
PAY12 resets charity deductions code.

At the end of the quarter and at the end of the year PAY07 and PAY08 are used to balance
the disk files to control totals.

PAY09 produces the 941 tax report.
PAY10 produces a tax worksheet used to determine tax liability.

At the present time the program for W-2 reports has not been written.

1

Keypunch &
Key-Verify
Clock No.
and Name

Keypunch &
Key-Verify

All but
Name

Totals on
Adding
Machine

TAPE

Keypunch &
All but	 Key-Verify
Name	 Control

Totals

Section Subsections Page

35 20 20 06

Employee
Earnings
Record

Control
Totals

Zero Balance
Totals

PAY 1q
INPUT
EDIT

Balance to
Totals&

Correct as
Necessary

O .K.

Control Totals

All but
Name

Control Totals
File
APAY 01 All but

Name
PAY 02 Disk

Payroll
File

FILE
CREATEADD NAMES

Store Disk
Payroll

File

Clock No.
and

Name

File
B

2

Out of Balance

Control
Total

Zero
Balance
Total

PAY 16
INPUT
EDIT

Employee
Payroll Change
Authorizations

Total on
Adding
Machine

	OP. TAPE

Keypunch &
Key-Verify
Clock No.,

Change Code,
and Changes

Keypunch &
Key-Verify

Control
Total

Changes

Balance to
Total and
Correct as
Necessary

O .K.

Control
Total

From
Storage Changes

Out of Balance

Control
Total

PAY 03
FILE

CHANGES

Disk
Payroll

File

Changes

Disk
Payroll

File

3

	

Section Subsections
	

Page

35
	

20
	

20
	

07

Section Subsections Page

35 20 20 08

Weekly
Time
Sheets

Totals on
Adding
Machine

TAPE

Keypunch &
Key-Verify

Details f Keypunch &
Key-Verify

Control
Totals

Details

Zero Balance
Totals

PAY 16
INPUT
EDIT

Control
Totals

Balance to
Totals &

Correct as
Necessary

Out of Balance

Control Totals

O .K.

Disk
Payroll

File

Details

Payroll
Register

CALCULATION
PAY 04

Zero Balance
Totals

Balance to
Totals; If
Incorrect,
Go to E

Details

Distribute Disk Control
ToPayroll Payroll Totals

Register F ile • File
D

4

Control
Totals

Burst, Sign
and Distribute

Paychecks
and Stubs

Balance to
Totals; If
Incorrect,
Go to E

V

Distribute
Check

Register 1

Disk
Payroll

File

(Control
Totals

File
D

5

Calculated
Control
Totals

PAY 05
	 Pay Checks

PAYROLL	 and Stubs
CHECKS

C

Control
Totals

•
Balance to
Totals; If
Incorrect,
Go to D

Check
Register

Total on
Adding

Machine

	so. TAPE

	

Section Subsections
	

Page

35
	

20
	

20
	

09

Details

PAY 11
VOID

CHECKS

ailsDe

Section Subsections Page

35 20 20 10

D

Only When Totals Do Not Balance

V

Control File

Destroy Payroll

(

Disk Totals D

Checks File

Disk
Payroll

File

To

Control
Totals

To
C

F ile
D

6

Credit
Union

Register

PAY 14
CREDIT
UNION

Enter Plant
Number

Distribute
Stock

Deduction
Register

Balance to
Totals; If
Incorrect,
Go to E

Disk
Payroll

File

General
Ledger

Disk
Payroll

File

Enter Plant
Number

Totals on
Adding

Machine	 /

Union
Dues

Register
PAY 13
UNION
DUES

Distribute
Union
Dues

Register

Balance to
Totals; If
Incorrect,
Go to E

Enter Plant
Number

PAY 12
RESET

MONTHLY
TOTALS

Store

Disk
Payroll

F ile

Disk
Pay rol I
File

7

From
Storage

Balance to
Totals; If

TAPEIncorrect,
Go to E

Distribute
Credit
Union

Register

Disk
Payroll

File

Section Subsections
	

Page

35
	

20
	

20
	

11

File
E

Disk
Payroll

File

Plant
Numbers

Calculated
Control
Totals

Distribute
941

Report

PAY 09
941

REPORT

Balance to
Totals; If
Incorrect,
Go to E

Disk
Payroll

File

941
Report

Plant
Numbers

PAY 10
TAX

WORKSHEET

Balance to
Totals; If
Incorrect,
Go to E

Disk
Payroll

\	 File
General
Ledger

PAY 07	 Enter PlantTotals	 AUDIT FILE	 NumberBY COMPANY

Balance to
Totals; If
Incorrect,
Go to E

Totals on
Adding

Machine

TAPE

8

Section Subsections Page

35 20 20 12

W-2
Reports

Totals on
Adding
Machine

PAYnn
W-2

REPORTS

Balance to
Totals; If
Incorrect,
Go to E

it TAPE

From
Storage

File
E

Disk
	

General
Payroll
	

Plant
	

Ledger
File
	

Numbers

Distribute
	 Disk

W-2
	

Payroll
	

Plant

Reports
	 File

	
Numbers

Store

9

	

Section Subsections
	

Page

35
	

20
	

20
	

13

Individual
Payroll
Record

PAY 08
INQUIRY

Select Desired
Clock Number

Card

E
Disk

Payroll
File

Clock
Number

Last Week's
Payroll
Register

Balance to
Totals; If
Correct,
Go to E

Determine
Change

Required

Use PAY 16
& PAY 03

to Change the
Disk Payroll

Record

/ Does this
correct original
error? If not,

Go to E

Weekly
Time
Sheets

Return to
Print Where

Error
Occurred

Only when
entire original
error has been
corrected

10

Section Subsections Page

35 20 20 14

Section Subsections	 Page

35
	

2 0
	

2 0
	

15

PAYROLL PROGRAMS

PAY01: PAYROLL FILE CREATE

Accounting Controls

Balance total gross ($) and total tax withheld YTD ($) from the preceding PAY16 to the general
ledger.

11

MESSAGE TYPED: 	

/1/0 ^/E

PAUSE - DISPLAYED IN ACCUM:

A/

IBM 1130 ERROR RECOVERY SHEET

JOB Pay pa// Sy57-6127 PROGRAM NAME PA) Ye7/
PROGRAMMER NAME C.,94 7/A

AFTER PAUSE, CONTROL TRANSFERS TO STATEMENT

	 A/dI2e.

DESCRIPTION OF WHAT IS WRONG: 	

Ate=7.7 e

PROBABLE CAUSE: 	

RECOVERY PROCEDURES• 	

/14, we:

COMMENTS' 	

7-he•re are 7"'7 177 easgage S 0 papS eS.

SCORESHEET
DATE

INITIALS

Section Subsections Page

35 20 20 16

12

	

Section Subsections	 Page

35
	

20
	

20
	

17

IBM 1130 MACHINE SETUP SHEET

PROGRAM , 	 6-,,,,,,,46,	 PROGRAM	 ,e4>'0/
NAME:	 NUMBER:

PROGRAM	 APPROXIMATE
DESCRIPTION:	 RUNNING TIME:

PRINTER

TYPE OF PAPER NO. OF COPIES CARRIAGE TAPE

.5"/4,7471,111/-47' 1 5 42,--icie7,-,:2/

DISKS

DRIVE NUMBER: 0 1 2 3 4

CARTRIDGE
ID:

/1-gyro/ \.. ,...,	 ,--,/

SWITCH
SETTINGS

SWITCH /(/Owe SWITCH
UP
DOWN

UP
SWITCH

UP
DOWN DOWN

INPUT
CARDS

/ 4

/far r ; e.AYami /

/

DETAIL CARDS

/// XEQ PAY() I
/I/ LJOI

SOURCE OF INPUT:

DISPOSITION OF OUTPUT:

J -(---or"..7 / /19,2t i / 7(11-e,r'► a .svccessfa/ A34).<2 6 6,,,7//
/'urs

2 ,is-A- sy--1..is/..4.. /aayrag ,a/A:s-k ...,./h a.-e-,-2..c yie•
each "Vas>, aWoc-e7,4e.d.

1,./4, 714, ././	 6-,---vi,c	 77'e Ale!'" .; - 2 .0e/'/,--. A•
.- -..• 4	 ,-,,,,, / /-7/Z ..a.:...sls' 1-e, be> r./...r...4e z:-/	 .4:47)"?.,2) ,.,/, 4,.:	 5 ,

be=:. 1-.4./J2)	 il e7..x /4.

FOR PAUSES AND ERROR MESSAGES SEE ERROR RECOVERY SHEETS

13

Section Subsections Page

35 20 20 18

PAY02: ADD NAMES TO THE FILE

Accounting Controls

None

14

	

Section Subsections
	

Page

35
	

20
	

20
	

19

IBM 1130 ERROR RECOVERY SHEET

JOB Ray/9// ,-.5-ys7Ie'e PROGRAM NAME

PROGRAMMER NAME

PA ><O2

C. de7L7,	 -4-

MESSAGE TYPED:
PAUSE - DISPLAYED IN ACCUM:

CZ oc,e/f/ X X X k' A/c97"
Li' Ai/A/	 ".--/L.

AFTER PAUSE, CONTROL TRANSFERS TO STATEMENT /630

DESCRIPTION OF WHAT IS WRONG•

The /:-,/ock ./....7-7A&,--, z:	 the / ■"7/,‘,74 c--‘7.-e-/ ./...s.
.-7‘.../-)--e".."ts-,/2 /9 .74' //7	 /i7,..,'	 //,.,")<" (27 ,--/cv Ck

PROBABLE CAUSE:

/ TM- e...7•7„.o./v.y..'..7:5 recep.-e-1 ...as .2 of ..4:7a',/e,.-./.
4.,

e. 7:4e c- /e, .-..e	 .7 e./r7.6 6"/"., /..A, iit4c .".7,0‘.74- C.:47/-a9./..0
..icorr&.?717

RECOVERY PROCEDURES.
/474 71-he (''11‘2/ eSVe /h6' l''4/12 /-'6'1'/2-7 ova 2104 , CA/la/c) .50

. 2 e 9.74ez;)/ 7,1,-.€9,-.7	 7'...56, ,-77ta	 , /cc' C-le.	 a.7.:7,' G A'''	 ite..	 74-he.:
..., c	 , - ,.r 4, , -	 .5'	 -, a e•-•soda ,--7...../ /-7e° ("e•,/",d . Zie

-Af 	 -"'	 .0	 _	 Ge	 –	 AP	 ..- -

-/	 ,s- /i2c,6,/-7c,ell-he 11:1e. 2", ,4--he-	 .--,-	 z/-er."1-z-/ e.--, 1	 ce
l'ey:74.00,2 C h 744° C4 e-C,./ GPs.77" /46),",.1".-2.

COMMENTS'

SCORESHEET
DATE
INITIALS

15

Section Subsections Page

35 20 20 20

IBM 1130 ERROR RECOVERY SHEET

JOB Pay/'',01/ ---)y.5:746'/7-7 PROGRAM NAME
PROGRAMMER NAME

/2:3'9,02
CA.'•4"//',4..

MESSAGE TYPED:
C7L2K;, --

PAUSE - DISPLAYED IN ACCUM:
A.16. X K><>< /A/

/17-- /‘ E. .7)C.FIC •Ven7- cleCet.," x./ c, A/i'1,// 724/ CZ 49C-- 	AA?. x ›e).<)‹
/A/ (-11,e1..)

AFTER PAUSE, CONTROL TRANSFERS TO STATEMENT /e,G2

DESCRIPTION OF WHAT IS WRONG
7hr?	 ./e,c-A

•
wu, s ,- 7 befr, ,c9/.2 /he	 ,05,4 t 	 is ,7d)/.

%-	 ,e-,n-	 _5	 %e	 ./	 .,	 .6.,e__/11-72e-__
/i) tA' / I7,4/	 r--.01" .

PROBABLE CAUSE:

RECOVERY PROCEDURES.

-7:frivned..azety i-;452,,o/-71- 7ehe Oce e../1-7/16V-7 e? c 0..	 cf)7Z'
7ih..s	 744	 "5-41,76:',"/,/Se2)-.ye),,,,

COMMENTS •
6'6-e use	 /he. ..5/9-4/74e	 r'e'C' r,1^,e'i ,I-7 •67.1--"fal-,

/aoAs ./.2/e/2 ?le?: e'-'411/.0,--,} 7:4 ./.5 .elele..1.54,21,	 A--,�- /,///lam
r,-,a/4/0.!. • //owe kl69/-71 ,1/2,0, <7	 7d/ e a fes <	 (.7.74. ,-,/,;s.,4-	 ,...--,"�a

e	 .1"	 , .0	 0	 .	 .1	 ...-- - ' 	 ,o,	-A.

SCORESHEET

1

DATE

INITIALS

16

	

Section Subsections	 Page

35
	

20
	

20
	

21

IBM 1130 MACHINE SETUP SHEET

PROG RAM Aq,4, 	 /a ,	 . fiNAME:
PROGRAM	 ,QYD2
NUMBER:

PROGRAM
DESCRIPTION:

APPROXIMATE
RUNNING TIME:

PR INTER

TYPE OF PAPER NO. OF COPIES CARRIAGE TAPE

ds^f 7' /

DISKS

DRIVE NUMBER: 0	 1	 •	 2 3 4

CARTRIDGE
I D:

/{^lJ^/O//	 , \ /' \

SWITCH
SETTINGS

SWITCH	 /V7/V'f SWITCH
UP
DOWN

^ON^
UP
SWITCH NON/

UP
DOWN DOWN

INPUT
CARDS

/ q

2Z / ne/ 	 /

NA M E rr`CLOCK
N0. CARDS

/// X EQ PAY02

//, JOE

SOURCE OF INPUT:

DISPOSITION OF OUTPUT:

/ Cg,1'/,	 c,//o o succ 'si 1/ /?4Y// ed^f iur^.
2.Oiskpus/ be	 y'// dis,E fro,» .74Y7/

/ 1 ' 'aid /ock 4/a. c4r4s
re" ice./'4VO	 ui6,c% shoo/d

6e ru.^ n.^ ^t

FOR PAUSES AND ERROR MESSAGES SEE ERROR RECOVERY SHEETS

17

Section Subsections Page

35 20 20 22

PAY03: CHANGES TO THE FILE

Accounting Controls

Hash totals of clock numbers, change codes and new fields from preceding PAY16 should
balance to control totals prepared manually.

18

	

Section Subsections	 Page

35
	 20	 20
	

23

IBM 1130 ERROR RECOVERY SHEET

JOB R41.y"V// .5:y...5-77,0c") PROGRAM NAME
PROGRAMMER

/24 Yag
NAME C,./1C--Z/Ch

MESSAGE TYPED:
PAUSE - DISPLAYED IN ACCUM:

7e7 41/7- /L/D,S.:7)/.5-4,e,-:E-
.---0A7 c-Z7x-.-A- A/44.29A-,e

/V 0' A/ E.)()(XX.

AFTER PAUSE, CONTROL TRANSFERS TO STATEMENT /e2e2

DESCRIPTION OF WHAT IS WRONG •
G/2.S. 19 of (2.grad.

/t'57 c7//?/ 74 e%'-'.''	 -.Z.C24,	 "761/7•241',.'
74/7.- /a/a/77' /74.,-26e/-, ,, 	 7.-.5e‘ez/7/1-2

PROBABLE CAUSE:
I. ,	 d. .74. "ae, /-`	 0 "1 e	 Ge.../e2,5" /,7 cZ,-,psee	 zex-e-44._./0/4,771-

c1/a744 Di‘ .0,-.',74Ae.--. pate,),24.
0,,

2. 7--,	 .,,,/, c	 ,� 	 , ,27i , 5 - - e /ex:,	 c 0 ,- ,-....- , - Yzy

RECOVERY PROCEDURES:
le, /-46.

The	 c---w./ ,.--2	 .::"/P--,--or-= u---. ;// ,,<., _-_--,e• /ec7f,-.?4,/
G /71,°--.,-7e771e	 .5-74Ge--E---ocz'ff".	 -•(------E'/x7G7i",!=2;	 74"/	 Ce?/-40''

44/7e/e"?7/-,2;0a/"'e /71 / 	 7Lh,° -5-,7,-_./,'C&.. 9/JCe..,,77e,171:-
e0,--/-,....-.1- ./74 a,-2,,-/ .---we-e2/9.

COMMENTS; 72i .'" e/-/^o/, /774y 7-',67,54/// ;y2	 sc--..<;,7z,-),2 ,=-(-,.,23
/:=.-',-/-‘2,-). "Pe. exece/le. 74/t:- yl.-. c:7,3 "W,72 ...531.0/"77 9 G',/A'

c-c7.--.11 74/5e7 71 ,..."..0.1 /6e-i---79 / ,c-'01G' e S5 s e d71"/ r� 7	 .7d,-271 ,./.7,-..//4-%
Ge./he,-7 7" - e. . / 5 /9 //	 .c,e-c-e-/,-..---<./.	 2", I-A.7 e.,---;--,,,:2,---, c,CGe-//'-c_S- 	 ,a.

%-.5-eC 0,9 ,-)/ ,A;77 reFf /2	 7<. ,y	 "71,""	 .-e!,9c7".=',P11,, :se? PILy

SCORESHEET
DATE
INITIALS

19

Section Subsections Page

35 20 20 24

IBM 1131. ERROR RECOVERY SHEET

JOB ,°.//77/W/ 5-4,-7.:,-/Pnii PROGRAM NAME
PROGRAMMER

/-'4 Y%9,3
NAME Cie-.47/e'.

MESSAGE TYPED:
PAUSE - DISPLAYED IN ACCUM:

//v44 /p (--///)//_‹-7,--_-- e,*-2:',/%7Z-.
/s/ a•--•,,e xxx x

AFTER PAUSE, CONTROL TRANSFERS TO STATEMENT ./aG9

DESCRIPTION OF WHAT IS WRONG:

7h,-- (-ha",q emy. e-00./	 is /Ve,,76 efr*,//i, r1/2 e kaZ/4.1
/-7- (/-v04).

PROBABLE CAUSE:

tis'e4;:y.7,41,2 C4	 Pr//,/') /-)

RECOVERY PROCEDURES-

/`..... 71/./C-Z7 C'./7/74/ /2.--7c:/c-://,C?../...9-7&°,-7.74
7 i, i<- - - "Pyr /, / 2 (-1/2 ‘942,-,;--19-7zez.-,.

COMMENTS'

SCORESHEET
DATE

INITIALS

20

	

Section Subsections	 Page

35	 20	 20	 25

IBM 1130 ERROR RECOVERY SHEET

JOB Pay/-10// S,..y.s7iiy7 PROGRAM NAME
PROGRAMMER NAME

"17,4 x-D...5

(-1..e..-Y/C,4-

MESSAGE TYPED:
PAUSE - DISPLAYED IN ACCUM:

CL/2(-7.&" /V0 X XXX ,V,07.
Ai' ,.... /./

./A/A-12.

AFTER PAUSE, CONTROL TRANSFERS TO STATEMENT A:247

DESCRIPTION OF WHAT . IS WRONG-

772e //2/26/A Ci2,""e.	(--:-../,',4. / -7 "./,"1'7(6,.?,-) ./.5.- ,7 e274 //-2	 74A4'..
/./7,de,x-

PROBABLE CAUSE•
/. z 	 tC?C).--?/7/0yr.'(•=: 	 C.._(--e:2C:e7/ 4/' c-"	 -2,,)71 4 e•=7(g/-1.

/.ea.--i-z=,/-2./.
er,

7--e,',e:;..4,.	 ,,,,,,he,-■,.).-.7 //5e	 -.1f:7"...a/	 AS

fr/Z.,2e-7.c:',-3/ Jr7 C L7/'.-^	 Te//,e_

RECOVERY PROCEDURES.
.

7-h i.? cap,/ ALT ...5.7ZeiCA- r=" C. ,-S-a/G-IZE'.47 ,PE=',7-7eVL/67 >97,..., K77,2-Y
/"/..e	 ..., -	 7'6.•■ -• 	 .0'	 —	 Af	 .."	 .4,	. .1	 ,	 -	 ././.7	 -
7'ere,•--s.)."1-A..., c.,e,, c044- /7‘..72hA0,4 Ax- cz,r-,,,a,c's4 ,/e447/

e ,..,-.,2"0/0,-/,->e•-•'.c. t'edo/'al oz2 7'-'	 t° ,/ Z.%. , c97'he.-,-,A;A:se,
co// --ePc:7' .11. 4-47.-..d.a.d .-,-.^6,..2.

COMMENTS'

SCORESHEET DATE -

INITIALS

21

Section Subsections Page

35 20 20 26

IBM 1130 ERROR RECOVERY SHEET

JOB .47y,-'67V/ ■-Ssj..5/62/7; PROGRAM NAME

PROGRAMMER NAME

A4 >"-.03

C--:,A:::',6--/rc.A4

MESSAGE TYPED:
PAUSE - DISPLAYED IN ACCUM:

G-7 /,e -:,t- -- A./e/.4,1/5'friPS 0...0
m/,,7- "CIGA7. 4"," /-21(:" .XXXX.

e" Le

AFTER PAUSE, CONTROL TRANSFERS TO STATEMENT /C,C,

DESCRIPTION OF WHAT IS WRONG:
7- hi' C/DG:e /7i/0,76ey'," .';') 7`7.5' ,-iAsk 7i% /L5- ,") ag / .7.',3e

.5-4 2 "We 47-5- 71/2 et	 /e:, t- ,A ,, c#,7,6a7P"' />, ,e."M" m.cee0X 471741/.1),---e. .e.P7/74, 74 C'de-s1".

PROBABLE CAUSE:

j2.)/5-,4	 z:7'47714.	 A.os	 ..hee....--► 417.././eve,

RECOVERY PROCEDURES.

G--"Air.P,e-/ „Air .5:41 'cif- 0 ' e • %re? /d• e- 71‘,a."..
ini err t::, 41/47 16' ./". 	 "W",e, GI e "g` f/ 5 .=,' ,C"'G'L./ /"/"E'..,--7C e=' /97d

COMMENTS'
-7-)l-s-	,--/-2,,--3	 h■ 2 .5"	 i"e",3e211	 ./70:zt67,-; ."-}"Fts-z4.,-,c,	 ,,vo/

SCORESHEET
DATE
INITIALS

22

MESSAGE TYPED: 	

/t/7"*".e.e ss. . -"OA? xxxx

PAUSE - DISPLAYED IN ACCUM:

O /V

IBM 1130 ERROR RECOVERY SHEET

JOB Payro t.5–y57/e/72 PROGRAM NAME P,
PROGRAMMER NAME C: /e 7/2-,

AFTER PAUSE, CONTROL TRANSFERS TO STATEMENT

0 el' /Id .5 r=' /e::› 7t

DESCRIPTION OF WHAT IS WRONG• 	

A,f de A / 	 / C 14,2i 24 7,- y:2394,0:74

PROBABLE CAUSE-

hyo /- 2 rod

RECOVERY PROCEDURES. 	

Fir .74,42rfrA9 +50/7 • „Seca. -7/,:y

COMMENTS' 	

SCORESHEET
DATE

INITIALS

e7

Section Subsections
	

Page

35
	

20
	

00
	

27

23

Section Subsections Page
35 20 20 28

IBM 1130 ERROR RECOVERY SHEET

JOB	 ,2 &V 	 %.5:-.5-7e6" /7", PROG RAM NAME

PROGRAMMER NAME

"67/X0--

67•te,e//e'k_

MESSAGE TYPED:
PAUSE - DISPLAYED IN ACCUM:

,\/ 0 /k/ ---
C..	 26../c' 4311/72,49E-AL? XX)()(
/.S . %)///7/ /K":1J-F.D.

AFTER PAUSE, CONTROL TRANSFERS TO STATEMENT /6762

DESCRIPTION OF WHAT IS WRONG•-

7 - A rr,'	 c ". /c7C:.	 , - 7 e.,,,- , .h,-c'^ ,, 74A-=' Zi2,„ .004"	 e-WV-e: 1 "Pc',",
,,,-,-,	 ,izz..,__e;z4c.-,	 ,r•/../e2. ,'7	 /71 	 ,- /Ls .,./r-,--4:-,-,,,,-/(/

PROBABLE CAUSE:
/ The cW,--. 	 A	 .5--	 =&='..7	 6'./7/....---/

,.Ct=e. C 0,9.d	 PLZ >"1-1°.
(,,'

,2. /A.==•	 /e7e--.4" .2‘....,-,--7.6c=7,-) 777	 7-A,-' --):,,,,,74 Car-,-,/
Z.5	 /,,Cr9Z"),"	 74

RECOVERY PROCEDURES.
7Y tea/-.../ AL:--	 ,---7/-y-(7----E''' -.5/".=2C 746--'77: (--:-.A r= ''- .6*	 7/A"

c"1/4, c ,e','.	 ,	 ./..,. /-:, -.,,-, 	 ii/ /1/2?	 , . -	 'L-- .:' iii -.	 . /	 ■-",..' , • .-7 7 r	 ,z..' -7"4" /7	 ,-;,--.>
me 0,-/-- r c' 74., ref cmc h 0,3d /--e='_.--z/ Pi .	 Tf" it Ts Go ri-cr-7L , a se,

i i ai i) 2	 P14 Y (7/F, *4 1.-2rw-P` th d:. 7% /e..
- A ..r-rn /1-7 L.,' .	 t.1)1 7	 .74*/):7 6.: 1-- 	 or . i ,,o-fr i 1- is

f'it'.: //7/(//t - pre,
/kV /r/ etreco 1-el 0

Cr-/--- er 7L-.

COMMENTS'

SCORESHEET
DATE
INITIALS

24

	

Section Subsections	 Page

35	 20	 20	 29

IBM 1130 MACHINE SETUP SHEET

PROGRAM cz 	 ..e_ fhe, .4,;,/e
NAME:	 ./Amge''S ry PROGRAM

NUMBER:	 17AY42.3

PROGRAM
DESCRIPTION:

APPROXIMATE
RUNNING TIME:

PRINTER

TYPE OF PAPER NO. OF COPIES CARRIAGE TAPE

6)10„,2441,....e./ / ,SY4e2d0,-4/

DISKS

DRIVE NUMBER: 0	 1 2 3 4

CARTRIDGE
ID: Pay.^o//

SWITCH
SETTINGS

SWITCH
UP
DOWN

/1/2),"le SWITCH
UP
DOWN

/1/0/-,e SWITCH
UP
DOWN

4./4),-,

INPUT
CARDS

/-: 01" cQch

ze./,A cs4or3+e,s.
/7%0,21.

(MORE

(
,.,'7"eC1/2e

CHANGE.
CARDS

q

/-e:7,--
f'/47.77.-

ai5e

/

CHANGE
CARDS

(// X E (I) PAY° 3

//1 Joe)

SOURCE OF INPUT:

DISPOSITION OF OUTPUT:

/ Cart/ ../2/2/./,‘ 474,v7 ,a ,s,./r7e-ess..-24.1 PAY/a ^4i1 1 ..- zi.e7.
2.0/.5-,	 musrLee	e21/4-4. fe-evry, AA's ./a.ayro/./

/c-havye cards 	 4/ e 4/ ,,.) ///,-- (-:.
e 1)/.S.E" /s .",...61.,,,-.4,0...9" fe, s-7."0,..09,- ,.r. ,,,,,se= ,..,.../.%

A4 >."(4

FOR PAUSES AND ERROR MESSAGES SEE ERROR RECOVERY SHEETS

25

Section Subsections Page

35 20 20 30

PAY04: CALCULATIONS AND PAYROLL REGISTER

Accounting Controls

Machine totals (regular hours, OT hours, bonus hours, special earnings) must be balanced to
the control totals from the preceding PAY16 run. Information is found on console printer for
this zero-balance check.

26

	

Section Subsections
	

Page

35
	

20
	

20
	

31

IBM 1130 ERROR RECOVERY SHEET

JOB PO Y r ° /1 Sr"fte/n PROGRAM NAME

PROGRAMMER NAME

PA r04
C. .47. ir/ic A'

MESSAGE TYPED:
PAUSE - DISPLAYED IN ACCUM:

CHFCir	 CC	 .1 /4/Vat) 80
O 0 0 /0/V oc/R.ST C.9/?,

AFTER PAUSE, CONTROL TRANSFERS TO STATEMENT 9 9 999

DESCRIPTION OF WHAT IS WRONG•
/.Cdrd co/t/mn 1 /ids an i4koVii
p/geert no/vber;

or-
2. Cdrd co/r/tru, ao e .s 'so* zero

PROBABLE CAUSE•
Either- d Oktelic cdro/ or d ddr,, cdroi
/g a s eSeeerl	 /P /aced	 m	 ?rent	 0 , V-he
dock.

RECOVERY PROCEDURES.
C/e4p	 the cdr•oi /-«t der.	 C/VPRO).

P/dce d Proper ' .° e fr'	 heckler cc:ire/ dr the	 heimelm,
0, "4e dec14.	 Reddy	the	 cdrai redder- dna/
Press	 /3•-op-cz Pr/	 .5.7" dr*	 0/, the	 co"ro/e.

COMMENTS •

SCORESHEET
DATE

INITIALS

27

Section Subsections Page

35 20 20 32

IBM 1130 ERROR RECOVERY SHEET

JOB A t yl-e /1 5,114.4177 PROGRAM NAME

PROGRAMMER NAME

PA Y 04

C. R. 1"/ c A

MESSAGE TYPED:
PAUSE - DISPLAYED I N ACCUM:

COMPANY NAM. 0,4 rg-

/ / /
cw cle Ae 0	 JrAteiM11.

JC Ar	 X NXAl /MVO"
4/ k I	 Wei' A, ftlir	 .	 ' ;	 1Tif IC."	 r
AFTER PAUSE, CONTROL TRANSFERS TO STATEMENT N O 4*

Re dels	 4/d 74 ' et	 Sole; 1-c he s _

DESCRIPTION OF WHAT IS WRONG.

4.0;+EP`d yier 	 WI r';:m7	 7`o c A ct n.f0	 Co ihf rci 476".f

PROBABLE CAUSE.

Pro /earn	 q' //oov.s. Air l'A 1 s	 fio if/ A:// 7'4

RECOVERY PROCEDURES.

fib//ow t"fle /.17 .1. rr 7/ C ri o ors fir/4 re c / .

COMMENTS•

SCORESHEET
DATE
INITIALS

I I

28

	

Section Subsections
	

Page

35
	

20 20
	

33

IBM 1130 ERROR RECOVERY SHEET

JOB /,2),,r.o// 5/4-7"-eK7 PROGRAM NAME

PROGRAMMER

fi/4r04

NAME C. le ir/I 4 k

MESSAGE TYPED:
PAUSE - DISPLAYED IN ACCUM:

CHECK C ■9R0 /4/ /771
0 / 0 0C Z. OCA" NUMBE

X XXX

AFTER PAUSE, CONTROL TRANSFERS TO STATEMENT PO

DESCRIPTION OF WHAT IS WRONG:
/• rise ',rt .,- dig/* of the	 c/ocdt number

does nor	 dreee	 sari 7'4 vg-he	 ep■te,17.•
nunolvy-	 m -0-he	 'feeder	 cdrsc/.

ors
2. Cdrc/	 c .:. /mwir,	 90 /..r l. A y e /id.

PROBABLE CAUSE:
/. 74e	 data	 'or ewe	 phienr i4 ItIc/vglec/
svi-r-.5	 7'-he	 0401'4	 ,for d nt,7‘14 er ,9 Y (la r.

0,-
2Cdre/	 olec4	 ;., /sot	 aw, 7' ‘,/, c 0 P.. t-- e ct/x.

RECOVERY PROCEDURES:
C/ed,'	 74A e	 act P.(1 redder. The 707.-si- Cd'd

7to c /c dr	 i.r	 the	 cctrd ..) error. Correct	 -144ecoord)
/,e necessclry,	 or remove	 it	 ir 0A4 -,-4e ciec*..

*. /eeid d•a/	re'ed'y 74/e	 cdrd recider."-ess
/1=e- 0 fr" OM	 ...5. 74- et r 7'	 ow	 74-A e	 c on so /e.

COMMENTS:
The "aro yrelm	 evi//	 not' ConriAgre	 v,i7i-,V

-74-he	 edrol Pe de/	 is	 corriec7*:

SCORESHEET
DATE

INITIALS I

29

Section Subsections Page

35 20 20 34

IBM 1130 ERROR RECOVERY SHEET

JOB Pd Y " // Syr r 7`6) ni PROGRAM NAME
PROGRAMMER NAME

1'4 Y 0 4..

C• •e• /11-/.c 'E

MESSAGE TYPED:
PAUSE - DISPLAYED IN ACCUM:

CLOCK NO. XXXk / .s-
N 0 N EA/ o 7" /N THE ,C /G E

AFTER PAUSE, CONTROL TRANSFERS TO STATEMENT / 2 0

DESCRIPTION OF WHAT IS WRONG•

ZnPv 7"	 re Cord	 c../.0c,& <74/<77.eo pi	 if	 'Vat- c7.1 V-Ãe

PROBABLE CAUSE:
A E.,+/'/ore'	 o-ecer‘i hots /707` beer/

/od de d.
0 0-

2. .7/1 , id 7.—	 ',v.?, O e ■•• 	 Ls	 ;f7 G 0.-re c *".

RECOVERY PROCEDURES:
The	 c ct r. d	 i s	 s7"cicrf-er -.Celec7`,ed,Chec&

74- ofe	 C. /0 c*	 <71/<-7166. /.-	 w/ 74".4 ferso<7.7e1	 ,--ecora/S.
.724. "I`Ae <7 c<A,7 be..	 cores eci) /a d 1 -frA e arff,o/o,eess,o's
rec..-a1. 2-i, i r" i d.	 /ficerrecn refiulic4
4.11 rerun,

COMMENTS'

SCORESHEET
DATE
INITIALS I

30

	

Section Subsections
	

Page

35
	

20
	

20
	

35

IBM 1130 ERROR RECOVERY SHEET

JOB pdoyro1/ SY.flem PROGRAM NAME

PROGRAMMER

ie/IY ° 44

NAME C, ,e, it7ic &

MESSAGE TYPED:
PAUSE - DISPLAYED IN ACCUM:ra. e No. xxxX AND

/NOE-A, NO. X...te la, DO
A/ 0 /V ENO T A6REE

AFTER PAUSE, CONTROL TRANSFERS TO STATEMENT / 2 0

DESCRIPTION OF WHAT IS WRONG •

/1",P a 0 D	 cdr4 4/
The c./0c*	 07 44 eilbefr- ;a, "toe

e/oes	 4 07'-	 arree	 ,I.,/1 .4 744e
c/cocA-	 n vmiie,	 l'n ,'4e ems/ogee frecord.

PROBABLE CAUSE:
Pi's& c/4 7.-4	 heti-	 beer,	 ci tt er- ed.

RECOVERY PROCEDURES-
ecir, c/ is	 ,s-fitc,Cer-- se /e c7`ac1.

2../yr /es/ te..4/14'te/y	 /- epor. "71"	 ",- 4 As	 o a c tor-I- 424c e	 7" -c7

your	 ss- co,pe ■-• viss. or.

COMMENTS'
PAPA'	 46271-4	 of ct t	 ,probatbly 6ee•I	 destroyed,

SCORESHEET
DATE

INITIALS

I

I I I I I I I

31

Section Subsections Page

35 20 20 36

IBM 1130 ERROR RECOVERY SHEET

JOB Pd Ye' 1/	 "CY'S. 74-4a."7 PROGRAM NAME

PROGRAMMER

/47/49 YC)*
NAME c• if: A4-zc A.

MESSAGE TYPED:
PAUSE - DISPLAYED IN ACCUM:

N 0 N ENET T	 61 ,4" xxxxxx.
,coA,'	 c4.oc.< .No .)exxx

AFTER PAUSE, CONTROL TRANSFERS TO STATEMENT / 2 o

DESCRIPTION OF WHAT IS WRONG.

Wet	 ctniouest	 o I cXect- ex c 0 e oir /in,/ r

PROBABLE CAUSE:

/.	 L Ino / r	 4 . e *	 7" e c)	 /ow
or

Z.Err.on e o (ix (At," d	 in e frr, ,o/o y ee reco•-.1

RECOVERY PROCEDURES.

I.	 C Ado fe	 /I'm ; t- do., c/	 re,- 0N. .
a P-

2.	 Coe/`e Cr- etn,./0)1 ee reC0P-01 VW,
I- e p^ eifr► .

COMMENTS'

SCORESHEET
DATE

INITIALS I	 1 I I

32

	

Section Subsections	 Page

35	 20	 20	 37

IBM 1130 ERROR RECOVERY SHEET

JOB Pet yro /1 .r/rrepa PROGRAM NAME.
PROGRAMMER NAME

/17/9 1 0 4-
C. 4:% e/4.4.

MESSAGE TYPED:
PAUSE - DISPLAYED IN ACCUM:

Nnir 7a7,11.5 XXYX)006 xxxxxxx•
N 0 /V E"X Vxxxx. xxxxxxx.

AFTER PAUSE, CONTROL TRANSFERS TO STATEMENT
A 1 e -k- *	 I.7	 Se odenc e

DESCRIPTION OF WHAT IS WRONG • /1/0 r'h i n 59

PROBABLE CAUSE •
cce774-ro

Eel c/— a ,e- la 4	 ,•-• co eft IA e	 ,.r	 0,,,,i-/".2 ri,,, 9. e, 4, 7,-
/	 i- v tee /..r	 re.- a eh	 hedcle r,	c d r a' .

RECOVERY PROCEDURES:

COMMENTS'

SCORESHEET
DATE

INITIALS I I

33

Section Subsections Page

35 20 20 38

IBM 1130 ERROR RECOVERY SHEET

JOB Pa yr o // ..rysreen PROGRAM NAME
PROGRAMMER NAME

Ri9 y0 491-

n e /e/c4

MESSAGE TYPED:
APOC cs-s-EP

PAUSE - DISPLAYED IN ACCUM:
To 7--,4c r

xxxxx.YX.	 x X.k xxx X.
N 0 Al E)e)ex'XkA,X,	 X >e Xxow xx.

AFTER PAUSE, CONTROL TRANSFERS TO STATEMENT
/k/	 V 7`	in	 S e y'e.ie.74.e..

DESCRIPTION OF WHAT IS WRONG • /1/0-7"04/•45*-

PROBABLE CAUSE:
cicc 1.,,07

Eno,- of -10.6 ',cid-1'14e	 is-	 , , ,- iip 7`..47	 o cd V"
SO 7"e el co n fro/	 7`07`4/r.

RECOVERY PROCEDURES.

COMMENTS'

SCORESHEET
DATE

INITIALS

34

	

Section Subsections
	

Page

35
	

20
	

20
	

39

IBM 1130 ERROR RECOVERY SHEET

JOB Pali 	 *-5-'y-C,162,?7 PROGRAM NAME

PROGRAMMER

/9/i Yei4
NAME C. /?. ,c---//e.e._

MESSAGE TYPED:
en=7.4-V/P 7674

PAUSE - DISPLAYED IN ACCUM:

/ 5")0e,r,e)ex y Mx...lerwrie,,
icser x sescx .:kw eie ..rx iCa

/./ e A/ 4—

AFTER PAUSE, CONTROL TRANSF ERSTO STATEMENT
/3 "-If 74	//	 ,Se	 e-y=',2i CP .

DESCRIPTION OF WHAT IS WRONG•
A/o //,/,--y-

PROBABLE CAUSE
k432 // 47 71"--j O6	 /-47407‘.',2e . AS	 Oa,-/voi^/i-,1";,;_g

4 e c e. ..)-210./.10 .74'"..-71	 74c, 1.6 • /.5"	 /7 7e 9,-r-4:v7,-m' 47z., .5"	 ,.. -c.--c,..--.-2/.. T.

RECOVERY PROCEDURES:

44-i-e-e,z , 	74j ape-. si-	 'vs 74 A 0- .4 Cec.zei, sc:''tit
7e:e, e- 4:,./ ef	 e^ r, e- /re° e^ ././;0.--, .1	 .-o-heleloz' ee-lr	 '74PC E' =ZS 4= 2 719' .

COMMENTS:

SCORESHEET

I

DATE

INITIALS

35

Section Subsections Page

35 20 20 40

IBM 1130 ERROR RECOVERY SHEET

JOB /i-,./-10// ...ry...5"/Eip-.7 PROGRAM NAME

PROGRAMMER

P-49)--e94
NAME C A? 4-1/Ch...

MESSAGE TYPED:
PAUSE - DISPLAYED IN ACCUM:

77/e nkc-fEeCA/GE5	 KA-xt-A-x)e.xioexx)cm.

4/ a /t/ E
x-)ex xx xX.XXXXXx X.

AFTER PAUSE, CONTROL TRANSFERS TO STATEMENT

A4=7)(74 	../.--,	 Selyue.'..-->ie •

DESCRIPTION OF WHAT IS WRONG:

/t/o/-..79

PROBABLE CAUSE:
Eivd-or'-iePA i-ev7i.le is /0..,)-7/-/,?, c,ri,' /he

ses...livic-•&o...0	 Ale ",--77,..."` 7'.01a/s- ad-g '7"Idal.90,0torig ,-,CO2:s
,2,--,!/./m ■ d /!I if-c? 7;ola/s--

RECOVERY PROCEDURES.

A/o.-; zee-,. 	 7'/ ores #77,..".5, hoc, /ae-ce 4/ ,-, *'41

-41," C7,-2 4/ C'ea /''','"PG 7oz' p./.

COMMENTS;

SCORESHEET
DATE

INITIALS

36

	

Section Subsections	 Page

35	 20	 20	 41

IBM 1130 MACHINE SETUP SHEET

PROGRAM , 	 ,
NAME:	 .:?/c--e//ai-/e/7.5//zky/w///F2f9Ablei"

PROGRAM
NUMBER:	 PA y4)4

PROGRAM
DESCRIPTION:

APPROXIMATE
RUNNING TIME:

PRINTER

TYPE OF PAPER NO. OF COPIES CARRIAGE TAPE

..5-4,1,..i.da „...,:// / ...5-/.0/7,o/a..--0/

DISKS

DRIVE NUMBER: 0 1 2 3 4

CARTRIDGE Po:y/-0g

/ID:

SWITCH
SETTINGS

SWITCH	 /4 SWITCH
UP
DOWN

AC
UP
SWITCH /14,/e

UP	 3 1.--
DOWN DOWN

INPUT	 5ce.////ch
CARDS

Obe) -.5-4,1/ch

(,/,./ 141/%2

/4 f
/5

elf)

c•Ko.ncye

4, ch.a...tfa

/

n-7.1aA-/;-,-,e.i.72
c4ecie.. ~.4.76

cAc•c.E.. amourn4 (:;no. furs
e, -, a,,..,,,r, ,,,,,,,,„,c ,,,,„„..„6,,,,

q

Fop one
"Yon,-

WEEKLY
EMPL- GYEE
r-AQ 05

/CONT2CL
TOTL■LS

/// X EC.4 PAY04

/// Jos

SOURCE OF INPUT:

DISPOSITION OF OUTPUT:

/ ,K.;;;Ii^o / /;-,/.7‘,/4.4-en? a .2.7.1.4--.--e=s.c/4"/ /91)//6"; ev/./ r-E../■1
2 Dz...rk ..-fm-s-i .5e.	 n6:5-•.,e- 1)--e,,,,	 /e.s./ny,-7,-,//

/ GD/77//''a/ /o7lo/..s. 14, //Ye Z
a! ,/.. 	 l'

l
o 74/e .%)

s'i,o^d,fe
4. Pdy fr-e,// /-cyi-rig.r, fe payi-o//sec/.cs7,

FOR PAUSES AND ERROR MESSAGES SEE ERROR RECOVERY SHEETS

37

Section Subsections Page

35 20 20 42

PAYO 5: CHECK WRITING

Accounting Controls

Disk-stored totals -- gross ($) and net ($) -- are balanced to machine-calculated total of checks
for zero-balance test. This should also be compared with the adding machine tape of checks.

38

Section Subsections Page

35 20 20 43

IBM 1130 ERROR RECOVERY SHEET

JOB Pay. r©// Sys.744v/A-2 PROGRAM NAME

PROGRAMMER NAME

/e4X.0.-5—

C. #<:;! .e// C•le...

MESSAGE TYPED:
C-/--//L"?"

PAUSE - DISPLAYED IN ACCUM:

-:"-_-/	 CG "30,&-	 ,9.t,'1.7
e,/v .c-/.EST G-.9.4"42

O 0 45) /

AFTER PAUSE, CONTROL TRANSFERS TO STATEMEN -999 9 9

DESCRIPTION OF WHAT IS WRONG:
/	 (--a/....' i--.?7/f...en.-2 / ha-- a"? irk i/c2/,,d / 6 7/0", 14

Iv a "?-7 6,-,"7
",""-

2. r",-./. ,-/ r 7e,/,..//>-/.-7 Bo .s , 7 e'Pe Z6"/"'

PROBABLE CAUSE:
,_""ilehev--, & /)/,,.2,4. e'e7,--,--/ or' a 71a7ta Ca,''' A59-5'

/3,0/5?/2	 /?"7 7e."1/171 	e2,11 1`.4. 	 ,a'.:7e,....6.,p/e7Ce.?..."

RECOVERY PROCEDURES.
---/,...,n/-. /Ae- K-a,,-.67/i-6,1.	 .,-.. A7Zaee a/.2"--e."-

he--‘7,,9',---,-. ,-.,.a.,-a',..5.74 /A29,e),-0.7,	 a, �4. 1.-, eeg'c..4- .
'Pew	 ', 	 ,,,S,4,	 cas--,/ /-9.0*.a/-	 ,r%.01 	- 9..s•S"	 "71-03,27.0-1/dpf-

...•7714 7 "17	 2.#7 7." 	 C'.0.A.7.Sc,./.

COMMENTS'

SCORESHEET
DATE

-

INITIALS I

39

Section Subsections Page

35 20 20 44

1130 ERROR RECOVERY SHEET

1

1IBM

JOB	 /v .	 .•	 5	 7	 .. PROGRAM NAME
PROGRAMMER

/p/4 /05
NAME 6-: ie,e1/Ch.

MESSAGE TYPED:
4-4(44.146r4/441e. 	 "9" Pr.
el'leek" A/0. XxxxX PAUSE - DISPLAYED IN ACCUM:
1.146:‘,‹ No. Xx '<vle-

/ / / /
WA" -X.XC.4-/L.C.,7,4X. X)<XxX.4,14x/.404441 cwe-c.	 .4.4-pos.44./7- 4.f.41›..-ae

wit "iejelA,4=er.;:vE'1'7.r#A1:'1,GA:rt(A.S"
AFTER PAUSE, CONTROL TRANSFERS TO STATEMENT

//,...x/- /4 .-5-driec../2/". e

DESCRIPTION OF WHAT IS WRONG•

eqe7e/^O210," z::',74/2:),•7 AV c'haw,:	 Conslowtts.

PROBABLE CAUSE:

Pro7,-‘7.-1,-, e7/4,t... 747,--, 71/2is 72e)-CS,...6//z>.ey

RECOVERY PROCEDURES.

1-6,//o.ce./ e”ocA/,--,6'	 ,y.eve•e/ ';'9.3- "et" c ,�, iVe7S.

COMMENTS'

SCORESHEET
DATE

INITIALS I

40

Section Subsections	 Page

35	 20	 20	 45

IBM 1130 ERROR RECOVERY SHEET

JOB Pe& ..--0// %S.-y.5 7e2■9-7 PROGRAM NAME
PROGRAMMER

MI,Ve.)-6-.
NAME C. Aqi-/i.er-

MESSAGE TYPED:
PAUSE - DISPLAYED IN ACCUM:

.EA/ree/e CLOG /G A/O.
A/

AFTER PAUSE, CONTROL TRANSFERS TO STATEMENT -5-00

DESCRIPTION OF WHAT IS WRONG•

AvaV)zirii. 7eor key h .0e, el y;oiozit

PROBABLE CAUSE

e?/267,19740,' 1,7 74e," i., 2,7 110,7	 1-a „0-&./,0,--„,:p id.
c 467c 4..(c).

RECOVERY PROCEDURES:

4--.., 7-e,-, the ,out' -0%:51/ /s/1:2Cie e•^2z.,,,Iieti,'' ,04")4‘e
ir_he,'c L(s) 740 .3,..,	 ,-,.../,,-",7 ye .,;,/. a / 4 ,...,..ve•-, //	 7:6.e,,,,e"

"/7 Li A , 7 6 "=,"-� h..fA/	 ,e.00.0■-2	 '',2746=',•-&,e;,/,	 ''#.2.e? fejS 6:12.02416,/ Or?
74-/.//%7 c:,,,' slud . / i.̀ 4 zero e7,79',.■-e°25s ,E-e7i.e,CCe/P1S,

COMMENTS:
/his .'"o a 74:-7 e Lo //de.4/S A 2 e's ,-"er7.--vii 74',iy O re

I; err? 0," "17/...r//5 n e°./..,/ ch.ewc..A S.

SCORESHEET

4

DATE .
INITIALS I

41

•

Section Subsections Page

35 20 20 46

IBM 1130 ERROR RECOVERY SHEET

JOB Pay,-, 0 // '-'95 74&./?-; PROGRAM NAME

PROGRAMMER NAME

/4// VO 5--

C. Iii'4"-// c A---

MESSAGE TYPED:
L2C7-/0/1././7Z-D

PAUSE - DISPLAYED IN ACCUM:

A/D. Y /V c77-
M..51,-7'	 FOre X> X >C. ,\/ 0 A./

AFTER PAUSE, CONTROL TRANSFERS TO STATEMENT ..c- ..e-,---, •-,	 •)

DESCRIPTION OF WHAT IS WRONG:
The 41-1:9-c-s ,a /7-, o 4./7 7I- eV. '1,6 ..E.	 C■4.C.,4-,	 ye,0/--- .74:4#.�'

6),) , Any e -e- / /,e,,,, .6. ì074 5 /./ I 9,/C ; P /- ? 71- 74C 19//n'	 71h /.5
ezt.e yAh or- /ze.,7' e-e'eciz..,- 71i ."74--2 .

PROBABLE CAUSE:
4.--,2-7/42/,,y es?	 /21,4a,	 ." - 7 o74 	e...e.", l'',/‹.	 G 27-4,// ,-_,.,ee.F-...

RECOVERY PROCEDURES.

IVO 7e /. ?Cy	 n c/ i-	 ,s-c-//ody- c,/.5"c:Iriy

COMMENTS'
7-' . s	 As le,	 46 62	 ,-6,/, a , - 72 r=2,--/ 710::"	 IA e

SCORESHEET
DATE
INITIALS I

42

	

Section Subsections	 Page

35
	

20
	

20
	

47

IBM 1130 ERROR RECOVERY SHEET

JOB P.,3,----0//51,516=',-fr7 PROGRAM NAME

PROGRAMMER

P/9 Y06---

NAME C---• 't? 4"//k.....

MESSAGE TYPED:
PAUSE - DISPLAYED IN ACCUM:

A7!,/1.4.1T 0 0 0

AFTER PAUSE, CONTROL TRANSFERS TO STATEMENT 9/

DESCRIPTION OF WHAT IS WRONG•

/1../.5 re.	 to	 Gs /./ e...0	 ',4 z2/i.4'.."2"7", e'.0").74. 4,4 c--..e.e,_s
-..%7.,-,c,=>./5,,A,---e	 7Lhe.	.s.c.,2,-2,2/,c;:y-,:-77‘/>7_,

PROBABLE CAUSE

, 5-44. / 71r- ,6	 z,5— has	 h ee/7	 ...se, .1` .1.)	 74
/30eva/o/1	/

RECOVERY PROCEDURES.

Pf'd=2 .5.5"	 Pr?) q rla rfri	 SY-a/ni- 4,	Ce7,-0 71,/7"de.. .

`/.:,-,..,,p,-/, 744/ ri2 e9/41' Slei /7ii-1/2 AS.-1Vhe.i7	 r	 ..vc--.___....5	 arCA>

COMMENTS'
%3-ev /71c h /..5- er...// ha/,4 ivenf..79/2?")-7 yec),- a,,,,,

—p
 	 —	 er, "--vr7	 ■ r .„, e

SCORESHEET
DATE
INITIALS

43

Section Subsections Page

35 20 20 48

IBM 1130 ERROR RECOVERY SHEET

JOB Pa	 .->e, // ...S-y.,7 ile=2/07fi PROGRAM NAME
PROGRAMMER NAME

P4 >''‘75
C: 4? ,e-//c-......

MESSAGE TYPED:
PAUSE - DISPLAYED IN ACCUM:

A/0 A/&•—•
O 0 0 .3

AFTER PAUSE, CONTROL TRANSFERS TO STATEMENT 93

DESCRIPTION OF WHAT IS WRONG•

, 72(,se 7e) "9//2i 	 717e r,..&"71,-,0.../2 7.1" cvc p7,1e-c.E6-
4:-) 0,7 .Ar.27o,,-	 71-he/orri27`,,y /h.,--",/

PROBABLE CAUSE:
• 1-61,i 1 4 C /6	 ./ •6-. has	 e 3 t." ' 1'2,', •••5' 6Ve 	16,...V 	 7X ei. e.ye"."'427c,,,

RECOVERY PROCEDURES:

,Pi-E',5'S J°/^o f 1-',-;17-7 ‘ 774-4? .- 74.	 A, (--,e, .., 7*/#7,..yc , 1Ge'h 0.,...-,
"40 1,--%7 e'te.,". sw-e.,./144:7,6 /5.:ci4eci-..„5 .4.i.	,.,j.,"7"..€73

COMMENTS'

SCORESHEET
DATE

INITIALS

44

	

Section Subsections	 Page

35	 20	 20	 49

IBM 1130 ERROR RECOVERY SHEET

JOB_Pa_y_e,2L/.. y4/ Et5 	 9 7 PROGRAM NAME
PROGRAMMER

P4 YDS'
NAME C.,42.4"//CA.,

MESSAGE TYPED:
PAUSE - DISPLAYED IN ACCUM:

/VD /t/-.
C) 6.7 4

AFTER PAUSE, CONTROL TRANSFERS TO STATEMENT 95-

DESCRIPTION OF WHAT IS WRONG:

,2:7r,9445-6' 140 Q'//, 64.1 Me. e.f•"9 ,-friev. . - i 1.4 (7, c-heoe%ks
/,tee .,S7, ,z71,0.-e	 71-h/e.).--,-.--,7`yiv	 ,74-10,4,-. 7z>4

PROBABLE CAUSE:
...5-e4, /. /eh	 /..6"	 h 4 ' 3"	 6 e'f''.-2 .5'&74 ,4.y flee

D/f")'/W /O/'.

RECOVERY PROCEDURES'

P/"6:?...5.S	 o r-10.1 /–.17.7 2 ..5n7441,-.74 	 1 427 C","..771/eize.,40, Pt/he/2,
c/4,..,c,_,s- az-K2 /21	 -iet.;,' . / Y4a1"1";	 [97C,7 .5141 /714" .6 AS;

COMMENTS'

SCORESHEET
DATE

INITIALS

45

Section Subsections Page

35 20 20 50

IBM 1130 ERROR RECOVERY SHEET

JOB >0ay.-7‘,// ,-.5":, S 714=w-7 PROGRAM NAME
PROGRAMMER

PA >/./3 .5-
NAME C /*C'? 4.-//C.4--

MESSAGE TYPED:
PAUSE - DISPLAYED IN ACCUM:

0 0 0 6--

AFTER. PAUSE, CONTROL TRANSFERS TO STATEMENT 700

DESCRIPTION OF WHAT IS WRONG:

.5 ''''	 ..	 or	 ..,	 ...,	 -	 ...e.
dr°Cev■-'6":	 71 -,	 /he.' 7eii•-.17e/a/v/)

/Z9/2 PP7&'•':174 c9, cA:vc h s
//,-,e0.

PROBABLE CAUSE:

..5-ed,./ite A AS- has 6P,---i7 ,5-E'74 6,y /6e e,,,e=ti-Wler).

RECOVERY PROCEDURES•

Pc-,-.5 - s• 1,--).-v /-w,-, . .5744,/ / 740 ca.'/, ./..oz..,-	 it//1[r°/7
G- Pr A. c a/'`:4 /.9.-) te-,...-21. 7 44/,-..-2 .e.74e1.5..",./r- A	 /.17"

COMMENTS'

SCORESHEET
DATE

INITIALS

46

	

Section Subsections	 Page

35	 20	 20	 51

IBM 1130 ERROR RECOVERY SHEET

JOB /kvir-kv/./954",./2.9 PROGRAM NAME
PROGRAMMER NAME

PA >---e:).5
G-7 ,4--?,&-//C.

MESSAGE TYPED:
REG-457 -e-oe

PAUSE - DISPLAYED IN ACCUM:
C-Aife.& 4/4, X XXXX

G-A6'ef... ie. i / 777/.„4ODES et/ 47"
A/ 0 /V e-T//,s i-P2/-fi .--,eve-c,e.

x/e) Xxx XX

AFTER PAUSE, CONTROL TRANSFERS TO STATEMENT 4302

DESCRIPTION OF WHAT IS WRONG'
77)►.0 ,i1j>la/ check.. hA.,-,-,A.-.) yei-oh7 1.4e'	 ..,,,,//,o

.-,	 .0 0/' -	 ./, .."	 A.,'	 -0' ei 1 e..S. 	 "7 e:› , el 1"/"e'`e	 e,/.114
I-- 4	 17,;7 a/ C . 6 eave- .A	 ./.24,0-r2be	 17,-_, ...1-2 	 7:6 /: c	 rue, .

PROBABLE CAUSE:

4da/,'14/a,-.20/	 C ' 012 AP C ..	 he .0.9 46 "e.1""ice 	 .red, eel,

RECOVERY PROCEDURES:
The ,-i./.4.,-4.,,....7 e e .2-,,,s, he. a e"c 4,a,, led 149,"

//, /E%/ell"/ li4E`I•2 G' .4 LsPe-&c. .1, A00 0 ,e,c) c'he-ck.s ce..ei-e
a./-/#14-e,-7	 a p4,9.-rop 1" 710 ce),-//c• 74.4,,, ,....0.'SS/;9‘, chePc .6S)
"5	 "-'e? e If L:7' C. "../71";.6 	1"5P AVe, - "'la ..,-7 t./..51/4•13 f ‘ e_

■- A	 A	 ,,,	 - -	 ,	 -	•	 ...-
rar er%••••/.c•)d-•	 •role	ti/)..•,"	 ...	 ,7

COMMENTS'

SCORESHEET
DATE

INITIALS I

47

IBM 1130 ERROR RECOVERY SHEET

JOB ay 1-o // Sy5/6:',7-7 	 PROGRAM NAME /C"'"f 5-'0 5-
PROGRAMMER NAME C- /e-Z-7//ek--

PAUSE - DISPLAYED IN ACCUM:
MESSAGE TYPED: 	

Werx

4/ O /1/

AFTER PAUSE, CONTROL TRANSFERS TO STATEMENT 8402

DESCRIPTION OF WHAT IS WRONG-

iVoLk.22-5

PROBABLE CAUSE: 	
q/-	 je:).6 PD/./ 71./f/e

RECOVERY PROCEDURES• 	

COMMENTS' 	

SCORESHEET
DATE

INITIALS

Section Subsections Page

35 20 20 52

48

	

Section Subsections	 Page

35
	 20	 20	 53

IBM 1130 ERROR RECOVERY SHEET

JOB Pe	 /'O// ..5:7,54°,"? PROGRAM NAME
PROGRAMMER NAME

/°4 Ve,6–

C: /E 41/c06.-

MESSAGE TYPED:
,Pfdzsrixo 7227:411s-

PAUSE

.

- DISPLAYED IN ACCUM:
xxxxxxxx. mycxxxx.

CHEC A- 77o7:915")60000.e.X.xxxxxxxx •
0 A/ 6.-2)/fifirREACES	 X x sc>e ›e *se . x...„. A/

AFTER PAUSE, CONTROL TRANSFERS TO STATEMENT A.,(7"

Al& x 7d /i7 -5-eit./..=.2c.

DESCRIPTION OF WHAT IS WRONG •
4 0,:sk -s710,-.91

A7/7/>77 Der/ <V, ..
,-.e.j.:Ti4,-. 71-0144 e /s .

2. 772 /a /s Acce.e■ra e./.42 2 .ti e*.ee'V.0-29 Me' re.6.-7.
aid

.R . .D; "'AP,- L., -0c1" be /14.140e..7 ,`"4 & feel

PROBABLE CAUSE•
...;747/ 071,./c, h .

RECOVERY PROCEDURES.
/

.dil),e7eV.E7. 1 Ct4g.'S elV to si" 74 has
&',•••••cord .0.2 A=4. 7 4 .0". e=7■2G, eie7/"V"..es'CP4eriK

COMMENTS;

SCORESHEET
DATE
INITIALS 1 I

49

Section Subsections Page

35 20 20 54

IBM 1130 MACHINE SETUP SHEET

PROGRAM	 PROGRAM
NAME:	 ChecA ,V.V71/;-)9	 NUMBER:	 /4214 X-62.5-

PROGRAM	 APPROXIMATE
DESCRIPTION:	 RUNNING TIME:

PRINTER

TYPE OF PAPER	 NO. OF COPIES CARRIAGE TAPE

C4ec4s Ch6-c--__s

DISKS

DRIVE NUMBER: 0 1 2 3 4

CARTRIDGE
I D:

Rayr-c //

SWITCH
SETTINGS

SWITCH	 C SWITCH
UP
DOWN

UP
SWITCH /3--

UP	 3 ,...-
DOWN DOWN

INPUT	 544,//ch
CARDS

77a, c--‘,/-wec71;

•.54.,../eA /4

Samich /5T.
awd "a

/:s used 74-4, ,-,-2,7.4.6, c....4 eoe.k ,S

A's e/-red /0 se'/ 1‘ A ' - m3.-	 Jai -

used 743 _s--&--/ 7:4e c-,6,-,--.4
..5-4,, �/e' sysle,,,d ,7 	 a/9fr7

/"E>e?"'"," ..-, f'.. ce."....4 e=7.-7 36.6'y L7.,#e

/,-,/ /n^ cAc=c-4- 42.--/-7e,sd,7 7- -

,-76.,,i66.., Jo sfas-.1-‘,-,/),
/e-,:.! /0,-/,. yte,-. ,

/CC>NTI2 OL
TO T/: LC

/// X E0 PAY() '-

1/7 Joe,

SOURCE OF INPUT:

DISPOSITION OF OUTPUT:

/ C-42,-- 71, - - 0 / 710714:7/7 "e'' 0 e - - 7 ///e O.
/

.0	 a ,	 -	 Ay	 a Ar.	 -

/ "ckyc-,4coc,.s	 t=e, 6=',v2/7.A._j,--,-,=.5
7 .1).S4.-*	 ...	 -/	 ,	 ,-'	 40, ,pc-

FOR PAUSES AND ERROR MESSAGES SEE ERROR RECOVERY SHEETS

50

	

Section Subsections	 Page

35
	

20
	

20
	

55

PAY06: CHECK REGISTER

Accounting Controls

Plant total (net) from payroll register is balanced to total on check register, and check register
total (net $) is balanced to adding machine tape of checks.

51

Section Subsections Page

35 20 20 56

IBM 1130ORROR RECOVERY SHEET

JOB Pay r-',,, // .Sys /cam PROGRAM NAME
PROGRAMMER NAME

,mil >0' * 0 46

67,4::? 47,"c 4.

MESSAGE TYPED:
CWEGic...

PAUSE - DISPLAYED IN ACCUM:

CC / A A./i2
Cf. M,7 eP4/ .4%.e...57- e--.04/21..)

0 0 /

AFTER PAUSE, CONTROL TRANSFERS TO STATEMENT .9.9-9 -9..9

DESCRIPTION OF WHAT IS WRONG•
J. Cafral ('..7 c /tin-) •-› y	 A oz..- A.-) /i7 e. a /....-/ Av Ai, r"

-	 v.-.1 46 Or°,1,_p7
o/-7

''.-j. r..."2/7/W1	 Cr) 11.1■1•7 di Z5se9	 ./.. r 77 G•)4"	 Ze. /le, _

PROBABLE CAUSE:
Fi 74/2 ,<P i-- .e.-i h./.a.,-.7.	 CC!-	 or t;;;? /714%40 C11/1::/

/to s-	 A /67,40 .fr,	 i-2 74,-e, •6-2 le' 4,1" ,--1,4P.,-,..4., .
/p

RECOVERY PROCEDURES-
}e,1 fr.. 7Ve e--.. , f- 4/ "--.1.,-, !eh. ./1-/doc-e

/6,1•'O 	 ==',•'•	 .17 eel,-/e,-	 C7_47./-e, ,..-7 /4 e•	 7"."-.L), 2 74 e-11 7%4e.
`,""e. 7 "1.47.,"' el .2 e,	 iC30•005 PA A-7./47,-"r.P.SS47/,,e5,-• 	 Re=',�4, ei/y /A e

■r".7fo I c l� 4h // 	 C-1717 sev./& .

COMMENTS •

SCORESHEET
DATE

INITIALS

52

	

Section Subsections
	

Page

35
	

20
	

20
	

57

IBM 1130 MACHINE SETUP SHEET

PROGRAM
NAME:

PROGRAM	 /„4,,,,62a
NUMBER:

PROGRAM
DESCRIPTION:

APPROXIMATE
RUNNING TIME:

PRINTER

TYPE OF PAPER NO. OF COPIES CARRIAGE TAPE

,_5-,e7,..) e„,,,,,, 4. / si4a..--, 4/47',/' .er"

DISKS

DRIVE NUMBER: 0 1 2 3 4

CARTRIDGE
ID: /r'oyi•o//

SWITCH
SETTINGS

SWITCH A/0, SWITCH
UP
DOWN

UP
SWITCH

UP
DOWN DOWN

INPUT
CARDS

/CONTROL
TOTALS

/// x EQ PAYC6

/// JO 5

SOURCE OF INPUT:	 /../..s

DISPOSITION OF OUTPUT:

J< "I r.-. f)r) t`rtil	 407.6./9 74-0.,2 /.- A Y?:)._5-

/ (-X e c ,. 1-e. 1-/-5-iler- i ò /0 aij ro// -76-'c7io/-2
2. ---',Ze2.2e.4)_______

, f. 0/....s-..	 / <1.	,,,e, 16,.4-,-) ec / /0	 ..5-7<or-li e

FOR PAUSES AND ERROR MESSAGES SEE ERROR RECOVERY SHEETS

53

Section Subsections Page

35 20 20 58

PAY09: 941 REPORT

Accounting Controls

941 total per plant (Gross $) is balanced to general ledger.

54

PAUSE - DISPLAYED IN ACCUM:
MESSAGE TYPED: 	

/V Z" A/ O /■./

IBM 1130 ERROR RECOVERY MEET'

JOB /2_7777,-//// 	 PROGRAM NAME /24 >-";.. 9
PROGRAMMER NAME C7../ /11/4c/4-

AFTER PAUSE, CONTROL TRANSFERS TO STATEMENT /1./Z),2c=?,

DESCRIPTION OF WHAT IS WRONG• 	

PROBABLE CAUSE: 	

/l/o19 e

RECOVERY PROCEDURES: 	

/1/7)/72

COMMENTS' 	

SCORESHEET
DATE

INITIALS

55

	

Section Subsections
	

Page

35
	

20
	

20
	

59

Section Subsections Page

35 20 20 60

IBM 1130 MACHINE SETUP SHEET
PROGRAM:1 94/ IQ'EPORT PROGRAM

NUMBER:	 A24)/09
PROGRAM APPROXIMATE
DESCRIPTION: RUNNING TIME:

TYPE OF PAPER NO. OF COPIES	 CARRIAGE TAPE

PRINTER 94
II FoRifris 941 TA PE

DRIVE NUMBER: 0 1 2	 3	 4

DISKS CARTRIDGE
ID: PAYROLL

A I 11 h ■ A I I 1.6.111h11. .
SWITCH /v0^-,C SWITCH SWITCHSWITCH UP UP UPSETTINGS DOWN DOWN DOWN

INPUT
CARDS

MORE
(PLANTS

PLANT
ACCOUNT NO,
CARD

/PLAiv 7
For, a/le /0/0/71

C/TY - STATE
cemi'D

PLANT NT
ADORES ,5
CARP

PLANT
NAMEI CARD

/ PLANT
CARD

ER
CA fez,

ri,XIQ PAY09
/
1/ o'08

SOURCE OF INPUT: 1.-- Plant informd-tion Cords from file E
E-- Payroll disk from stora.e

DISPOSITION OF OUTPUT: / nil frepoPt ic fvernmeni2- .047A. Zs ratuript	 eo stature
3- l'etult inFofrrned tort ei1'd.1 eo file E.

FOR PAUSES AND ERROR MESSAGES SEE ERROR RECOVERY SHEETS

56

	

Section Subsections	 Page

40
	

00
	

00
	

01

Section 40: CONVERSION

CONTENTS

Introduction 	 40.01.00	 Preparing for Conversion 	 40.20.00
Planning for Conversion 	 40.10.00	 Conversion Methods 	 40.30.00

	

Section Subsections	 Page

40
	

01
	

00
	

01

INTRODUCTION

For each application, there will come a day when all
your programs are written and tested, and you will
be ready to convert from your old system to the new.

Will you be ready? Not unless you have planned
and prepared for conversion. Conversion involves
three major elements, of which the conversion it-
self is the last step.

Section Subsections Page

40 10 00 01

PLANNING FOR CONVERSION

As has been stressed, the first step is planning.
This involves two basic items:

1. Make a schedule indicating when you will
start conversion of each application and when con-
version will be complete. After you have completed
conversion of your first application, you will have a

better feel for what is involved, and will want to re-
view the schedule for the remaining areas. You may
also want to reevaluate the conversion techniques
you chose originally.

2. Decide which conversion technique you will
use for each application area. As above, you will
want to periodically reexamine your decisions as
you become more experienced with each technique.

	

Section Subsections	 Page

40
	

20
	

00
	

01

PREPARING FOR CONVERSION

After making up conversion schedules and choosing
techniques, you should be able to see what must be
done to prepare for the actual conversion. Ask
yourself these questions:

1. Is the old system documented accurately and
completely? (See Section 10.) If it isn't, a smooth
conversion will be difficult.

2. Can the controls of the two systems be com-
pared? If not, it will be difficult to compare the
two systems. The new system should have the same
controls as the old, and you may even want to add
controls to the old system to ease conversion.

Such controls as grand totals, subtotals, document
counts, etc. , will bring quick attention to discrep-
ancies between the two systems.

3. Is everyone who is involved in the conversion
familiar with both the old and new systems? Mis-
understandings regarding the differences between the
old and new can seriously interfere with and delay
the successful completion of even the best planned
conversion effort. Communications should be main-
tained with the people involved during the entire
application design and program development phases.
A few weeks before the conversion period, all those
who will be involved indirectly or directly in pre-
paring input or using output from the new system
should be taught both systems, in general--and their
particular areas of responsibility, in detail.

Section Subsections Page

40 30 00 01

CONVERSION METHODS

There are three common methods for conversion:
1. Parallel operation. With this method, the same

transactions are entered into both the old and the
new systems, and the controls are compared. This
process is continued over a predetermined (usually
short) period of time, until a responsible executive
is satisfied that the new results are accurate.

Make sure that the time period of parallel
operation is one during which a wide variety of
transactions occur. Large volume is not important,
but variety is, since you want to test as many as-
pects of the new systems as possible. Pick a slow
time in your business cycle to effect conversion.

Before starting parallel operations, obtain a,
clear understanding of what is to be checked, and by
whom. Since additional personnel or man-hours
will be needed during this period, avoid conflicts
with vacation and holiday schedules.

As far ahead of the parallel period as possi-
ble, the personnel who will be preparing the input
cards for the new system should gain experience in
using the new input document and card formats.
This is one of the most common areas of difficulty,
and many "computer" mistakes are eventually traced
back to faulty document preparation, accumulation
of controls, or card punching. Often it is possible
to use new formats exclusively some time before
the computer system arrives, by preparing cards in
the computer-required formats and then reproducing
them into the old formats for use by the current
system.

Parallel operations often encounter problems
that result from significant differences between the
procedures used in the old system and those in the new.
It may be quite difficult to compare results produced
by the two systems, since the important totals in the
new system may not have been prepared previously.
Or you may find it possible to print reports in a
desirable sequence which is not feasible currently,
but which will make it impractical to cross-check
line-items against reports in the old sequence.

Another problem inherent in parallel opera-
tions is the doubled probability of errors. There
are twice as many chances for errors to occur, and
when making up a schedule, you must consider the
time spent in tracking errors down and deciding
which system, if either, was right.

2. Pilot Operation. In pilot as in parallel opera-
tion, an application is run under both the old and the
new systems. The difference lies in selecting only

one or a few easily observed locations or depart-
ments within the company, and performing the
operation only for those sections rather than for the
entire company. The same care must be taken in
setting up controls, scheduling the period during
which the pilot operation is to take place, and train-
ing those who prepare the input. In regard to this
last problem, the pilot method offers a training
ground for those who prepare and punch the data, by
allowing different people to get experience every day
or every few hours.

Care should be taken in determining which
part of the job is selected for pilot running. It
should be completely independent and self-contained,
if possible. Therefore, pilot operations may be the
ideal choice for organizations that are divided into
fairly independent units or locations. In any case,
the effect of the pilot run on departments other than
the data processing department must be carefully
analyzed, and those who are affected should be noti-
fied well ahead of time.

Again, you must carefully establish who is to
do what and when, if an adequate analysis of the pro-
gress and success of the operation is to be made.

3. One-time cutover. As of a given date, the
old system is discontinued and the new system is put
into operation. Careful planning is necessary to
make the transition smooth. For one thing, files
can be built up during a fairly extensive period be-
forehand and checked with control figures for accu-
racy and completeness while being created. A
master file of customers can be card-punched
during the month before the preparation of state-
ments. Alternatively, only new customers' cards
can be punched, while operations are performed on
the old file to convert them into the new format.
Then both the old and new cards are merged at
month end to create an updated master file ready for
use by the new system. It is often desirable to write
one-time programs to do these file conversions.
Whether the computer or other equipment is used,
time must be scheduled for the coding or procedure
writing, as well as for the operation itself.

Where some data is to be recoded, or coded
for the first time, as in the assignment of a new or
better set of customer numbers, you should get the
job done and checked out in advance.

Another way of smoothing the cutover is to
maintain control procedures that will be required
for both the old and new systems some time before
the critical date. This will eliminate the possibility
of errors in the execution of these procedures.

	

Section Subsections	 Page

40
	

30
	

00
	

02

Cutovers are never truly "one-time" in the
sense that no parallel or pilot operations are per-
formed. The difference is in the time at which
these operations are done. With the cutover method,
parallel and pilot operation take place with data that
has already been processed. For instance, after an
accounts receivable procedure has been processed
under a current system, the entire procedure is run
again on the computer. Controls are checked and
errors are cleared up. The accounts receivable
may then be run once more on the computer, and
this process may be repeated, perhaps over more
than one month, until management is satisfied that
it is running correctly.

Although some double manpower requirements
may be eliminated by using the one-time cutover
method, extra man-hours will still be needed--for
example, when a weekend immediately precedes the
cutover date, or when card files are being converted
from one format to another.

* * * *

You can see that no one of the conversion methods
discussed here stands alone and independent of the
others. Use the elements of each that suit your
situation, but develop a realistic plan that will con-
sider these factors:

1. Manpower must be available at the right time
to manipulate old data into new formats.

2. Control procedures must be developed and, if
possible, tested ahead of time.

3. Detailed document preparation and card-
punching procedures must be developed, and a
reasonable amount of time must be reserved to
practice them before conversion.

4. Procedures must be written for the one-time
aspects of the job, and manpower must be available
at the right time to do so.

5. The word must be spread; education for those
in other departments must be done thoughtfully and
carefully.

It is almost impossible to plan a conversion too
carefully.

	

Section Subsections	 Page

45
	

00
	

00
	

01

Section 45: 1130 COMPUTING SYSTEM

CONTENTS

Introduction 	 45. 01. 00
The 1131 CPU 	 45. 05. 00

Console Printer and Keyboard 	 45. 05.10
Data Switches 	 45.05.20
Console Display Lamps 	 45. 05.30

Disk Storage 	 45.10. 00
Printers 	 45.15. 00
Card Readers and Punches 	 45.20.00

Paper Tape Readers and Punches 	 45. 25. 00
Plotter 	 45. 30. 00
Graphic Display 	 45. 35. 00
Optical Readers 	 45.40.00
Storage Access Channel 	 45.45.00
Teleprocessing 	 45. 50. 00
The 1130 Configurator 	 45. 55. 00

a

	

Section Subsections 	 Page

45
	

01
	

00
	

01

INTRODUCTION

The IBM 1130 Computing System is a flexible,
modular, and modern data processing system. In
capability, it can range from a small paper-tape-
oriented system to a large, multiple-disk system,
with a powerful complement of input/output devices.

This section describes the system components in
general terms, stressing their potential use, the
various possible combinations of units, and their
corresponding throughput capabilities. For more
detail see IBM 1130 Functional Characteristics
(A26-5881) and IBM 1130 Input/Output Units
(A26-5890).

Section Subsections Page

45 05 00 01

1131 CENTRAL PROCESSING UNIT

The 1131 CPU is available with three options:
• With or without disk storage
• 3.6- or 2.2-microsecond core storage access

time
• 4096, 8192, 16,384, or 32,768 words (16 bits)

of core storage
Although this yields 16 possible combinations, only
9 are currently available, as shown in Figure 45.1.

All 1131 CPUs, regardless of model, have as
standard components:

• A console printer
• A console keyboard
• 16 data switches

Without
Disk

Storage
With Disk Storage

3.6

Microsecond
3.6

Microsecond

2.2
Microsecond

Core
Storage
Capacity

4K 8K 4K 8K 16K 32K 8K 16K 32K

Model
Designation 1

A 1B 2A 28 2C 20 38 3C 3D

Figure 45. 1. Available 1131 Processing Unit Configur ations

• Console display lamps	 The first four components are described below in
• Processing functions (index registers, in-	 more detail, since they may be directly used by

direct addressing, multiply/divide, etc.) 	 the programmer.

	

Section Subsections	 Page

45	 05
	

10
	

01

Console Printer and Keyboard

The console printer is a modified SELECTRIC ®

typewriter printer and can provide output at 15.5
characters per second. If it is the primary (only)
printing device on the 1130, it must be used for all
printed output; however, if the system includes an
1132 or 1403 Printer, the console printer will nor-
mally be used only for error messages, operator
instructions, etc.

The console keyboard resembles a standard
typewriter keyboard and allows the 1130 operator to
enter data into the system.

Because it is a manually oriented device, the use
of the keyboard will usually be limited to small
quantities of data (today's date, starting check num-
ber, etc.), with the card or paper tape readers used
for more voluminous data.

Section Subsections Page

45 05 20 01

Data Switches

Mounted on the front face of the console printer is
a row of 16 toggle switches, called data switches.
They may be used by the programmer for the entry
of yes-or-no type information into the system. For
example, one payroll program might handle both
factory workers and office workers, with each group

processed separately. The program could be
written to read, say, data switch 6, treating the in-
put time cards as factory workers if that switch is
on, and as office workers if it is off.

Other uses of the console switches are to bypass
certain portions of a program, activate the
FORTRAN TRACE, etc.

	

Section Subsections	 Page

45
	

05
	

30
	

01

Console Display Lamps

Above the console printer is a panel containing a
large number of indicator lamps (or lights). These
lights indicate the internal status of the 1130 Corn-
puting System. While most are of little use to the
average programmer, he does have access to one
set of lamps: the accumulator.

The accumulator is displayed as a series of 16
numbers, in four groups of four, which are either
illuminated (backlighted) or not. For example, sup-
pose the accumulator indicates the status shown be-
low, where the underlined numerals are lit:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Since the accumulator displays a binary number,
this example means that it contains 0100 1000 1000
1001, or 18569 in decimal. An easier way to repre-
sent the number is to use the hexadecimal notation,

where each group of four "bits" is taken as a hexa-
decimal number, obtaining 4889. (For further detail
on number systems, see Appendix A of A26-5881.)

The programmer can use the accumulator
display feature by appending a four-digit number
(from 0001 to 9999) to the FORTRAN PAUSE or
STOP statements. If the programmer inserts a
PAUSE 3322 statement in his program, the CPU will
pause and display 3322 in the accumulator (as a
hexadecimal number) when it executes the PAUSE
statement:

0 1 2 3 4 5 6 7 8 9 io 11 12 13 14 15

If the program contains many PAUSEs, each may
be given a different number, and the operator can
determine which PAUSE caused the CPU to halt its
operations.

This facility is useful for indicating error con-
ditions, tracing progress through a program, etc.

IBM 1131 Central Processing Unit with disk drive

Section Subsections Page

45 10 00 01

DISK STORAGE

Models 2 and 3 of the 1131 CPU contain a disk stor-
age drive as an integral part of the console unit. In
addition, these models may contain up to four addi-
tional disk drives, mounted in separate enclosures
(the IBM 2310 Disk Storage).

Each disk drive will hold one IBM 2315 Disk
Cartridge. Because the cartridges are removable,
the user may have an unlimited amount of data on
them; only one, however, may be mounted in a disk
drive at any one time.

The 2315 cartridge consists of a single metal
plate, coated on both sides with magnetic material
and enclosed in a plastic container. When mounted
in an activated disk drive, the metal plate is driven
through a clutch mechanism at 1500 revolutions per
minute. The recording plate never leaves its con-
tainer, as it does in the case of some other disk
devices.

Each cartridge is divided into 200 cylinders, in
concentric circles, with each cylinder further di-
vided into eight sectors — four on the top surface
and four on the bottom. Since each of the 1600
sectors contains 320 words, each disk cartridge can
hold 512, 000 words.

Data is read or written on the disk by two read-
write heads attached to a movable arm. One setting
of the arm gives the 1130 access to one cylinder, or
eight sectors. One head reads (or writes) the top
four sectors; the other, the bottom four sectors.
The two heads cannot move independently, since they
are fixed to the same arm.

Because one setting of the arm gives access to
only one cylinder, the arm must be moved in order
to read or write on a different cylinder. For ex-
ample, to read from cylinder 10 and then write on
cylinder 15, the arm must move, or "seek", from
cylinder 10 to cylinder 15. Since the arm moves in
steps of one or two cylinders, this would require two

2-cylinder moves (from 10 to 12, and from 12 to
14) and one 1-cylinder move (from 14 to 15).

Each move, whether one or two cylinders in
length, takes 15 milliseconds (0.015 seconds). A
five-cylinder "seek", as shown above, would take
45 milliseconds (15+15+15). A six-cylinder seek
would take the same length of time.

Because this can be a relatively lengthy opera-
tion (compared with other 1130 functions), you
should attempt to minimize the need for disk arm
movement. Many hints on how to do this are given
later in the manual (Sections 55, 60, 65, 70, 80,
85, and 90).

Having reached the desired cylinder, the arm
takes another 25 milliseconds to stabilize. After
the stabilizationperiod, data may be read or written;
because the disk is rotating, however, it will be
quite unusual for the desired sector to be passing
under the read/write head at the precise time you
want it. You will have to wait an average of half a
revolution (20 milliseconds) for the sector to reach
the heads, and then 10 more milliseconds for it to
actually be read or written.

Figure 45.2 gives some examples of how long it
takes to move n cylinders, then read one sector.

Move This
Many Cylinders

Seek
Time

Stabilization
Time

Average
Rotational
Delay Time

Read
or Write Total

None 0 0 20 10 30

1 or 2 15 25 20 10 70

3 or 4 30 25 20 10 85

5 or 6 45 25 20 10 100

199

(maximum)

or 200 1500 25 20 10 1555

Figure 45.2.

-oo co
ND	 co

co

Section Subsections Page

45 15 00 01

PRINTERS

In addition to the console printer, which is standard,
the 1130 system can be configurated with four com-
binations of line printers:

No line printer
An IBM 1132 Printer
An IBM 1403 Printer
Both an 1132 and 1403 Printer
The 1132 and the 1403 Printers have many me-

chanical differences, but the primary difference is

in printing speed. Both print a line at a time, 120
characters wide; both have a carriage control tape
that controls the vertical movement of forms.

The 1132 has a rated speed of 110 lines per min-
ute when printing purely numeric and 80 lines per
minute when printing alphameric information.

The 1403 prints both numeric and alphameric
information at the same speed; 340 lines per minute
(maximum) in the case of the 1403 Model 6, 600
lines per minute (maximum) for the Model 7.

IBM 1132 Printer

IBM 1403 Printer

Section Subsections Page

45	 15
	

00
	

02

Section Subsections Page

45 20 00 01

CARD READERS AND PUNCHES

Five card readers and/or punches are available for
attachment to the 1130 system.

The IBM 1142 Card Read Punch, Model 6, reads
and punches cards, with all input from a single
hopper. It reads at a rated speed of 300 cards per
minute, and punches at 80 card columns per second.

The IBM 1442 Card Read Punch, Model 7, is
similar to the Model 6, but faster, reading at 400
cards per minute and punching at 160 columns per
second.

The IBM 1442 Card Punch, Model 5, cannot read
cards; it can only punch. Its punching speed is 160
columns per second.

The IBM 2501 Card Reader, Model Al, will read
cards at a rated maximum speed of 600 per minute.
It is not able to punch cards.

The IBM 2501 Card Reader, Model A2, is simi-
lar to the Al, but operates at 1000 cards per minute
(maximum).

Disregarding speeds for the moment, there are
four combinations of card readers and/or punches
for the 1130:

1. No card readers or card punches
2. An IBM 1442 Card Read Punch
3. An IBM 2501 Card Reader and the IBM 1442

Card Punch, Model 5
4. An IBM 2501 Card Reader and an IBM 1442

Card Read Punch
Aside from speed, the main difference between

combinations is capability — the number of card
paths available.

Configuration 2 (1442 Model 6 or 7) gives the
user only one card path. This means that cards to
be read and cards to be punched must both be placed
in the same input hopper in the proper order.

Configuration 3 (2501 and 1442 Model 5) has sep-
arate paths for reading and punching, which simpli-
fies programming and operating in certain types of
applications.

Configuration 4 (2501 and 1442 Model 6 or 7) also
has two card paths, differing from configuration 3
in that one path can both read and punch. In cer-
tain applications this can be very useful. For ex-
ample, you could put a master card deck in one
reader and a detail deck in the other reader, elimi-
nating the need to collate (merge) the two together.

IBM 1442 Card Read Punch

	

Section Subsections
	

Page

45
	

20
	

00
	

02

IBM 2501 Card Reader

Section Subsections Page

45 25 00 01

PAPER TAPE READERS AND PUNCHES
	 The 1134 reads punched tape at 60 characters per

second; the 1055 punches tape at 15 characters per
The 1130 system may include the IBM 1134 Paper 	 second.
Tape Reader and/or the IBM 1055 Paper Tape
Punch.

IBM 1055 Paper Tape Punch
	 IBM 1134 Paper Tape Reader

	

Section Subsections 	 Page

45	 30
	

00
	

01

PLOTTER

For hard-copy graphic output, the IBM 1627 Plotter
may be attached to the 1130 system. Bar charts,
flowcharts, organization charts, engineering draw-
ings, and maps, in addition to graphs or drawings
that depict financial, scientific, or technical data,
can be plotted on the 1627 Plotter.

Two models are available:
Model 1
Plotting area:	 11 inches by 120 feet
Step size:	 1/100-inch increments
Speed:	 300 steps per second

Model 2
Plotting area:	 29-1/2 inches by 120 feet
Step size:	 1/100-inch increments
Speed:	 200 steps per second
The 1627 can plot curves, straight lines, alpha-

meric headings, etc. , by a series of steps in which
either the pen, the drum, or both, move in
1/100-inch increments.

IBM 1627 Plotter

Section Subsections Page

45 35 00 01

GRAPHIC DISPLAY

A second means of graphic display may be obtained
by attachment of the IBM 2250 to the 1130 system.
The 2250 is an electronic (cathode ray tube) device,

and therefore capable of faster speeds than the
1627 Plotter, a mechanical device. A "light pen"
enables the operator to communicate with the
system by interacting with the display on the face
of the tube.

IBM 2250 Display Unit

	

Section Subsections	 Page

45
	

40
	

00
	

01

OPTICAL READERS

The IBM 1231 Optical Mark Page Reader reads
positional marks made by an ordinary lead pencil
on paper documents, such as test scoring sheets,
etc. The data contained on these documents can be

read into the 1130 system at a rate of 2000 sheets
per hour.

The 1231 is especially suited for applications
such as examination grading, surveys, order entry,
etc. , where variable information may be entered by
hand on preprinted forms.

IBM 1231 Optical Mark Page Reader

Section Subsections Page

45 45 00 01

STORAGE ACCESS CHANNEL

The storage access channel provides an input/out-
put "path" that allows nonstandard components to be
added to the 1130 system. These components may be

IBM - supplied, or user-supplied. Since the
SAC is merely a general purpose input/output
channel, control of the nonstandard component
must be handled by user-supplied hardware and/or
programming.

	

Section Subsections
	

Page

45
	

50
	

00
	

01

TELEPROCESSING	 telephone lines, with another 1130, an IBM
System/360, and/or other devices.

By means of the Synchronous Communications
Adapter (SCA), the 1130 may communicate, over

1132 Printer
Attachment
03616

Alphomeric
Keyboard
'1245

1134 Paper Tape
Reader
60 Ch/ ec

Programmed
Function Keyboard
'5855

1442 Card Punch
Model 5
160 Col/Sec
(feoture '3630
Required)

1442 Card Read
Punch Model 6
300 cpm
80 Col/Sec

1442 Card Read
Punch Model 7
400 cprn
160 Col/Sec

'Synchronous
Communications
Adapter "7690
600-2400 Bits/Sec

1442 Card Punch
Attachment
04449

1442 Cord Read
Punch
Attachment
04454

'Synchronous
Transmit Receive or
Binary Synchronous
Communication

11) O(A 310;004
Mteol (31 or 62)
61 =<5T1k War*

IO24k Attrth

ZDITOkk Stoke:,
Modal 82.
1024 Words

14113 Metter
Model 7 •

Ott tpni

Model 3) 8 = Bk, C = 16k, D = 32k
2.2 Microsecond Core Storoge
(Includes Single Disk Storoge Drive)

Standard Features.
Console Printer and Keyboard
3 Index Registers
Indirect Addressing
Multiply/Divide
Storage Word e 16 Bits + 2 Pority Bits

Storage Access I
Channel 11	 i"

I 07492	 t'

r'
I 1403 Model 7 .17-11,
I Attachment	 1

"4425

2501 Cord Reader 	 1231 Opticol Mark
Model AI or A2	 Page Reader
Attachment	 Attachment
0 8042	 '8034

1055 Paper Tope
Punch
Attachment
'7923

1134 Paper Tope
Reader
Attachment
#3623

1627 Attachment	 1627 Attachment
"7187	 "7189

Storoge Access
Channel
'7490

Customer
Device

El
•• •	 .	 .

2301 Curti
Wrier Model Al
400 epal•
(Nature F3630
Rewired) .

•

1231 (*Heal Week
Pap Reader
2000 Sheets/14r

(Feature '1264
Required)

1055 Paper Tape
Punch
15 Ch/Sec

Toke-Up Reel

Edge-Card
Punch

Model hos
Supply nd
Toke-U Reels

1627 Plolrer
Model 1
300 P Sec
12 Churl

1627 Plotter
Model 2
200 P Sec
30 Chart

Programmed
Function Keyboard
• 5885

1131 CENTRAL PROCESSING UNIT

Model 2) A = 4k, B Bk, C = lok, D 32k
3.6 Microsecond Core Storage
(Includes Single Disk Storage Drive)

t•torlq I 4
tjapwtii.:
atd.,

Chat

Customer
Device

May only be installed
on 1131 Models 2 and
3, 208/230 volts powe

1132 Printer
80-120 per

Section Subsections Page

45 55 00 01

THE 1130 CONFIGURATOR

The accompanying schematic is a copy of the 1130
Configurator (A26-5915).

1130 Configurator

Section 50: 1130 DISK MONITOR SYSTEM

CONTENTS

GENERAL 	 50. 01. 00

	

Section Subsections	 Page

50
	

00
	

00
	

01

	

Section Subsections	 Page

50
	

01
	

00
	 01

GENERAL

This section consists of a general discussion of
the 1130 Disk Monitor System and serves to intro-
duce the next three sections:

• Job Management - - how the Monitor helps
you achieve smooth, orderly, automatic transition
from each job to the next.

• Disk Management - - how the Monitor helps
you manage the disk and use it efficiently.

• Core Storage Management - - how the Monitor
allows you to make the most effective use of the
available core storage.

If your 1130 does not have disk capability, you
cannot use the Monitor, and you may skip over this
and the succeeding three sections.

The 1130 Disk Monitor System is a disk-oriented
operating system that allows the user to assemble,
compile, and/or execute individual programs or
groups of programs with a minimum of operator
intervention. Jobs to be performed are stacked
and separated by control records that identify the
operation to be performed.

The Monitor System consists of five distinct but
interdependent programs (see Figure 50.1):

Supervisor Program
Disk Utility Program
Assembler Program
FORTRAN Compiler
Subroutine Library
The supervisor program provides the necessary

control for the stacked-job concept. It reads and
analyzes the monitor control records, and transfers
control to the proper program.

- - - - - -1130 DISK MONITOR SYSTEM — — — —

1130
Supervisor
Program

1130
FORTRAN
Compiler

1130
Assembler

1130
Disk Utility

Program

1130
Subroutine

Library

Figure 50.1. 1130 Disk Monitor System

The Disk Utility Program is a group of routines
designed to assist the user in storing information
(data and programs) on the disk, and in retrieving
and using the information stored.

The Assembler program converts user-written
symbolic-language source programs into machine-
language object programs.

The FORTRAN compiler converts user-written
FORTRAN-language source programs into machine-
language object programs.

The Subroutine Library contains subroutines for
data input/output, data conversion, and arithmetic
functions.

The Monitor System coordinates program opera-
tions by establishing a communications area in core
storage that is used by the various programs mak-
ing up the Monitor System. It also guides the trans-
fer of control between the various monitor pro-
grams and the user's programs. Operation is con-
tinuous and setup time is minimized, thereby effect-
ing substantial time saving and allowing greater
programming flexibility. The complete Monitor
System resides on disk storage, but only those
routines or programs required at any one time are
transferred to core storage for execution. This
feature minimizes the core storage requirements
and permits segmenting of long programs.

In addition to providing you with an efficient job-
to-job transition system, the 1130 Disk Monitor
System significantly reduces the amount of pro-
gramming you must do. This is made possible
through the sharing of common subroutines by un-
related programs. For example, input/output or
conversion operations are required by most user
programs, whether the programs are written in the
Assembler Language or in FORTRAN. IBM pro-
vides a library of subroutines to handle such opera-
tions as an integral part of the Monitor System.

The Disk Utility Program (DUP) facilitates
development of a library of user programs. Pro-
grams can be stored on cards or paper tape, as is
customary in installations without disk storage.
With disk storage, programs can also be stored
directly on the disk. The disk-stored programs
and data are referred to by name when called for
use. The Monitor System, through the use of a
table known as the Location Equivalence Table
(LET), can locate any user program, subroutine,
or file by a table search for the name. Stored with
the name is the amount of disk storage required
by the program or data.

Any program that is added to the user's disk-
stored programs is usually placed at the end of

Section Subsections Page

50 01 00 02

the other programs. If a program is deleted, the
remaining program(s) are moved up on the disk
in order to utilize disk storage effectively.

Detailed descriptions of the 1130 Monitor System
and its components may be found in the Systems

Reference Library (SRL). For Version 1 see
IBM 1130 Disk Monitor System (C26-3756). For
Version 2 see IBM 1130 Disk Monitor System,
Version 2, Programming and Operator's Guide
(C26-3717).

Section	 Subsections	 Page

55
	

00
	

00
	

01

Section 55: THE MONITOR-JOB MANAGEMENT

CONTENTS

Introduction 	 55.01.00	 Stacked Jobs or the Input Stream 	 55.20.00
Job and Subjob 	 55.10.00	 Disk Cartridge ID Checking 	 55.30.00

	

Section Subsections	 Page

55
	

01
	

00
	

01

INTRODUCTION

The first function of the 1130 Disk Monitor System
is Job Management -- helping you, the user,

achieve a smooth, orderly transition from one job
to the next. The Monitor is designed to accept a
continuous stream of input, in the form of jobs and
subjobs.

Section Subsections Page

55 10 00 01

JOB AND SUBJOB

A job is defined as:
• A JOB card and all the following control rec-

ords, source programs, object programs, and data,
up to, but not including, the next JOB card.

• The processing that takes place from the de-
tection of one JOB card (or paper tape record) until
the detection of another JOB card.

A subjob is defined as:
• A monitor control record and all the following

control records, source programs, object programs,
and data, up to, but not including, the next monitor
control record.

• The processing that takes place from the de-
tection of one monitor control record (such as DUP
card, FOR card, etc.) to the detection of another
monitor control record.

A job is an independent unit of processing; a
subjob is a unit of processing that is dependent on
the subjob(s) preceding and/or following it. The
successful completion of the job depends on the
successful completion of each subjob within it. In
some cases, a subjob is not attempted if the pre-
ceding subjobs have not been successfully completed.

The JOB control record defines the start of a new
job. It causes the Supervisor to perform the job
initialization procedure, which includes:

1. Initialization of constants, parameters, etc.

2. Setting of the temporary indicator if a T is
present in column 8 of the control record. If set,
all programs or data files stored in the User Area
by DUP during the current job will be deleted auto-
matically at the end of the job (that is, at the be-
ginning of the next job).

3. The identification of the cartridge(s) to be
used during the current job.

4. The definition of the cartridge on which the
Core Image Buffer for the current job is to be
found. Core image programs can be built faster if
the CIB is assigned to a cartridge other than the
systems cartridge. (This applies only to systems
with two or more disk drives.)

5. The definition of the cartridge whose Working
Storage is to be used by the Monitor system. (This
applies only to systems with two or more disk
drives.) Although all cartridges contain a Working
Storage area, only one will be used by the Monitor
(for its own purposes). Core image programs can
be built faster if the system Working Storage is on
some cartridge other than the systems cartridge.
They can be built even faster if the CIB, the system
Working Storage, and the monitor system itself are
on separate cartridges. Assemblies are also faster
if Working Storage is on a separate cartridge.

6. The starting of a new page. A skip to channel
1 is executed on the 1132 Printer or 1403 Printer;
ten consecutive carriage returns are made on the
console printer.

	

Section Subsections	 Page

55
	

20
	

00
	

01

STACKED JOBS OR THE INPUT STREAM	 JOB 3

Figure 55.1 shows a schematic view of a stack of
three jobs:

JOB 1

• Translate an Assembler Language source pro-
gram into an object program (subjob 1)

• Store the assembled object program (subjob 2)
• Execute the program (subjob 3)

JOB 2

• Store a program that had earlier been dumped
onto cards (subjob 1)

• Compile a FORTRAN program (subjob 1)
• Execute it (subjob 2)
Here, the reason for the job/subjob concept can

be seen clearly. If there were an error in subjob 1
of job 1, the assembly, you would not want to con-
tinue with the next two subjobs. The results would
be meaningless.

If those first three items had been made jobs
rather than subjobs, the Monitor would have tried to
perform the second two tasks even though the first
had failed. However, because they are all subjobs,
an error condition encountered in any one subjob
would cause the Monitor to abandon the remaining
subjobs.

Section Subsections Page

55 20 00 02

(// JOB

(// XEQ C
(*STORE C

(17 DUP
Source Program C

FORTRAN Control Records 	 	

(// FOR

(// PAUS	 JOB C
(// *comments

(// JOB

Object Program B

• STORE B
(// DUP

(// PAUS
(// *comments	 JOB B

// JOB

(// XEQ A
	

(*STORE A

DUP

Source Program A

Assembler Control Records

(// ASM JOB A
(// PAUS

(// *comments

// JOB
/ Cold Start Card

(see Cold Start
Operating Procedure)

Figure 55.1. Stacked job input

--e

	

Section Subsections	 Page

55
	

30
	

00
	

01

DISK CARTRIDGE ID CHECKING

A second assist given you by the Monitor system is
the checking of disk cartridge ID numbers. Every
cartridge must have an ID number; if you so desire,
you can request that the Monitor check each car-
tridge for a certain ID and alert you if the desired
cartridges are not mounted.

For example, suppose you have placed a payroll
data file on a particular cartridge, and have identi-
fied it as cartridge 6066. If you punch 6066 in col-
umns 11 through 14 of the JOB card, the Monitor
will read the cartridge ID from the disk on logical
drive 0, and, if it is not 6066, you will be so in-
formed with a message.

If you don't care which cartridge is mounted (or,
more likely, if you will check it yourself), those
columns on the JOB card may be left blank.

-

,

	

Section Subsections
	

Page

60
	

00
	

00
	

01

Section 60: THE MONITOR-DISK MANAGEMENT

CONTENTS

Introduction 	 60. 01. 00
Disk Storage Layout 	 60. 10. 00

Introduction 	 60.10. 01
Cylinder 0 	 60.10.10
IBM Systems Area 	 60. 10. 20
Working Storage (WS) 	 60.10.30
User Area (UA) 	 60.10.40
Fixed Area (FX) 	 60.10. 50
Summary 	 60.10.60

Increasing the Amount of Space
Available to the User 	 60. 20. 00

Introduction 	 60.20.01
How Much Room Do I Have? 	 60.20.10
How Can I Make More Space
Available? 	 60.20.20

Cylinder 0
IBM System's Area
Fixed Area
User Area/Working Storage

I/O Subroutines for Devices Not on
Your System
Computational Subroutines You Are
Unlikely to Use
Seldom-Used Programs and/or
Data
Unneeded User-Written Programs
and Data

Summary 	 60.20.30

The Disk Utility Program 	 60. 30. 00
Introduction 	 60. 30. 01
Format of Material on the Disk 	 60. 30. 10

Data Files
Programs and Subprograms

The Most Commonly Used DUP
Functions 	 60. 30. 20

Store a Program or Subprogram
in DSF Format
Store a Program in DCI (Core
Image) Format
Convert a DSF Program to DCI
Delete a Program or Subprogram
Dump a DSF Program or Subprogram
and Reload It
Dump a DCI (Core Image) Program
and Reload It
Dump a Data File and Reload It
Copy a Data File onto Another Area
on Same Disk
Defining and Modifying the Fixed
Area

Special Options -- Multiple Disk
1130 Users 	

	
60. 30. 30

Copy a Data File onto Another Disk
Copy a Program onto Another Disk
Copy an Entire Disk onto Another
Disk

	

Section Subsections	 Page

60
	

01
	

00
	

01

TRODUC TION

Remember, effective management can make orbreak
a good installation. This also applies to the disk
portion of your 1130. Because the disk is such an
integral part of your system, it is extremely im-
portant that you have the knowledge and ability to
manage it effectively. This discussion of the disk,
its layout, and how the Monitor helps you use it,
will give you a good start toward effective disk
management.

Effective use of your disk cartridges requires a
certain amount of planning, especially if the number
of applications on your 1130 is high, or is expected
to grow. Some control must be exercised over what
gets stored on a disk, and which disk cartridge is to
be used for a particular job.

Each installation requires a certain minimum
number of disk cartridges:

• At least one general purpose systems car-
tridge, with a complete Monitor system (FORTRAN
and Assembler). It should only be used for testing,
one-time applications, and other odd jobs.

• On multiple disk drive systems, at least one
working or scratch disk for each disk drive over
and above the first.

• One disk cartridge to be used for ordering and
receiving programs from IBM. Some packages are
not available in card form and can be obtained only
by forwarding a cartridge to the Program Informa-
tion Department. PID will place the package on
your cartridge and return it to you.

• One disk cartridge (as required) for each of
the major IBM applications programs to be used.
For example, STRESS, COGO, LP-MOSS, and
others each require all or most of a disk cartridge.

• One disk cartridge for each major application
area, such as payroll, accounts payable, plant
scheduling, highway design, etc. In some cases,
two applications must share a disk because they
both use the same data file, but such dual use
should be avoided whenever possible.

Mixing of different applications on the same disk
may lead to several complications, especially if
different programmers are involved. For example:

1. Duplicate program and data file names may
occur, with resulting confusion.

2. One program may inadvertently write into the
disk data area of another program.

3. The amount of Working Storage is decreased
more rapidly as each application area adds pro-
grams, subprograms, etc.

4. Run times may increase as data files are
pushed further apart by the continuous storing and
deleting of programs, data files, etc.

5. Overall control is diminished.
Before discussing disk storage management,

several terms must be defined:

Systems cartridge -- a cartridge that contains
the 1130 Disk Monitor system. If your 1130 has
only one disk drive, all your cartridges must be
systems cartridges.

Non-systems cartridge -- a cartridge that does
not contain the monitor system. As implied
above, such a cartridge would be of use only in
installations with two or more disk drives.

Master cartridge -- a systems cartridge that has
been referenced by the cold start procedure, or
by a Job card. The Monitor system on that car-
tridge will be the one in use until another cold
start is initiated, or until a Job card is encoun-
tered that switches control to a different car-
tridge. Obviously, on a one-drive 1130 system,
the one and only disk cartridge will be both a
systems disk and the master disk.

Satellite cartridge -- any cartridge which is not
the master cartridge. It may be either a systems
or non-systems cartridge.

You see, then, that there is a definite distinction
between these terms. A disk cartridge is either a
systems or non-systems disk, depending on whether
you have loaded the Monitor system onto it. On the
other hand, the master/satellite split does not
occur until the cartridges are placed in the drives,
made ready, and a cold start performed. Then, one
becomes the master, and the others, if any, become
satellites.

The terminology of the disk drives themselves
involves another distinction -- that of physical
drives versus logical drives. Single-drive 1130
users need not concern themselves with this; their
one disk drive is physical drive 0 and logical drive
0 -- there are no options.

• Each disk drive on the 1130 has a physical
drive number; drive 0 is the one contained in the
mainframe of the 1130; drives 1 through 4 are con-
tained in the 2310 enclosure, a separate unit. These
numbers are fixed and cannot be changed.

• Each disk drive present on the 1130 may also
be given a logical drive number, which may or may
not agree with its physical number. The only

Section Subsections Page

60 01 00 02

restraint is that a two-drive system may only have
physical and logical numbers 0 and 1; a four-drive
system, 0, 1, 2, and 3; etc.

You assign logical drive numbers when you
prepare a Job card. The Job card may contain a
series of five four-digit numbers, representing the
ID numbers of each cartridge (each cartridge must
be given a four-digit ID when it is initialized). The
first of the five ID's (cc 11-14) informs the Monitor
that logical drive 0 is to be the drive containing

the cartridge with that ID. For example, if this
field contained 1234, the drive in which cartridge
1234 is mounted becomes logical drive 0. That
cartridge may be physically located on any drive;
its actual position does not matter.

Cartridge 1234 would also become the master
cartridge, since the cartridge on logical drive 0
will always be the master.

For further detail, see the Monitor reference
manual.

	

Section Subsections	 Page

60
	

10
	

01
	

01

DISK STORAGE LAYOUT

Introduction

Conceptually, disk storage can be divided into five
logical areas:

Cylinder 0
- IBM Systems Area
- User Area
- Working Storage
- Fixed Area

The contents and use of these areas are discussed
in detail in the Monitor SRL manual, and in general
terms here.

Note that these areas are logical or symbolic,
rather than physical areas. They are not neces-
sarily intact or contiguous. Some of the items in one
logical area may, in fact, be physically located be-
tween two items in another logical area.

The term "logical", as it is used here, denotes
a system organized for ease of understanding,
rather than for accurate technical detail.

Section Subsections Page

60 10 10 01

Cylinder 0

This area contains certain key information that is
present on every disk cartridge. The exact contents
of this area differ, depending on whether the disk in

question is a systems disk (in which case it contains
the Monitor) or a non-systems disk; the area, how-
ever, is always present, and always occupies one
cylinder, Cylinder 0.

	

Section Subsections
	

Page

60
	

10
	

20
	

01

IBM Systems Area

The IBM Systems Area is present on all disk car-
tridges that have been built as systems disks (that is,
disk cartridges on which the Monitor system has
been loaded).

This area consists of (1) a basic Monitor package
of 152 sectors, which must be present, (2) two
optional items, which may be removed:

FORTRAN compiler (88 sectors)
Assembler (32 sectors)

and (3) the Core Image Buffer (16 sectors), which
may be deleted from a satellite cartridge but must
be present on the master cartridge.

Section Subsections Page

60 10 30 01

Working Storage (WS)

Working Storage is used for temporary storage of
programs and data. Since it is used for this pur-
pose by both you and the Monitor, you should not
leave material in WS if you wish to use it later. If

you wish to retain a program or data file, it should
be transferred with DUP to either the User Area or
the Fixed Area, and given a name.

The size of WS is variable, since it consists of
whatever space on the disk is not taken up by the
other four areas.

	

Section Subsections	 Page

60
	

10
	

40
	

01

User Area (UA)

As mentioned earlier, programs and data that you
want retained must be moved from WS to either the
User Area or the Fixed Area.

The size of the UA is also variable, since it
expands and contracts as material is stored in it or
deleted from it.

The process of transferring a program or data
file from WS to UA is done in a unique manner,
made possible by the use of a "floating" boundary
between the two areas. Because material placed in
WS is at the "lower" end of WS which is adjacent to
the "upper" end of UA, all that is necessary to trans-
fer it from WS to UA is to move the boundary. (See
Figure 60.1.)

The term "User Area" should not be taken to
mean that only user-written programs will be found
there. Nearly the entire IBM subroutine library is
placed in the UA (occupying about 50 sectors), where
it may be called for use by other programs.

The UA may contain:
• Data, in disk data format (DDF)
• Programs and subprograms, in disk system

format (DSF)
• Programs, in disk core image format (DCI)
The major differences between these three for-

mats are discussed in subsection 60.30.10.
The Location Equivalence Table (LET) is a direc-

tory of the contents of the User Area. It exists on

Floating
Boundary

User Area Working Storage

Before
	 Unused /

	

Programs and data
	

Program or data

	

previously stored	 to be stored

Floating
Boundary

	

User Area	 Working Storage

After

Figure 60.1. Transferring a program or data file from WS to UA

every disk cartridge -- systems and non-systems.
Basically, it contains an entry for every program,
,subprogram, and data file that has been placed in the
UA. Each entry in the table contains the name,
size, and other properties of that program or data
file.

nu;ea

Section Subsections Page

60 10 50 01

Fixed Area (FX)

The Fixed Area, like the User Area, is a place
where the user may store programs and/or data
files. There are five major differences between
the FX and the UA:

1. There is no Fixed Area on a cartridge unless
you specifically define one (see 60.30.20).

2. You specify the size of the FX, whereas the
UA expands and contracts as items are added to or
deleted from it.

3. Like the UA, the FX may contain both pro-
grams and data, but the programs must be in disk
core image (DCI) format. They cannot be in disk
system format (DSF).

4. Programs or data files stored in the FX may
be deleted, but the FX will not be repacked, as is
the case with the UA. Once an item is stored some-
where in the FX, it stays in the same location until
it is deleted.

5. The directory of the FX is FLET, the Fixed
Location Equivalence Table, rather than LET, which
is the directory to the UA.

	

Section Subsections 	 Page

60
	

10
	

60
	

01

Summary

Figure 60.2 illustrates the five logical disk areas
and shows the general properties of each.

Logical Area Sub-Areas Present?

Approximate Size, Sectors

Systems
Disk

Non-Systems
Disk

Cylinder 0 Always 8 8

IBM Systems
Area

Basic Only on a systems disk 152 152

Core Image Buffer Can be removed from Non-Sys. 16 16

FORTRAN
Compiler

May be removed 88 88

Assembler May be removed 32 32

Fixed Area
IF X/

F LET Not unless defined by user 8 8

Contents of
F X

Not unless defined by user Fixed by the user when he
defines a fixed area

User Area
IUA)

LET Always 8 0 (LET is part
of Cyl. 0)

Contents of
UA

•	 User data files
•	 User programs
•	 IBM subrou-

tine library

Always. As delivered, the
UA contains the IBM
Subroutine Library

Varies as material is stored
and deleted

Working
Storage
OVS)

Contents of WS Always Varies in size — WS is
whatever is left over.
Every sector added to UA
is subtracted from WS;
every sector deleted from
UA is added to WS.

Figure 60.2. The five logical areas of the disk

Section Subsections Page

60 20 01 01

INCREASING THE AMOUNT OF SPACE AVAILABLE
TO THE USER

Introduction

As Figure 60.2 shows, there is another way to look
at a disk cartridge. Simply stated, at any point in
time, the disk can be split into two portions:

• The portion now being used.
• The portion not now being used and therefore

available to you.

If you have a data file that you want to store on a
disk, you can ask several pertinent questions:

How much room do I need?
How much room do I have?
How can I make more room, if necessary?
The first question is covered in Section 80; the

other two are answered in 60.20.10 and 60.20.20,
respectively.

FRULE DSF 0009 19E4
FMOVE
FINC
PLOTI DSF 0003 19ED
PLOTS
PLOTX DSF 000A 19F0
POINT DSF 0008 19FA
SCALE DSF 0002 1A02
SCALF DSF 0002 1A04
XYPLT DSF 0007 1406

(TDUMY	 49F3 1A172)

,zo

PAGE	 4	 LET

=C I CN SFPAD =FPAD =CIBA	 =ULET	 =FLET
1234	 0141	 01A1	 0118	 0128	 0000

SCTR NO.	 UA/FXA.	 WORDS AVAIL.	 CHAIN ADDR.
0002	 0130	 009C	 0000

PRCG	 FOR DB	 DB	 PROG	 FOR DB	 DB
NAME	 MAT CNT	 ADDR	 NAME	 MAT CNT	 ADDR

PT FOL DSF 0009 170D ECHAR DSF 0005 18F6
DMP80 DSF 0007 1716 ECHRX DSF 0025 18FB
DMTDO DSF 001A 171D ECHR I
DMTXO VCHR I
DMPD1 DSF 001E 1737 EGRID DSF 0008 1920
DMPX1 H0L48 DSF 0008 1928
FL IPR DSF 0007 1755 HOLCA DSF 0006 1930
SY SUP DSF 0036 175C HXCV DSF 0004 1936
ADRWS DSF 0010 1792 PRNT2 DSF 001E 193A
COPY DSF 001C 17A2 SCAT' DSF 0041 1958
DI SC DSF 0036 178E STRTB DSF 0006 1999
DL CIB DSF 001E 17F4 EPLOT DSF 0005 199F
DSLET DSF 0037 1812 ERULE DSF 000A 19A4
I DENT DSF 000C 1849 EMOVE
ID DSF 001A 1855 EINC
MOCIF DSF 0057 186F FCHAR DSF 0005 19AE
PT UTL DSF 0009 18C6 FCHRX DSF 0025 1983
C ALPR DSF 0007 18CF FCHR I
FS LEN DSF 0008 1806 WCHRI
F SYSU FGR ID DSF 0008 1908
RDREC DSF 0015 18E1 FPLOT DSF 0004 19E0

ENC OF DUMPLET/FLET

PROG FOR DB	 DB
NAME MAT CNT ADDR

PROC
NAME

	

Section Subsections	 Page

60
	

20
	

10
	

01

How Much Room Do I Have?

It is quite easy to determine how much room is
available on any particular disk cartridge; all you
need to do is to run the DUP *DUMPLET job. The
last item on the printout will have the name 1DUMY
(a dummy entry representing empty space), its size
in disk blocks (a disk block is 20 words, or 1/16 of
a sector), and its starting address (in disk blocks).

This block of empty space is equivalent to Work-
ing Storage, the area where you may place addi-
tional programs and data files.

Figure 60.3 shows the last page of a typical
DUMPLET printout. Note the last entry:

1DUMY 49F3	 1AOD

Convert the two hexidecimal numbers to decimal:

49F3	 becomes 18931
1AOD	 becomes	 6669

Divide by 16 (16 disk blocks per sector):

18931/16	 is	 1183 3/16
6669/16
	

is	 416 13/16

The first number (1183 3/16) is the size in sectors
of Working Storage; the second (416 13/16) is the
sector at which it begins. The fact that the two add
up to 1600, the total number of sectors on a disk,
confirms the accuracy of the arithmetic.

Figure 60.3.

Section Subsections Page

60 20 20 01

How Can I Make More Space Available?

Using Figure 60.2 as your guide, take a look at
each of the five logical areas, with an eye toward
removing items you don't need:

Cylinder 0

Since Cylinder 0 is always present and necessary on
every disk cartridge, there is nothing you can do to
reduce its size.

IBM Systems Area

Every system disk cartridge, after initial loading
with the Monitor, contains the Assembler and
FORTRAN compiler, two programs of substantial
size. The Assembler occupies 32 sectors; the
FORTRAN compiler occupies 88 sectors.

If you rarely compile programs written in Assem-
bler Language, you will probably want to delete the
Assembler from all disk cartridges except the one
used for odd jobs.

Most 1130 users program in FORTRAN, but it is
still possible to eliminate this compiler from some
disk cartridges. Suppose you have a large inventory
file that requires all the room you can get. Why
keep the FORTRAN compiler on that disk?

During the test phase, when you are compiling
many FORTRAN programs, you certainly need the
compiler; once the programs have been debugged,
however, you can eliminate it and increase the size
of your file by 88 sectors. If it becomes necessary
to change a program on a particular disk, you can
recompile the new version using a disk that does
contain the compiler, dump the new program on
cards with the DUP, remove the FORTRAN disk,
replace it with the inventory (no FORTRAN) disk,
and load the new card program with DUP. Because
this takes a few minutes, you will probably not want
to eliminate the FORTRAN compiler from any disk
unless the space is needed.

To delete these two programs from a disk, you
must use the DUP *DEFINE function, as shown
below

3 4 5
	

11 12 13 14 15 16 IT	 20 21	 23	 26 27 29 30 32 34 55 37	 404 42 43

/ / .7

/
0 E	 V
	

4 5 S
	

ER

and/or

9 4 5 6 7	 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 26 303
	 33 34	 37 38 39 4041 4214344-43

/ / OB

/ /

	
A

E F / E V a F	 A N

// JOB
0 I/

I a0

	

Section Subsections	 Page

60
	

20
	

20
	

02

Fixed Area

Because of the way in which the Fixed Area is handled
by the Monitor, you should not define one unless you
have a specific purpose in mind for it. Remember
that the size (and existence) of the Fixed Area is
entirely up to you. If you define a 20-cylinder Fixed
Area and use only half of it, the other half is com-
pletely wasted; the empty space is not transferred
to the UA or WS.

To determine what is in the fixed area, you may
run the DUP job:

1	 2 5 4 5 6 7 8 9 10 11	 12 13 14 15 16 P 18 19 2021 22 23 24 25 26 27 2829 3011 323334 350637 9 4041 424544-45

// JOB

/ 0 U O
O a C F T

make the decision and do the deleting. The Monitor
will not check for the presence or absence of a
plotter and delete those subprograms on its own.
Although you do specify to the Monitor loader (with
the REQ cards) which devices are on your system,
the loader does not use this information to selectively
load the subroutine library. All subroutines are
loaded onto the disk, regardless of your 1130 con-
figuration.

Figure 60.4 illustrates what subroutines can be
deleted, and how many sectors can be gained. The
subroutines noted can be deleted the same as any
other subroutine -- for example:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2021 22 23 29 25 26 27 2849 3011 32 33 34 35M37 38 39 40741 424344-4!

If it is not full, you may reduce its size (see 60. 30.20)
accordingly, automatically transferring the released
area to Working Storage. If later you wish to place
something in FX, you may then increase its size.

User Area/Working Storage

Because the UA and WS interact, they must be con-
sidered together. Basically, there is never any
room in the User Area -- it is always full. Even if
you remove something from it, it is still full, since
it is immediately packed, and the free space is
transferred to WS.

Your job, therefore, is to remove unneeded items
from UA, decreasing its size and thereby increasing
the size of WS. The entire contents of WS are, after
all, available for transfer back to the UA whenever
you have something you wish to store on a permanent
bas is .

The following sections discuss some items that
can be removed from the UA.

I/O Subroutines for Devices Not on Your System.
As mentioned earlier, the Monitor, as delivered and
loaded on each disk, is a complete system and in-
cludes subroutines for every device that can be in-
stalled on an 1130 system -- plotter, paper tape
reader, etc. If you do not have a plotter, it makes
sense to delete the plotting subroutines. As with the
FORTRAN compiler and the Assembler, you must

If you don't have
this equipment
(or if no program on this disk
will use these devices)

You may delete
these subroutines

And gain this
number of sectors

IBM 1627 Plotter PLOTX
PLOT1
POINT
XYPLT
FCHRI
FCHR X

ECHRI
ECHRX

FCHAR
FGRID
FPLOT
SCALE
FRULE

ECHAR
EGRID
EPLOT
SCALE
ERULE

10

IBM 1132 Printer PRNT1
PRNTZ
PRNT2

DMPD1
DMPX1

6 1/16

IBM 1403 Printer PRNT3
PRNZ
EBPT3
PTHOL

CPPT3
PT3EB
PT3CP

4 8/16

IBM 1442 Card Read Punch,
Model 6 or 7

CARDO
CARD1
CARDZ

2 12/16

IBM 1142 Card Punch,
Model 5

PNCHO
PNCH1
PNCHZ

2 2/16

IBM 2501 Card Reader READO
READ1
READZ

1	 4/16

IBM 1134 Paper Tape
Reader and/or 1055 Paper
Tape Punch

PAPT1
PAPTN
PAPTZ
PTUTL

PAPPR
PAPHL

PAPEB
PAPTX

7 14/16

IBM 1231 Optical Mark Page
Reader

OMPR1 1	 1/16

Synchronous Communication
Adapter (Teleprocessing)

HOL4B
HXCV
STRTB
HOLCA

SCAT1
PRNT2
EBC48

9

2310 Disk Drive COPY 1	 12/16

Figure 60.4. I/O subroutines which may be deleted

Section Subsections Page

60 20 20 03

Computational Subroutines You Are Unlikely To Use.
Let's take the example again of the disk used ex-
clusively for a large inventory file. You have elimi-
nated the compilers, the plotter subroutines, etc.
Is there anything else on this disk that you won't
need? Unless you have anunusual inventory system,
the answer is yes. Do the inventory programs re-
quire the computation of any sines, cosines, etc ?
If not, you may gain 7 sectors by deleting the trig-
onometric and logarithmic subroutines:

FSQR
	

ESQR
FTANH
	

ETANH
FATN
	

EATN
FAXB
	

EAXB
FEXP
	

EEXP
FLN
	

ELN
FSIN
	

ESINE

Seldom-Used Programs and/or Data. Because the
1130 Monitor makes it so easy to do so, many people
tend to "overstore" the disk. This is particularly
true of programs, which are often *STOREd as a
matter of course, with no rules regarding what gets
*STOREd and what doesn't. As a practical matter,
however, many programs should not be placed on
the disk, but should be compiled each time they are
used. For example, suppose that program XYZ is
a stand-alone program that does nothing but read a
deck of cards and produce one or two pages of results.
It is run monthly, consists of 150 FORTRAN source
cards, and uses 2100 words of core storage. To

compile (without listing) and execute it, will take
about:

Compile	 2 minutes
Execute	 3 minutes

Total	 5 minutes
To load it from the disk and execute it, will take
about:

Load
	

1/2 minutes
Execute	 3 minutes

Total	 3 1/2 minutes
By storing this program on the disk, you will

save 1 1/2 minutes per month, but will use 2100
words of disk storage, or about seven sectors.

Is it worth it? That depends on your installation.
If disk space is scarce, the answer is: "No -- don't
store it!" If there is plenty of room on the disk, the
answer is: "Yes, why not?"

Obviously, some programs should or must reside
on the disk:

- Often used subroutines and functions
- Programs called as LINKS by other programs

Frequently used programs
- Very large programs
- Programs that are run with a series of other

programs, as one batch JOB.

Unneeded User-Written Programs and Data. This
usually applies more to programs than data. Over
a period of months, the typical disk becomes clut-
tered with numerous abandoned, obsolete, and/or
useless programs and subprograms. The LET/FLET
should be dumped periodically and inspected for such
items. Anything not really needed should be deleted.

	

Section Subsections 	 Page

60
	

20
	

30
	

01

Summary

To illustrate how much room can be available on a
systems disk, let's assume you have an 1132 Printer
and a 1442 Card Read Punch, and you wish to place
a very large commercial-type data file on the disk.
There is no Fixed Area.

After originally loading the Monitor, you
*DUMPLET and determine from the last 1DUMY
record that the size of Working Storage is 49F3 disk
blocks, or about 1183 sectors, 74% of the disk.

To increase this amount, you can take the three
steps suggested earlier:

1. Delete the FORTRAN compiler and the Assem-
bler, gaining 120 sectors.

2. Delete the I/O subroutines you don't need, in
this case gaining about 37 1/2 sectors.

3. Delete the technically oriented computational
subprograms, gaining about seven sectors.

You thereby have increased the available disk
space (WS) by 164 sectors, to 1347, or 84% of the
disk. Of course, you cannot compile any programs
with this disk, nor can you execute any jobs (noncom-
mercial) requiring some of the computational sub-
routines that have been deleted. From the number
of sectors available you must subtract the space re-
quired for your programs. The remainder is avail-
able for your data file(s).

The task is easier with a non-systems disk. One
cylinder (eight sectors) is always required for the
Cylinder 0 area, plus two more if you have defined
a Fixed Area. That leaves either 1584 or 1576
sectors for your programs and data files.

Section Subsections Page

60 30 01 01

THE DISK UTILITY PROGRAM

Introduction

The Disk Utility Program (DUP) gives you the facili-
ties necessary to manage your disk storage capa-
bility. With DUP you can:

• Store programs and data files on the disk
• Make the programs and data files on the disk

available in printed, punched card, or punched
paper tape form

• Remove programs and data files from the disk
• Determine the contents of disk storage through

a printed copy of LET/FLET, the directory to
the disk

• Alter certain system parameters and, to a
limited extent, the contents of the system

• Perform other minor disk maintenance functions
The Monitor manual explains the details required

to use DUP (card layouts, etc.). This section will
cover only the most commonly required DUP functions
and the information needed to execute them.

	

Section Subsections	 Page

60
	

30
	

10
	 01

Format of Material on the Disk

Essential to the understanding of DUP is a basic
knowledge of the various formats used in the storing
of programs and data on the disk.

Although DUP gives you many format options,
this section discusses only those that apply to the
average user, writing a typical FORTRAN program.
Users with unusual combinations (for example, a
data file in DCI format) will have exercised this
option with a specific purpose in mind and will be
well aware of the details involved.

Data Files

Under normal circumstances, data files are always
stored on the disk in the Disk Data Format (DDF).

Programs and Subprograms

Under normal circumstances, programs and sub-
programs will be stored on the disk in one of two
formats:

Disk System Format (DSF)
Disk Core Image Format (DCI)

The main difference between the two lies in what is
stored, rather than how it is stored.

A program in DCI format consists of a complete,
self-sufficient core load or program package -- the
mainline program, plus all the subroutines it re-
quires. The entire package is in absolute form;
that is, all addresses are actual core storage lo-
cations rather than relative locations. Subprograms
cannot be in DCI format.

On the other hand, an item in DSF consists of that
item and only that item. Nothing else is included
with it. It may be:

• A program or a subprogram
• Absolute or relocatable (but usually relocatable)
• In either WS or UA (but not in the FX)
As would be expected, a program occupies more

space on the disk in DCI form than it would in DSF,
since it includes more material. However, it may
be loaded into core storage (when called by an
XEQ card) much faster, since the Core Load Builder
need not assemble all the necessary subroutines and
calculate actual core storage addresses.

E NG
UD F

0 zpU 40 Q

Section Subsections Page

60 30 20 01

The Most Commonly Used DUP Functions - Single
Disk Drive Systems

Of the many things that can be done with DUP, a
few stand out as common, everyday tasks in the
typical 1130 installation. The following is a guide
to these common jobs:

Store a Program or Subprogram in DSF Format

After compiling a program or subprogram, you will
commonly store it on the disk for later reference
or execution.

Because the FORTRAN Compiler (or Assembler)
leaves the compiled program in Working Storage,
all that need be done is to move it from WS to UA.
To do this, DUP moves the boundary between UA
and WS so as to include in UA whatever is in WS.
For example, suppose you have just compiled a
program called PROGZ, which requires 812 words
of core storage. If you follow the END card of the
program with

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 12 19 20 21 22 23 24 25 26 27 28 29 3001 5233 54152657 5259 4041 42434445

DUP will move this program (move the boundary)
from WS to UA, and enter the name PROGZ in LET,
with the proper identification codes. UA increases
in size by about 812 words; WS decreases by the
same amount. Note that you did not have to know
how large the program was -- DUP handles that.
Note also that the DUP card is not preceded by a
JOB card.

A EA/

Section Subsections Page

60 30 20 02

Store a Program in DCI (Core Image) Format

You can, after compilation, also store a program in
DCI format, by simply using the *STORECI card in
place of the *STORE card. Note that the *FILES,
*LOCAL, and *NOCAL cards are placed after the
*STORECI card and that the number of such cards
is punched in columns 27-30 of the *STORECI card.

Because this takes longer than the *STORE option,
it usually will not be done unless you are fairly
certain that the program is free of bugs.

Delete a Program or Subprogram

This is one of the simplest of the DUP jobs, since
you need not be concerned with either the format,
the location, or the type (program, subprogram, or
data) of the item to be deleted.

The sequence of cards

a l e
.1 O 6

a

2
	 4 9 10 12 15 14 15 16 19 20 22 23 27 26 30,3 32 34 37 5,9 59 404 42 43 4445

TL46

Convert a DSF Program to DCI

For speed of loading, commonly used programs
should be stored in DCI (core image) format. This
eliminates the need to build a core load each time
you execute the program.

If you have a program called MAIN6 stored on the
disk in DSF (by a STORE card), you can convert it to
DCI with the following sequence:

I	 2 3 4 5 6 7	 9 910111213141516 a 18 19 20 21 22 23 24 25 27 28 29 303 3233 35 37 38 39 4041 4243 45

/ / J015
// OUP
DI/HP 04 W5 141N6
STORECI Pis I/,4 vAHEN 2
LUCA L - -
C/LES

/ 1 J108
// 01/C
F DELETE 14 ///6

Note that the name of the program had to be
changed.

will delete NAMEP wherever and whatever it is.

6 a k a r 5	 O t n a	 C

2

5

3 4

O

5 6

E

7

O

9 10

A

12

I
13

C

14 17

U

18

4
19 20 21 22

x
23

x
24

X
25

x
26 27 28 29

0
301

8
32 33 34 37 38 39 404 42 43 44-45

Section Subsections Page

60 30 20 03

Dump a DSF Program or Subprogram and Reload It

As a backup procedure, you can dump your often
used programs and subprograms onto cards or paper
tape. If anything happened to the disk cartridge,
these items could be reloaded much faster than they
could be recompiled. The job

2
	 5	 7

	 9 10
	

12
	 14 IS 16 17 18 19 20	 23

	
25 26
	

26 29 30 32 33 35 36 37 39 40.4 42 43 44-4

a U
a ,v	 1/ 4

	
C
	 I 7- E

Dump a DCI (Core Image) Program and Reload It

If the program to be dumped and reloaded is in core
image format, the procedure must be changed some-
what.

The dump to cards can be accomplished in the
same way, with the *DUMP card.

However, to reload, the STOREDATACI option
is required, and the card count must appear in
columns 27-30. For example, a program called
XXXXX, dumped into a deck of 108 cards, would be
reloaded with the card:

will cause ITEM to be punched into the deck of blank
cards following the *DUMP card, 54 words per card.
In addition, a header and end-of-program card will
be punched.

Since the program is punched in such a compact
form, very few programs will require more than an
inch of cards (about 140 cards, or 6300 words).
Extra, unpunched cards will be bypassed automati-
cally by DUP.

To reload this dumped program, the *DUMP card
should be replaced with

4
	

6 7
	

10
	

14 15 16 17 18 19 20 22 23 24 25 26 27 28 29 30 	 33 34 36 37 39 404 42 43 4445

S r O RE
	

C O
	

A
	

rr

(if the program was in DSF) and run as another job.

Section Subsections Page

60 30 20 04

Dump a Data File and Reload It Copy a Data File onto Another Area on the Same
Disk

More important as a backup procedure, you can
dump your data files onto cards or paper tape. In
case anything happens to the disk cartridge, the data
file may be reloaded.

To dump a data file, you must know its size in
sectors.

The sequence of cards

Another method of data file backup is to copy the
file onto another portion of the disk. Typically this
would be done before running a job that modifies the
file. If the file is 100 sectors long and called MEN,
the job

10 14 15 IT 18 192 4 6 20 22 23 24 26 27 28 32 33 34 3529 3013 37 42 444

B/14 17 19 20 21 22 24 25 26 27 28 29 301 544 6 9 10 12 13 15 23 37 442 39 404 43 45

OFB
U EN 0,4 A 5 0U

U 0 0S T 05 0 A 1s/ AIA 6 S ED AA U E OB U N B C A-
A 6 a0 C ee a/7 r 05

will move it to Working Storage, then include it in
the User Area with a different name (TMEN).

If the program you wish to run operates satis-
factorily, updating the file MEN, you need do nothing
except DELETE TMEN.

If on the other hand, some error occurs that ruins
the file MEN, you have a duplicate file (TMEN)
ready to replace it. The steps shown below will
replace MEN, which has been ruined, with TMEN:

will dump the 65-sector data file, FILEX, from the
UA to cards (CD).

The data file is punched into the blank card deck,
54 words per card. No header or trailer cards are
punched.

To reload, you must know the number of cards
in the dumped deck.

To continue the previous example of a 65-sector
file (20,800 words), the dumped deck would have
required about 386 cards.

To reload, then, you need the cards 2 4 5 6 7 9 10 14 15 16 17 18 19 20 21 22 23 24 25 27 28 29 30 32 33 34 35 37 38 39 40 42 43

3
U

B HE
0 U N A U A 5 TH E N 0 1 0 0

42 5 0 R A 5 U A NE N O 0 C
O L F E T Al

35 36 3817 20 24 3011 37 394 10 12 13 14 15 16 22 23 42

B0
U

8U X 3B Ar o A A CE5
/(1 eaa a C

Now you may rerun the job. Be especially care-
ful not to *DELETE TMEN until you are sure
everything went according to plan.

This protects you from accidental programmed
loss of a data file; however, it does not protect
against physical loss or destruction of the disk
cartridge itself.

Section Subsections Page

60 30 20 05

Defining and Modifying the Fixed Area

If you want a Fixed Area on a disk cartridge, you
must not only instruct the monitor to create one,
but you must specify its size.

If you want a Fixed Area of 20 cylinders, you can
run the job

or, if you wish to decrease its size by 3 cylinders

4
	

9 10
	

12 13 14 15 16 17
	

20 22 23 24
	

26 27 28
	

30,3
	

54 55 37 38 39 404 42 43

a
0

E 4,
	 4 RE
	 0 3

You should keep a record of whether a particular
cartridge has a Fixed Area or not. If you ran the
first job, then forgot you ran it, and ran it again,
you would have a 41-cylinder Fixed Area. When in
doubt you may use the DUMPLET DUP option, which
will print the contents of FLET.

4
	

6
	

10
	

12 13 14 15
	

17 18 19 20 22 23 24 25 26 27 26 29 30
	

33 54 36 37
38 39 404 42 45 44 45

F /v F	 A R E4
	 0 2

and you have it. Note that we specified 21 cylinders
as the size of the Fixed Area. One cylinder will be
used for FLET; the other 20 are available for your
programs and data files.

If later you wish to increase the size of FX by 6
cylinders, you can use

4	 5 10 12	 13 14 15 16	 17 18 19 20 21 22 23 25 26 27 28 29 303 52 55 37 38 39 4'14 42 43 44 45

9

4/
/ R E4 a 06

9 6

Section Subsections Page

60 30 30 01

Special Options -- Multiple Disk 1130 Users

Copy a Data File onto Another Disk

If you have more than one disk drive, you will usu-
ally take this option rather than the ones described
earlier -- dump to cards for backup, or copy to
another part of thIsame disk. This requires a two-
step procedure, site data files cannot be copied
directly from the UA on one disk into the UA on
another disk. The transfer must be via WS.

Suppose you have an 88-sector file, called DATAX,
in UA on cartridge 1075, and you want to copy it into
the UA on cartridge 1077. Assume that cartridge
1075 is on drive 0, and 1077 is on drive 1. The
following card sequence will accomplish this task:

Copy a Program onto Another Disk

If you have multiple disks, you may also choose to
back up your programs by copying them to another
disk, rather than dumping to cards. This is similar
to the previous task, but easier, since you do not
have to know the size of the program, as was the
case with a data file. You must still, however, go
via WS in the two-step procedure:

4 7 9 10 12 13	 1.1 15 is 17 18 19 20 22 23 24 25 25 21 28 29 30'3 32 33 34 30 39 42 43

I 0 8 0 7 5 1 0 7 7 1 0 7 5

a a S PA, 0 1 0 75 0 7 5
4 5 TO 5 a O 0 4 0 7 5 0 7 7

This copies the program or subprogram called
PROGX from cartridge 1075 to cartridge 1077. As
before, the program now exists on both cartridges,
each of which has its own LET.

Neither the format (DSF or DCI), nor the type
(program or subprogram) need be known, or specified.

You can see that the file was first moved from UA
to WS on cartridge 1075, then from WS on 1075 to
UA on 1077. The file now exists on both cartridges,
and each has the same name: DATAX.

Copy an Entire Disk onto Another Disk

This is not done with the Disk Utility Program (DUP)
but with a Disk Maintenance Program called COPY,
which is supplied with the Monitor. If you want to
copy the entire contents of cartridge 1967 onto car-
tridge 1968, you execute COPY:

13 16 272 4 5 10 12 io 15 17 18 20 22 26 28 30.3 33 37 se 39 404 42A 4445

7a
	 1 9

51 7 1I

1 9 6 6

	

Section Subsections	 Page

65
	

00
	

00
	

01

Section 65: THE MONITOR - CORE STORAGE MANAGEMENT

CONTENTS

Introduction 	 65. 01. 00
The Logical Layout of Core Storage 	 65.10.00
Basic 	 65.10.10
Flipper 	 65.10.20
SOCAL Area 	 65.10.30

General
Overlay 1
Overlay 2
Overlay 3

The SOCAL Overlay Scheme
Possible Improvements to the
SOCAL Scheme

Reduce the Size of the Largest
SOCAL Overlay
Combine Overlays 1 and 3

LOCAL Area 	 65.10.40
General
IBM-Supplied (Systems)
Subroutines

Program or LINK Area 	 65.10.50
COMMON Area 	 65.10.60
Unused Area 	 65.10.70

Summary 	 65.20.00

\

-

	

Section Subsections	 Page

65
	

01
	

00
	

01

INTRODUCTION

The 1130 Disk Monitor System gives you three ex-
tremely powerful and useful means of managing
core storage. All three involve the sharing of core

storage by two or more programs (LINKs), sub-
programs (LOCALs), or groups of subprograms
(SOCALs). This section describes these three
schemes in detail, after discussing the 1130 core
storage layout in terms of its seven logical areas.

Section Subsections Page

65 10 00 01

THE LOGICAL LAYOUT OF CORE STORAGE

You can think of core storage as consisting, like the
disk cartridge, of several logical areas. Again,
this layout may bear little or no resemblance to the
actual, physical layout; it is merely a device to help
you understand the dynamic nature of core storage.
The seven logical areas are as follows:

Basic
Flipper
SOCAL Area
LOCAL Area
Program Or LINK Area
COMMON
Unused

These areas are described below in general terms.
Complete details may be found in the appropriate
Monitor reference manual. Note that all core sizes
given are based on:

1. A typical FORTRAN program--commercially
rather than scientifically oriented.

2. Approximate subroutine sizes, usually ad-
justed to multiples of 10.

3. Version 2, Modification Level 0, of the 1130
Disk Monitor System.
Because some of the package sizes may increase in
the future, you should not plan on using all of the
available core storage; it might be more prudent to
use about 95% of it.

Unused

COMMON

Program area

LOCAL area

SOCAL area

Flipper

Basic area

Core Storage

	

Section Subsections	 Page

65
	

10
	

10
	

01

Basic

This is a set of programs that is always in core and
whose size varies only slightly from job to job. It
consists of:

1. Resident Monitor
2. Transfer Vector
3. Several commonly used subroutines kept in

core storage at all times (IFIX, FLOAT, ELD,
ESTO, NORM, etc.). These are all subprogram
subtypes 0 -- see discussion of subtype under
"SOCAL Area".
A good average size for this area is 740 words.

Section Subsections Page

65 10 20 01

Flipper Unused

This routine handles both the SOCAL and LOCAL
overlay system. Flipper is not required (core size
= 0) if there are no SOCALs or LOCALs: if there
are, its size is about 100 words.

COMMON
Program area
LOCAL area
SOCAL area
Flipper
Basic area

Core Storage

Unused

COMMON

Program area

LOCAL area

SOCAL area

Flipper

Basic area

	

Section Subsections	 Page

65
	

10
	

30
	

01

SOCAL Area

General

Core Storage

The word SOCAL is an acronym derived from
"System Overlay on Call". The SOCAL area is that
area of core storage where the SOCAL subroutines
reside. The SOCAL subroutines, in turn, are de-
fined as those subprograms that:

1. Are used by the mainline program to be ex-
ecuted.

2. Have been designated as subtype 1, 2, 3, or 8.
3. Have not been made LOCAL.
If a subprogram has not been designated as sub-

type 1, 2, 3, or 8, it will be located in one of three
areas:

1. The LOCAL area if it has been specified as
LOCAL.

2. The Basic area if it is an IBM-supplied sub-
program (IFIX, FLOAT, ELD, EST, etc.) and has
not been made a LOCAL.

3. The Program area if it is a user-supplied
subprogram and has not been made a LOCAL.

The 1130 Monitor system you receive from IBM
includes a subroutine library in which each sub-
routine is assigned a subtype number. These may
be called the standard subtypes, and will yield a
SOCAL system as described in the Monitor manual
and in later subsections of this Guide. However,
these subtype numbers may be changed at your
discretion. Furthermore, you may assign subtype
numbers to your own subprograms. Both steps will
yield a nonstandard SOCAL system. Several ideas
on this subject are presented later in this subsection.

The SOCAL system involves the grouping of the
SOCAL subroutines into three groups, called overlays,
which will be manipulated by the Core Load Builder
as it goes about its job of loading your program into
core storage.

Overlay 1. This is made up of all those subroutines
and functions designated as subtype 2 or 8. The
ARITHMETIC, PAUSE, and STOP routines are sub-
type 2; the functionals (SIN, COS, etc.) are sub-
type 8.

The "typical" commercial-program will probably
add, subtract, multiply and divide (in extended pre-
cision), PAUSE, STOP, and read the data switches.
The subroutines required to do this will occupy about
520 words of core storage. If the program does not
divide, the size of this overlay will be reduced by
180 words.

Commercially oriented 1130 programs will
probably be limited to these subroutines, while
technical-type jobs may use the SIN, COS, SQRT,
etc. , functions and require up to several hundred
more words.

Section Subsections Page

65 10 30 02

Overlay 2. Overlay 2 is composed of all subtype 3
subroutines--those required for non-disk input/
output. The basic component is SFIO, the Format
Interpreter, which is required if the program to be
executed contains any non-disk FORTRAN I/0 state-
ments. In addition, each I/0 device requires its
own I/0 subroutine and often several code conver-
sion routines.

The size of this overlay varies considerably,
depending on the I/0 devices specified on the *IOCS
card (whether they are used or not). The following
table may be used to calculate the approximate size
of this overlay.

If your program	 This many words will be
contains any:	 included in overlay 2:

a) Non-disk formatted
	

1150
input/output (SFIO)

b) WRITE on the 1132
	

190
c) WRITE on the 1403
	

190
d) WRITE on the 1442-5
	

70
e) WRITE on the console 	 60

printer (typewriter)
f) READ or WRITE on the	 160

1442-6 or 7
g) READ from the 2501
	

60
h) READ from the key-	 30

board (cannot be
done without writing
on console printer)

i) READ from keyboard
	

190
or 2501 or 1442-6, 7

j) READ or WRITE on	 225
paper tape

Consider, for example, a FORTRAN program
compiled with the card:
*IOCS (1132 PRINTER, TYPEWRITER, KEYBOARD)
Referring to the table above, this program will re-
quire the following:

Item	 Reason	 No. of Words

a	 There will be formatted I/O	 .1150
using non-disk units.

b	 The 1132 printer is specified.	 190
e	 The typewriter is mentioned. 	 60
f	 The 1442 is included. 	 160
i	 The program READs from the	 190

1442.
This program, therefore, will require a 1750-word
overlay. (Note again that it is the *IOCS card, not
your program, that determines the size of this
package.)

Total

	

Section Subsections	 Page

65
	 10
	

30
	

03

Overlay 3. This is the FORTRAN disk I/0 package,
which may contain:

SDFIO (620 words), the disk I/O package
SDFND (80 words), the disk FIND package
SUFIO (730 words), the disk unformatted
I/O package

All three subroutines are subtype 1. The size of
this package, therefore, 'ranges from 0 (no disk
I/O) to 1430 words.

Note that SDFND is not included unless your
FORTRAN program contains a FIND statement.
SDFIO is included if the *IOCS (DISK) card is pre-
sent; SUFIO if the *IOCS (UDISK) card is present.

The typical program will require SDFIO and
SDFND, for an overlay size of 700 words.

The SOCAL Overlay Scheme

Just before you execute a program or store one in
core image format (DCI), the Core Load Builder
(CLB) is given the task of building a complete core
load, or program package, which will fit into core
storage.

CLB assembles your program and all its required
subroutines, and determines how much core storage
they will require. In so doing, it considers the
subroutines that are to be LOCAL. The CLB then
tries to include the last remaining elements, the three
SOCAL overlays, in four steps:

1. As a first step, CLB attempts to fit all three
overlays in core with no sharing. Using the typical
overlay sizes, this will require 520 +1750 +700 or
2970 words of core.

2. A second step is taken if there is not enough
room to hold all three packages at the same time.
This involves the sharing of core storage by overlay
1 (arithmetic) and overlay 2 (non-disk I/O). The area
they share must be large enough for the larger of the
two overlays, in this case (and almost always) the
non-disk I/O subroutines, overlay 2. The size of
the SOCAL area will now be 1750+700 or 2450 words,
a reduction of 520 words, the size of overlay 1.

As required by the user's program, Flipper will
read each overlay from the disk whenever it is needed,
placing it on top of the last overlay. Overlay 3, the
disk I/O, will remain in core at all times. Because
Flipper is now needed, your net gain is 520-100 or
420 words.

3. The third step is taken if there is still not
enough room in core storage. It involves the shar-
ing of core storage by all three packages, in an area
the size of the largest of the 3 overlays. As before,
this will probably be the non-disk I/O overlay, at
1750 words.

4. If step 3 fails to provide enough room in core,
step 4 will so advise you with a message.

Summarizing the CLB makes a step-by-step
attempt to fit your program and its subprograms into
the available core storage space.

Step 1 involves the most core storage --typically
about 2970 words.
Step 2 requires about 520-100 or 420 words less
than step 1.
Step 3 requires about 700 words less than step 2.

Figure 65.1 shows the three steps, or overlay levels,
in graphic form. Note that the discussion of this typ-
ical program did not include the program itself. Only
the subprograms have been considered.

Section Subsections Page

65 10 30 04

If you place an L in column 14 of the 1/ XEQ
card, the Core Load Builder will print a core map
showing which subprograms, if any, are in which
SOCAL overlay, and the size of each overlay. (See
Figure 65.5 for such a map.)

Overlay
Step 1

Level 0
Step 2	 Step 3

Overlay Level 1	 Overlay Level 2

3000

Overlay
Net Gain

Non-Disk
2500 I/O

Overlay Net Gain3

2000

Overlay
- --t

2

1500
Non-Disk

I/O Unused	 I	 I	 Unused Overlay Unused
2

Overlay
2

1000

500
Overlay Overlay Overlay Overlay

3
Arithmetic

Fli per Flipper

Figure 65.1. Core storage layout at each overlay level

Possible Improvements to the SOCAL Scheme

Figure 65.1 illustrates, to a rough scale, the layout
of the SOCAL area at each overlay level. One fact
is apparent: overlay 2 is much larger than either
overlay 1 or overlay 3, and is, in fact, larger than
the two combined. Since the SOCAL area must be at
least as large as the largest of the three overlays,
a certain amount of core storage is unused in some
circumstances.

On the basis of this fact, there are two techniques
that may be used to make the standard SOCAL sys-
tem more effective:

Reduce the size of the largest SOCAL overlay.
Since LOCALs, discussed later, take precedence
over SOCALs, you have a means to remove sub-
programs from the SOCAL area and to force them
into the LOCAL area. Naturally, you would do this
only to subprograms in the largest overlay, usually
the non-disk I/O package.

Because one LOCAL cannot call another LOCAL,
you must be somewhat careful here. For example,
you cannot LOCALize both the 1132 subroutine and
a subroutine that calls it. One or the other may be
LOCAL, not both.

If you are sure such a situation does not exist,
you can make the following subroutines LOCAL:

Approximate

	

Name	 Required for	 Size in Words

	

CARDZ	 1442 Card Read Punch
	

160

	

PNCHZ	 1442-5 Card Punch
	

70

	

READZ	 2501 Card Reader	 60

	

TYPE Z	 Console Printer	 60

	

WRTYZ	 Console Keyboard and
	

90
Printer

	

PRNTZ	 1132 Printer	 190

	

PRNZ	 1403 Printer	 190

	

PAPTZ	 Paper Tape Units	 225

(If you accidentally do make one LOCAL call
another LOCAL, the LOADER will call it to your
attention with an error message.)

Each of these routines, if made LOCAL, releases
as much core storage as the size of the routine. It
is unlikely, however, that you can reduce overlay 2
to the same size as the other two overlays unless
you LOCALize the entire 1150-word Format Inter-
preter (SFI0).

	

Section Subsections	 Page

65
	

10
	

30
	

05

To see what that would do to the SOCAL system,
let us observe what the three overlays would be if
SFIO were LOCAL (and therefore not SOCAL):

Overlay 1 ARITHMETIC (about 520)
Overlay 2 CARDZ, PRNTZ, TYPEZ,

etc. (about 600)
Overlay 3 DISK I/O (about 700)
You have not saved the entire 1150 words of

SFIO, because now your disk I/O package, overlay
3, at 700 words, is the largest. Your net gain in
the SOCAL area is 1750-700 or 1050 words of core
storage. Furthermore, the LOCAL SFIO at 1150
may now be the largest of the LOCALs, consequently
enlarging your LOCAL area; so you may not really
have saved 1050 words. If the largest LOCAL pre-
viously was 800 words in length, and the LOCAL
area is now 1150-800, or 350, words larger, your
net gain is 1050-350 or 700 words. This is still
substantial.

Because all READs and WRITEs (except to the
disk) use SFIO, making SFIO LOCAL rules out the
possibility of making LOCAL any subroutine con-
taining non-disk I/O. This may hamper your flex-
ibility in using LOCALs and further reduce your
700-word saving.

3000

2500

2000

1500

1000

500

Step 1
Overlay Level 0

2970

Step 2
Overlay Level 1

Step 3
Overlay Level 2

Nonexistent

1750

Overlay
2

Non-Disk
I/0

Unused

Overlay
2

Non-Disk
I/0

Overlay
1

Arith.
and

Disk I/O

Overlay
1

Arith.
and

Disk I/O

Flipper

Combine Overlays 1 and 3. Again observing
Figure 65.1, you see that overlay 2 is larger than
overlays 1 and 3 together (1750 is greater than
520+700). Why not, therefore, combine these two
overlays into one? This will not save any core, but
it may reduce the amount of time spent in overlaying
one package with another.

Since the subprograms in overlay 1 are all sub-
types 2 and 8, and those in overlay 3 are all subtype
1, you need only change SDFIO, SDFND, and SUFIO
from subtype 1 to subtype 2, and they will be included
automatically in overlay 1.

To do this, you may *DUMP SDFIO, SDFND and
SUFIO from the User Area to cards, *DELETE
them, then reload the cards with a 2 punched in
column 11 of the *STORE cards.

If your programs run more slowly or no longer
fit in core, *DELETE the subtype 2 routines and
reload the card decks, this time with a 1 in column
11 of the *STORE card. This will restore them to
their original state.

Figure 65.2 illustrates how your SOCAL area is
affected by this change. For the typical program,
overlay 2 remains at 1750 and overlay 1 grows to
520+700 or 1220 words. Since there are no longer
any subtype 1 subroutines, overlay 3 will have a
size of zero words, and the CLB will, in effect,
skip step 3.

Figure 65.2.

7 4342300 373326 26 39292715 20 2322 2416 19181? 21141310 12 40141

0 9
2

L
Eq

S8 8 45a0C 4

Section Subsections Page

65 10 40 01

Local Area
	

If you execute XXXX with the cards

General
4 5 7 9 11 12 13 14 15 17 18 19 20 22 23 24 26 2/ 28 29 3001 3233 34 3536 38'39 4014 42 43 4443

/ / 0 8
Unused
	

2

COMMON 4 O C 4 L S U8 2 5 4/ 8 2 // S 9 4 1 U 83

Program area

LOCAL area

SOCAL area

Flipper

Basic area

Core Storage

The LOCAL (LOad-on-CALI) area is a second area
in core storage where the Monitor will overlay sub-
programs, although in a manner different from the
SOCAL scheme in these respects:

1. You must specifically designate a subprogram
as LOCAL. It is not automatic.

2. These subprograms are not grouped by any
subtype. Each subprogram forms one overlay, and
each overlay contains one subprogram.

3. You are not limited to three overlays. If you
have 17 subprograms, you may make all of them
LOCAL, thus creating 17 LOCAL overlays.

Like the SOCAL area, the LOCAL area will be
as large as the largest LOCAL subroutine.

LOCALs and SOCALs do not overlay one another.
There are two areas in core storage for subprogram
overlays--one as large as the largest SOCAL over-
lay and another as large as the largest LOCAL sub-
program.

To give some examples of how LOCALs are
used, take a program that uses five functions and/or
subroutines, called SUB1, SUB2, SUB3, SUB4, and
SUB5. You may designate none, one, two, three,
four, or all five as LOCAL. Those that are LOCAL
will overlay one another, being read from the disk
whenever required; those that are not LOCAL will
remain in core storage at all times.

Subroutines must be specified as LOCAL, with
the *LOCAL card, every time a DSF program is
executed, or at the time a core load is built with
a *STORECI card. Suppose you have a main pro-
gram XXXX, which uses the five subprograms
mentioned above:

SUB1	 300 words
SUB2	 60 words
SUB3	 378 words
SUB4	 406 words
SUB5	 19 words

Total 1163 words

you will reduce your core storage requirements by
1153-406 or 747 words, since only enough room for
the largest, SUB4, at 406 words, is needed, rather
than enough for all five, 1153 words.

If you execute XXXX with the cards

you will reduce your core requirements by the size
of SUB3 (378 words), since it and SUB4 will overlay
each other. SUB1, SUB2, and SUB5 will be in core
all the time, since they are not mentioned on your
*LOCAL card.

There are several other options in the prepara-
tion of the *LOCAL card. For example, the above
example could also have been

/
5

8
8 12 13 14 15 17 18 19 20 22 23 23 26 27 28 29 33 36 37 39 40•4 42 43 44

1 XtV
5 C/ 8

C

L 4 S [Mt4

1 2 '4 5 6 7 a 9 10 11 12 13

// JOB
x x x

L C ,4 K SU 3

01- 0 CA x x x S a 64

19/2021 22 23 24 25 26 27 28189 301 323334 353637 3839 40141 42434443

Section Subsections	 Page

65
	

10
	

40
	

02

where the comma after SUB3 implies continuation, 	 IBM-Supplied (Systems) Subroutines
or

In addition to your own subprograms, you may
also designate many of the IBM-supplied subpro-
grams as LOCALs. All subroutines and functions
except ILSOO, ILS01, ILS02, ILS03, and ILSO4, the
Interrupt Level subroutines, can be made LOCAL.
As a practical matter, however, it is often difficult
to LOCALize such subroutines, because many of
them call several other subroutines, and one LOCAL
cannot call another LOCAL.

This was mentioned earlier, when it was sug-
gested that some subprograms, ordinarily SOCALs,
could in fact be made LOCAL instead.

If the program to be executed has just been
compiled, it is located in Working Storage and there-
fore has no name. The *LOCAL card in this case
would appear as

1 2 3 4 5 6 7 8 910I1 1 2 13 14 1516 1 7 1819 202122 23 04 25 26272829 3031323334	 37	 9 404142434445

// 108
/ / K

L 0 C 51./8 3 S 4

without a name for the Mainline (calling) program.
(Note the comma in its place.)

If program XXXX calls program ZZZZ as a
LINK ((CALL LINK (ZZZZ)), you must specify the
LOCALs for ZZZZ also, at the time you tell the
Monitor to execute (or *STORE CI) XXXX

2	 4 5

0
K K

0 C K I/B 3 5aa 4
0 C A z 1/8 7 7 3 1 5UB 3

9 10	 12 13 14 15	 19 20 21 22 23 24
	 28 29 3Q 31 32

	 31 39 404 42 43

8

where SUB77 and SUB91 are other subroutines
LOCAL to ZZZZ.

BIG2

CALL LINK (BIG3)

BIG3

BIG4

	

If not	 If

	

finished:	 finished:
CALL LINK (BIG2)	 CALL LINK (BIG4)

CALL EXIT

Section Subsections Page

65 10 50 01

Program or LINK Area

Unused

COMMON

Program area

LOCAL area

SOCAL area

Flipper

Basic area

Core Storage

This area will contain
1. Your mainline program
2. All of your subprograms that are not LOCAL

or SOCAL.
3. All of the IBM-supplied subprograms that are

not LOCAL, SOCAL, or subtype 0.
4. All data (variables and constants) used by the

mainline and/or its subprograms, not placed in
COMMON.

This forms the third area in core where overlays
may be employed; in this case one program package,
or LINK, will overlay another.

As in the case of LOCALs, this is not done auto-
matically; it must be planned and executed by you.

Suppose you have written a very large (10, 000-
word) program, named BIG. When you try to ex-
ecute it, you are informed by the Monitor that it is
too big. Looking at the program, however, you see
that it can actually be thought of as four programs,
connected as shown in Figure 65.3.

If you split BIG into four programs and place the
CALL LINK statements in the proper places, the
four will run essentially the same as one large pro-
gram (although possibly a little slower). Each pro-
gram or LINK may have its own SOCALs, LOCALs,

variable data, subprograms, etc. However, if the
LINKs must communicate with each other through
core-resident data (rather than disk data), this data
must be placed in the COMMON area, with the
COMMON statement (see next subsection). During
execution of such a program, while the location and
contents of the SOCAL, LOCAL, and LINK areas
may be continually changing, the COMMON area
does not change. It stays in the same place and is
not involved in any overlay.

BIG1

CALL LINK (BIG2)

Figure 65.3. A program, "BIG" , segmented into four links

COMMON Area

Unused

COMMON

Program area

LOCAL area

SOCA L area

Flipper

Basic area

	Section Subsections	 Page

65
	 10
	

60
	

01

There are many different ways you can accom-
plish this, the easiest being to compose one COM-
MON statement

COMMMON DATE, TABLE (100), K, X, Y, ANS

and include it in BIG1, BIG2, BIG3, and BIG4.
Another way would be to use the following COM-

MON statements:

Core Storage

The COMMON area, because it is not over-laid,
provides a means by which SOCALs, LOCALs, and
LINKs may communicate with each other via core
storage. SOCALs and LOCALs, because they are
subprograms, may also communicate through the
arguments in the CALLing statement. One LINK,
on the other hand, must use COMMON to pass data
to another LINK.

You must determine what data has to be passed
from one LINK to another. If BIG1 obtains X from
a card, and BIG2 requires it for a computation, X
must be placed in COMMON. If BIG1 obtains DATE
from a card, and BIG4 uses it in a printed summary,
DATE must be passed from BIG1 to BIG2, from
BIG2 to BIG3, and from BIG3 to BIG4, even though
BIG2 and BIG3 do not need it. In other words, DATE
(or its equivalent) must appear in the same relative
position in a COMMON statement in all four LINKs.

To illustrate, suppose six items must be passed
from one program to another: DATE, TABLE, K,
X, Y, and ANS. The following table shows how the
four LINKs use these six items:

Variable Description	 BIG1 BIG2 BIG3 BIG4

DATE	 Real variable	 X
TABLE Array of 100	 X X X

items
K	 Integer	 X
X	 Real variable
Y	 Real variable
ANS	 Real variable	 X	 X

in BIG1 COMMON DATE, TABLE (100)
in BIG2 COMMON DATE, TABLE (100), K, X, Y,
in BIG3 COMMON DATE, TABLE (100), K, X, Y, ANS
in BIG4 COMMON DATE, TABLE (100), K, X, Y, ANSWR

Here you see that the size of COMMON in BIG1 and
BIG2 is reduced, since unneeded items are not
retained. Some unneeded items (like K in BIG3)
cannot be eliminated, since you must preserve the
relative location (structure) of COMMON from one
program to the next, not just the name.

Note that the name of the last variable changes
from ANS to ANSWR in LINKing from BIG3 to BIG4.
This does not matter, since only the relative posi-
tion in core storage is important, not the name.

There are many other ways in which COMMON
may be arranged. To take advantage of the fact
that BIG4 does not use X, Y, or the TABLE
array, we may use

in BIG1 COMMON DATE, K, ANS, TABLE (100), X, Y
in BIG2 COMMON DATE, K, ANS, TABLE (100), X, Y
in BIG3 COMMON DATE , K, ANS, TABLE (100)X, Y
in BIG4 COMMON DATE, K, ANSWR

which reduces the core requirements of BIG4 by
102x3 (or 2) words, depending on the precision
used.

Unused

COMMON

Program area

LOCAL area

SOCAL area

Flipper

Basic area

Core Storage

Section Subsections Page

65 10 70 01

UNUSED Area

This is whatever core storage remains after the
other six areas have been loaded. It must be zero
or more words in length. Good programming
practice suggests that it should be at least 100
words, to provide for future growth of the Monitor
System, IBM subroutines, and/or your programs.

41	 // XEQ PAYRO L 2
*FILES112FILEN)

41	
*LOCALPAYRO,SUBW,SUBZ,SUBY1,SUBY2,SUBY3
FILES ALLOCATION

1 01A3 0001 7061 FILEN

41
22 0000 0001 7061 01A7

STORAGE ALLOCATION
R 40 03E3 (HEX) ADDITIONAL CORE REQUIRO

41	
R 43 01FC (HEX) ARITH/FUNC SOCAL WO CNT
R 44 06E8 (HEX) FI/Of I/0 LOCAL WD CNT
R 45 02A2 (HEX) DISK FI/O LOCAL WD CNT

41	
R 41 00A4 (HEX) WDS UNUSED BY CORE LOAD
CALL TRANSFER VECTOR
DATSW 1902 LOCAL 1

lb
SUBY3 1701 LOCAL
SUBY2 17C9 LOCAL
SUBY1 17C9 LOCAL
SUEZ	 1701 LOCAL
SUER	 1765 LOCAL

LIEF TRANSFER VECTOR

41	
HOLTE 1EBB LOCAL 2
EADDX 1883 LOCAL 1
XDD	 1988 SOCAL 1
FARC	 1966 LOCAL 1

41 XMD	 1924 LOCAL 1
ELDX	 1528
NORM	 1594
HOLEZ 1E52 LOCAL 2
EBCTB 1E4F LOCAL 2

41	
GETAD 1E06 LOCAL 2
IFIX	 1568
PAUSE 18EC LOCAL 1
ESBR	 18D8 LOCAL 1

411	 EADD	 187D LOCAL 1
EDIV	 1824 LOCAL 1
EMPY	 17F6 LOCAL 1

41	 EDVR	 170E LOCAL 1
FLOAT 155E
SUBSC 1540
E
LD
STO	 1516

E 	 152C
PRNTZ 1048 LOCAL 2

4,	 CARDZ 1C9E LOCAL 2
WRTYZ 1062 LOCAL 2
SFIO	 1809 LOCAL 2

41	 SDFIO 1885 LOCAL 3
SYSTEM SUBROUTINES
ILSO4 00C4

40	 ILSO2 0083
ILSO1 1EC2

41	
ILSOO 1EDD
FLIPR 1500

1487 (HEX) IS THE EXECUTIOW

	

Section Subsections	 Page

65
	 20
	

00
	

01

SUMMARY

This section has described the seven logical areas
of core storage, with the emphasis on their overall
roles rather than on exact details. As mentioned
earlier, all quoted subroutine sizes are approximate,
and are based on a so-called "typical" commercial-
type program, coded in FORTRAN. You should not
necessarily conclude that these figures will apply to
your "typical" programs; they may or may not.

The bulk of the material in this chapter concerns
SOCALs, LOCALs, and LINKs--how they work.
Section 90 concerns how they should be used and how
they affect program performance.

Figure 65.4 graphically summarizes what has
been covered in this chapter.

Figure 65.5 shows a "core map", printed if you
punch an L in column 14 of the // XEQ card. From
this printout you can determine the exact sizes of
some of these packages:

• The size of the Unused area is contained in
the R41 message.

Approximate
Logical
	

Sub- 	 Typical
	 When

Area	 Area
	 Size	 Present	 Comments

Monitor Resident 740 words Always
Monitor

Transfer Vector

In Core Subprog.
Subtype 0

Flipper — 100 words Only if LOCAL's or
SOCA Us are used

SOCAL Overlay 1
(Arith)

520 words Almost always Approximate, typical
size will be either

— — — — — — — — — — — — 2970 or 2450 or 1750
Overlay 2 1750 words Almost always words
(Non-Disk I/O)

— — — — — — — — — — —
Overlay 3
(Disk 1/01

700 words Only if Disk 1/0
is used

LOCAL LOCAL No. 1 Size of Only if user in-
LOCAL No. 2

.

largest
LOCAL
subprogram

eludes a LOCAL
card

LOCAL No. n

Program Non-SOCAL or Unknown; Always
Or LOCAL Sub- depends on

Link programs program
coding

Data

Object
Mainline
Program

Common Unknown;
depends on
Program
coding

Only if user in-
eludes COMMON
statement on
program

Unused
Unknown; See the R41 message

—
whatever is
left over

of the core map for
exact size

• The size of the SOCAL area can be determined
from the largest value contained in the R43, R44,
and/or R45 message.

• The size of the LOCAL area may also be
determined from the core map. If SOCALs are
present, the size of the LOCAL area is the address
of the lowest SOCAL subroutine, less the address
of the next higher non-LOCAL. In this case it
would be 170C - 1567, or, in decimal, 5900-5479
or 321 words.

• Flipper (FLIPR), if present, is always about
100 words in length.

• The sizes of the other areas--Basic, Pro-
gram, and COMMON--cannot easily be determined
from the load map.

Figure 65. 4. 	 Figure 65. 5.

	

Section Subsections	 Page

70
	

00
	

00
	

01

Section 70: 1130 FORTRAN AND THE COMMER-
CIAL SUBROUTINES

CONTENTS

Introduction 	 70. 01. 00
Arithmetic Considerations 	 70.10.00

General 	 70.10.01
Integer Mode 	 70.10. 10
Real Mode 	 70.10.20

General
Real -- Floating Point
Real -- Fixed Point
Rounding
Accuracy and Magnitude
Output of Large Real Numbers
Multiplication of Large Real Numbers

Decimal Mode 	 70. 10. 30
Introduction
General Principles
The Decimal Arithmetic Subroutines

Addition
Subtraction
Multiplication
Division

Constants
Testing and Modifying Signs
Moving Signs
Comparing Decimal Fields

Summary 	 70.10.40
Overlapped Input/Output 	 70. 20. 00

Introduction 	 70. 20. 01
The Commercial Subroutine Package
Overlapped I/O Subroutines 	 70. 20. 10

General
Read a Card, 1442-6 or 7
Punch a Card, 1442-6 or 7
Select Stacker, 1442-6 or 7
Print on 1132
Skip on 1132
Type on Console Printer
Accept Data from Console Keyboard
A precaution -- IOND

Using the Overlapped I/O System 	 70. 20. 20
General
Overlapping and Your Program
FORTRAN TRACE Not Permitted
Alphabetic Headings

The Interaction of Arithmetic and I/0 	 70.30.00
Character Handling Techniques 	 70. 40. 00

General 	 70. 40. 01

Code Conversion 	 70. 40. 10
Integer to Real -- FLOAT
Real to Integer -- IFIX
Al to Real -- GET
Al to Integer
Real to Al -- PUT
Integer to Al
Al to Decimal -- A1DEC
Decimal to Al -- DECA1
Al to A2 -- PACK
A2 to Al UNPAC
Other Code Conversions

Other Character Handling Techniques 	 70. 40. 20
Editing Output -- EDIT
Moving Data Fields -- MOVE
Filling a Field with a Specific
Character -- FILL
Comparing Alpha Fields -- NCOMP

Match/No Match Alpha Compare
High/Low/Equal Alpha Compare

Working with Zone Punches -- NZ ONE
The NZ ONE Subroutine

FORTRAN Core Saving Tips 	 70. 50. 00
General 	 70. 50. 01
Reducing Program Size 	 70. 50. 10

Use the DATA Statement
Keep FORMAT Statements Compact
Code Efficient I/0 Statements
Avoid Long Subroutine Argument
Lists
Avoid Arithmetic with Variables
Having Constant Subscripts

Reducing Subroutine Requirements 	 70. 50. 20
Raising a Real Number to a Whole
Power
SQRT vs **. 5
Don't Include Unneeded I/O Devices
on *IOCS Card
Remove FIND Statements If You
Have SOCAL's or LOCAL's
Remove the TRACE from Production
Status Programs

FORTRAN Execution Times 	 70. 60.00
Processing 	 70. 60. 10
Summary and Conclusion 	 70. 60. 20

	

Section Subsections	 Page

70
	

0 1 	00
	

01

INTRODUCTION

The primary purpose of this chapter is to discuss
the use of 1130 FORTRAN in a commercial environ-
ment. Many of the topics, however, will also be of
use to the technically oriented user. Topics include:

• Arithmetic considerations -- a discussion of
integer, real, and decimal arithmetic, with partic-

ular attention to the accuracy and magnitude of
numerical values

• Input/output--explaining the overlapped I/O
subroutines and how they can improve performance

• The interaction between input/output and
arithmetic

• Core storage saving tips for FORTRAN
programmers

• Estimating run time of FORTRAN programs

Section Subsections Page

70 10 01 01

ARITHMETIC CONSIDERATIONS

General

Of prime interest to commercial 1130 users is the
precision and accuracy of their arithmetic cal-
culations. Many engineering and scientific appli-
cations have very little need for answers with more
than five or six digits of accuracy. Much of the
input data comes from physical measurements (6.34
pounds, 18.97 inches, etc.) that are only approximate
anyway, so the resulting answers (with some ex-
ceptions) must also be considered approximate.

However, in an accounting application,
$713,403.14 is exactly that--$713,403.14. If you
add up your sales by area, by salesman, by item,
by customer, etc. , the grand total for each had
better be the same, right down to the last penny.

For this reason, commercial programmers must
be familiar with the ways the 1130 does arithmetic,
and aware of their advantages and disadvantages.

For purposes of discussion, three are four ways
to do arithmetic on the 1130 system:

Integer mode
Real mode, floating point
Real mode, fixed point
Decimal mode

	

Section Subsections	 Page

70
	

10
	

10
	

01

Integer Mode

An integer is defined as a whole number, a number
with no fractions. Using 1130 FORTRAN, integers
are limited to a magnitude of +32767 to -32768.
This range is due to the fact that an integer must fit
in one 16-bit word. 32767 is the largest positive
number that can fit in one word (0111111111111111,
where the first bit represents the sign); -32768 is
the largest negative number.

Because of these two limitations (magnitude, and
lack of fractions) you must be careful in your use of
integer mode arithmetic. Integer mode is generally
used for counters and indicators. However, if you
desire to keep track of the position of the decimal
point yourself, you can use integer arithmetic to
process data with implied decimal points.

For example, if you know that pay rates at your
company range from $1.25 to $6.50 per hour, you
could represent these rates as integers ranging from
125 to 650 cents per hour. If rates ranged from
$1.250 to $6.500 per hour, with some rates involv-
ing fractions of cents (say $3.375 per hour), they
could be represented as integers from 1250 to 6500
mills per hour.

Since mixed mode arithmetic is permitted in 1130
FORTRAN, there is no problem involved in multi-
plying the integer IRATE by the real HOURS:

PAY = HOURS * IRATE
If IRATE is 3125 ($3.125 per hour) and HOURS is
33.5, PAY will be 104687.5. After the multipli-
cation you must be careful to reposition the decimal
point in the proper place ($104.6875) and round off
($104.69) before printing the result or accumulating
totals.

Section Subsections Page

70 10 20 01

Real Mode

General

A real number may be defined as a number with a
decimal point; fractions are allowed. If you use 1130
FORTRAN for real arithmetic, the arithmetic sub-
routines will keep track of the decimal point for you,
and the output subroutines will place it in the proper
place in the output results.

On the 1130, a real number may be thought of as
having four components:

1. The whole portion
2. The fractional portion
3. A pointer indicating the location of the

decimal point
4. A positive or negative sign

For example, the number 267.4 has:
1. A whole portion, 267
2. A fractional portion, .4
3. A pointer indicating that the decimal point

is between the 7 and the 4
4. A positive sign
Since the 1130 is a binary computer, these four

components are represented in binary form as
follows:

• The 267 as 100001011
• The .4 as . 011001100110--
• A pointer of 9 showing that the binary point is

between the ninth and tenth bits
• The sign is positive (a 0 bit)
Rearranging and simplifying somewhat, this can

be written as (9, +, 100001011, .011001100110----)
The first value, the 9, is , in decimal, the number

of bits in the whole portion; the second item is the
sign; the third value is the whole portion itself; the
last value is the fraction.

The number of bits available for the whole and frac-
tion combined depends on the precision option selected:

• Standard precision allots 23 bits for these
two items.

• Extended precision allots 31 bits for them.
The whole portion of the number, since it is more

significant, gets first choice of the available bits.
In this case, the whole portion (267) requires 9 bits,
leaving either 14 or 22 bits for the fraction, depend-
ing on the precision chosen.

This can cause inaccuracies, since most fractions
cannot be represented exactly in 14 or 22 bits, or in

any number of bits, for that matter. To see why,
let us see how .4 in the above example is repre-
sented in binary notation. You are probably familiar
with the binary system for whole numbers (1,2,4,8,
16,32, etc., or 2 , 2 1 , 22 , 2 3 , 24 , 2 5 , etc.,
respectively). In the case of fractions, the values
proceed from the decimal (or binary) point to the
right as 1/2, 1/4, 1/8, 1/16, 1/32, etc., or 2-1,
2-2 , 2-3 , 2-4 , 2-5 , etc., respectively.
For example, .625 is

.1010000000
or 1/2 plus 1/8
or .5000 plus .125.

It can be represented exactly in only three bits;
however, this is unusual.

The example, .4, appears to be a rather simple
number, and you might think that it also can be re-
presented exactly as a binary fraction.
below shows that this is not true:
Bit	 Used = 1
Position	 Value	 Not Used = 0

The table

Subtotal

1 .5 0 .0
2 .25 1 . 25
3 .125 1 .375
4 .0625 0 .375
5 .03125 0 .375
6 .015625 1 .390625
7 .0078125 1 .3984375
8 .00390625 0 .3984375
9 .001953125 0 .3984375

10 .0009765625 1 .3994140625
11 .00048828125 1 .39990234375
12 .000244140625 0 .39990234375

You see that the binary representation can come
close to .4 but never hit it. With 12 bits
(.011001100110) the decimal value is . 39990234375;
with 16 bits, .399993896484375; with 20 bits,
.3999996185302734375; etc.

The fraction chosen, .4, is not anunusual number;
it is typical of most fractions.

Unlike fractions, whole numbers can be represented
exactly in binary form. However, you do reach a
limit, depending on the number of bits available. In
standard precision, if you use all 23 bits for the
whole portion, you can attain a magnitude of
8,388,607. With extended precision, the 31 avail-
able bits yield 2,147,483,647.

	

Section Subsections	 Page

70
	

10
	

20
	

02

Real--Floating Point

The term "floating point" implies that the decimal
point is permitted to "float" among the digits in a
real number. In other words, the 1130 arithmetic
subroutines will keep track of the location of the
decimal point and move it about to maintain the
validity of the number. If you multiply $1.78 per
hour by 32.20 hours, the answer becomes $57.3160.
The decimal point "floats", thus remaining correctly
positioned at all times.

As you saw before, though, the result may not be
exact, since .316 probably cannot be represented
exactly as a binary number. In fact, the 1.78 and
the 32.20 were both probably inexact, too.

If you are doing an engineering or other non-
commercial job, the answer is probably good enough;
it matters little whether the result is 57.316000 or
57.316003 or 57.315999. If your application is com-
mercially oriented, however, close is not good
enough, since you are probably dealing with cash.
Because accounting balances are so important,
answers must be exact, down to the last unit
(penny, box). It is not that people will worry about
the penny itself, but that unbalanced totals tra-
ditionally indicate an error. If the face value of
600 payroll checks totals $12345.67, while the
system's grand total is $12345.68, something may
be seriously wrong somewhere. The fact that the
net error is only one cent is immaterial; there
may be 300 people overpaid by one cent, and 299
underpaid by one cent.

Real--Fixed Point '

To eliminate the inaccuracies described above, you
can use real arithmetic in a "fixed point" mode.
"Fixed point" means that the decimal point is kept
fixed to the right of the least significant digit, elim-
inating fractions altogether.

Earlier, you saw that 1.78 times 32.20 gave
57.3160, an answer that probably was inexact. If,
however, you had used real, fixed point arithmetic,
you would have multiplied 1A78. by 3A220. , and
obtained 57A3160. , exactly. All three numbers,
since they involve no fractions, will be exact, not
just close. Note that the A is used to locate the
implied decimal point.

This puts a slight burden on your programmer:
instead of letting the subroutines keep track of the
decimal point for him, he must now do it himself.

Using the values mentioned above, 1.78 times
32.20 is 57.3160 (dollars), while 1 A78. times 32A20.
is 57A3160. (ten thousandths of dollars). In the
latter case, you must remember that the true
decimal point is four places to the left of the one
supplied by the system.

Section Subsections Page

70 10 20 03

Rounding

Suppose you have just calculated an employee's gross
pay as 107A5673. (understood to be $107.5673) and
wish to apply a deduction of $19.733 (represented as
19A733.). Notice that the decimal points are not
"lined up"; the units are not the same--the gross is
in hundredths of cents, and the deductions are in
tenths of cents.

How do you perform this subtraction?
a. 107A5673. - (19A733. x 10.)
b. (107A5673. /10.) - 19A733.
c. (107A5673./10000.) - (19A733./1000.)

None of these is correct. Before subtracting, you
must round these two quantities -- commonly to the
nearest cent.

In the case of the 107A5673. gross, you must add
1/2 cent or 50. hundredths, obtaining 107A5723.,
then divide by 100, to get 107A57.23. Now, since
the .23 is both inexact and meaningless, it must be
eliminated. The WHOLE function supplied with the
Commercial Subroutine Package converts the
fractional part of the number to zeros.

All three functions-- round, shift and clear
fractions -- can be done in one statement. The
statement

GROSS = WHOLE ((GROSS + 50.)*0.01+0.5)
rounds off GROSS, shifts it two places to the right,
and clears everything remaining to the right of the
decimal point to zeros. Note that multiplication
rather than division was used (see Section 70.50.00).

In the case of the deduction, you would say
DEDUC = WHOLE ((DEDUC +5.) *0.1+0.5)

Now both values have been rounded and are in whole
cents, with all extraneous fractions cleared. Note
what would have happened if the fractions had not
been cleared:

10757.23
1973.80
8783.43

The correct answer is:

10757.00000
1973.00000
8784.00000

You may wish to code several arithmetic statement
functions, each one shifting a predetermined number
of places to the right:
RND1 (X) = WHOLE ((X+X/ABS(X)*5.0)/10. +0.5)
RND2(X) = WHOLE ((X+X/ABS(X)*50.0)/100. +0.5)
RND3 (X) = WHOLE ((X+X/ABS(X)*500.0)/1000. +0.5)
etc.
where the fourth character of the FUNCTION
name indicates the number of places to be shifted.

Accuracy and Magnitude

Suppose you are using extended precision real
numbers, where 31 bits are available for the whole
number and fraction combined. How large a number
can you have? 2,147,483,647? No, that is just
the largest number that can fit in 31 bits. Values
much larger are possible-- for example,
1,000,000,000,000,666,777,888. , which can easily
be handled in the 1130.

The decimal point indicator can be as large as
64 in binary, or about 38 in decimal, meaning
that extremely large real numbers can be repre-
sented on the 1130.

The drawback is their accuracy. Especially in
commercial applications, numbers must be precise.
The number 1,000,000,000,000,666,777,888. can be
read into the 1130, but it will be accurate only to
nine or ten decimal digits. In other words, the nine
most significant digits will be retained, but the re-
maining digits will be lost. The decimal point indi-
cator will show the proper magnitude, but the
number is not accurate.

If you want accurate results, you must not exceed
the 31 bits (2,147,483,647.) or 23 bits (8,388,607.)
available.

Furthermore, if you want accurate numbers, you
must not allow any fractions to be generated.

Combining the above two warnings, then, means
that you should limit real numerical values to the
whole numbers between -2,147,483,648. and
+2,147,483,647. Any number outside this range
will probably not be exact; most fractions will
probably be inexact.

If you work commercial problems in cents, you
are limited to $21,474,836.47 (carried as a whole ,
fixed point real number). The limit is $2,147,483.647
if you wish to work in mills.

These limits are usually ample for jobs such as
payroll, etc. , but may be troublesome in
accounting-type work, where year-to-date sales,
total assets, etc. , may exceed $21 million. If this
is the case, the decimal arithmetic subroutines of
the 1130 Commercial Subroutine Package may be
used.

	

Section Subsections	 Page

70
	

10
	

20
	

04

Output of Large Real Numbers

A second precaution must be taken with very large
numbers, and it falls in the area of output. Because
most fractions are inexactly represented and will
always be less than the true decimal value, the
FORTRAN output routines (including the TRACE)
always add a single bit in the low-order position of
the number, attempting to compensate for this
inaccuracy. For this reason, you rarely notice the
inaccuracy.

For example, if you multiplied 0.35 by 100.0,
you would expect to get 35. , exactly. The binary
result, however, converted to decimal, is

34.9999999999999999757138713...
(because the multiplier of 0.35 is an inexact
fraction). That is not the result you see, though,
since the FORTRAN output routine adds its one low-
order bit, resulting in

35.0000000298023223634091838...
Although that is no more exact than the previous
value, it looks better; in fact, you would never
notice the extra

.0000000298023223876953125
unless you output the number with a format like
F40.20, which would be unusual.

If your number is large, however, this "little
extra" can cause the output to be noticeably in error.
For example, the whole number 2111111111. , while
represented exactly in core storage, will be output
as 2111111112. , an error of 1. unit.

This problem will occur with numbers in the
range 1,073,741,824. to 2,147,483,647. if they are
output with a standard FORTRAN F format. For
this reason, you may wish to limit the magnitude of
all numbers to 1,073,741,824. , or, easier to
remember, nine digits (999,999,999.)

This problem does not occur if the value is printed
as alphabetic data, converted by the PUT subroutine
of the Commercial Subroutine Package. This
routine will not add the extra bit, and all whole
numbers up to 2,147,483,647. will be output exactly.

Multiplication of Large Real Numbers

Because of the manner in which the 1130 performs
multiplication, a product is accurate only to 30 bits.
This means that a product exceeding 1,073,741,823.
may not be exactly correct. In fact, there is a 75-25
chance that it will be correct, and a 25-75 chance
that it will be off by 1. unit.

While this is quite satisfactory for technical
work, it cannot be permitted in most commercial
applications. For this reason, you should avoid
multiplications that might yield such a large product.

Note that this limitation does not apply to addition
and subtraction, where all 31 bits may be used -
and the upper limit is 2,147,483,647.

Section Subsections Page

70 10 30 01

Decimal Mode

Introduction

In addition to integer and real mode arithmetic,
there is a third alternative: decimal arithmetic.
This capability is furnished by a group of subrou-
tines supplied with the Commercial Subroutine
Package (1130-SE-25X). This mode of arithmetic
permits variable precision.

Using the decimal arithmetic system, you select
the number of digits to be used for each variable.
If a grand total can attain a magnitude of 15, 000,
000,000.00, you can allocate 13 digits for it; if the
number of employee dependents never exceeds 99,
you may allocate only two digits for that value.

You are not limited by magnitudes of 32767,
2, 147, 483, 647. , etc. You decide how large a
number can become and set aside enough digits
for its storage.

General Principles

This arithmetic system operates on digits stored
as integers, one digit per word. For example, the
value 1968 would be stored in a four-position array
NYEAR as

NYEAR (1) = 1
NYEAR (2) = 9
NYEAR (3) = 6
NYEAR (4) = 8

or in a six-position array as
NYEAR (1) = 0
NYEAR (2) = 0
NYEAR (31 = 1
NYEAR (4) = 9
NYEAR (5) = 6
NYEAR (6) = 8

or in any size array you desire.
Negative values carry the minus sign with the

low-order (or rightmost) digit. However, since

the 1130 cannot represent -0, a special method has
been devised to show negative numbers. If the
number is negative, the low-order digit is carried as
one less than its true value.

For example, -1968 is actually held in core
storage as

NYEAR (1) = 1
NYEAR (2) = 9
NYEAR (3) = 6
NYEAR (4) = -9
For ease of reference, we will refer to this as

1968, where the minus sign is written over the
low-order digit.

You need not worry about this unless you are de-
fining negative constants, which should be unusual.
If a negative number is read from a card, this con-
version will be done for you, with the AlDEC
subroutine.

The magnitude of each value will be shown by the
number of digits: 001968 implies a six-digit or
six-word value, 0000001968 implies a ten-word
value.

Each decimal arithmetic value requires three
identifying parameters:

• The NAME of the array in which it is stored.
• KSTRT, the position (or subscript) of the
high-order (leftmost) digit in the array.
• KLAST, the position of the low-order digit in
the array
When referring to decimal arithmetic values, a

shorthand abbreviation will be used, enclosing these
three parameters in parentheses:

(NAME, KSTRT, KLAST)
For example, if you had a 20-word array called

NUMBR:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0 0 0 1 3 6 4 3 0	 0 7 7	 8	 3	 0	 0 0 8 1 3

then
(NUMBR, 1, 6)	 = 000136 	 or -136
(NUMBR, 1, 5)	 = 00013	 or 13
(NUMBR, 7,19) = 4300778300081
(NUMBR, 15, 20) = 000813	 or -813

	

Section Subsections	 Page

70
	 10
	

30
	

02

The Decimal Arithmetic Subroutines

The IBM 1130 Commercial Subroutine Package fur-
nishes subroutines to perform the following four
arithmetic operations:

ADD to add two decimal values
SUB to subtract two decimal values
MPY to multiply two decimal values
DIV to divide two decimal values

All four have similar calling sequences, requiring
three basic elements:

The identification of the first variable
The identification of the second variable
An error code

Since the identification of each variable requires
three parameters (e.g., NUMBR, 1, 6), each sub-
routine has a total of seven parameters.

If no error conditions occur, the subroutine
leaves the error code, NER, set to whatever value
it had when the subroutine was called. Note that the
subroutines merely set the indicator NER. They
do not pause, print a message, or take any other
definite action. It is up to you to set NER before
calling the subroutines, and to test it after each is
complete.

Addition. The general form of the ADD sub-
routine is

CALL ADD (addend, augend, error code)

where the addend is added to the augend, and the
result is left in the augend.

There are two possible error conditions. Both
are illustrated in the accompanying examples (Fig-
ures 70.1 through 70.6).

Subtraction. The general form of the Subtract
subroutine is

CALL SUB (subtrahend, minuend, error code)

where the subtrahend is subtracted from the minuend,
and the result replaces the minuend.

There are two possible error conditions. Both
are included in the accompanying examples (Figures
70.7 through 70.11).

Multiplication. Because of its nature, multiplica-
tion is somewhat more involved than addition and
subtraction. For example, if you multiply two

two-digit numbers, 95 and 86, your result is 8220,
a four-digit number. If you multiply a three-digit
number, 666, by a two-digit number, 55, your
answer is 36630, a five-digit number. The result
of a multiplication, the product, may have as many
digits as the sum of the number of digits in the
multiplier and the multiplicand. Therefore, you
must provide that many digits for the result.

The MPY subroutine accomplishes this in a very
straightforward manner. The multiplicand field,
which will be the eventual location of the product,
is extended to the left the same number of digits as
are contained in the multiplier. For example, if
you multiply a four-digit number by a two-digit
number, the subroutine will extend the four-digit
field to the left two places, to hold the six-digit
product.

It does this regardless of what was in these posi-
tions previously. Obviously, you must consider this
fact when laying out your data areas in core storage.

Figures 70.12 and 70.13 present several ex-
amples of the use of the MPY subroutine.

Division. The divide subroutine, DIV, has the
calling sequence

CALL DIV (divisor, dividend, error code)

with the result placed in the dividend field.
Before covering the DIV subroutine, a quick re-

view of division might be in order. If you divide
13 by 4, the result is 3 1/4, where

13 is the dividend
4 is the divisor
3 is the quotient
1 is the remainder

In other words:

dividend	 remainder- quotient +divisor	 divisor

This is the form of the result after use of DIV --
a quotient of 3 and a remainder of 1. Note that the
result is not 3.25. For this reason special care
must be taken when half-adjusting the result of a
division. Also note in Figures 70.14 through 70.17
that the length of the remainder field will be the
same as the length of the divisor.

Section Subsections Page

70 10 30 03

1130 COMMERCIAL SUBROUTINES — DECIMAL ARITHMETIC WORKSHEET
DESCRIPTION

BEFORE X = Extraneous Data

!WORK: Will remain unchanged
1 2 3 4 5 6 7 8 9 10 11

KWORK: Will contain result
1 2 3 4 5 6 7 8 9 10 11	 12 13

CODING
441 ADDEND ► 40 AUGEND, THEN SUM 	 811.

41 SUBTRAHEND MINUEND, THEN SUM •

II. 7
MULTIPLICAND

PRODUCTTHEN"la	 MULTIPLIER

411 DIVISOR caw — DIVIDEND,	 _iti.

NER =
THEN QUOT AND REM

A(.._____.....).________‘

CALL	
(

r
NER,9	 9	 9	 9	

9 _ 9

t

AFTER FY-1

IWORK: Unchanged

1	

NER =

1 2 3 4 5 6 7 8 9 10 11
KWORK: Result

1 2 3 4 5 6 7 8 9 10 11	 12 13

COMMENTS

	

Section Subsections	 Page

70	 10	 30	 04

1130 COMMERCIAL SUBROUTINES — DECIMAL ARITHMETIC WORKSHEET

DESCRIPTION /100/7/OA/ OF 774/e2 A/ 1/E-1)/GI7 FEEL D5

BEFORE X = Extraneous Data

Will remain unchanged

KWORK: Will contain result

00036
000/3

!WORK: 00049
1 2 3 4 5 6 7 8 9 10 11
O

0 0 / X X X 1 2 3 4	 5	 6 7 8 9 10 11	 12	 13

X X xaeo 6xxxNx

CODING

NER

ADDEND

SUBTRAHEND

t THEN SUM

THEN SUM

NE R)

AUGEND,

MINUEND,

= c,

CALL m42-V (.274/aee	 / 3 A14/0.47,e .5(e—7 91	 9	 9

AFTER
NER =

KWORK: Result

0

!WORK:
1 2 3 4 5 6 7 8 9 10 11

DO/ 3 XXX XX 1 2 3 4	 5	 6 7 8 9 10 11 12 13

XX X001 Xxxx X

COMMENTS

NER /$ STILL 0, SO THE
A DD/7/0/V Wid9.5 CORRECT.

Figure 70, 1,

Section Subsections Page

70 10 30 05

1130 COMMERCIAL SUBROUTINES — DECIMAL ARITHMETIC WORKSHEET
DESCRIPTION 4,47„0/7762A/ e2,4-- Ty/c7 ;1 - 2...)/Gi 7- PZEZ OS,

ONE /,5" A/E-6-4,-/ve-. sszmix572a5/7-7v.E'"V/1E/PE

BEFORE X = Extraneous Data

Will remain unchanged

KWORK: Will contain result

0030
00 26

!WORK: 0004
1 2 3 4 5 7 8 9 10 11

XXxXCO2 g X X K 1	 2	 3 4	 5 6 7 8 9 10 11 12 13

ACTUALLY
CORE

THEE /5
IN

57-oeAGE
AS-7

OOgOXxxxxx X X

CODING

NER

SUBTRAHEND

ADDEND AUGEND, THEN SUM 	
MINUEND, THEN SUM

1

1)

= D

CALL ADD	 (Z 14/622/r.5 	 ,53	 fr-14/e).ek--	 /	 .
•9 - 9	 9	 9 -9t

AFTER

IIV''''.....a..94...

KWORK Result	 /	

NER = o
IWORK:

1 2 3 4 5 6 7 8 9 10 11

X x X X D 0 2 6 , X X X 1	 2	 3 4	 5 6 7 8 9 10 11 12 13

0004x xxx XXXXX

COMMENTS

Figure 70, 2

Section Subsections Page

70 10 30 06

1130 COMMERCIAL SUBROUTINES — DECIMAL ARITHMETIC WORKSHEET

DESCRIPTION	 OF 771/42 6--z;v6-/ 7- 	 2,5,

'4 ONE' /5 /1/6-G.4 77 VE7 Sat, /5 /1/6-6,471 /Z.

BEFORE X = Extraneous Data - 000065
0000 /

- 000055
!WORK: Will remain unchanged

2 4 6 7 8 9 10 11
KWORK Will contain result0 0 0 x x X x 1 4 5 6 8 -10 11 12 13

THE

D O 0 6 5

STORAGE
3" /5 /A/ co,E,

AS-6

ADDEND
	

AUGEND, THEN SUM 	

SUBTRAHEND
	

MINUEND, THEN SUM

NER = O
CALL /OD (z-frvo,e, 9 / 9	 44/40, t / 9 6 9 NER)

CODING

AFTER

IWORK:
1 5 6 7 9 10 11

0 O O x X
KWORK Result

	

1
	

NER =

1	 2 3 4 5 6 7	 9 10 11 12 13

O O 0 5 X X X X x
1W COPE 4.5-6

COMMENTS

Figure 70, 3.

Section Subsections Page

70 10 30 07

1130 COMMERCIAL SUBROUTINES — DECIMAL ARITHMETIC WORKSHEET
DESCRIPTION ADO/r/O/V OA- A _1 - D/ • / 7 - / -/L---"z D 7e:, A

A---tezG; eo7-/-7/ /C7C:2-5/77i/„5--z7/d/7-

BEFORE X = Extraneous Data	 000 7 7
/

000 78
IWORK: Will remain unchanged

1 2 3 4 5 6 7 8 9 10 11
KWORK: Will contain result

x x .1 x >< X X X 1 2 3 4 5 6 7 8 9 10 11	 12 13

xxxxx x

CODING ADDEND AUGEND, THEN SUM 	

SUBTRAHEND MINUEND, THEN SUM

NER = c,

CALL A z)z) (1-WO,EDA 	 —5 	 -5	 /	 -5-9AWD,fw 9 NER)9	 9	 9 9l
L------Y---)L—Y—C

NER = I 0 I
AFTER

IWORK:
9 10 111 2 3 6 7 8

xxxxiXx X XX X
KWORK: Result

1 2 3 4 5 6 7 8 9 10 11	 12 13
0 0 0 76 xxxxx X X ><

COMMENTS

Figure 70, 4,

	

Section Subsections	 Page

70	 10	 30	 08

1130 COMMERCIAL SUBROUTINES - DECIMAL ARITHMETIC WORKSHEET
DESCRIPTION -.,4/2Z)/7/at/ 2/ 	 774411:7 2-2)/G/7- /-/ZZ..e:)s

POE:5 4/07' . -17-- /A/ -4ZZDTTE.2) APEA-51//1

BEFORE X = Extraneous Data

Will remain unchanged

KWOR K. Will contain result

SO75
IWORK:

1 2 3 4 5 6 7 8 9 10 11

x X x 7 .5 xxxX X 1 2	 3 4 5 6 7 8 9 10 11 12 13

X 50 X x x x x x x X X X

CODING

NER

SUBTRAHEND

ADDEND AUGEND, THEN SUM

MINUEND, THEN SUM

NER
9

)

= (9

CALL „eiRp (zwc2E,e<	 4	 ,...5-- A-kve2ex	 2	 5. 9 — 9 — 9 	 9	 9

L---y.---)L)

AFTER NER =

KWORK. Result

j

!WORK:
1 2 3 5 6 7 10 11

X x

471

5 X X)()(X X 1 2	 3 4 5 6 7 8 9 10 11	 12 13

X 99xxxxxx xxxX

COMMENTS — 777/E. 514ki .444 /5 A-/Z.LEZ) 1V/7/7/ 9_s-
-NEA7 45- ,5-E7- TD THE v4Z l./E Oz' ?WE

Cc ''.4 /C2.4/e4/Pie-7-nide*

Figure 70.5.

Section Subsections Page

70 10 30 09

1130 COMMERCIAL SUBROUTINES — DECIMAL ARITHMETIC WORKSHEET
DESCRIPTION ,4Z3Z2/77aA/ C2. --

0. 0 EA/Z2 /5
TWO ,/EL OS,

ZOA/e",Q TA/4/V
, /4//.1.4%:?E' 7:4 4--

7.47 -- A t/GEA/Z74

BEFORE X = Extraneous Data

Will remain unchanged

KWORK: Will contain result

0008
+00660

IWORK:
1 2 3 4 5 6 7 8 9 10 11

o 6 80X XX X X 1	 2	 3	 4 5 6 7 8 9 10 11 12 13

0008 XXXX xxX

CODING

NER

t SUBTRAHENSUBTRAHEND

ADDEND Il■ AUGEND, THEN SUM

MINUEND, THEN SUM

•

NER

if

= 6

CALL 4.0,0	 ..714/0,9A---	 /	 ,....6- A-74/4240/1- /	 ¢
9

%---v---)L)

AFTER NER = F71

KWORK: Result

IWORK:
1 2 3 4 5 6 7 8 9 10 11

0068)1/XX X X 1	 2	 3	 4 5 6 7 8 9 10 11	 12 13

000cSX XxxXxx X

COMMENTS A/07-E- z/4"-/V
1/1/0/Z Z.) A/7"
sexe,e0L./7-/A/E
TA/As /$ 41
sire./..vr/o.c./.

//V -�
11//L

/C)c77-E4/744LL

TA/DC/GA/
,/G-/73,
L. A/7-

7",‘,.-- A7z3eyz 7; 668,

Th/E4.0.17
.4.0.0, 574/ce--

2),4A/0--zPov.5--
TD 4f.

>
//ER /s s7--

Figure 70. 6.

Section Subsections
	

Page

70
	

10
	

30
	

10

1130 COMMERCIAL SUBROUTINES — DECIMAL ARITHMETIC WORKSHEET

DESCRIPTION „5. ./.3 7,e,4 C7" 6:7/v .- ,5--,z7/G7 7- .--*/--z,c) ic-,43o4i
s- z;/o./7- A7EZZ),o/vori-iz*.e.

BEFORE X = Extraneous Data	 6700/4'
— 00043

!WORK: Will remain unchanged
0 00 6;4'

1	 2	 3 4	 5	 6 7 8 9 10 11

KWORK: Will contain result
Xxxx00 c; / 8 Z X 1 2 3 4 5 6 7 8 9 10 11 12 13

oovi 4

CODING ADDEND • AUGEND, THEN SUM

SUBTRAHENDSUBTRAHEN MINUEND, THEN SUM

NER = e2
_Th

CALL sag (ifrvaeg	3- 9 9 	 A-14/04',5"	 9 /3 NER)
••—• 9

9	 1	
9

AFTER

y----)L_________y_____) F__I

C.2

!WORK: adlle
NER =

1	 2	 3 4	 5	 6 7 8 9 10 11

KWORK. Result
XXXX00 /6/XX 1 2 3 4 5 6 7 8 9 10 11 12 13

xx XxxxXx00004

COMMENTS

Figure 70, 7.

Section Subsections Page

70 10 30 11

1130 COMMERCIAL SUBROUTINES — DECIMAL ARITHMETIC WORKSHEET
DESCRIPTION ,.5-eze7-,e4c 7- OA/z- Ao _ 2,/ a / 7 ,cye-z D fr-;e6:74,-,

/Z-Z7//7 , -/E-L2). /9±-3-e/z 7 As 4ve-a47/1/Z4

BEFORE X = Extraneous Data
___ 000005555555p o o 66 ‘ 66 6

(WORK: Will remain unchanged -00000 / / / / / / /
1 2 3 4 5 6 7 8 9 10 11
O 0 a 6 6 6 6 X KWORK: Will contain result

2	 3 4 5 6 7	 8 9 10 11	 12 13

X DC' 0 D 4 555 5 -5- 5

CODING ADDEND ►

rj	 SUBTRAHEND

AUGEND, THEN SUM -11111.

MINUEND, THEN SUM -IIII.

NER = 0 ______A____Th
CALL Se/8 (.7WOR 	 y /e,/41/PRA 	 2 45 NER)

AFTER

!WORK:

NER = 0

1 3 4 5 6 8 9 10 11O o o 6 66 6 6 X
KWORK	 Result

1 2	 3 4 5 6 7 8 9 10 11 12 13

xo00 / /// //1
i /..5" /4/ C 0,ee 4 5 2 ,ie

COMMENTS

Figure 70. 8.

0 0 3 X x X X

112 3 4 5 6 7 8 9 10

1130 COMMERCIAL SUBROUTINES — DECIMAL ARITHMETIC WORKSHEET

DESCRIPTION Se./.57:4,16-7- '4 	 ,C/EL 0 FOP 241
2-1)/G/ 7- E/ELD.

BEFORE X = Extraneous Data 09
- 003

IWORK: Will remain unchanged
2 3 5 6 8 9 10 11

KWORK Will contain result
1 2 3 4 5 6 7 8 9 10 11 12 13

X X X X X X. X x

CODING

SUBTRAHEND

ADDEND 	 AUGEND, THEN SUM 	

	 MINUEND, THEN SUM,	

NER =

CALL Seig

AFTER

IWORK:

0 3 x ><XXKX XX
X

L	
KWORK: Result
1 2 3 4 5 6 7 8 9 10 11 12 13

X 0X XX XxxX 9
C/NC/-44l/1/GEL) .

COMMENTS /V0	 . • /t/ -A7 -5E7- To 7- SZ/87/e,46-770/V 4707- c;z1,43',4=3/EZ7
0e/7- z5z-C4L/SZ" 0/c- Pc27•EA/ 7/44
E/FA767,4? C-04/0/7/67/V

	

Section Subsections
	

Page

70
	

10
	

30
	

12

Figure 70. 9.

Section Subsections Page

70 10 30 13

1130 COMMERCIAL SUBROUTINES — DECIMAL ARITHMETIC WORKSHEET

DESCRIPTION 5e/4:37-A2,4c7- 4 A/G4 77 1/E ,.. - . 0 / & / 7- , -,/, -'z z)
4 /70,57771/E .0 - Z3/G/7" ,-,,--4.,e3,FAPOAd

BEFORE X = Extraneous Data

Will remain unchanged

KWORK	 Will contain result

c,988
— (-45)

(WORK: / 033
1 2 3 4 5 6 7 8	 9	 10 11

X X X X a SXX X 1 2 3 4 5 6 7 8 9 10 11	 12 13

.3" As /A/coRE
As-6

X XXX095 XXX

CODING

NER

rj	 SUBTRAHEND
ADDEND AUGEND, THEN SUM 	

MINUEND, THEN SUM

NER)

a •

= C2

CALL Se/e (.7-WaqH9 ‘:'-	 0	 1-1/f/k),zl -5 e—r- 9, 	 9	 9

AFTER

KWORK	 Result 	

NER = c,
!WORK:

1 2 3 4 5 7 8	 9	 10 11

X XXXXO45XXX 1 2 3 4 5 6 7 8 9 10 11 - 12 13

›(X x 1 O3 3 / X X, X

COMMENTS

Figure 70, 10,

	

Section Subsections	 Page

70	 10	 30	 14

1130 COMMERCIAL SUBROUTINES — DECIMAL ARITHMETIC WORKSHEET
DESCRIPTION SUBTRACT A NEGATIVE 2- D/G/T F/ELD

FROM A POZ/T/VE 2-0/6/T FIELD.RE,SULTTOOLAe6S.

BEFORE X = Extraneous Data

Will remain unchanged

KWORK	 Will contain result

88
(---)- 68

IWORK:
1 2 3 4 5 6 7 8 9 10 11

X XX6 8X X X X X X 1 2 3 4 5 6 7 8 9 10 11 12 13

XX88 XXX X XXXX

CODING

NER =

ADDEND

SUBTRAHEND

AUGEND, THEN SUM

MINUEND, THEN SUM

NER)

fir •

Q
v________A_Th

CALL .5013(I-WORK	 4	 5	 Kwaee	 .3	 4
9	 9	 9	 99

JkJ
--	 9

AFTER

411".....°....°.e.°°......°.-

KWORK Result 	

NER = +1
!WORK:

1 2 3 4 5 6 7 8 9 10 11

X XX68XXXXXX 1 2 3 4 5 6 7 8 9 10 11 12 13

X X 9X X X X X X XX X

COMMENTS NOTE- eg.seLT FIELD FILLED kV/TN 9's
- A/ER SET TO 4

Figure 70.11.

Section Subsections Page

70 10 30 15

1130 COMMERCIAL SUBROUTINES — DECIMAL ARITHMETIC WORKSHEET

DESCRIPTION MULT/PLY TWO 4- 0/6/7- NUMBERS
1111* 2222 = 02468642

BEFORE X = Extraneous Data

!WORK: Will remain unchanged
1 2 3 4 5 6 7 8 9 10 11

KWORK: Will contain result
.1 1 .1 XXXX X X 1 2 3 4 5 6 7 8 9 10 11 12 13

X X X X 2 2 2 2 X X XXX

CODING ADDEND AUGEND, THEN SUM -11I.

SUBTRAHEND MINUEND, THEN SUM -0.

MULTIPLICAND,
•MULTIPLIER

DIVISOR

ER

"'
THENTHE

PRODUCT
DI
QUOT
DIVIDEND,

AND REM
•••

= 0NER

CALL AIA)>' (?WORK 4L 	KWORK	 5	 45 NER),
	 9 — 9 	 1	 9 -•-•9

L___---y.---)

AFTER
NER = e.)

IWORK: Unchanged

I
1 2 5 6 8 9 10 11

/ / /	 / XXXXX X X
KWORK	 Result

1 2 3 4 5 6 7 8 9 10 11	 12 13

0 2 4- 6 8 6 4 2XXXXX

COMMENTS NOTE THAT THE PRODUCT A eE,4 (k WO .E' K)
H45 BEEN EXTENDED 4 PL 4CES TO 7-14k- LEA-T,

Figure 70.12.

Section Subsections 	 Page

70
	

10
	

30
	

16

1130 COMMERCIAL SUBROUTINES — DECIMAL ARITHMETIC WORKSHEET

DESCRIPTION /Vl-/Z 77,17Z}-' TWO 4- .o/6/7- A/a/tilf.ezt-5,
4A/ EA:),POie CO/V.2)/ T./4.2A/3-Nopt///t/G-

BEFORE X = Extraneous Data

IWORK: Will remain unchanged
1 2 3 4 5 6 7 8 9 10 11

KWORK: Will contain result1x XXX XX X 1 2 3 4 5 6 7 8 9 10 11 12 13

Xx 2 2 2 2 XX)<><?C

CODING ADDEND ► '' AUGEND, THEN SUM II%

SUBTRAHEND ...a MINUEND, THEN SUM .----11.s

MULTIPLIER
MULTIPLICAND
THEN

DIVISOR • .4 DIVIDEND,
THEN QUOT AND REM

NER = 0

CALL ;WRY' (2. wok's..4	 /-5-7,142,<,A-- 3	 6 NER)' 	
9 9

AFTER
NER = Coil]

IWORK: Unchanged
1 2 3 4 5 6 7 9 10 11

// // XX X X 'X X
KWORK 	 Result

1 2 3 4 5 6 7 8 9 10 11 12 13

.' x 2 2 2 2 X X ‹.N<>(

COMMENTS ME-A7 /5 .5.- r 7-0	 8,E-C-.4 ./..5-E 7-#.1.5"/C'E
14/4 5 /v07 EA/c24-..://-7/ .47062/1.7 7--G7 Z-r\-7-z-r.,,L.7
7-/-/Z 1/Q,f:. ',0	 7- -1/42e-A 4 "I'L. ICES 7-47 7:4z-
z.e-Icr

Figure 70.13.

Section Subsections Page

70 10 30 17

1130 COMMERCIAL SUBROUTINES — DECIMAL ARITHMETIC WORKSHEET

DESCRIPTION D/V/DE 0/3 By 04

BEFORE X = Extraneous Data

IWORK: Will remain unchanged
1 2 3 4 5 6 7 8 •	 9 10 11

KWORK	 Will contain result
X X X0 4 XXX X 2 3 4 5 6 7 8 9 10 11	 12 13

X X / 3 X X X X x X

CODING ADDEND • • AUGEND, THEN SUM	 IIW
SUBTRAHEND • .4 MINUEND, THEN SUM-0.

[IIMULTIPLI 11.MULTIPLIER MULTIPLICAND,
PRODUCT	 •THEN4

DIVISOR •••• DIVIDEND,	 10.THEN QUOT AND REM
NER = 0 AA____Th
CALL D/V	 (I14/ORK6	 7	 ewoek-	 3	 $ NER)

9	 9	 9 9

y__--)L._._____y)

AFTER
NER =

!WORK: Unchanged
1 2 3 4 5 6 7 8 9 10 11

0 4 KWORK	 Result
1 2 3 4 5 6I 7 8 10 11	 12 13

s—,,,,—.•

0030/ I
■—....Thr—..___v__,

COMMENTS RESULT /5 3-1
7II.

D/1//SOAP /5 2 40/6/7".5//
BEC4C/SE 77/L WIDE,7WE KWORK
FVEL.0 NA.5 BEEN EXTENDED 2 PC2,51770A/.5 TO THE LEA'Tj
AND THE •Ek>"9/Noee OCCUPYEZ THE 4:76A1rm0 ST
2 0/6/T5f

Figure 70.14

Section Subsections	 Page

70
	

10
	

30
	

18

1130 COMMERCIAL SUBROUTINES — DECIMAL ARITHMETIC WORKSHEET

DESCRIPTION D/V/OE 0/5 $9, 008

BEFORE X = Extraneous Data

!WORK: Will remain unchanged
1 2 3 4 5 6 7 8 9 10 11

KWORK	 Will contain result
0 D 8 X X X X X X X X 1 2 3 4 5 6 7 8 9 10 11 12 13

X X X 0 / 5

CODING ADDEND I. • AUGEND, THEN SUM •

SUBTRAHEND MINUEND, THEN SUM li.

MULTIPLIER
MULTIPLICAND,

DIVISOR •	 4

THEN PRODUCT
DIVIDEND,

•

THEN QUOT AND REM
NER = 0

...—A—_m
CALL 40/1/	 (/WORK'	 /	 3	 KWORK	 4	 6 NER)9	

9	 9	 9	 9 9

L.__y_____J

AFTER
0NER =

!WORK: Unchanged
1 2 3 4 5 6 7 8 9 10 11

KWORK: Result
0 0 6 X X X X X X X X 1 2 3 4 5 6 7 8 9 10 11	 12 13
\---v--/

0 0 / 0 0 7

COMMENTS / _■•-----/— RESULT /6 	 ;
11.8

D/V/SOR /5 .3 0/6/73ABECAUSE THE W/OE THE 101/0e1c-.0 F/EL.40

H,95 BEEN EXTENDED e ROS/T/ONS TO THE L. AND
THE 'PEW/A/DER OCCUP/E.5 THE R/6RTMOST 3 D/6/Ts."

Figure 70, 15.

Section Subsections Page

70 10 30 19

1130 COMMERCIAL SUBROUTINES — DECIMAL ARITHMETIC WORKSHEET
DESCRIPTION D/V/DE A NEGA7/VE NUMBER BY A 	 4-1,

POSVTIVE NUMBER -5/2 = —2 -1/2 OR — 3 72

BEFORE X = Extraneous Data

IWORK: Will remain unchanged
1 2 3 4 5 6 7 8 9 10 11

O 2 X XXXXXXX
KWORK. Will contain result

1 2 3 4 5 6 7 8 9 10 11 12 13

0 0 5

CODING .4 ADDEND • 46 AUGEND, THEN SUMS

SUBTRAHEND MINUEND, THEN SUM ID.•
MULTIPLICAND,•	 MULTIPLIER THEN PRODUCT

DIVISOR DIVIDEND, •4 I ••
THEN QUOT AND REM= 0NER

A_______.,r_._._._.__A_____.Th
CALL 0/V	 (IWORK / 	 2	 ,t-wafelt-	 ,3 6-	 NER)

.—K-- 99 	 9 — 9 	 9	 ,

L-------y.-----)L__________y---)

RAFTER NER = 0

IWORK: Unchanged

1
1 2 3	 4 5 7 8 10 11

2 X X X X X X X X X
KWORK	 Result

1 2 3 4 5 6 7 8 9 10 11	 12 13

00 3

COMMENTS — THE 5/6/s/ /...5 CARR/ED WITH THE- Q007.

Figure 70.16.

Section Subsections Page

70 10 30 20

1130 COMMERCIAL SUBROUTINES — DECIMAL ARITHMETIC WORKSHEET
DESCRIPTION Z.)/ WS/ C:)/V BY Z1fQ /s /A/VAL/0

BEFORE X = Extraneous Data

!WORK: Will remain unchanged
2 3 4 5 6 7 8 10 11

KWORK: Will contain result
1	 2 3 4 5 6 7 8 9 10 11 12 13O X

X x 7 8 x x x

CODING

NER = O

	 ADDENli

4	 SUBTRAHEND

4	 MULTIPLIER 	

	 DIVISOR 	 •

MULTIPLICAND, 	 •THEN PRODUCT
DIVIDEND,

THEN QUOT AND REM

CALL 0/ V (21/VORA" 9 / 9	 Z.,12)	 4 9 6 NER)

AFTER
NER =

!WORK: Unchanged
1 2 5 6 7 8 9 10 11

KWORK . Result
1 2 3O O O x X 5 6 7 10 11 12 13

O O 7 8 x x
COMMENTS - NO 40/ V/ 57 CA/ /5 A2E,4?P.0,4)/14, 4)

NE-' /5 SET TO c$

Figure 70.17.

Section Subsections Page

70 10 30 21

Constants

There are four ways in which you may create con-
stants such as 1968, 40, 6600, etc. To illustrate,
suppose you wish to create the constant 660000 (the
Social Security deduction base, in cents) to be
stored in an array named ISSD, DIMENSIONed as
ISSD (6). The four options are:

1. Use FORTRAN equalities.

ISSD (1) = 6
ISSD (2) = 6
ISSD (3) = 0
ISSD (4) = 0
ISSD (5) = 0
ISSD (6) = 0

2. Use the DATA statement.

DATA ISSD/6, 6, 0, 0, 0, 0/
or
DATA ISSD/2*6, 4*0/

3. Use the FILL subroutine.

CALL FILL (ISSD, 1, 2, 6)
CALL FILL (ISSD, 3, 6, 0)

4. Read it from a card, tape, keyboard, or disk.

Option 2 is preferred, since it consumes less core
storage than the other three methods.

Negative constants are handled in much the same
way. Because of their special representation, how-
ever, it wouldbe wise to make the constants positive
and change the arithmetic. For example, rather
than set up -1 and add it to something, it would be
easier to subtract +1.

Testing and Modifying Signs

To facilitate testing and modifying the signs of deci-
mal arithmetic fields, the subroutine NSIGN is
available. It has four parameters:

NARRY The name of the array
NPOS The position in the array to be tested
NEWS "New sign", indicating what you want

done to the previous sign:

+1	 Make it positive
0	 Reverse it
- 1	 Make it negative
NOLDS Leave it alone

NOLDS "Old sign", returned to you, indicating
what the previous sign was:

+1	 It was positive
- 1	 It was negative

You, the programmer, send the subroutine the
first three parameters; it returns the last. To
illustrate, suppose you wish to test the sign of the
18th position in the K array:

• Case 1: It Is Now Positive:
NOLDS is returned as +1
K(18) is made + if you said

CALL NSIGN (K, 18, +1, NOLDS)
K(18) is changed to - if you said

CALL NSIGN (K,18, 0, NOLDS)
K(18) is made - if you said

CALL NSIGN (K,18, -1, NOLDS)
K(18) remains + if you said

CALL NSIGN((K, 18, NOLDS, NOLDS)
• Case 2: It Is Now Negative:

NOLDS is returned as -1 and
K(18) is made + if you said

CALL NSIGN (K, 18, +1, NOLDS)
K(18) is changed to + if you said

CALL NSIGN (K,18, 0, NOLDS)
K(18) is made - if you said

CALL NSIGN (K,18, -1, NOLDS)
K(18) remains - if you said

CALL NSIGN (K, 18, NOLDS, NOLDS)

	

Section Subsections
	 Page

70
	

10
	

30
	

22

Moving Signs

The NSIGN routine may also be used to move signs.
The two statements

CALL NSIGN (NARRY, I, NOLD, NOLD)
CALL NSIGN (KARRY, J, NOLD, JUNK)

will make KARRY (J) have the same as NARRY (I).

Comparing Decimal Fields

The FUNCTION ICOMP is used to compare two
variable length decimal fields. In practice, it is
typically used within the parentheses of an IF state-
ment;

IF (ICOMP (IWORK, 1, 5, KWORK, 6, 10))1, 2, 3
This statement will compare (IWORK,1, 5) with
(KWORK, 6,10), and branch to

Statement 1 if the first is less than the second.
Statement 2 if they are equal.
Statement 3 if the first is greater than the second.
As was true with the ADD and SUB subroutines,

the first field must not be longer than the second.
Since no error code is returned from this sub-
program, there is no way to tell that such an error
has occurred, and the results will therefore be
meaningless.

Section Subsections Page

70 10 40 01

Summary

If exact results are desired, you must take certain
precautions regarding arithmetic calculations.

1. Use one of the following:
Integer arithmetic
Decimal arithmetic
Real, fixed-point arithmetic, with no

fractions
2. If fractions are allowed to occur (floating-

point real arithmetic), your results are likely to
show inaccuracies. These inaccuracies will be
slight, but enough to cause significant problems.

3. If no number will ever exceed 8,388,607.,
you may use standard precision, real, fixed-point
arithmetic.

4. If no addition will ever exceed
2,147,483,647. , you may use extended precision,
real, fixed-point arithmetic.

5. If the result of a multiplication will exceed
1,073,741,823. , you should consider using deci-
mal arithmetic, since real extended precision
arithmetic will be inaccurate above this limit.

6. If the result of an addition or subtraction
falls in the range 1,073,741,824. to
2,147,483,647. , you should not attempt to output
it with the standard FORTRAN F Format; use the
PUT subroutine instead.

7. If any number will exceed 2,147,483,647.
(now or in the foreseeable future), use decimal
arithmetic rather than real arithmetic.

	

Section Subsections
	

Page

70
	

20
	

01
	

01

OVERLAPPED INPUT/OUTPUT

Introduction

As a machine, the IBM 1130 Computing System is
capable of performing many tasks simultaneously.
For example, it can print, type, read a card, and
compute, all at the same time. This can be done
through its "cycle-stealing" I/O channels and the
priority interrupt system. Each I/O device may,
through an interrupt, signal the CPU that it requires
service, and steal a cycle (3.6 or 2.2 microseconds)
from some other process to do what it needs done.
This process is commonly referred to as "over-

For example, in the case of the disk, one data
word travels past the read/write heads every 27.8
microseconds. However, it only takes one cycle
(3.2 or 2.2 microseconds) to transfer that word
from core storage to the disk (if it is being written)
or from the disk to core storage (if it is being read).

This means that only a little more than 10% of the
CPU time is required to read and write on the disk;
the remainder is available for other use.

Although most of the 1130's I/O devices can be
overlapped, standard 1130 FORTRAN permits only
two of them to operate in this fashion: the disk and
the 1403 Printer. There are several good reasons
for this limitation. For example, suppose you
wrote a program to read two numbers from a card,
add them together, and print the result. With full
overlap, the addition could conceivably be under
way before the two numbers had even been placed in
core. Obviously, this would not be satisfactory.

To take full advantage of the potential of the
machine, in FORTRAN, it would be necessary to
develop a special FORTRAN, which would then
violate the USASI standards set up for that pro-
gramming language. Avoiding this, IBM has
developed the Commercial Subroutine Package
(CSP) -- a set of subroutines operating within the
FORTRAN system, rather than as part of the
FORTRAN language itself.

Section Subsections Page

70 20 10 01

The Commercial Subroutine Package Overlapped
I/O Subroutines

CSP subroutines may be divided into three groups:
The I/O subroutines themselves
Several I/O utility subroutines
Those character handling routines necessary for

proper use of the I/O routines
This section discusses the former two groups; the
latter is covered later in this section under "Charac-
ter Handling Techniques".

General

All of the overlapped I/O subroutines operate on
data in Al format -- one alphabetic character per
word, left-justified. If you wish to read 80 card
columns, you must set up an array 80 positions long
to receive the data, and convert the Al data to what-
ever format yourequire for later processing. There
are no FORMAT statements; you must handle all
conversions (see "Character Handling Techniques").

Unlike standard FORTRAN, the overlapped I/O
subroutines are oriented toward a sign punch over
the low-order digit of a field. For example, a nega-
tive number or credit of -$6.50 would be punched
with an 11-punch over the zero, rather than in a
separate column, as would be done if FORTRAN
FORMAT were used.

In general, for your non-disk I/O, you must
choose either one system or the other: FORTRAN
FORMAT or overlapped I/O. They may not be mixed
within the same program.

For further detail on these subroutines, see the
SRL manual H20-0241.

READ a Card, 1442-6 or 7

The subroutine READ will read a card from the 1442
Model 6 or 7, overlapping reading withthe conversion
from card code to Al format. The CPU will not
proceed any further until the last desired card
column has been read and converted. Therefore you
need not be concerned that processing will be started
before the desired values have reached core storage.

A typical call to this routine would be

NER = -I
CALL READ (INOUT , 1,80, NER)

which would read and convert 80 columns, and place
the result in the array INOUT. It should be followed
by a

IF (NER) xxx, xxx, xxx

If NER is still -1, everything is normal; if it is
zero, the card just read was the last card in the
hopper; if it is +1, there was a read or feed check
(1442 malfunction).

It is equivalent to

DIMENSION INOUT(80)
77 FORMAT (80A1)

READ (2,77) INOUT

	

Section Subsections	 Page

70
	

20
	

10
	

02

PUNCH a Card, 1442-6 or 7

The subroutine PUNCH will punch a card on the 1442
Model 6 or 7. Nothing will be overlapped with this
activity. A typical use is

NER = -1
CALL PUNCH (INOUT, 1, 20, NER)

which will punch the first 20 words of the INOUT
array into the first 20 columns of a card.

It is equivalent to

DIMENSION INOUT (80)
77 FORMAT (80A1)

WRITE (2, 77) (INOUT(K), K=1, 20)

The use of the error parameter, NER, is identi-
cal to the READ subroutine.

Select STACKer, 1442-6 or 7

Subroutine STACK permits the FORTRAN programmer
to direct a card into the alternate stacker on the 1442
Model 6 or 7. After the statement

CALL STACK

the last card read (and only the last card) will be
selected into the alternate stacker.

The placement of the CALL STACK statement is
important:

• If the program reads and punches into the same
card, the statement may be placed between the READ
and WRITE, or after the WRITE.

• If the program reads (but doesn't punch), the
CALL STACK goes after the READ statement that
read the card to be stacked.

• If the program only punches (and does not read),
the CALL STACK should be placed after the WRITE
statement that punches the card to be stacked.

Section Subsections Page

70 20 10 03

PRINT on 1132

Subroutine PRINT enables you to write on the 1132
Printer, overlapping printing with other processing.
A typical use of this routine is

NER = 1
CALL PRINT (INOUT, 1,120, NER)

This will initiate the printing of the 120-word array
INOUT on the 1132, then continue processing. Be-
cause of its overlapped capability, it can drive the
1132 Printer substantially faster than the equivalent
FORTRAN/FORMAT statements:

DIMENSION INOUT (120)
88 FORMAT (120A1)

WRITE (3,88) INOUT

Like READ and PUNCH, it should be followed
with a test of NER:

• If it is still 1, nothing unusual happened.
• If it is 3, the line being printed matches with

a channel 9 punch on the carriage control tape.
• If it is 4, the line being printed matches with

a channel 12 punch in the carriage control tape.

Note that the first position is not used to control
the printer carriage, as it is with standard FORTRAN.
The SKIP routine must be used if you wish to skip to
channel 1, double-space, etc.

SKIP on 1132

Subroutine SKIP permits full use of the carriage con-
trol tape mechanism on the 1132. Skipping is signifi-
cantly faster than printing blank lines and should be
used wherever possible. A typical use of this routine
is

CALL SKIP (KODE)

where the allowable values of KODE, and their
meaning, are as shown in Figure 70.18.

Value	 Action Taken
of KODE	 by the 1132

12544
	

Immediate skip to channel 1

12800
	

Immediate skip to channel 2

13056
	

Immediate skip to channel 3

13312
	

Immediate skip to channel 4

13568
	

Immediate skip to channel 5

13824
	

Immediate skip to channel 6

14592
	

Immediate skip to channel 9

15360
	

Immediate skip to channel 12

15616
	

Immediate space of 1 space

15872
	

Immediate space of 2 spaces

16128
	

Immediate space of 3 spaces

0
	

Suppress space after printing

Figure 70.18. SKIP codes for 1132 Printer

	

Section Subsections	 Page

70	 20
	

10
	

04

Type on Console Printer

Subroutine TYPER will initiate typing on the console
printer, and then continue processing. Actual print-
ing time will be overlapped with other processing
(printing on the 1132, reading cards, computing,
etc.). A typical call is

CALL TYPER (INOUT, 1,50)

which will type the first 50 values of the INOUT
array. There is no error parameter connected with
this routine.

In addition to printing, this subroutine also per-
mits several typewriter control functions. If the
values listed below are inserted in the INOUT array,
the corresponding action will be performed at that
point:

Accept Data from Console Keyboard

Subroutine KEYBD will read characters entered from
the console keyboard, Only 60 characters at a time
may be read with this routine. This activity is not
overlapped with any other function. An example of
the use of this subroutine is

CALL KEYBD (INOUT, 1,30)

which will read 30 characters from the keyboard.
This is no error parameter.

Value

1344
5184

13632
5696
5440
9536

Action

Tabulate
Shift to black
Shift to red
Backspace
Carrier return
Line feed

Because TYPER does not start each line with an
automatic carrier return, you may want to place a
5440 in position 1 of the output array.

Section Subsections Page

70 20 10 05

A Precaution -- IOND
	

The call to IOND should always be placed im-
mediately before each PAUSE or STOP statement:

Because of the properties of the overlapped I/O sub-
routines, all I/O activity must be completed before
you cause the 1130 to PAUSE or STOP. The sub-
routine IOND will do this for you by testing the status 	 or
of the interrupts and looping until none are pending.

IOND is required only when Version 1 of the
Monitor is used; it should not be used if Version 2 of
the Monitor is in use.

CALL IOND
PAUSE 1234

CALL IOND
STOP 5678

	

Section Subsections	 Page

70
	

20
	

20
	 01

Using The Overlapped I/O System Alternative A Alternative B

General

If you are to gain the full potential of the overlapped
I/O routines, you should know several basic princi-
ples of this system:

• You must decide whether your non-disk I/0
will be done by FORTRAN FORMAT READs and
WRITEs or by the overlapped I/O subroutines. A
program cannot use both. Note that the disk I/O is
completely independent of the overlapped I/O system
and does not enter into this discussion.

• Certain devices are not overlapped by these
routines, making the placement of the subroutines
CALLs quite important.

Overlapping and Your Program

As far as your program is concerned, only two I/O
devices are really overlapped: the 1132 Printer and
the console printer. The other devices are either
not overlapped at all or overlapped with various
housekeeping chores (for example, code conversion)
rather than with your program. In other words:

	

These subroutines	 These subroutines start

	

initiate an action, 	 an action and finish it

	

then continue	 before they continue

	

processing:	 processing:

PRINT
	

READ
SKIP
	

PUNCH
TYPER
	

KEYBD

Thus the sequence in which you use these rou-
tines becomes important. For example, suppose
you have a program that develops some result, then
must print a line on the 1132 and punch a card. How
should this be done?

Develop results	 Develop results
CALL PRINT ()
	

CALL PUNCH ()
CALL PUNCH ()
	 CALL PRINT ()

With alternative A, PRINTing is initiated, then
PUNCHing, and the two I/O functions are overlapped.
Alternative B, on the other hand, does not overlap
these two functions, since the 1130 will wait until
PUNCHing is completed before starting PRINTing.
Alternative B does, however, overlap whatever
follows the PRINT statement.

To gain maximum overlap, then, the three truly
overlapped routines (PRINT, SKIP, and TYPER)
should be placed as early in the processing cycle
as possible. Figure 70.19 gives some examples
of good and bad usage of these routines.

Example	 Bad Practice Good Programming

1

processing

processing

CALL PRINT
CALL SKIP

processing

processing

CALL SKIP

CALL PRINT

processing

processing
2

CALL PRINT

CALL PRINT

processing

CALL PRINT

processing

CALL PRINT

CALL PUNCH
3

CALL PRINT

CA(CALL PRINT

CALL PUNCH

4
WRITE disk

CALL PRINT

CALL PRINT

WRITE disk

Figure 70. 19.

Section Subsections Page

70 20 20 02

FORTRAN TRACE Not Permitted with Overlapped
I/O Routines

If you use the overlapped I/O routines, you must not
include any of the non-disk I/O devices on the *IOCS
control record; only *IOCS (DISK) is permitted.
This means that you may not take advantage of the
standard FORTRAN TRACE facility, but must
instead program your own trace. If this is done
while the program is being developed, it presents
little difficulty.

Several methods may be used -- for example:
• A series of numbered pauses, to display your

progress through the program.
• A set of extra PRINT or TYPER statements,

to function much the same as the standard TRACE.
It might be useful to code a subroutine called TRACE,
which would do this after testing Data Switch 15.

Alphabetic Headings with the Overlapped I/O System

Since you may not use FORMAT statements in con-
junction with the overlapped I/O routines, you must
enter alphabetic headings and other constants in
some other manner. Several methods are available.

1. Use the DATA statement. This allows alpha-
betic constants to be entered, in the proper format,
at the start of the program.

2. Read the alphabetic data from the card deck.
You may lay out all the alphabetic data required
(headings, error messages, etc.) so as to fit in one
large array, then read that array from a deck of
cards each time the program is executed. Because
it is done only once, those program steps could be
made into a LINK, in which case it could use
FORTRAN I/O, regardless of which system the
main program used.

3. Same as 2, except that the read-in program
is run only once and places the array of heading
information on the disk. This data is then read from
the disk each time the main program is executed.
This is somewhat more foolproof, since you do not
have to worry about assembling the card deck each
time the main program is run.

Decimal
Arithmetic,

Variable
Length

Section Subsections Page

70 30 00 01

THE INTERACTION OF ARITHMETIC AND I/O

You have seen that two options are available for I/O:

Standard FORTRAN FORMAT
Overlapped I/O subroutines

You have also seen that, for all practical purposes,
two options are available for arithmetic:

FORTRAN real arithmetic
Decimal arithmetic, variable length.

While you may choose any desired combination,
certain combinations appear easier to use than others.
You can see from Figure 70.21 that some provision
must in all cases be made for conversion from input
code to some arithmetic code, then from some
arithmetic code to output code. If you use standard
FORTRAN exclusively, you specify, with the FORMAT
statement, what conversions you want. If you use
any of the other three combinations, you must specify
the desired code conversion with the character
handling routines supplied by the Commercial Sub-
routine Package: GET, PUT, EDIT, DECA1, A1DEC,
PACK, and UNPAC. (These routines are covered in
later sections of this Guide.)

Figure 70.22 summarizes the advantages and
disavantages of each alternative. You can see that
the convenience items (ease of programming, read-
ability, etc.) are gradually sacrificed in order to
make gains in the area of capability and performance.

Convenience
Items

Capability and Performance
Items

Easily
Programmed

?

Easily
Readable
Program

?

Easy to
Debug?
Trace?

Maximum
Size of

Numerical
Values

7

Read a
Record

of Unknown
Format

?

Edited
Output

?

Zone
Punches
Allowed

7

I/O
Over-
lapped

?

Standard FORTRAN easy very good yes 9 digits no no no no

Standard FORTRAN
Extended with GET, PUT
and EDIT

a little
harder

very good yes 9 digits yes yes no no

Standard FORTRAN Arith,
with GET, PUT and EDIT,
and overlapped I/O

a little
harder

very good no 9 digits yes yes yes yes

FORTRAN I/O with
GET, PUT, EDIT and
Decimal Arith.

a little
harder

good can trace,
but not too
effectively

unlimited yes yes no no

Overlapped I/O with
Decimal Arith.

a little
harder

good
to fair

no unlimited yes yes yes yes

Figure 70, 22.

Section Subsections Page

70 40 01 01

CHARACTER HANDLING TECHNIQUES

General

A great deal of the programming effort in most com-
mercial applications falls into the general classification

of character handling -- code conversion, editing,
moving data, testing zone punches, comparing alpha-
betic data, etc. This section covers many of these
tasks in detail, showing how they may be accom-
plished with the Commercial Subroutines.

	

Section Subsections	 Page

70
	

40
	 10
	

01

Code Conversion

As you saw earlier, code conversion is essential to
any program, commercial or technical. If you use
standard FORTRAN, you must specify the desired
conversions with the FORMAT statement. If you
are using FORTRAN augmented by the Commercial
Subroutines, you can also use the GET, PUT and
EDIT subroutines for special formatting. If you
are using the overlapped I/O routines, you must
specify all the code conversions with the Commercial
Subroutines (except Al format), since no FORMAT
statements may be used.

Basically there are five internal codes with which
you might be concerned:

Integer
Real
Alphabetic -- one character per word (Al)
Alphabetic -- two characters per word (A2)
Decimal -- one digit per word

Very few programs can avoid converting from one
code to the other. Figure 70.23 shows the tools at
your disposal to effect all possible conversions. The
common ones are handled by a single subroutine;
those less often needed require a combination of two
or three subroutines.

The Al code is particularly important since all
the overlapped I/O routines require data in that
format. In addition, GET, PUT, and EDIT work
with data in the Al format.

The A2 code is used primarily when writing
alphabetic data on the disk, since it holds twice as
much data per word as Al format.

Decimal code is encountered only if you are using
the decimal arithmetic, variable length routines of
CSP.

FROM

TO

Integer Real Alpha (A1) Alpha (A2) Decimal

Integer FLOAT PUT IF LOAT) FLOAT, then
PUT, then
PACK

FLOAT, then
PUT, then
A1DEC

Real IFIX PUT PUT, then
PACK

PUT, then
A1DEC

Alphabetic (Al) IFIX (GET) GET PACK A1DEC

Alphabetic (A21 UNPAC, then
GET, then
IFIX

UNPAC, then
GET

UNPAC UNPAC, then
AIDEC

Variable Length
Decimal

DECA1, then
GET, then
IFIX

DECA1, then
GET

DECAL DECA1, then
PACK

Integer to Real -- FLOAT

The FLOAT function, a FORTRAN standard, is used
to convert an integer to a real number. A typical
use of this function is

X = FLOAT (K)

which will set the real variable X equal to the value
of K. The same conversion can also be accomplished
by coding

X = K

This also uses the FLOAT function, even though it
does not appear.

Real to Integer -- IFIX

The IFIX function, also a FORTRAN standard, is
used to convert a real number to an integer. A
typical use is

K = IFIX(X)

which will take the real variable X, convert it to an
integer, and store it as K. If X is 6.0, then K = 6;
if X is 87.9, then K = 87; and so on.

This can also be accomplished by coding K = X;
this too uses the IFIX function.

Figure 70, 23.

Section Subsections Page

70 40 10 02

Al to Real -- GET

IBM supplies the GET function as part of the 1130
Commercial Subroutine Package (CSP). The original
Al data may have resulted from a FORTRAN READ
with an Al FORMAT, or from use of one of the CSP
Overlapped Input routines, which always results in
Al format.

If you have a five-place array, in Al format

K(1) = 1
K(2) = 9
K(3) = 8
K(4) = 6
K(5) = 8

and you say

X =GET(K,1,5,1.0)

then X = 19868.
The last parameter (1.0) is a shift factor, and

will usually be 1.0 if you want accurate results. (If
it had been .1, X would be 1986. 8; however, since
the fraction . 8 is present, you could expect it to be
inaccurate.) Subsection 70.10.20 explains why
fractions should be avoided in commercial work.

Basically, the above use of GET can be thought
of as equivalent to an F5. 0 in a FORMAT statement.
A shift factor of .1 would be an F5. 1; a shift of .01
would be F5.2; a shift of .001 would be F5.3; etc.

Al to Integer

As shown in Figure 70.23, this step requires use
of both TIT(and GET, in the following manner:

J = IFIX(GET(K,10,12,1.0))

where positions 10 through 12 of the K array are
converted first to a real number, then to an integer
called J.

	

Section Subsections	 Page

70
	

40
	 10	 03

Real to Al -- PUT

This step is quite commonly required -- if you are
using the overlapped I/O routines, if you wish to do
further editing, etc. It is accomplished with the
PUT subroutine supplied with CSP.

Suppose you have just computed a gross pay figure,
GROSS, which might have a typical value of 275869. ,
understood to be mills. Again, note that you are
working , in whole numbers, so that no fraction prob-
lems are encountered. This value is to be rounded
off and the result placed in the first ten postions of
array KGROS for-later editing and output. The
statement

CALL PUT (KGROS, 1,10, GROSS, 5. , 1)

will take GRASS, add 5. to it, truncate the last 1
digit, and place it in Al format in the KGROS array
as 0000027587, with leading zeros and no decimal
point.

The last two parameters, the adjust factor and the
truncate factor, usually form a logical pair. Obvi-
ously, if you add 5. to half-adjust, you won't want
to print the resulting digit. The table below shows
the common pairs:

Integer to Al

This requires two steps, since PUT operates on
real numbers, not integers. If you have an integer
I, which you want converted to Al format, you must
first convert it to real format:

X=I
or X = FLOAT(I)

then use the PUT subroutine. Or, in one step:

CALL PUT (KGROS, 1,10, FLOAT (I) , 5. ,1)

will perform this conversion.

5th parameter
(half-adjust factor)

6th parameter
(how many digits to

truncate from right end)

.5
5.
50.
500.
etc.

0
1
2
3
etc.

Half-adjust factors of less than .5 should not be
used, since this will bring up the problem of inexact
fractions.

If GROSS is negative, an 11-zone punch will be
added to the code for the low-order digit. For ex-
ample, if GROSS is -275869. , the result will be
000002758P, where the character P is equivalent to
a 7,11 punch.

Section Subsections Page

70 40 10 04

Al to Decimal -- A1DEC

This conversion will be needed if you have chosen
to use the decimal arithmetic system of CSP. The
Al field being converted was read by FORTRAN with
an Al format, or by the overlapped I/O routines.

Suppose a card contained 1968 in columns 1 through
4, and you read it with the overlapped I/O CALL
READ. It would be in Al format, in an array KOL,
one character per word:

KOL (1) contains the alphabetic lb
KOL (2) contains the alphabetic 9b
KOL (3) contains the alphabetic 6b
KOL (4) contains the alphabetic 8b

If you want to use this value in decimal arithme-
tic computations, it must be converted to decimal
format, one digit per word. To do this, you simply
code

CALL A1DEC (KOL, 1, 4, NER)

and it will be converted, in place. Note that the Al
coding is replaced by the decimal coding. The NER
is an error parameter, and will be set to the position
at which it last encountered an invalid character
(not 0 through 9 or a blank).

The exception to this is the last (rightmost)
character, which may contain an 11 or 12 punch,
indicating a sign. See the table below for allowable
punches:

Decimal to Al -- DECAL

If you are using decimal arithmetic, you must print
the answers either with a series of Il formats, or
in Al format. The latter will be the case if you
desire any editing or are using the overlapped I/O
routines.

The DECAL subroutines will perform this con-
version, thus operating in reverse fashion from
A1DEC.

A typical use would be

CALL DECAL (IWORK, 6, 10, NER)

which will convert the 6th through the 10th items in
the IWORK array from decimal to Al format. The
NER error parameter is present but should be of
limited use, since the decimal arithmetic routines
should not leave any invalid digits in the field.

The rightmost digit is assumed to carry the sign
and, if negative, will be converted to the proper
character plus an 11 punch.

Digit or
character
without a

zone punch

blank
0
1
2
3
4
5
6
7
8
9

with an 11 punch	 with a 12 punch

- (dash)
(- zero)
	

(+ zero)
J
	

A
K
	

B
L
	

C
M
	

D
N
	 E

O
	

F
G

Q
	

H
R
	

I

	

Section Subsections 	 Page

70
	

40
	

10
	

05

Al to A2 -- PACK	 A2 to Al . -- UNPAC

This conversion is very desirable if you wish to 	 To convert A2 data back to Al, the UNPAC sub-
store alphabetic data on the disk. For input, output,	 routine may be used. A typical call to UNPAC would
and editing, your data must be in Al format, how-	 be
ever, A2 format will pack twice as much data in an
equivalent number of words.	 CALL UNPAC (IPAKD, 1,3, IUNPK, 1)

The PACK subroutine gives you the ability to con-
vert from Al to A2 format. For example, suppose 	 which would unpack the 123bGO packed in the pre-
the array IUNPK contains 123bGO: 	 vious example.

IUNPK (1) contains an alphabetic 1
IUNPK (2) contains an alphabetic 2
IUNPK (3) contains an alphabetic 3
IUNPK (4) contains an alphabetic blank
IUNPK (5) contains an slphabetic G
IUNPK (6) contains an alphabetic 0

Now suppose we say

CALL PACK (IUNPK, 1,6, IPAKD, 1)

The data is packed and moved from IUNPK to IPAKD:

IPAKD (1) contains an alphabetic 1 and 2
IPAKD (2) contains an alphabetic 3 and blank
IPAKD (3) contains an alphabetic G and 0

The IUNPK array remains unchanged. An even num-
ber of characters will be packed. Therefore, the
Al field should contain an even number of characters
otherwise, the last character in the IPAKD array
will be meaningless.

Section Subsections Page

70 40 10 06

Other Code Conversions

As Figure 70.23 shows, there are other code con-
versions that you may require. However, since

they are unusual and can be performed as a com-
bination of several other steps, they will not be
discussed in detail.

	

Section Subsections	 Page

70
	

40
	

20
	

01

Other Character Handling Techniques

Editing Output--EDIT

Most commercial applications are strongly oriented
toward the format and appearance of the output re-
sults, as opposed to the technical job, where all
you want is the answer. For example:

• Dollar amounts should have commas, dollar
signs, and so on.

• Invoices should show a CR symbol after neg-
ative values.

• Balance sheets should have a minus sign fol-
lowing a negative item.

• Punched card output should have leading zeros,
so that the cards may be handled properly with a
mechanical sorter.

The EDIT subroutine enables you to do all these
formatting tasks. Its use requires two fields,
stored in Al format in integer arrays:

1. The source field or the field which will be
edited

2. The edit mask, a field which you have coded
to indicate how you want the edited output to appear.
A typical call to the EDIT subroutine is

CALL EDIT (KSOUR, 1,10,1VIASK, 1,13)
where the source field consists of items 1-10 in the
KSOUR array, and the mask consists of items 1-13 in
the MASK array. After editing, the MASK field is
replaced by the edited source field; if you wish to
use it again, therefore, you must save it some-
where else. Usually, the mask will be moved into
the output area, and the source field will be edited
into the output array. Thus the original mask is
not destroyed. For example:

CALL MOVE (MASK, 1,13, KOUT, 36)
CALL EDIT (KSOUR, 1,10, KOUT, 36,48)

Figure 70.24 is a worksheet that you may use
for setting up an edit mask. The principles in-
volved are shown best by examples (see Figures
70.25-70.30).

Moving Data Fields--MOVE

Often it becomes necessary to move the data in one
array into another array--especially if you are
using CSP. The MOVE subroutine has been in-
cluded in CSP to facilitate such operations. Its use
is quite simple, since it does no more than move
data from one place to another. For example:

CALL MOVE (IFROM, 6,8, IT0,14)

will move

IFROM (6) to ITO (14)
IFROM (7) to ITO (15)
IFROM (8) to ITO (16)

leaving the IFROM array undisturbed.
Note that the ending position in the ITO array is

not supplied-as one of the parameters.
The format of the data items is not affected.

They may be Al, A2, decimal, or integer (but not
real).

Section Subsections Page

70 40 20 02

EDIT WORKSHEET

PROGRAM	 PROGRAMMER	 DATE
COMMENTS:

STEP 1.	 FILL IN LINE a, SHOWING THE LARGEST POSSIBLE SOURCE FIELD, AND WHAT YOU WANT IT TO LOOK LIKE AFTER EDITING.
HINT: PUT POSITION 1 OF THE SOURCE FIELD IN POSITION 2 OF THE MASK, AND SO ON, LEFT TO RIGHT.

STEP 2.	 IF YOU HAVE INSERTED ANY SPECIAL CHARACTERS INTO THE EDITED OUTPUT, PUT THEM IN THE EDIT MASK IN THE SAME
POSITION IN WHICH THEY APPEAR.

NOTE:	 THIS DOES NOT APPLY TO `'s (ASTERISKS), b's (BLANKS), OR $'s (DOLLAR SIGNS). DO NOT PLACE THEM IN
THE EDIT MASK YET.

NOTE:	 ALLOWABLE SPECIAL CHARACTERS ARE A THRU Z, 1 THRU 9, AND /, -+ = etc.

STEP 3.	 FILL IN LINE b, SHOWING HOW YOU WANT ZERO TO APPEAR IN YOUR EDITED OUTPUT.

STEP 4.	 WHAT DID YOU DO WITH LEADING ZEROS? (YOU MAY ONLY CHOOSE ONE OPTION)
a)	 LEFT THEM AS ZEROS? THEN DO NOTHING TO THE MASK.

b)	 REPLACED THEM WITH ASTERISKS? IF SO, NOTE THE RIGHTMOST ASTERISK AND PUT AN ASTERISK IN THE MASK IN THE SAME
POSITION.

c)	 REPLACED THEM WITH BLANKS? IF SO NOTE THE RIGHTMOST BLANK AND PUT A ZERO IN THE MASK IN THE SAME POSITION.

d)	 REPLACED THEM WITH A STRING OF BLANKS AND A DOLLAR SIGN? (FOR EXAMPLE bbbb$1. IF SO, NOTE THE POSITION OF THE
DOLLAR SIGN AND PUT A DOLLAR SIGN IN THAT POSITION IN THE MASK.

STEP 5.	 FILL IN LINE c, SHOWING A TYPICAL NEGATIVE FIELD, AND HOW YOU WANT IT TO APPEAR.

STEP 6.	 WHAT DO YOU WANT DONE WITH A NEGATIVE FIELD INDICATOR? 	 CHOOSE ONE.

a)	 NOTHING, FIELD WILL NEVER BE NEGATIVE 	 	 DO NOTHING.

b)	 LETTERS 'CR' AFTER THE FIELD 	 	 PUT A 'CR' IN THE MASK TO THE RIGHT OF
THE FIELD.

c)	 MINUS SIGN IN ITS OWN COLUMN, AFTER THE FIELD 	 PUT A MINUS SIGN IN THE POSITION RIGHT
AFTER THE FIELD.

d)	 11-PUNCH OVER ONE OF THE CHARACTERS 	 	 SAME AS OPTION C, THEN USE NZONE SUBROUTINE
TO MOVE ZONE PUNCH TO THE DESIRED POSITION'

CAUTION:	 "CERTAIN ZONE PUNCHES (11, 0 AND
CALL NZONE	 , 5,
MOVE ZONE FROM HE

,y
RE TO HERE

NOLDZ 12, 01 CANNOT BE HANDLED BY	 '
FORTRAN I/O. IF THESE PUNCHES7 WILL OCCUR, YOU MUST USE CSP I/0."

CALL NZONE (MASK,. NOLDZ, JUNK)

STEP 7.	 HOW MANY CHARACTERS WERE IN THE FIRST SOURCE FIELD?... a
HOW MANY BLANKS REMAIN IN THE MASK' ^ b
CAUTION: a CAN BE EQUAL TO OR LESS THAN b, BUT CANNOT BE LARGER!

STEP 8.	 DON'T FORGET; THE SOURCE FIELD MUST BE IN Al FORMAT, WITH THE SIGN OVER THE RIGHTMOST CHARACTER.

SOURCE FIELD DESIRED EDITED OUTPUT
1 i 2 3 4	 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

a

b

c

1 LINE a — LARGEST a

b

c

LINE b — ZERO

LINE c— TYPICAL NEGATIVE

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
IMPLIED SIGN REQUIRED EDIT MASK

Figure 70, 24,

IMPLIED SIGN REQUIRED EDIT MASK

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

999999999
000000000
4000066 6 Z

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

h 66 66666

1 2 3 4 5 6 7 8 9 10 11 12

9 9 9 9 9 9 9 9
O 0 0 0 . 0 0 0 0 0

6 6 6;

a

b

a

b

LINE a — LARGEST

LINE b — ZERO

LINE c— TYPICAL NEGATIVE

EDIT WORKSHEET

PROGRAM	 PROGRAMMER	 DATE
COMMENTS: MONETARY P/ELO, TO BE PZ/NC1/40 /NTO eRRD A//771 ZEAD/mV zekos

.044 -/RED, dal' A/0 corY1144:1' OR DEC Pr it PiliVeil 01/ER .2./4/iTmo.97-
(ibvizs) Pas/rioni NE4AT/ Ye:

STEP 1.	 FILL IN LINE a, SHOWING THE LARGEST POSSIBLE SOURCE FIELD, AND WHAT YOU WANT IT TO LOOK LIKE AFTER EDITING.
HINT: PUT POSITION 1 OF THE SOURCE FIELD IN POSITION 2 OF THE MASK, AND SOON, LEFT TO RIGHT.

STEP 2.	 IF YOU HAVE INSERTED ANY SPECIAL CHARACTERS INTO THE EDITED OUTPUT, PUT THEM IN THE EDIT MASK IN THE SAME
POSITION IN WHICH THEY APPEAR.

NOTE: THIS DOES NOT APPLY TO ''s (ASTERISKS), b's (BLANKS), OR $'s (DOLLAR SIGNS). DO NOT PLACE THEM IN
THE EDIT MASK YET.

NOTE: ALLOWABLE SPECIAL CHARACTERS ARE A THRU Z, 1 THRU 9, AND /, -+= etc.

STEP 3.	 FILL IN LINE b, SHOWING HOW YOU WANT ZERO TO APPEAR IN YOUR EDITED OUTPUT.

STEP 4.	 WHAT DID YOU DO WITH LEADING ZEROS? (YOU MAY ONLY CHOOSE ONE OPTION)
a) LEFT THEM AS ZEROS? THEN DO NOTHING TO THE MASK.

b) REPLACED THEM WITH ASTERISKS? IF SO, NOTE THE RIGHTMOST ASTERISK AND PUT AN ASTERISK IN THE MASK IN THE SAME
POSITION.

c) REPLACED THEM WITH BLANKS? IF SO NOTE THE RIGHTMOST BLANK AND PUT A ZERO IN THE MASK IN THE SAME POSITION.

dl
	 REPLACED THEM WITH A STRING OF BLANKS AND A DOLLAR SIGN? (FOR EXAMPLE bbbb$). IF SO, NOTE THE POSITION OF THE

DOLLAR SIGN AND PUT A DOLLAR SIGN IN THAT POSITION IN THE MASK.
STEP 5. FILL IN LINE c, SHOWING A TYPICAL NEGATIVE FIELD, AND HOW YOU WANT IT TO APPEAR.

STEP 6. WHAT DO YOU WANT DONE WITH A NEGATIVE FIELD INDICATOR? CHOOSE ONE.

a)	 NOTHING, FIELD WILL NEVER BE NEGATIVE 	 DO NOTHING.

b)	 LETTERS 'CR' AFTER THE FIELD 	 	 PUT A 'CR' IN THE MASK TO THE RIGHT OF
THE FIELD.

c) MINUS SIGN IN ITS OWN COLUMN, AFTER THE FIELD 	 PUT A MINUS SIGN IN THE POSITION RIGHT
AFTER THE FIELD.

d) 11-PUNCH OVER ONE OF THE CHARACTERS 	 SAME AS OPTION C, THEN USE NZONE SUBROUTINE
TO MOVE ZONE PUNCH TO THE DESIRED POSITION'

CAUTION:	 "CERTAIN ZONE PUNCHES (11, 0 AND
CALL NZONE (MASK,y, 5, NOLDZ) 12, 0) CANNOT BE HANDLED BY

FORTRAN I/O. IF THESE PUNCHESMOVE ZONE FROM HERE TO HE RE7 WILL OCCUR, YOU MUST USE CSP I/O."
CALL NZONE	 NOLDZ, JUNK)

STEP 7.	 HOW MANY CHARACTERS WERE IN THE FIRST SOURCE FIELD?... 9 a
HOW MANY BLANKS REMAIN IN THE MASK?	 /0 b
CAUTION: a CAN BE EQUAL TO OR LESS THAN b, BUT CANNOT BE LARGER!

STEP 8.	 DON'T FORGET; THE SOURCE FIELD MUST BE IN Al FORMAT, WITH THE SIGN OVER THE RIGHTMOST CHARACTER.

SOURCE FIELD	 DESIRED EDITED OUTPUT

	

Section SubsectionF
	

Page

70
	

40
	

20
	

03

Figure 70, 2S.

Section Subsections Pega

70 40 20 04

EDIT WORKSHEET

PROGRAM .	PROGRAMMER	 DATE

COMMENTS: MONETARY A-*/ ezo, /V/7/71 .47(0,977A/0 7i, "7/V0 Aitc"0.9 T/ i'e /.440/CNTOR (A-/N
COLUMN drOZIOW/Al A

STEP 1.	 FILL IN LINE a, SHOWING THE LARGEST POSSIBLE SOURCE FIELD, AND WHAT YOU WANT IT TO LOOK LIKE AFTER EDITING.
HINT: PUT POSITION 1 OF THE SOURCE FIELD IN POSITION 2 OF THE MASK, AND SO ON, LEFT TO RIGHT.

STEP 2.	 IF YOU HAVE INSERTED ANY SPECIAL CHARACTERS INTO THE EDITED OUTPUT, PUT THEM IN THE EDIT MASK IN THE SAME
POSITION IN WHICH THEY APPEAR.

NOTE:	 THIS DOES NOT APPLY TO "s (ASTERISKS), b's (BLANKS), OR $'s (DOLLAR SIGNS). DO NOT PLACE THEM IN
THE EDIT MASK YET.

NOTE:	 ALLOWABLE SPECIAL CHARACTERS ARE A THRU Z, 1 THRU 9, AND /, - + .. etc.

STEP 3.	 FILL IN LINE b, SHOWING HOW YOU WANT ZERO TO APPEAR IN YOUR EDITED OUTPUT.

STEP 4.	 WHAT DID YOU DO WITH LEADING ZEROS? (YOU MAY ONLY CHOOSE ONE OPTION)

a)	 LEFT THEM AS ZEROS? THEN DO NOTHING TO THE MASK.

b)	 REPLACED THEM WITH ASTERISKS? IF SO, NOTE THE RIGHTMOST ASTERISK AND PUT AN ASTERISK IN THE MASK IN THE SAME
POSITION.

c)	 REPLACED THEM WITH BLANKS? IF SO NOTE THE RIGHTMOST BLANK AND PUT A ZERO IN THE MASK IN THE SAME POSITION.

d)	 REPLACED THEM WITH A STRING OF BLANKS AND A DOLLAR SIGN? (FOR EXAMPLE bbbb$1. IF SO, NOTE THE POSITION OF THE
DOLLAR SIGN AND PUT A DOLLAR SIGN IN THAT POSITION IN THE MASK.

STEP 5.	 FILL IN LINE c, SHOWING A TYPICAL NEGATIVE FIELD, AND HOW YOU WANT IT TO APPEAR.

STEP 6.	 WHAT DO YOU WANT DONE WITH A NEGATIVE FIELD INDICATOR? 	 CHOOSE ONE.

a)	 NOTHING, FIELD WILL NEVER BE NEGATIVE 	 	 DO NOTHING.

b)	 LETTERS 'CR' AFTER THE FIELD 	 	 PUT A 'CR' IN THE MASK TO THE RIGHT OF
THE FIELD.

c)	 MINUS SIGN IN ITS OWN COLUMN, AFTER THE FIELD 	 PUT A MINUS SIGN IN THE POSITION RIGHT
AFTER THE FIELD.

dl	 11 -PUNCH OVER ONE OF THE CHARACTERS 	 	 SAME AS OPTION C, THEN USE NZONE SUBROUTINE
TO MOVE ZONE PUNCH TO THE DESIRED POSITION'

CAUTION:	 "CERTAIN ZONE PUNCHES (11, 0 AND
CALL NZONE (MASK,9 5, NOLDZ) 12,0) CANNOT BE HANDLED BY

MOVE ZONE FROM HERE TO HER FORTRAN I/0. IF THESE PUNCHESHERE
WILL OCCUR, YOU MUST USE CSP I/0."

CALL NZONE (MASK,111 NOLDZ, JUNK)

STEP 7.	 HOW MANY CHARACTERS WERE IN THE FIRST SOURCE FIELD?... /0 a
HOW MANY BLANKS REMAIN IN THE MASK? 	 IQ b
CAUTION: a CAN BE EQUAL TO OR LESS THAN b, BUT CANNOT BE LARGER)

STEP 8.	 DON'T FORGET; THE SOURCE FIELD MUST BE IN Al FORMAT, WITH THE SIGN OVER THE RIGHTMOST CHARACTER.

SOURCE FIELD DESIRED EDITED OUTPUT

1 2 3 4	 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

a 9 9 9 9 9 9 9 LINE a — LARGEST $ 99,999,9 9 9.99 a

b LINE b— ZERO b0000000000 $0. 00
c / / / 7 LINE c— TYPICAL NEGATIVE $ / / / . / / . c

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

IMPLIED SIGN REQUIRED EDIT MASK b b b 66, b $b.bb-

Figure 70, 26.

116 8 9 101 2 3 75 12

LINE a – LARGEST32 32 3a

IMPLIED SIGN REQUIRED EDIT MASK

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 / 1 - 2 2 - 3 3 3 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

66 -66-6 46

c	 LINE c– TYPICAL NEGATIVE

a

bb	 LINE b – ZERO

EDIT WORKSHEET

PROGRAM	 PROGRAMMER	 DATE
COMMENTS: ,sociaz SECURITY NO.

STEP 1.	 FILL IN LINE a, SHOWING THE LARGEST POSSIBLE SOURCE FIELD, AND WHAT YOU WANT IT TO LOOK LIKE AFTER EDITING.
HINT: PUT POSITION 1 OF THE SOURCE FIELD IN POSITION 2 OF THE MASK, AND SO ON, LEFT TO RIGHT.

STEP 2.	 IF YOU HAVE INSERTED ANY SPECIAL CHARACTERS INTO THE EDITED OUTPUT, PUT THEM IN THE EDIT MASK IN THE SAME
POSITION IN WHICH THEY APPEAR.

NOTE: THIS DOES NOT APPLY TO ''s (ASTERISKS), b's (BLANKS), OR $'s (DOLLAR SIGNS). DO NOT PLACE THEM IN
THE EDIT MASK YET.

NOTE: ALLOWABLE SPECIAL CHARACTERS ARE A THRU Z, 1 THRU 9, AND /, - + = etc.

STEP 3.	 FILL IN LINE b, SHOWING HOW YOU WANT ZERO TO APPEAR IN YOUR EDITED OUTPUT.

STEP 4.	 WHAT DID YOU DO WITH LEADING ZEROS? (YOU MAY ONLY CHOOSE ONE OPTION)
a) LEFT THEM AS ZEROS? THEN DO NOTHING TO THE MASK.

b) REPLACED THEM WITH ASTERISKS? IF SO, NOTE THE RIGHTMOST ASTERISK AND PUT AN ASTERISK IN THE MASK IN THE SAME
POSITION.

c) REPLACED THEM WITH BLANKS? IF SO NOTE THE RIGHTMOST BLANK AND PUT A ZERO IN THE MASK IN THE SAME POSITION.

d) REPLACED THEM WITH A STRING OF BLANKS AND A DOLLAR SIGN? (FOR EXAMPLE bbbb$). IF SO, NOTE THE POSITION OF THE
DOLLAR SIGN AND PUT A DOLLAR SIGN IN THAT POSITION IN THE MASK.

STEP 5.	 FILL IN LINE c, SHOWING A TYPICAL NEGATIVE FIELD, AND HOW YOU WANT IT TO APPEAR.

STEP 6.	 WHAT DO YOU WANT DONE WITH A NEGATIVE FIELD INDICATOR?	 CHOOSE ONE.

a) NOTHING, FIELD WILL NEVER BE NEGATIVE 	 DO NOTHING.

b) LETTERS 'CR' AFTER THE FIELD 	 PUT A 'CR' IN THE MASK TO THE RIGHT OF
THE FIELD.

c) MINUS SIGN IN ITS OWN COLUMN, AFTER THE FIELD 	 PUT A MINUS SIGN IN THE POSITION RIGHT
AFTER THE FIELD.

d) 11-PUNCH OVER ONE OF THE CHARACTERS 	 SAME AS OPTION C, THEN USE NZONE SUBROUTINE
TO MOVE ZONE PUNCH TO THE DESIRED POSITION'

CALL NZONE IMASK,
9

 5, NOLDZ)
MOVE ZONE FROM HERE TO HE RE7

CALL NZONE (MASK,O, NOLDZ, JUNK)

CAUTION: "CERTAIN ZONE PUNCHES (11, 0 AND
12,0) CANNOT BE HANDLED BY
FORTRAN I/O. IF THESE PUNCHES
WILL OCCUR, YOU MUST USE CSP I/0."

STEP 7.	 HOW MANY CHARACTERS WERE IN THE FIRST SOURCE FIELD?... 9 a
HOW MANY BLANKS REMAIN IN THE MASK? 	 9

b

CAUTION: a CAN BE EQUAL TO OR LESS THAN b, BUT CANNOT BE LARGER!

STEP 8.	 DON'T FORGET; THE SOURCE FIELD MUST BE IN Al FORMAT, WITH THE SIGN OVER THE RIGHTMOST CHARACTER.

SOURCE FIELD	 DESIRED EDITED OUTPUT

Section Subsections
	

Page

70
	

40
	

20
	

05

Figure 70. 27.

Section Subsections Page

70 40 20 06

EDIT WORKSHEET

PROGRAM	 PROGRAMMER	 DATE

COMMENTS: BAre

STEP 1.	 FILL IN LINE a, SHOWING THE LARGEST POSSIBLE SOURCE FIELD, AND WHAT YOU WANT IT TO LOOK LIKE AFTER EDITING.
HINT: PUT POSITION 1 OF THE SOURCE FIELD IN POSITION 2 OF THE MASK, AND SO ON, LEFT TO RIGHT.

STEP 2.	 IF YOU HAVE INSERTED ANY SPECIAL CHARACTERS INTO THE EDITED OUTPUT, PUT THEM IN THE EDIT MASK IN THE SAME
POSITION IN WHICH THEY APPEAR.

NOTE:	 THIS DOES NOT APPLY TO "'s (ASTERISKS), b's (BLANKS), OR $'s (DOLLAR SIGNS). DO NOT PLACE THEM IN
THE EDIT MASK YET.

NOTE:	 ALLOWABLE SPECIAL CHARACTERS ARE A THRU Z, 1 THRU 9, AND I, - + = etc.

STEP 3.	 FILL IN LINE b, SHOWING HOW YOU WANT ZERO TO APPEAR IN YOUR EDITED OUTPUT.

STEP 4.	 WHAT DID YOU DO WITH LEADING ZEROS? (YOU MAY ONLY CHOOSE ONE OPTION)

a)	 LEFT THEM AS ZEROS? THEN DO NOTHING TO THE MASK.

b)	 REPLACED THEM WITH ASTERISKS? IF SO, NOTE THE RIGHTMOST ASTERISK AND PUT AN ASTERISK IN THE MASK IN THE SAME
POSITION.

c)	 REPLACED THEM WITH BLANKS? IF SO NOTE THE RIGHTMOST BLANK AND PUT A ZERO IN THE MASK IN THE SAME POSITION.

d)	 REPLACED THEM WITH A STRING OF BLANKS AND A DOLLAR SIGN? (FOR EXAMPLE bbbb$(. IF SO, NOTE THE POSITION OF THE
DOLLAR SIGN AND PUT A DOLLAR SIGN IN THAT POSITION IN THE MASK.

STEP 5.	 FILL IN LINE c, SHOWING A TYPICAL NEGATIVE FIELD, AND HOW YOU WANT IT TO APPEAR.

STEP 6.	 WHAT DO YOU WANT DONE WITH A NEGATIVE FIELD INDICATOR? 	 CHOOSE ONE.

a)	 NOTHING, FIELD WILL NEVER BE NEGATIVE 	 	 DO NOTHING.

b)	 LETTERS 'CR' AFTER THE FIELD 	 	 PUT A 'CR' IN THE MASK TO THE RIGHT OF
THE FIELD.

cl	 MINUS SIGN IN ITS OWN COLUMN, AFTER THE FIELD 	 PUT A MINUS SIGN IN THE POSITION RIGHT
AFTER THE FIELD.

dl	 11-PUNCH OVER ONE OF THE CHARACTERS 	 	 SAME AS OPTION C, THEN USE NZONE SUBROUTINE
TO MOVE ZONE PUNCH TO THE DESIRED POSITION'

CAUTION:	 "CERTAIN ZONE PUNCHES 111, 0 AND
CALL NZONE (MASK,y, 5, NOLDZ) 12, 01 CANNOT BE HANDLED BY

FORTRAN I/0. IF THESE PUNCHES
MOVE ZONE FROM HERE TO HERE 7 WILL OCCUR, YOU MUST USE CSP I/0."

CALL NZONE (MASK,E, NOLDZ, JUNK)

STEP 7.	 HOW MANY CHARACTERS WERE IN THE FIRST SOURCE FIELD?... 5 a

HOW MANY BLANKS REMAIN IN THE MASK', 5 b

CAUTION:	 a CAN BE EQUAL TO OR LESS THAN b, BUT CANNOT BE LARGER!

STEP 8.	 DON'T FORGET; THE SOURCE FIELD MUST BE IN Al FORMAT, WITH THE SIGN OVER THE RIGHTMOST CHARACTER.

SOURCE FIELD DESIRED EDITED OUTPUT

1 2 3 4	 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

a

b

c

J ? 0 9 7 LINE a— LARGEST
/ 2/ 0 9/ 6 7 a

b

c

LINE b — ZERO

LINE c— TYPICAL NEGATIVE

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

SII MPLI	 DE	 SIGN REQUIRED EDIT MASK b / b b 6 h

Figure 70, 28.

1210 113 8 92 6 71 5

LINE a — LARGEST72 O
LINE b — ZERO

LINE c— TYPICAL NEGATIVE

IMPLIED SIGN
REQUIRED EDIT MASK

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

R

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

,tio.6 , DAy .h ,Y yz= 6 b

a

b

c

a

b

EDIT WORKSHEET

PROGRAM	 PROGRAMMER
	 DATE

COMMENTS: f)/ire

	STEP 1.	 FILL IN LINE a, SHOWING THE LARGEST POSSIBLE SOURCE FIELD, AND WHAT YOU WANT IT TO LOOK LIKE AFTER EDITING.
HINT: PUT POSITION 1 OF THE SOURCE FIELD IN POSITION 2 OF THE MASK, AND SOON, LEFT TO RIGHT.

	

STEP 2.	 IF YOU HAVE INSERTED ANY SPECIAL CHARACTERS INTO THE EDITED OUTPUT, PUT THEM IN THE EDIT MASK IN THE SAME
POSITION IN WHICH THEY APPEAR.

NOTE: THIS DOES NOT APPLY TO "s (ASTERISKS), b's (BLANKS), OR S's (DOLLAR SIGNS). DO NOT PLACE THEM IN
THE EDIT MASK YET.

NOTE: ALLOWABLE SPECIAL CHARACTERS ARE A THRU Z, 1 THRU 9, AND /, - + = etc.

	

STEP 3.	 FILL IN LINE b, SHOWING HOW YOU WANT ZERO TO APPEAR IN YOUR EDITED OUTPUT.

	

STEP 4.	 WHAT DID YOU DO WITH LEADING ZEROS? (YOU MAY ONLY CHOOSE ONE OPTION)

a) LEFT THEM AS ZEROS? THEN DO NOTHING TO THE MASK.

b) REPLACED THEM WITH ASTERISKS? IF SO, NOTE THE RIGHTMOST ASTERISK AND PUT AN ASTERISK IN THE MASK IN THE SAME
POSITION.

c) REPLACED THEM WITH BLANKS? IF SO NOTE THE RIGHTMOST BLANK AND PUT A ZERO IN THE MASK IN THE SAME POSITION.

dl	 REPLACED THEM WITH A STRING OF BLANKS AND A DOLLAR SIGN? (FOR EXAMPLE bbbbS). IF SO, NOTE THE POSITION OF THE
DOLLAR SIGN AND PUT A DOLLAR SIGN IN THAT POSITION IN THE MASK.

	

STEP 5.	 FILL IN LINE c, SHOWING A TYPICAL NEGATIVE FIELD, AND HOW YOU WANT IT TO APPEAR.

	

STEP 6.	 WHAT DO YOU WANT DONE WITH A NEGATIVE FIELD INDICATOR? 	 CHOOSE ONE.

a)	 NOTHING, FIELD WILL NEVER BE NEGATIVE 	 DO NOTHING.

	

OR	 bl	 LETTERS 'CR' AFTER THE FIELD 	 PUT A 'CR' IN THE MASK TO THE RIGHT OF
THE FIELD.

c)	 MINUS SIGN IN ITS OWN COLUMN, AFTER THE FIELD 	 PUT A MINUS SIGN IN THE POSITION RIGHT
AFTER THE FIELD.

d) 11-PUNCH OVER ONE OF THE CHARACTERS 	 SAME AS OPTION C, THEN USE NZONE SUBROUTINE
TO MOVE ZONE PUNCH TO THE DESIRED POSITION'

CAUTION: "CERTAIN ZONE PUNCHES Ill, 0 AND
12,0) CANNOT BE HANDLED BY
FORTRAN I/O. IF THESE PUNCHES
WILL OCCUR, YOU MUST USE CSP I/0."

	

STEP 7.	 HOW MANY CHARACTERS WERE IN THE FIRST SOURCE FIELD?... 5 a

HOW MANY BLANKS REMAIN IN THE MASK? 	 5

b

CAUTION: a CAN BE EQUAL TO OR LESS THAN b, BUT CANNOT BE LARGER!

	

STEP 8.	 DON'T FORGET; THE SOURCE FIELD MUST BE IN Al FORMAT. WITH THE SIGN OVER THE RIGHTMOST CHARACTER.

SOURCE FIELD	 DESIRED EDITED OUTPUT

CALL NZONE (MASK,y, 5, NOLDZ)

MOVE ZONE FROM HERE TO HERE?

CALL NZONE (MASK,D, NOLDZ, JUNK)

	

Section Subsections
	

Page

70
	

40
	

20
	

07

Figure 70.29.

Section Subsections Page

70 40 20 08

EDIT WORKSHEET

PROGRAM	 PROGRAMMER	 DATE
COMMENTS: AfONET4Ry pia°, 14//741/ 4",q SYMBOL, LE417iNa f

STEP 1.	 FILL IN LINE a, SHOWING THE LARGEST POSSIBLE SOURCE FIELD, AND WHAT YOU WANT IT TO LOOK LIKE AFTER EDITING.
HINT: PUT POSITION 1 OF THE SOURCE FIELD IN POSITION 2 OF THE MASK, AND SO ON, LEFT TO RIGHT.

STEP 2.	 IF YOU HAVE INSERTED ANY SPECIAL CHARACTERS INTO THE EDITED OUTPUT, PUT THEM IN THE EDIT MASK IN THE SAME
POSITION IN WHICH THEY APPEAR.

NOTE:	 THIS DOES Ng" APPLY TO "s (ASTERISKS), b's (BLANKS), OR $'s (DOLLAR SIGNS). DO NOT PLACE THEM IN
THE EDIT MASK YET.

NOTE:	 ALLOWABLE SPECIAL CHARACTERS ARE A THRU Z, 1 THRU 9, AND /, -+ = etc.

STEP 3.	 FILL IN LINE b, SHOWING HOW YOU WANT ZERO TO APPEAR IN YOUR EDITED OUTPUT.

STEP 4.	 WHAT DID YOU DO WITH LEADING ZEROS? (YOU MAY ONLY CHOOSE ONE OPTION)
a)	 LEFT THEM AS ZEROS? THEN DO NOTHING TO THE MASK.

b)	 REPLACED THEM WITH ASTERISKS? IF SO, NOTE THE RIGHTMOST ASTERISK AND PUT AN ASTERISK IN THE MASK IN THE SAME
POSITION.

c)	 REPLACED THEM WITH BLANKS? IF SO NOTE THE RIGHTMOST BLANK AND PUT A ZERO IN THE MASK IN THE SAME POSITION.

d)	 REPLACED THEM WITH A STRING OF BLANKS AND A DOLLAR SIGN? (FOR EXAMPLE bbbb$). IF SO, NOTE THE POSITION OF THE
DOLLAR SIGN AND PUT A DOLLAR SIGN IN THAT POSITION IN THE MASK.

STEP 5.	 FILL IN LINE c, SHOWING A TYPICAL NEGATIVE FIELD, AND HOW YOU WANT IT TO APPEAR.

STEP 6.	 WHAT DO YOU WANT DONE WITH A NEGATIVE FIELD INDICATOR? 	 CHOOSE ONE.

a)	 NOTHING, FIELD WILL NEVER BE NEGATIVE 	 	 DO NOTHING.

b)	 LETTERS 'CR' AFTER THE FIELD 	 	 PUT A 'CR' IN THE MASK TO THE RIGHT OF
THE FIELD.

c)	 MINUS SIGN IN ITS OWN COLUMN, AFTER THE FIELD 	 PUT A MINUS SIGN IN THE POSITION RIGHT
AFTER THE FIELD.

d)	 11-PUNCH OVER ONE OF THE CHARACTERS 	 	 SAME AS OPTION C, THEN USE NZONE SUBROUTINE
TO MOVE ZONE PUNCH TO THE DESIRED POSITION'

CAUTION:	 "CERTAIN ZONE PUNCHES (11, 0 AND
CALL NZONE (MASK,y, 5, NOLDZ) 12, 0) CANNOT BE HANDLED BY
MOVE FROMZONE	 TOHEREHE	 HE RE FORTRAN I/0. IF THESE PUNCHES7 WILL OCCUR, YOU MUST USE CSP I/0."

CALL NZONE (MASK,• NOLDZ, JUNK)

STEP 7.	 HOW MANY CHARACTERS WERE IN THE FIRST SOURCE FIELD?... B a
HOW MANY BLANKS REMAIN IN THE MASK? 	 B b

CAUTION: a CAN BE EQUAL TO OR LESS THAN b, BUT CANNOT BE LARGER!

STEP 8.	 DON'T FORGET; THE SOURCE FIELD MUST BE IN Al FORMAT, WITH THE SIGN OVER THE RIGHTMOST CHARACTER.

SOURCE FIELD DESIRED EDITED OUTPUT

a

1 2 3 4	 5 6 7 8 9 10 11 12
LINE a — LARGEST

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
a9 9 9 9 9 9 * 9 9) 9 9 9. 9 9

b 00 0 LINE b — ZERO * * * If ,t * ,t, 0. 0 0 b

c LINE c— TYPICAL NEGATIVE c/ 2 .3 ; * * *N***2 . .9 C R
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

IMPLIED SIGN REQUIRED EDIT MASK b b , 6. * • 6 6 R

Figure 70. 30.

	

Section Subsections 	 Page

70
	

40
	

20
	

09

Filling a Field with a Specific Character--FILL

If your program requires that you create long strings
of the same digit or character, the FILL subroutine
may be used. The statement

CALL FILL (KARRY, 10,36, IT)

will place the coding of IT in positions 10-36 of the
array KARRY. IT may be any integer between
+32767 and -32768.

In a standard FORTRAN program, this is a
useful way to clear a set of totals to zero.

If you are using the decimal arithmetic routines,
this can also be used to clear a total field to zero.

When using the overlapped I/O routines, it is
often necessary to fill an area with blanks, dashes,
or some other character.

A table of the decimal equivalent of various
EBCDIC (Al) characters may be found in the CSP
manual. However, it is usually easier to obtain
their value indirectly with a DATA statement. For
example, to fill a printer output line with dashes,
you would place a DATA statement in the beginning
of your program:

DATA IDASH/ 1 -

placing the dash character between the quotes or
apostrophes. Then the FILL statement

CALL FILL (IOUT,1,120, IDASH)

would fill the IOUT array with the Al code for a
dash.

Comparing Alphabetic Fields--NCOMP

The requirements for alphabetic comparisons
can usually be broken into two main classifications:

1. Comparing to determine whether there is a
match/no match condition.

2. Comparing to determine whether one field is
higher than, lower than or equal to another
field.

Because the first is quite a bit simpler than the
second, these two types of alphabetic compares will
be discussed separately.

Section Subsections Page

70 40 20 10

Match/No Match Alpha Compare. This operation
is common to many commercial applications:

• An employee time card may contain a four-
letter code describing what job he worked on,
and the program must look up a corresponding
rate.

• An inventory card may contain a two-letter
code indicating unit of measure--LB, GR, EA,
etc.

• The name field on each input card is compared
with the name field on the preceding card; if they
are not the same, branch to the "control break"
section of the program.

If the fields to be compared are one or two
characters long, they may be read into a single
integer variable and compared like any other
intergers. For example, if their names are ITHIS
and ITHAT, the statement:

IF (ITHIS-ITHAT) 1, 2,1

will branch to statement number 2 if they are iden-
tical, and statement number 1 if they are different,
The format (Al or A2) does not matter, except, of
course, that it must be the same for both.

If the fields are longer than two characters,
they should be read into integer arrays, in Al
format, and compared with the NCOMP function.
Using the previous example, suppose ITHIS and
ITHAT are arrays, each containing ten alphabetic
characters.

IF(NCOMP(ITHIS, 1, 10, ITHAT, 1))1, 2,1

will work the same as the simple IF statement
shown earlier.

Don't try to compare alphabetic fields that have
been stored as real variables. Two six-character
fields, called THIS and THAT, may be read from
a card and moved about in core just like any other
real variables; however, they cannot be compared
validly. The statement

IF(THIS-THAT)1, 2, 1

will not always branch to statement number 1 if
the two fields are different.

	

Section Subsections	 Page

70
	

40
	

20
	

11

High/Low/Equal Alpha Compare. Everything said
about the Match/No Match compare also applies
here, with two exceptions:

1. The fields to be compared should always be
in Al format.

2. The Al representation for a blank must be
changed if you want it to fall in the proper
collating sequence.

Figure 70.31 shows the decimal representation of
various characters in Al format. Note that the
blank falls after the letters and numbers. If it is
left there, alphabetic compares will yield an ascending
sequence--for example:

WILLIAMSON
WILLIAMSbb
WILLIAMbbb

rather than the correct

WILLIAMbbb
WILLIAMSbb
WILLIAMSON

This can easily be corrected if blanks are
converted from 16448 to something less than
-16064, the letter A. In fact, you might as well
change it to -16448. With a DO loop, the input
record can be scanned for +16448s, and each one
found can be changed to -16448.

They need not be converted back to +16448 for
printed output, since any invalid character (such
as -16448) will be printed as a blank anyway. For
punched output, however, this will not be so, and
the -16448s should be changed back to +16448s.

Character

Al
Decimal

Equivalent

A —16064

B —15808

C —15552

D —15296

E —15040

F —14784

G —14528

H —14272

I —14016

J —11968

K —11712

L —11456

M —11200

N —10944

0 —10688

P —10432

0 —10176

R —9920

Character

Al
Decimal

Equivalent

S —7616

T —7360

U —7104

V —6848

W —6592

X —6336

Y —6080

Z —5824

0 —4032

1 —3776

2 —3520

3 —3264

4 —3008

5 —2752

6 —2496

7 —2240

8 —1984

9 —1728

Character

Al
Decimal

Equivalent

blank 16448-f--

. (period) 19264

<(less than) 19520

(19776

+ 20032

& 20544

$ 23360

23616

23872

—(minus) 24640

/ 24896

27456

% 27712

31552

@ 31808

' (apostrophe) 32064

= 32320

Note
position
of blank

Figure 70. 31,

Section Subsections Page

70 40 20 12

Working with Zone Punches -- NZONE

The top three rows of the data processing card are
commonly called the "zone" rows, and a punch in
one of them is called a zone punch. The top row is
called the 12 zone; the next, the 11 zone; and the
next (the 0 row), the 0 zone. (See Figure 70.32.)
A digit overpunched with a 12 zone punch is taken
to be positive; an 11 punch indicates negative. This
is quite reasonable, since an 11 punch alone is a
minus sign, and a 12 punch is an ampersand (&) or
plus sign (+), depending on the coding scheme and
cardpunch used. (While many people use the term
"X punch" instead of 11 punch, both mean the same.)

The 12 punch is rarely used, since it is easier
to have no zone punch for positive numbers.

The zone punch, when used to indicate the sign,
should be placed over the units (rightmost) position
of the field. For example, -1675 would be punched
with an 11 punch over the 5.

This practice will result in a card code equiva-
lent to one of the letters J through R, or a negative
zero. The table below shows the card code equiva-
lents:

If the card containing the 1675 field were inter-
preted, or listed character for character, it would
appear as 167N, where the character N is equiva-
lent to a 5 and an 11 punch.

In a few cases, zone punches may also be found
in card columns other than the low-order digits of
a numeric field. This is particularly true in instal-
lations that once had a unit record, or punched card,
system. In such a system, zone punches provided
an easy way to pack additional data into a punched
card.

One of the advantages of the CSP overlapped
I/O routines is that they allow the input and output
of fields with zone punches. This is normally quite
difficult with standard FORTRAN READs and
WRITEs, since the 11,0 (- zero) punch is not per-
mitted.

An 11-punch, X-punch, or minus sign

A 12-punch, &, or plus sign

An N or a 5 with an 11-punch

H
12 row--►

11 11:11N.y.

0 row

etc.etc.

These punches

11,0

11,1

11,2

11,3

11,4

11,5

11,6

11,7

11,8

11,9

Mean either

- 0

- 1

-2

-3

-4

- 5

-6

- 7

-8

- 9

08000000000007000000000000011000000000000
I) 3 4 31/II 411113 14 n isittannlinnunnynntonnuussuniniu
11111 11111111111111111111111111111111111

222\

333

4 4

555555515555555555555555555555555555555555

6666665666666666666666868566666686666813855

17111177711717177111717111111111111111111

81188888801111111111881838111118118811111181111011118111

\ 99399999999:1999999999e999999999199999989
.....113451/111111113131113 autlitatinnzirsuansimmusinsinuna

this	 Or this

0

J

K

L

M

0

P

Q

R	 Figure 70.32.

	

Section Subsections	 Page

70
	

40
	

20
	

13

The NZ ONE Subroutine. The NZ ONE subroutine 	 You supply the NEWZ parameter, indicating to
has been included in CSP to allow you to interrogate 	 the subroutine what you want done with the old zone
a zone punch, obtaining a code that indicates its 	 punch:
status, and to modify a zone punch. If you wished
to operate on the 18th character in the INOUT array,	 NEWZ	 Action Taken
the call to NZ ONE would be

1	 Make the zone a 12

CALL NZ ONE (INOUT, 18, NEWZ, NOLDZ) 	 2	 Make the zone an 11

NOLDZ will be returned to you, indicating what 	 3	 Make the zone a 0

zone punch was present: 	 4	 Remove the zone

NOLDZ Zone Punch Character

1 12 A--I

2 11 J--R

3 0 S--Z

4 none 0--9

more than 4	 -	 special character

Note that an NOLDZ of 4 or more does not tell
you what zone punch was present, but only that
INOUT(18) contains a special character.

more than 4	 Let the zone alone

Section Subsections Page

70 50 01 01

FORTRAN CORE SAVING TIPS

General

The way in which you code your FORTRAN programs
will have a considerable effect on their size. The
difference between efficient and inefficient coding
might be as much as several hundred words. This
may mean the difference between a program that
fits in core and one that doesn't, or the difference
between one that requires many time-consuming
overlays and one that requires none.

In general, the larger a program, the more
slowly it will run--not because it does more, but
because of the overlays (SOCALs, LOCALs and
LINKs) required to fit it into core. When writing
your programs, therefore, you should make every
effort to keep them small. One way to do this is
to know which FORTRAN techniques save core
storage, and which ones consume it excessively.
A better way is to design programs that do just one
job, rather than many. (Subsection 25.30.20 con-
tains a discussion of the advantages of modular
programming.) Still another way is to use efficient
overlays (see Section 65).

The core storage requirements for any particular
program can be split into three major elements:

• The object code generated by the compiler
• The subroutines, which actually do the

work
• The data area, where all variables and

constants are stored
You should realize that very little actual work

is done "in line" by your program; when the end-of-
compilation summary says your program size is
1000 words, it means that your program has been
translated into 1000 words of branches or linkages
to subroutines, plus some housekeeping to prepare
the linkages. The exception to this statement is
integer arithmetic, which is done in line, without
subroutines. However, all subscript calculation,
real arithmetic, and input/output is accomplished
by subroutines.

Some of the core saving tips in this section are
directed toward reducing the subroutine require-
ments, while others will reduce the amount of
in-line coding.

If you modify an existing program, incorporating
some of these tips, don't expect to find all the sav-
ings reflected in the end-of-compilation summary.
Check the list of required subroutines; you may
have eliminated some of them.

	

Section Subsections	 Page

70	 50
	

10
	

01

Reducing Program Size

Use the DATA Statement

The DATA statement is a recent addition to 1130
FORTRAN, having been incorporated into Version 2
of the 1130 Monitor System. Basically, it is used
to create constants at the time the program is com-
piled, rather than each time the program is exe-
cuted. It saves some time, but this should not be
enough to notice in the overall run time of most
programs. Much more important, the DATA state-
ment saves core storage.

It is a nonexecutable statement, like the TYPE,
DIMENSION, EQUIVALENCE, etc. , statements,
and requires no core storage. It provides only a
starting value for variables. For exact rules con-
cerning the use of the DATA statement, see the 1130
FORTRAN manual; in this section you will see some
examples of its use.

• Case 1: Initialize Tables at the Beginning of
er*N a Program

Almost every program begins with statements
such as

DO 16 J = 1,50
TOT (J) = 0.0

16 SUBT(J) = 0.0
This coding, which requires about 27 words of
storage, can be replaced with

DATA TOT/50*0.0/, SUBT/50*0. 0/
which requires no storage.

Let us stress three facts at this point:
1. You still require two 50-position arrays.

The DATA statement merely takes care of initial-
izing their values.

2. If you say TOT (1) = 1.5 later in the program,
this will be done, and TOT (1) will no longer be 0.0.

3. If you want to clear out these tables again
during the execution of the program, you must use
the conventional DO loop. You cannot GO TO or
reexecute the DATA statement, since it is a non-
executable statement and, in fact, no longer exists
once the program is loaded.

• Case 2: Initialize Indicators, etc.
The program PAY04, listed in Subsection

70.50.30, contains the following FORTRAN
statements:

T= 0.
IERR = 0
ICOL = 1
IN1 = 1
XOT =. 0.
XBN = 0.
XSP = 0.
XREG = 0.
IPAGE = 0
LINE = 50

which require 40 words of object coding. They may
be replaced by

DATA T/0./, IERR/0/, ICOL/1/, etc. , etc.

• Case 3: Setting a Variable to Different Values
Again inspecting the same program, PAY04, we

find
GO TO (76,77, 78,79,80,81),NOPLT

76 ILST=250
GO TO 83

77 ILST=90
GO TO 83

78 ILST-200
GO TO 83

79 ILST=50
GO TO 83

80 ILST=150
GO TO 83

81 ILST=30
83 continue

which requires 44 words of object coding. It maybe
replaced by a combination of

DIMENSION IFACT (6)
DATA IFACT/250, 90, 200, 50, 150, 30/

and the statement (using eight words)
ILST = IFACT(NOPLT)

Placing the six constants in the IFACT array adds
no core requirements, since they were in core
before, as INTEGER CONSTANTS (see listing at
end of compilation).

Section Subsections Page

70 50 10 02

• Case 4: Creating Alphabetic Masks for the
EDIT Subroutine

If you want to print or punch your FORTRAN re-
sults with commas, floating dollar signs, etc. , you
are probably using the EDIT subroutine found in CSP.
This subroutine requires an Edit mask, which may
look like

bb, bb$. bbCR
There are two ways to obtain this mask, which must
be in Al format in an eleven-word integer array
(call it MASK). You can read it off a card, or you
can look up the decimal equivalents of the EBCDIC
codes, and set each one equal to the desired
character:

MASK (1) = 16448 blank
MASK (2) = 16448 blank
MASK (3) = 27456 comma
MASK (4) = 16448 blank
MASK (5) = 16448 blank
MASK (6) = 23360 dollar sign
MASK (7) = 19264 period
MASK (8) = 16448 blank
MASK (9) = 16448 blank
MASK (10) = -15552 letter C
MASK (11) = -9920 letter R

The DATA statement allows you to eliminate this
sixty-six-word series of commands, replacing it with
DATA MASK/W,'13',',','bt,'13',1$1,'•','b',11Y,'C','R'/
where b indicates a blank.

Keep FORMAT Statements Compact

1130 FORTRAN includes a very flexible repertoire
of FORMAT codes, and often gives you several
different ways to achieve the same results. For
example, you can specify either (F6.2, F6.2, F6.2)
or (3F6. 2). With alphabetic heading data, there are
more options. To type a line which reads

bbbbbbbbbTOTAL
you can use as FORMAT statements the following:

a. FORMAT(14HbbbbbbbbbTOTAL)
b. FORMAT('bbbbbbbbbTOTAL')
c. FORMAT(9X, 'TOTAL')
d. FORMAT(9X, 5HTOTAL)

etc.
If you suspected that some options used more core
storage than others, you would be correct. Options
a and b force the compiler to allocate nine words for
this FORMAT STATEMENT; options c and d only
require six words.

The main difference between the two styles is the
manner in which you have generated nine blank
columns -- 9X or 'bbbbbbbbb'. The 9X is coded and
compressed into one word; the 'bbbbbbbbb' requires
one word, plus a string of five words, each contain-
ing two alphabetic blanks.

The difference does not appear to be great, but
consider your typical commercial report writing
program with its many long FORMAT statements.
The difference between the best (smallest core
requirement) and what the programmer has actually
used may be substantial.

This topic is further complicated by the fact that
the X specification is best for large numbers of
spaces, while the literal or ' specification is best
for small numbers. In summary, to get one or two
spaces, it is best to enclose blanks within quotes
(or use the H specification). To get three or more
spaces, use the X specification.

	

Section Subsections 	 Page

70
	

50
	

10
	

03

Code Efficient I/0 Statements

The manner in which you code your I/O statements
can have a significant effect on the size of your
program. The FORTRAN compiler will generate a
certain fixed amount of coding for each READ or
WRITE:

READ	 3 words
WRITE	 4 words

plus a certain additional amount (average) for each
item in the I/0 list:

variable -- e. g. , AB or I
	

2 words
variable, constant subscript --

e. g. , X(3)
	

4 words
variable, variable subscript --

e.g. , X(J)
	

5 words
array name	 3 words
implied DO loop e. g. , (X(N), N=1, 6)

19 words
If you wish to WRITE a line containing eight real
variables, you may code

WRITE (3, XXX) A, B, C, D, E, F, G, H
and use 4 + (8 x 2)or 20 words. Or you could
EQUIVALENCE each of the eight items to a variable
in the ANSWR array

EQUIVALENCE (A, ANSWR(1))
EQUIVALENCE (B,ANSWR(2))
etc.

and code
WRITE (3, XXX) ANSWR

which would require only 4 + (1 x 3) or 7 words.
You would not want to use

WRITE (3, XXX) (ANSWR (K), K=1, 8)
since that would require 23 words, more than the
original. In fact, the implied DO loop I/O format
should be avoided wherever possible. This can
usually be accomplished with the EQUIVALENCE
statement. For example, if you want to WRITE
the first six items of the eight-item ANSWR array,
you would code

DIMENSION ANSWR(8), ANS6(6)
EQUIVALENCE (ANS6(1), ANSWR(1))

• • • •

WRITE (3, XXX) ANS6
saving 23-7 or 16 words.

Avoid Long Subroutine Argument Lists

The coding generated for CALLs to subroutines is
quite similar to that of READs and WRITEs -- an
initial CALL (two words) plus a certain number of
words for each argument:

Approximate
Type of Argument 	 Core Required
None	 0 words
Constant — e. g. , 6
	

1 word
Unsubscribed Variable -- e.g., X or I

	
1 word

Array Name, -- e. g. , LARRY
	

1 word
Variable with Constant Subscript --

e.g. , A(7)
	

8 words
Variable with Variable Subscript --

e.g. , A(N)
	

13 words
You can see that there is quite a difference between

a. CALL SUB
	

2 words
b. CALL SUB (X, Y, Z)
	

5 words
c. CALL SUB (LARRY)
	

3 words
d. CALL SUB (A(1), A(2), A(3))

	
26 words

e. CALL SUB (A(I), A(J), A(K))
	

41 words
There are many ways to avoid those types of CALLS
that consume core storage.

Item d, CALL SUB (A(1), A(2), A(3)), could be
replaced by

EQUIVALENCE (A(1), X)
EQUIVALENCE (A(2), Y)
EQUIVALENCE (A(3), Z)

and
CALL SUB (X, Y, Z)

or by
DIMENSION XA(3)
EQUIVALENCE (XA (1) , A(1))

and
CALL SUB (XA)

or by placing the A array in COMMON and using
CALL SUB

with no arguments.
Item e, CALL SUB (A(I),A(J), A(K)), could be

replaced by
CALL SUB (A, I, J, K)

which would require a revised subroutine but would
save 41 -6 or 35 words. Or it could be replaced by

CALL SUB (I, J, K)
with the A array placed in COMMON.

Section Subsections Page

70 50 10 04

Avoid Arithmetic with Variables Having Constant
Subscripts

In the average arithmetic statement, a variable with
a constant subscript (TOTAL(10)) will require two
words more coding than an unsubscripted variable
(TOTDF). Such usage can always be avoided by an
EQUIVALENCE statement such as

EQUIVALENCE (TOTDF, TOTAL(10))
Then, rather than say

TOTAL(10) = TOTAL(10) + AMT
you would code

TOTDF = TOTDF + AMT
and save two words.

In a large program, the saving can be consider-
able. Furthermore, it makes the program more
readable, since TOTDF can be a more descriptive
name than TOTAL(10).

The data can be referred to by either name:
• TOTDF when doing arithmetic
• TOTAL(10) when you want it subscripted --

for example, when clearing an array of totals, when
writing an array of totals on the disk, etc.

	

Section Subsections	 Page

70	 50
	

20
	

01

Reducing Subroutine Requirements

Raising a Real Number to a Whole Power

FORTRAN allows you two ways to do this. For
example, to square X, a real number, either X**2
or X**2. may be used. While the two look almost
identical, the first will use the "real base to integer
exponent" routines (about 82 words) and the second
will use the "real base to a real exponent" routines
(about 242 words).

In this case you should code X**2 and save about
160 words of core storage, unless, of course, your
program really requires a real base to a real
exponent somewhere else.

A programmer will often use this form of arith-
metic to obtain the various powers of ten -- for
example:

10**N
10**0 = 1
10**1 = 10
10**2 = 100

However, if this is the only way in which the
double asterisk is used in a particular program, it
will usually be more economical to code:

DATA TEN/1. ,10. ,100. ,1000. , etc./
and then use subscripting

...TEN (N+1) 	
This will eliminate the 82-word subroutine.

SQRT vs **.5

To take the square root of a number, you have two
alternatives: the SQRT function or the 1/2 power
option (**. 5). While both will give the same result,
the core storage required is quite different. The
SQRT routine is about 76 words in length; the "real
base to real exponent" routine, about 242 words.
The difference, about 166 words, is substantial.

Of course, if your program must use the "real
base to real exponent" routine (for example X**A),
you need those routines anyway. If that is so, use
the **. 5 option rather than SQRT; otherwise, you
will have both packages in core storage.

Section Subsections Page

70 50 20 02

Don't Include Unneeded I/O Devices on *IOCS Card

In many installations, a stack of all-purpose *IOCS
cards is left on the card reader, or nearby, to save
the trouble of punching a new card for every pro-
gram. However, you should be aware that the card
*IOCS(CARD, DISK, TYPEWRITER, KEYBOARD,
1132 PRINTER)

will cause all those I/O routines to be added to your
program, whether you use the devices or not. The
size of the package to handle those devices listed
above is about 620 words for the disk, and 1780
words for the non-disk group. Because of the way
in which the SOCAL system operates, your program
may still fit in core, but with more overlays, thus
causing it to run more slowly.

It would be wiser to maintain a set of cards with
only one device per card

*IOCS(CARD)
*IOCS(1132 PRINTER)
*IOCS(DISK)
etc.

and use only those that are really needed. In this
way no unnecessary I/O packages will be included
with your program.

Remove FIND Statements If You Have SOCALs or
LOCALs

Even if you have included FIND statements in your
program, they will not be executed if SOCALs or
LOCALs are being used. The FIND subroutine
(SDFND), however, remains in core storage.

Therefore, if you know you are going to have
SOCALs or LOCALs, remove all FIND statements,
and you will save about 80 words of core storage,
plus three words for each statement.

	

Section Subsections 	 Page

70
	

50
	

20
	

03

Remove the TRACE from Production-Status
Programs

The trace features furnished in 1130 FORTRAN are
an invaluable aid in debugging. Most users, when
they compile their programs, include the *ARITH-
METIC TRACE and *TRANSFER TRACE cards,
just in case something goes wrong. However, since

these features consume both core space and time,
they should be eliminated when no longer needed.

Core requirements are increased by about 140
words, and execution time is slowed down for each
equal (---) sign, IF statement, or computed GO TO
executed. This is true regardless of the status of
Sense Switch 15. In addition, the object coding
generated may be slightly greater.

Section Subsections Page

70 60 10 01

FORTRAN EXECUTION TIMES

Processing

It is possible to estimate the length of time it will
take to execute an arithmetic block of FORTRAN
coding. Inspect your coding sheets, or program

listings, and count the average number of times the
operations shown in Figure 70.33 will be executed.
Then use the times shown in Figure 70.33 to
estimate the total execution time.

Note that you must consider the probability of
execution, not just the number of appearances. If
a certain loop will be executed 15 times, on the

Operation
Approximate` time in
Microseconds,• 	 each execution

(time for standard precision
use in parentheses)

Operation
Approximate* time in
Microseconds,'" each execution

(time for standard precision
use in parentheses)

GET 2250 + 2190C real = 300 (360)
PUT 3450 + 3090 C integer = 22
EDIT 630+	 90 S + 180 M
MOVE 300 +	 45 C +real 440 (460
FILL 300 +	 30 C +integer 12
WHOLE 1400 -real 490 (560)
NCOMP 250 +	 75 C -integer 12
NZONE 350 *real 790 (560)
!COMP 500 +	 95 C *integer 30
NSIGN 240 /real 2100 (800)
ADD 2160+	 216 L /integer 80
SUB 2160+ 216 L
MPY 2400+	 120 P real”real 13300 (8000)
DIV 4000 + 0(445 + 667 DIV) integer*•integer 4700 (3800)

Al DEC 700+	 54A FLOAT 330
DECA1 180+	 117 A FIX 140

Al A3 470+ 1084 A subscript (no variable) 25
A3A1 545+	 156 A
PACK 360 +	 63 A subscript (one variable) 280
UNPAC 420+	 66 A
DPACK 392 D subscript (two variables) 390
DUNPK 360 D

SIN 5400 13000) subscript (three variables) 530
COS 5900 (3400)
ATAN 8900 (5300) DO 22 + 50 N
SORT 10400 (4500) IF (real) 190 (210)
EXP 4400 (2000) IF (integer) 30
ALOG 8000 (5100)
TANH 8100 (4300) GO TO 7

GO TO (1, N 7

N	 =	 The number of times through the DO loop
C	 =	 Length of the field, in characters
S	 =	 Length of the source field
M	 =	 Length of the edit mask
P	 =	 Length of the multiplier field x length of the multiplicand field

(significant digits only — don't count leading zeros)
A	 =	 Length of the Al field
D	 =	 Length of the packed decimal (D4) field
L	 =	 Length of the longer of the two fields (significant digits only

don't count leading zeros)
Q	 =	 Number of significant digits in the quotient (result) field
DIV =	 Number of significant digits in the divisor (denominator) field

• Most timings are approximate and are based on test runs of "typical" cases, using fields of "average" size,
magnitude, etc. Unusual cases may (or may not) differ significantly from the timings obtained from the
given equations. This is particularly true of the decimal arithmetic routines (ADD, SUB, MPY, DIV).

** Based on 3.6-microsecond CPU cycle speed. Multiply by 0.6 to obtain timings on 2.2-microsecond CPU.

Figure 70. 33,

Section Subsections Page

70 10

average, every operation within it should be counted
15 times. If, in the other hand, a certain routine is
only executed half the time, it should be counted as
half an execution. To illustrate:

X=X+6
IF(X-77.)1,2,1

1	 Z=X*14.
GO TO 3

2	 Z=X*16. /W
3	 CONTINUE

If you assume extended precision, and a proba-
bility of one-third for path 1 and two-thirds for
path 2, the estimated execution time is

60 02

Operation	 No. of Times x	 Unit Time * Total*
1+1/3+2/3=2 330	 660
1 440	 440
1 490	 490
1/3+2/3=1 790	 790
2/3 2100	 1400

FLOAT 1 330	 330
(6 to 6.0)
IF (real)	 1 190	 190
GO TO	 1 7	 7

4307
*In microseconds

On the average, then, this portion of your pro-
gram will require 4307 microseconds, or 4.307
milliseconds, or .004307 seconds.

Figures 70.34 through 70.40 show some
additional examples.

Section Subsections Page

70 60 10 03

FORTRAN TIMING ESTIMATE WORKSHEET

CODING

1

X ---- X + 6
1 F (X - 77.) /, 2, /

0A/t--- DZ/T 6'.=' E1/ER)/ & 7-//wE's

riAie:.5-

z = x * /47",
GO 70

C z . x * /61 ,/l() Two OUT a,- r/7,/ez-

3 G-A/r//t/e/

Component
Number

of
Executions

Time per Execution,
Microseconds

Extension,
Microseconds

/nea/ = Ahee '4(3 ,930 0

74 re,a/ / 4.0D 4 1 G
,zo,i7-- / 250 3 3 42

– /-4.0:W / 4 0 1 9 O

//c-Y#--e,-7/) / / 9eV / 9 ,e2

2 7-6,-- , / 7 7
7\e" /W/ °Z.9 790 7 9 0

/f-,/ 2 /e7d.-.2 / 1 o a

TOTAL = / 7

Figure 70, 34.

	

Section Subsections
	

Page

70
	

60
	

10
	

04

FORTRAN TIMING ESTIMATE WORKSHEET

CODING	 x(r) - x (r) ,, a
/F(X (11)-77.) I, 2) Z

I z. x(r) * /4t.
GO 77 3

2 z - x rri* /a.41/
3 cow,/ /e../.e-

Same as /rag ace 70.31 exceo/ ii-A.it‘
x As -5-4,6sc:-.. .e, l'ette

Component
Number

of
Executions

Time per Execution,
Microseconds

Extension,
Microseconds

.rarie .01.5 A./.6,‘../.-d. 70.3I i 2 / 7

,f;.thscr/A i Yor. I 22:0 / / Z D

TOTAL = 3 3 3 7

Figure 70. 35.

Section Subsections Page

70 60 10 05

FORTRAN TIMING ESTIMATE WORKSHEET

CODING
C	 .7",K2/4'///7 	 72	 /DIJO — DO i,e)0/%'

.90 /7 Z = _Ili /000
.	 .	 .
.	 .	 .
.	 ,.	 .,
• "

/ 7	 /./7./r/f/i.f.."--

Component
Number

of
Executions

Time per Execution,
Microseconds

Extension,
Microseconds

re-,

Z.4.9 /oc/o 22 0 IL. .r.5-2.; ,,3 ,L," c O 2 2

TOTAL= 5O a 2 g

Figure 70. 36.

	

Section Subsections	 Page

70
	

60
	

10
	

06

FORTRAN TIMING ESTIMATE WORKSHEET

CODING C COUNT 7-o IDOD (//v7E6:e-Rs)
2- --- 4°

7	 /,.(z• -/ao0) /) 2) 2
1	 z ---i- 7, Y

GO 7Z2 7

2	 ca.v.r/x../ve-

Component
Number

of
Executions

Time per Execution,
Microseconds

Extension,
Microseconds

//Weyer-- /000 22 2 0 e) 0
-/),4-yer /4 0 .€ /2 / 2 0 /
/,C /ever) /ea.? .90 3 e 0 3 0

GO, 70 /eeo 7 7 a 0
74-.41efe.-. /000 /2 /2000

TOTAL = 3 a 4 2

Figure 70. 37.

Section Subsections Page

70 60 I	 10 07

FORTRAN TIMING ESTIMATE WORKSHEET

CODING	 c	 6-0 6/4/7— TO /04520

C	 57 4 A/z7 -4/eZ) ic2R,E-C/ -5/0A./
X = 0. 0

7	 i	 (X - /000) ;2 , 2
i	 X = X 7' I,

GO TO 7
f	 ea/t/r/eltra

Component
Number

of
Executions

Time per Execution,
Microseconds

Extension,
Microseconds

tw/_ /a 00 360 30000
- fled/ Zoo/ s60 5'‘ 0 s6 0
//c(f40/) /.,0/ /90' / 0/90
Go 7-0 /&e,0 7 70 ,o e9

74 .--ea/ /.° 4 6 o 4 6 a 0 0 0

TOTAL =
,/ .5 7 75O

Figure 70. 38,

Section Subsections Page

70 60 10 08

FORTRAN TIMING ESTIMATE WORKSHEET

CODING C	 COUNT 7D /.a
C	 X 7.-/V1,4.01 ic)/C'EG-/-570AlX' 	 i.,.
7	 bc- (x -/oaa.) /, 2, 2

.1	 x = x -,' 2 1 .
ao 7'0 7

2	 G0,4/7/A//.41"

Component
Number

of
Executions

Time per Execution,
Microseconds

Extension,
Microseconds

/ea/ = /000 330 3 0000
-7-ea/ Atoo/ 400 4 90¢90
//4-6-gdi) /oo/ /90 / 9 0 / 9 67
GO 7-0 /4,00 7 7 o 620
71 /led/ X000 itio 4 4 0 0 0 z;

TOTAL = /437 8 O

Figure 70, 39,

Section Subsections Page

70 60 10 09

FORTRAN TIMING ESTIMATE WORKSHEET

CODING
C COUNT TO /aoa, z7z-c/Ad4z ,4,P/77/
C ASSUME zx /47 2 0 7--&--N ,f)//715- ZOO 1/-
c	 4551//wE 7-14/.0--/7/ -/7 c-,;(/.5-7--.9x/r Oz' a/v4c. ('r 1)
C ,4550/wE re.t/ -D /a /7 cart/S7744/7" ac. /00d2(/./06V.

c4zz / -*/zZ (rX) /) /4 O)
7	 /C (A. fo/wP(2-x, /.2 /o) S/o0o, /2 /0)) 6 0, 2
i CALL 40.0 (rX,/, /42) /-(1) 6 2, NE)

GO 7-0 7
2	 coA/7"?.veetE

Component
Number

of
Executions

Time per Execution,
Microseconds

Extension,
Microseconds

/A"- ii/e194p.:j /00/ ,.., 3 a c) „5' 4L)
Go io /o 0 v 7 7 0 0 ‘:-..)

C/ZZ .1 30774/0x 3© 6 0 ,:3
/17.2e/ii /oo / 2_507=/vx 75 / a 0 / 0 0 0
44V /D00 2/aa 74 4 x e/. 3 o 2 e2 0 0

TOTAL = ¢j0 6 29 3 o

Figure 70, 40.

	

Section Subsections	 Page

70
	

60
	

20
	

01

Summary and Conclusion

From the examples shown you may draw some
conclusions:

1. Integer arithmetic is much faster than real
arithmetic.

2. Extended precision and standard precision
real arithmetic are of essentially the same speed.

3. Decimal arithmetic is fairly slow.
4. Subscripting adds a considerable amount of

time to arithmetic calculations. (It also increases
the size of your program.)

5. Unnecessary use of mixed mode expressions
can add somewhat to execution time.

Section

70

Subsections Page

0260 20

FORTRAN TIMING ESTIMATE WORKSHEET

CODING

Component
Number

of
Executions

Time per Execution,
Microseconds

Extension,
Microseconds

TOTAL =

	

Section Subsections
	 Page

75
	

00
	

00
	

01

Section 75: SORTING WITH YOUR 1130

CONTENTS

Introduction 	 75. 01.00
Some Preliminary Information 	 75.10. 00
Alternate Approaches 	 75. 20. 00

Use of File Organization 	 75. 20. 10
Pure Sequential
Indexed Sequential
Random

Sorting Offline 	 75.20.20
Methods of Sorting 	 75.30.00

Introduction 	 75.30.01
Key Compare vs Key Value
(Radix) Techniques
Sequence-Creating vs
Sequence Reducing Techniques

Degree of Data Accessibility
Degree of Generality

Internal Sorting Methods 	 75. 30. 10
Selection
Exchanging
Merging
Insertion
Replacement Selection
Address Calculation

External Sorting Methods 	 75.30.20
Key (Tag) Sorting
Key Sort vs Record Sort

A Detailed Look at an 1130 Record
Sort 	 75.40. 00
Summary 	 75. 50. 00

67

2

3

4

5

6 81

106

107

108

109

303
Transaction or Detail File

	

Section Subsections	 Page

75
	

01
	

00
	

01

INTRODUCTION

Most data processing applications require a sequen-
tial arrangement of the information to be processed.
Frequently, a collection of related information, or
file of data records, is to be updated by adding,
deleting, or changing information as new transac-
tions occur. Before the new transactions can be
applied against the main or master file, however,
a method must be established whereby a transaction
can be associated with a master. One such method
would be to arrange the transactions in the same
sequence as the master file (see Figure 75.1). For
this purpose, the master and transaction files are
sequenced by some common identifying character-
istic, such as part number, account number,
employee number, etc. Similarly, when payroll
earnings are to be computed or data is to be tabu-
lated in accordance with some scheme of classifi-
cation, it is necessary to arrange the information
in a sequence that facilitates processing.

Sorting is simply a systematic method for
arranging or rearranging a file of data records in
sequence by some group of characters that consti-
tute the control field, or control word, of the
record. (Control words are sometimes called the
key.)

This section discusses sorting with your 1130
but attempts first to show you (1) a possible way to

308

n

Master File

Figure 75.1. Transaction file and master file in same sequence

avoid sorting with your 1130 and (2) a way to ease
the task of writing a sort program, if one must be
written.

809

Salesman
Name

Product
Class

Sales
Amount

Section Subsections Page

75 10 00 01

SOME PRELIMINARY INFORMATION

It may be useful to review the meaning of some
basic terms and concepts that are part of sorting
terminology. As already stated, sorting concerns
the arrangement of a file which is a collection of
related data records stored in a data storage
medium (cards or disk). The file size specifies
the total number of records contained in the file.
The input file is the collection of data records
introduced as input to the sorting process, while
the output file represents the collection of records
properly sorted and stored.

To place a file into a specified sequence, each
of its records must somehow be uniquely identi-
fiable. The identification is made by means of the
control key, a group of characters arranged in a
certain way. The contiguous groups of characters
that are placed in order within the control key are•
called control fields. Each of the control fields
bears certain identifying information, such as pay-
roll number, name, organization code, address to
which checks are sent, etc. The data record con-
trol field that is most important in sequencing the
records is called the major control field. When
two records contain identical data in their major
control field, they must be compared by the next
most significant, or minor, control field in order
to be sorted into the proper sequence. If even the
minor control fields are equal, the next most
significant or minor control field must be consid-
ered, and so on. Thus, for the purpose of suc-
cessive comparison, all the control fields within
the control key are arranged in major-minor (that
is, decreasing) order of significance (see Figure
75.2).

Since the control fields of a record may consist
of numbers, letters, or special characters ($, -,
+, etc.), an order must be prescribed for the
characters of the control field to determine which
is greater and which is less. Such an order of
characters, upon which the sequencing of records
is based, is known as the collating sequence. In
the 1130, the collating sequence is A -Z, 0 - 9,
blank, and special characters, in ascending order
(see 70.40.20). The collating sequence determines
the proper order of the control keys.

Using these definitions, sorting may now be
defined more accurately as the process whereby
a file of records is placed in order by the collating
sequence of the control keys of the records.

A considerable body of specific sorting terms
has been generated over the years. To simplify

Control Field or Word

Disk or
card record:

Assembled into
control key
or tag

Sales Analysis/

(Product
Salesman Class

Sales
Amount

Customer
Name Date

JONES A 6.10 xxxx xxxx
14.67 xxxx xxxx
17 . 76 xxxx xxxx

B 14.01
376.35

9 1.98
706.13

SMITH C 37.38
309.76

X 101.37
67.42

WILLIAMS A 8.77
336.75
601.32

9 706.14
975.93 XXXX XXXX

Figure 75. 2,

the ensuing discussion, some of the more commonly
used terms are explained here.

The object of a sort is (to restate it) to place a
file of records in a desired sequence. Any group
of data records in which the control keys are in the
desired collating sequence is called a "sequence"
-- or, sometimes, a "string". The length of each
sequence can be one or more data records. It has
been assumed till now that a sort must be in
ascending sequence; that is, the final sequence of
records is such that the control key of each suc-
cessive record collates (compares) equal to or
higher than that of the preceding record. This need

Second Minor
Control F ield

Key NREC

Key

In core storage
before sorting:

Key	 NREC

Record Number _
NREC

In core storage
after sorting:

1

2

3

4

5

6

7

8

9

1 0

1 1

2

801

085

603

143

013

035

109

706

431

307

010

444

Keys are physically
sorted (moved around)

—111.• with each corresponding
record number (NREC)
moved with it

085

603 2

143 3

801 4

013 5

035 6

109 7

706 8

431 9

307 10

010 11

444 12

	

Section Subsections 	 Page

75	 10
	

00
	

02

not be the case, however. A sort can be in a des-
cending sequence, with the control key of each suc-
cessive record collating equal to or lower than that
of the preceding record.

Frequently, two or more sorted files have to be
merged into a single file of sequenced records. In
general, "merging" is a technique that collates
several sequences of data records to form a single
sequence. The number of files to be combined
during a merging operation is known as the order
of merge, or "merge order". Thus, a merge of
order m is called an "m-way merge". The proc-
essing of all the records once through the merge
is termed a "merge pass", or simply, a "pass".
The object of a pass is to reduce the number of
sequences (strings) by increasing the number of
records contained in each sequence. During a
single pass, the number of sequences is usually
reduced by a factor equal to the order of merge
(m). Several intermediate passes may be required
to reduce the file to a single sequence. A multi-
pass sort is a sort program designed to sort more
data than can be contained within the internal stor-
age of the central processing unit. In this case,
intermediate storage (disk) is required.

It is customary to segment a sort program into
a number of phases, each of which is executed as
one core storage load. For example, a typical
sort may be divided.into four phases: an initiali-
zation phase, an internal (presort or premerge)
phase within core storage, a merge phase (for
combining the sequences), and a final output phase.

The sequencing of a group of data records con-
tained at one time in core storage is known as an
"internal sort". The size of the internal sort
is the number of data records (abbreviated G) that
can be sequenced at one time in core storage.
Note, however, that since the number of data
records to be sorted usually exceeds G (the num-
ber contained at one time in core storage), the
internal sort process must generally be repeated
until all the records in the file have been sequenced
into strings that may later be combined, or
merged.

It has been implied that sorting consists of mov-
ing data records around until their respective con-
trol keys are in the proper collating sequence. This
is not always the case. In some sorting methods,
the control keys upon which sequencing is based
are read from the record and combined with the
record number (called tag) to form a key-tag pair.
Then the keys are sorted, rather than the original
records. After sorting, the tags serve as an index
for later retrieval of the data records in the desired
sequence (see Figure 75.3).

010 11

013	 -1 5

035 6

085

109 7

143 3

307 10

431 9

444 12

603 2

706 8
801 4

Now, either physically move the
disk data records

Or
process (e.g., print report)
by obtaining disk records
in the order found in the
NREC table.

Figure 75. 3. Tag sort

The effectiveness of a sort program is measured
by the time it takes to sort a file of data records.
If the sorting method alone determined the overall
performance and speed, the choice of the best
method would be relatively simple. In actuality,
though, sort performance is the result of a complex
interaction between the characteristics of the data
file, the data processing system, the sorting
method used, the objectives desired, and a number

Section Subsections Page

75 10 00 03

of other characteristics. Thus a great many fac-
tors play a role in determining the efficiency and
speed of a sort program.

Among the more important data file characteris-
tics, the following may be cited: the degree of
original ordering of the file (that is, is it in random
order or do natural sequences exist?); the length,
range, and location of control word data; and the
number and length of the records.

Equally important in influencing sort perform-
ance are the characteristics of the storage facilities
and the CPU of the computer. Among storage char-
acteristics of interest are the capacity of the main
internal storage and the mode of addressing it, as
well as the availability and access times of exter-
nal storage devices, such as disk files. Relevant
machine and CPU characteristics include simul-
taneous read, write, and processing capability; the
basic processing speeds of compare, add, and
move operations; the structure of the OP-code set;
and the availability of indexing, table lookup, etc.

For a given sorting method, the data file charac-
teristics influence the primary sorting statistics,
such as the total number of arithmetic operations
or comparisons and the total number of passes.
For a file of a given size, each method also has
some inherent characteristics that influence the
complexity and speed of the sort -- for example,
the required working storage, the required number
of comparisons, transfers, and exchanges, etc.

Finally, realistic sorting objectives must con-
sider the specific data processing requirements,
as well as the complexity and cost of the sort pro-
gramming effort. A specific sort program should
try to provide an optimum match between the speci-
fied data file, the given machine configuration, and
the chosen technique. In sorting large files, a
single sorting technique cannot always provide this
optimum match. Frequently, therefore, a program
combines two methods in order to take advantage of
special machine features, minimize the effects of
storage limitations, and provide increased speed.

	

Section Subsections 	 Page

75
	

20
	

00
	

01

ALTERNATE APPROACHES

Before you write a sort program for your 1130,
examine your files and the reports to be produced

from them. You may find that sorting on your 1130
is not necessary, or that sorting can be avoided.

Some alternate approaches to sorting on your
1130 are:

Use of file organization
Sorting offline

Section Subsections Page

75 20 10 01

Use of File Organization

Is it possible to keep mulitple copies of your files,
each in the sequence of a report to be produced?
If so, you can avoid sorting. If not, however, as
is likely with moderate to large files, the impor-
tance of your file organization scheme emerges.

Pure Sequential

An answer for files organized in a pure sequential
manner is to maintain multiple copies on multiple
disk cartridges. This eliminates sorting but may
cause problems in processing. (See Figure 75.4.)
Generally, with pure sequential files that are too
large for multiple copies, the solution is offline
sorting.

Indexed Sequential

Is it possible to keep multiple copies of your index,
with each index in the sequence of a report to be
produced? Since your index is considerably smaller
than your file, this may be the ideal solution. Proc-
essing against the file would be random. (See Fig-
ure 75.5.) Again, if this solution cannot be used,
you can still sort offline.

Random

In this case your files are usually organized in a
sequence that does not relate to a report. The
transactions (say, cards containing only control
keys) must be sequenced appropriately; a sort is
necessary. Hence, the only way to avoid sorting
using your 1130 is to sort offline.

1

2

3

and

1 Jones 00103

2 Jones 00109

3 Jones 00110

4 Jones 00115

5 Smith 00131

6 Smith

Williams

in salesman
sequence,

for sales report

in part number
sequence, for inventory

report

Figure 75.4. Same data in two files, but in different sequence

87961

99

100

59199

603100

Record
Number

Man
Number

Birth	 Record
date	 number

1 010

2 015

3 017

4 021

5 036

6 043

7 055

8

1

2

3

4

5

6

7

Man number	 Birth date

010

015

017

021

036

043

055

r

Master File.

591

603

	

Index, in man number
	 Index, in birth date sequence

sequence (same as file)

	

To run payroll, etc., look
	

To run birth date report,

	

up employee in this index. 	 print from this index

	

Section Subsections
	

Page

75
	

20
	

10
	

02

Figure 75.5. One file, but with a multiple index system

Section Subsections Page

75 20 20 01

Sorting Offline

Sorting offline can be either a manual or a mecha-
nized procedure. A manual procedure (by hand)
should not be used unless volumes are very small.
Even with small volumes, you will need a program
to sequence-check the sorted cards.

A mechanized procedure involves the use of a
sorter. IBM has mechanical sorters available that
can process up to 2000 cards per minute.

The rule-of-thumb procedure for timing offline
mechanized sorts is:

1. Compute the card-passing time for each
column in the control key.

2. Sum these times.
3. Add 10% for card handling.

You must decide whether the time and money spent
sorting offline will be less than the cost of pro-
gramming and running a sort for your 1130.

	

Section Subsections	 Page

75	 30
	

01
	

01

METHODS OF SORTING

Introduction

Sorting and merging methods can be classified in accor-
dance with certain distinguishing characteristics.

Key Compare vs Key Value (Radix) Techniques

Most sorting methods compare control keys of two
or more records at a time and sequence the records
on the basis of a high, low, or equal comparison of
the keys. Despite variations, all key compare
techniques are essentially similar in concept. An
example of a key compare technique is the card
player's way of inserting new cards into his hand
in proper sequence, by comparing the value of each
new card with the values of those he is already
holding.

In some sorts, action is taken on the basis of
the value of the individual digits in the key and
their position, rather than by comparison of two
keys. The value of the key digits -- or, more gen-
erally, of the key number base (radix) -- is used to
determine into which particular slot each record
should go. Key value or radix techniques are also
known as digit sorts, which is a narrower term.
The mechanical punched card sorter, with separate
pockets for each key value, is an excellent example
of a radix technique. Another illustration is the
distribution of a deck of cards into four piles (or
files), one for each suit.

Sequence-Creating (Internal) vs Sequence-Reducing
(External) Techniques

Another fundamental way of viewing sorting is to
distinguish between techniques that create sequences
(starting with a random or unsorted file) and those
that reduce the number of existing sequences to one.
In theory, most techniques capable of creating
sequences of at least two records, or keys, are also
capable of lengthening those sequences to a point
where, finally, all records are contained within a
single sequence. In practice, however, the
sequence-creating or internal sorts are usually
only the prelude to the main or merge phase of the
sort (hence the terms "presort" and "premerge").
Initial sequences are created by loading a group of

records into core storage, sorting the records
internally, and placing the resulting sequence on
an intermediate storage device. This internal sort
process is repeated until the input file is exhausted.
The sequences thus created internally are then
reduced to one by an external merge. If the entire
file can be contained within core storage at one
time, the sort is exclusively internal. In most
cases, however, both internal (sequence-creating)
and external (sequence-reducing) techniques are
necessary to sort a large file.

Degree of Data Accessibility

Sorts also may be distinguished in accordance with
their relative need of data accessibility. Most of
the internal techniques are best suited to storage
media that can provide rapid access to many groups
or sequences of records. Core storage provides
the most rapid and direct access, while disks fur-
nish a lesser degree of data accessibility. A num-
ber of methods work well with disk.

Degree of Generality

Finally, sort programs may be categorized by the
relative degree of specificity or generality for which
they are designed. A large range of objectives
exist between narrow, highly specific sorts and
broad, generalized programs. On one end of this
range there are specific sorts designed to operate
on a specified input file and a specific computer
configuration. Somewhere in between are general-
ized sorts that will accept the introduction of some
parameters at execution time to adapt the sort pro-
gram to the characteristics of the particular file
and computer configuration. At the other extreme
of the range, there are highly sophisticated, gen-
eralized sorts and sort generators that, virtually
without user intervention, can generate a great
variety of ordered results on a variety of file and
computer configurations.

In most instances, a specific sort program will
satisfy your sorting needs. The remainder of this
subsection discusses some sorting methods (both
internal and external) of the types described above.
In addition, one of the easily implemented sorts
is expanded in flowchart form for your more detailed
examination.

Section Subsections Page

75 30 10 01

Internal Sorting Methods

Internal sorting is defined as the sequencing of a
group of data records contained in the core stor-
age of your 1130. It generally involves reading
successive records from disk storage into core
storage, sorting the group in storage by one of
the methods to be described, and then writing the
sequenced group onto disk.

Since internal sorting is generally a part or a
phase of other processing and programs, you must
distinguish between methods according to the ulti-
mate purpose they serve. Thus, some sorting
routines found in compilers, assembly programs,
and other applications are strictly internal; that is,
a group of items is to be sequenced only in core
storage, not written onto disk. On the other hand,
in most generalized and specific sort programs,
the file of records is too large to be contained, at
one time, within core storage. Here the internal
sort passes serve only as a prelude to the subse-
quent external merge phase of the sort and, hence,
are frequently called presorts or premerge sorts.
The purpose of the internal sort, then, is to form
a number of sequences, or strings, which are
placed into the output and subsequently merged.
The more efficient the premerge sort, and the
longer the strings it generates, the fewer external
merge passes required.

In addition to the purpose of the sort, the follow-
ing considerations apply in selecting an internal
sort technique and evaluating its suitability for a
specific application:

1. Characteristics of the machine (basic proc-
essing speed, internal storage capacity, etc.)

2. Input/output characteristics (number of disk
drives).

3. Number and length of data records.
4. Length and range of control keys.
5. Degree of original file ordering (natural

sequences).
6. The associated program.
Since there is no single best method for all types

of applications, most sort programs represent a
compromise between conflicting requirements. In
general, they attempt to incorporate the following
in as nearly optimal a manner as possible:

1. Sort internally as many records as can be
packed into core storage.

2. Minimize total process time per record.
3. Function in a manner compatible with I/O

operations and strive for a maximum overlap of
read, write, and processing time.

4. Utilize existing sequences in the input file,
if possible.

5. Write routines that are compact and that can
be modified easily.

6. In a generalized program, accept and sort
variable length records with any size control key.

Generally, records can be sorted by (1) physi-
cally moving them about until they are in order,
(2) forming tables of record numbers (tags) in stor-
age, which are then sorted, or (3) combining the
control key and record number and sorting the
resulting short key-tag pairs. Either tag sorting
or key sorting is the preferred method today. The
sorted keys are then used as an index to the file.

In addition to an explanation, the advantages and
limitations of each sorting method will now be eval-
uated briefly with respect to major file and machine
characteristics. Additional methods and additional
information on each of the methods discussed may
be found in Sorting Techniques (C20-1639).

Section	 Subsections	 Page

75
	

30
	

10
	

02

Selection

Sorting by selection -- perhaps the simplest, and
also the slowest, of the internal sorting methods --
consists essentially of an examination of the input
file to find the record with the smallest key (for an
ascending sort) and placing this record or its key
in the output area as the first item of the new file.
The source file is then scanned for the smallest
key of the remaining records, which becomes the
second item of the new file, and so on, until all
items have been placed in the output file.

When the selection process is carried through
the entire file in one stage, it is called "linear
selection"; when the original file is broken up into
groups, and the smallest key of each group is
chosen, and then the smallest of these smallest
keys, the process is termed "quadratic selection".

Selection requires a relatively small working
storage area in core, equal to the number of items
being sorted internally. However, the number of
passes over the file also equals the number of items
(one for each record), and the total number of
comparisons required increases with the square
of the number of items to be sorted (for linear
selection); this rapidly becomes inefficient for a
large file.

Exchanging

The technique of sorting by exchanging consists
essentially of comparing the keys of successive
records -- either one by one or pair by pair --
and exchanging out-of-sequence items. The sort
is completed when no exchanges are made during
a pass through the file. Many variations of this
general procedure are possible.

The major advantages of exchange techniques are
the relative ease of their programming and the fact
that all work is done in the area in which the origi-
nal file is stored; no separate working storage
area is required. Among the drawbacks are the
dependence of exchange methods upon the distri-
bution of the control fields in the original file and
upon the number of records in the file. If the file
is almost in sequence, one pass will generally
suffice. In the worst case, reverse sequencing,
the number of passes may equal the number of
items (G) to be sorted, and the number of exchanges
(key and/or record movements) may become
very large. Since the number of comparisons
required increases with the square of the number
of items to be sorted, exchange methods are most
efficient for sorting a relatively small file of
records. Perhaps the simplest exchange technique,
and the easiest to program, is pair exchange. The
keys of adjacent records are compared; whenever
they are not in ascending sequence, they are inter-
changed. During the first pass, the keys of the
first and second records are compared, then of
the second and third, of the third and fourth, and
so on, until all keys in the file have been compared
and interchanged, when necessary. Each succes-
sive pass will process one less record. The sort
is completed when no interchanges occur during a
pass. The example below illustrates the proce-
dure. In general, the maximum number of passes
(for the worst case) is equal to G - 1. The aver-
age total number of comparisons (C) is

G(G-1)
2

where G is the total number of items to be sorted.

Section Subsections Page

75 30 10 03

Input and Pass 1

13 ___„ 13
69 i	 - 6

13
\	 56

13
56

13
56

13
56

56 56)--'.6 \	 02 02 02
02 02 02)---)' 69 08

---4.--
08

1	 608 08 08 08 \	 , 21
21 21 21 21 21)—'.69

Pass 2

13 13 13 13 13
56 56 02 02 02
02 02 56 \ 08 08
08 08 08 56 \ 21
21 21 21 21 56
69 69 69 69 69

Pass 3 Output

13 02	 02 02 02
02)-- 13	 08 08 08
08 08 T1 13 13
21 21	 21)-- 21 21
56 56	 56 56 56
69 69	 69 69 69

The size of the file is of great importance, since
the total number of comparisons and interchanges
increases roughly with the square of the number of
records in the file.

Merging

Merging is the process of combining several
sequences of records to form a single specified
sequence. The same rules by which sequences are
combined may also be used to form sequences (of
two or more items). Thus, the merging process
has, essentially, a dual nature: it can be used for
creating sequences (usually in an internal sort),
and it is also capable of reducing previously created
sequences to one (usually in an external sort). This
dual capability contrasts with the selection and
exchange techniques described thus far, which are
useful primarily for internal sorting of relatively
short files of records. The versatility, speed, and
simplicity of merging make it one of the most widely
used sorting techniques.

There are two basic methods of merge sorting:
(1) straight or standard merging, with fixed-length
sequences, and (2) natural merging, with variable-
length sequences, or strings. (The words "sequence"
and "string" are often used interchangeably in
merging terminology.)

In straight merging, the input file is distributed
initially into two or more work areas, depending
upon the number of sequences to be combined dur-
ing each merge (that is, the order of merge). For
example, in a method of two-way straight merging,
the first merge pass alternates between two stor-
age areas to form strings of two records, one from
each area. Subsequent passes double the length
of the strings each time (for example, 4, 8, 16,
etc.), until the last pass produces a single sequence
of all the records. The length of the strings during
each pass and the number of passes are fixed.

The natural merge sort takes advantage of
"natural" sequences in the original file, which
occur with a certain "probable" frequency. The
length of the strings on each pass is no longer fixed,
but depends upon the existing sequences. The total
number of passes required to sort a given file, then,
also depends on the number of natural sequences in
the original file. For a file that is in correct
sequence, only a single pass is required -- to verify
that sequence. In the worst case, the number of
passes is the same as for straight merging.

	

Section Subsections	 Page

75
	

30
	 1 0
	

04

Insertion

A fairly effective method for sorting a small num-
ber of items, the insertion technique, places each
item in sequence as soon as it is encountered. The
records (or tags) are brought into storage one at a
time, the key is examined, and the item inserted
in the correct place of an output file. Earlier
members of the partial file are moved aside, when
necessary, to make room for new items. The
method is straightforward and easy to program,
but is relatively slow compared with other
techniques.

Sorting by simple insertion has two inherent
drawbacks: (1) the partial file must be searched
each time to locate the correct place for inserting
the new item, and (2) excessive shifting of the
sorted records is necessary for each new insertion.
The first limitation can be overcome, to some
extent, by subdividing the area that must be
searched in order to locate the correct position
of each new item. The second drawback -- the
large amount of record movement -- can be avoided
by sorting record numbers (tags), rather than the
record themselves. Even with these improvements,
the method is too slow for larger files.

Replacement Selection

The internal sorting methods described thus far
are all capable of sorting a group of records (G)
that can be contained at one time in core storage.
The maximum string length is, therefore, limited
to G items. An auxiliary technique, known as
replacement (sometimes, replenishment), tries
to keep the core storage area filled with G items
by replacing records that have been withdrawn dur-
ing the sort. As a result, for a file in random
order, an average string length of 2G items is
developed in an area with a capacity of only G
records. For a given amount of available core
storage, the replacement technique produces the
maximum possible sequence length. This charac-
teristic makes the technique eminently suitable as
a premerge sort and permits a significant reduc e

tion in the number of merge passes required for a
subsequent external (disk) sort. The price paid
for this advantage is increased complexity of pro-
gramming, relatively long processing time per
record, and a slight increase in the required work-
ing storage. Also, the number and length of the
sequences are variable and, hence, not predict-
able. Most replacement sorts, however, will
generate string lengths approximating 2G.

Essentially, the replacement selection method
determines the lowest record in the record storage
area, moves it to the output area, and then replaces
it with a new record from the input file. If the
new record is lower than the one just moved to the
output, it cannot be part of the current sequence
and, therefore, is flagged or held for the next
sequence. The process then continues with the
selection of the next-lowest record, and so on,
until there are no more replacement records in
the record storage area that fit into the current
sequence. A new sequence is then started, and the
procedure continues until the entire input file is
processed.

Section Subsections Page

75 30 10 05

Address Calculation

When the approximate distribution of the key values
is known, it becomes possible to sort a file inter-
nally by estimating the eventual (sorted) position
of each key. This method is called "address cal-
culation" or "pigeonhole sorting".

Briefly, it consists of calculating the correct
record number of each item within the file by a
predetermined linear formula of the form y= a +bx.
If the location at that record number is empty, the
item (record or key) is placed there; if it is full,
a search is made to find the closest empty space in
the vicinity of the calculated record number. The
item at the calculated record number and the adja-
cent items are then moved so that the new item can
be inserted in its proper place in the sequence.

Address calculation is similar to the insertion
method in that each item is placed directly in its
proper relative position within the file, and the
entire file is in order just after the last item has
been inserted. The method differs from insertion,
however, in that some foreknowledge of the range
and distribution of the keys is required to estimate
the relative location for each item. When this is
available, address calculation is a relatively simple
and rapid method for sorting a medium-size file
(several hundred to a few thousand items) of small
to medium-length records. The major disadvantage
of the method is the need for a fairly large storage
area -- about two or three times the size of the area
needed for the original file. If only a relatively
small working storage area is available, or if the
distribution within the file is not as forecast, a great

deal of processing time will be spent in redistrib-
uting the records.

To illustrate this method, let us consider a
hypothetical case: Many years ago, the ABC Com-
pany set up a man-number system based on a three-
digit number. Since they had about 150 employees,
each man was assigned, in alphabetic order, a num-
ber evenly divisible by 5 (005, 010, 015, 020, 025,

, 995). However, there are now about 240 em-
ployees, and the system is not quite as neat as it
once was.

Some of the men (50 of them) have been assigned
numbers out of the normal pattern (for example,
862 in between 860 and 865). They are still in alpha-
betic order, though.

The address calculation sort could be used to
place this employee file onto the disk in alphabetic
(man-number) sequence in the following way:

1. Set up a file containing 500 records.
2. As each man-number is encountered, divide

it by 2.5, and convert the result to an integer (call
it N).

3. Check record number N to see whether there
is already an employee there.

4. If there isn't, put the man just processed into
that record.

5. If there is someone there already, move the
adjacent records up (or down) until there is room
to insert the new man.
This will be quite fast, provided the "moving around"
(step 5) is not required too frequently. If it is, the
file could be increased to 600 records, and the man-
number divided by 2. This, however, would waste
a considerable amount of space on the disk.

	

Section Subsections 	 Page

75
	

30
	

20
	

01

External Sorting Methods

When a file cannot be contained within core storage,
additional external passes and intermediate storage
devices, such as disks, are required to sort the
file. The internal sort, then, is only one phase of
a generalized multiphase (or multipass) sort that
may have three or four phases. In such a multi-
phase sort, the internal sort phase is concerned
with the creation of suitable sequences from the
main file, while the external sort, or merge phases,
are devoted to the reduction of those sequences to
one continuous sequence.

Practically all the internal sorting techniques
described earlier can also be used -- with varying
success -- for external sorting by changing the
terms of reference appropriately. Thus, the inter-
nal storage area is replaced by several input and
output areas on disk.

It has been suggested earlier that sorting tech-
niques could be categorized according to the degree
of and relative need for data accessibility. Thus
far, sorting techniques suitable for one extreme of
data accessibility have been described. The inter-
nal sorts were seen to be best suited to high-speed,
direct (random) access storage media, such as
magnetic core storage. In these media, any record
or string of records can be accessed immediately,
without the need for passing over other, unwanted

records.
Despite their name, direct (random) access file

storage media (such as disks) provide a degree of
data accessibility less than core storage. The time
to access a record in these devices is not com-
pletely independent of the location of the previously
accessed record (as in core storage), but •neither
does it depend on the entire sequence of records
stored before it (as in magnetic tape). The time to
access the next record depends on the number of
cylinders the access mechanism must be moved
from the previous record. (Each one or two cyl-
inder move on the 2310 disk drive requires 15
milliseconds.) However, since internal core
storage is generally insufficient to hold an entire
file, auxiliary storage devices such as disks are
usually necessary.

With disks some attention must be given to the
relative advantages of key or tag sorting and sort-
ing of complete records. It has been found in inter-
nal sorting that key or tag sorting (involving either
record numbers only or short control records) is
considerably faster than sorting of complete re-
cords. However, because of the substantial seek
time, this is no longer true for disks, when the
orginal records must be retrieved at the end of the
sort.

The following paragraphs explore some of the
considerations pertinent to disk sorting.

Section Subsections Page

75 30 20 02

Key (Tag) Sorting

In general, key sorting consists of extracting the
control key from each record and adding the record
number to form a key-tag pair. These pairs,
rather than the original records, are then sorted.
(Sorting is done with the key; the record number is
merely moved about so as to remain with its asso-
ciated key.) After sorting is completed, the pairs
provide an index for later retrieval of the data rec-
ords in proper sequence. The obvious advantage of
key sorting is the more rapid processing of the key-
tag pairs, rather than the much longer original re-
cords. During internal sorting, more pairs can be
sorted into strings; thus, fewer strings and, prob-
ably, fewer merge passes will result. The even-
tual retrieval of the data records (if needed) from
external storage is done using the final sorted key-
tag file.

A typical key sort with disk storage proceeds in
either two or three phases, depending upon whether
final retrieval of the data records is necessary.
Phase 1 is an internal key sort; phase 2 merges the
internally formed strings of key records; and phase
3, if required, retrieves the input records in
proper sequence. The approximate procedure dur-
ing each phase is described below.

Phase 1 (Internal Sort) consists of the following
steps:

1. Place input records on the disk file in order
of occurrence.

2. Form key-tag pairs by lifting the control
field(s) from each input record and adding to it
(them) the disk record number.

3. Read G key-tag pairs at a time into core
storage and sort them internally (by any standard
method) into strings of length G. (G refers to the
number of items that can be contained at one time in
internal core storage.)

4. Write the stings of G pairs successively
onto the disk file, using as many sectors or files as
necessary (usually no more than five files of strings).

Phase 2 (Merge). The merge phase of the sort
consists of merging the strings of pairs from the
separate files on disk. The merge is completed
when a single sequence of key-tag pairs has been
written onto disk. During the final merge pass, the
control keys are stripped from the key-tag pairs,
leaving only the disk record numbers or tags.

These record numbers then serve as an index for
placing the input records in sequence. At your
option, sorting can end at this point.

Phase 3 (Record Retrieval). This phase is
necessary if the data records are to be retrieved
from the disk file in their sorted order. (Remember,
only the tags have been sorted, not the records
themselves.) The manner in which this is done has
a greater effect on overall timing than phases 1 and
2 combined. The simplest way (also the slowest)
consists of retrieving the records one by one in the
order indicated by the successive disk record num-
bers. If the original input records constitute a
large file extending over several cylinders of the
disk, the probability is high that a seek must be
executed for the retrieval of each record. This will
add considerably to the time required, since the
seek time necessary to retrieve the records will
probably dominate the overall sort time.

A number of ways have been devised to minimize
this seek time during the retrieval of records in
phase 3. One method consists of bringing the disk
record numbers (from phase 2 of the sort) into
internal storage in some multiple of the output
blocking factor. The disk record numbers are then
sorted internally in ascending sequence, thereby
reducing the seek time between records. The
input records are read initially from the disk in
ascending record number sequence; blocks of re-
cords are then placed in proper sequence (in ac-
cordance with the original sequences of disk record
numbers); and the sorted records are finally written
back onto the disk file. The method reduces seek
time substantially, at the expense of more complex
programming.

Another method of modifying the key sort con-
sists of blocking the sorted keys so that the number
of items in each block plus an equal number of
original records just fills the core working area.
The items in each block are then sorted again to
place the disk record numbers in ascending se-
quence. As before, the records indicated in each
block can then be retrieved sequentially from the
file and sorted internally into the proper sequence.

It will be found, however, that in most cases, and
for large files in particular, these methods of re-
ducing the seek time still result in a greater overall
sort time than might have been required to perform
a complete record sort.

	

Section Subsections	 Page

75
	

30
	

20
	

03

Key Sort vs Record Sort

Usually, key sorting is of no advantage, even with
large disk files, when most or all of the original
records are to be retrieved. Modifying the sorting
and reading schemes to minimize the total seek
time can have a considerable effect, but the advan-
tage, generally, still lies with record sorting.
Whether a record sort or a key sort should be used
to sort a disk file depends largely on the ultimate
disposition of the sorted records.

If only an index of sorted records is necessary,
and few of the sorted records are actually used,
key sorting would appear to have the edge.
Exception reports extracted from the sorted file
are an example of this type of situation. On the
the other hand, if most or all of the original
records are to be retrieved, record sorting is
preferable to key sorting. Moreover, the advantage
increases with the size of the file.

13	 13	 02
8	 56	 13
56	 02	
02	 08	 08
08	 21	 21
21	 8

t

Section Subsections Page

75 40 00 01

A DETAILED LOOK AT AN 1130 RECORD SORT

An improvement on the simple exchange technique
consists of making alternate passes in opposite
directions, attempting to move the high records to
the bottom and the low records to the top of the file.
This is called an alternating pair exchange sort.

The procedure starts in exactly the same manner
as in pair exchange, by comparing the keys of
successive records. After an exchange is made,
the high key is compared with the key of the next
record in sequence, and these comparisons con-
tinue until either a higher key is found or the end of
the file is reached. All intermediate records (and
their keys) are shifted up one position. During this
first downward pass, therefore, a high record can
move down many positions, but lower records can
move up only one position.

The second pass is in the upward direction (from
the bottom to the top of the file) and tends to move
the smaller records closer to the beginning. Dur-
ing this, and during every other even-numbered
pass, a high record can move down only one position,
but a low record can move up many positions.
Successive passes continue to alternate, with odd-
numbered passes in ascending sequence and even-
numbered passes in descending sequence. The file
is in sequence when no interchanges occur during
a pass. A final output pass is required to verify the
correct sequence.

The example below illustrates the alternating
exchange technique. The first pass, proceeding
downward, recognizes that 89 and 56 are out of se-
quence and exchanges them. The high of the com-
pare, 89, is then compared, in turn, with 02, 08,
and 21; since 89 is higher in each case, it moves to
the bottom of the file. The low of the compare, 56,

moves up one, and all intermediate keys also move
up one position. In the second pass, the compari-
sons start with 89 and move upward. The first out-
of-sequence keys are 02 and 56. The 56 dropsdown
one position, while the 02 moves up two positions,
since it is lower than the 13. During the next down-
ward pass, the 56 and 08 are out of sequence; the 08
moves up one position, and the 56 moves down two
positions, since it is higher than the intermediate
21. During the fourth (upward) pass the out-of-se-
quence 08 and 13 are interchanged. The final out-
put pass is needed to check the completion of the
sort.

End	 End	 End	 End
Input Pass 1	 Pass 2 Pass 3 Pass 4 Output

02 02 02
13 08 08
0 13 13
21 21 21
56 56 56
819 89 89

The arrows indicate the direction of the pass.
The example shows that the maximum number of
passes is equal to the distance, measured in num-
ber of keys or records, which is the largest sepa-
ration of a key from its final place in the sequence.
In this case, 89 is four positions away from its final
(bottom) position in the file and, therefore, at most
four passes (plus the output pass) are required to
complete the sort. In general, the alternating
exchange method requires slightly more complex
programming than the earlier exchange method, but
it results in a smaller number of compares and,
frequently, fewer passes. The following pages
show this method in more detail.

Move bottom of
NARAY to top
when M>0, top
to bottom when
M<0

NREC1 = NSTRT

DISK

2,—M,NREC1,
NRL,NRPC,
NARAY,NRECT

	10-1

N = N + NEXS

NRW,—M,NRECI
NRL,NRPC,
NARAY,NRECT

NRECT = NEND
NSTRT = NREC1

START

Initialize:

NSTRT	 first rec.
number

NEND = last rec.
number

NRL	 = record
length

1,M,NREC2,NRL,
NRPC,NARAY,
NRECT

2,M,NREC 2— (M)*
(NRPC),NRL,NRPC,
NARAY,NRECT

NREC1

Housekeeping:

NRECT = NSTRT
NRECT = NEND
M = 1	 N = 0

NE XS,LARRY,
NRL,KS,KE

N=0

M — M

NRPC =
(320/NRL)*8

Move bottom
of NARAY to top
when M>0, top
to bottom when

NREC2 = NREC1

NREC2 =
NREC1 + (M)(NRPC)

NRECT = NSTRT
NEND = NREC1

STOP

	

Section Subsections	 Page

75
	

40
	

00
	

02

Section Subsections Page

75 40 00 03

VARIABLES IBM I	 1130 COMPUTING SYSTEM

SUMMARY SHEETVARIABLE

NAME .If 1-1
o2

28
°
"a

z6

1- 1 _u.i1- ----.	 ,,,-15 5
,°- °

MAXMAX.
VALUE

MINMIN.
VALUE

Application , 4Z 7.e;ei /4 7 -/A /' Pr9/,e Date/e9/23A7PPlication EXcw,44/a.e sorer
Program Name „Veorbr, //".• ye	 No.	 Programmer

FUNCTION OF VARIABLES

P1.51‹ – – – —
,4 se,,,orwabi7e lo 0.)/i1/ the A754 ,,,//h ar7sotv'ed,
/W0/17's a',74C0)e'r'W'V Me 25,4) af sop /e•a/ r•ecor-ofs.

A:WO – – – —
The ,.o.er,E7.51 •V ,5,4a/a0.77e.774)4e, /i-Avi,4.. �-h&' disk
OCC-4.35' mechanism rr3 a'r, Oire:7,/,;#76=ziiggs'X1/47r,

44-X----E Z / Yter.X User.497,:a4 / Ewa/ al 7%e- c-c7,17er-c, / X-E . /;(5 er7e7iie9 ,Oes/X.;/;
ex--3- z 7 r 0̀1,3Z, / geg.;.,,,:13 al ,'% 	 e-,,,,,,,,..0/ key, ,/s- ,s7Larh,;9.,00v;f;,,
if
ZAPAY -2- //

are,
z

,.5-e/7
4p/vi '5727"

A/4*V.Z6,•.-Arh o#); /4e "iPecordi .5*.idge..Orra; -5-/,orrZi.sce".0/
/assl'hile c9/4A9'62•--5-15/aViiirke ,,i4tr4,,w4.7 ;,-) 4lowaVe C.9,2?

/11 I / T / -/ -4%-e.c714;9	 oiese,Pv;e0 4e 1//e or. .96a4,9 14a./..; -/or #1.

1 7- tsZtrecords' of ..' 4-Du/I/ dr /-4e en./,,,6e," el'excA4l9es /;') a /245'S
A4f/e4 y 4/ zree 7 — — 4/orne ei26,-...ay ,4 	 .Pecs.-,d Slere75e roPS4)
444/E/to 1 //

afee-
2-

arer'
4,/,�vi 2 72e, rece,p1m.mbev-, of ' ;4 e2 A's/ reree2,/,; hfe.74A

4,,._x5, 1 / T Z The e .7e",72.6e....- o/". eech4.29es dark.:79 'he sc2r-r4
O74 .0. poi, a. 	 c..y//,resie.-,..v.

,vezer- r / r Newo il.�-7-4)7- Tie. p-eccv-4J .7e.,7-4e.,- 6-'24/, 4 ,a' /0475.5-
/1/en-C/ I / r /i/e4/0 / 7%e. pee„,,,/ ar,26e,r.- A.. 14/rP/7?%).9' 444-4- /1"'Ae,
4/,f2E--6-e z / 7- /i/E//2) / 7; fe record mirrIbe,.- A	 Als4.01/4,9 ,geso,,, /he 6/e

#A/X7Z Z. /
asefi
 z 34:6 2 17-'6- recera/ /6".-2gM.

44.e.c'C 1 / 7 redo 8 rt/c/m6er, o, r-eco.-.as /26,/- c / ; 7 € / e y - :

,/RA/ I / r 2 / 4;�-4/x/e/74.`" .54._,/./C, /ek,aa/= /1 1,a-jile, -tr7.
' k/f/.5-77 7- 2- //

averf User'
4,1/:of; / Me record rn.rnbef. coe /Ad, /4;isfreed■-,..7,1e 4*.

562r - - - __ __ 9 sctholir.y.e7a/7,rte /tfara7; ‘5.7<ter..,ca:47:e:0:0-449. , "

itt Was/ 66. se/ 6.y Me ,,,re,„.

* Mode:	 I = integer, R = real, D = decimal, A = alphabetic,

L = (1-11"NRL+1

N l•NRL

L = 1+(NRPC+1-1)*
NRL

N = INRPC+0•NRL

I = 1+1

r
Return

Section Subsections 	 Page

75
	

40
	

00
	

04

Start

1 = 1

Read Disk
	 Write Disk

(NF'NREC)
	 (NF'NREC)

NARAY (J)
	 NARAY 1J1

J = L, N
	 J = L, N

NREC = NREC+M NREC = NREC-M

Section Subsections Page

75 40 00 05

VARIABLES IBM I	 1130 COMPUTING SYSTEM
SUMMARY SHEETVARIABLE

NAME .1-ii0
2

-0■-
oci
z

a2 I.-w.- —-- °-IS b
0- 0

MAX.
VALUE

MIN.MIN
VALUE

,Qc re-",e/vArm/G)57,42/ Date/4/25/6'7Application z-xc,./../.47/v	 — 5-42/e7
Program Name 	 5 u6rovt-bl e..,	 No.	 Programmer

FUNCTION OF VARIABLES

X 2 / 7- ,t/,P0C / Used ws /,,w'6,x /-, 17ead/Ir47i4e /e.,;2
.7 2 / T 256.0 / Used /i7 ir2deA'ed Pe 0 d/4/1" Y 71e

Z 2- / ,--7 2560-
4/.92,g / // ge,y,:o/7/;ig ofce..-/wv, P4 r'ec-0,--0/e/.:;,.9 Peaa/A)/Y;44=P7

/11 _z- / I 7.̀ -/ –/ /w,__/,,,. 4,/, ,coAlo,/f/4/04yd--- 7,/ as-9.6,9%,,,hohe
A/ I 7 - 2 . 6 i NA9Z 44;ali.o/c-a.-7-6-.7/.-ecar-e/669/;21/?,=',4,6/A4v//e,-,

///0/77P ev,a77'ay Ar. ee.c6vvi S/0,-age (9.9,47.)_"A;v,./42,4)/ ,o/ 624 2-4 – –
4/.. -- ar i I .v7 7 / A24- ,,,,,6e,-, 742 6e -50,-/ze
,(//6". X / 2-7,0 32767 / G`r....-.■-',/z7.e.,c10,-,, 7/ r,e../,-,16,/- 4,,-, 21e,

4;vet-67- r / 32767 / zots-/i-e.co,-e/4z/.226&-/-7 ,-3 /Xis Pas's'
ANAL 2 / r .5'&" / /-,-ar-a/Z..y.,q
-*-/1//,0‘, 2- / .2- /28, 8 /1.4.,,-7.6e,-, oi f ' /-,c-c",-..e/s ,o6)/..	y//:-P4/eve,
#A//eW ..r / 2- 2 1C'ead/ilkv/e SwiArh. Pead.-.64/.../e-2

Olt '41'///;-/..9 /126717,727/6,r5

`Mode:	 I = integer, R = real, D = decimal, A = alphabetic,

MOVE

NARAY,K,
K+NRL-1,ITEMP

1

NEX = 0

K = 1

NCOMP

NARAY,K+KS-1,
K+KE-1,NARAY,
K+NRL+KS-1

MOVE

NARAY,K+NRL,
K+NRL+NRL-1,

NARAY,K

MOVE

ITEMP,1,NRL,
NARAY,K+NRL

NEX = NEX+1

K=K+NRL

J=J—NRL

NEXS=NEXS+NEX

	

Section Subsections	 Page

75
	

40
	

00
	

06

Start

NEXS = 0

J=LARRY—NRL

Section Subsections Page

75 40 00 07

VARIABLES IBM 1130 COMPUTING SYSTEM

SUMMARY SHEETVARIABLE

NAME .
t
0

-'8"°
15
6
z

t ,u.i n1- ---. Li-15 5
°- 0
z

MAX.
VALUE

MIN.
VALUE

. .	 //zr.e--/t/AP/A/6 ,T74//e	 Date/o/3/6Application __-x,..c.././A/t/G.,E_ s..s....<:24:::, 7_
Program Names0"74 5-4,46,-4:26//i;ve	 No.	 Programmer

FUNCTION OF VARIABLES

17Z/W1' 4/ ese I —
,0 ,‘,./..,,,,„-.0,-", 91"-d'4 A20"-- ...5	 •-i'ly 0/7e. Ce'C'4:7/19/
elle/P/i7,9 ,e7,, e..,..-4-,,,a,,Tge

..7 x r -57/e 46194'e ThE. /as-71 r6=ra,-.a/ 6,6.// ,a7Pe,e',....-

I / 7 .57/8 / /s-6,1 .,7,5- ,>7.f/e-A- ---2 te, ono

,,S--- _r / 2- :,.9.5-7,L 2 Z". ,,71 er,,, le• c--;,,,-,71.-0/ .4.-->y, //s- =',74ii,5ves/X0/9.
A .e.-5- 7- / -7

Use.-
.911 /7 •

/ ge.got-1....,7	 el/. 71-Ae.	 --,,,,, 74,-,o/ /4-"Ey, i ''S ..5-14677-p s 74/ 4
/AWRY -Z- / I- arnear; -1780 269.7g7% aC ht.. P62ceP^e/ ..s.-/aore 9.-a, r/e5-4)
ktavn — — — — A ,5ei, /^e7e, 716' /o movie. a ,----49,-d
UOV 4/ gle210 — — ,4,4,7-7e, a/array A,^)2-,c0,--e/..5-76,-�„ye (Ps ,g)
A/CO41/12 — — — — — ,41 S'e/ice,e./71/i2e 71-e, Ce,,p77/o.a."6, "ado Cor-174-a/ ice:y5

1 / 7 4,i-C7e*';;7e,(y1/.. .a /9 covert 0,e 74h e ,241,77ber, cPeE,XChezre7,E'S dom.-levy
a ,--1/47ez6, 7i,,,,,-;,e/e,..510/-'74/2,0-s---s
A c oe..,-,,4 41,7%e Acvia/ ricm,aer . e.,eexchAwge.5.
eie".-w78we,r5 I / % VePT9/a,lie .,

4'/VA)/ Z. / 1 320 2 7-- e .---.0.-e//67.,/,_9/%4

6.--,0/7"/:„..7,9 pay-47,0-061/2=,–....s

"Mode:	 I = integer, R = real, D = decimal, A = alphabetic

Section Subsections	 Page

75
	 50
	

00
	

01

SUMMARY

Generally there are two approaches to sorting with
your 1130:

1. Avoid sorting
2. Write a sort program
The ways in which you can avoid sorting are:
1. Maintain multiple copies of your files.

2. Maintain multiple copies of your index, if an
index exists.

3. Sort offline.
If you decide that sorting is necessary, many

techniques are available. The methods avail-
able and a brief evaluation of each were given
earlier.

Section	 Subsections	 Page

80
	

00
	

00
	

01

Section 80: USE OF THE DISK FOR DATA STORAGE

CONTENTS

General 	 80.01.00
The Physical, or Hardware, Structure
of the Disk 	 80.10.00
The Disk as Seen by the FORTRAN
Programmer 	 	 80.20.00
The Interrelationship of the Physical
and Logical Structures 	 80.30.00

The DEFINE FILE Statement 	 80.30.10
The *STOREDATA and *FILES Cards 	 80.30.20

Record Lengths and Sector Utilization 80.40.00
A Trick to Get Long Records
and/or Better Packing 	 80.40.10

Computing Record Length 	 80.50.00
Shortening Record Length 	 80.60.00
Some Examples of Disk File Setup 	 80.70.00

Example 1	 	 80.70.10
Example 2	 	 80.70.20
Example 3	 	 80.70.30

	

Section Subsections 	 Page

80	 01	 00
	

01

GENERAL

To make effective use of your disk storage capability,
you need to know the way the disk is organized and
the way your data will be set up on it. This section
deals exclusively with the use of the disk as a data
storage device. Although it is desirable (and often
necessary) to store programs and subprograms on
the disk, these normally present little difficulty,
since the 1130 Monitor system handles most of the
details involved.

The way in which the disk is used can signifi-
cantly affect:

1. The amount of data that can fit into the avail-
able disk space

2. The running speed of programs using disk
data files

3. The basic practicality of many jobs. (An
improperly organized disk file can make the space
and time requirements of some jobs appear excessive,
when in reality they need not be.)

Move This
Many Cylinders

Seek
Time

Stabilization
Time

Average
Rotational
Delay Time

Read
or Write Total

None 0 0 20 10 30

1 or 2 15 25 20 10 70

3 or 4 30 25 20 10 85

5 or 6 45 25 20 10 100

199

(maximum)

or 200 1500 25 20 10 1555

A cylinder,
2 tracks,
8 sectors

A cartridge,
200 cylinders
512,000 words
1600 sectors

Section Subsections Page

80 10 00 01

THE PHYSICAL, OR HARDWARE, STRUCTURE OF
THE DISK

Each IBM 2315 disk cartridge contains 512,000 words
organized into 200 cylinders of eight sectors each;
a sector, in turn, contains 320 words (see Figure
80.1). This is a very rigid organization dictated by
the basic design of the 1130.

A word	 •

A sector,
320 words
+ address

Read-write
heads

An entire cylinder (eight sectors) is accessed by
one setting of the disk read/write heads. If you wish
to read or write from a cylinder other than the one
at which the heads are now set, the disk arm must
be moved to the new cylinder. The disk mechanism
moves the arm directly from the old position to the
new position in steps of one or two cylinders. (It
does not return to a "home" position first, as some
other disk units do.) Both single steps and double
steps take the same length of time: 15 milliseconds
(.015 seconds). To move nine cylinders, you need
four 2-cylinder moves (4x15 or 60 milliseconds)
plus one 1-cylinder move (15 milliseconds) -- a
total of 75 milliseconds. A move of ten cylinders
takes the same amount of time -- five 2-cylinder
moves (5x15 or 75 milliseconds). Figure 80.2 shows
some representative arm movement times.

Figure 80.1. Disk storage definitions	 Figure 80. 2.

	

Section Subsections	 Page

80
	

20
	

00
	

01

THE DISK AS SEEN BY THE FORTRAN
PROGRAMMER

When programming in 1130 FORTRAN, the disk
appears to be an entirely different device than the
one just described. It consists of a data area which
can be subdivided into any number of files, whose
physical size, symbolic names, and symbolic num-
bers have been determined by you.

You may further subdivide each file into some
number of equal-size blocks known as records. You
choose the size of the record, and each record has
a symbolic record number, starting with 1.

Within the record you can place fields, which may
be real, decimal, or integer numbers, or alphameric
data.

This is an extremely flexible system, as opposed
to the rigid subdivisions and addresses of the actual
hardware. It is still one and the same disk, how-
ever, and you must have a good knowledge of both
systems to use the disk effectively. This section
presents the basic guidelines by which you can relate
these seemingly diverse systems:

The physical, or hardware, system
The logical, symbolic, or software system

Section Subsections Page

80 30 10 01

THE INTERRELATIONSHIP OF THE PHYSICAL
AND LOGICAL STRUCTURES

The DEFINE FILE Statement

For every data file you wish to access on the disk,
there must be a DEFINE FILE statement in your
FORTRAN program specifying certain details. A
typical DEFINE FILE statement is

DEFINE FILE 47(400,85, U, NEXT)

which indicates a file numbered 47, having 400 rec-
ords of 85 words each. The U is always required
and specifies an unformatted record. NEXT is the
name of an integer variable that will always be set
to the record number of the next record in the file,
a number between 1 and 400. For example, if you
have just given the command

READ (47'K) A, B, I, J

where K was 96, NEXT will equal 97, the record
number of the next record. The incrementing of
NEXT occurs automatically and you may choose to
ignore it completely. In this case, you are addressing
your file by the symbol K, doing your own manipula-
tion of K, and not using NEXT at all. If you wish to
read the next record, you can say either

READ (47'NEXT A, B, I, J

Or

K = K + 1

READ (47'K) A, B, I, J

An 85-word disk record allows three records per
sector (Figure 80.2), so that your file of 400 records
will require 134 sectors (the exact answer, 133 1/3,
must be adjusted upward to the next higher whole
number).

(If your record length could somehow be shortened
to 80 words, you could place four records per
sector, reducing the sector requirement from 134 to
100, a substantial savings -- see 80.40.00.)

If you do not want to save this data file for use by
a subsequent program, the DEFINE FILE statement
is the only place you need reference it.

The DEFINE FILE statement specifies a mixture
of physical (actual) and logical (symbolic) sub-
divisions:

File number (symbolic)
Number of records (symbolic)
Number of words per record (actual)

Cylinders, sectors, and fields are nowhere men-
tioned.

The READ (or WRITE) statements specify only
symbolic designations:

File number (symbolic)
Record number (symbolic)
Field names (symbolic)

5 3322 2620 3927 362825 552924 341510 16 19 2117139 12 4445404 434236

41

0 11
6hol 79 7697" U

/
5 C A

5 4 A 9 77 6

Section Subsections	 Page

80
	

30
	

20	 01

The *STOREDATA and *FILES Cards

In some programs, the DEFINE FILE statement is
all that is required to specify the details of a data
file. The file is placed in Working Storage (WS),
and records may be read or written by that program
and/or its subprograms.

If, on the other hand, you have a data file that is
to be used by more than one program, you must do
more than just specify it in a DEFINE FILE state-
ment. You must get it out of Working Storage (WS)
and into the User Area (UA) or Fixed Area (FX),
where it will be protected from accidental destruc-
tion. Working Storage is true to its name: it is
strictly a work area. Data placed in WS may still
be there when it is needed; then again, it may not,
since the IBM compilers, DUP, and other programs
all use WS.

Working with data files in the User Area or Fixed
Area requires the use of two additional cards: the
*STOREDATA card and the *FILES card.

The *STOREDATA card is used first to create an
entry in the LET or FLET, specifying the name,
location, and size of your data file. In this case
the *STOREDATA card, despite its name, does not
really store your data; actually, your data has not
even been written yet.

In the preceding example (file 47 -- 400 records
of 85 words each, requiring 134 sectors) you must
run a disk utility job

3. The *STOREDATA card contains mixed type
information -- both actual (number of sectors) and
symbolic (file name and cartridge identification
number).

At this point you have run the *STOREDATA job,
specifying certain data about the file named PAYRL,
and compiled your FORTRAN program referencing
the file numbered 47. How, when, and where can
you tell the 1130 that these two files are one and the
same?

How? With the *FILES card, which in this case
would read

I 2 3 4 5 6 7 8 910 111 2 1 314 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 3031 32 33 34 333S 37 3839 4041 42 43 4445

f/LF5(47,P4YRL,/ 9167)

When and where? This depends on the format (DSF
or DCI) of your program. If the program is in DSF
format, you must place the *FILES card after the
execute card every time you execute the program.

1 2 3 4 2122	 26 27 28 29 303 3233 34 3566 373939 4041 40434.4S

// /

L

08
EQ

5 a 7 4
.t
2 9 6 7)

4 5 7 9 10 12 13 14 15 16 17 19 20 21 22 23 24 25 27 28 30'31 32 34 37 39 404 42 43 4445

1 79 5
CAW

5T 0A 7 5 U A ,A4 Y 3 4 9 6 7 9 6 7

If the program is to be built into core image format
(DCI), the *FILES card must be placed after the
*STORECI card

which sets aside 134 sectors in the User Area (UA)
of disk cartridge 1967 and labels it PAYRL.
Notice that:

1. The information contained on the

DEFINE FILE 47(400, 85, U, NEXT)

card does not appear anywhere on the *STOREDATA
card (and vice versa).

2. The *STOREDATA job is run before there is
any data to place in the PAYRL file. and not after the // XEQ card.

	

Section Subsections	 Page

80
	 30
	

20
	 02

As mentioned earlier, data may be placed in
Working Storage (WS) if you do not intend to save it --
that is, if it is to be used for temporary storage
within one JOB. In fact, data will be written in WS
unless a *FILES card is used; likewise, any READ
commands will assume that the data is in WS if no
*FILES cards are present.

Using the *STOREDATA and *FILES combination,
however, you have a choice as to where your data file
will be placed -- either in the User Area (UA) or
Fixed Area (FX). In most cases it does not matter
which is chosen, since both areas are safe from
accidental destruction. The main difference is

that files in the Fixed Area are in a fixed position
and will not be moved about as other files and pro-
grams are deleted.

This option is exercised by the characters
punched in columns 17 and 18 of the *STOREDATA
card -- UA indicating User Area, FX indicating
Fixed Area. Columns 13 and 14 always contain
WS, since the *STOREDATA always takes some
number of sectors from WS and adds them to UA
or FX.

Note that there is no Fixed Area on a disk car-
tridge unless you have defined one with a *DEFINE
FIXED AREA card.

Section Subsections 	 Page

80
	

40
	

00
	

01

RECORD LENGTHS AND SECTOR UTILIZATION

Remember, the disk is physically composed of
sectors, each containing 320 words. A symbolic
record may not cross the boundary between two
physical sectors; in other words, a record must
lie entirely within one sector of 320 words. This
means that a record cannot exceed 320 words in
length. (Actually, it is possible to have records
longer than 320 words, using a trick covered in a
later subsection.) It does not mean that only one
record may occupy a sector; it is possible that
many records will be placed on one sector. For
example, if your record size is twelve words, you
may place 26 records onto each sector (26x12 = 312
words), with eight words (320-312) words remaining.
These eight words will not be used for two-thirds of
the 27th record, since that would violate the rule
spelled out above. The remaining eight words will
not be used, and are inaccessible to the FORTRAN
programmer.

It goes without saying that you will gain the most
efficient use of your disk if you utilize all 320 words
of every sector. As the previous example shows,
however, this may not always occur. Figure 80.3
shows the relationship between record size and
sector utilization.

Clearly, certain record lengths result in very
poor disk utilization. Take a 65-word record, for
example. It will allow four records per sector,
using 4x65 or 260 words, but leaving the remaining
60 words (about 20% of the sector) unused. On the
other hand, if you could reduce the length of that
record by one word, to 64, you could fit five records
in a sector, using 5x64 or 320 words, and wasting
none.

Inefficient use of the disk can have two major
effects on your overall system:

1. A given number of records may require more
space than is available on the disk. If you have 800
employee records at two per sector, you need 400
sectors or 50 cylinders, fully 25% of the disk. If
you could fit three records per sector, your total
sector requirements would drop to 234, or 30
cylinders. It is entirely possible that there are 30
cylinders available on a particular disk, but not 50.

In this case you either have to abandon the job, delete
something else from the disk, or shorten the record
size.

2. Even if 50 cylinders are available, you can-
not escape the fact that you are using them ineffi-
ciently. If your 800 employee records are spread
out over 50 cylinders, rather than 30, you will spend
proportionately more time in disk arm movement.
Your records will be 67% further apart, and your
disk arm seek time will be about the same percent-
age greater.

Thus you have two incentives to make your disk
records as short as possible. Several techniques
for doing so are given in the subsection 80.60.00.

For long records (46 words or more), you should
inspect your record size to determine whether it is
at or slightly above a boundary, or break point --
46, 54, 65, 81, 107, or 161 words. (See Figure
80.3.) If this is the case, it is worth considerable
effort to shorten this record enough to increase the
"packing factor" by one.

For medium records (19 to 45 words in length) the
record size is always near a boundary or break point,
so the packing factor can be increased by one or two
with a small reduction in record length. With records
of this length, however, it becomes more difficult
to find ways to shorten the records.

For short records (9 to 18 words in length), even
greater improvements are theoretically possible,
but are proportionately more difficult to obtain.

NOTE: When shortening disk record lengths,
always keep future needs in mind.

Record

Length

Records

per Sector

Record

Length

Records

per Sector

Record

Length

Records

per Sector

Record

Length

Records

per Sector

1 320 10 32 19 - 20 16 41 - 45 7

2 16 11 29 21 15 46 - 53 6

3 106 12 26 22 14 54 - 64 5

4 80 13 24 23 - 24 13 65 - 80 4

5 64 14 22 25 - 26 12 81 - 106 3

6 53 15 21 27 - 29 11 107 - 160 2

7 45 16 20 30 - 32 10 161 - 320 1

8 40 17 18 33 - 35 9 cannot exceed 320

9 35 18 17 36 - 40 8

Figure 80.3.

Section Subsections Page

80 40 10 01

A Trick to Get Long Records and/or Better
Packing

If you have records exceeding 320 words in length,
or records of a length that yields very poor packing,
you may wish to employ a trick, or, more properly,
an unorthodox usage of FORTRAN. This usage takes
advantage of the fact that an 1130 FORTRAN READ/
WRITE I/O list will be satisfied, regardless of the
FORMAT or DEFINE FILE statement.

For example, if we say

DIMENSION ITEMS(500)

• •	 •
READ (6'N) ITEMS

500 ITEMS will be read from the disk, starting at
record number N. It would not matter if the state-
ment:

DEFINE FILE 6(100, 100, U, NEXT)

were used, indicating 100-word records. In fact,
no matter what the DEFINE FILE statement contains,
the entire ITEM array will be read, whether it ex-
ceeds 320 or not.

The DEFINE FILE statement has one effect, how-
ever, in that it still defines the length of the"defined"
record at 100 words. Reading the 500-word array
merely means that we have read five "defined"
records. If N were 100, you would have to increment
it by five to read the next 500 words or block of
five 100-word records.

The DEFINE FILE statement, then, must define:
1. A file that contains enough space to hold all

the data to be placed in it
2. A record length less than 320
3. Preferably, a record length evenly divisible

into 320 -- that is, 320, 160, 80, 64, 40, 32, 20,
16, 10, 8, 5, 4, 2, 1.

To illustrate, suppose you have a file containing
100 records, each with 400 words. Since

DEFINE FILE 1(100, 400, U, N)
is not allowable, you could alternately specify

DEFINE FILE 2(200, 200, U, N)
DEFINE FILE 3(400, 100, U, N)
DEFINE FILE 4(800, 50, U, N)
DEFINE FILE 5(500, 80, U, N),

Note that all four files fulfill the first two rules:
same number of words as file number 1 (40, 000) and
record length less than 320. However, only FILE 5
meets the third rule; 80 is evenly divisible into 320,
while 200, 100, and 50 are not.

The reason for the third rule should be self-
evident in light of the previous material in this
section:

• The FILE 2 combination (200, 200) results in
only one record per sector, with 320-200 or 120
words on each wasted. Total file size would be
200 sectors.

• FILE 3 (400, 100) gives three records per
sector, with 320 -3 x 100 or 20 words wasted. Total
file size is 400/3 or 134 sectors.

• FILE 4 (800, 50) yields six records per sector,
with 320 -6 x 50 or 20 words wasted. Total file
size is also 134 sectors.

• FILE 5 (500, 80) results in four records per
sector, with 320 -4 x 80 or no words wasted. Total
file size is 500/4 or 125 sectors.

To implement this trick, you need change only
the DEFINE FILE statement and the incrementing/
decrementing logic in existing programs. For
example, if you have a file that formerly contained
400 records of 196 words each:

DEFINE FILE 6 (400, 196, U, NEXT)

you now realize that it will use each sector quite
inefficiently. Therefore, you choose instead to
use

DEFINE FILE 6 (1600, 50, U, NEXT)

which replaces the old 196-word record with four
50-word records. (In addition to better packing,
you gain four words in each record.) In the body of
your program, where you coded

N N + 1
READ (6'N) data

you use instead
N = N + 4

and so on throughout the program.
Where you use the automatically incremented

parameter NEXT

READ (6'NEXT) data -

you need do nothing; NEXT will automatically reflect
etc.	 the number of defined records that have been proc-

essed, and will be incremented by 4 rather than 1.

	

Section Subsections	 Page

80
	

50
	

00
	

01

COMPUTING RECORD LENGTH

Once you have decided what data will be included in
your disk record, you may easily calculate the
length of the record by listing the fields in the record,
totalling the number of real fields (called R), the
number of integer fields (called I), and using the
table below to determine the number of words:

*EXTENDED
PRECISION
Card Used

No
Precision
Card Used

*ONE
WORD
INTEGERS WORDS = WORDS =
Card Used (3xR)+I (2xR)+I

No
Integers WORDS = WORDS =
Card Used (3xR)+(3xI) (2xR)+(2xI)

In the case of fields comprising the items of an
array (often alphameric data), the number of items
is the size of the array. For example, if you have
a field consisting of a 16-character name, placed
two characters per word (A2 format) in the array
NAME, this will count as eight items rather than
one, when you are calculating I.

The task is simplified by the fact that *ONE
WORD INTEGERS should always be used, reducing
all integers to one word per field. Except in very
unusual cases, you should compile all of your pro-
grams using the *ONE WORD INTEGERS control
card.

Section Subsections Page

80 60 00 01

SHORTENING RECORD LENGTH

The following suggestions will help you shorten the
length of disk records. The first three should be
taken regardless of record length, since they rep-
resent good programming practice and involve little
or no effort. Suggestions 4-7 involve more pro-
gramming effort and core storage. You must deter-
mine how much effort it is worth to gain more space
on the disk.

1. First and foremost, each item in the disk
record should be inspected to determine whether it
really must be in this record. Can it be eliminated
entirely, or placed in a separate file?

2. You should decide whether standard or ex-
tended precision should be used. The decision is
usually based on other considerations; extended
precision is normally used, but it does no harm
to re-ask this question.

3. You should make certain that the *ONE WORD
INTEGERS control record is included when compiling
all programs. If not, each integer will occupy two
or three words, depending on the use of standard or
extended precision.

4. Each real (floating point) field should be
studied with an eye toward converting it to integer
mode. Remember, in most cases integers require
only one word; real fields, three words. Integers
are limited to a magnitude of 32767, but many items
in your application may never exceed this limit,
which may be thought of as

32767	 units, pieces
327.67	 dollars, hours, percent
3.2767	 pay rate, etc

where the decimal points are implied and handled
by you. Some typical items that lend themselves
to such treatment are:

• Discount and interest rates
• Prices or price differentials
• Inventory -- quantity on hand, quantity on

order, etc.
• Payroll -- savings bond deduction, city and

state taxes, miscellaneous deductions

5. Alphabetic data should be placed on the disk
with two characters per word (A2) rather than one
(Al). In many cases, data (numeric and alphabetic)
will be read from a card using Al format (one char-
acter per word) for later processing with the Com-
mercial Subroutine Package. Before this data is
written on the disk, it may be compressed into
two-characters-per-word format (A2), using the
PACK subroutine supplied with CSP. Typical items
in this category include names and addresses, de-
scriptions, Social Security numbers, etc.

6. If necessary, three alphabetic characters can
be placed in one word for disk storage. This can be
done by subroutine that involves a table of 40 EBCDIC
codes and a packing/unpacking formula. Only 40
characters are allowed -- for example:

0123456789ABC 	 XYZb-. ,

where b signifies a blank.
If you have just read the three characters B2-

(called LTR1, LTR2, and LTR3 respectively) from
a card with Al format, the subroutine can look up
their positions in the table and find that:

LTR1, a B, is 12th
LTR2, a 2, is 3rd
LTR3, a -, is 38th

Then, using the formula

INA3 = LTR3 + 40*LTR2+ (LTR1-20)*1600
or INA3 = 38 + 40*3 + (12-20) * 1600
the subroutine obtains -12642.

This is a unique representation of the three char-
acters B2-, and can be placed on the disk as one
word.

To decode after reading from the disk, the sub-
routine manipulates INA3 to obtain LTR1, LTR2,
and LTR3:

1(32, 000 + INA3)/1600 if negative'LTRI =	 = 12INA3/1600 + 20	 if positive
LTR2 = (INA3 - 1600 * LTR1-20)/40 = 3
LTR3 = (INA3 - 1600 * (LTR1-20) - 40*LTR2) = 38
Looking up these three codes from the same table,

you may return to Al format.

	

Section Subsections
	 Page

80
	

60
	

00
	

02

7. In many cases, several values may be com-
bined into one word. For example, in a payroll file,
you might have four different variables:

IE (Exempt or nonexempt)
1 = EXEMPT
2 = NONEXEMPT

MSC (Marital Status Code)
1 = SINGLE
2 = MARRIED

MORF(Male OR Female)
1 = MALE
2 = FEMALE

NDEP(Number of DEPendents)
0 through 99

One way to compress these four items into a five-
digit word (called KODE) is:

Digit 1 2 3 4 5

Description
Exempt

or
nonexempt

Marital
status
code

Male
or

female

Number
of

dependents

Variable
Name

IE MSC MORF NDEP

For example, if KODE = 22103, this employee is:
• Nonexempt (digit 1 is 2)
• Married (digit 2 is 2)
• Male (digit 3 is 1)
• With three dependents (digits 4 and 5 are 03)

To compress these values before writing on the
disk, all you need do is

KODE= (IE*10000)+(MSC*1000)+MORF*100)+NDEP

To decompress the word KODE after reading it
from the disk, you could use a function similar to
the one below, called NDIG

FUNCTION NDIG (N, IT)
DIMENSION IZ(6)
DATA IZ/32767, 10000, 1000, 100, 10, 1/
NDIG = IT/IZ(N+1)-IT/IZ(N)*10
RETURN
END

Using this function
IE	 = NDIG (1, KODE)
MSC	 = NDIG (2, KODE)
MORF = NDIG (3, KODE)
NDEP = NDIG (4, KODE)*10+NDIG(5, KODE)
etc.

In this case, such a packing technique will save
three words on each disk record (by using one word
rather than four). This may or may not be worth
the added programming involved, the additional
core storage required for the function, and the
packing/unpacking coding.

Don't forget that KODE is an integer, and its
magnitude is limited to 32767. To be safe, you
should plan for a limit of 29999 for such compressed
words.

Section Subsections Page

80 70 10 01

SOME EXAMPLES OF DISK FILE SETUP

Example 1.

A program reads a deck of cards and builds two
large tables of data. The individual data items are
of no particular interest; however, after the last
input card has beenprocessed, you want to sum-
marize the data tables and print a summary report.
The data tables required are so large that they can-
not fit in core storage; therefore, you decide to use
the disk as an extension of core storage to accu-
mulate the two tables.

After this job has been run, you have no need for
the data, so you decide to keep it in Working Storage
(WS).

Two files are required, numbered 1 and 2, and
any disk cartridge may be used. Each of the two
files contains 100 records of 150 words each.

Since the files are of a temporary nature and
will remain in Working Storage, neither a *STORE-
DATA card nor a *FILES card is required; con-
sequently the files have no names, only numbers.
The next two exhibits show how the Disk File Lay-
out Worksheet would be filled in for these two files.

Description
of File

File
Number

File
Name

(I 	 1	 1

I, I) If ID number is not used

Number of
Records

DEFINE FILE

Record

Length

Records

per Sector

Record

Length

Records

per Sector

Record

Length

Records

per Sector

Record

Length

Records

per Sector

1 320 10 32 19 - 20 16 41 - 45 7

2 16 11 29 21 15 46 - 53 6

3 106 12 26 22 14 54 - 64 5

4 80 13 24 23 - 24 13 65 - 80 4

5 64 14 22 25 - 26 12 81 - 106 3

6 53 '15 21 27 - 29 11 107 - 160 2

7 45 16 20 30 - 32 10 161 - 320 /

8 40 17 18 33 - 35 9 cannot exceed 320

9 35 18 17 36 - 40

17 18

File to be
placed in:

DISK FILE LAYOUT WORKSHEET

	

Section Subsections	 Page

80	 70	 10
	 02

Description
of File 72/62 E 0A- SALL-5 ,BY ,4/e Z.4

Cartridge
ID Number

Number of
Words per
Record

Number of
Records

DEFINE FILE

Record

Length

Records

per Sector

Record

Length

Records

per Sector

Record

Length

Records

per Sector

Record

Length

Records

per Sector

1 320 10 32 19 - 20 16 41 - 45 7

2 160 11 29 21 15 46 - 53 6

3 106 12 26 22 10 54 - 64 5

4 00 13 24 23 - 24 13 65 - 80 4

5 60 14 22 25 - 26 12 81 - 106 3

6 53 15 21 27 - 29 11 107 - 160 2

7 45 16 20 30 - 32 10 161 - 320 1

40 17 18 33 - 35 9 cannot exceed 320

9 36 18 17 36 - 40 8

11	 I	 I	 I	 i	 i	 1	 1	 1	 1

	

21 22

File	 Number
25 	 27 28 29 30	 37 38 39le

	

Name	
Number of	 Cartridge

Sectors	 ID Number

17 18

1File
Number

File
Name

Section Subsections Page

80 70 10 03

DISK FILE LAYOUT WORKSHEET

Rounded
Upward

Don't need
*STORE DATA

card

13 14 17 18

DISK FILE LAYOUT WORKSHEET

Description
of File

—
/ 4.,e5Z	 Z 4-S a?"' /	 AS

File
Number

File
Name

Cartridge
ID Number

*FILES (
11

OR *FILES (I) If ID number is not used
e e

21 22 23 24 25

File
Name

27 28 29 30

Number of
Sectors

I I
37 38 39 40

Cartridge
ID Number

Record
Lends

Recordsords

per Sector

Record
Length

Records

per Sector

Record
Length

Records

Per Sector

10 32 19 - 20 16 41 - 45 7

11 29 21 15 46 - 53 6

12 26 12 14 54 - 64 5

13 24 23 - 24 13 65 - 80 4

14 22 25 - 26 12 81 - 106 3

15 21 27 - 29 11 107 - 160 2

16 20 30 - 32 10 161 - 320 1

17 18 33 - 35 9 cannot exceed 320

18 17 36 - 40 8

9 9

Number of
Records

Record
Length

Records
per Sector

1 320

2 160

3 106

4 80

5 64

6 53

7 45

8 40

9 15

 Number of
Records per
Sector

WS
L

STORE DATA

File to be
placed in:

WS UA FX

	

Section Subsections	 Page

80	 70	 10	 04

Section Subsections Page

80 70 20 01

Example 2.

A payroll and project cost accounting system in-
volves four disk data files:

EMPS - 300 employee records with 60 words
per record.

PROJ - 100 project records with 20 words
per record.

DDESC - 20 records of 18 words each, con-
taining some alphabetic information
for each of 20 departments.

SUBT - 20 records of 60 words each, con-
taining an array of subtotals of
department worked for vs department

charged to. This is a temporary
file used only as an extension of
core storage, not saved from job to
job.

Assume you have only one disk drive and don't
care which disk cartridge is mounted. (You really
do, but you, rather than the Monitor, will make
sure the correct disk is being used.)

With this basic data, you can fill in the Disk File
Layout Worksheets and punch the necessary cards.
Note that file 9 (SUBT) does not need a *FILES OR
*STOREDATA card, since it is not to be saved
from one job to another. It does require a DEFINE
FILE card.

Description 4-4,,,,z e:7 ,>,...E-.6- ien-6-0,,w5
of File

6
File
Name

File
Number

OR •FILES

DISK FILE LAYOUT WORKSHEET

Record

Length

Recur

per Sector

eard
L

Records

Sector

Record

Length

Records
par Sector

Record
Length

Records

per Sector

1 320 10 32 19 - /6 41	 45 7

2 160 lI 29 21 1 48-53 6

3 106 12 26 22 54 - 64 5

4 BO 13 24 23	 4 13 85-80 4

5 64 14 22 5-26 12 81 - 106 3

6 53 15 21 27 - 213 11 107 - 160 2

7 45 16 20 30 - 32 10 161 - 320 1

8 40 17 18 33 - 35 9 unrest exceed 320

35 18 1 36 - 40 8

Number of
Records

Number of
Records per
Sector

File to be
placed in:

WS UA FX 30D
•ir -5- 60

iDon't need
*STORE DATA
card

Rounded
Upward

let4P:51
21 22 23 24 25

File
Name

1 61 e:31 	 I	 ■	 1	 i
27 28 29 30	 37 38 39 40
Number of	 Cartridge

Sectors	 ID Number

L
STORE DATA W S ,

17 18

	

Section Subsections
	

Page

80
	

70
	

20
	

02

''STORE DATA
1	 i

37 38 39 40

Cartridge
ID Number

w s	
IV,4	 IP(?,0,e/ I I , ,7,2I	 I	 I

13 14	 17 18	 21 22 23 24 25	 27 28 29 30

File	 Number of
Name	 Sectors

DISK FILE LAYOUT WORKSHEET

Description
of File A.A4sre72 /c7.eo c%'C7 COSTS
File
Number 71- FileI Name

Cartridge
ID Number

Record
Length

Records
per Sector

Race

Length
Records

or
Record

Length
Records
per Sector

Reccird

Length
Records
pet Sector

1 320 10 32 19 - 20 16 41 - 45 7

2 160 11 29 1 IS 40 - 53 6

3 106 12 26 12 14') 54 - 64 5

4 80 13 24 23 - 24 13 65 - 80 4

5 64 14 22 25 - 26 12 81 - 106 3

6 53 15 21 27 - 29 11 107 - 160 2

7 45 16 20 30 - 32 10 161 - 320 1

8 40 17 18 33'- 35 9 cannot exceed 320

9 36 10 17 36 - 40 6

Number of
Records

Number of
Records per
SectorFile to be

placed in:

I /000

Don't need
*STORE DATA
card

WS 10 FX

Rounded
Upward

It'l l

	I)

Section Subsections Page

80 70 20 03

File
Name

File
Number

Cartridge
ID NumberEENSIBil

*FILES I	 1 .1 	 I)

/2/If:CC') If ID number is not used1

Next
Indicator I 114'13131
Number of
Words per
Record /6?
Number of
Records

DEFINE FILE

20

Record

Length

Re	 rds

per 5	 tor

Record

Length

Records

par Sector

Record

Length

Records

per Sector
Record
Length

Records

per Sector

1 320 10 32 19 - 20 16 41 - 45 7

2 16 11 29 21 15 46 - 53 6

3 106 12 26 n 14 54 - 64 5

4 80 13 24 23 - 24 13 65 - 80 4

5 64 22 26 - 26 12 81 - 106 3

6 5 1 21 27 - 29 11 107 - 160 2

7 45 I6 20 30 - 32 10 161 - 320 I

8 40 17 18 33 - 35 9 cannot exceed 320

9 35 Cla , 36 - 40 8

Number of
Records

I	 I	 I

21 22 23 24 25	 27 28 29 30	 37 38 39 40

File	 Number of	 Cartridge
Name	 Sectors	 ID Number

17 18

WS
I

13 14

Don't need
*STORE DATA
card

*STORE DATA

OR *FILES

File to be
placed in:

WS UA J FX

Number of
Records per
Sector

DISK FILE LAYOUT WORKSHEET

Description D 'sciezer/o4/5 OF ,z9t/6).4,4:77-/W,e7t/T5of File

	

Section Subsections	 Page

80	 70	 20	 04

9 I File
Name

File
Number MENE■

1 1 1 14/1g1

Rounded
Upward

Don't Id
*STORE DATA
card

W S
17 18

*STORE DATA
21 22 23 24 25

File
Name

II	 III	 I	 I	 I	 I
27 28 2930	 37 38 3940

Number of	 Cartridge
Sectors	 ID Number

DISK FILE LAYOUT WORKSHEET

Description ,..5e/6, 7-4, TA Z. Sof File

	 I	 	 I)

(.5e/ri) If ID number is not used

Record

Length

Records

per Sector

-...	 	.
Ram'
Leorh par Sector

Record

Le

Records
tOr

Record

Length
Records

For Sector

1 320 10 32 19 - 20 16 41 - 7

2 160 29 21 15 46 - 53 6

3 106 12 26 22 14 /.54 - 64

5.)

4 80 13 24 23 - 24 65 - 80 4

5 64 14 22 25 - 12 81 - 106 3

6 53 15 21, 2 -29 II 107 -160 2

7 45 16 20 30 - 32 10 161 - 320 1

8 40 17 18 33 - 35 9 cennot exceed 320

9 36 18 17 36 - 40 0

Number of
Records per
Sector

Cartridge
ID Number

File to be
placed in:

UA FX

Section Subsections Page

80 70 20 05

Section Subsections 	 Page

80
	

70
	

30
	

01

Example 3.

This is the same job as in example 2, except
that two disk drives are now available and you are
going to be more careful about which disk cartridge
is mounted on which drive unit:

DRIVE 0 DRIVE 1

CARTRIDGE ID 0012 CARTRIDGE ID 0019

WS UA FX WS UA FX

EMPS SUBT PROJ

DDE SC

First, you have decided that cartridge 0012 will
be on drive 0 and cartridge 0019 on drive 1. How
is this communicated to the Monitor? It is done
with the // JOB card, which must be punched

1 2 3 4 5 6 7 6 9 10 11 12 13 14 15 /6 17 18 19 20 21 22 23 24 25 26 27 2829 3031 1233 34 35M37 3839 4141 42434445

// JOB	 00/2 00/9

File SUBT, since it is in WS, really does not need
a name (or a *FILES or *STOREDATA card). How,
then, can you tell the 1130 Monitor on which disk
drive it should be placed? Again, with the // JOB
card. Columns 41-44 should contain the cartridge
ID number of the disk to be used for Working
Storage, in this case 0019.

The special // JOB card

1 2 3 4 5 6 7 6 9 10 11 12 13 14 13 16 17 18 19 20 21 22 23 24 25 26 27 28 29 3001 3233 M3536 37 3839 404i 42434445

// 108	 00/2 00/9	 GG/9

must be used when running the DUP *STOREDATA
jobs and when executing the programs that use
these files. Needless to say, the disk cartridges
should be placed in the proper disk drive units.

The remaining three files (EMPS, PROJ, AND
DDESC) are handled in a different manner. Since
they are to be in the UA, they do require *FILES
and *STOREDATA cards, which contain a field
for placing the cartridge ID number. These are
shown on the Disk File Layout Worksheets follow-
ing.

Description .E-4/c2z,,5"›,,E-Z- ,,..)&—e(--jx?"..)Sof File
I File

Name
File
Number CO kEWI/151 I Cartridge

ID Number 1010 1/1 21

Number of
Records

ao

Section Subsections Page

80 70 30 02

DISK FILE LAYOUT WORKSHEET

le---iti/CSI 9 10D/2 I I

	 I) If ID number is not used

Next
Indicator 11111M
Number of
Words per
Record

Record

Length

Record,

per Sector

Record

Length

Records

par Sector

Record

Length

Records

per Sector

Retold

Length

Records

per Sector

1 320 10 32 19 - 20 16 41 - 45 7

2 160 11 29 21 15 46 - 53 6

3 106 12 26 12 14 54 - 64 ---r,

4 80 13 24 23 - 24 13 65 - 80 4

5 64 14 22 25 - 26 12 81 - 106 3
6 53 15 21 27 - 29 11 107 - 160

7 45 16 20 30 - 32 10 161 - 320 1

8 40 17 18 33 - 35 9 cannot exceed 320

9 AP 18 17 36 - 40 8

File to be
placed in:

WS 410 FX

Don't need
*STORE DATA
card

Number of
Records per
Sector

_5-

Rounded
Upward

*STORE DATA WS /11,4'1 44/2„5.,
21 22 23 24 25

File
Name

4.to
27 28 29 30

Number of
Sectors

0,0,/ ,2
37 38 39 40

Cartridge
ID Number

13 14 17 18

Description
of File ,L=?204../C7-- 6-0.5715
File
Number 74 File

Name 1/14 01d1 I Cartridge
ID Number lo101/191

I /2/e0d1 loo/9	 I i

	
I) If ID number is not used

Record

Length

Records

per Sector

Record

Length

Records

per Sector

Record

Length

Records
per Sector

Record

Length

Accords

per Sector

1 320 10 32 19 - 20 16 41 - 45 7

2 16 11 29 21 15 46 - 53 6

3 106 12 26 '":fi--..—---17) 54 - 64 5

4 80 13 24 23 - 24 13 65 - BO 4

5 64 14 22 25 - 26 12 81 - 106 3

6 53 15 21 27 - 29 11 107 - 150 2

7 45 16 20 30 - 32 10 161 - 320 1

8 4 17 16 33 - 35 9 cannot exceed 320

9 35 18 17 36 - 40 8

*STORE DATA

17 18 27 28 29 30	 37 38 39 40

Number of	 Cartridge
Sectors	 ID Number

DISK FILE LAYOUT WORKSHEET

	

Section Subsections	 Page

80	 70	 30	 03

Description 	 10A- .ph/12,41/e7,fri/t/o7.5'of File

10101/191

Record
Length

Records
per Sector

lecord
Length

Records

per Sector

Record

Length
Records
per Sector

Record

Length

Records

per Sector

1 320 10 32 19-20 16 41 - 45 7

160 11 29 21 15 46 - 53 6

3 106 12 26 22 14 54 - 64 5

4 80 13 24 23 - 24 13 65 - 80 4

5 64 10 22 25 - 26 12 81 - 106 3

6 53 15 21 27 -29 11 107 - 160 2

7 45 16 20 30 - 32 10 161 - 320 1

8 40 j1.---, 33 - 35 9 cannot exceed 320

9 35 18	 17 36 - 40 8

Don't riled
*STORE DATA
card	 ii

Rounded
Upward

.33File
Number I

File
Name

*STORE DATA WS

Section Subsections Page

80 70 30 04

DISK FILE LAYOUT WORKSHEET

6,451C I	 /1-91
27 28 29 30	 37 38 39 40

File	 Number of	 Cartridge
Name	 Sectors	 ID Number

13 14
	

17 18	 21 22 23 24 25

Cartridge
ID Number 10101/ 191

Record

Length

Records

per Sector

Record

Length

Records

per Sector

Record

Length

Records

per Sector

Record

Length

Records

per Sector

1 320 10 32 19 - 20 16 41 - 45 7

2 160 11 29 21 15 46 - 53 6

3 106 12 26 22 14 54 - 64 5

0 00 13 24 23 - 24 13 65 - 80 4

5 64 10 22 25 - 26 12 81 - 106 3

6 53 15 21 27 - 29 11 107 - 160 2

45 16 20 30 - 32 10 161 - 320 I

8 40 17 18 33 - 35 9 cannot exceed 320

9 36 18 17 36 - 40 8

1	 1	 1	 I	 I	 I	 I	 I	 I	 I	 1	 1	 1	 1	 1	 1	 I	 I	 f	 t

13 14	 17 18	 21 22 23 24 25	 27 28 29 30	 37 38 39 40

File	 Number of	 Cartridge
Name	 Sectors	 ID Number

File
Name

File
Number

DISK FILE LAYOUT WORKSHEET

Description
of File	 S /8 7 7,4

	

Section Subsections	 Page

80
	

70
	

30
	

05

Section
	

Subsections	 Page

85
	

00
	

00
	

01

SECTION 85: DISK DATA FILES -- ORGANIZATION
AND PROCESSING

CONTENTS

General 	
Organization 	

General 	
Pure Sequential 	

Searching a Pure Sequential File
Adding Items to the File

Indexed Sequential 	
Choosing an Index Step Size
Building the Index
Searching the Index
Maintaining the Index
Adding Items to the File

85.01.00
	

Direct, or Random
85. 10. 00	 Organizations 	 	 85.10.30
85.10.01	 Direct
85.10.10	 Computed Direct

Partitioned Direct
Summary

85.10 20	 Processing 	 	 85.20.00

The Interaction of Organization and
Processing 	 	 85.30.00

Introduction 	 	 85.30.01
Choosing the Organization 	 	 85.30.10

	

Section Subsections 	 Page

85
	

01
	

00
	

0 1

GENERAL

Data records should be filed according to a plan.
The relationships between file organization and data
processing should be carefully considered before
this plan is chosen. With a disk, both storage and
processing can be accomplished by either of two
basic methods - sequential or direct (or random).
Thus the following four storage-processing ap-
proaches are available:

Sequential processing of sequentially organized
data

Random processing of sequentially organized
data

Sequential processing of randomly organized
data

Random processing of randomly organized
data

The first two are the most commonly used ap-
proaches. The third and fourth are of limited use
in most applications. However, the fourth offers
some benefits (in selected applications), particularly
when the data files undergo frequent additions and
deletions, or when most of the transactions must be
processed randomly.

Section Subsections Page

85 10 01 01

ORGANIZATION

General

In a sequentially organized file, records are stored
on the disk in control key sequence, so that records
with successively higher control keys have succes-
sively higher record numbers. It is not necessary
(or customary) for the control key to be the same
number as the record number. The only require-
ment is that the control keys be in sequence, and in
sequential (not necessarily consecutive) locations.
Often, to narrow the search for a record in a se-
quential file, an index is consulted for the record
number. This index is a sequential list of the keys

of selected data file records with their correspond-
ing record numbers. An example of a sequentially
organized data file is a telephone directory, in which
people are listed one after the other, in alphabetic
order, the control key being the last name/first
name combination, and the data being the telephone
number.

In a randomly organized file, the records are
generally stored in the sequence of their control
keys. However, a mathematical transformation of
the control key yields the record number. To find
a record in such a file, the record number is com-
puted from the control key by using the same trans-
formation formula. In the random approach no index
tables are required.

Section
	

Subsections
	 Page

85
	 1 0 	 10	 01

Pure Sequential

In a purely sequential disk data file, your records
are placed on the disk in some logical order, with
no attempt to organize them or to keep track of
where they are placed. If a certain record is de-
sired, the disk is searched sequentially until that
record is found.

Searching a Pure Sequential File

Searching a pure sequential file is simple, but
finding any particular record may be time-consuming
in the case of large files. (If you are processing
only a small number of records, however, the effect
on the overall running time may be slight.) If you
have a file of 1000 records, you can search for the
item with key KEYXX, using the following FORTRAN
statements:

DO 14 NREC=1,1000
READ (NFILE'NREC) KEY
IF (KEY-KEYXX) 14, 77, 14

14 CONTINUE

77 KEYXX has been found at record NREC.

KEY is the control key on the disk record, and
KEYXX is the key you are searching for. If
KEYXX is the 608th item, you will read, check, and
get "no hit" on 607 items before reaching the 608th.
A better way to search such a file is obvious: read
every nth record until you pass the key being sought,
then back up one record at a time until you find
KEYXX.

DO 14 NREC=1, 1000, NTH
IREC = NREC

8 READ (NFILE'IREC) KEY
IF (KEY-KEYXX) 14, 77, 66

66 IREC = IREC-1
GO TO 8

14 CONTINUE

77 KEYXX has been found at record IREC.

If n is 20, you will read and check 32 records
(1, 21, 41, 61, 	 601, 621) until you have
passed the desired item (KEYXX, the 608th). Then
13 more records in the backing-up portion of the
search (620, 619, 618, 	 609, 608) must be
read. Here, the "skip" search has reduced your
disk reads from 608 to 45, with a concurrent drop
in processing time.

A further improvement can be made if you search
first in large increments (say 100), then, when you
pass the desired item, back up with a smaller in-
crement (say 20) and, after passing the desired
item the second time, switch to an increment of 1.
Again, looking for the 608th item, the search will
be - 1, 101, 201, 301, 401, 501, 601, 701, 681,
661, 641, 621, 601, 602, 603, 604, 605, 606, 607,
608, which involves 20 disk reads.

All the methods shown above, however, have one
disadvantage: because they start at record number
1, the disk arm must move back to that record
each time. A more elegant search technique would
involve starting from wherever you found the last
record, rather than from the beginning of the file.
This assumes that the disk arm is still positioned
over the last record, but it will not be so positioned
if you have meanwhile used LOCAL or SOCAL sub-
routines or accessed a record in another file on the
same disk. This technique, therefore, is often
impractical.

Another technique involves the method of halving,
sometimes called a binary search. Suppose you
have a file of 1000 records and you want to find the
record whose key is KEYXX. First, halve the file
size to obtain 500, and check the 500th record. If
you do not find KEYXX there, halve the 500 to obtain
250 and, if the 500th record KEY was higher than
KEYXX, check 500-250 or 250 next; if it was lower,
check 500+250 or 750 next. The increment next
becomes 125, then 63 (62.5 rounded upward), then
32 (31.5 rounded upward), etc. Using the previous
example (KEY)0C is the 608th item), your search
pattern would have been:

500 first try
low, so +250

750 second try
high, so -125

625 third try
high, so - 63

562 fourth try
low, so + 32

594 fifth try
low, so + 16

610 sixth try
high, so - 8

602 seventh try
low, so + 4

606 eighth try
low, so + 2
hit	 608 ninth try

a sequence of only nine disk reads.

Section Subsections Page

85 10 10 02

Adding Items to the File

Adding new records to a sequential file involves
some advance planning. If your employee file now
consists of 188 employee records in man number
sequence

018, 023, 067, 107, 109, 	 667, 691, 806, 902

where should you put the newest employee, who has
just been assigned man number 098? You could
rebuild the entire file, but that might prove time-
consuming in the case of large files.

One way to handle file additions is to set up a
separate "addition area" on the disk, either as a
separate file or as a special area in the main file.
With the latter option, new employees would be
placed at the end of the file, starting with the last
record and working backward.

For example, suppose the 188 employee records
have been placed in a 200-record file. When man
number 098 is added, it is placed in record number
200; the next new man number goes in 199; and so
on.

The search programming becomes somewhat
more involved: if a man number is not found in the
main (sequential) portion of the file, the "addition
area" is searched. If it is not found in either place,
an error message is printed.

Since this added work will slow the running of the
program, the file should be reorganized periodically,
and new man numbers put in their proper places in
the sequential file.

Programming such a search is easy:

NREC = 0
INC = 500

3 INC = (INC+1)/2
READ (NFILE'NREC) KEY
IF (KEY-KEYXX) 8, 9,10

8 NREC NREC + INC
GO TO 3

10 NREC = NREC-INC
GO TO 3

9 KEYXX has been found at record NREC.

	

Section Subsections 	 Page

85
	 10
	

20	 01

Indexed Sequential

An indexed sequential file is essentially the same as
a pure sequential file except that you maintain a
table or index to the file, making it easier to find
records. Suppose you have an inventory file con-
taining 2500 items, with stock numbers ranging from
00001 to 28406. The stock number is kept as an
integer, and the items have been placed on the disk
in stock number sequence. In order to find an item
on the disk, you will maintain an index consisting of
the stock number of every 25th item. This will be a
FORTRAN array in core storage. It will require
2500/25 or 100 entries in the index table:

INDEX (1) = 67, the stock number of the 25th
item

INDEX (2) = 103, the stock number of the 50th
item

INDEX (3.) = 297, the stock number of the 75th
item

• • •

• • •

.	 .	 .

INDEX (99) = 28073, the stock number of the
2475th item

INDEX (100) = 28406, the stock number of the
2500th item

When it comes time to find an item on the disk,
you first look for it in the core storage array INDEX.
You probably will not find that particular item in the
INDEX array, but you can get a good idea of its
location. Suppose you have just read a card con-
taining ITEM number 181. You look it up in the
INDEX table as follows:

INDEX (1) = 67, which is lower than 181
INDEX (2) = 103, which is lower than 181
INDEX (3) = 297, which is higher than 181

The search stops here, since it is obvious that you
have just passed item number 181 in the process of
moving from INDEX (2) to INDEX (3). Since INDEX
(2) is the 2x25 or 50th disk record and INDEX (3) is
the 3x25 or 75th disk record, you know item 181 is
between records 51 and 75.

Now resume your search for item 181, this time
on the disk rather than in core. You may start at
51 and work your way up, or at 74 and back down.
In the latter case, your program reads record 74,
checks the stock number to see if it is 181, then
reads record 73, 72, 71, 70, 69, 68, etc. , down to
record 51. If 181 is on the disk and in the right
order, you will find it relatively quickly.

Choosing an Index Step Size

In the above example, 25 was arbitrarily chosen as
the index step size; in other words, every 25th item
in the file is recorded in the index table. What is
the best index step size? First, for convenience, it
should be an even divisor of the number of records
in the file. If it is not, it complicates programming.
Second, it should be about the same as or less than
the number of records in a cylinder. For example,
say your record size is 48 words. This allows six
records per sector, and 8x6 or 48 records per cylin-
der. If you have 5000 records, you can choose 40 as
your step size, making your INDEX array length
5000/40 or 125. The smaller the step size, the more
likely you are to hit the right cylinder on the first
disk arm movement. The probability that you will
find the desired record on the first cylinder accessed
is:

1 - ((STEP SIZE-1)/(2 * NO RECS PER CYL))

or in this case:

1 - ((40-1)/(2x48))

or about 0.6.
In other words, with 48 records per cylinder, and

an index of every 40th record, there are six chances
in ten that the desired record can be found with one
disk arm movement (seek), and four chances in ten
that a second seek and read will be required. Such
a second step will take about 65 milliseconds.

If you processed 225 inventory items, this second
seek and read would add about one minute to the
total running time of the job.

If you increase your step size to 50, the size of
your index table in core drops from 125 to 100 items,
but your probability of a second seek and read in-
creases from .40 to .51.

On the other hand, if you decrease your step
size to 25, your index table requires 200 entries,
but your probability of a second seek drops to .25.

Section Subsections Page

85 10 20 02

Building the index

Building your index of every 25th (or 90th, or
whatever) item in your file presents no difficulty.

Option 1: Build the index at the same time that
you load the data on the disk. All you need do is to
keep a sequential number for each item (NO) and
place its item number (or stock number, or em-
ployee number) in the INDEX array at position

NO / (ISS + 1) + 1

where ISS is the index step size. In FORTRAN,
keeping an index of every four ITEMs (ISS=4) can be
done like this:

ISS = 4
NO = 1

55 READ (card) ITEM
K = (NO-1) / ISS+1
INDEX (K) = ITEM
WRITE (file 'NO) ITEM, etc.
NO = NO + 1
GO TO 55

Tracing through this coding, you will see that in
addition to creating the data file on the disk:

The ITEM
number from
this card

will be placed
on this disk
record

and at this
position in
the INDEX table

first 1 1
second 2 1
third 3 1
fourth 4 1
fifth 5 2
sixth 6 2
seventh 7 2
eighth 8 2
ninth 9 3
etc.

When finished, the INDEX table will contain the
ITEM numbers of the 4th, 8th, 12th, 16th, etc. ,
records on the disk, just as desired. The INDEX
can now be written on the disk as a separate file,
for further use.

Option 2: Create an index file after the data
records have been placed on the disk. This is
even easier, since you need only read every 4th
(or 20th, etc.) record from the disk and place its
ITEM number in your INDEX table. Because this
would be relatively slow, you would want to do it
only once, with a separate program, storing the
INDEX as a separate data file. Then, each program
using the file could read it from the disk.

• // FOR
*EXTENDED PRECISION
*TRANSFER TRACE

41	 *ONE WORD INTEGERS
*LIST ALL
*ARITHMETIC TRACE

41	 SUBROUTINE FINDM(NRECtITEMIINFILLIIITABL,LTABLoISS,IER)
DIMENSION ITABL (1)
IER = 1

• DO 1 N = 1 • LTABL
IF (ITEM - ITABL(N)) 2	 2 9 1

1	 CONTINUE
• ITEM IS LARGER THAN THE LARGEST VALUE IN THE INDEX TABLE

IER = 2
RETURN

• 2

	

	 NREC	 155 * N
DO 3 N = 1 • 155
READ (NFILE	 NREC

• IF (KEY - ITEM) 4
6	 NREC = NREC	 1
3	 CONT INUE
C	 ITEM IS NOT IN THE FILE IN THE AREA WHERE IT SHOULD BE
4	 IER = 3
5	 RETURN

41	 END
VARIABLE ALLOCATIONS

NCI)=0000	 KEY(I)=0001

STATEMENT ALLOCATIONS

•	 1	 =0033 2	 =0042 6	 =005B 3	 =0061 4	 =006A 5	 =L/06E
FEATURES SUPPORTED
TRANSFER TRACE

41	 ARITHMETIC TRACE
ONE WORD INTEGERS
EXTENDED PRECISION

CALLED SUBPROGRAMS

•	 SIAR	 SI IF	 SUBSC	 SUBIN	 5DRED	 SDI
INTEGER CONSTANTS

•	 1=0004	 2=0005	 3=0006

CORE REQUIREMENTS FOR FINDM
COMMON	 0 VARIABLES

END OF COMPILATION

4 PROGRAM	 108

1 KEY
• 5 • 6

•

•

Section Subsections Page

85 10 20 03

Searching the Index

Unlike pure sequential organization, which is
searched on the disk, indexed sequential gives an
index to search in core storage. The simplest
approach is to search the table sequentially, one
entry at a time, starting at the top. When you find
an equal-or-less-than condition, you have found
what you are looking for. The subroutine shown in

Figure 85.1 illustrates a typical method of search-
ing an index.

You would CALL the subroutine FINDM with the
known values of:

ITEM -- the item you are searching for
ITABL -- the name of the index table
LTABL -- the length of the index table
ISS -- the index table step size
NFILE -- the number of the file

Figure 85.1.

Section Subsections Page

85 10 20 04

The subroutine returns:

NREC -- the record number where ITEM
may be found

IER -- an error code:

1 -- ITEM has been found on the disk.
2 -- ITEM is larger than any entry in

the index table.
3 -- ITEM is not on the disk where the

index table indicates that it
should be.

If IER is 2 or 3, the value of NREC returned is
meaningless.

For example, suppose you have an index of 150
entries, called ITABL, representing every 60th
item in an inventory file. After reading an inven-
tory detail card containing a field called ITEM,
you want to find the inventory record for that item.
By using subroutine FINDM

CALL FINDM (NR, ITEM, NFILE,
ITABL, 150,60, IER)

you obtain, perhaps, an NR of 731 and an IER of 1,
meaning that the desired ITEM has been found, at
record 731. You can now read the inventory record
for that item:

READ (NFILE'NR) data

Maintaining the Index

When using an indexed sequential disk data file, you
must make sure that the index agrees completely
with the file. If you rearrange records in the file
without rebuilding the index, you may expect great
difficulty in locating items in the file. Rebuilding
the index is a rather simple matter, and two
methods are given in a preceding section.

The file index is typically stored on the same
disk as the file itself, and is read into core once,
at the beginning of each program that uses the file
it indexes.

Adding Items to the File

Adding items to an indexed sequential file can
be handled in much the same manner as for pure
sequential files. New records are placed in a
separate file, or at the "high" end of the main
file.

These new items will not be reflected in the
index, but this does not matter too much. The
index may be used to facilitate looking up records
in the main portion of the file, and, if an item is
not found there, it can be sought in the addition
area.

	

Section Subsections 	 Page

85
	

10
	

30
	

01

Direct, or Random, Organizations

Direct

The simplest of all organizations exists when the
record number is the same as the control key. For
example, in a payroll application requiring one
record per employee, the record number would be
the same as the employee number. If you had a
three-digit employee number, 001 to 999, you
would set up a file of 999 records:

DEFINE FILE 1 (999, XXX, U, NEXT)

If you read an employee number from a card

77 FORMAT(I4)
READ (2, 77) NEMP

you can immediately find that employee on the disk
with

READ (1'NEMP) data
Or WRITE (1'NEMP) data

The advantages of this scheme are obvious, but
the disadvantages may override them. In all proba-
bility, although there are 999 employee numbers,
there are not really 999 employees, so there will
be many "holes", or unused records, on the disk.
Furthermore, 999 records, if they are large, may
take up an inordinate amount of space on the disk.
Even if they do fit on the disk, they will be spread
out so far that programs using this file will run
very slowly, because of the amount of "seeking",
or disk arm movement, required.

One remedy would be to make the employee
numbers more compact. If there are 300 employees,
why not renumber them from 001 to 300? Or
renumber your customers in a billing file? Or
renumber your part numbers? Or job numbers?

Usually, this is more easily said than done, and
you can expect difficulty in convincing management
that they should change established systems just to
make it easier for you or the computer.

Computed Direct

Sometimes it is possible to take an employee
number (or part number, etc.) and modify it to
make a usable record number. For example, if
you have 300 employees with employee numbers
between 3000 and 9000, you could take this number,
NEMP, subtract 3000, divide by 20 (which is
(9000-3000)/300), and add 1:

NREC = (NEMP-3000) / 20 + 1

This results in an NREC between 001 and 301. This
is compact and wastes no space; however, two (or
more) employee numbers may quite possibly result
in the same record number. These are known as
synonyms. There are many ways to handle this
problem, but they require a certain added amount
of programming and disk space.

Section Subsections Page

85 10 30 02

Partitioned Direct

The disk addressing used by 1130 FORTRAN makes
this method applicable in some cases. At one in-
stallation, there are about 150 employees, each
with a four-digit employee number. The first two
digits indicate the department number; the second
two digits are sequential numbers. The distribution
is as follows:

Dept.
No.

Maximum
No. of

Employees

Range of
Employee
Numbers

Number of
Possible
Employee
Numbers

1 5 101 - 110 10
3 35 301 - 340 40
4 10 401 - 420 20
5 10 501 - 520 20
6 30 601 - 650 50
7 60 701 - 770 70

10 10 1001 - 1020 20
11 20 1101 - 1130 30
12 20 1201 - 1230 30
15 50 1501 - 1570 70

250 360

This user noticed that he could use this break-
down of employee numbers to advantage by setting
up ten files:

Summary

Each of the techniques described above has its advan-
tages and disadvantages, as has been pointed out
earlier. In general, indexed sequential files require
more core and disk storage (because of the index)
and tend to increase processing time because of the
searching involved. Random (direct) organizations
make for fast access, with little extra core or disk
requirements, but are usually difficult to set up
because of the synonym problem.

DEFINE FILE
DEFINE FILE
DEFINE FILE
DEFINE FILE
DE FINE FILE
DE FINE FILE
DE FINE FILE
DE FINE FILE
DE FINE FILE
DEFINE FILE

1 (10, X, U, N1)
3 (40, X, U, N3)
4 (20,X,U, N4)
5 (20,X,U, N5)
6 (50, X, U, N6)
7 (70,X,U, N7)

10 (20,X,U, N10)
11 (30, X, U, N11)
12 (30, X, U, N12)
15 (70, X, U, N15)

requiring a total of 360 records to hold 250 em-
ployees. This wastes about one-third of the available
records but results in much simplified programming,
since the user can read the employee department
and man number from a card:

77 FORMAT (12,12)
READ (2,77) NDEP,NEM

and access that employee with a

READ (NDEP'NEM) data
statement.

Many numbering systems fit this general type and
may lend themselves to this disk organization approach.

	

Section Subsections 	 Page

85
	

20
	

00
	

01

PROCESSING

Just as sequential and random are two basic ways
to organize a file, they are also two ways to process
or access a file.

If you process records in the same order as that
in which they lie on the disk, you are processing
sequentially; if you process in a different order, you
are processing randomly. Thus the same two words
(sequential and random) have substantially different
meanings when used in the area of processing, since
the definition of each depends on the organization of
the file. This was not so when considering organi-
zation; a file was sequential or random depending on

the order in which control keys were placed on the
disk.

Consider the telephone directory -- a sequential
file because the control keys (names) are in alpha-
betic order. If you scan through the directory, from
front to back, looking for people who live on Main
Street, or for men whose first name is John, you are
processing sequentially, in the same order as the
keys.

If you are looking for the telephone numbers of
three friends -- J. DOE, P. ADAMS and L. SMITH --
and you look for them in that order (not alphabetic),
you are processing randomly. On the other hand, if
you sort them into alphabetic order -- ADAMS, DOE,
and SMITH you are processing sequentially.

Section Subsections Page

85 30 01 01

THE INTERACTION of ORGANIZATION and
PROCESSING

Introduction

As you have seen, the two factors, organization and
processing, are tied together quite intimately.
Often, for this reason, it is not easy to make the

basic decision as to which combination of techniques
to use:

Sequential organization, sequential processing
Sequential organization, random processing
Random organization, sequential processing
Random organization, random processing

Actually, it is often impossible to use only one type.
You can (and, perhaps, must) process in many
sequences; but your file can have only one organi-
zation at any one time.

	

Section Subsections	 Page

85
	

30
	

10
	

01

Choosing the Organization

Because of the interaction between processing and
organization, there are few concrete guidelines for
the user who must make this decision. However, the
following outline will help lead the way toward one
organization or the other. The payroll application
is given as the example.

1. List the processing that must be done to this
file and the required order of inputs and outputs
(see Figure 85.2).

Application

Required Order of:

INPUT OUTPUT

No order
or

doesn't matter Other
Doesn't
matter

Same
as

input Other

Edit input
cards

Same as
later
process.

3

Calculations Employee
number

Payroll
register

Employee
number J

Payroll
checks

Employee
number ../

941 report Employee
number ,./

Name and
address
stickers

d ../

Figure 85. 2.

2. How many different sequences are there?
a. None. No one really cares what the proc-

essing sequences are (order of card in-
put, order of output on reports, etc.).
Make sure this is so. If it is, go to step 3.

b. One. There is only one basic processing
sequence desired; go to step 4.

c. More than one. This complicates the
matter. Go to step 5. Processing
sequences needed:
1.
2.
3.
4.
5.

3. No one cares what the processing sequence is.
This is unusual but does sometimes occur. If this
is so, you can forget about processing, and choose
an organization as an isolated problem, entirely
separate from processing.

4. This file will never be processed in more than
one sequence. Therefore, it would seem like a good
idea to organize it either sequentially or randomly,
in the same order as that required by processing.

5. This file must be processed in more than one
order; however, it can be in only one order at any one
time. Recheck step 1. Can any of the inputs be hand-
or machine-sorted into the same order as another in-
put? Can some of the output orders be relaxed? Can
you somehow reduce the number of orders required?
If you can reduce it to one, you can go to step 3 or 4.
If not, you must sort your file from one order to the
other, or otherwise work around this problem.

	

Section Subsections	 Page

90
	

00
	

00
	

01

Section 90: IMPROVING YOUR SYSTEM --
PERFORMANCE

CONTENTS

General 	
The Role of the Monitor 	

General 	
The Effect of the Monitor on
Performance 	

The Role of the Programmer 	
Planning for Performance 	
Organizing for Performance --
How to Use LOCALs 	
Programming for Performance 	

Reducing Core Storage
Requirements
Programming Techniques to
Increase Speed

The FIND Statement
The Role of the 1130 Hardware 	

General 	
Productive Time That Cannot be
Improved by Hardware Changes 	

	

90.01.00	 Productive Time That Can be

	

90.10.00	 Improved by Hardware Changes 	 90.30.20

	

90.10.01	 Plotting
Card Reading

	

90.10.10	 Card Punching

	

90.20.00	 Printing

	

90.20.10	 Computing
Nonproductive Time That Can be

	

90.20.20	 Reduced by Hardware Changes 	 90.30.30

	

90.20.30	 Additional Core Storage
Additional Disk Drives

Some Case Studies of Performance
Improvements 	 90.40.00

General 	 90.40.01
Case I 	 90.40.10

	

90.30.00	 Case II 	 90.40.20

	

90.30.01	 Case III 	 90.40.30
Summary 	 90.40.40

90.30.10

	

Section Subsections	 Page

90
	

01
	

00
	

01

GENERAL

This section covers many items of interest to all
1130 users:

• How to conserve core storage
• How to increase the running speed of a pro-

gram
• How to segment programs
• The proper (and improper) use of LOCAL

and SOCAL subroutines, etc.
The general theme of this chapter, is, however,
how to improve your system, or, how to increase
system performance.

The performance of your programs should be one
of the major considerations of your programmer.
Unfortunately, however, performance is all to often

forgotten in the drive to produce a working program.
The programmer, usually working against a deadline,
devotes all his energy and ingenuity to the TEST/
DEBUG/CORRECT/RETEST cycle, finally produc-
ing an error-free program with no time to spare,
and with little thought given to efficiency.

Remember, however, that this program now
enters production status, to be run weekly, or
possibly daily, where its performance may greatly
affect the overall operation of the 1130 system.

Program performance is affected by three fac-
tors, each of which will be discussed in more de-
tail:

The Monitor, or software
The programmer
The system itself, or 1130 hardware

Section Subsections Page

90 10 01 01

THE ROLE OF THE MONITOR

General

The 1130 Monitor system has an outstanding feature,
known as the "system overlay scheme", designed to
assist you in fitting your programs into core storage.

This scheme is covered in some detail in Section
65, under "SOCALs".

Recapping that section briefly, the Core Load
Builder, which is given the task of building a core
load, or ready-to-execute package, also is given
the task of resolving the problem of more program
than core storage (if this problem arises).

Typically, many blocks of programming are
competing. for core storage: your programs, your
subprograms, the IBM subprograms, and the
Monitor control package itself. All must be in
core storage when required.

As a first step, the CLB attempts to fit the en-
tire package into core storage simultaneously. If
that does not fit, the CLB splits the IBM subpro-
grams into four groups:

Group 0
	

Basic
Overlay 1
	

Arithmetic (add, subtract, multiply,
etc.)

Overlay 2
	

Non-disk Input/Output (cards,
printer, etc.)

Overlay 3 Disk Input/Output

As step 2, the CLB determines whether the
package will fit in core if Overlay 1 and Overlay 2
share the same area in core storage (the SOCAL
area). The SOCAL area must be large enough to
contain Overlay 3 plus the larger of Overlays 1 and
2.

If this does not provide enough room, step 3 is
taken. Here, all three overlays (1, 2, and 3) will
share the same area, which must now be as large
as the largest overlay.

Step 4, taken if step 3 does not work, consists
of a message informing you that this program is
too large to fit in core storage.

To illustrate this graphically, Figure 90.1 shows
the layout of the SOCALs required by a "typical"
commercial job. This "typical" program:

• Is written in FORTRAN.
• Adds, subtracts, multiplies, and divides.
• Uses the 1132 Printer, the 1442 Card Read

Punch, and the console typewriter (but not the
keyboard).

• Contains at least one PAUSE, STOP, and
CALL DATSW statement.

• Contains disk READ, WRITE, and FIND
statements.

If you punch an L in column 14 of the // XEQ
card, the CLB will print a core storage map of
your program and all its subprograms, indicating
which are SOCAL or LOCAL, and what overlay
level is in effect.

1750

r 1
1
1
1
1
1
1
1
1

Unused

Overlay
2

Non-Disk
I/0

(1750)

Unused

Overlay
1

Arith.

(520)

Overlay
3

Disk
I/O

(700)

	

Section Subsections
	

Page

90
	

10
	

01
	

02

3000

2500

2000

1500

1000

500

Figure

Step 1
Overlay Level 0

Step 2
Overlay Level 1

Overlay
3

Disk
I/O

(700)

2970

Overlay
3

Disk
I/O

(700)

2450

Unused

Overlay
2

Non-Disk
I/O

(1750)
Overlay

2

Non-Disk
I/O

(1750)

Overlay
1

Arith.

(520)

Overlay
1

Arith.

(520)

90.1,

Step 3
Overlay Level 2

Check it against
the item number

on the card

Found

Calculations

Write a new
disk record

Not
found

Print results

Not
finished Miscellaneous

arithmetic
Finished Print

Grand
Totals

EXIT
—OW

Figure 90.2. "Typical" commercial job -- rough flowchart

Section Subsections Page

90 10 10 01

The Effect of the Monitor on Performance

To return to the main subject of this chapter, you
may ask, "How does all this affect performance ?"
To answer this, we can construct a flowchart of a
"typical" commercial job. Let us say it is basi-
cally of the type:

1. Read a card.
2. Taking a key item number from the card,

look up its approximate disk location in an index
table (indexed sequential organization).

3.	 Read a disk record.
4.	 Determine whether it is the right disk record. Look up key

If it is, continue; if not, decrease the record num-
ber by 1 and go back to step 3.

5.	 Do some calculations based on the data
obtained from the disk and from the card.

Item number
in index table

6. Write an updated disk record.
7. Print a line of answers on the 1132 Printer. Read a disk
8. Do some arithmetic (reset indicators, clear record for

an item

Initialization
Arithmetic

Read Card

totals, etc.) and go back to step 1.
For the purposes of this analysis you may ignore
routines that are executed only once (initialization,
final totals) or infrequently (error messages, etc.).
Figure 90.2 shows this job in the form of a rough
flowchart.

If this program is of a size that requires no
overlays, it will run at some base speed or through-
put rate. If its size is such that it must run at
SOCAL level 1, Overlay 1 (Arithmetic) and Overlay
2 (Non-disk I/O) must be read from the disk when-
ever required. Figure 90.3 shows when these over-
lays would be required. This will lengthen the
base running time.

Each pass will require four overlays and two
disk arm moves. The arm moves are required
because the disk data file and the SOCAL overlays
are on different areas of the same disk. The time
required for these arm movements varies, depending
on several factors, but it may be considerable.
A good average might be about 250 milliseconds or
1/4 second.

If the program must run at Overlay level 2, the
picture changes considerably, as seen by Figure
90.4. If it hits the correct disk record on the first
try, it will require seven overlays and four disk
arm moves. For each additional disk read looking
for the correct record, add two overlays and two
arm moves. Running time will be further length-
ened.

	

Section Subsections	 Page

90
	

10
	

10
	

02

Initialization
Arithmetic

OVERLAY AR/TH
.11------- iY/T1/ NON-EM5K .110

Read Card

	 OVERLAY NON-DISK
WITH ARITH

Look up key
item number
.n index table

	 MOVE DISK ARM
OVERLAY

AREA TO FILE AREA

Read a disk
record for
an item

Initialization
Arithmetic

OVERLAY AR/TN
.41 ------ "WTI/ NON-045K-1/0

Read Card

	 OVERLAY NON-DISK
WITH ARITH

Look up key
item number
in index table

MOVE DISK ARM
	olr	 OVERLAY

TO FILE AREA
	 •OVERLAY AR/TN WITH

0/51(I/0

	Mr

Read a disk
record for
an item

	 MOVE ARM TO OVERLAY
AREA
	 OVERLAY DISKS/0 WITH

WRITHMEnc

Not
found

Not
found

Check it against
the item number

on the card

Found

Calculations

OVERLAY RRITH WITH
	 oisir Ivo

MOVE ARM 70 Ir/LE AREA?

Check it against
the item number

on the card

Found

Calculations

Write a new
disk record	

MOVE OISA'ARM
FROM FILE AREA
	 TO OVERLAY AREA

	 OVERLAY AR/The
IV/TH NON- OW(110

Print results

Write a new
disk record	

MOVED/SKARN
FROM ,ar AREA
TO OVERLAY AREA

"41---- OVERLAY DISK
WITH NON- DISK Zia

Print results

01/ERL
L4I/TH ARITHMETIC

AY NON DISKAY NON-DISK
AVITH ARITHMETIC

Not
inished Miscellaneous

arithmetic

Print
Grand
Totals

Not
finished Miscellaneous

arithmetic

Print
Grand
Totals

Finished Finished EXITEXIT

Figure 90.3. Overlays and disk arm movements required at
SOCAL level 1

Figure 90.4. Overlays and disk arm movements required at
SOCAL level 2

Section Subsections Page

90 10 10 03

Figure 90.5 summarizes the overlay pattern as it
varies with the disk search.

You can see the Overlay level 1 will not hurt
performance too much. If each arm movement
takes about 1/4 second, the processing time per
card might jump from 8 to 8 1/2 seconds. Overlay
level 2, on the other hand, may cause this program
to run significantly more slowly. A typical indexed
sequential file might require 15 disk reads to find
the correct record. This would increase the time
per card from 8 seconds to 16 seconds, or half the
throughput rate. This could become even worse if
the data file being searched were large or distant
from WS, since the SOCAL area would be proportion-
ately further away from the file area.

The overlay time itself may be ignored, since
it is quite small compared with the disk arm move-
ment time.

This example illustrates two principles:
1. The disk data file must be organized so that

items may be found quickly (see Section 85).
2. For programs involving disk search tech-

niques, as does the example, you should try dili-
gently to avoid SOCAL Overlay level 2.

The difference between level 2 and level 1 is
either 620 words (READ and WRITE disk) or 700
words (READ, WRITE, and FIND disk), but this
does not mean that you must cut 620 or 700 words
from your program to drop from level 2 to level 1.

The CLB will use level 2 if the program is too big
for level 1. (It may be one word too big or 700
words too big.) Every word you can cut from
the size of the program increases the probability
that the program will fit at level 1 rather than level

Number of disk
READs to find

the desired
record

Overlay level 0 Overlay level 1 Overlay level 2

Overlays
Arm

moves Overlays
Arm

moves Overlays
Arm

moves

1 0 0 4 2 7 4

2 0 0 4 2 9 6

3 0 0 4 2 11 8

4 0 0 4 2 13 10

5 0 0 4 2 15 12

10 0 0 4 2 25 22

•
15 0 0 4 2 35 32

•
20 0 0 4 2 45 42

•

•

Figure 90.5. Single-drive 1130 system

2. For this reason, you should strive to keep your
programs as small as possible. Several means of
doing this are discussed in the next subsection.
Also, Section 70 gives many FORTRAN core saving
tips.

Note that the above analysis applies to single
disk drive 1130 systems; the addition of a second
disk drive would eliminate all the overlay-caused
arm movements -- assuming of course, that you
have placed your data file on one disk and Working
Storage on another.

	

Section Subsections	 Page

90
	

20
	

00
	

01

THE ROLE OF THE PROGRAMMER

In reading the preceding subsection, you may have
got the idea that the 1130 Monitor has the major ef-
fect on the performance of your programs and that
you do not enter the picture unless the "system
overlay scheme" fails to squeeze your program into
core storage.

Nothing could be further from the truth. The
program the CLB was manipulating was, after

all, planned, organized, and programmed by you,
not by the CLB.

Any one of these three functions, if not
properly done, can force the CLB into building
an inefficient package -- one that may take five
or ten times longer in execution than a similar (but
better planned) program doing the same job.

As mentioned earlier in this section there are
many things you can do to avoid such inefficiencies;
most of them are easy to understand, remember,
and implement.

Section Subsections Page

90 20 10 01

Planning for Performance

The major factor affecting program performance is
core storage and how it is used. Therefore, you
should try to avoid core storage difficulties by
planning for reasonably sized program packages.
It may seem quite efficient to have the entire pay-
roll processed by one comprehensive program, but,
overall, it would probably turn out to be quite
inefficient. Because it would be a very large

program, it would probably involve many overlays
and could run for eight hours, whereas four smaller
programs might take only five or six hours.

Section 60 contains many hints on how you may
write small, modular programs. Besides helping
to gain performance, modular programs have many
other advantages over large, all-inclusive ones
(they are easier to test, tend to keep errors from
spreading, etc.).

Not
ound

I nitialization
Arithmetic

Read Card

ERROR ROUT/NE
BAD CRRD

Look up key
item number
in index table

Read a disk
record for
an item

Check it against
the item number

on the card

ERROR ROUT/NE-
/TEN NOT ONDASK

Found

Calculations

1.51/BROL/77NEI

1

51/8Raurmle

SL/BROL/7/NE

Write a new
disk record

..510P TO NEW RRGE
AND PR/N7NERD/N65
ONEN NECESSRRY

Print results

WRAP

Not
finished Miscellaneous

arithmetic

Finished Print
Grand
Totals

EXIT

Figure 90.6.

READC

	

Section Subsections	 Page

90
	

20
	

20
	

01

Organizing for Performance -- How to Use LOCALs

After its scope has been determined, a program
should be organized into logical blocks that lend
themselves to efficient segmentation. You should
organize your program expecting to have problems
concerning core storage. If you do not have prob-
lems, very little time is lost. If you do, as is
typical in most cases, you are in a position to create
your own overlay scheme, if that of the loader will
degrade the performance of your program.

As you have seen, in Section 65, the Monitor
gives you two overlay or segmentation methods:
LOCAL subprograms and program LINKs. These
two overlay schemes are entirely planned and
executed by you, in contrast to the Core Load
Builder's automatic SOCALs.

The three interact in one important way: If you
can conserve enough core with LOCALs and LINKs,
the CLB will not have to resort to SOCALs. As you
saw earlier, SOCAL Overlay level 2 can seriously
degrade the performance of some programs, partic-
ularly those that search a disk data file looking for a
certain key (man number, part number, etc.).

If you have a program such as this running at a
comparatively slow rate, you should investigate it
closely; if the program is using level 2 overlays,
you should make a determined effort to reduce its
size enough to allow CLB to use level 1. (To find
out which overlay level is in use, execute the
program with an L punched in column 14 of the
// XEQ card.)

Figure 90.6 shows the same program used earlier
as an example. To it has been added:

INIT	 The Initialization routine
WRAP	 The wrap-up routine (grand totals)

and three exception subroutines:
BADCD	 "Bad input card" message
NOHIT	 "No such item on disk" message
NEWPG	 Page heading routine

In addition, the following have been made into sub-
routines:

READC	 Read card
CALC1	 Calculations Part 1
CALC2	 Calculations Part 2
CALC3	 Calculations Part 3
MISC	 Miscellaneous arithmetic
How should you go about reducing the size of this

program? Many programmers, irked at the fact that
their program does not fit in core storage, take
an "I'll show 'em" attitude and make all subrou-
tines LOCAL. This probably will eliminate

I nitialization
Arithmetic

Read Card

ERROR ROUTINE
BRO (PRO

Look up key
item number
in index table

Read a disk
record for
an item

NONiT -o
Not

found

Print results

Check it against
the item number

on the card

Found

Calculations

ERROR ROUT/N£ -
/TEM NOT ON0/51!

15LIBROL/TINEI	 Ci

57/BROL/T/NE
SUBROL/T/NE

Write a new
disk record

5K /P TO NEW PRGE
AND PR/Ail-HERD/NOS
WHEN NECESSRRY

13:0
WRAP

Finished Print
Grand
Totals

EXIT

A10. MOAT Rk'N TO OVERLAY ARER
ND . AfLIVERRAf ro ORTR ACE/WAR

Section Subsections Page

90 20 20 02

the need for Overlay level 2, but is a rather extreme
case of over-reacting to a problem. Figure 90.7
shows the way in which this program would run, if
all seven subroutines were LOCAL and Overlay
level 1 were used. Each card processing cycle
would involve 11 overlays (7 LOCALs, 4 SOCALs)
and 4 arm movements (these figures are not depend-
ent on the number of times the disk must be read
before finding the desired item).

Reviewing Figure 90.7, it seems that you are
somewhat better off than if you had used Overlay
level 2, but you still require an excessive number
of overlays and arm movements.

It would have been far more prudent to LOCALize
only BADCD, NOHIT, and NEWPG, three subroutines
that are only used occasionally. This would reduce
your LOCAL overlays drastically and might save
enough core storage for Overlay level 1 to be used.

Another technique that would reduce the size of
this program is the use of LINKs. The blocks
called INIT and WRAP could easily be separated
from the main program, and made into what can be
called "one-shot LINKs". This might save enough
core storage to eliminate the need for LOCALs and
SOCAL level 2 altogether.

Another LINK is possible here -- a type you might
call a "repetitive LINK". Suppose you split the main
program into:

PART1
a. Read card
b. Look up key in index
c. CALL LINK (PART2)

PART2
a. Read disk
b Check if correct record found
c. Calculations
d. Write new disk record
e. CALL LINK (PART3)

PART3
a. Print results
b. Miscellaneous arithmetic
c. CALL LINK (PART1) if not finished

CALL LINK. (WRAP) if finished
This arrangement is particularly good, for several
reasons:

e It cuts the original program into five pieces
(two small and three large).

•	 It isolates the I/O into separate LINKs -- for

Not
finished Miscellaneous

arithmetic

example: L	 L CRL OVERLAY
PART1 uses neither the disk nor the printer. SOCRL O'ERLRY
PART2 uses neither card nor printer.
PART3 uses neither card nor disk. Figure 90.7.

This reduces the sizes of these LINKs substantially
•	 It probably eliminates the need for SOCALs

and LOCALs altogether.

	

Section Subsections 	 Page

90
	

20
	

20
	

03

To summarize, a typical program has been seg-
mented in several different ways, and the probable
effect of each way on performance has been dis-
cussed. The purpose has not been to illustrate that.
LINKs are better than LOCALs, or that LOCALs
are better than SOCALs, or any other hard and fast
rule. The purpose has been to illustrate that the
options must be chosen wisely, not blindly. The
easiest way, letting the CLB do it with SOCALs,
may or may not be the best in terms of performance.
The next easiest way -- LOCALs -- may or may not
be best. The only way to determine which is best
is to lraw a flowchart of the type shown and to
tailor the overlay option to the program.

You can generalize somewhat, with some
common-sense do's and don'ts:

1. DON'T worry about the performance of a
program that runs for only a few minutes, or that
is used only occasionally. Concentrate your efforts
on the long-running, everyday jobs.

2. DON'T place an overlay, or cause one to be
placed, within a loop that reads from the disk. For
example, take the problem discussed above, where
you have a loop of the type:

Read disk record
Compare disk key to sought-for key
If not equal, repeat

SOCAL level 2 will overlay the Disk I/O package
required for the Disk READ) and the Arithmetic

package (required for the subtraction within the IF
statement parentheses). Furthermore, the disk
READ command requires the disk arm to move away

from the SOCAL disk area. This repetitive disk arm
movement may have a disastrous effect on the
running time of the program.

If you place a LOCAL subroutine within this loop,
it will have the same effect as if the CLB had in-
cluded a SOCAL.

3. DON'T LOCALize subprograms that are
always used, unless it is absolutely necessary to
get the program into core storage. DO LOCALize
subprograms that are the exception rather than the
rule (error messages, new page headings, initial-
ization, final totals, unusual payroll deductions,
etc.).

4. DO minimize the amount of coding between
DISK I/O commands. This, in turn, will minimize
the chance of an overlay (SOCAL or LOCAL) which
will require that the disk arm move from the data
area to the overlay area and back again.

5. Also, DON'T LOCALize a subprogram that is
called between two disk statements. For example,
suppose a program has the following sequence:

DISK. I/O
CALL SUB
DISK I/O

In this case SUB should not be made LOCAL, since
it will force excessive disk arm movement.

6. DO plan for problems with performance --
either a program too large for core or a program
that does not run as fast as it might. Keep the
scope (and therefore the size) of each program
modest; program as a series of LINKs; design the
exception routines as subprograms; etc.

Section Subsections Page

90 20 30 01

Programming for Performance

You have seen in the preceding examples that system
performance is very closely related to the size of a
program. In general, the larger the program, the
more slowly it will run. This degradation is not
evidenced in a gradual way; because of the SOCAL
and LOCAL system, it will show up in sudden jumps
or drops in throughput rates. Suppose you have an
1131 Model 2B (8K) and the familiar "typical"
program. With no overlays you have about 4500
words for your program; with Overlay 1, about
4920 words; with Overlay 2, about 5620 words.
Assuming these figures to be exact, this means that:

If your program size is It will:
1 -- 4500 words Fit with no overlays
4501 -- 4920 words Require Overlay 1
4921 -- 5620 words Require Overlay 2
5621 words or more Not fit in core stor-

age without further
work

If you add 1 word to a 4920-word program, it will
suddenly require Overlay 2 and may take twice as
long to execute. (It may also take no longer than
before -- this depends on the program.)

Conversely, if you have a program at level 2,
it may take anywhere from one word to 700 words to
make it drop to level 1. If it was 4921 before, it
will take only one word; if it was 5620, it will take
7, 10 words.

Reducing Core Storage Requirements

To make a long story short, every word counts.
You should always keep this fact in mind and strive
to write efficient programs. Section .70 gives many
core saving tips; Section 65 also gives some ideas
for improving the SOCAL system. Repeating the
FORTRAN tips (the details are given in Section
70. 50. 20):

1. Use the DATA statement wherever possible.
2. Keep FORMAT statements compact.
3. Take square roots and raise numbers to

powers in the most efficient manner.
4. Code efficient I/O statements.
5. Avoid long subroutine argument lists.
6. Don't include unneeded I/O devices on the

*IOCS card.
7. Avoid arithmetic with constant subscripts.
8. Remove the TRACE from production status

programs. The trace package requires about 140
words of core storage. In addition, it requires that
Data Switch 15 be interrogated every time you
"execute" an equal sign, IF statement, or computed
GO TO. This requires 150 to 200 microseconds
each time; some programs may do this tens of
thousands of times in the course of one run.

	

Section Subsections	 Page

90
	

20
	

30
	

02

Programming Techniques to Increase Speed

Just as reduced program size can improve per-
formance, so can several programming techniques.
All involve utilizing the overlapped I/O capability
of the 1130. The hardware of the 1130 allows for the
overlapping of almost all I/O devices; however, the
programming system used determines which units
can actually be made to run concurrently with
other units, or with the central processor. (See
Figure 90. 8.)

Overlapping means that you can:
1. Tell the device what it is to do.
2. Start it going (printing, punching, etc.).
3. Then continue with other processing before

the device has actually finished what it has started.
This section covers those units that can be over-

lapped by standard FORTRAN. The use of the
overlapped I/O feature of the Commercial Sub-
routine Package is discussed in Section 70.

Unit FORTRAN

FORTRAN
with Commercial

Subroutine Package Assembler

1442-6 or -7 Reader Yes Yes

1442-6 or –7 Punch Yes Yes

1442-5 Punch Yes Yes

Console Typewriter Yes Yes

Console Keyboard Yes

1132 Printer Yes Yes

1403 Printer Yes Yes Yes

Disk – Arm Movement (FIND) Yes Yes

– Reading Yes

– Writing Yes

2501 Reader Yes Yes

1627 Plotter Yes

1134 Paper Tape Reader Yes

1055 Paper Tape Punch Yes

Figure 90.8. Programming systems permitting overlapped operations

The FIND Statement. Because it is an optional
feature of FORTRAN, some programmers are un-
aware of, and/or neglect, the use of the FIND state-
ment. However, in many disk-oriented programs
it can increase performance significantly. It can be
added to any program quite easily and is simple to
use.

Suppose your program calls for a disk read from
record NR of file 6:

READ (6'NR) DATA
The disk subroutine will automatically compute
where that record resides, move the disk arm to the
proper position, and read the data. As mentioned
many times earlier, the second job, the movement
of the disk arm, may take much longer than the
other two functions.

The FIND statement
FIND (6'NR)

ahead of the READ (or WRITE) will cause the sub-
routine to compute the location of record NR, start
the disk arm moving to that location, and then con-
tinue processing other FORTRAN statements.

The secret of the FIND statement is self-evident:
it should be placed as far in advance of the actual
READ or WRITE statement as possible. In this way
you can get the arm moving, overlapping its move-
ment or "seek" time with computations, printing,
etc.

Let us take a portion of a FORTRAN program
that looks like this:

FIND (6'NR)

other FORTRAN coding

READ (6'NR) DATA
Suppose it takes 700 milliseconds to move the

disk arm to record NR from where it happens to be
now. Suppose also, that the "other FORTRAN
coding" shown takes 300 milliseconds. Without
the overlapping gained by the FIND statement, the
total time would be 700+300 or 1000 milliseconds.
With the FIND statement, the total time would drop
to 700 milliseconds, since the 300 milliseconds
is "buried" within the 700 milliseconds seek time.
Figure 90. 9 illustrates this graphically. This
night amount to only 20 or 30 minutes a day,
but it is so easy to implement that it is certainly
worth the trouble of punching a few FIND cards.

If you are using LOCALs, and/or the CLB has
included SOCALs, the FIND statement will not be
executed. The Monitor will take care of this auto-
matically. The reason is obvious: if you FIND a

Section Subsections Page

90 20 I	 30 03

record then call a LOCAL or SOCAL subprogram,
the entire purpose of the FIND will have been
negated, and you will wind up increasing disk seek
time rather than decreasing it. If you know you

will have LOCALs or SOCALs, you may want to
remove all the FIND statements from your program,
eliminating the SDFND subroutine, which is approx-
imately 80 words long.

Without the FIND statement:

READ

Other Compute
Location Arm Movement

Read
Continue

Coding
of Record

Record

300 msec el. 41 X 11.1■• 700 msec

Total time = 700 + 300 + X + Y
X is small compared with the others.

With the FIND statement:
READ

FIND 700 msec

Compute Arm Movement Compute
Location Location

Read

Other Codingof Record of Record
Record

X

X

I 300
msec

Total time = 700 + X + X + Y
X is small compared with the others.

Figure 90.9.

	

Section Subsections	 Page

90
	

30
	

01	 01

THE ROLE OF THE 1130 HARDWARE

General

The last component in the user/hardware/software
trio is the 1130 hardware itself. Because this sec-
tion is concerned primarily with increasing perform-
ance, the discussion will concentrate on the ways
you can improve throughput by the use of alterna-
tive hardware configurations.

The first step is the separation of run time into
four basic elements:

1. Productive time that cannot be improved by
hardware changes

2. Productive time that can be improved by
hardware changes

3. Nonproductive time that cannot be improved
by hardware changes

4. Nonproductive time that can be improved by
hardware changes

The third is included only for completeness; using
the definitions, there are no meaningful items to dis-
cuss in this area.

Productive time is the time that the 1130 occupies
itself doing something you want it to do. Nonproduc-
tive time applies to activities that maybe necessary,
but that are unproductive from your point of view.
Some examples of the latter are disk seeks, reading
LOCAL and SOCAL overlays, etc.

Section Subsections Page

90 30 10 01

Productive Time That Cannot Be Improved by Hard-
ware Changes

Some of the 1130 system components are available
in only one model; therefore, it is impossible to in-
crease performance by changing them. The type-
writer, the console keyboard, the paper tape reader,

and the paper tape punch are four such devices. In
addition, the reading/writing speed of the disk is
constant, which means that the reading/writing of
your data records cannot be speeded up through
hardware changes. However, because more disk
drives may be added, certain other times relative
to the disk (seeks, reading of overlays) may be re-
duced; they are therefore covered in a later section.

	

Section Subsections	 Page

90
	

30
	

20
	

01

Productive Time That Can Be Improved by Hard-
ware Changes

There are five elements of productive time that
can be improved by changing the model or speed of
an 1130 component. That is, you can:

• Reduce plotting time by switching to a faster
plotter

• Reduce card reading time by obtaining a
faster card reader

• Reduce card punching time by obtaining a
faster card punch

• Reduce printing time by obtaining a faster
printer

• Reduce computing time by changing to a
faster CPU

Plotting

This is a somewhat special case; two plotting
speeds are available, but they are tied to carriage
sizes. The 1627 Model 1, with an 11-inch carriage,
is twice as fast as the Model 2, which has a 29 1/2-
inch carriage. However, most users have chosen
one model or the other on the basis of carriage size,
rather than speed, and are not in a position to
change models just to increase speeds.

Card Reading

There are four different card readers that may be
attached to the 1130 system, each with a different
card-read time:

Reader Milliseconds per card (approx.)
1442 Model 6 200
1442 Model 7 150
2501 Model Al 100
2501 Model A2 60

If your programs use standard FORTRAN, none
of the specified card read time will be overlapped
with any other activity.

If you have a 1442-6 on your 1130, for example,
the time to read ten cards will be 10 X 200 or 2000
milliseconds. This is in addition to whatever manip-
ulation must be performed on the data on those
cards. In a FORTRAN program, the system must,
at the very least, convert the Hollerith card codes
to EBCDIC, break that down according to the speci-
fied FORMAT statement, and, finally, place the
resulting data in the proper core location.

The rated speed of the 1442-6 is 300 cards per
minute, but this assumes that the 1130 reads a card
every 200 milliseconds. It is true that the reading
of each card will take 200 milliseconds, but the
system may not read a card every 200 milliseconds.
If the intervening processing takes 100 milliseconds,
it will read one card every 300 milliseconds,
yielding a speed of 200 cards per minute.

You see, then, that rated I/O device speeds are
difficult to use when evaluating potential system
improvements. You must compare alternatives
on the basis of the time per card that the CPU is
prevented from doing something else.

Suppose you have a 1442-6, and you time one of
your representative jobs. It reads 2100 cards, and
runs for ten minutes (600,000 milliseconds). You
know, from the timing table, that the 1130 must
have spent 2100 X 200 or 420,000 milliseconds
reading cards, and 600,000-420,000 or 180,000
milliseconds doing something else.

If you changed to a 1442-7, the card read time
would drop to 2100 X 150 or 315, 000 milliseconds,
the "something else" would remain at 180,000
milliseconds, and the total run time would drop
from 600,000 milliseconds to 495,000 milliseconds,
or from ten minutes to about 8 1/4 minutes.

1000

900

800

700

600

-8

F3	
500

400

300

200

100

Section Subsections Page

90 30 20 02

The 2501, because of its clutch arrangement,
requires a special analysis. The 2501-Al, the 600-
card-per-minute reader, will read at fixed speeds of

600 cpm (100 millisec)
300 cpm (200 millisec)
200 cpm (300 millisec)
150 cpm (400 millisec)
120 cpm (500 millisec)
100 cpm (600 millisec)
etc.

and the 2501-A2, the 1000-card-per-minute reader,
will read at fixed speeds of

1000 cpm (60 millisec)
500 cpm (120 millisec)
333 cpm (180 millisec)
250 cpm (240 millisec)
200 cpm (300 millisec)
166 cpm (360 millisec)
etc.

To calculate the expected improvement in timing
due to a 2501-Al, we must, as before, substitute
100 milliseconds for the 200 milliseconds (1442-6),
to get 2100 x 100 or 210,000 milliseconds read
time, add the 180,000 milliseconds other time,
obtaining 390,000 milliseconds or 15 minutes.
Dividing this into the number of cards read (3000),
we find that this yields a rate of 323 cards per
minute.

However, the clutch arrangement of the 2501-Al
will not allow it to run at 323 cards per minute, so
the next lower speed (300 cpm) must be assumed.
2100 cards at 300 cpm yields a total time of seven
minutes.

A similar analysis for the 2501-A2 gives a
theoretical speed of 412 cpm, but, choosing the next
lower speed, 333 cpm, the total run time is calcu-
lated as 6.6 minutes.

Card Punching

Three different card punches are available for use on
the 1130 system; all three operate in the same mode,
punching one column at a time.

	

Card Punch	 Milliseconds per Card Column
Punched or Spaced

	

1442 Model 6	 12.5 plus 12.5 per column

	

1442 Model 7	 6.5 plus 6.5 per column
1442 Model 5 6.5 plus 6.5 per column
Models 6 and 7 both read and punch; Model 5 only
punches.

The overall speed is determined by the last
column punched, rather than the number of columns
punched. If you skip the first 20 columns and punch
into the 21st, you have punched or spaced 21 columns
and the time for that number will apply. Figure
90.10 gives the punching time for the three models,
as they vary with the last column punched.

To continue the previous example, suppose that
of the 2100 cards read, the program punched into

Last Column Punched

Figure 90.10.

Section Subsections Page

90 30 I 20 03

the first 20 columns of 500 of them. For the 1442-6,
the breakdown now becomes:

Operation	 Milliseconds
Read 2100 cards	 420,000
Punch 20 columns,	 131,250
500 cards
Something else	 48,750

Total	 600,000

With the 1442-7, it becomes:
Read 2100 cards	 210,000
Punch 20 col. 500 cards	 68,250
Something else	 48,750
Total	 327,000

or 5.5 minutes
Note that the times shown apply only to the time

actually spent punching. If the card being punched
was previously read, the punch time may be simply
added to the total. If the card being punched was
not previously read, you must add 200 or 150
milliseconds of read time per card to allow for the

/feeding of cards past the read station, even
though they were not read. This will always be
the case with the 1442-5, which cannot read cards.

Printing
Three different line printers may be attached to the
1130 system, each having different print and skip
times:

Printer	 Approximate Time in Milliseconds
Print 1 Line Skip 1 Line

1132	 750 16
1403 Model 6

or

Model 7

175 (3.6-
microsec-
ond CPU)

100 (2.2-
microsec-
ond CPU)

5

To illustrate the improvement possible in this
area, let us take an example similar to the last one.
Suppose you have a program that is essentially a card
listing job. In ten minutes it reads 600 cards,
prints 600 lines, and skips 100 lines. This can be
broken down as follows:

Operation	 Milliseconds
Read card (1442-6)	 120,000
Print (1132) 600 @ 750	 450,000
Skip 100 @ 16	 1,600
"Everything else"	 28,400

Total	 600,000	 (10
minutes)

If you replace the 1132 with a 1403-6, your print
and skip times drop:

Print (600 @ 175)	 105,000
Skip 100 @ 5	 500

Added to the card read time and the "everything else"
time, which remains the same, this results in a total
time of 253,900 milliseconds, or about 4 1/4 minutes,
as opposed to 10 minutes.

Note that despite this dramatic increase in
throughput, the 1403 is printing at only 141 (600/4.25)
lines per minute, far below its rated speed of 340.
The 1132 was also below its rated speed of 80 1pm,
since it printed 600 lines in ten minutes, or 60 1pm.

This shows again that rated speeds of cards per
minute, lines per minute, etc, cannot be used when
investigating alternate approaches to improving
throughput. The only usable figure is the length of
time the CPU is tied up-- that is, prevented from
doing something else.

This example has assumed a 3.6-microsecond
CPU; if the 1130 were a Model C (2.2 microseconds),
a 1403 time of 100 milliseconds would be used. The
overall time would drop to 3.5 minutes, for a speed
of 172 1pm.

In all cases of 1403 timing investigations, you
must calculate the resulting lines per minute to make
sure that it does not exceed the rated speed of the

Section Subsections Page

90 30 20 04

printer. For example, an analysis that indicates a
1403 speed of 450 1pm must be modified if the printer
considered is a 1403-6, which cannot exceed 340 1pm.

The 750-millisecond time for the 1132 is based on
standard FORTRAN, which is not overlapped.

The 176 (or 100) millisecond time for the 1403
consists mainly of the conversion from EBCDIC to
1403 code - the 1403 itself is buffered, and the time
required to fill the buffer is quite small. The 176
milliseconds drops to 100 on a 2.2 microsecond
CPU because of the faster CPU. See the next sub-
section.

Computing

The 1131 Central Processing Unit is available with
one of two basic cycle times: 3.6 microseconds
(Models 1 and 2) or 2.2 microseconds (Model 3). In
more basic terms, the Model 3 will compute in .61
the time of the Model 1 or 2.

However, in this area it is not quite as easy to
calculate the improvement to be expected from the
faster CPU. The problem is that you often don't
know how much time you were computing before
(with a 3.6-microsecond CPU), in which case you
cannot possibly tell what effect the 2.2-microsecond
CPU will have.

Let us review the previous example: 1442-6 and
1132; ten minutes run time, read 600 cards, print
600 lines, skip 100 lines. The times in milliseconds,
were:

Card read	 120,000
Print and skip	 451,600
"Everything else" 28,400

Total	 600,000 (10 minutes)
The only way you determined the 28,400 milliseconds
of "everything else" was by subtracting one known
value (I/O times) from another known value (total
run time).

If you know that all 28,400 milliseconds were
spent in computing, you can calculate that the 2.2-
microsecond CPU will do the same amount of work
in 61% of that time, or 17,300 milliseconds, a
reduction of 1,100 milliseconds or 1.8 minutes.

If those 28,400 milliseconds had included any disk
operations, you could not have made the above esti-
mate, since you would have had no way to determine
the split between disk activity and computing. Aside
from a good estimate, which would be quite an
achievement, the only way to evaluate the effect of
a new CPU in this case would be to take your program
to such an 1130, run it, and time it.

	

Section Subsections 	 Page

90
	

30
	

30
	

01

Nonproductive Time that Can Be Reduced by Hard-
ware Changes

By definition, three items fall into this category:
1. DISK seek, to get from one data record to

the next
2. DISK seek, to get from data area to overlay

area, and vice versa
3. DISK read to read overlay

All three items are necessary, but unproductive as
far as you are concerned. Note that item 1 is re-
quired whenever you are using data files, item 3
whenever you are using overlays (SOCALs, LOCALs,
and/or LINKs), and item 2 whenever you have both
overlays and data files.

The time requirements of all three are difficult
to determine, so an exact analysis will not be
attempted, as with the card readers, punches, etc.

There are two hardware changes that will reduce
these times:

1. More core storage, which will probably
eliminate overlays, and therefore items 2 and 3.

2. More disk drives, which will allow a re-
distribution of files and overlays, and reduce items
1 and 2.

Additional Core Storage

Asside from programmer convenience, the main
advantage in adding more core storage is its probable
effect on performance, or run time. If you can
execute your programs without any overlays, they
can be expected to run at some "top" speed,
governed mainly by the amount of productive work
you want done.

Additional Disk Drives

Unlike core storage, which will probably be aug-
mented to improve performance, additional disk
drives are likely to be considered primarily to
increase capability -- the capability to copy disks,
the additional storage gained, etc. In many cases,
however, the move from a single to a multiple disk
1130 system may be accompanied by a gain in
throughput or performance. This will be true only
if you plan your system so that the LOCAL/SOCAL
overlays are on a cartridge other than the one on
which the data files reside.

The location (cartridge ID number) of the data
files is specified on the *FILES card. The LOCAL/
SOCAL overlays are either (1) in Working Storage,
if the program is executed immediately after
compilation, or (2) with the mainline program (in
UA or FX), if the program has been stored in core
image format. If they are in Working Storage, the
Monitor should be informed, with the JOB card, to
use the Working Storage on a disk cartridge other
than the data file cartridge. If they are with the
mainline program (in UA or FX), you should make
sure the core load is stored on a cartridge other
than the data file cartridge.

Section Subsections Page

90 40 01 01

SOME CASE STUDIES OF PERFORMANCE
IMPROVEMENTS

General

This section is designed to present a general guide
to the principles involved in improving performance.
It also shows many of the techniques used to fit a
large problem into core, stressing how to do so
without adversely affecting performance.

In order to best illustrate these principles, three
case studies, or sample problems, are shown in de-
tail:

• Case I -- a commercial job, typical of a
payroll-type application

• Case II -- a commercial job, typical of an
accounting type application

• Case III -- a scientific or technical job, in-
volving mostly computation, with little or no input/
output

All examples are based on an 8K 1130 system,
but the principles are the same for any size machine.

	

Section Subsections	 Page

90
	

40
	

10
	

01

Case I

The first example uses a typical payroll-type
application to show one approach to improving per-
formance. It may not be the best approach, but it
results in a set of programs that produce the

desired result, fit in core storage, and operate at
a near-maximum throughput rate.

A rough block diagram of this job, marked
to show what action has been taken, is included
with each step.

Pead detail

card

Ft. and read

master data

on disk

Compuie

gross pay

Update dirk

End of Stun

Print totals.

Exit

Typ E 1103

Compute

333300.1
deductions

Skip to new

0.0 end print
headings

Section Subsections Page

90 40 10 02

Step 1

The first time we are able to try to execute the
program PAYRO we are informed that it does not
fit in core storage, needing 388 (hexadecimal) or
904 words.

// XE0 PAYRO L 1
*FILES(1,FILEN)
FILES ALLOCATION

1 01A3 0001 7061 FILEN
22 0000 0001 7061 01A7

STORAGE ALLOCATION
R 40 07AD (HEX) ADDITIONAL CURE REQuIRD
R 43 01FC (HEX) ARITH/FUNC SOCAL wD CNT
R 44 06E8 (HEX) FI/O• I/O SOCAL ND CNT
R 45 02A2 (HEX) DISK FI/0 SOCAL NO CNT
R 40 0388 (HEX) ADDITIONAL CORE REWIRD
R 18 PAYRO LOADING HAS BEEN TERMINATED

constants,

zero tot.

geeing.

// XEO PAYRO L 2
•FILES(1,FILEN)
•LOCALPAYRUsSUBW.SUBZsSUBY1sSUBY2sSUBY3

111	 FILES ALLOCATION
1 01A3 0001 7061 FILEN

•
22 0000 0001 7061 01A7

STORAGE ALLOCATION
R 40 03E3 (HEX) ADDITIONAL CORE REOUIR0
R 43 01FC (HEX) ARITH/FUNC SOCAL ND CNT

ID	 R 44 06E8 (HEX) FI/Os I/O SOCAL WD CNT
R 45 02A2 (HEX) DISK FI/U SOCAL WD CNT

• R 41 00A4 (HEX) WDS UNUSED BY CORE LOAD
CALL TRANSFER VECTOR
DATSW 1902 SOCAL 1

•
SLIBY3 1701 LOCAL
5UBY2 17C9 LOCAL
SUBY1 17C9 LOCAL
SUBZ	 1701 LOCAL

• SUBW	 1765 LOCAL
LIEF TRANSFER VECTOR
HOLTB 1E8B SOCAL 2
EADDX 1883 SOCAL 1
XDD
	

1988 SOCAL 1
FARC
	

1966 SOCAL 1
XMD
	

1924 SOCAL 1
ELDX
	

1528
NORM
	

1594
HOLEZ 1E52 SOCAL 2
EBCTB 1E4F SOCAL 2
GET AD 1E06 SOCAL 2
IFIX
	

1568
PAUSE 18EC SOCAL 1
ESBR
	

1808 SOCAL 1
EADD
	

187D SOCAL 1
EDIV
	

1824 SOCAL 1
EMPY
	

17F6 SOCAL 1
EDVR
	

170E SOCAL 1
FLOAT 155E
SUBSC 1540
ESTO
	

1516
ELD
	

152C
PRNTZ 1048 SOCAL 2
CARDZ 1C9E SOCAL 2
WRTYZ 1062 SOCAL 2
SFIO 1809 SOCAL 2
SDFIO 1885 SOCAL 3

SYSTEM SUBROUTINES
ILSO4 00C4
ILSO2 0083
ILSO1 1EC2
ILSOO 1E=
FLIPR 15DC

1487 (HEX) IS THE EXECUTION ADDR

•

•
•
•
•
•
•
•
•
•
•

	

Section Subsections 	 Page

90
	

40
	

10
	

03

Step 2

In order to test the program, we make all five sub-
routines LOCAL and find that it now fits in core,
but requires SOCAL level 2. Running of the pro-
gram is accompanied with quite a bit of disk arm
movement, which slows it down considerably.

The subroutines are:
SUBW -- Error message (hardly ever called)
SUBZ -- New page headings (once every 25
employees)
SUBY1 -- FICA routine (almost always called)
SUBY2 -- Special deductions (one out of every
six employees).
SUBY3 Savings Bond deduction (one out of
every three employees)

consuma
lona tours

Geed art,
Eno..
non.

End of Gun
Prim totaln
Esit

ub	 LOCAL SC/BW

TYPO Erre.

Find nod rood
0 master data

on Wok

Cant..
most Par

LOCAL SUZIY /,
SUBY2,

Compute
	 SCAliy3

mandatory
doductiorts

Compote
notional
doductiorts

0
 Compute `ITO.

not pay. N.

Utortno 0*
mord

Annum..
	 LOCAL 5 CASZ

die Mob

Ekto to mw
loW.Mtor.
NnWtm

Print detail

(

Initialise
eanstents.
sere totals

Read dm.
mka m,
etc.

It

End or Run
Print touts.
Exit

MAKE 7wEsE
INTO tiMes

PGMX

Section Subsections Page

90 40 10 04

Step 3

Studying the flowchart, we see that this program
could be split into three smaller programs, or
LINKS:

PGMAB, which is made up of blocks A and B
PGMX, which was block X
MAIN, which is the main program

Executing with no LOCALs, we find that the program
MAIN requires SOCAL level 2 to fit into core, and
that it runs no faster than before.

CALL TRANSFER VECTOR41	 SUBW	 1753
SUBZ	 1627

•	 SUBY1	 155F
SUBY2	 13CF

Rud devil
card

SUBY3	 123F
TY. Error

DATSW	 1946 SOCAL 1
ID	 LIBF TRANSFER VECTOR

HJLTB	 1EFF SUCAL 2
EADDX	 18C7 SOCAL 1

Find end read
muter date
on disk

41	 XDU	 19CC SOCAL 1
FARC	 19AA SOCAL 1
XMD	 1968 SOCAL 1•	
ELDX	 1140 Comrade

woos no
NORM	 1788
HOLEZ	 1E96 SOCAL 2•	
EBCT8	 1E93 SOCAL 2
GETAD	 1E4A SUCAL 2
IFIX	 175C
PAUSE	 1930 SOCAL 1

Compute
mandatory
deductions

ES13R	 191C SOCAL	 1
•	 EAUD	 18C1 SOCAL 1

EUIV	 1868 SOCAL 1

Compute
Mionel
deductions

EMPY	 183A SUCAL 1
EDVR	 1822 SOCAL 1
FLOAT	 1176

Comm. YTD.
era	 era.

SUBSC	 1158
ESTO	 112E
ELU	 1144
PRNTZ	 1D8C SOCAL 2
CAROL	 10E2 SOCAL 2

Update disk
flees

WRTYZ	 1CA6 SOCAL 2
SFIO	 191D SOCAL 2
SOFIU	 18C9 SOCAL 3•	

SYSTEM SUBROUTINES
ILSO4	 00C4

Accumulate
the torah

ILSO2	 0083
41	 ILS01	 1F06

ILSOO	 1F21

%foram..
mramraWm
harairra

Poo

FLIPR	 1782•	
10CF	 (HEX)	 IS THE EXECUTION ADOR Z

:tderai

• d/ XEQ MAIN L 1
*FILES(1#FILEN)

• FILES ALLOCATION
1 01A3 0001 7061 FILEN

22 U000 0001 7U61 U1A7
• STORAGE ALLOCATION

R 40 03C5 (HEX) ADDITIONAL CURE REQUIRO
R 43 01FC (HEX) ARITH/FUNC SUCAL wD CNT

ID	
R 44 06E8 (HEX) FI/O, I/O .1UCAL WD CNT
R 45 02A2 (HEX) DISK Fl/U —(OCAL WO CNT
R 41 005E (HEX) WDS UNUSED BY CORE LOAD

End of Run
Print total..
Exit

Sad and
nird

Type Error

Find cal reed
mama Ads
on dido

Compute
fatal MIX

Compum
mandatory
deductions

Comport. nCk
net a, etc

Mame disk
record

Accumulate
101315

PS x5.411

LOCAL 57./e1W

LOCAL. S(/By /,
SC/BY 2,
Svey 3

Compute
optional
deductions

LOCAL. 3C/492

Skip to new
P.M. end print
headings

	

Section Subsections	 Page

90
	

40
	

10
	

05

Step 4

Making all five subroutines LOCAL again, we find
this is just enough to eliminate SOCALs, but does

not speed up the program, since SUBY1, the
FICA routine, is called for almost every employee
and causes the disk arm to be moved from the data
file area back to the overlay area, and vice versa.

// XEO MAIN L 2
*LOCALMAIN,SULIW,5UBZ*SUBY1,SUBY2,5UBY3
•FILES(1,FILEN)
FILES ALLOCATION

1 01A3 0001 7061 FILEN
• 22 0000 0001 7061 01A7

STORAGE ALLOCATION
R 41 0004 (HEX) VdDS UNUSED BY CORE LOAD

• CALL TRANSFER VECTOR
DATSW 167E
SUBY3 1E9F LOCAL
SUBY2 1F67 LOCAL
SUBY1 1F67 LOCAL
SUEZ	 1E9F LOCAL

• SUBW	 1F03 LOCAL
LIEF TRANSFER VECTOR
HOLTB 1059
EAUDX 1AFF
ADD	 1CDC
FARC	 1CBA

• XMD	 1C78
ELDX	 1Al2
NORM	 1C4E
HOLEL 1C18

• EBCT6 1C15
GETAD 16CC

• IFIX 16A0
PAUSE 1868
LSBR	 1854

• EADO	 1AF9
EDIV	 1AA0
EMPY	 1A72
EDVR 1A5A
FLOAT 1A48
SUBSC 1A2A

• ESTO	 1A00
ELD	 1A16
PRNTZ 193E

• CARDZ 1894
WRTYZ 1858
SFIO 14CF
SDFIO 1109

ID	 SYSTEM SUBROUTINES
ILSO4 0004
ILSO2 0083

• ILSO1 1F74
ILSOO 1F8F

• FLIPR 107A
10CF (HEX) IS THE EXECUTION ADDR

	

A moments
	 THESE <IRE

	

zero totals
	 STILL L/IVKS

Read ate.
melt no..
mc.

■

Section Subsections Page

90 40 10 06

Step 5

Since SUBY1 as a LOCAL is slowing down the pro-
gram, we must try to keep it in core storage at all
times. However, the previous load map showed that
there are only four words unused by the package,
and SUBY1 is 400 words long. If we could free up
396 words, SUBY1 could be taken out of the LOCAL
category, and the program would be speeded up.

(Realize, of course, that SUBY1 could easily be
made non-LOCAL, but that SOCALs would then be
required. The secret is to avoid both SOCALs and
a LOCAL SUBY1).

Note also that SOCALs would cause the program
to run even slower. Since the sequence of the
program is a repetition of

a. I/O
b. DISK
c. ARITH, including SUBY1
d. DISK
e. ARITH
f. I/0

SOCAL level 1 will cause the disk arm to be moved
between the data area and the overlay area between
steps

a and b
b and c
c and d
d and e

while SUBY1 as a LOCAL will require such a move-
ment only between steps

b and c
c and d

After considerable study, we decide that there is
very little that can be done to further improve the
performance of this program, unless, of course, we
can reduce its size by 396-100 or 296 words (Flip-
per would no longer be required).

Because SUBY1 handles the FICA calculation, it
will be called less and less as the year progresses,
since more employees will attain a "paid up" status.
(This won't be true, however, if your test for "paid-
up" is done inside the subroutine! It should be made
in the mainline program, otherwise SUBY1 will be
called every time, whether the employee gets a deduc-
tion or not.)

Discussion of Case I

Here you have seen one way to fit this "typical"
program into core, at little or no sacrifice in
throughput. There maybe other ways to do the same
thing; there may be better ways.

Basically, common sense is used -- a step-by-
step segmentation of the program, with each step
having a greater effect on performance:

1. Make LOCALs out of those subroutines that
are not always called.

2. Break the program into LINKs.

	

Section Subsections 	 Page

90
	

40
	

20
	

01

Case II

This program is of a basically different organization
than Case I. It is typical of a job in which the input
consists of a master card followed by a variable
number of detail cards, with the sequence repeated
many times. Some good examples of this type of
job are billing, accounting, cost systems, etc.

Assume that this application is some type of project
cost system, with a master card for each project,
followed by a series of detail or change cards per-
taining to that project. These detail cards may be
due to labor or materials charges against the
project or, in a few cases, an accounting depart-
ment adjustment.

Section Subsections Page

90 40 20 02

Step 1 and R18 messages shown. Even after SOCAL level
2 has been attempted, this program package exceeds
core storage by 43E or 1086 words.After several tries, the program COST achieves a

successful compilation, only to be met by the R40

ID	 //)(EC) COST L 1
*FILES(1.FILEN)

•	 FILES ALLOCATION
1 01A3 0001 7061 FILEN
22 0000 0001 7061 01A7

STORAGE ALLOCATION41	 R 40 084C (HEX) ADDITIONAL CORE REQUIRD
R 43 01E6 (HEX) ARITH/FUNC SOCAL WO CNT
R 44 06E8 (HEX) F I/0, I/O SOCAL WO CNT411 R 45 02A2 (HEX) DISK FI/0 SOCAL WD CNT
R 40 043E (HEX) ADDITIONAL CURE REQUIRD
R 18 COST LOADING HAS BEEN TERMINATED

Z. Skip to new
page, print
headings

M. Calculations U. CalculationsG. Calculations

E. Print totals
for last
master

N. Add to job
totals

R. Add to job
totals

V. Add to job
totals

F. Clear totals
for last
master

0. Print detail
line

S. Print detail
line

W. Print detail
line

master card;
one in 8.

material card;
3 out of 8.

labor card;
4 out of 8.

bad last

X. Type Error card C. Check the card Y. Print grand
message card code totals

D. Update disk
for last
master

L. GET data from
labor card
just read

P. GET data from
material card
just read

T. GET data from
adjustment
card just read

G. GET data from
master card
just read

H. Read disk
record for
new master

Go back
to B

	

Section Subsections
	

Page

90
	

40
	

20
	

03

A. Initialize

B. Read a
card

41	 // XEO COST L 2
*FILES(1,FILEN)
*LOCALCOST,FINALsNEWPG,BADCD,ToUtV,W

41	 FILES ALLOCATION
1 01A3 0001 7061 FILEN
22 0000 0001 7061 010

41	 STORAGE ALLOCATION
R 40 02FE (HEX) ADDITIONAL CURE REQUIRU
R 43 01E6 (HEX) ARITH/FUNC SUCAL WD CNT

41 K 44 06E8 (HEX) F1/0, I/0 SOCAL WU CNT
K 46 ULAL tHtAl UISK FI/U SUCAL WU CNT
it 41 U114 thltAl wUS UNUStO BY CURt LUAU

41	 CALL TRANSFER VECTOR
141D
135541 E 	 12F1
128D

41	
DATSW 181A SOCAL 1
W 162F LOCAL
3 15CB LOCAL
• I6F7 LOCAL

4, 15CB LOCAL
BADCD 1567 LOCAL

41 NEWPG 162F LOCALFINAL 1693 LOCAL
LIRE TRANSFER VECTOR

41	 HOLT8 1DE9 SOCAL 2
EADDX 1781 SOCAL 1
XDD	 18A0 SOCAL 1

ID	
FARC	 187E SOCAL 1
XMD	 183C SOCAL 1
ELDX	 1006

41	 NORM	 1452
HOLEZ 1080 SOCAL 2
EBCTB 1070 SOCAL 2

41	 GETAD 1034 SOCAL 2
IFIX	 1426
ESBR	 1806 SOCAL 1

4,	
EADD	 17AB SOCAL 1
EDIV	 1752 SOCAL 1
EMPY	 1724 SOCAL 1

• EDVR	 170C SOCAL 1
FLOAT 10FC
SUBSC LODE

40	 ESTO	 1064
ELD	 1OCA
PRNTZ 1C76 SOCAL 2

41	 CARDZ 1BCC SOCAL 2
WRTYZ 1890 SOCAL 2
SF10	 1807 SOCAL 2
SDFIO 1783 SOCAL 340	 SYSTEM SUBROUTINES
ILSO4 00C4
ILSO2 0083
ILSO1 IDFO
ILSOO lEOB
FLIPR 14A6

104B (HEX) IS THE EXECUTION ADDR

•

Section Subsections Page

90 40 20 04

Step 2

Observing the flowchart, we see that we are fortu-
nate in having several subroutines that are seldom,
if ever, called:

• BADCD, the illegal card message
• NEWPG, the skip to new page routine
• FINAL, the final total routine
• T, U, V, W, four routines involved in the

processing of an accounting adjustment card (an
unusual occurrence)

These seven subroutines are ideal LOCALs, and,
executing COST in this mode, we get the load map
shown. The program (at SOCAL level 2) runs, but
quite slowly. Checking the flowchart, we see we
have two blocks involving disk READs/WRITEs, D
and H, bracketing blocks E, F, and G, which use both
arithmetic and non-disk I/O functions. Obviously,
this will cause continuous disk arm movement be-
tween the disk data file area and the overlay area.

The only way we can reduce this time-consuming
function is to eliminate the need for overlays between
the disk READ and WRITE.

labor card;
4 out of 8.

material card;
3 out of 8.

master card;
one in 8.

G. GET data from
master card
just read

H. Read disk
record for
new master

D. Update disk
for last
master

L. GET data from
labor card
just read

P. GET data from
material card
just read

M. Calculations Q. Calculations U. Calculations

E. Print totals
for last
master

N. Add to job
totals

R. Add to job
totals

V. Add to job
totals

F. Clear totals
for last
master

0. Print detail
line

S. Print detail
line

W. Print detail
line

•

	

Section Subsections
	

Page

90
	

40
	

20
	

05

A. Initialize

B. Read a
card

8A0cD
	 	

bad last

X. Type Error
message

card C. Check the
card code

Car

LOCALs
ARE

C/RCL.ED
FINAL.

// XED COST L 2
*FILES(1,FILEN)

• *LUCALCOST,FINAL,NEWPGIBADCD,T.U.VI,W
FILES ALLOCATION

1 01A3 0001 7061 FILEN
22 0000 0001 7061 010

41	 STORAGE ALLOCATION
R 40 02FE (HEX) ADDITIONAL CURE REOUIRO
R 43 01E6 (HEX) ARITH/FUNC SUCAL WD CNT

ID	 R 44 06E8 (HEX) FI/Uo I/O SOCAL WO CNT
R 45 02A2 (HEX) DISK 1-1/L) SUCAL WO CNT

41 01(4 (HEX) w05 UNUSED 8Y CURL LUAU
CALL TRANSFER VECTOR
G	 141D

1355
ID E 	 12F1

128D
181A SOCAL 1
162F LOCAL
15CB LOCAL
16F7 LOCAL
15C13 LOCAL

BADCD 1567 LOCAL
NEWPG 162F LOCAL
FINAL 1693 LOCAL

LIBF TRANSFER VECTOR
HOLTB 1DE9 SOCAL 2•
EADDX 1761 SOCAL 1
XDD 18A0 SOCAL 1
FARC 187E SOCAL 1
XMO 183C SOCAL 1
ELOX 1006
NORM 1452

41 HOLEZ 1080 SOCAL 2
E8CT8 1070 SOCAL 2
GETAD 1034 SOCAL 2•
IFIX 1426
ESBR 1806 SOCAL 1

• EADD 17AB SOCAL 1
EDIV 1752 SOCAL 1
EMPY 1724 SOCAL 1• EDVR
FLOAT

170C
1OFC

SOCAL 1

SUBSC LODE
ESTO 1084
ELD IOCA
PRNTZ 1C76 SOCAL 2• CARDZ
WRTYZ

18CC
1890

SOCAL 2
SOCAL 2

SFIO 1807 SOCAL 2
SDFIO 1783 SOCAL 3•

SYSTEM SUBROUTINES
ILSO4 00C4
ILSO2 0063•
ILSO1
ILSOO

10F0
lEOB

FLIPR 14A6
• 1048	 (HEX)	 IS THE EXECUTION ADDR

• D
DATSW

V

Section Subsections Page

90 40 20 06

Step 3

As mentioned in Step 2, we now realize that there
is no real reason for blocks E, F, and G to be
sandwiched between the disk READ and the disk
WRITE.

Rearranging the program slightly, to make the
sequence Z, E, F, G, D, H, we reexecute and find
that the program runs substantially faster than be-
fore. There is still some disk arm movement, but
it is not quite as frequent. Actually, as long as we
have disk data files and overlays, there will be
some disk arm movement. The goal is to reduce it,
if it cannot be eliminated altogether.

labor card;
4 out of 8.

material card;
3 out of 8.

R. Add to job
totals

D. Update disk
for last
master

L. GET data from
labor card
just read

M. Calculations

P.. GET data from
material card
just read

Q. Calculations

T. GET data from
adjustment
card just read

U. Calculations

E. Print totals
for last
master

N. Add to job
totals

V. Add to job
totals

F. Clear totals
for last
master

0. Print detail
line

S. Print detail
line

G. GET data from
master card
just read

BLOCK D
	H. Read disk	 Pawn/
	record for	

//ERE!new master

Go back
to B

master card;
one in 8.

	

Section Subsections
	

Page

90
	

40
	

20
	

07

A. Initialize

B. Read a
card

LOCALs
ARE

CIRCLED
BADCD FINAL

bad last
X. Type Error

message
card C. Check the

card code
car40. Y. Print grand

totals

• // XE0 COST L 2

*LOCALCOST,FI-NAL,NEWPGoBADCD,T,U,VtWoOtErFoG

41	
*FILES(1,FILEN)
FILES ALLOCATION

1 01A3 0001 7061 FILEN
22 0000 U001 7U61 01A7

41	 STORAGE ALLOCATION
R 41 000A (HEX) WDS UNUSED BY CORE LOAD
CALL TRANSFER VECTOR

41	 DATSW 1AEE
1E33 LOCAL

F	 1DCF LOCAL•
E	 1DCF LOCAL
O	 lEFB LOCAL

1E97 LOCAL
41 V 	 1E33 LOCAL

O	 1F5F LOCAL
1E33 LOCAL

I) BADCD 1DCF LOCAL
NEWPG 1E97 LOCAL
FINAL lEFB LOCAL

• LIBF TRANSFER VECTOR
HOLTB 1CC9
EADDX 1A85
XDD	 1C4C
FARC	 1C2A
XMD	 1BE8

• ELDX	 1998
NORM	 lbBE
HOLEZ 1B88

41	 EBCTB 1B85
GETAD 1B3C

41	
IFIX	 IBIO
ESBR	 lADA
EADD	 1A7F
EDIV	 1A26

41	 EMPY	 19F8
EDVR	 19E0

41	
FLOAT 19CE
SUBSC 19130
ESTO	 1986

• ELD 199C
PRNTZ 18C4
CARDZ 181A

• WRTYZ 170E
SFIO 1455
SDFIO 115F

•
SYSTEM SUBROUTINES
ILSO4 00C4
ILS02 U0B3

• ILSO1 1F6C
ILSOO 1F87
FLIPR IDOE

41	
104B (HEX) IS THE EXECUTION ADDR

Section Subsections Page

90 40 20 08

Step 4

In step 3, we have prevented overlays from oc-
curring between disk READs/WRITEs. The next
logical step is to eliminate overlays altogether, or,
if that is impossible, limit overlays to LOCALs or
SOCALs that are infrequently called.

Further study of the flowchart reveals that a
master card is somewhat exceptional, even though
every eighth card or so is a master card. Adding D,
E, F, and G to the LOCAL list, we again execute
and find that the program now runs even faster than
before, with disk arm movement only when a master
card is encountered. The load map shows that
SOCALs are no longer required.

L. GET data from
labor card
just read

P. GET data from
material card
just read

T. GET data from
adjustment
card just read

U. Calculations

E.	 Print totals
for last
master

N. Add to job
totals

R. Add to job
totals

V. Add to job
totals

F. Clear totals 0. Print detail S.	 Print detail W. Print detail
for last
master

line line line

M. Calculations Q. Calculations

	

Section Subsections
	

Page

90
	

40
	

20
	

09

A. Initialize

B. Read a
card

LOCALs
ARE

C/RCLED

bad last

X. Type Error card C. Check the ca Y. Print grand
message card code totals

master card;
one in 8.

labor card;
4 out of 8.

material card;
3 out of 8.

adjustment card:
UNUSUAL

G. GET data from
master card
just read

H. Read disk
record for
new master

BLOCK
HAS BEEN
MOVED
DOWN
HERE

Section Subsections Page

90 40 20 10

Discussion of Case II

Here, as in Case I, we take a similar series of
common-sense steps to improve performance:

1. Make the exception subroutines LOCAL.

2. If that still requires SOCALs, consider sep-
arating the program into LINKs. In this case, this
approach did not seem to be too effective.

3. Since SOCALs seem unavoidable, we try to
rearrange our program steps to reduce their effect.

	

Section Subsections 	 Page

90
	

40
	

30
	

01

Case III

Here you have a technically oriented job, with a
great deal of iterative or trial-and-error computa-
tion and very little input/output. The program reads

a deck of ten cards, computes for quite some time,
then prints a page of answers. On the basis of a
similar program, you estimate that the computations
should take about 15 minutes.

It not Complete it oomMem

J. Wrap.up	 K. Print
Computations
	 EXIT

Section Subsections Page

90 40 30 02

Step 1

Attempting to execute this program, TECH, for the
first time, we are informed that it exceeds core
storage by 2A0 or 528 words.

A. Read input cards

•
Al

FILES ALLOCATION
1	 01A3	 0001	 7061	 FILE,(

22 0000	 0001	 7061	 01A7
STORAGE ALLOCATION
R 40	 068C	 (HEX)	 ADDITIONAL CORE REQUIRD

B. Initialize

R 43 0104 (HEX) ARITH/FUNC LOCAL WD CNT
R 44 06E8 (HEX) FI/Or	 I/O LOCAL WO CNT

11 R 45 02A2 (HEX) DISK FI/0 LOCAL WD CNT
R 4U 02AU (HEX) ADDITIONAL CORE REQUIRD

C. Compute:
Call L• R lb TECH LOADING HAS BEEN TERMINATED

Call M
Call N

// XEQ TECH L 1
•FILES(11,FILEN)

D. Write disk
mord

I. Typo message:
"STEP NUMBER n"

Sixes of the
Subroutines used:

I.	 100 wards
Al	 300 words
N 300 words
P 400 words
O 400 words
X	 100 words
3 300 words
2	 100 words

E. Compute
Coil L
can P
Cell 13

F. Write disk
record

G. Read disk

H. Compote
USX
COY
Ca02

•	 // XE0 TECH1 L
FILES ALLOCATION
	 A. Read Input nrds

• 1 U000	 0001	 7061	 01A7
22 0001	 0001	 7061	 01A7

STORAGE ALLOCATION

• R
R

40
43

047A
01C4

(HEX)	 ADDITIONAL CURE REQUIRO
(HEX)	 ARITH/FUNC SOCAL WD CNT MAKE TH/S

R 44 0514 (HEX)	 FI/O.	 I/O SOCAL WI) CNT	 A LINK,
CALLED INPUT

B.	 Initialize

• R
R

45
40

02A2
008E

(HEX)	 DISK FI/0 SOCAL WD CNT
(HEX)	 ADDITIONAL CURE REOUIRD

R 18 TECH1 LOADING HAS BEEN TERMINATED

G Compute:
CO I.

M
COIN

D.WrItedIsk
sewn

I. Type MUMPS:
"STEP NUMBER n"

E. Compute:
Call L
Call P
4110

F. Write disk
record

G. Reed disk

H. Compote
CMIX
CARY
Cell

If not comp/me If complete

Sloes of the
Subroutines used:

L 100 words
M	 300 words
N 300 words
P 400 words
CI	 400 words
X	 100 words
sl	 300 words
Z	 100 words

MAKE THIS
A	 K.

CALLED ANSPIR

	

Section Subsections	 Page

90
	

40
	

30
	

03

Step 2

Noting that the program may be split into three
separate programs or LINKs, we make some minor
modifications and obtain:

• INPUT, made up of the first two blocks, A
and B

• ANSWR, the printing of the results, formerly
block K

• TECH1, the main program
Executing, we find that INPUT and ANSWR fit with
room to spare, but TECH1 is still too large; how-
ever, it now exceeds core by only 8E or 142 words.

H J. Womm0
computations

K. Print results,
EXIT

// XEQ TECH1 L 2.
*FILES(1,FILEN)
*LOCALTECH1oLoMpN0,011X,Y,2

40	 FILES ALLOCATION
1 01A3 0001 7061 FILEN
22 0000 0001 7061 01A7

41	 STORAGE ALLOCATION
R 41 0132 (HEX) WDS UNUSED BY CORE LOAD
CALL TRANSFER VECTOR• Z	 1040 LOCAL
• 1E15 LOCAL
X	 1040 LOCAL• Q	 1E79 LOCAL
P 1E79 LOCAL
N 1E15 LOCAL
M	 1E15 LOCAL
L 104D LOCAL

LIBF TRANSFER VECTOR
EADDX lAA3

•

XDD
FARC
XMD
ELDX
NORM
EBCTB
GET AD
IFIX
ESBR
EADD
EDIV
EMPY
EDVR
FLOAT
SUBS(
ESTO
ELD
WRTYZ
SFIO
SDFIO

SYSTEM
ILSO4
ILSO2
FLIPR

1C12
1BFO
1BAE
1986
1684
1881
1838
1BOC
1AF8
LA9D
1A44
1A16
19FE
19EC
19CE
19A4
19BA
1964
15DB
12E5

SUBROUTINES
00C4
0083
1C8C

110A (HEX) IS THE EXECUTION ADDR

•
•
•
•
•
•
•
•

Section Subsections Page

90 40 30 04

Step 3

Reexecuting TECH1 with all eight subroutines as
LOCALs (L, M, N, P, Q, X, Y, Z), we learn from
the load map that this strategy not only gets the
program into core storage, but eliminates the need
for SOCALs. It runs quite slowly, however, and

takes nearly 60 minutes to go to completion, com-
pared with the 15 minutes we expected. The sound
of the disk arm moving gives us a clue to what is
wrong: we have caused an overlay to be placed
between the disk READ/WRITE commands. In this
case the LOCAL subroutines L, P, and Q are the
culprits.

A. Read input cards

..ZNPUT
B. Initialize

	

Section Subsections
	

Page

90
	

40
	

30
	

05

C. Compute:
Call L -
Call M-*
Call N--*

D. Write disk
record

Sizes of the
Subroutines used:

*L 100 words

*M 300 words
*N 300 words

P 400 words

E. Compute: 400 words

I.	 Type message:
"STEP NUMBER n"

Call L
Call P- *
Call Q-*

*X
A- Y

Z

100 words
300 words
100 words

F. Write disk
record

G. Read disk

H. Compute
Call X-,
Call
Call Z-*

MAKE
7-14E-sz
LOCAL

ANS WI?

If completeIf not complete

J. Wrap-up
computations

K. Print results,
EXIT

// XECI TECH1 L 2
*LOCALTECHItMoNtXtYt2

40	
*FILES(1,FILEN)
FILES ALLOCATION

1 01A3 0001 7061 FILEN
• 22 0000 0001 7061 01A7

STORAGE ALLOCATION
R 40 010C (HEX) ADDITIONAL CORE REOUIRO

• R 43 01C4 (HEX) ARITH/FUNC LOCAL RD CNT
R 44 0514 (HEX) FI/Ot I/O SOCAL WD CNT
R 45 02A2 (HEX) DISK FI/0 LOCAL WD CNT
R 41 0274 (HEX) WDS UNUSED BY CORE LUAU

410	 CALL TRANSFER VECTOR
L 1607
• 15A3
O 1413
Z	 1745 LOCAL

1800 LOCAL
X	 1745 LOCAL
N 1800 LOCAL
M	 1-80D LOCAL

4,	 LIBF TRANSFER VECTOR
EADDX 18C5 LOCAL 1
XDD	 1992 LOCAL 1
FARC	 1970 LOCAL 1
XMD	 192E LOCAL 1
ELDX	 124C

40	 NORM	 163C
EBCT8 1029 LOCAL 2
GETAD 10EO LOCAL 2

411	 IFIX	 1610
ESBR	 191A LOCAL 1
EADD	 188F LOCAL 1

40	 EDIV	 1866 LOCAL 1
EMPY	 1838 LOCAL 1
EDVR	 1820 LOCAL 1

4/	 FLOAT 1282
SUBSC 1264

40	
ESTO	 123A
ELD	 1250
WRTYZ 1CA4 LOCAL 2
SFIO	 1918 LOCAL 2
SDFIO 18C7 LOCAL 3

SYSTEM SUBROUTINES

•
ILSO4 00C4
ILSO2 0083
FLIPR 1684

11DA (HEX) IS THE EXECUTION ADDRI

Section Subsections Page

90 40 30 06

Step 4

Leaving L, P, and Q off the LOCAL card, we again
execute TECH1, but find that it runs even more
slowly, since we now need SOCAL level 2 to fit into
core storage.

At this point, you have a choice: accept the
program as a one-hour job, or work on it further
to speed it up. Since it is used quite often, you
decide to give it one last check.

	

Section Subsections
	 Page

90
	

40
	

30
	

07

A. Read input cards

/A/PUT B. Initialize

D. Write disk
record

L 100 words

-*
ytr

M
N

300 words
300 words

P 400 words

E. Compute: Q 400 words

Type message:
"STEP NUMBER n"

Call L
Call P
Call Q

44

jE

X
Y
Z

100 words
300 words
100 words

L,P2ANO
ARE A/O
LONGER
.L OCAL c9L.

* MAKE
THESE
LOCi91._

F. Write disk
record

Sizes of the
Subroutines used:

G. Read disk

H. Compute
Call X.
Call Y---*
Call Z AAISWR

If completeIf not complete

J. Wrap-up
computations

K. Print results,
EXIT

• // XE0 TECH2 L 1
•FILES(1,FILEN)
FILES ALLOCATION

• 1 01A3 0001 7061 FILEN
22 0000 0001 7061 01A7

STORAGE ALLOCATION
111	

STORAG
 41 00F2 (HEX) WDS UNUSED BY CORE LUAU
CALL TRANSFER VECTOR
N 1CA3

41	 N	 1877
L 1A4B
P 19E7lb	 0	 1857
Z	 16C7
Y	 1663

10	 X	 1537
LIBF TRANSFER VECTOR
EADDX 1063
XDD
	

1E68
FARC
	

1E66
XMD
	

1E24
ELDX
	

1DCA
NORM
	

1DFA
ESBR
	

1DE6
ESTO
	

1088
EAU()
	

1050
EDIV
	

1004
EMPY
	

ICD6
EDVR 1CBE
FLOAT 1CAC
SUBSC 14BE
SDFIO 12CB

SYSTEM SUBROUTINES
ILSO4 0004
ILSO2 0083

1107 (HEX) IS THE EXECUTION ADDR

•
•
•
•
•
•
•

Section Subsections Page

90 40 30 08

Step 5

After some study, we notice that the typewritten
message, block I, is the only non-disk input/output
in the entire program. It looks innocent enough, but
because of it, the entire Format Interpreter (SFIO)
is required, plus the Typewriter routine (WRTYZ)
and the typewriter code conversion routine (EBCTB).
The total size of this package may be determined
from the previous R44 message -- 514 (hexadecimal)
or 1300 words.

Removing that message -- and the *IOCS
(TYPEWRITER) Card! -- we recompile the program
(calling it TECH2) and find, on execution, that it
runs with no SOCALs or LOCALs.

It now executes to completion in 15 minutes, as
we hoped, and the disk arm movement is reduced to
an occasional "click" as it moves from one cylinder
to the next in the data file area.

If a typewritten message is really needed, consider
using the TYPER routine of CSP - it is quite small
and does not use SFIO.

PageSubsectionsSection

09304090

F. Write disk
record

NO
LOCALS

REOv/RE.o!DROP TH/5
PART OF THE
PROGRAM .1
USE TYPER
C5P ROUT/NE
IF MESSAGE /5
REALLY NEEDED

G. Read disk

H. Compute
Call X
Call
Call Z ANSWR

J. Wrap•up
computations

K. Print results.
EXIT

If not complete If complete

Sizes of the
Subroutines used:

L 100 words
M 300 words
N 300 words
P 400 words
Q 400 words
X	 100 words
Y	 300 words
Z	 100 words

Case 1
User's Area

(UA)
Working Storage 	 01(WS)

UnusedOverlays
Temporary files,
residing in WS,
are close to
overlay area

/////
other material	 Files

UnusedFiles	 Overlays

Average arm
movement
distance

Case 2

File is in UA,
but still close
to overlay area

User's Area
(UA)r//////

other material

Working Storage
	 (WS) -01

k
Average arm
movement

distance

User's Area
(UA)

Working Storamial
(INS)

/7./T-./
other material
Fl

Files other material .; Overlays Unused
/ ///////:(

I..	 Average a rm	 m.,1

movement distance

Case 3

File is in UA,
but far removed
from overlay
area

Section Subsections Page

90 40 30 10

Discussion of Case III

This type program, although quite different from
the previous two cases, is analyzed in much the
same way:

1. The main program is split into three LINKs:
Input, Processing, and Output.

SOCAL's, LOCAL's and/or LIN K's are used

Overlays Used
No
. SOCAL's

Overlays
Limited to

Continuously,
But Not In

Overlays Used
in between

. LOCAL'S Seldom-Used between Disk Disk Read/Write

. LINK'S Blocks Statements Statements

No Disk Program Program will
Data will run at run at less
Files some basic than "Top

"Top Speed". Speed", but
probably not
enough to be
noticed.

Small to Program Program will Program will Program will
Medium- will run at run at less run noticeably run slowly;
Size some basic than "Top below "Top many arm
Files Near "Top Speed". Speed", but Speed", but movements of
WS (at the
End of

probably not
enough to be

not too much,
since overlay

short distance
will be needed.

WS) noticed. area is not too
far away from
data file area.

Very Program Program will Program will The combination
Large will run at run at less run slowly, of many arm
Disk some basic than "Top since overlay movements, and
Data
Files,
or Small

"Top Speed". Speed", but
probably not
enough to be

area is pro-
portionately
further away

long distances,
will cause this
type program

Files Deep noticed. from data to run con-
inside UA file area. siderably below

"Top Speed".
Worst easel

2. Since all subprograms are called during each
pass, we try to LOCALize only those that do not
appear inside the main disk READ/WRITE loop .

3. With excessive overlays still required, we
attack the main program and try to shorten it or
eliminate some of the subroutines it uses.

Figure 90, 11,	 Figure 90. 12,

	

Section Subsections	 Page

90
	

40
	

40
	

01

Summary

To recapitulate the lessons learned in the preceding
three case studies, performance depends on five
major factors:

1. The size of the program. When writing any
program, you should anticipate problems with
core storage and performance. Plan pro-
grams of reasonable scope, and code them as
a series of LINKs, if at all possible.

2. The subroutines required by the program.
Realize that many seemingly innocent
FORTRAN statements can cause sizable sub-
routines to be included in your core load.
Some examples are PAUSE, STOP, FIND,
division, use of the data switches, etc.
FORTRAN control cards can have a similar
effect -- for example, unnecessary *IOCS
cards, the TRACE, etc.

3. The way the program is structured. When
flowcharting and coding your programs,
always keep in mind the location of the disk
arm, so that you do not invite excessive arm
movement between the overlay area and the
data area. Place as little coding as possible
between disk READ/WRITE loops so that the
chance of an intervening overlay is reduced.
Figure 90.11 shows the various combinations
of data files and overlays.

Note that the location of the overlay has a
great effect on performance. If you must
move the disk arm from one area to the other,
you can at least try to minimize the number
of times it is required (or reduce the distance
involved, by making data files compact).

4. The overlay scheme used. If your program
is of such magnitude that some overlaying is
required, you should have a good feel for
how each works and how each can affect per-
formance. Figure 90.11 shows that there is
no differentiation made between LOCALs,
SOCALs, and LINKs -- they are all overlays.

Note also that the number of times an over-
lay is required is not as important as the disk

arm movement that may be necessary to get
it. For this reason you should take particular
care to avoid causing an overlay to be placed
in between disk READ/WRITE statements.

LOCALs, because they are selected by
the programmer, will often yield better per-
formance than SOCALs, which are chosen by
the CLB according to predetermined rules.
However, if you select LOCALs without
regard to their effect on performance, it is
possible that they can slow down execution
time even more than SOCALs.

5. The size and location of the data file. Since
you are concerned with minimizing disk arm
movement time, you should try to shorten
the distance involved.

The overlay area is always at the end of the
UA or at the beginning of WS, whichever way you
prefer to look at it. The data files may be either:

• In the UA or FX, if you have put them
there with the *STOREDATA card

• At the end of UA (beginning of WS), if you
have not used a *STOREDATA or *FILES
card

If you have a temporary file, in WS, your arm
movement times will be minimized, since the
files and the overlays are as close as they can
be. If your file is in the UA, however, the
picture may be quite different, depending on
how "deep" it lies in the UA. If a DUMPLET
shows that there is a great deal of distance
between the file and the end of UA, you should
consider moving the file. Figure 90.12 shows
three possible situations.

The key to gaining good program performance is
knowledge:

• Knowledge of the way in which the three
overlays work

• Knowledge of the basic workflow of your
program

Section Subsections Page

01

INDEX

A1DEC: 70.30.00, 70.40.10 Commercial Subroutine Package: 20.30.10, 20.60.01, 30.20.00, 30.30.00,
Accidents: 15.10.60, 15.20.01, 15.20.10, 15.20.30, 15.20.50, 15.20.60,

15.20.70
Accounting controls: 10.30.00, 20.01.00, 20.10.01, 20.10.10, 20.10.20,

70.10.20,
70.20.20,
70.60.10,

70.10.30,
70.30.00,
80.60.00,

70.20.01,
70.40.10,
90.20.30

70.20.10,
70.40.20,

25.40.40, 40.20.00
Accounts payable: 10.40.50
Accounts receivable: 10.40.20
Accumulator: 30.20.00, 45.05.30
Accuracy: 70.10.01, 70.10.20
ADD: 70.10.30
Addend: 70.10.30
Addition area: 85.10.10
Address calculation sorting: 75.30.10
Alphabetic fields, comparing: 70.40.20
Alternating exchange sort: 75.40.00
Arithmetic: 70.10.01

Binary: 70.10.20
Constant subscripts: 70.50.10
Decimal: 70.10.20, 70.10.30
Extended precision: 70.10.20
Fractions: 70.10.20
Integer: 70.10.10
Interaction with I/O: 70.30.00
Real: 70.10.20
Real fixed point: 70.10.20
Real floating point: 70.10.20
Standard precision: 70.10.20
Variable precision: 70.10.20

Arithmetic statement function: 25.40.40
Assembler: 50.01.00, 60.10.20
Assembler Language: 20.60.01
Audit: 20.10.10

Control: 20.30.10
Trail: 20.40.70

Auditors: 20.10.10
Augend: 70.10.30
Backup: 15.10.60, 15.20.60, 25.40.40
Batch size: 20.10.10
Batch controls: 20.10.20, 20.40.70
Billing: 10.40.10
Blocking factor (see "packing factor")
Bugs (see "errors")
CALL LINK: 65.10.50
CALL PDUMP: 30.20.00
CALL TSTOP: 30.20.00
CALL TSTRT: 30.20.00
Cancellation: 20.10.20
Card data files

Backup: 15.10.60
Changes to: 15.10.30
Size: 15.10.50

Card: 15.10.01
Design: 20.30.10
Formats: 40.30.00
Layout: 10.20.00
Layout form: 20.30.10
Paths: 45.20.00
Punches: 45.20.00
Punching: 30.01.00
Punching standards: 30.01.00
Readers: 45.20.00
Verification: 20.10.10
Zone punches: 70.20.10, 70.40.10, 70.40.20

CARDZ: 65.10.30
Cartridge identification: 55.10.00
Cathode ray tube: 45.35.00
Check, reasonableness: 15.20.40
Check register: 25.40.60
Check writing: 25.40.50
COGO: 20.60.01
Collating sequence: 75.10.00

COMMON: 65.10.50
Comparing fields: 70.10.30
Components, nonstandard: 45.45.00
Computed GO TO: 30.20.00
Configurator: 45.55.00
Console

Debugging: 30.20.00
Display lamps: 45.05.30
Keyboard: 15.10.40, 45.05.10, 70.20.10
Keyboard input: 25.40.10

Continuous Systems Modeling Program: 20.60.01
Contour map plotting: 20.60.01
Control

Field, major: 75.10.00
Field, minor: 75.10.00
Key: 75.10.00, 85.10.30
Panel, punched card: 10.20.00
Tape: 10.30.00
Word: 75.01.00

Controls (see "accounting controls")
Conversion: 40.10.00, 40.20.00

Methods: 40.30.00
Copy a data file: 60.30.20
Copy a data file onto another disk: 60.30.30
Copy an entire disk onto another disk: 60.30.30
Copy a program onto another disk: 60.30.30
COPY program: 60.30.30
Core image format (see "disk data formats", "disk core image")
Core image buffer: 55.10.00, 60.10.20
Core load builder: 60.30.01, 65.10.30, 90.10.10, 90.20:00, 90.20.20,

90.30.40
Core storage

Dump: 30.20.00
Factors affecting: 85.10.30
Logical layout: 65.10.00
Management: 50.01.00, 65.01.00
Map: 65.10.30
Reducing requirements: 90.20.30
Saving: 70.50.00

Crossfooting: 20.10.20
CRT (see "cathode ray tube")
CSP (see "Commercial Subroutine Package")
Cutover: 40.30.00

One-time: 40.30.00
Cycle stealing: 70.20.01
Cylinder: 45.10.00, 80.10.00
Cylinder zero: 60.10.10, 60.20.20
DASD (see "direct access storage device")
Data: 15.10.01

Area on disk: 80.20.00
Live: 30.01.00
Packing: 25.40.10
Switches: 15.10.40, 25.40.40, 45.05.20, 65.10.30
Types: 15.20.10

DATA statement: 70.10.30, 70.20.20, 70.40.20, 70.50.10, 70.50.20
Data Presentation System: 20.60.01
DCI (see "disk core image")
Debugging (see "programs, testing of')
Debugging, console: 30.20.00
DECA1: 70.30.00, 70.40.10
Decimal arithmetic: 70.10.20, 70.10.30
Decision tables: 25.10.00
DEFINE FILE: 80.30.10, 80.30.20, 80.40.10, 80.70.10, 85.10.30
*DEFINE VOID ASSEMBLER: 60.20.20
*DEFINE VOID FORTRAN: 60.20.20
DELETE: 60.30.20
Desk checking: 30.40.00

Section Subsections Page

02

Direct access storage device: 15.10.10
Disk (see "disk data file", "disk cartridge", etc.)
Disk arm movement time: 45.10.00
Disk cartridge: 15.20.20, 45.10.00, 80.10.00

Checking of ID numbers: 55.30.00
Format of material: 60.30.01
ID numbers: 50.01.00
Number required: 50.01.00
Scratch: 50.01.00
Space on: 60.20.10

Disk core image: 60.30.01, 80.30.20
Disk core image l format (see "disk data formats")
Disk data file: 15.10.01, 45.10.00

Adding items: 85.10.10, 85.10.20
Addition area: 85.10.10
Backup: 15.10.60, 15.20.60
Changes: 15.10.30
Design: 20.30.10
Duplicate copies: 15.20.10
Hazards: 15.20.20
Inquiry: 15.10.40
Intentional modification: 15.20.20
Jobs involving more than one: 15.10.20
Organization: 85.10.01, 85.10.20
Organization, choosing: 85.30.10
Organization, direct: 85.10.30
Organization, indexed sequential: 20.30.10, 75.20.10, 85.10.20
Organization, partitioned direct: 85.10.30
Organization, pure sequential: 85.10.10
Organization, random: 20.30.10, 75.20.10, 85.10.30
Organization, searching a pure sequential: 85.10.10
Organization, sequential: 75.20.10
Processing: 85.20.00
Processing, random: 85.20.00
Processing, sequential: 85.20.00
Reorganization: 15.10.30, 85.10.10
Safeguarding: 15.20.01
Setup: 80.70.10
Size: 15.10.50
Space required: 80.40.00

Disk data formats: 60.30.01, 80.30/.20
Conversion: 60.30.20

Disk drives
Logical: 50.01.00
Physical: 50.01.00

Disk file (see "disk data file")
Disk management: 50.01.00
Disk Monitor System: 50.01.00

Version I: 70.20.10
Version II: 65.10.00, 70.20.10

Disk storage (see "disk data file", "disk cartridge", etc.)
Disk system format: 60.30.01
Disk Utility Program: 50.01.00, 60.30.01
DIV: 70.10.30
Dividend: 70.10.30
Divisor: 70.10.30
Documentation: 10.01.00, 15.20.70

Current system: 20.01.00
Old system: 40.20.00
Standards: 25.10.00

Document controls: 20.10.20
Document register: 20.10.20
DSF (see "disk system format")
D1.3333p: 60.30.20
Dump a data file and reload: 60.30.20
Dumplet: 90.30.40
*DUMPLET: 60.20.10
DUP (see "Disk Utility Program")
Duplicate files: 15.10.60
EDIT: 25.40.50, 70.30.00, 70.40.10, 70.40.20
Editing: 25.40.10

Input cards: 85.30.10
EDIT mask: 70.40.20, 70.50.10
Employee numbers: 85.10.30

EQUIVALENCE statement: 70.50.10
Error recovery sheet: 15.20.70
Errors: 15.20.20, 15.20.40, 15.20.50, 15.20.60, 15.20.70, 30.10.00,

40.30.00
Card punch: 30.01.00
Program logic: 30.01.00
Programmer clerical: 30.01.00
Programmer procedural: 30.01.00

Exchanging sorting: 75.30.10
Execution time (see "running time, factors affecting")
Executive: 40.30.00
Exponentiation: 70.50.20
Extended precision: 70.10.20, 80.50.00, 80.60.00
Fields: 10.10.00, 80.20.00
Field size: 20.30.10
File maintenance: 20.30.10 (see also "disk data file, organization")
File organization: 20.30.10
FILES: 80.20.00, 80.30.20, 80.70.10, 90.30.30
FILL: 70.10.30, 70.40.20
FIND: 65.10.30, 70.50.20, 90.20.30
Fixed area: 60.10.50, 60.20.20, 80.30.20, 80.70.10
Fixed Location Equivalence Table: 60.10.50, 80.30.20
Fixed point arithmetic: 70.10.20
FLET (see "Fixed Location Equivalence Table")
Flipper: 65.10.20, 65.10.30
FLOAT: 70.40.10
Floating boundary: 60.10.40
Floating point arithmetic: 70.10.20
Flowcharts: 10.10.00, 20.01.00, 25.10.00, 25.30.20, 30.40.00
Format, A1: 70.40.10
Format, A2: 70.40.10
Formats, core storage required: 70.50.10
Forms

Design: 20.20.10, 20.20.20
Preprinted: 45.40.00

FORTRAN: 20.60.01
Compiler: 50.01.00, 60.10.20

Fractions: 70.10.20
FUNCTION, arithmetic statement: 25.40.40
FX (see "fixed area")
GET: 70.30.00, 70.40.10
GO TO, computed: 30.20.00
Graphic output: 45.30.00, 45.35.00
Half-adjust: 25.40.40, 70.40.10
Hash total: 20.10.10, 20.40.70
Hazards (see "disk data file, hazards")
Hexadecimal numbers: 30.20.00, 45.05.30
High/low/equal compare: 70.40.20
IBM System/360: 45.50.00
IBM systems area: 60.10.20, 60.20.20
ICOMP: 70.10.30
IFIX: 70.40.10
IF statement: 30.20.00
ILSOO: 65.10.40
ILS1: 65.10.40
ILS2: 65.10.40
ILS3: 65.10.40
ILSO4: 65.10.40
Index: 25.40.20
Index to a disk data file: 85.10.01, 85.10.20

Maintaining: 85.10.20
Indexed sequential (see "disk data file, organization, indexed sequential")
Input data, errors: 15.20.70
Input stream: 55.20.00
Inquiry: 15.10.40
Insertion: 75.30.10
Inside controls: 20.10.20
Installation: 05.01.00, 05.30.00
Integer arithmetic: 70.10.10
Integers: 70.10.10, 80.60.00

One-word: 80.50.00, 80.60.00
Interchangeable chain cartridge: 20.20.10
Internal sort: 75.10.00
Interrupt: 70.20.01

Section Subsections Page

03

Inventory: 10.40.40, 85.10.20
Involution: 70.50.20
*IOCS card: 65.10.30, 70.20.20, 70.50.20, 90.30.40
IOND: 70.20.10
JOB: 55.10.00
Job management: 50.01.00
Job-to-job transition: 50.01.00
KEYBD: 70.20.10, 70.20.20
Keyboard, console: 45.05.10
Keypunching (see "cards, punching")
Key-tag pair: 75.10.00
Key verification: 20.10.10
Language selection: 20.60.01
Large real numbers: 70.10.20
LET (see "Location Equivalence Table")
Light pen: 45.35.00
Linear Programming: 20.60.01
LINK: 65.10.60, 70.20.20, 90.20.20, 90.30.40
LINK area: 65.10.50
Load on call: 65.10.40
LOCAL: 65.10.20, 65.10.30, 70.50.20, 85.10.10, 90.20.20, 90.20.30,

90.30.40
LOCAL area: 65.10.40
Location Equivalence Table: 50.01.00, 60.10.40, 80.30.20
Magnitude: 70.10.20
Main line: 25.30.20
Manpower requirements: 40.30.00
Master cartridge: 50.01.00
Matching: 20.10.20
Match/no match: 70.40.20
Mechanism Design System: 20.60.01
Merge order: 75.10.00
Merging: 75.10.00, 75.30.10
Minuend: 70.10.30
Modular programs: 15.20.50, 25.30.20
Monitor control record: 55.10.00
MOVE: 25.40.50, 70.40.20
MPY: 70.10.30
NCOMP: 70.40.20
Negative balance: 20.10.20
Next record number indicator: 80.30.10, 80.40.10
Nonstandard components: 45.45.00
Non-systems cartridge: 50.01.00
NSIGN: 70.10.30
Numbers

Binary: 45.05.30
Hexadecimal: 30.20.00, 45.05.30

Numerical Surface Techniques: 20.60.01
NZONE: 70.40.20
Object code: 70.50.01
Operation manual: 15.20.70
Optical reader: 45.40.00
Optical System Design: 20.60.01
Order entry: 45.40.00
Outside controls: 20.10.20
Overlap: 70.20.01
Overlays: 65.10.30
PACK: 70.30.00, 70.40.10
Packing factor: 80.40.00
Paper tape punch: 45.25.00
Paper tape reader: 45.25.00
PAPTZ: 65.10.30
Parallel operations: 40.30.00
Partitioned direct (see "disk data file, organization, partitioned direct")
Pass: 75.10.00
Patches: 30.40.00
PAUSE: 30.20.00, 45.05.30, 65.10.30, 70.20.10
Payroll: 10.40.60, 15.10.20, 15.20.10, 15.20.50, 55.30.00, 80.60.00,

85.10.30, 85.30.10
1 PDUMP: 30.20.00
Performance (see "running time, factors affecting")
Personnel: 05.01.00
Petroleum Engineering and Exploration: 20.60.01
PID (see "Program Information Department")

Pigeonhole sorting: 75.30.10
Pilot operation: 40.30.00
Planning: 05.10.00

For conversion: 40.10.00
For testing: 30.01.00

Plotter: 45.30.00
PNCHZ: 65.10.30
Precision: 70.10.01
Preinstallation: 05.01.00
PRINT: 70.20.10, 70.20.20
Printer, console: 45.05.10
Printers: 45.15.00
Priority interrupt system: 70.20.01
PRNTZ: 65.10.30
PRNZ: 65.10.30
Processing, order: 15.10.10
Programmers, experience: 15.10.90
Program

Area: 65.10.50
Change authorization: 25.20.00
Changes: 25.10.00, 25.30.20
Comments: 25.40.10
Modular: 15.20.50, 25.30.20
Patches: 30.40.00
Testing: 30.01.00, 30.10.00
Type I: 20.60.01
Type II: 20.60.01
Type III: 20.60.01
Type IV: 20.60.01

Program Information Department: 50.01.00
Program informatiom manual: 35.10.10
Programming

Aids: 25.30.10
Modular: 25.30.20
Standards: 25.10.00

Project Control System: 20.60.01
PUNCH: 70.20.10, 70.20.20
Punched card systems: 10.20.00
Punching cards (see "cards, punching")
PUT: 25.40.50, 70.10.20, 70.30.00, 70.40.10
Random file organization (see "disk data file, organization, random")
READ: 70.20.10, 70.20.20
Read/write heads: 45.10.00, 80.10.00
READZ: 65.10.30
Real arithmetic: 70.10.20
Real numbers: 80.60.00

Output of large: 70.10.20
Multiplication of large: 70.10.20

Record
Layout: 30.40.00
Length: 80.40.00, 80.40.10
Length, computing: 80.50.00
Length, shortening: 80.60.00
Number: 85.10.30
Size: 15.10.70

Records: 80.20.00
Recovery: 15.20.60
Replacement selection: 75.30.10
Resident monitor: 65.10.10
Rotational delay: 45.10.00
Rounding: 70.10.20
Route accounting: 20.60.01
Route slip: 20.10.20
Run book: 15.20.70
Running time, factors affecting: 80.01.00, 80.40.00, 85.10.20, 85.10.30
SAC (see "storage access channel")
Sales analysis: 10.40.30
Sample documents: 10.10.00
Satellite cartridge: 50.01.00
SCA (see "synchronous communications adapter")
Scientific Subroutine Package: 20.60.01
Scratch disk: 50.01.00
SDFIO: 65.10.30
SDFND: 65.10.30, 70.50.20

Section Subsections Page

04

Searching an index: 85.10.10
Sectors: 45.10.00, 80.10.00, 80.40.00

Utilization: 80.40.00
Seek time: 45.10.00
Selective sorting: 75.30.10
Selective tracing: 30.20.00
Sequential organization (see "disk data file, organization, sequential")
Serial numbering: 20.10.20
SFIO: 65.10.30
SKIP: 70.20.10, 70.20.20
SOCAL: 65.10.10, 65.10.20, 70.50.20, 85.10.10, 90.10.10, 90.20.20,

90.20.30, 90.30.40
SOCAL area: 65.10.30
Sorting: 15.10.10, 15.10.20, 75.01.00, 75.10.00, 85.30.10

Mechanical: 70.40.20, 75.20.20
1130 flowchart: 75.40.00

Sort phases: 75.10.00
SQRT: 70.50.20
Stabilization time: 45.10.00
STACK: 70.20.10
Stacker select: 25.40.30
Standard precision: 80.50.00, 80.60.00

Arithmetic: 70.10.20
Standards

Documentation: 25.10.00
Error handling: 25.10.00
FORTRAN labels: 25.10.00
Programming: 25.10.00

Statistical System: 20.60.01
Stock status: 15.10.40
STOP: 45.05.30, 70.20.10
Storage access channel: 45.45.00
Storage costs: 15.10.80
*STORE: 60.30.20
*STORECI: 65.10.40
Store core image: 60.30.20
*STOREDATA: 80.30.20, 80.70.10
Store data core image: 60.30.20
Strategy, testing: 30.10.00
STRESS: 20.60.01
String: 75.10.00
SUB: 70.10.30
Subjob: 55.10.00
Subprograms, subtypes of: 65.10.10
Subroutine library: 50.01.00
Subroutines: 25.30.20, 70.50.01

Devices not on your system: 60.20.20
Logarithmic: 60.20.20
Long argument lessons: 70.50.10
Trigonometric: 60.20.20
Unlikely to be used: 60.20.20

Subtrahend: 70.10.30
SUFIO: 65.10.30
Supervisor program: 50.01.00
Survey: 10.10.00
Survey questionnaire

Accounts payable: 10.40.50
Accounts receivable: 10.40.20
Billing: 10.40.10
Inventory: 10.40.40
Payroll: 10.40.60
Sales analysis: 10.40.30

Synchronous communications adapter: 45.50.00
System overlay: 65.10.30
Systems cartridge: 50.01.00
Systems testing: 30.10.00
Table lookup: 25.10.00
Tag: 75.10.00

Tag sort: 75.10.00, 75.30.20
Teleprocessing: (see "synchronous communications adapter")
Temporary indicator: 55.10.00
Test decks: 30.10.00
Testing: 30.10.00, 30.20.00, 30.30.00, 30.40.00
Throughput (see "running time, factors affecting")
Time

Rotational delay: 45.10.00
Stabilization: 45.10.00
Stamps: 20.10.20

Timing: 70.60.10
Trace: 30.20.00, 30.30.00, 45.05.20, 70.10.20, 70.20.20, 70.50.20
Transfer vector: 65.10.10
Transmittal slip: 20.10.20
TSTOP: 30.20.00
TSTRT: 30.20.00
Type Composition: 20.60.01
TYPER: 70.20.10, 70.20.20
TYPEZ: 65.10.30
UA (see "user area")
UDISK: 65.10.30
UNPAC: 70.30.00, 70.40.10
Unused area: 65.10.70
User area: 60.10.40, 60.20.20, 80.30.20, 80.70.10
Variable precision arithmetic (see "arithmetic, variable precision")
Variable summary sheet: 25.30.10
Verifier: 20.10.10
WHOLE: 25.40.40, 70.10.20
Work Measurement Aids: 20.60.01
Working storage: 60.10.30, 60.20.20, 80.30.20, 80.70.10
WRTYZ: 65.10.30
WS (see "working storage")
X-punch: 70.40.20
Zero balance: 20.10.20, 25.40.40
Zone punch: 20.30.10, 70.40.10, 70.40.20
1DUMY: 60.20.10
11-punch: 70.20.10, 70.40.10, 70.40.20
11-zone: 70.40.20
12-punch: 70.40.20
12-zone: 70.40.20
941 report: 25.40.70
1055 Paper Tape Punch: 45.25.00
1130 Configurator: 45.55.00
1131 Central Processing Unit: 90.30.20
1132 Printer: 45.05.10, 45.15.00, 70.20.10, 90.30.20
1134 Paper Tape Reader: 45.25.00
1231 Optical Mark Page Reader: 45.40.00
1403 Printer: 45.05.10, 45.15.00, 70.20.01, 90.30.20
1442 Card Read Punch: 45.20.00, 70.20.10, 90.30.20

Model 5 Card Punch: 45.20.00
1627 Plotter: 45.30.00, 90.30.20
2250 Display Unit: 45.35.00
2315 Disk Cartridge: 45.10.00, 80.10.00
2501 Card Reader: 45.20.00, 90.30.20

C20-1690-0

EEN
International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y. 10601
(USA Only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

READER'S COMMENT FORM
IBM 1130 Computing System User's Guide	 C20-1690-0

Please comment on the usefulness and readability of this publication, suggest additions and
deletions, and list specific errors and omissions (give page numbers). All comments and sugges-
tions become the property of mm. If you wish a reply, be sure to include your name and address.

COMMENTS

fold fold

fold fold

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A.
FOLD ON TWO LINES, STAPLE AND MAIL.

C20-1690-0

YOUR COMMENTS PLEASE ...

Your comments on the other side of this form will help us improve future editions of this pub-
lication. Each reply will be carefully reviewed by the persons responsible for writing and pub-
lishing this material.

Please note that requests for copies of publications and for assistance in utilizing your IBM
system should be directed to your IBM representative or the ism branch office serving your
locality.

fold	 fold

FIRST CLASS

PERMIT NO. 1359

WHITE PLAINS, N. Y.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY ...

IBM Corporation

112 East Post Road

White Plains, N. Y. 10601

Attention: Technical Publications

fold fold

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10 017
[International]

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201
	Page 202
	Page 203
	Page 204
	Page 205
	Page 206
	Page 207
	Page 208
	Page 209
	Page 210
	Page 211
	Page 212
	Page 213
	Page 214
	Page 215
	Page 216
	Page 217
	Page 218
	Page 219
	Page 220
	Page 221
	Page 222
	Page 223
	Page 224
	Page 225
	Page 226
	Page 227
	Page 228
	Page 229
	Page 230
	Page 231
	Page 232
	Page 233
	Page 234
	Page 235
	Page 236
	Page 237
	Page 238
	Page 239
	Page 240
	Page 241
	Page 242
	Page 243
	Page 244
	Page 245
	Page 246
	Page 247
	Page 248
	Page 249
	Page 250
	Page 251
	Page 252
	Page 253
	Page 254
	Page 255
	Page 256
	Page 257
	Page 258
	Page 259
	Page 260
	Page 261
	Page 262
	Page 263
	Page 264
	Page 265
	Page 266
	Page 267
	Page 268
	Page 269
	Page 270
	Page 271
	Page 272
	Page 273
	Page 274
	Page 275
	Page 276
	Page 277
	Page 278
	Page 279
	Page 280
	Page 281
	Page 282
	Page 283
	Page 284
	Page 285
	Page 286
	Page 287
	Page 288
	Page 289
	Page 290
	Page 291
	Page 292
	Page 293
	Page 294
	Page 295
	Page 296
	Page 297
	Page 298
	Page 299
	Page 300

